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Abstract—Disk access patterns of social networking appli- Further, existing systems that track the access patterlock®
cations are different from those of traditional applications. and keep related blocks together are less likely to perfoeth w
However, today’s disk layout techniques are not adapted 10 yq tg the large scale of OSNs. Most of the OSNs consist of

social networking workloads and thus suffer in performance. In il f d thus tracking block | | A
this paper, we first present disk layout techniques that leverage miflions ot users an us tracking block level access padte

community structure in the social graph to make placement at that scale is not feasible.

decisions. Second, we build a layout manager called the Bondhu Finding a good disk layout can be helpful in many ways. We
system that incorporates our techniques. We integrate Bondhu mention two specific examples here. Firstly, OSN applicatio

into the popular Neo4j graph database engine. Our trace driven ke extensive use of databases at the back-end. Consider a

experimental results show that the Bondhu system improves the . . . o .
median response time by as much as 48%. While taking the simple table in a database which keeps profile information

community structure into account yields clear benefits, our resus  (Name, address, phone, etc.) of users. When a user issues a
indicate that models with more complexity beyond the social query to get the name of all of her friends, the disk head has

graph may yield low additional benefit. to move to go to the appropriate location in the disk to read
her friends’ information. A good layout keeps related users
. INTRODUCTION data close by on the disk and hence the disk head movement

The last few years have seen an unprecedented growth bistfeduced. This translates to faster response time in aimgyve
in variety and in scale of Online Social Networks (OSN)the queries. Secondly, consider a custom-built file sysiam f
A social network exhibits unique structural propertiessudhe photo application of a social network which splits the
as strong community structure and small world phenomefigk into partitions and allocates a partition for a singéeru
that make disk access patterns of OSN applications differdieeping the partitions organized by a smart layout redutes t
from traditional applications. Our work is motivated by thélisk head movement, since unrelated users rarely access eac
observation that in order to improve disk access performarether’s data.
of OSN applications at the server side, it is critical to dasi We motivate this further by presenting a visualization of
techniques that take the community structure of OSN inflisk block access patterns of a sample OSN application
consideration. in Figure 1. We use the Facebook New Orleans network

There have been several efforts to improve disk performan@e@ph [30] to build a sample OSN application using the Neo4;
by careful data organization. The Fast File System improve&aph database [3] (more details are in Section VI). For each
disk performance by keeping related data blocks and th&ger in the social graph, we createnade in Neodj. Then
meta-data together [21]. Multimedia file systems use tharorgwe store a 400KB data blockpfoperty in Neo4j) for each
pipe layout algorithm by tracking the popularity of the aitie user. Next we write an automated script that logs into the
and keep the hottest object in cylinder zero and place succg¥stem as a random user and retrieves the data blocks for
sive cooler records to the left and right respectively [323]. all of her friends. This is identical to the ‘list all friends
Others track block access patterns and try to place coecela@ction in an OSN. We trace the disk blocks accessed by each
blocks together on the disk [6], [18]. The Free Space Fil€quest using thélktrace tool [8] and use theseekwatcher
System makes use of the empty space of the disk to replict@€! [20] to visualize the disk block access over time. A dot
blocks according to the observed access patterns [15].  in Figure 1 depicts a block access at a particular location on

The above approaches are suitable for traditional worldpadhe disk at a particular time. We observe from the figure that
such as multimedia file systems, version control systentb, d0ck accesses are scattered all over the database. Tées eff
web servers. However, the access patterns in OSNs are gisiterominent when the queries are issued by users with many
different from the above access patterns. This is due to mdfgnds (around 23 and 46 seconds, for example). Therefore,
reasons, two of which we briefly discuss here. In a multimedifi€ disk head has to move a lot to answer this query, which
system popular objects (movies, for example) are popul&ads to a high response time. Later in Figure 7, we show how
across all users. On the other hand, in an OSN scenario it is f8cial network-aware disk placement performs better fer th
the case that a few objects dominate globally. Rather, eseh 1@bove workload.

accesses her friends’ information with a certain probgbili e believe that a social network-aware data organization
scheme will improve disk access performance because it

This work was supported in part by NSF grant 1IS 0841765. changes the random and scattered movement pattern of the
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knowledge, Bondhu is the first system that leverages the
social networking graph for efficient data layout in disks.

o We implement our solution into Neo4j, which is a widely
used open source graph database. We show through ex-
perimentation that the Bondhu system is able to improve
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O 1161333 = Ll mf it fm Sl o e SIS o SR ER response time by as much as 48% when compared to the
Request Time (seconds) default layout policy implemented by the file system.
Fig. 1. Blocks accessed in Neo4j when users issue a ‘listdtiquery o We also show by experimentation that while taking the
R social network structure into account helps making better
T Fmp—— placement decisions, taking the user access patterns into

Random read m—"

account may not further improve performance much.

