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ABSTRACT 

 
Current U.S. building codes and earthquake engineering practice utilize inelasticity in the seismic 

force resisting system to dissipate seismic energy and protect against collapse.  Inelasticity in 

conventional structures can lead to structural damage distributed throughout the building and 

permanent drifts after the earthquake motion ceases which can make the structure difficult if not 

financially unreasonable to repair.  A controlled rocking system has been developed that virtually 

eliminates residual drifts and concentrates the majority of structural damage in replaceable fuse 

elements.  Portions of the development related to but not contained in this report include fuse 

testing, fuse analysis, large-scale shake table testing, development of a displacement based design 

procedure, and collapse modeling. 

The controlled rocking system is investigated and developed through analytical, 

computational, and experimental means.  A large-scale experimental program was conducted 

including quasi-static cyclic and hybrid simulation tests.  Nine specimens were tested 

representing three-story frames at approximately half scale.  These experiments validated the 

performance of the system, demonstrated system response when subjected to simulated ground 

motions, allowed the investigation of detailing and construction methods, provided information 

on frame member forces, and provided data to confirm and calibrate computational models. 

Computational models were developed based on the experimental behavior and two 

computational studies were conducted.  A single degree-of-freedom study consisting of over 

25,000 analyses was performed to investigate system proportioning including defining the 

amount of restoring force that is necessary to provide reliable self-centering in the presence of 

ambient building resistance.  A multi-degree-of-freedom study consisting of approximately 1500 

analyses was performed to investigate the application of the controlled rocking system in 

different configurations.  This study was also used to investigate the probabilities of reaching 

limit states for earthquake events with varying recurrence period. 

The experimental and computational studies described in this report demonstrate that the 

controlled rocking system for steel-framed buildings can satisfy the performance goals of 

virtually eliminating residual drift and concentrating structural damage in replaceable fuses even 

during large earthquakes.  The results of all phases of this work were synthesized into design 

recommendations which summarize the practical application of this system to building structures. 
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Chapter 1  
 

INTRODUCTION 

1.1 State of Practice in Earthquake Engineering 

Since the inception of earthquake building code provisions in the United States, allowing 

inelasticity in structural elements has been a key component in the design of seismic 

lateral force resisting systems for large earthquake events.  When referring to severe 

earthquake ground motions, John Blume and Nathan Newmark wrote: 

 

“To design for such earthquakes by requiring that the structure 

remain in the elastic range would be grossly uneconomical and would 

represent the payment of too great a cost to provide for the probability of 

such an occurrence.” (Blume et al.1961) 

 

It is in this spirit that the current U.S. building codes reduce the elastic seismic 

forces by the Response Modification Coefficient, R (ASCE 2005), which can be as large 

as a factor of 8, to determine the design level forces (ASCE 2005).  The Structural 

Engineers Association of California (SEAOC) Blue Book, which up until 1999 provided 

a commentary for predominant U.S. earthquake building code provisions, summarizes 

this approach: 

 

“The specified design forces given herein are based on the 

assumption that a significant amount of inelastic behavior may take place in 

the structure subjected to significant ground shaking.  As a result, these 

design forces and related elastic deformations are much lower than those 

that would be required if the structure were to remain elastic.” (SEAOC 

1996) 

 

Detailing requirements are specified for each seismic force resisting system to 

provide adequate inelastic deformation capacity, and through those inelastic deformations, 

the seismic energy is dissipated.  Moment frames rely primarily on plastic hinging in the 

beams, concentrically braced frames rely primarily on buckling of the braces, and 

eccentrically braced frames rely primarily on plastic deformation of the link beam, to list 

a few examples.  This design approach considerably reduces construction costs compared 

to elastic design and if detailed properly prevents structural collapse.  The design code is 

not intended, however, to limit the structural damage due to large earthquakes.  The 

building code provisions are intended to safeguard against major failures and loss of life, 

not to limit damage, maintain function, or provide easy repair. 

Based on this design approach it is reasonable to expect inelastic damage in 

structural elements distributed throughout the seismic force resisting system after a large 

earthquake.  Virtually none of the seismic-force resisting systems currently available in 

the U.S. building codes are designed to allow easy repair of the damaged structural 

elements.  Moreover, the inelastic deformations may also produce residual drifts such that 
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a structure is left with permanent story displacements after the ground motion ceases.  

Residual drifts and distributed structural damage can make a building designed to current 

U.S. building codes difficult if not financially unreasonable to repair following a large 

earthquake. 

