
Dynamic Mapping of an AS Network into A Smaller Network of Border Routers

Debessay Fesehaye
Department of Computer Science

UIUC, 201 N Goodwin Ave
Urbana, IL 61801-2302, USA

dkassa2@uiuc.edu

Abstract—In this paper we present a cross layer routing and
congestion control scheme which can map an enterprise network
into a smaller network of boarder routers. One of the boarder
routers in our scheme called a main node computes the virtual
link (tunnel) capacities and corresponding queue size for each
path of the ingress routers. This main node can use cloud
computing to speed up computation. The scheme can make clean-
slate protocols easily deployable in the current Internet with out
the need of making changes in the core routers. Besides, the
scheme makes online dynamic network diagnosis and analysis
easier.

I. I NTRODUCTION

Our design of the new scheme which can dynamically map a
network of many core routes into a smaller network with only
boarder routers is motivated by the following facts. Currently
it is difficult to deploy new effective clean slate routing
and congestion control protocols by altering the behavior of
core routers. Besides, networks usually have few entry points
(ingress routers) and few exit points (egress routers). Hence
new functionalities can be added to these few entry and exit
points either by adding new router-like boxes or leveraging
new router functionalities. What goes in via the ingress routers
and goes out via the egress routers along with the basic
network topology graph can be used to characterize the AS
network behavior as shown in the next sections.

II. M APPING THENETWORK

As can be shown in Figure 1, an entire enterprise network
can be mapped into a network of its boarder routers and
an additional main boarder router. In the figure the letters
R, I,E,C and M denote router, ingress, egress, core and
main. Our scheme maps the real network graphGR on the
left of Figure 1 to the virtual network graphGV on the right
as follows.

1) Add a new main router nodeM1 and connect it to all
ingress and egress routers via virtual links.

2) The virtual link(s) connecting each ingress router with
each egress router and theM1 virtual links are paths
computed byM1 for each ingress router and for itself
as shown in the next section.

III. C REATING THE DYNAMIC V IRTUAL L INKS (TUNNELS)

Each ingress router is connected with its corresponding
egress routers via path(s) computed by the main border node
M1. In the mapped virtual networkGR, we call each of these
paths a tunnel or a dynamic virtual link (DVL). The main
challenges in this mapping are as follows.

C 1

C 2

C 3

C 4

C 6

C5

E 1

E 2

I 1

I 2

I 1

I 2

E 1

E 2

M 1

Fig. 1. A Network Mapping

• How to find the dynamic tunnel(s) to connect each ingress
router with its corresponding egress router,

• How to obtain the capacity of each dynamic tunnel as
each link in the original enterprise network is shared by
flows from different ingress routers

• How to find the queue size of each tunnel as packets may
be queued up somewhere in the tunnel which connects
each ingress with its egress due to bursty nature of
network traffic and other discrepancies.

A. How to find the tunnels and their Capacities

Here are the steps the main nodeM1 uses to find a tunnel
for each ingress router.

• Each ingress router in the enterprise (AS) network sends
to the main router nodeM1 the rateλj at which it is
sending packets to an egress router in pathj during a
control intervald. If we denote the propagation delay of
the longest path asρ, then we can set the control interval
d such thatρ ≤ d ≤ 2ρ. The nodeM1 knows the links in
each pathj otherwise it can request it from the ingress
routers (to bootstrap).

• The main nodeM1 aggregates these values and calculates
the fair rateRi and per packet price (PPP)pi on the behalf
of interfacei of each router in the original networkGR

as follows:
The fairRateRi is calculated as

Ri =
Ci −Qi/di

Ni

(1)

whereCi, Qi, di and Ni are the the capacity of, queue
length at, control interval of and number of paths at linki.
Here instead of a fair share a weighted proportional share
can also be used by associating a weightvj with each
flow j from an egress to an ingress router and assigning
Rj = vjRi as a share of flowj on link i.
The rateλj at which flowj is sending packets is reduced
if the flow is crossing a congested link (shaped or thinned
by the bottleneck link). Hence