The rest of the paper is organized as follows. Section Il
presents a formal definition of the disk layout problem. Sec-
tion Il discusses the disk layout algorithms which are & th
core of the Bondhu system. Section IV gives details of the
prototype implementation of the Bondhu system in Neo4j.
Section V presents three models for capturing user infersst
in OSNs that we use in our experiments. Section VI analyzes
experimental results of our prototype implementation.afl
010003 works are presented in Section VII. The paper concludes with
Section VIII.
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Fig. 2. Sequential vs. random read for 3 disk types
I[I. PROBLEM DEFINITION
disk head to one which is semi-sequential and confined within- j\<iier v users: v — {(Vi,Va,...,Vy}, and N consec-

smaller regions. To examine how bad the random access . |ocations on disk denoted by = {L1, Lo Ly}

performance of a disk is compared to the sequential aCCRESw, consider a functiors(V;, V;) representing the social
performance, we measure disk throughput under both acc S8vork T

patterns using thgio benchmarking tool on 3 different hard ) )

disks: a 4 year old desktop hard disk (SEGATE), a 2 year 5(Vi, Vi) = { 0 if V;, V; are not friends

old datacenter hard disk (HP), and a new desktop hard disk L if V;, Vj are friends

(SAMSUNG). The results are presented in Figure 2. In all We assume that relationships are symmetric, i.e.,

the three disks the random access performance is more tgay, v;) = 4(V;,V;) for all (i,j). Define loc(.) to be

two orders of magnitude worse than the sequential accessne-to-one function which denotes a particular ‘layout’,

performance. Therefore, a layout that takes the disk accgss, location arrangemenipc : V. — L. There areN!

pattern into account and organizes the data accordingly qgsssibleloc(.) functions. Further, theost of a layout from

improve performance significantly. the perspective of a particular us&f is given by the sum
Thus, in this paper, we present the design and implemengd-the difference of the disk locations between the user and

tion of the Bondhti System which leverages the social networkll of her friends. The lower theost, the lower the seek

graph to intelligently layout data on disk. The layout sckem distance, and the better the response time. Therefore,

of the Bondhu system improves the disk performance because

of three reasons: i) when the user block sizes are small, the

data fetched in a single seek contains multiple friendsadat

lowering the number of seeks; ii) the disk arm movement is

reduced as related data are clustered together — this leads t Therefore, the total cost of a layout is:

lower seek distance (time); iii) rotational latency is iroped

N
cost; =y [lloc(Vi) = loc(Vy)| x 6(Vi, V5)] (1)

j=1

since the disk has to rotate less to reach the appropriate SN cost;
location for fetching data. cost = Z:12 .
Concretely, we make the following contributions in this
oaper ’ S B floe(V) — foc(V;)  8(Via Vi)}
« We present a novel framework for disk layout algorithms 2 )

based on community detection in a social graph. First,
we detect the communities within a social graph. Then, The lower the cost of a layout, the closer the friends of
we produce the layout by running a greedy heurist@ user are located on the disk. This speeds up common
within and across the communities. To the best of o@perations like friend listing, publish-subscribe of wadists,
etc. Therefore, our goal is to find the layout with the minimum
1Bangla word for friend. Cost.
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Fig. 3. A sample social graph

TABLE |

COST OF THE LINEAR LAYOUT

§(V;,V;) to capture the edge weighw). Thus,

~J 0 if Vi, V; are not friends
o(Vi, Vs) = { w if V;, V; are friends

We make one final point about disk geometries before
we present our techniques. While disk geometries are often
proprietary, manufacturers do present a logical abstraati
the disk which is known as the Logical Block Addressing
(LBA) scheme. It is a simple linear addressing scheme where
blocks are addressed by an integer index starting from 0. The
LBA scheme is essentially a one-dimensional representafio
the complex physical geometry of the disk. Disk manufactire
ensure that accessing consecutive blocks in the LBA space
is similar to accessing consecutive blocks in the physical

Location L1 Lo Ls Ly Ls Lg L~
User | Vi Vo V3 Va Vs Vs V7 geometry. Experimental results [15] also support thisnclai
Vi 12 0o 4 0 0 Therefore, in this paper we use this simple one-dimensional
2 20 20 del of the disk for data |
Va 1 2 0o o model of the disk for data layout.
Vi - 0 2 3
Vs - 0 0 [1l. DISK LAYOUT ALGORITHM
‘éﬁ ) ? In this section we present the disk layout algorithm of
the Bondhu system. At first we present the intuition behind
TABLE I ) T -
COST OF ONE OF THE OPTIMAL LAYOUTS our proposed algorithm and then explain it in detail in the
following subsections.
Location L1 Lo L3 La Ls Lg L~
User | Vs Vi Va3 Vo Viy Vg V7 A. Overview
“ﬁi ! f g 8 8 8 OSNs are known to exhibit strong community structure.
V3 1 2 0 © Therefore, we adopt an approach to disk layout algorithms
“;2 -1 2 g for OSN applications that take the community structure into
Vfé i B 1 account. This has multiple benefits. First, the problem spac
Vy - - - is reduced. So, while making a disk placement decision ésid