1.2 Role of Performance Based Design in the State of 

Earthquake Engineering Practice 

Performance based design was developed for earthquake engineering in the 1990’s 

primarily for the application of evaluating and retrofitting existing buildings.  The 

discussion of performance criteria was a natural progression from evaluating the expected 

earthquake response of existing buildings.  Since that time, performance based design has 

evolved through the work of several key groups and the publication of a number of 

documents: 

 

 SEAOC Vision 2000, Performance Based Seismic Engineering of Buildings, Vols 

I and II: Conceptual Framework was published in 1995 (SEAOC 1995).  This 

document laid out a framework for procedures that lead to the design of structures 

with predictable seismic performance.  One of the most enduring parts of this 

work include a figure showing performance objectives for different design level 

earthquakes that has since been cited by many other documents. 

 ATC 40 Seismic Evaluation and Retrofit of Concrete Buildings was published in 

1996 (ATC 1996).  This project was sponsored by the California Seismic Safety 

Commission in 1990 and was the first attempt to standardize the performance 

based design approach, although specifically directed towards existing concrete 

buildings. 

 FEMA 273 NEHRP Guidelines for the Seismic Rehabilitation of Existing 

Buildings was built on ATC 40 and SEAOC Vision 2000 (FEMA 1997).  This 

document was published in 1997 and was sponsored by the National Institute of 

Building Sciences (NIBS) and the Federal Emergency Management Agency 

(FEMA) in an effort to develop a set of nationally applicable guidelines for the 

seismic rehabilitation of existing structures. 

 FEMA 356 Prestandard and Commentary for the Seismic Rehabilitation of 

Buildings further built on FEMA 273 largely by converting FEMA 273 to 

mandatory language (FEMA 2000).  It was published in 2000 and was called a 

prestandard because it was intended to provide a basis for ASCE to ballot as a 

standard. 

 ASCE/SEI 41-06 Seismic Rehabilitation of Existing Buildings is the first 

nationally recognized standard that incorporates performance based design for 

earthquake engineering (ASCE 2007).  It was published in 2006 and is largely 

based on FEMA 356. 

 ATC 58 Next-Generation Performance-Based Design Guidelines is expected to be 

the next major step in the development of performance based design for 

earthquake engineering (ATC 2007).  In 2001, FEMA contracted with ATC for 

this project which is expected to require ten or more years to complete.  The 
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stated objectives of this project include expanding performance based design 

guidelines to include new construction as well as quantifying risks in terms of loss 

of life, repair costs, and downtime that is probable for a given earthquake event or 

over the life of the building.  This is a departure from previous documents which 

categorized performance levels into broad groups such as fully functional, 

immediate occupancy, life safety, or collapse prevention. 

 

The evolution of performance based design for earthquake engineering shows a 

trend toward more detailed assessment of building performance during earthquakes and 

defining specific performance objectives by using quantified probable risks.  This need is 

further reflected and possibly fueled by the wide use of the above listed documents by 

structural engineers as a basis for discussing performance objectives with building 

owners.  As a result of the development of performance based design there has been 

considerable advances in the identification of the types of earthquake damage that 

contribute to earthquake risks such as repair costs and downtime. 

Although nonstructural damage contributes a significant component of typical 

repair costs after a major seismic event, structural damage plays a key role in the overall 

repairability of a building.  For example, residual drifts due to structural damage can 

severely increase the repair costs for a building or preclude the possibility of repair.  

Downtime is a function of whether the building is evaluated as structurally safe to occupy 

and whether repair activities or damage make it impractical to conduct normal building 

functions.  Downtime is especially exacerbated by structural damage which can require 

intrusive repair or make a building unsafe to occupy following an earthquake. 

1.3 Need for Higher Performance Seismic Systems 

Performance based design for earthquake engineering has changed the way engineers, 

owners, and building officials discuss the structural design of buildings in seismic areas.  

It is a natural progression from the definition of performance criteria to the question of 

how to design structures that obtain higher performance levels.  It is neither economical 

nor efficient to make traditional seismic force resisting systems stronger to satisfy 

performance goals related to repairability.  It is therefore necessary to create new seismic 

force resisting systems that inherently satisfy higher performance goals. 

Concentrating seismic structural damage in replaceable elements and limiting 

residual drifts to negligible magnitude are two criteria that together can significantly 

reduce repair costs and downtime due to earthquakes.  The remaining repair costs and 

downtime will be largely due to damage of nonstructural elements which may someday 

also be designed in such a way as to limit their earthquake damage.  None of the 

traditional seismic force resisting systems contained in current U.S. building codes, 

however, satisfy these two performance criteria with the possible exception of base 

isolation which can be cost prohibitive. 

1.4 Description of the Controlled Rocking System 

This research explores the development of a new, high-performance seismic force 

resisting system, referred to herein as the controlled rocking system.  The controlled 
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rocking system is a seismic lateral resisting system for steel-framed buildings that has the 

ability to self-center after an earthquake and is configured to concentrate the majority of 

structural damage into replaceable elements.  Figure 1.1 shows one possible 

configuration of the system, which employs the following main components: 

 

1. Steel frames that remain essentially elastic and are allowed to rock about 

the column bases.  As shown in Figure 1.1, the specially designed column 

base details permit column uplift and restrain horizontal motion by the use 

of bumpers or an armored foundation trough.  The configuration in Figure 

1.1 uses two side-by-side frames, though alternative configurations with 

single frames have also been investigated as part of this work.  

