
Social Network-Aware Disk Management
Imranul Hoque and Indranil Gupta

Department of Computer Science
University of Illinois at Urbana-Champaign

{ihoque2, indy}@illinois.edu

Abstract—Disk access patterns of social networking appli-
cations are different from those of traditional applications.
However, today’s disk layout techniques are not adapted to
social networking workloads and thus suffer in performance. In
this paper, we first present disk layout techniques that leverage
community structure in the social graph to make placement
decisions. Second, we build a layout manager called the Bondhu
system that incorporates our techniques. We integrate Bondhu
into the popular Neo4j graph database engine. Our trace driven
experimental results show that the Bondhu system improves the
median response time by as much as 48%. While taking the
community structure into account yields clear benefits, our results
indicate that models with more complexity beyond the social
graph may yield low additional benefit.

I. I NTRODUCTION

The last few years have seen an unprecedented growth both
in variety and in scale of Online Social Networks (OSN).
A social network exhibits unique structural properties such
as strong community structure and small world phenomena
that make disk access patterns of OSN applications different
from traditional applications. Our work is motivated by the
observation that in order to improve disk access performance
of OSN applications at the server side, it is critical to design
techniques that take the community structure of OSN into
consideration.

There have been several efforts to improve disk performance
by careful data organization. The Fast File System improves
disk performance by keeping related data blocks and their
meta-data together [21]. Multimedia file systems use the organ
pipe layout algorithm by tracking the popularity of the objects
and keep the hottest object in cylinder zero and place succes-
sive cooler records to the left and right respectively [32],[33].
Others track block access patterns and try to place correlated
blocks together on the disk [6], [18]. The Free Space File
System makes use of the empty space of the disk to replicate
blocks according to the observed access patterns [15].

The above approaches are suitable for traditional workloads,
such as multimedia file systems, version control systems, and
web servers. However, the access patterns in OSNs are quite
different from the above access patterns. This is due to many
reasons, two of which we briefly discuss here. In a multimedia
system popular objects (movies, for example) are popular
across all users. On the other hand, in an OSN scenario it is not
the case that a few objects dominate globally. Rather, each user
accesses her friends’ information with a certain probability.

This work was supported in part by NSF grant IIS 0841765.

Further, existing systems that track the access pattern of blocks
and keep related blocks together are less likely to perform well
due to the large scale of OSNs. Most of the OSNs consist of
millions of users and thus tracking block level access patterns
at that scale is not feasible.

Finding a good disk layout can be helpful in many ways. We
mention two specific examples here. Firstly, OSN applications
make extensive use of databases at the back-end. Consider a
simple table in a database which keeps profile information
(name, address, phone, etc.) of users. When a user issues a
query to get the name of all of her friends, the disk head has
to move to go to the appropriate location in the disk to read
her friends’ information. A good layout keeps related users’
data close by on the disk and hence the disk head movement
is reduced. This translates to faster response time in answering
the queries. Secondly, consider a custom-built file system for
the photo application of a social network which splits the
disk into partitions and allocates a partition for a single user.
Keeping the partitions organized by a smart layout reduces the
disk head movement, since unrelated users rarely access each
other’s data.

We motivate this further by presenting a visualization of
disk block access patterns of a sample OSN application
in Figure 1. We use the Facebook New Orleans network
graph [30] to build a sample OSN application using the Neo4j
graph database [3] (more details are in Section VI). For each
user in the social graph, we create anode in Neo4j. Then
we store a 400KB data block (property in Neo4j) for each
user. Next we write an automated script that logs into the
system as a random user and retrieves the data blocks for
all of her friends. This is identical to the ‘list all friends’
action in an OSN. We trace the disk blocks accessed by each
request using theblktrace tool [8] and use theseekwatcher
tool [20] to visualize the disk block access over time. A dot
in Figure 1 depicts a block access at a particular location on
the disk at a particular time. We observe from the figure that
block accesses are scattered all over the database. This effect
is prominent when the queries are issued by users with many
friends (around 23 and 46 seconds, for example). Therefore,
the disk head has to move a lot to answer this query, which
leads to a high response time. Later in Figure 7, we show how
social network-aware disk placement performs better for the
above workload.

We believe that a social network-aware data organization
scheme will improve disk access performance because it
changes the random and scattered movement pattern of the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4825874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

2

5

7

10

M
B

/s

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

45

90

135

180

S
e
e
ks

 /
 s

e
c

0 23 46 69 93 116 139 162 186
Request Time (seconds)

1161333

1169416

1177499

1185582

1193666

D
is

k
o
ff

se
t

(M
B

)

Disk IO

Fig. 1. Blocks accessed in Neo4j when users issue a ‘list friend’ query

 0

 20

 40

 60

 80

 100

 120

 140

 160

SEGATE-ST3250820AS HP-GB1000EAFJL SAMSUNG-HD103UJ

M
B

/s

Disk Performance

Sequential read
Random read

Fig. 2. Sequential vs. random read for 3 disk types

disk head to one which is semi-sequential and confined within
smaller regions. To examine how bad the random access
performance of a disk is compared to the sequential access
performance, we measure disk throughput under both access
patterns using thefio benchmarking tool on 3 different hard
disks: a 4 year old desktop hard disk (SEGATE), a 2 year
old datacenter hard disk (HP), and a new desktop hard disk
(SAMSUNG). The results are presented in Figure 2. In all
the three disks the random access performance is more than
two orders of magnitude worse than the sequential access
performance. Therefore, a layout that takes the disk access
pattern into account and organizes the data accordingly can
improve performance significantly.

Thus, in this paper, we present the design and implementa-
tion of the Bondhu1 System which leverages the social network
graph to intelligently layout data on disk. The layout schemes
of the Bondhu system improves the disk performance because
of three reasons: i) when the user block sizes are small, the
data fetched in a single seek contains multiple friends’ data,
lowering the number of seeks; ii) the disk arm movement is
reduced as related data are clustered together – this leads to a
lower seek distance (time); iii) rotational latency is improved
since the disk has to rotate less to reach the appropriate
location for fetching data.

Concretely, we make the following contributions in this
paper:

• We present a novel framework for disk layout algorithms
based on community detection in a social graph. First,
we detect the communities within a social graph. Then,
we produce the layout by running a greedy heuristic
within and across the communities. To the best of our

1Bangla word for friend.

knowledge, Bondhu is the first system that leverages the
social networking graph for efficient data layout in disks.