a community we can consider only the members of that com-
We illustrate the problem with the help of the sample socighunity. Second, a bad placement choice will have relatively
graph in Figure Il with 7 users. Consider the linear layout ifess impact since the worst possible placement will likedy b
Table I:V; at Ly, V; at Lo, and so on. The users are arrangefiimited by the community boundary. Third, we can use the
in the rows and columns according to their layout. An entr¥xisting community detection techniques that are known to
(Vi, V) in the table is non-zero if there is a link betwe€n  find good quality communities in a social graph.
andVj in the graph (in other words i¥; andV; are friends),  Motivated by these observations, we present the layout
otherwise it is 0. The non-zero value is the absolute value &gorithm of the Bondhu system. Figure 4 illustrates our
the difference of the locations d&f; andV; (i.e., it is the cost approach. The algorithm consists of three modules: i) Commu
as defined before). Adding up all the values we get the casity Detection: using existing community detection tecfugs,
of the layout = 18. However, this is not optimal. We presente divide the social graph into several communities, iiydnt
one of the optimal layouts in Table Il with cost = 14. Community Layout: using a greedy heuristic we find a layout
This min-cost social network embedding problem is for the users within the communities, and iii) Inter-Comrityn
variant of the Minimum Linear Arrangement problem, which ayout: we organize the different communities on the disk by
is known to be NP-hard [13]. The best known heuristic teonsidering inter-community tie strength. These threespair
solve this problem is Simulated Annealing, which itself ishe framework are discussed below.
computationally infeasible for large graphs [23]. ) )
In this paper, we first propose a fast multi-level heuristic t8- Community Detection
solve this problem, which can handle graphs with millions of The goal of the community detection module is to organize
nodes. The Bondhu system uses this algorithm to obtain digle users of the social graph into clusters, so that many
layout. edges connect users within the same cluster and relatively
Second, we solve the weighted version of this problem. Viiew edges connect users in different clusters. The communit
use weighted graphs to capture user interactions in thalsocietection module makes use of existing techniques for graph
network. A high edge weight between two users implies thpartitioning and modularity optimization. We select théwe
they are more likely to access each other’'s data and so tlagorithm classes because: i) they operate on graphs with
should be close by in the disk layout. We use the functidarge number of vertices, ii) they are known to produce good



Social Graph

Here, M = number of edgesj(V;,V;) = weight of the
edge between usdr; and Vj, k; = degree of useW; (sum
of the weights of the links/edges connected to Uggr ¢; =
community of userV;, ando(c;,¢;) = 1, if ¢; = ¢;, and O

otherwise.
ModCom works in two phases. In the first phase users are
Community Detection Module arranged in a random order and each of the users is assigned

to a different community. Then for each usgr the gain in
modularity is calculated by removing it from its own com-

< "5 3 i munity and by assigning it to any of its friends’ communities
| _ | UserV; is then moved to its friend’;’s community, for which
| Intra-Community Layout Module | the modularity gain is maximum. In case of no modularity
| N N N | gain, V; stays in its original community. This first phase is
. , repeated iteratively for all of the users until no furtheinga
] &) c3 C.
\ \ / / in modularity is possible. In the second phase, a new graph

|_Inter-Community Layout Module }————"" consisting of the communities obtained in the first phase is
created. Note that the edge weights are recalculated fer thi
[eeeeoeans [teeeeceee]onennnnns EEEEEEEEE \ phase. After this, the first phase is run again and the process
4 3 oA 2 is continued until no further changes are possible. For more
Final Layout details, see [7].

Fig. 4. Overview of the Bondhu system’s approach It is important to note that the difference between ModCom
and ParCom is that in ModCom the number of communities
cannot be controlled explicitly as it can be in ParCom. This

clusterings, and iii) they are fast, i.e., can find commaesiti affects our later experimentation.
on graphs containing millions of nodes within seconds. We ]
briefly discuss the algorithms here. C. Intra-Community Layout
1) Graph Partition Driven Community DetectionOur Next, the intra-community layout module takes as input the
graph partition driven community detection algorithm (Pacommunities that are produced by the community detection
Com) is based on the multilevetway hypergraph partitioning module. For each community it creates a layout for the users
scheme of [16], [17]. The goal of ParCom is to partition theithin that community. We use a greedy heuristic to find a
social graph intok equal subsets such that the edge-cut fayout for each of the communities. The heuristic works as
minimized. This is equivalent to minimizing the number ofollows. We start with the most popular user, i.e., the user
friends in other partitions. ParCom works as follows. Fitise with the highest edge degree (=sum of link weights) and place
social graph is coarsened down to a small number of verticésat user in the middle of the disk layout. Next, among all the
In this phase a sequence of smaller graphs is construcfddnds of that user we choose the one that is connected to
from the original graph by collapsing vertices togethemngsi the user with the heaviest edge. This is to ensure that if two
the heavy-edge matching (HEM) technique. The weights agers are strongly connected, they should be placed close by
the edges are also recalculated. Then this smaller graphoisthe layout. In case of a tie, we choose the friend with the
divided intok-parts using recursive bi-section scheme. Finallyigher edge degree (the more popular friend). Intuitively,
the partitions are uncoarsened back to the original graphddding a popular user early, we provide more choice for the
steps and at each step the partitions are refined using logaedy algorithm. We place the friend to the left of the alsea
refinement heuristics. Fore more details, see [16], [17]. placed user on the layout. We then create a modified graph by
2) Modularity Optimization Driven Community Detectionmerging the user and her friend. The edges connected to these
Our modularity optimization driven community detection altwo users are now connected to the combined node. In case
gorithm (ModCom) is based on [7]. It is able to detect goodf a common friend of the two users, we assign the weight of
quality communities in large networks (118 million nodes). the edge between the combined node and the common friend
The modularity of a partition is a scalar value betweeas the sum of the individual edge weights.
—1 and 1 that measures the density of intra-community Next, among all the friends of this combined node we
links as compared to inter-community links. More specifical choose the one that is connected to it with the heaviest edge
modularity is defined as the fraction of edges that fall withiand place it on the right. We repeat the above steps itehative
the communities minus the expected value of the fractionaf t by placing the friends to the left and to the right of the adiya
edges were randomly distributed (by preserving node dsjjreglaced users alternatively.
Formally, it is defined as: The different components of the algorithm are presented
1 bk in Algorithm 1 (layout algorithm), Algorithm 2 (finding the
Q=— Z [5(1/1.7 Vi) — = J} o(ci,cj) (3) maximally connected friend), and Algorithm 3 (creation fué t
M 2M bined node).
Vi,V combine