2. Vertical post-tensioning strands provide active self-centering forces.  The 

strands are initially stressed so as to permit additional elastic straining 

when the frames rock. The configuration in Figure 1.1 employs post-

tensioning down the center of the frame; other configurations with strands 

located at the column lines are also feasible. 

3. Replaceable energy dissipating elements act as structural fuses that yield, 

effectively limiting the forces imposed on the rest of the structure.  In 

Figure 1.1, the fuses are configured as yielding shear elements between 

the two frames.  Other configurations include fuses at the column bases or 

in inelastic vertical anchors. 

 

REPLACEABLE 

FUSES ABSORB 

ENERGY

VERTICAL POST-

TENSIONING 

PROVIDES SELF-

CENTERING

FRAMES REMAIN 

ESSENTIALLY 

ELASTIC

BUMPERS RESTRAIN 

HORIZONTAL 

MOTION IN BOTH 

DIRECTIONS

 
Figure 1.1 Schematic Representation of the Controlled Rocking Frame with 

Replaceable Energy-Dissipating Fuses 

The objectives of this research project include the investigation of possible 

configurations and construction details for the controlled rocking system, the examination 

of the effects of system proportioning on seismic response and system demands, a large-

scale testing program, evaluation of possible issues related to implementation, and the 

development of design recommendations.  The large-scale testing was conducted to 

validate the system performance, investigate and improve construction details, and 
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examine force distributions in frame members.  Using both the experimental and 

analytical studies, a proven basis is formed for reliable implementation of the controlled 

rocking system in practice. 

1.5 Organization of this Report 

This report describes some of the testing, analysis, and development of the controlled 

rocking system.  It is organized as follows: 

 

 Chapter 1 provides background including current U.S. earthquake 

engineering approaches, why higher performance systems are needed, and 

a brief description of the controlled-rocking system for steel-framed 

buildings. 

 Chapter 2 presents a review of previous research into the development of 

self-centering seismic force resisting systems and structural fuses. 

 Chapter 3 derives the expected response of the controlled rocking system, 

examines the resulting proportioning and design considerations, gives the 

objectives of this research, and gives an overview of all of the phases of 

this work including portions not part of this report. 

 Chapter 4 presents the details of the large-scale experimental program 

including specimen design, test control, loading protocol, and 

instrumentation.  Additional information about test setup can be found in 

Appendix A. 

 Chapter 5 gives a summary of the cyclic test results.  Raw data for all tests 

are located in Appendix B, data reduction calculations are included in 

Appendix C, and validation of the experimental data is presented in 

Appendix D. 

 Chapter 6 outlines the computational models which were developed and 

compared to cyclic test results. 

 Chapter 7 includes description of the hybrid simulation tests along with 

the associated results. 

 Chapter 8 is a discussion of the test results which synthesizes the test data 

to compare and contrast the results from different configurations. 

 Chapter 9 presents a single degree-of-freedom computational study which 

investigates the response of a wide range of self-centering hysteretic 

behavior in the presence of ambient building resistance. 

 Chapter 10 presents a multi-degree-of-freedom computational study that 

was used to quantify the demands on different configurations of the 

controlled rocking system. 

 Chapter 11 summarizes a capacity design methodology for sizing the 

frame members and examines its efficacy in the context of the MDOF 

study from the previous chapter. 

 Chapter 12 provides a set of design recommendations that are built on the 

rest of the work included herein. 
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 Chapter 13 finishes with the conclusions from this research and 

suggestions for further work that is necessary. 
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Chapter 2  
 

LITERATURE REVIEW 

There have been previous studies conducted on seismic rocking systems as well as other 

self-centering seismic systems.  The literature review begins with a description of the 

residual drifts that can occur during earthquakes.  General information on structural 

rocking is then presented specifically regarding impact at the base of rocking elements, 

and the 3D effect.  Specific structural rocking systems are then examined followed by 

other specific self-centering systems such as horizontally post-tensioned moment frames, 

self-centering braces, and draped post-tensioned steel frames.  Finally, information about 

the controlled rocking project parametric study and the fuse component tests conducted at 

Stanford University is presented. 

2.1 Residual Drifts 

Although there are examples of buildings that experience permanent drifts after 

earthquakes, concerted studies that quantify the residual drifts experienced in actual 

buildings after earthquakes are difficult to find.  Computational predictions of residual 

drifts, however, are not uncommon and some of the key findings are presented below. 

An analytical study of buckling restrained braced frames (BRBFs) showed that 

residual story drifts can exceed 1% drift under the design-level seismic input (Sabelli et al. 