λj =

{

λj if Λi < Ci
λj

Λi
Ci otherwise

(2)

whereΛi =
∑Ni

j λj is the total load of linki.
Some flows (paths) may not have enough data to send to
utilize their share of the bandwidth. This may result in
lower link utilization while other legitimate flows which
have more data to send could use the bandwidth. To solve
this, the main nodeM1 counts such flows as partial flows
usingλj/Ri instead of 1.
Hence we need the flow count indicatornj , which is
given by

nj =

{

1 if λj > Ri
λj

Ri
otherwise

(3)

to find the actual flow countAi which is then given by

Ai =

Ni
∑

j=1

nj . (4)

Therefore thefairRateRi is given as

Ri =
(Ci −

Qi

di
)

Ai

. (5)

Theλj andnj are obtained by theaggregator algorithm
at the main nodeM1 which is presented in the next
section.
The queue rateQi/di is also given as

qi =
Qi

di
=

{

0 if Λi ≤ Ci

Λi − Ci otherwise.
(6)

The total loadΛi of link i is also obtained using the
aggregator algorithmat the main nodeM1 which is
presented in the next section.
Even though more sophisticated pricing functions of the
demand can be used to find the PPP, we here use a simple
adaptive mechanism.
The unit per packet price (PPP)pi can be obtained as

pi = ppi
Rp

i

Ri

(7)

where ppi and Rp
i are the price (PPP)pi and rateRi

obtained from the previous round (control interval).
• The main nodeM1 then calculates the local path, virtual

path (tunnel) rate (capacity)Cj and per packet cost of
the tunnelPj for each of its ingress routers.

– The path is the one with the maximum of the
minimumRi in each path and

– the cost is the sum of thepi of each router in the
selected path. ThetotalPacketPricePj of path j is
given by

Pj =

Πj
∑

i

pi (8)

whereΠj is the number of links in pathj.

The main node can also useRi/pi (high rate and low
price) instead of theRi to find the best path for each
ingress router.

B. The Aggregator Algorithm at the Main Node

The main nodeM1 computes the fair rateRi and per packet
price (PPP)pi of each interfacei of a router in the AS by
aggregating the rateλj from the ingress routers as follows:

The main nodeM1 first runs aMaxMin algorithm like the
one in [1] to find the best path setS from each ingress router
to the corresponding egress router. During setup the main node
M1 can be configured with a path setS and the corresponding
rateλj obtained from the ingress routers. Each best pathj can
be recorded using a structure like

typedef struct {
int pathID;
list<link> pathLinks;
int pathHopCnt;
int pathHopCntr;
bool pathMarked

} path;

where pathLinks, pathHopCntand pathHopCntrare the list
of links, number of hops and current hop counter of the path
with pathID. ThepathHopCntris initialized to 0 and the link
structure is as defined below.

While finding the links in each best pathj, the main node
also counts the in-degreeDi of routeri of link i which is the
number of paths crossing the linki using a structure like

typedef struct {
int linkID;
int inDegree;
set<path> pathSet;
int markedPathCntr;
double linkLoad;
int inDegreeCntr;
int actualNumFlows;
bool linkMarked;
double linkFairRate;
double linkPrevFairRate;

} link;

where inDegreeandpathSetare the number of paths and the
set of paths using the link withlinkID. The markedPathC-
ntr, linkLoad, inDegree, inDegreeCntr, actualNumFLowsand
markedare initialized to 0,λj , 1, 1, 1 and 0 respectively. The
aggregation algorithm is then given by Algorithm 1.