Algorithm 1 Calculate Layout on GraphG = (V, E(w))
enum{RIGHT = 1,LEFT = 2}
left < right + %
V.0
direction <~ RIGHT
/lcontinue until we combine all the nodes
while size(G) > 1 do
/ffind the friend who is maximally connected 1@

/lin case ofl. = (), return the node with the highest edge

degree
V; + max_connected(V,)

/lcombineV, andV; to create a new graph with recalcu-

lated edge weights
(G, V;) < combine(V,,V;,G)
/lalternate betweete ft andright to placeV;
if direction = LEFT then
Lieps < Vi
right < right + 1
direction < RIGHT
else
Lright <~ V;
left < left —1
direction < LEFT
end if
end while

Algorithm 2 maxz_connected(V,.)

if V. = 0 then //initial state
/Ireturn the one with the highest edge degree
Vs <= Vi | edgeDegree(V;) > edgeDegree(V;),
YW, e VYV, e V\V, £ V;
if size(Vy) > 1 then
[/Ireturn a random one in case of tie
return random(V;) | V; € V..
else
return V;
end if
else//normal case operation
/Iselect the friend connected to the heaviest edgg.of
Vs < Vi | edgeWeight(V,,V;) > edgeW eight(Ve, V;),
YV € friend(V.),YV; € friend(V.), Vi #V;
if size(Vy) > 1 then //there is a tie
/Iselect the one with the highest edge degree
V. = Vi|edgeDegree(V;) > edgeDegree(V;),
Vi € Vo,VV; € Vs, Vi £V
if size(V,.) > 1 then //there is a tie again
/Ireturn a random one from the list
return random(V;)|V; € V,.
else
return V.
end if
else
return Vg
end if
end if

Algorithm 3 combine(V.,V;, G = (V, E(w)))
/[create a new node by joining. & V;
V! « createNode(V,,V;)
/ladd the new node to the set of vertices
V+«Vuv,
/Istart by deleting the edge betwebh & V;
deleteEdge(Ve, V)
for all F' € friend(V,) do
w < edgeWeight(V,, F')
/ldelete edges betweén. & its friends
deleteEdge(V., F)
/ladd edges between the new nodéd/&s friends
addEdge(V!, F,w)
end for
for all F € friend(V;) do
w < edgeWeight(V;, F)
/ldelete edges betwedr & its friends
deleteEdge(V;, F)
/lin case of a common friend of, & V;, we already
created an edge
if isEdge(V!, F) then
w' «+ edgeWeight(V!, F)
/lincrease the weight of the already created edge
setEdgeWeight(V/), F,w + w’)
else//otherwise create a new edge
addEdge(V!, F,w)
end if
end for
V «V -V.-V; lldeleteV, & V; from the set of vertices
return (G,V))

D. Inter-Community Layout

Our third component is the inter-community layout module.
It takes as input: i) the communities produced by the commu-
nity detection module, and ii) the layout produced withiclea
community by the intra-community layout module. The goal
of this component is to create a layout of the communities.
This enables us to capture the relationships among differen
communities. For example, if a community is strongly
connected to another community, these two should be
placed close by on the disk — this reasoning is similar to the
one used for the intra-community layout module.

To create the inter-community layout, we create a graph
using the different communities as vertices. The weighhef t
edge between community and communityc; is calculated
as the sum of the weights of the edges from the members of
communityc; to the members of community. After creating
the community graph we run the same iterative algorithm as
the intra-community layout module to find a layout of the
communities.

When this is done, we expand the layout within each
community, which was previously obtained from the intra-
community layout module. This gives us the final disk layout
containing all the users of the social graph.
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Fig. 6. Modeling the social network

module.

IV. IMPLEMENTATION

NetGhoiee 5, & We implement the Bondhu system as a layout manager
Combined Node @ for the Neo4j [3] graph database. Neo4j is a very popular
and widely used graph database. It is suitable for building

v [T17] OSN applications as it offers a graph-oriented model foadat

representation. A Neo4j graph consists of nodes, reldiipas
Fig. 5. Working example and properties. Properties are mapping from a string key to a
value and can be associated with both nodes and relatianship

Example We present a working example of our technique%he part of the Neo4j storage engine that stores propedies i

in Figure 5. This is the same graph as shown in Figure hown as the PropertyStore.
First, the community detection module splits the graph into We modify the PropertyStore of Neodj so that the records

two communities:er={Va, Vs, Vs} and es={V3, V, Vi, Vs }. are organized by the layout algorithms of the Bondhu system.