• We implement our solution into Neo4j, which is a widely
used open source graph database. We show through ex-
perimentation that the Bondhu system is able to improve
response time by as much as 48% when compared to the
default layout policy implemented by the file system.

• We also show by experimentation that while taking the
social network structure into account helps making better
placement decisions, taking the user access patterns into
account may not further improve performance much.

The rest of the paper is organized as follows. Section II
presents a formal definition of the disk layout problem. Sec-
tion III discusses the disk layout algorithms which are at the
core of the Bondhu system. Section IV gives details of the
prototype implementation of the Bondhu system in Neo4j.
Section V presents three models for capturing user interactions
in OSNs that we use in our experiments. Section VI analyzes
experimental results of our prototype implementation. Related
works are presented in Section VII. The paper concludes with
Section VIII.

II. PROBLEM DEFINITION

ConsiderN users:V = {V1, V2, . . . , VN}, andN consec-
utive locations on disk denoted by:L = {L1, L2, . . . , LN}.
Now, consider a functionδ(Vi, Vj) representing the social
network.

δ(Vi, Vj) =

{

0 if Vi, Vj are not friends
1 if Vi, Vj are friends

We assume that relationships are symmetric, i.e.,
δ(Vi, Vj) = δ(Vj , Vi) for all (i, j). Define loc(.) to be
a one-to-one function which denotes a particular ‘layout’,
i.e., location arrangement,loc : V → L. There areN !
possibleloc(.) functions. Further, thecost of a layout from
the perspective of a particular userVi is given by the sum
of the difference of the disk locations between the user and
all of her friends. The lower thecost, the lower the seek
distance, and the better the response time. Therefore,

costi =

N
∑

j=1

[|loc(Vi)− loc(Vj)| ∗ δ(Vi, Vj)] (1)

Therefore, the total cost of a layout is:

cost =

∑N

i=1 costi
2

=

∑N

i=1

∑N

j=1{|loc(Vi)− loc(Vj)| ∗ δ(Vi, Vj)}

2
(2)

The lower the cost of a layout, the closer the friends of
a user are located on the disk. This speeds up common
operations like friend listing, publish-subscribe of wall-posts,
etc. Therefore, our goal is to find the layout with the minimum
cost.

V1

V5

V3

V2

V4

V6

V7

Fig. 3. A sample social graph

TABLE I
COST OF THE LINEAR LAYOUT

Location L1 L2 L3 L4 L5 L6 L7

User V1 V2 V3 V4 V5 V6 V7

V1 - 1 2 0 4 0 0
V2 - - 1 2 0 0 0
V3 - - - 1 2 0 0
V4 - - - - 0 2 3
V5 - - - - - 0 0
V6 - - - - - - 0
V7 - - - - - - -

TABLE II
COST OF ONE OF THE OPTIMAL LAYOUTS

Location L1 L2 L3 L4 L5 L6 L7

User V5 V1 V3 V2 V4 V6 V7

V5 - 1 2 0 0 0 0
V1 - - 1 2 0 0 0
V3 - - - 1 2 0 0
V2 - - - - 1 0 0
V4 - - - - - 1 2
V6 - - - - - - 1
V7 - - - - - - -

We illustrate the problem with the help of the sample social
graph in Figure II with 7 users. Consider the linear layout in
Table I:V1 atL1, V2 atL2, and so on. The users are arranged
in the rows and columns according to their layout. An entry
(Vi, Vj) in the table is non-zero if there is a link betweenVi

andVj in the graph (in other words ifVi andVj are friends),
otherwise it is 0. The non-zero value is the absolute value of
the difference of the locations ofVi andVj (i.e., it is the cost
as defined before). Adding up all the values we get the cost
of the layout = 18. However, this is not optimal. We present
one of the optimal layouts in Table II with cost = 14.

This min-cost social network embedding problem is a
variant of the Minimum Linear Arrangement problem, which
is known to be NP-hard [13]. The best known heuristic to
solve this problem is Simulated Annealing, which itself is
computationally infeasible for large graphs [23].

In this paper, we first propose a fast multi-level heuristic to
solve this problem, which can handle graphs with millions of
nodes. The Bondhu system uses this algorithm to obtain disk
layout.

Second, we solve the weighted version of this problem. We
use weighted graphs to capture user interactions in the social
network. A high edge weight between two users implies that
they are more likely to access each other’s data and so they
should be close by in the disk layout. We use the function

δ(Vi, Vj) to capture the edge weight (w). Thus,

δ(Vi, Vj) =

{

0 if Vi, Vj are not friends
w if Vi, Vj are friends

We make one final point about disk geometries before
we present our techniques. While disk geometries are often
proprietary, manufacturers do present a logical abstraction of
the disk which is known as the Logical Block Addressing
(LBA) scheme. It is a simple linear addressing scheme where
blocks are addressed by an integer index starting from 0. The
LBA scheme is essentially a one-dimensional representation of
the complex physical geometry of the disk. Disk manufacturers
ensure that accessing consecutive blocks in the LBA space
is similar to accessing consecutive blocks in the physical
geometry. Experimental results [15] also support this claim.
Therefore, in this paper we use this simple one-dimensional
model of the disk for data layout.

III. D ISK LAYOUT ALGORITHM

In this section we present the disk layout algorithm of
the Bondhu system. At first we present the intuition behind
our proposed algorithm and then explain it in detail in the
following subsections.

A. Overview

OSNs are known to exhibit strong community structure.
Therefore, we adopt an approach to disk layout algorithms
for OSN applications that take the community structure into
account. This has multiple benefits. First, the problem space
is reduced. So, while making a disk placement decision inside
a community we can consider only the members of that com-
munity. Second, a bad placement choice will have relatively
less impact since the worst possible placement will likely be
limited by the community boundary. Third, we can use the
existing community detection techniques that are known to
find good quality communities in a social graph.

Motivated by these observations, we present the layout
algorithm of the Bondhu system. Figure 4 illustrates our
approach. The algorithm consists of three modules: i) Commu-
nity Detection: using existing community detection techniques,
we divide the social graph into several communities, ii) Intra-
Community Layout: using a greedy heuristic we find a layout
for the users within the communities, and iii) Inter-Community
Layout: we organize the different communities on the disk by
considering inter-community tie strength. These three parts of
the framework are discussed below.