2003).  Kiggins and Uang (2006) studied a BRBF-MRF dual system configuration with 

the intent of limiting residual drifts and found that although residual drift was 

approximately cut in half, it could not be eliminated. 

Other computational studies have found that residual drifts are often less than the 

maximum possible residual drift, which is defined as the drift obtained when the load is 

slowly removed from the point of peak drift.  MacRae and Kawashima (1997) identified 

a propensity for self-centering in elastic-plastic hardening systems with no explicit self-

centering component.  A strong correlation was drawn between residual drifts and the 

post-yield kinematic hardening stiffness of the hysteretic system.  It was found that 

increasing the post-yield stiffness greatly reduces residual drifts, but reducing post-yield 

stiffness below zero can result in large residual drifts. 

Similarly, a study by Ruiz-Garcia and Miranda (2006) examined the effect of 

ground motion parameters, system strength, and hysteretic shape on residual drifts.  It 

was found that post-yield stiffness and unloading stiffness had significant effect on the 

residual drifts.  Christopoulos et al. (2003) and Pettinga et al. (2007) also examined the 

fact that residual displacements in the presence of positive post-yield hardening are less 

than the maximum possible residual displacement.  The relationship between residual 

displacements and maximum displacements is further examined and quantified for 

elastic-plastic, degrading hysteretic, and fully self-centering models in Christopolous and 

Pampanin (2004) and Christopolous et al. (2002) as a function of the post-yield stiffness. 

In the past decade there have been several computational studies that have 

examined the response of self-centering SDOF systems (Christopoulos et al. 2002, 

Christopoulos et al. 2003, Pampanin et al. 2003, Seo and Sause 2005).  These studies are 
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largely based on parametric SDOF analyses on bilinear elastic-plastic, idealized flag-

shape, and sometimes stiffness degrading hysteretic response.  Parameters pertaining to 

hysteretic shape are varied to examine their effect on response indices such as residual 

drift.  As might be expected, the flag-shaped systems that preclude drifts when the lateral 

force is removed were found to eliminate residual drifts in dynamic analyses.   

Although most studies neglect the resistance of the rest of the building, Pettinga et 

al. (2007) investigated the effect of considering the gravity system as a secondary seismic 

force resisting system to mitigate residual drifts.  Non-self-centering systems were 

analyzed using MDOF models.  The post-yield hardening stiffness of a building’s lateral 

force resisting system was increased to account for the gravity system and reductions in 

the residual drifts were found.  However, after undergoing inelastic deformations, the 

gravity system and other elements of the building will resist the ability of the restoring 

forces to eliminate residual drifts.  This effect was not considered in the studies described 

here. 

With some exceptions (e.g., fib 2003), the studies found in the literature also 

commonly treat flag-shaped hysteretic response as distinct from elastic-plastic response 

even though actual systems can be tuned to any combination of self-centering and energy 

dissipation.  In addition, the ability of a structure to tend toward zero residual drift 

through probabilistic dynamic effects is neglected in the development of most self-

centering systems outside of precast concrete (e.g., fib 2003). 

2.2 Structural Rocking Behavior 

2.2.1 General Rocking Behavior 

Rocking, although not commonly used in seismic design, has been investigated by 

numerous researchers.  Rocking of stone monuments, building foundations on soil, 

masonry wall piers, concrete walls, bridge piers, and steel braced frames has been studied 

in various forms.  It has been shown by multiple studies described herein that rocking 

motion reduces seismic loading and ductility demands.  There is also anecdotal evidence 

of seemingly unstable large elevated tanks that survived earthquakes by rocking while 

nearby more stable looking structures were destroyed (Priestley et al. 1978).  Issues that 

have relevance to the current study include impact forces, the energy dissipated during 

impact, and the effect of three-dimensional behavior on rocking resistance. 

Impact has three important effects on rocking behavior including: 1. exciting 

vertical mode shapes, 2. creating vertical accelerations which in turn causes increased 

member forces, and 3. dissipation of energy through inelastic action at the interface.  The 

stiffness of the column support also has been found to have a noticeable effect on the 

fundamental frequency of the system. 

Housner (1963) noted that as any element rocks, there is a certain amount of 

energy that is absorbed by impact as the uplifting side comes down during each half cycle.  

Without energy absorption, the rocking element would bounce upward.  Housner 

calculated the amount of energy required to just preclude bouncing. 

Clough and Huckleridge (1977) examined the effect of impact on the rocking 

response of a steel frame.  It was found that the stiffness of the impact pads beneath the 

column bases had a pronounced effect on the fundamental frequency of vibration of the 

structure.  The first mode period was computationally found to vary from 0.46 sec to 0.34 
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sec as the impact pad stiffness varied from 1.75 kN/mm to 87.6 kN/mm (10 k/in to 500 

k/in) respectively.  Stiffness values for the neoprene pads were calibrated in the 

computational model to match the experimental response resulting in values between 7.0 

kN/mm to 70.1 kN/mm (40 k/in to 400 k/in). 