C. Co-operation from Egress Routers to find Tunnel Queue
Size and Faulty Link

The above aggregator algorithm assumes that if a router or
a link in the core network fails, the main nodeM1 eventually
knows and excludes the link and router from the network when
computing a path for the egress routers. However carefully
aggregated information from the egress routers along with the

Algorithm 1 The Aggregator Algorithm to calculateRi and
pi
Require: S 6= ∅ {Path set is not empty}

repeat
for eachpath j in S do
i ⇐ current unmarked link in pathj
Ii ⇐ inDegreeCntrof link i
Di ⇐ inDegreeof link i
if Ii = Di then

Rp
i = Ri {Previous fair rate = current fair rate}

Computeqi using Equation 6
ComputeRi using Equation 5
Computepi using Equation 7
Computeλj using Equation 2
Mark link i as done for pathj
Set i to the next link in pathj {Next = current}
Λi ⇐ Λi + λj {Load of next link increases byλj }
Ii ⇐ Ii + 1
Computenj using Equation 3
ComputeAi ⇐ Ai + nj {Equation 4}
hj ⇐ hop counter of flowj
Hj ⇐ hop count of flowj
if hj = Hj then

Mark pathj as completed.
m ⇐ marked path counter
M ⇐ number of paths inS
mi ⇐ marked linki path counter
m ⇐ m+ 1
mi ⇐ mi + 1
{Reset the hop counter of pathj}
hj ⇐ 0

else
hj ⇐ hj + 1

end if
Mi = Ii ⇐ number of paths crossing linki
if mi = Mi then
{Reset the additive values}
Λi ⇐ 0
Ai ⇐ 0
Ii ⇐ 0

end if
end if

end for
until m = M {Until all paths are traversed}

aggregated information from the ingress routers can also be
used to detect anomaly which can be unexpected congestion
or link (node) failure and avoid the faulty part of the network.
This can be done by comparing the rateλj of pathj obtained
by the aggregator algorithm described above against the actual
incoming rateλe

j of at the corresponding egress router which
is also sent to the main nodeM1. If qej = λj − λe

j is a big
value, then some link or router in pathj is faulty. If the values
of qej of other paths are also similarly too high, then the link(s)

at the intersection of these paths can be the candidates for the
faulty link(s). Hence our scheme can also be very useful as
for network monitoring and debugging to detect and locate the
faulty parts of a network.

After obtaining the maximumRj of the minimum rates in
each path of an AS, theMaxMin algorithm can also obtain
the capacityCj by taking the minimum of theRj and λe

j

(which is the last rate forwarded from the link of the current
AS to another AS). So theCj considered as the capacity of
tunnel j is the maximum of suchCj ’s computed by taking
the minimum of the maximum ASRj values and the actual
λe
j value which the corresponding egress measures as having

received. This corrects errors caused due unexpected link
(node) failure in the AS network.

If the rateRj of path j as shown above is the maximum
of the minimumRi in each path obtained using theMaxMin
algorithm, then the real capacityCj of tunnel j is Rj − qej .
Hence if there is unexpected queue buildup (or packet drops)
somewhere in the tunnel, the capacity of the tunnel becomes
very low and hence the path computation algorithm avoids it
and chooses the other paths. The path cost can also be similarly
adjusted usingCj instead ofRj . The new path price can for
instance be given asCj

Rj
Pj .

D. Computation as a Map-Reduce Framework

The aggregator algorithm presented above can also be
thought of as a Map-Reduce framework where the compu-
tations ofΛi, Ii, Ai andmi can be done using mappers, the
rest of the aggregator algorithm can be done using reducers.
The conditionIi = Di can for instance be considered as a
reduce trigger. Further studies can also be done to determine
if better data structures and aggregation schemes can be found.

E. Offline Analysis

The path set and the corresponding link values can be sent
to an offline analyzer for further data mining and analysis.

IV. SUMMARY

We presented schemes to dynamically monitor and perform
online resource allocation on big enterprise networks. This
scheme then finds tunnels connecting each ingress router with
an egress router and their corresponding dynamic capacities.
Our approach can help clean slate protocols to be deployed
in the current Internet without requiring changes in the core
routers.

REFERENCES

[1] FESEHAYE, D., GUPTA, I., AND NAHRSTEDT, K. A Cross-layer Routing
and Congestion Control for Distributed Systems.University of Illinios,
Department of Computer Science, Technical Report UIUCDCS-R-2008-
3015, 11 (Apr. 2008).