B. Community Detection

The goal of the community detection module is to organize
the users of the social graph into clusters, so that many
edges connect users within the same cluster and relatively
few edges connect users in different clusters. The community
detection module makes use of existing techniques for graph
partitioning and modularity optimization. We select thesetwo
algorithm classes because: i) they operate on graphs with
large number of vertices, ii) they are known to produce good

c1 c2 c3 c4

Community Detection Module

Intra-Community Layout Module

c1 c2 c4c3

c4 c3 c1 c2

Final Layout

Social Graph

Inter-Community Layout Module

Fig. 4. Overview of the Bondhu system’s approach

clusterings, and iii) they are fast, i.e., can find communities
on graphs containing millions of nodes within seconds. We
briefly discuss the algorithms here.

1) Graph Partition Driven Community Detection:Our
graph partition driven community detection algorithm (Par-
Com) is based on the multilevelk-way hypergraph partitioning
scheme of [16], [17]. The goal of ParCom is to partition the
social graph intok equal subsets such that the edge-cut is
minimized. This is equivalent to minimizing the number of
friends in other partitions. ParCom works as follows. First, the
social graph is coarsened down to a small number of vertices.
In this phase a sequence of smaller graphs is constructed
from the original graph by collapsing vertices together using
the heavy-edge matching (HEM) technique. The weights of
the edges are also recalculated. Then this smaller graph is
divided intok-parts using recursive bi-section scheme. Finally
the partitions are uncoarsened back to the original graph in
steps and at each step the partitions are refined using local
refinement heuristics. Fore more details, see [16], [17].

2) Modularity Optimization Driven Community Detection:
Our modularity optimization driven community detection al-
gorithm (ModCom) is based on [7]. It is able to detect good
quality communities in large networks (118 million nodes).

The modularity of a partition is a scalar value between
−1 and 1 that measures the density of intra-community
links as compared to inter-community links. More specifically,
modularity is defined as the fraction of edges that fall within
the communities minus the expected value of the fraction if the
edges were randomly distributed (by preserving node degrees).
Formally, it is defined as:

Q =
1

2M

∑

Vi,Vj

[

δ(Vi, Vj)−
kikj
2M

]

σ(ci, cj) (3)

Here, M = number of edges,δ(Vi, Vj) = weight of the
edge between userVi and Vj , ki = degree of userVi (sum
of the weights of the links/edges connected to userVi), ci =
community of userVi, and σ(ci, cj) = 1, if ci = cj , and 0
otherwise.

ModCom works in two phases. In the first phase users are
arranged in a random order and each of the users is assigned
to a different community. Then for each userVi the gain in
modularity is calculated by removing it from its own com-
munity and by assigning it to any of its friends’ communities.
UserVi is then moved to its friendVj ’s community, for which
the modularity gain is maximum. In case of no modularity
gain, Vi stays in its original community. This first phase is
repeated iteratively for all of the users until no further gain
in modularity is possible. In the second phase, a new graph
consisting of the communities obtained in the first phase is
created. Note that the edge weights are recalculated for this
phase. After this, the first phase is run again and the process
is continued until no further changes are possible. For more
details, see [7].

It is important to note that the difference between ModCom
and ParCom is that in ModCom the number of communities
cannot be controlled explicitly as it can be in ParCom. This
affects our later experimentation.

C. Intra-Community Layout

Next, the intra-community layout module takes as input the
communities that are produced by the community detection
module. For each community it creates a layout for the users
within that community. We use a greedy heuristic to find a
layout for each of the communities. The heuristic works as
follows. We start with the most popular user, i.e., the user
with the highest edge degree (=sum of link weights) and place
that user in the middle of the disk layout. Next, among all the
friends of that user we choose the one that is connected to
the user with the heaviest edge. This is to ensure that if two
users are strongly connected, they should be placed close by
on the layout. In case of a tie, we choose the friend with the
higher edge degree (the more popular friend). Intuitively,by
adding a popular user early, we provide more choice for the
greedy algorithm. We place the friend to the left of the already
placed user on the layout. We then create a modified graph by
merging the user and her friend. The edges connected to these
two users are now connected to the combined node. In case
of a common friend of the two users, we assign the weight of
the edge between the combined node and the common friend
as the sum of the individual edge weights.

Next, among all the friends of this combined node we
choose the one that is connected to it with the heaviest edge
and place it on the right. We repeat the above steps iteratively
by placing the friends to the left and to the right of the already
placed users alternatively.

The different components of the algorithm are presented
in Algorithm 1 (layout algorithm), Algorithm 2 (finding the
maximally connected friend), and Algorithm 3 (creation of the
combined node).

Algorithm 1 Calculate LayoutL on GraphG = (V,E(w))

enum{RIGHT = 1, LEFT = 2}
left← right← (N+1)

2
Vc ← ∅
direction← RIGHT
//continue until we combine all the nodes
while size(G) > 1 do

//find the friend who is maximally connected toVc

//in case ofVc = ∅, return the node with the highest edge
degree
Vi ← max connected(Vc)
//combineVc andVi to create a new graph with recalcu-
lated edge weights
(G,Vc)← combine(Vc, Vi, G)
//alternate betweenleft andright to placeVi

if direction = LEFT then
Lleft ← Vi

right← right+ 1
direction← RIGHT

else
Lright ← Vi

left← left− 1
direction← LEFT

end if
end while

Algorithm 2 max connected(Vc)

if Vc = ∅ then //initial state
//return the one with the highest edge degree
Vs ← Vi | edgeDegree(Vi) ≥ edgeDegree(Vj),

∀Vi ∈ V, ∀Vj ∈ V, Vi 6= Vj

if size(Vs) > 1 then
//return a random one in case of tie
return random(Vi) |Vi ∈ Vr

else
return Vs

end if
else//normal case operation

//select the friend connected to the heaviest edge ofVc

Vs ← Vi | edgeWeight(Vc, Vi) ≥ edgeWeight(Vc, Vj),
∀Vi ∈ friend(Vc), ∀Vj ∈ friend(Vc), Vi 6= Vj

if size(Vs) > 1 then //there is a tie
//select the one with the highest edge degree
Vr ← Vi | edgeDegree(Vi) ≥ edgeDegree(Vj),

∀Vi ∈ Vs, ∀Vj ∈ Vs, Vi 6= Vj

if size(Vr) > 1 then //there is a tie again
//return a random one from the list
return random(Vi) |Vi ∈ Vr

else
return Vr

end if
else

return Vs

end if
end if

Algorithm 3 combine(Vc, Vi, G = (V,E(w)))