Priestley et al. (1978) found that large vertical accelerations were induced during 

impact, and that placing rubber pads underneath the impacting legs to represent a flexible 

foundation decreased the vertical accelerations significantly.  Aslam et al. (1980) carried 

out tests to determine the amount of energy lost on impact for specific concrete blocks 

and found that the angular velocity was reduced by a fairly constant value of 7.5% with 

each impact.  Psycharis (1982) considered different methods to account for the soil 

radiation damping due to impact.  Spring-dashpot and elastic-plastic spring systems were 

used to model the effect.  Mander and Cheng (1997) developed a method for converting 

the energy lost on impact into equivalent viscous damping.  Makris and Konstantinidis 

(2003) investigated impact of rocking elements and drew the parallel between energy loss 

during impact and damping.  The minimum amount of energy loss that allows rocking 

without bouncing was found to be a function of the rocking elements slenderness, was 

calculated, and further used in their examples.  Ajrab et al. (2004) includes impact 

damping in their model of a rocking concrete wall.  They calculate equivalent viscous 

damping based on Housner, which equates to approximately 2% damping for a specific 

example. 

Pollino and Bruneau (2004) found that impact excited the vertical modes of 

vibration which can increase the force demands on the members.  Two vertical modes 

were considered, the axial compression of the column, and the vertical shear deformation 

of the frame.  The effect of energy dissipation due to impact was neglected in their study 

because it was less significant than the energy dissipated by yielding steel elements, and 

ignoring it was conservative.  Pollino and Bruneau (2004) developed a method for 

amplifying the base shear to account for dynamic effects.  They then go on to calculate 

demand on the columns as the sum of the force due to the impact velocity plus gravity 

loads multiplied by a dynamic amplification factor plus the force from the energy 

dissipating element multiplied by a different dynamic amplification factor. 

Lu (2005) investigated the behavior of a rocking reinforced concrete (RC) wall in 

conjunction with RC moment frames.  He defines the 3D effect as the additional self-

centering forces created by rotationally fixed beams that frame into the uplifting side of 

the wall.  The beams coming from out-of-plane relative to the rocking wall also 

contribute to the 3D effect if they have rotational fixity.  It was found that 3D effects 

reduced the vertical displacements by 50%, and plastic hinge rotation reduced by 30%.   

2.2.2 Rocking of Concrete and Masonry Walls with Vertical Post-

Tensioning 

Ajrab et al. (2004) analytically investigated the rocking behavior of concrete shear walls 

with vertical and draped post-tensioned tendons.  It was determined that draping the 

tendons to conform to the overturning moment diagram results in lower and more evenly 

distributed interstory drifts.  The six-story prototype structure represented in Figure 2.1 

was used to study the effect of different post-tension profiles as well as initial prestress 

level and wall width.  Supplemental dampers were attached in series at the base of the 

post-tensioning tendons to provide a reliable source of damping.  



 10 

& FUSE

ELEMENTS

2-WALLS LUMPED5 INTERIOR AND 2 EXTERIOR FRAMES LUMPED

DAMPER

1.0 2.0

TENDON

4.09.29.2

3
.6

5
 @

 6
=

2
1
.6

m

 
Figure 2.1 Computational Model of the Rocking RC Wall with Draped Post-

Tensioning Tendons [after (Ajrab et al. 2004)] 

Holden, Restrepo, and Mander (2003) tested two similar concrete walls, one with 

conventional ductile detailing, and the other a precast concrete wall with vertical carbon 

fiber post-tensioning strands and energy dissipating yielding bars.  The test setup in 

Figure 2.2 shows the post-tensioned wall that has the energy dissipaters that consist of 

reinforcing bars that are milled down to a reduced diameter for a specified length.  It was 

found that the post-tensioned precast wall exhibited virtually no residual drift or visible 

damage up to and exceeding 2.5% drift.  This project is discussed further in Rahman and 

Restrepo (2000) and Restrepo and Rahman (2007).  As part of the system design, it is 

desired to preclude yielding in the post-tensioning strands but there is no discussion of 

post-tension strand fracture. 
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Figure 2.2 Post-Tensioned Rocking Wall Test Setup [after Holden et al. (2003)] 

The study of a masonry wall with vertical post-tensioning shown in Figure 2.3 

concentrated on finding analytical models that accurately represent the dynamic shake 

table response of the experimental specimen (Ma et al. 2006).  It was postulated that the 

poor correlation of a detailed finite element model was due to the stress singularity at the 

rigid point of impact.  The second method consisting of fiber based discrete beam-column 

elements also did not match the experimental results very well.  Perez et al. (2007) details 

and further develops this method.  The third computational model achieved the best 

results and consisted of an SDOF cantilevered mass with an elastic rotational spring at 

the base of the cantilever.  The velocity was reduced as the spring went through the 

neutral position to model the impact radiation damping.  It was determined that this 

method for accounting for radiation damping was considerably more accurate than the 

use of equivalent viscous damping. 
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Figure 2.3 Rocking Masonry Wall with Vertical Post-Tensioning Strand [after (Ma 

et al. 2006)] 
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Figure 2.4 Vertically Post-Tensioned Bridge Pier Column [after (Palermo et al. 