. : ) ote that we rely on the native file system so our layout
Then, the intra-community module finds a layout for both ~ "~ . ; .
: ecisions are propagated to the disk block level, i.e., the
of them separately. Let us examine the steps taken by thé .
. > modified PropertyStore database produced by the Bondhu
module forcy. Here, the first user to be chosen can be either . ) .
. . . system is stored sequentially on the disk. Therefore, we sta
V3 or Vi, since both of them have the highest edge weig . . .
- : ... ~with an empty disk and verify with théav! [1] tool that the
(=3). The algorithm choose; at random and places it in database file is stored sequentially on the disk at the block
the middle of the layout. Next, the algorithm considéfs q Y

. : _ - level.
V2, and V5 (hl_ghest edge weight connected 1g=1). V; is Our implementation of the Bondhu system is in Java.
chosen since it is the most popular of all (edge degrees). . .
. ; The community detection module makes use of the METIS
andV; are combined td’; ; and a new graph is constructedIibrar [2] for the ParCom algorithm
Now, the algorithm considerg, and V5 (highest edge weight y 9 '
to V3,=2), and V; is chosen at random (both> and V; V. MODELING THE SOCIAL NETWORK

are equally populan)Vs, and Vs are combined to obtain | this section we present three models to capture user
V3,15, which leaves the algorithm with the last usegXto be interaction in a social network. We use these models to
placed. The final layout produced fog is: {V2,V1,V5,Vs5}.  evaluate our disk layout techniques later in Section VI.SEhe

Likewise, the layout produced for, is: {V7,Vs, Vi}. The models vary in the way they assign weights to the edges
steps for the inter-community layout module is trivial, @n petween users.

we only have two communities in this example. So, the final .

layout produced is eithefics, 1 }={Va, V1, Vs, Vs, Vo, Ve, Vi }, A Uniform Model

or {c1,co}={V7, Vs, Vy, Vo, V1, V5, V5} depending on which ~ The uniform model is the simplest of the three models. In
community is chosen first by the inter-community layouthis model we assign equal weight (=1) to all social network



edges. In other words, according to this model a user is Bque

likely to access any of her friends’ information. Listingeth 5 1193666 Disk 10
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The preferential model is motivated from the observatior equest Time (seconds)

that a user with large number of friends is likely to be moré‘)%ui'_ CerOPC:rSe ?Ncifstsigﬂré”lN(‘Z‘ég L‘J’Ivt'tgpt:riaiﬁg‘_dh“ system fregaiata
active than a user with fewer friends, e.g., make more status
updates, post more frequently, etc. In other words, a ushr wi We use two metrics to evaluate the data layout schemes of
a larger number of friends is more active than a user with fewdie Bondhu system. The first metric is the cost as defined in
number of friends. While browsing, a user is more likely t&ection Il (Equation 1). The cost metric measures the dpatia
access the information of the more active friends. clustering of the friends of a user on the disk. Therefore, a
To capture this type of interaction, the weight of the eddewer cost means that the data of related users are placsel clo
(Vi,V;) should be proportional to the edge degreelgf by on the disk. Thus, operations like listing friends andlwal
Note that this metric is not symmetric, i.e., If; has a posts will be faster. Our second metric is response times Thi
higher edge degree tha¥i, then the weight of(V;,V;) is measures the time to fetch data blocks from all the friends of
higher than the weight ofV;, V;). On the other hand, disk random user. This captures the performance of an applrcatio
locality is symmetric in nature and to capture that our dociwith our layout schemes. An improvement in the response
graph models are undirected. Therefore, according to ttiee metric suggests that the disk is able to handle more
preferential model the weight of the edg¥;(V;) is set to requests per unit time and that the user-perceived delay in
ledgeDegree(V;) + edgeDegree(V;)] /2. In Figure 6(a) we getting the response to a request is reduced. We next describ
assign the edge weights according to the preferential modéhe workload we use to measure the response time metric.
Our workload captures the event of listing the friends of
C. Overlap Model a user, which is a very common operation in an OSN. To

The overlap model is motivated by the following observad® this we build a sample OSN application on top of Neo4.
tion: two users with a large number of common friends afg'St: We populate the Neodj database with the social graph.
ext, we store a data blockyfoperty in Neo4j) for each

more likely to share common interests than two users WthI .
fewer number of common friends. Therefore, the two usetSer in the graph. The Bondhu system handles the data layout

with the larger number of common friends are more likely tgutomatically beyond that point. Next, we write an autoate

access each other’s information. In other words, if USenas script that logs into the system as a random user and fetches

p common friends withV; and ¢ common friends withV;, the data blocks for all the friends of that user. We measure
j 7

and if (p > q), thenV; is more likely to acces¥;'s data than the response time for the whole operation. To make sure that
Vi's data, ' ' ’ the response time is not adversely affected by other presess

To assign the weight of the edd#;, V;) according to the accessing the disk at the same time, we carry out the same

overlap model, we calculate the number of common friaﬂdsoperationﬁ times and take the minimum. We repeat this for
betweenV; andV; and set the edge weight s+ 1). We add 1500 random users. We use the same workload for all of
alto malz<e suré that we do not assigh aveight to. the edge our experiments except for the one on the effect of different
(V4,V;) in case of no common friends, since an edge weing)de'S (Section VI-G).

of O indicates there is no edge at all. In Figure 6(b), we emssig To ehnsure t_hat the iatg s s<|arve_d f:]om the disk (ant:ll nc;t
the edge weights according to the overlap model. rom the previous cac ed resu ts in the memory) we flus
the memory as follows: First, we use thenc command to

VI. EXPERIMENTAL EVALUATION write any buffered data to disk. Then, we use dtep_caches
mechanism in the Linux kernel to drop the pagecache, dsntrie
We use the Facebook New Orleans dataset collected 4R inodes from the memory, causing the memory to be free
[30]. This dataset contair3731 users and17090 links. We  from any cached data. All our experiments are conducted on
assign appropriate weights to the social graph accordingito an Hp DL160 compute block with 2 quad core Intel Xeon 2.66
uniform, preferential, and overlap models. Unless othsewigp, processors, 16 GB of memory, and 2 TB of storage.