//create a new node by joiningVc & Vi

V ′

c ← createNode(Vc, Vi)
//add the new node to the set of vertices
V ← V ∪ V ′

c

//start by deleting the edge betweenVc & Vi

deleteEdge(Vc, Vi)
for all F ∈ friend(Vc) do
w ← edgeWeight(Vc, F)
//delete edges betweenVc & its friends
deleteEdge(Vc, F)
//add edges between the new node &Vc’s friends
addEdge(V ′

c , F, w)
end for
for all F ∈ friend(Vi) do
w ← edgeWeight(Vi, F)
//delete edges betweenVi & its friends
deleteEdge(Vi, F)
//in case of a common friend ofVc & Vi, we already
created an edge
if isEdge(V ′

c , F) then
w′ ← edgeWeight(V ′

c , F)
//increase the weight of the already created edge
setEdgeWeight(V ′

c , F, w + w′)
else//otherwise create a new edge
addEdge(V ′

c , F, w)
end if

end for
V ← V − Vc − Vi //deleteVc & Vi from the set of vertices
return (G,V ′

c)

D. Inter-Community Layout

Our third component is the inter-community layout module.
It takes as input: i) the communities produced by the commu-
nity detection module, and ii) the layout produced within each
community by the intra-community layout module. The goal
of this component is to create a layout of the communities.
This enables us to capture the relationships among different
communities. For example, if a communityci is strongly
connected to another communitycj , these two should be
placed close by on the disk – this reasoning is similar to the
one used for the intra-community layout module.

To create the inter-community layout, we create a graph
using the different communities as vertices. The weight of the
edge between communityci and communitycj is calculated
as the sum of the weights of the edges from the members of
communityci to the members of communitycj . After creating
the community graph we run the same iterative algorithm as
the intra-community layout module to find a layout of the
communities.

When this is done, we expand the layout within each
community, which was previously obtained from the intra-
community layout module. This gives us the final disk layout
containing all the users of the social graph.

V1

V5

V3

V2

V4

V6

V7

V7

V4

V4

V2

V1

VC

V5

V2

VC

V5

V2

VC

VC

VC

VC

VC
C = {3}

C = {3, 1}

C = {6}

C = {6, 7}

C = {6, 7, 4}

C = {3, 1, 5}

C = {3, 1, 5, 2}

V7 V6 V4

V7 V6

V6

V2 V1 V3 V5

V1 V3 V5

V1 V3

V3

Next Choice

Combined Node

Layout

VC

2

2

2

1

1

1

1

1

1

1

2

1

Fig. 5. Working example

Example: We present a working example of our techniques
in Figure 5. This is the same graph as shown in Figure II.
First, the community detection module splits the graph into
two communities:c1={V4, V6, V7} and c2={V1, V2, V3, V5}.
Then, the intra-community module finds a layout for both
of them separately. Let us examine the steps taken by the
module forc2. Here, the first user to be chosen can be either
V3 or V1, since both of them have the highest edge weight
(=3). The algorithm choosesV3 at random and places it in
the middle of the layout. Next, the algorithm considersV1,
V2, and V5 (highest edge weight connected toV3=1). V1 is
chosen since it is the most popular of all (edge degree=3).V3

andV1 are combined toV3,1 and a new graph is constructed.
Now, the algorithm considersV2 andV5 (highest edge weight
to V3,1=2), and V5 is chosen at random (bothV2 and V5

are equally popular).V3,1 and V5 are combined to obtain
V3,1,5, which leaves the algorithm with the last user (V2) to be
placed. The final layout produced forc2 is: {V2, V1, V3, V5}.
Likewise, the layout produced forc1 is: {V7, V6, V4}. The
steps for the inter-community layout module is trivial, since
we only have two communities in this example. So, the final
layout produced is either{c2, c1}={V2, V1, V3, V5, V7, V6, V4},
or {c1, c2}={V7, V6, V4, V2, V1, V3, V5} depending on which
community is chosen first by the inter-community layout

V1

V5

V3

V2

V4

V6

V7

2

3

3

3.5

4

3.5

3

2.5

3.5

3

(a) Preferential Model

V1

V5

V3

V2

V4

V6

V7

2

2

2

2

2

3

2

2

3

2

(b) Overlap Model

Fig. 6. Modeling the social network

module.

IV. I MPLEMENTATION

We implement the Bondhu system as a layout manager
for the Neo4j [3] graph database. Neo4j is a very popular
and widely used graph database. It is suitable for building
OSN applications as it offers a graph-oriented model for data
representation. A Neo4j graph consists of nodes, relationships,
and properties. Properties are mapping from a string key to a
value and can be associated with both nodes and relationships.
The part of the Neo4j storage engine that stores properties is
known as the PropertyStore.

We modify the PropertyStore of Neo4j so that the records
are organized by the layout algorithms of the Bondhu system.
Note that we rely on the native file system so our layout
decisions are propagated to the disk block level, i.e., the
modified PropertyStore database produced by the Bondhu
system is stored sequentially on the disk. Therefore, we start
with an empty disk and verify with thedavl [1] tool that the
database file is stored sequentially on the disk at the block
level.

Our implementation of the Bondhu system is in Java.
The community detection module makes use of the METIS
library [2] for the ParCom algorithm.

V. M ODELING THE SOCIAL NETWORK

In this section we present three models to capture user
interaction in a social network. We use these models to
evaluate our disk layout techniques later in Section VI. These
models vary in the way they assign weights to the edges
between users.

A. Uniform Model

The uniform model is the simplest of the three models. In
this model we assign equal weight (=1) to all social network

edges. In other words, according to this model a user is equally
likely to access any of her friends’ information. Listing the
name of all of the friends of a given user can be viewed as
an example of this model.

B. Preferential Model

The preferential model is motivated from the observation
that a user with large number of friends is likely to be more
active than a user with fewer friends, e.g., make more status
updates, post more frequently, etc. In other words, a user with
a larger number of friends is more active than a user with fewer
number of friends. While browsing, a user is more likely to
access the information of the more active friends.

To capture this type of interaction, the weight of the edge
(Vi, Vj) should be proportional to the edge degree ofVj .
Note that this metric is not symmetric, i.e., ifVj has a
higher edge degree thanVi, then the weight of(Vi, Vj) is
higher than the weight of(Vj , Vi). On the other hand, disk
locality is symmetric in nature and to capture that our social
graph models are undirected. Therefore, according to the
preferential model the weight of the edge (Vi, Vj) is set to
[edgeDegree(Vi) + edgeDegree(Vj)] /2. In Figure 6(a) we
assign the edge weights according to the preferential model.