2007)] 

Palermo et al. (2007) studied the seismic response of vertically post-tensioned 

concrete bridge columns allowed to rock as shown in Figure 2.4.  It was found that 5 to 8 

kN (1.1 kips to 1.8 kips) of prestressing load was lost due to relaxation of the anchorage.  

Tests were stopped at 3% to 3.5% drift to keep the post-tensioning strands from reaching 

yield.  Excellent self-centering and low damage response was observed. 
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2.2.3 Rocking of Steel Frames 

Perhaps the earliest tests on rocking steel frames were conducted by Clough and 

Hucklebridge (1977).  The frame is shown in Figure 2.5.  The base of the column framed 

into a block through a pin.  The block was then allowed to move vertically using roller 

guides on each side.  Directly beneath the column base was an impact pad made from 

neoprene and steel plates.  Some tests were also carried out with the base of the columns 

not allowed to uplift.  Tests without uplift exhibited less displacement, but larger 

accelerations and member forces.  In some comparisons, the member forces were 1.5 

times greater than the uplift case.  The uplift was considered a “fuse effect” in the way it 

limited overturning moment.  A companion study by Hucklebridge (1977) tested a one 

bay by three bay nine-story structure on a shake table.  Similar to the previous study, the 

structure was tested with uplifting column bases and fixed column bases. 

Kelley and Tsztoo (1977) used the same three-story uplifting frame to study the 

effect of adding energy dissipators to the uplifting structure.  The energy dissipators 

utilized the uplifting displacement to apply torsion to steel bar.  
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Figure 2.5 Rocking Frame [after (Clough and Huckleridge 1977)] 

Researchers have also investigated self-centering column bases.  Ikenaga et al. 

(2006) studied a column base incorporating vertical post-tensioned bars and yielding steel 

plate dampers.  As the columns rotate relative to the rigid foundation, the post-tensioned 

bars shown on the left side of Figure 2.6 stretch, providing self-centering force while the 

dampers yield in tension and buckle in compression contributing energy dissipation.  

Alternatively, as shown on the right side of Figure 2.6, Takamatsu et al. (2006) has 

developed a column base with anchor bolts that are allowed to yield with spring loaded 

wedges that take up the slack on load reversal. 

 



 14 

1300

1406

700

Column:H-250x250x9x14

Stopper: PL12 SS400

Damper

PL12 SS400

PC Bar

Column

Counterwedge

Anchor bolt
Nuts

Counter-plate 

of spring

SpringWedge  
Figure 2.6 Rocking Bases [from (Ikenaga et al. 2006)] (left), and [after (Takamatsu 

et al. 2006)] (right). 

Midorikawa et al. (2006) has studied base plates that allow rocking of a steel 

frame.  The base plate yields providing energy dissipation, and it was shown that this 

reduces the response of moment frames and braced frames.  An example of the yielding 

base plate is shown in Figure 2.7. 
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Figure 2.7 Plan View of Yielding Base Plates [after (Midorikawa 2006)] 

Wada (2001) implemented similar limiting devices in columns of a tall braced 

frame.  The limiting device consists of wide cap plates and base plates at column splices 

bolted together is such a way as to allow separation when subjected to enough tension 

while dissipating energy through yielding.  It was found that the amount of seismic 
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energy input to the building was decreased by the limiting force imposed by the uplifting 

device. 

Pollino and Bruneau (2008) have examined retrofit of existing low ductility 

bridge piers by allowing rocking.  Buckling restrained braces were used to dissipate 

energy, and gravity loads alone provided enough self-centering force.  Chen et al. (2006) 

studied a similar topic.  It was determined that sliding and foot damage due to impact are 

issues that must be considered. 

2.3 Horizontally Post-Tensioned Moment Frames 

Shen and Kurama (Shen and Kurama 2002, Kurama et al. 2006) developed a self-

centering coupling beam intended for use between concrete shear walls.  As shown on the 

left of Figure 2.8, horizontal post-tensioning provides initial compression in the coupling 

beam.  As the shear walls deflect and rotate relative to one another, gaps open at the 

beam-to-wall interfaces.  Top angles and seat angles are used at the connection to create 

inelastic energy dissipation as the gaps open and close.  The post-tensioning force 

provides a restoring force that closes the gaps and drives the walls and beams back 

toward their undisplaced position upon unloading.  One advantage of the system is that it 

can be used to couple existing walls as part of a seismic retrofit. 