We run two instances of Neo4j that store the above OShhrameters of the Bondhu system.

— one with the integrated Bondhu system handling the data o

layout and the other one is the unmodified Neodj. We cd- Visualization of Block Access Patterns

the data layout scheme of the unaltered Neo4jdhgault To contrast with the disk block access patterns of the defaul
layout. Based on the method used in the community detectimyout presented in Section |, we repeat the same experiment
module, the Bondhu system has two data layout schemes builith Bondhu enabled Neo4j system. Here we use ParCom with
in: ParCom and ModCom (see Section Il for details). 64 communities. Per user data size is 400KB as before. We
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conduct our workload based measurements and trace the block
level 1/0O for each user request. The visualization of theetia
presented in Figure 7. Each dot shows a read request, its disk
offset, and time of request. Here, we observe a significantly
better disk block access pattern compared to Figure 1. In
Figure 1 the block accesses were scattered, whereas ireHgur
the block accesses are clustered (prominent at 23, 46, 396—1
seconds). This suggests that the Bondhu system is clugterin
the related friends’ data close by on the disk. This tramslat
to less disk arm movement and thus faster seek and response o 01 o2 03 04 o5 06 o7 o8 o9 1
time. CDF

(a) CDF
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B. Effect of Data Size

In an OSN application the data associated with a particular
user can be of different sizes, e.g., it may contain any of
name, address, profile picture, wall posts, etc. Therefiore,
is important to see the effect of varying user data block
sizes on the performance of the layout algorithms. First, we
examine the effect of varying data block sizes on the respons
time metric. Then we present a scatter plot to show the
correlation between the improvement in the cost metric and
the improvement in the response time metric. This shows to
what extent the improvement in data locality translateshio t
improvement in response time.

For this experiment we create data blocks of 4B, 40B,
400B, 4KB, 40KB, and 400KB for each of the users anfly. g. percentage of improvement in response time comparee effault
conduct our workload based measurement. We use ParCleynut for various data sizes (without caching)
with 64 communities, compare it with the default layout, and
plot the improvement in the response time metric (the lowé&fzes grow from 40B to 400B, the expected number of friends
the response time compared to the default layout, the morePresent in per read decreases dramatically. Thereforegwe s
the improvement). We plot the CDF of the improvement fdhe drop in improvement after 40B.
the different data sizes in Figure 8(a) and the 5th pereentil In summary, when user data size is smaller than the file
quartiles, and the 95th percentile of the same results sgstem block size, the improvement is high due to fact that
Figure 8(b). a single file system read yields more correlated data. So, the

We see a22% to 48% median improvement in responseumber of seeks required to fetch all friends’ data is reduce
time compared to the default layout across various data.siz€his phenomenon begins to vanish when user data sizes grow
The Bondhu layout manager performs best when the user datger than the file system block size. Beyond that point, the
size is 40B. When the data sizes increase from 4B to 40B \Bendhu system improves performance by reducing the seek
see an increase fron2% to 48% in the median improvement distance.
compared to the default layout. Beyond that, the improvémen Next, Figure 9 examines the correlation between the im-
percentage decreases and at 400KB the median improvenm@onivement in the cost metric and the improvement in the
reache22%. response time. This shows how the smart placement decision

The reasoning for the above behavior is as follows. Th# the Bondhu system translates to better applicationtHeve
native file system reads data in chunks of 4KB blockperformance. As defined in Section I, the cost metric for
Therefore, when user block sizes are small, a file system readiser is the sum of differences between the user and her
fetches multiple users’ data together. For example, with 4Bends’ data location. We calculate the cost metric for the
user block size, a read yields around 1024 users’ data. Witkers using the placement in both the default layout and the
40B user block size, a read yields around 102 users’ daRgrCom layout. A larger cost denotes that the friends of a
and with 400B user block size, a read yields around 10 useuser are far away in the disk. We then calculate the fraction
data. Due to the randomness of the data placement schemefaimprovement by using the ParCom layout scheme of the
the default layout, the expected number of friends present Bondhu system over the default layout. For the correspandin
read decreases by a factor of 10 when data block sizes grasers we measure the fraction of improvement in response
from 4B to 40B to 400B. For Bondhu, however, the expectaidne metric and plot the results using a scatter plot. Theltes
number of friends present per read does not decrease maoch presented in Figures 9(a) and 9(b) for two different data
when data block sizes grow from 4B to 40B. This is due tsizes. Figure 9(a) shows good correlation since most points
the clustering property of Bondhu. In contrast, when thelklo are along ther = y line. For Figure 9(b) the correlation is
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Fig. 9. Correlation between cost improvement and responseitippeve-  Fig. 10. Percentage of improvement in response time comparée tefault
ment (without caching) layout for various data sizes (with caching enabled)

less prominent because of the prior discussion.

Data size: 400KB

C. Effect of Caching

In the previous section we ensure that all the requests are
served from the disk and not from the memory. However,
serving results from the memory reduces the response time by
a large fraction for any application. So, we enable cacharg f
both Neo4j and Bondhu. The results presented in this section
examine the effect of caching on the response time metric.