C. Overlap Model

The overlap model is motivated by the following observa-
tion: two users with a large number of common friends are
more likely to share common interests than two users with
fewer number of common friends. Therefore, the two users
with the larger number of common friends are more likely to
access each other’s information. In other words, if userVi has
p common friends withVj and q common friends withVk,
and if (p > q), thenVi is more likely to accessVj ’s data than
Vk’s data.

To assign the weight of the edge(Vi, Vj) according to the
overlap model, we calculate the number of common friendsc
betweenVi andVj and set the edge weight as(c+1). We add
a 1 to make sure that we do not assign a0 weight to the edge
(Vi, Vj) in case of no common friends, since an edge weight
of 0 indicates there is no edge at all. In Figure 6(b), we assign
the edge weights according to the overlap model.

VI. EXPERIMENTAL EVALUATION

We use the Facebook New Orleans dataset collected in
[30]. This dataset contains63731 users and817090 links. We
assign appropriate weights to the social graph according toour
uniform, preferential, and overlap models. Unless otherwise
specified the experiments are based on the uniform model.

We run two instances of Neo4j that store the above OSN
– one with the integrated Bondhu system handling the data
layout and the other one is the unmodified Neo4j. We call
the data layout scheme of the unaltered Neo4j thedefault
layout. Based on the method used in the community detection
module, the Bondhu system has two data layout schemes built-
in: ParCom and ModCom (see Section III for details).

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

3

6

9

12

M
B

/s

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

30

60

90

120

S
e
e
ks

 /
 s

e
c

0 23 46 69 93 116 139 162 186
Request Time (seconds)

1161333

1169416

1177499

1185582

1193666

D
is

k
o
ff

se
t

(M
B

)

Disk IO

Fig. 7. Blocks accessed in Neo4j with the Bondhu system handling data
layout. Compare with Figure 1 (default approach).

We use two metrics to evaluate the data layout schemes of
the Bondhu system. The first metric is the cost as defined in
Section II (Equation 1). The cost metric measures the spatial
clustering of the friends of a user on the disk. Therefore, a
lower cost means that the data of related users are placed close
by on the disk. Thus, operations like listing friends and wall
posts will be faster. Our second metric is response time. This
measures the time to fetch data blocks from all the friends ofa
random user. This captures the performance of an application
with our layout schemes. An improvement in the response
time metric suggests that the disk is able to handle more
requests per unit time and that the user-perceived delay in
getting the response to a request is reduced. We next describe
the workload we use to measure the response time metric.

Our workload captures the event of listing the friends of
a user, which is a very common operation in an OSN. To
do this we build a sample OSN application on top of Neo4j.
First, we populate the Neo4j database with the social graph.
Next, we store a data block (property in Neo4j) for each
user in the graph. The Bondhu system handles the data layout
automatically beyond that point. Next, we write an automated
script that logs into the system as a random user and fetches
the data blocks for all the friends of that user. We measure
the response time for the whole operation. To make sure that
the response time is not adversely affected by other processes
accessing the disk at the same time, we carry out the same
operation6 times and take the minimum. We repeat this for
1500 random users. We use the same workload for all of
our experiments except for the one on the effect of different
models (Section VI-G).

To ensure that the data is served from the disk (and not
from the previous cached results in the memory) we flush
the memory as follows: First, we use thesync command to
write any buffered data to disk. Then, we use thedrop caches
mechanism in the Linux kernel to drop the pagecache, dentries,
and inodes from the memory, causing the memory to be free
from any cached data. All our experiments are conducted on
an HP DL160 compute block with 2 quad core Intel Xeon 2.66
GHz processors, 16 GB of memory, and 2 TB of storage.

We now present our experimental results by tuning different
parameters of the Bondhu system.

A. Visualization of Block Access Patterns

To contrast with the disk block access patterns of the default
layout presented in Section I, we repeat the same experiment
with Bondhu enabled Neo4j system. Here we use ParCom with
64 communities. Per user data size is 400KB as before. We

conduct our workload based measurements and trace the block
level I/O for each user request. The visualization of the trace is
presented in Figure 7. Each dot shows a read request, its disk
offset, and time of request. Here, we observe a significantly
better disk block access pattern compared to Figure 1. In
Figure 1 the block accesses were scattered, whereas in Figure 7
the block accesses are clustered (prominent at 23, 46, 116–139
seconds). This suggests that the Bondhu system is clustering
the related friends’ data close by on the disk. This translates
to less disk arm movement and thus faster seek and response
time.

B. Effect of Data Size

In an OSN application the data associated with a particular
user can be of different sizes, e.g., it may contain any of
name, address, profile picture, wall posts, etc. Therefore,it
is important to see the effect of varying user data block
sizes on the performance of the layout algorithms. First, we
examine the effect of varying data block sizes on the response
time metric. Then we present a scatter plot to show the
correlation between the improvement in the cost metric and
the improvement in the response time metric. This shows to
what extent the improvement in data locality translates to the
improvement in response time.

For this experiment we create data blocks of 4B, 40B,
400B, 4KB, 40KB, and 400KB for each of the users and
conduct our workload based measurement. We use ParCom
with 64 communities, compare it with the default layout, and
plot the improvement in the response time metric (the lower
the response time compared to the default layout, the more is
the improvement). We plot the CDF of the improvement for
the different data sizes in Figure 8(a) and the 5th percentile,
quartiles, and the 95th percentile of the same results in
Figure 8(b).

We see a22% to 48% median improvement in response
time compared to the default layout across various data sizes.
The Bondhu layout manager performs best when the user data
size is 40B. When the data sizes increase from 4B to 40B we
see an increase from42% to 48% in the median improvement
compared to the default layout. Beyond that, the improvement
percentage decreases and at 400KB the median improvement
reaches22%.