A similar concept has been developed for concrete moment frames (Rahman and 

Sritharan 2007) (Priestley et al. 1999) (Nakaki et al. 1999).  As shown on the right of 

Figure 2.8, unbonded post-tensioning strands are oriented horizontally in ducts near the 

mid-depth of the beams.  Mild steel reinforcing bars at the top and bottom of the section 

are debonded over a short length near the interfaces to reduce their inelastic strain 

demands.  A friction mechanism is relied upon for shear transfer across the precast 

connection interface.  As the beam moment increases a gap will open up at the beam-to-

column interface.  The post-tensioning strands provide a restoring force to close the gap, 

and the mild steel reinforcing bars dissipate energy through inelastic deformations. 
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Figure 2.8 Coupling Beams with Post-Tensioning [after (Shen 2002)] (left) and 

Concrete Moment Frames [after (Rahman et al. 2007)] (right) 

Ricles et al. (2001) as well as Christopoulos et al. (2002) have developed steel 

moment frames with self-centering capabilities shown in Figure 2.9.  The post-tensioned 
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energy-dissipating (PTED) beam-to-column connections, as they are called in 

(Christopoulos et al. 2002) and Self-Centering Moment Resistant Frames (SC-MRF), as 

they are called in (Ricles et al. 2001, Garlock 2002, and Garlock et al. 2005, Wolski et al. 

2006), consist of horizontally oriented post-tensioned bars or strands that hold a beam 

flush to a column.  During a seismic event, the beam rotates relative to the column, 

opening a gap between the beam flange and the column.  The self-centering force is 

provided by the post-tensioned bars or strands and energy dissipation is implemented 

using yielding seat angles, friction dampers, or energy dissipating bars confined in tubes. 
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Figure 2.9 Post-Tensioned Steel Moment Frames [after (Garlock et al. 2007)] (left), 

and [after (Christopoulos et al. 2002)] (right) 

2.4 Other Self-Centering Systems for Steel-Framed Buildings 

A self centering brace was developed using post-tensioned high-strain-capacity aramid-

fiber tendons to clamp the brace together (Christopoulos et. al. 2008).  Inner and outer 

steel tubes are configured such that self-centering forces are produced when both tensile 

and compressive deformations are imposed on the brace. Energy dissipation is introduced 

using friction pads clamped together with pretensioned bolts.  This brace configuration is 

shown in Figure 2.10. 

Dolce and Cardone (2006) and Zhu and Zhang (2008) developed self-centering 

braces using shape memory alloy (SMA) elements.  In the former study, the SMA wires 

were used to create the self-centering force and to dissipate energy, whereas in the latter 

study, the high strain capacity of SMA wires was used to create the self-centering force, 

but friction was used to introduce energy dissipation. 
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Figure 2.10 Self-Centering Energy Dissipating Brace                                              

[after (Christopoulos et al. 2008)] 

Pekcan et al. (2000) studied a system with draped post-tensioned tendons with a 

non-rocking steel frame.  The tendons spanned over multiple bays and multiple floors.  

Elastomeric spring dampers and fuse bars were used in series with the post-tensioned 

tendons to provide energy dissipation.  This is similar to the draped post-tensioning for 

concrete shear wall buildings described previously. 

2.5 Structural Fuses for Seismic Resistance 

Structural fuses for seismic resistance in the broadest sense of the term can include any 

structural elements that absorb seismic energy and thus protect the surrounding structure.  

Vargas and Bruneau (2004) further define structural fuses as replaceable elements that 

are designed such that all structural damage is concentrated in this element, allowing the 

primary structure to remain elastic.  Although there are several examples of structural 

fuses found in the literature, this section focuses on the added damping and stiffness 

(ADAS) and triangular-plate added damping and stiffness (TADAS) dampers as 

background for the fuses investigated as part of this work. 

Added damping and stiffness (ADAS) dampers were developed in the 1980’s and 

early 1990’s as a ductile link to be used between braces extending from one floor level 

and the beam of an adjacent floor (Bergman and Goel 1987, Xia and Hanson 1992).  The 

ADAS damper itself consists of a set of plates, sandwiched together with spacers between 

them, anchored into two end blocks and bent about their minor axis.  The plates were 

designed in two patterns.  One pattern referred to as X-shaped consists of plates that are 

wide at the ends and tapered to a reduced section at the center.  The other pattern consists 

of triangular plates that are fixed at the wide end and pinned at the reduced width end.  

The tapered shape of the plates encourages a uniform distribution of inelastic curvature 

along the length of the plate.  The X-shaped specimens showed full hysteretic energy 
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absorbing behavior while the V-shaped specimens showed some pinching hysteretic 

response due to slip in the pinned connections. 