We use the same workload as discussed earlier, but without h Y 5 s L
flushing the cache between successive user requests. A user Cost improvement over defaul layout
issuesl0 successive requests to fetch the data blocks of all of
her friends. As before we conduct this experiment 1500 Fig. 11._ Correlation between cost improvement and responseithprove-

ment (with caching)
randomly selected users.

As with the previous experiment, we plot the CDF of thée kept in memory. If the data cannot be served from memory,
improvement in response time for the different data blogksi it has to be fetched from disk and thus the previous section’s
in Figure 10(a) and the 5th percentile, quartiles, and thth 95lescribed behavior kicks in.
percentile of the same results in Figure 10(b). When the datalo investigate whether the improvement in response time
size is small we do not see much improvement using our laydot larger data sizes is indeed due to the placement desision
scheme. As the data sizes increase from 4KB to 40KB hy the Bondhu system, we present a scatter plot of the
400KB the benefit of using the Bondhu system kicks in @amprovement in response time vs. the improvement in the cost
seen by the rise in median response time improvement franetric in Figure 11. This is similar to the one presented & th
0% to 16% to 26% respectively. This is because when th@revious section but with caching enabled. We observe a fair
data sizes are small, the information of all the users can amount of correlation between the improvement in the two
kept in memory. Therefore, requests for data can be readihetrics in this case as well. However, the correlation isasot
served from the memory for the default layout as well as fatrong as in Figure 9(b). With caching enabled, a fraction of
the Bondhu layout schemes. When the data size grows beydinel friends’ data will be readily available in the memoryr Fo
some threshold (40KB here), all the user data blocks canribé already cached data no disk read will be performed.

0.5

-0.5

Improvement in response time over default layout
o



100 out thereafter. This is because the community detectioruteod
§ Bl O A has lower marginal utility in finding more community strutu
s in the graph towards the right end of the plot.
:éz 40 A similar pattern is observed in Figure 12(b), where we plot
I the improvement in the response time metric over the default
g 0 layout for different number of communities. When the number
s of communities i, the median improvement in the response
g 4 5th Percentiie+ time metric is around 1% for ParCom and this grows quickly.
5 0 . szfgagﬁ ] The knee is reached 82 communities, where the response
B T e 16 3 o1 108 26 512 1074 time of ParCom ist0% lower than that of the default layout.
Number of communities The reasoning is the same as in the previous paragraph.

(

)

) Percentage of cost improvement over default layout
E. Performance of ModCom

70
We now focus on ModCom and examine the improvements

in the cost metric and the response time metric over the efau
layout. Unlike ParCom we cannot set the number of commu-
nities in ModCom since the number of communities evolve
depending on the structure of the social graph. However,-Mod
Com produces communities at different granularities. Reca
that the algorithm is iterative — at level O, there are as many

60
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% improvement in response time over default layout

o o Psga:g%% : | communities as the number of nodes. Leféel 1) combines
- 95th Percentle  x the communities of level, and produces fewer communities.
2 4 8 16 32 64 128 256 512 1024 We configure the Bondhu system so that it can organize the

Number of communities

disk layout based on the communities found at any level.
For example, if we set level=2, then the community detection
module produces 388 communities which is then fed to the
Fig. 12. Performance of ParCom intra- and intra-community layout modules in successidme T

o ~workload and the metrics considered are same as the other
In summary, the worst case median improvement achievggheriments, Data block size for each user is set to 4 KB.

by Bondhu is0% (small data sizes with caching) and the |, Figure 13(a) we present the improvement in cost metric

best case improvement 8% (medium data sizes without o, ynared to the default layout for varying number of commu-
caching). Thus, it is always preferable to use Bondhu.  iies found by the community detection module. We observe
that unlike ParCom, the median improvement ¢7%) does
not change much by varying the number of communities. This

One of the parameters that can be tuned in ParCom is ibebecause ModCom does not produce a community until it
number of communities. The fewer the number of commuritas found a good one (based on the value of the modularity).
ties, the larger the size of a community. For instance, WwithFor the same reason, a flat pattern is observed for the respons
community, the layout decision is solely handled by theaintrtime metric in Figure 13(b).
community layout module. With an increase in the number of .
communities, the inter-community layout module influencds ©rgan Pipe Layout
layout more. For a given social network graph, we desire toNext, we compare our layout algorithm with the popular
tune the number of communities in such a way that the bestan pipe algorithm [32], [33], which is used in multimedia
disk layout is obtained. file systems. Given a set of record®,, Ry, ..., Ry with

We vary the number of communities in ParCom and exargtobal access probabilitieB, , P, ..., Py, andzfil P =1,
ine the improvements in the cost metric and in the resporthe organ pipe algorithm places the recdtgdwith the largest
time metric over the default layout. The workload is the sam@ in the middle and then iteratively places the record with
as discussed earlier and the data size per user is 4KB. The next largesP; alternatively to the left and to the right of
results are presented in Figures 12(a) and 12(b) resplctivéhe already placed record(s). So, according to the orgam pip
In Figure 12(a) we see that as the number of communitiesheme, the most popular user (the user with the largest edge
increases fron® to 32 we experience a steady improvementlegree) is placed in the middle and the users with the next
in the cost metric. When we have fewer communities, the intrlargest edge degrees are placed alternately to the leftand t
community detection module is mostly responsible for thide right of the already placed user(s).
layout and the Bondhu system does not capture the communityVe modify the Bondhu system to organize data according to
structure of the social graph. Therefore, the improvemetite organ pipe scheme and compare it with ParCom (number
grows quickly as the number of communities is increasedf communities=64). Figure 14 plots the CDF of the improve-
However, this curve hits a knee@t communities and plateausments of the response time metric compared to the default

(b) Percentage of improvement in response time over default
layout

D. Effect of Number of Communities in ParCom
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60
previous experiments. Data block size for each user is 4KB.