The reasoning for the above behavior is as follows. The
native file system reads data in chunks of 4KB blocks.
Therefore, when user block sizes are small, a file system read
fetches multiple users’ data together. For example, with 4B
user block size, a read yields around 1024 users’ data. With
40B user block size, a read yields around 102 users’ data,
and with 400B user block size, a read yields around 10 users’
data. Due to the randomness of the data placement scheme of
the default layout, the expected number of friends present per
read decreases by a factor of 10 when data block sizes grow
from 4B to 40B to 400B. For Bondhu, however, the expected
number of friends present per read does not decrease much
when data block sizes grow from 4B to 40B. This is due to
the clustering property of Bondhu. In contrast, when the block

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

4 B
40 B

400 B
4 KB

40 KB
400 KB

(a) CDF

 0

 10

 20

 30

 40

 50

 60

 70

4B 40B 400B 4KB 40KB 400KB%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

Data size

5th Percentile
Quartiles

Median
95th Percentile

(b) 5th percentile, quartiles, and 95th percentile

Fig. 8. Percentage of improvement in response time compared to the default
layout for various data sizes (without caching)

sizes grow from 40B to 400B, the expected number of friends
present in per read decreases dramatically. Therefore, we see
the drop in improvement after 40B.

In summary, when user data size is smaller than the file
system block size, the improvement is high due to fact that
a single file system read yields more correlated data. So, the
number of seeks required to fetch all friends’ data is reduced.
This phenomenon begins to vanish when user data sizes grow
larger than the file system block size. Beyond that point, the
Bondhu system improves performance by reducing the seek
distance.

Next, Figure 9 examines the correlation between the im-
provement in the cost metric and the improvement in the
response time. This shows how the smart placement decision
of the Bondhu system translates to better application-level
performance. As defined in Section II, the cost metric for
a user is the sum of differences between the user and her
friends’ data location. We calculate the cost metric for the
users using the placement in both the default layout and the
ParCom layout. A larger cost denotes that the friends of a
user are far away in the disk. We then calculate the fraction
of improvement by using the ParCom layout scheme of the
Bondhu system over the default layout. For the corresponding
users we measure the fraction of improvement in response
time metric and plot the results using a scatter plot. The results
are presented in Figures 9(a) and 9(b) for two different data
sizes. Figure 9(a) shows good correlation since most points
are along thex = y line. For Figure 9(b) the correlation is

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Im
pr

ov
em

en
t i

n
re

sp
on

se
 ti

m
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

(a) Data size: 40B

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Im
pr

ov
em

en
t i

n
re

sp
on

se
 ti

m
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

(b) Data size: 400KB

Fig. 9. Correlation between cost improvement and response timeimprove-
ment (without caching)

less prominent because of the prior discussion.

C. Effect of Caching

In the previous section we ensure that all the requests are
served from the disk and not from the memory. However,
serving results from the memory reduces the response time by
a large fraction for any application. So, we enable caching for
both Neo4j and Bondhu. The results presented in this section
examine the effect of caching on the response time metric.

We use the same workload as discussed earlier, but without
flushing the cache between successive user requests. A user
issues10 successive requests to fetch the data blocks of all of
her friends. As before we conduct this experiment for1500
randomly selected users.

As with the previous experiment, we plot the CDF of the
improvement in response time for the different data block sizes
in Figure 10(a) and the 5th percentile, quartiles, and the 95th
percentile of the same results in Figure 10(b). When the data
size is small we do not see much improvement using our layout
scheme. As the data sizes increase from 4KB to 40KB to
400KB the benefit of using the Bondhu system kicks in as
seen by the rise in median response time improvement from
0% to 16% to 26% respectively. This is because when the
data sizes are small, the information of all the users can be
kept in memory. Therefore, requests for data can be readily
served from the memory for the default layout as well as for
the Bondhu layout schemes. When the data size grows beyond
some threshold (40KB here), all the user data blocks cannot

-100

-50

 0

 50

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

4 B
40 B

400 B
4 KB

40 KB
400 KB

(a) CDF

-20

-10

 0

 10

 20

 30

 40

 50

4B 40B 400B 4KB 40KB 400KB%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

Data size

5th Percentile
Quartiles

Median
95th Percentile

(b) 5th percentile, quartiles, and 95th percentile

Fig. 10. Percentage of improvement in response time compared to the default
layout for various data sizes (with caching enabled)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1Im
pr

ov
em

en
t i

n
re

sp
on

se
 ti

m
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

Data size: 400KB

Fig. 11. Correlation between cost improvement and response time improve-
ment (with caching)

be kept in memory. If the data cannot be served from memory,
it has to be fetched from disk and thus the previous section’s
described behavior kicks in.

To investigate whether the improvement in response time
for larger data sizes is indeed due to the placement decisions
by the Bondhu system, we present a scatter plot of the
improvement in response time vs. the improvement in the cost
metric in Figure 11. This is similar to the one presented in the
previous section but with caching enabled. We observe a fair
amount of correlation between the improvement in the two
metrics in this case as well. However, the correlation is notas
strong as in Figure 9(b). With caching enabled, a fraction of
the friends’ data will be readily available in the memory. For
the already cached data no disk read will be performed.

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

2 4 8 16 32 64 128 256 512 1024

%
 c

os
t i

m
pr

ov
em

en
t o

ve
r

de
fa

ul
t l

ay
ou

t

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(a) Percentage of cost improvement over default layout

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

2 4 8 16 32 64 128 256 512 1024%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(b) Percentage of improvement in response time over default
layout

Fig. 12. Performance of ParCom

In summary, the worst case median improvement achieved
by Bondhu is0% (small data sizes with caching) and the
best case improvement in48% (medium data sizes without
caching). Thus, it is always preferable to use Bondhu.

D. Effect of Number of Communities in ParCom

One of the parameters that can be tuned in ParCom is the
number of communities. The fewer the number of communi-
ties, the larger the size of a community. For instance, with1
community, the layout decision is solely handled by the intra-
community layout module. With an increase in the number of
communities, the inter-community layout module influences
layout more. For a given social network graph, we desire to
tune the number of communities in such a way that the best
disk layout is obtained.

We vary the number of communities in ParCom and exam-
ine the improvements in the cost metric and in the response
time metric over the default layout. The workload is the same
as discussed earlier and the data size per user is 4KB. The
results are presented in Figures 12(a) and 12(b) respectively.
In Figure 12(a) we see that as the number of communities
increases from2 to 32 we experience a steady improvement
in the cost metric. When we have fewer communities, the intra-
community detection module is mostly responsible for the
layout and the Bondhu system does not capture the community
structure of the social graph. Therefore, the improvement
grows quickly as the number of communities is increased.
However, this curve hits a knee at64 communities and plateaus

out thereafter. This is because the community detection module
has lower marginal utility in finding more community structure
in the graph towards the right end of the plot.

A similar pattern is observed in Figure 12(b), where we plot
the improvement in the response time metric over the default
layout for different number of communities. When the number
of communities is2, the median improvement in the response
time metric is around11% for ParCom and this grows quickly.
The knee is reached at32 communities, where the response
time of ParCom is40% lower than that of the default layout.
The reasoning is the same as in the previous paragraph.

E. Performance of ModCom

We now focus on ModCom and examine the improvements
in the cost metric and the response time metric over the default
layout. Unlike ParCom we cannot set the number of commu-
nities in ModCom since the number of communities evolve
depending on the structure of the social graph. However, Mod-
Com produces communities at different granularities. Recall
that the algorithm is iterative – at level 0, there are as many
communities as the number of nodes. Level(i+1) combines
the communities of leveli, and produces fewer communities.
We configure the Bondhu system so that it can organize the
disk layout based on the communities found at any level.
For example, if we set level=2, then the community detection
module produces 388 communities which is then fed to the
intra- and intra-community layout modules in succession. The
workload and the metrics considered are same as the other
experiments. Data block size for each user is set to 4 KB.

In Figure 13(a) we present the improvement in cost metric
compared to the default layout for varying number of commu-
nities found by the community detection module. We observe
that unlike ParCom, the median improvement (≈ 67%) does
not change much by varying the number of communities. This
is because ModCom does not produce a community until it
has found a good one (based on the value of the modularity).
For the same reason, a flat pattern is observed for the response
time metric in Figure 13(b).

F. Organ Pipe Layout

Next, we compare our layout algorithm with the popular
organ pipe algorithm [32], [33], which is used in multimedia
file systems. Given a set of recordsR1, R2, . . . , RN with
global access probabilitiesP1, P2, . . . , PN , and

∑N

i=1 Pi = 1,
the organ pipe algorithm places the recordRi with the largest
Pi in the middle and then iteratively places the record with
the next largestPi alternatively to the left and to the right of
the already placed record(s). So, according to the organ pipe
scheme, the most popular user (the user with the largest edge
degree) is placed in the middle and the users with the next
largest edge degrees are placed alternately to the left and to
the right of the already placed user(s).

We modify the Bondhu system to organize data according to
the organ pipe scheme and compare it with ParCom (number
of communities=64). Figure 14 plots the CDF of the improve-
ments of the response time metric compared to the default

-40

-20

 0

 20

 40

 60

 80

 100

3687 388 218 210

%
 c

os
t i

m
pr

ov
em

en
t o

ve
r

de
fa

ul
t l

ay
ou

t

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(a) Percentage of cost improvement over default layout

-40

-20

 0

 20

 40

 60

3687 388 218 210%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(b) Percentage of improvement in response time over default
layout

Fig. 13. Performance of ModCom

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1%
 im

pr
ov

em
en

t i
n

re
sp

on
se

 ti
m

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

Organ-pipe
Bondhu (ParCom)

Median

Fig. 14. Comparison with organ pipe layout

layout for both. The data block size for each user is4KB and
the workload is the same as the preceding experiments.

The organ pipe is better than the default layout by10% (on
average), but ParCom outperforms the default layout by38%.
The organ pipe scheme assumes that popular users are popular
across the system, which is not valid for an OSN. An OSN
has a very specific community structure and in this structure
popular users are popular only among their friends.

G. Effect of Different Models

So far all the experimental results are based on the uniform
model. In this section we present results using the different
models presented in Section V: i) the preferential model, ii)
the overlap model, and iii) the uniform model. To provide
as a baseline for comparison we also present results using
the default layout. We use the same social graph as the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

pref:pref

pref:over

pref:unif

over:pref

over:over

over:unif

unif:pref

unif:over

unif:unif

def:pref

def:over

def:unif

R
es

po
ns

e
tim

e
(m

s)

Models (model:workload)

5th Percentile
Quartiles

Median
95th Percentile

Fig. 15. Effect of different models

previous experiments. Data block size for each user is 4KB.
The Bondhu system takes the model as the input, creates a
layout using that model, and organizes the data according to
that layout.

We use 3 different workloads based on the graph models.
First, in the uniform workload we randomly select a user who
issues a request to access one of her friends’ blocks at random.
Second, in the preferential workload the randomly selected
user issues a request to access a friends’ data blocks with
probability proportional to the friend’s degree. Third, inthe
overlap workload the randomly selected user issues a request
to access one of her friends’ data blocks with probability
proportional to the number of common friends with the friend.
In each of these workloads a user issues1000 successive
requests and the response time is measured. Each measurement
is taken10 times and we take the minimum response time. We
conduct this experiment for1000 users in total.

We run each of the 3 workloads on the 4 different layouts
and present the results in Figure 15. Each run of the experi-
ment is denoted by(model : workload), where model denotes
the models we use:{preferential, overlap, uniform, default}
and workload denotes the workloads we use:{preferential,
overlap, uniform}. We plot the 5th percentile, quartiles, and
the 95th percentile of the response time for all of the runs.

We make three observations from this plot. First, the default
layout performs twice worse than any of the other models
(median response time: 175ms). Second, the performance of
the layout produced by the uniform model is quite comparable
to the performance of the layout produced by the preferential
and overlap models. Third, the performance of a specific
layout does not vary much over the different workloads.

One directional conclusion from these observations is that
although it is possible to create complex models (e.g., [5])
to capture user interactions in a social network, often the
simplest model (such as the uniform model) is sufficient to
make important disk layout decisions. Taking more complex
models into account may yield little added benefit for the
amount of effort involved. The social graph structure is the
biggest influence on disk performance.

VII. R ELATED WORKS

Data organization techniques for improving disk perfor-
mance broadly fall into two categories: i) access pattern-

oblivious, and ii) access pattern-aware. Access pattern-
oblivious techniques include placing data and meta-data to-
gether as in the Fast File System and its variants [21], [9],
[29], writing data sequentially to contiguous disk segments as
in the Log-structured File System [27], and explicitly grouping
small files together on disk as in C-FFS [12]. Access pattern-
aware techniques can be further categorized into three types
depending on the level of abstraction they work at: i) cylinder
level [19], [31], [28], ii) block level [4], [18], [15], [6],[14],
and iii) file system level [22].

The position of Bondhu is in the middle of these two
extremes. On one hand, it is not access pattern-oblivious in
the sense that it captures the community structure of the social
network. On the other hand, it is not completely access pattern-
aware in the sense that it does not make placement decisions
based on the real traffic between users.