40 The Bondhu system takes the model as the input, creates a
| — HH ___________ H layout using that model, and organizes the data according to
20 L] L1 L J ] that layout.

We use 3 different workloads based on the graph models.
First, in the uniform workload we randomly select a user who
issues a request to access one of her friends’ blocks atmando

-20 Sth Percentile ~ +

% improvement in response time over default layout

Quartles —— Second, in the preferential workload the randomly selected
40 95th Percentile user issues a request to access a friends’ data blocks with
o A0 probability proportional to the friend’s degree. Third, tine
. . . overlap workload the randomly selected user issues a reques
(b) Percentage of improvement in response time over default . \ . "
layout to access one of her friends’ data blocks with probability
proportional to the number of common friends with the friend
5 L, 19-13. Performance of ModCom In each of these workloads a user issu€®0 successive
;f i requests and the response time is measured. Each measuremen
£ o . is taken10 times and we take the minimum response time. We
g F conduct this experiment far000 users in total.
£ T e We run each of the 3 workloads on the 4 different layouts
2 . — and present the results in Figure 15. Each run of the experi-
g " - ment is denoted bymodel : workload), where model denotes
§ / the models we usefpreferential, overlap, uniform, defablt
§ :Z Otgan-pise and workload denotes the workloads we ugpreferential,
g R overlap, uniformy. We plot the 5th percentile, quartiles, and
® 0 01 02 03 04 05 06 07 08 09 1 the 95th percentile of the response time for all of the runs.

CoF We make three observations from this plot. First, the défaul

layout performs twice worse than any of the other models

(median response time: 175ms). Second, the performance of

layout for both. The data block size for each usetiSB and the layout produced by the uniform model is quite comparable

the workload is the same as the preceding experiments. to the performance of the layout produced by the preferentia
The organ pipe is better than the default layoutlby (on and overlap models. Third, the performance of a specific

average), but ParCom outperforms the default layousdsy. layout does not vary much over the different workloads.

The organ pipe scheme assumes that popular users are popul@ne directional conclusion from these observations is that

across the system, which is not valid for an OSN. An OSBlthough it is possible to create complex models (e.g., [5])

has a very specific community structure and in this structute@ capture user interactions in a social network, often the

popular users are popular only among their friends. simplest model (such as the uniform model) is sufficient to

. make important disk layout decisions. Taking more complex

G. Effect of Different Models models into account may yield little added benefit for the
So far all the experimental results are based on the unifogfount of effort involved. The social graph structure is the

model. In this section we present results using the diﬁtere@iggest influence on disk performance.

models presented in Section V: i) the preferential modgl, ii

the overlap model, and iii) the uniform model. To provide VII. RELATED WORKS

as a baseline for comparison we also present results usingpata organization techniques for improving disk perfor-

the default layout. We use the same social graph as timance broadly fall into two categories: i) access pattern-

Fig. 14. Comparison with organ pipe layout



oblivious, and ii) access pattern-aware. Access patterfi# V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefeby “Fast

oblivious techniques include placing data and meta-data to
gether as in the Fast File System and its variants [21], [918]

[29], writing data sequentially to contiguous disk segrsead
in the Log-structured File System [27], and explicitly gping

small files together on disk as in C-FFS [12]. Access patterpy
aware techniques can be further categorized into threestype
depending on the level of abstraction they work at: i) cydind

level [19], [31], [28], ii) block level [4], [18], [15], [6],[14],
and iii) file system level [22].

The position of Bondhu is in the middle of these twd!2]
extremes. On one hand, it is not access pattern-oblivious in
the sense that it captures the community structure of thialso¢13]
network. On the other hand, it is not completely access ppatte
aware in the sense that it does not make placement decisignp

based on the real traffic between users.

Aside from data organization, disk performance can be si

nificantly improved using intelligent prefetching and ciach

techniques [18], [10]. C-Miner [18], for example, uses data

mining techniques to learn the block access patterns argl use
that information to make prefetching and cache replacemélrﬁ]
decisions. The Bondhu system can be extended to make social
network-aware prefetching decisions, which remains asobnell7]

our future works.

With the recent growth of OSNs, many focused on partitionts]
ing the social graph to make OSN applications scalable [24],
[26], [25]. SPAR [25], for example, uses partitioning a”‘f'w]

replication techniques to reduce network traffic acrosgesesr

Bondhu, on the other hand uses partitioning and communigp] > ;
] M. K. Mckusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, Fast File

detection techniques for disk performance improvement.

excellent survey on existing community detection techegju

is available at [11].

VIII. CONCLUSION

In this paper, we presented techniques for disk layout qps;

ganization for online social networking applications bkita

the community structure of the social graph into account. i
incorporated our techniques into the Neo4j graph databass
by building a layout manager called the Bondhu system.

Experimental results with realistic workloads exhibitéghs-

icant improvement in cost and response time compared to {bg
default layout. Our results also indicate that models withren
complexity beyond the social graph may yield low addition?l%]

benefit.
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