Aside from data organization, disk performance can be sig-
nificantly improved using intelligent prefetching and caching
techniques [18], [10]. C-Miner [18], for example, uses data
mining techniques to learn the block access patterns and uses
that information to make prefetching and cache replacement
decisions. The Bondhu system can be extended to make social
network-aware prefetching decisions, which remains as oneof
our future works.

With the recent growth of OSNs, many focused on partition-
ing the social graph to make OSN applications scalable [24],
[26], [25]. SPAR [25], for example, uses partitioning and
replication techniques to reduce network traffic across servers.
Bondhu, on the other hand uses partitioning and community
detection techniques for disk performance improvement. An
excellent survey on existing community detection techniques
is available at [11].

VIII. C ONCLUSION

In this paper, we presented techniques for disk layout or-
ganization for online social networking applications by taking
the community structure of the social graph into account. We
incorporated our techniques into the Neo4j graph database
by building a layout manager called the Bondhu system.
Experimental results with realistic workloads exhibited signif-
icant improvement in cost and response time compared to the
default layout. Our results also indicate that models with more
complexity beyond the social graph may yield low additional
benefit.

REFERENCES

[1] “Disk Allocation Viewer for Linux,” http://davl.sourceforge.net/.
[2] “METIS: Family of Multilevel Partitioning Algorithms,” http://glaros.

dtc.umn.edu/gkhome/views/metis.
[3] “Neo4j: The Graph Database,” http://neo4j.org/.
[4] S. Akyürek and K. Salem, “Adaptive Block Rearrangement,”ACM

Transactions on Computer Systems, vol. 13, pp. 89–121, May 1995.
[5] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing

User Behavior in Online Social Networks,” inProceedings of the 9th
ACM SIGCOMM Internet Measurement Conference, ser. IMC ’09. New
York, NY, USA: ACM, 2009, pp. 49–62.

[6] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reORGanization forSelf-
optimizing Storage Systems,” inProceedings of the 7th USENIX Con-
ference on File and Storage Technologies, 2009, pp. 183–196.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
Unfolding of Communities in Large Networks,”Journal of Statistical
Mechanics: Theory and Experiment, p. P10008, 2008.

[8] A. D. Brunelle, blktrace User Guide, February 2007.
[9] R. Card, , T. Ts’o, and S. Tweedie, “Design and Implementation of

the Second Extended Filesystem,” inProceedings of the First Dutch
International Symposium on Linux, 1994.

[10] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen:
Exploiting Disk Layout and Access History to Enhance I/O Prefetch,” in
Proceedings of the 2007 USENIX Annual Technical Conference, 2007,
pp. 20:1–20:14.

[11] S. Fortunato, “Community Detection in Graphs,”Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[12] G. Ganger and M. F. Kaashoek, “Embedded Inodes and Explicit Group-
ing: Exploiting Disk Bandwidth for Small Files,” inProceedings of the
1997 USENIX Technical Conference, 1997, pp. 1–17.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some Simplified
NP-complete Problems,” inProceedings of the Sixth Annual ACM
Symposium on Theory of Computing, 1974, pp. 47–63.

[14] W. W. Hsu, A. J. Smith, and H. C. Young, “The Automatic Improvement
of Locality in Storage Systems,”ACM Transactions on Computer
Systems, vol. 23, pp. 424–473, November 2005.

[15] H. Huang, A. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy
Consumption,” inProceedings of 20th ACM Symposium on Operating
System Principles. ACM Press, 2005, pp. 263–276.

[16] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,”SIAM Journal on Scientific Comput-
ing, vol. 20, pp. 359–392, 1998.

[17] ——, “Multilevel k-way Partitioning Scheme for Irregular Graphs,”
Journal of Parallel and Distributed Computing, vol. 48, pp. 96–129,
1998.

[18] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-Miner: Mining Block
Correlations in Storage Systems,” inProceedings of the 3rd USENIX
Symposium on File and Storage Technologies, 2004, pp. 173–186.

[19] Y. Manolopoulos and J. G. Kollias, “Optimal Data Placement in Two-
Headed Disk Systems,”BIT, vol. 30, no. 2, pp. 216–219, 1990.

[20] C. Mason, “Seekwatcher,” http://oss.oracle.com/∼mason/seekwatcher/.
[21] M. K. Mckusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “AFast File

System for UNIX,”ACM Transactions on Computer Systems, vol. 2, pp.
181–197, 1984.

[22] J. A. Nugent, A. C. Arpaci-dusseau, and R. H. Arpaci-dusseau, “Con-
trolling your PLACE in the File System With Gray-Box Techniques,”
in Proceedings of the USENIX Annual Technical Conference (USENIX
’03), 2003, pp. 311–324.

[23] J. Petit, “Experiments on the Minimum Linear Arrangement Problem,”
Journal of Experimental Algorithmics, vol. 8, December 2003.

[24] J. M. Pujol, V. Erramilli, and P. Rodriguez, “Divide and Conquer:
Partitioning Online Social Networks,”CoRR, vol. abs/0905.4918, 2009.

[25] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The Little Engine(s) that Could: ScalingOnline
Social Networks,” inProceedings of the ACM SIGCOMM 2010, 2010,
pp. 375–386.

[26] J. M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez, “Scaling Online
Social Networks without Pains,” inProceeding of the 5th International
Workshop on Networking Meets Databases, October 2009.

[27] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation of
a Log-Structured File System,”ACM Transactions on Computer Systems,
vol. 10, pp. 26–52, February 1992.

[28] C. Ruemmler and J. Wilkes, “Disk Shuffling,” HP Technical Report,
HPL-91-156, Tech. Rep., 1991.

[29] S. C. Tweedie, “Journaling the Linux ext2fs Filesystem,” in LinuxExpo,
1998.

[30] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
Evolution of User Interaction in Facebook,” inProceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks, August 2009.

[31] P. Vongsathorn and S. D. Carson, “A System for Adaptive Disk
Rearrangement,”Software: Practice and Experience, vol. 20, pp. 225–
242, March 1990.

[32] C. K. Wong, “Minimizing Expected Head Movement in One-
Dimensional and Two-Dimensional Mass Storage Systems,”ACM Com-
puting Surveys, vol. 12, pp. 167–178, June 1980.

[33] ——, Algorithmic Studies in Mass Storage Systems. New York, NY,
USA: W. H. Freeman & Co., 1983.