The ADAS dampers were found to be capable of producing stable hysteretic 

behavior for displacement amplitudes as large as 14 times the device yield displacement.  

The energy dissipation can be concentrated in the ADAS elements to protect the 

surrounding structural members.  Furthermore, it was concluded that the yielding of 

ADAS dampers will not affect the gravity load carrying capacity of the system since they 

only participate in the lateral load resistance. 

Since these dampers exhibit full hysteretic behavior, they can be approximated by 

relatively simple bilinear hysteretic models (Xia and Hanson 1992).  Computational 

studies (Xia and Hanson 1992) demonstrate the success of the dampers in protecting the 

rest of the structural members from damage. 

The triangular-plate added damping and stiffness (TADAS) dampers are similar 

to the triangular dampers tested by Bergman and Goel (1987), but improve upon the 

anchorage of the plates (Tsai et al. 1993).  The wide end of the plates are welded into an 

anchorage block whereas the reduced portion ends in a pin that transfers lateral loads but 

is allowed to move up and down in a slotted hole.  The anchorage of the TADAS damper 

reduces the sensitivity of the damper stiffness to the tightness of bolts as experienced 

with ADAS dampers.  Also the use of pins in slotted holes removes axial force effects in 

the dampers making the mechanical properties of the TADAS dampers highly predictable.  

It was found that the stiffness of the TADAS dampers can be calculated based on flexural 

deformations only. 

Cyclic tests were conducted up to 0.30 radians (Tsai et al. 1993) with full stable 

hysteretic behavior.  A strain hardening factor of 1.5 was found at 0.20 radians.  Large-

scale pseudo-dynamic tests on a two-story frame were conducted with and without 

TADAS dampers to demonstrate the effectiveness of the dampers.  The added stiffness 

reduced the first mode period of the frame from 0.881 sec to 0.573 sec through the use of 

TADAS dampers.  The dampers also led to significant reductions in frame drifts without 

any instabilities occurring in the damper or brace assembly.  It was suggested that 

because the system has such predictable properties, a moment frame with TADAS 

damper system might be designed without conducting time history analyses. 

Steel beams with web perforations have also been investigated as yielding 

elements to protect the surrounding structure (Aschheim and Halterman 2002, Lepage 

Aschheim and Senescu 2004).  A range of perforation geometries were tested including 

round holes, oval holes, and longitudinal slots in the web of a steel beam.  The 

investigators identified two modes of deformation in these elements, one mode primarily 

due to flange deformation at the location of the web hole, and the other due to plastic 

shear deformations of the web.  The test specimens were designed to experience 

particular modes of deformation and it was found that the tests achieved the intended 

mechanisms.  It was concluded that the reduced web sections allowed the beam to 

column connection to remain elastic through interstory drifts as large as 6% to 11%.  Out-

of-plane buckling of the webs after yielding was observed along with an associated loss 

in lateral load carrying resistance.  Post-buckling capacity strengths were maintained up 

to interstory drifts of 5% to 6%.  



 19 

2.6 Prior Work on the Controlled Rocking System 

As part of the controlled rocking project, some of the research objectives have been 

addressed by others.  A parametric study was conducted by Hall et al. (2006) to 

determine the effect of system variables on the seismic response of the controlled rocking 

system, shear fuses were developed, analyzed, designed, and tested at Stanford 

University (Ma et al. 2010c), and large-scale shake table tests were conducted at E-

Defense in Miki, Japan (Ma 2010). 

Hall et al. (2006) subjected two-dimensional frame models created using the 

OpenSees Software to a suite of ground motions.  Figure 2.11 shows a schematic 

representation of the analytical model.  The fuses were represented by equivalent elastic-

plastic diagonal truss elements.  One of the primary purposes of the parametric study was 

to determine how design variables affect the hysteretic behavior and overall system 

response.  The three design variables selected as the most significant were: 
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 Where: FPT   =  Initial Tension Force in Post-Tensioning Strands 

  VP    =  Total Yield Strength of the Fuses 

  Fi      =  Design Story Shear Based on ASCE 7-05 with a Response  

   Modification Factor, R = 8 

  hi     =  Story Height Above Rocking Interface 
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Figure 2.11 Computational Model Used for the Parametric Study [after (Hall et al. 

2006)] 

The two-dimensional frame model was subjected to twenty-three ground motions 

scaled to three earthquake hazard levels for a site in Los Angeles, CA: 50% probability of 

exceedance in 50 years, 10% in 50 years, and 2% in 50 years.  Example results are shown 

in Figure 2.12 and Figure 2.13. 
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Figure 2.12 Roof Drift Demand Predicted by the Parametric Study [Adapted from 

(Hall et al. 2006)] 
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Figure 2.13 Fuse Shear Strain Demand Predicted by the Parametric Study [Adapted 

from (Hall et al. 2006)] 
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Based on the results of the parametric study, it was concluded in Hall et al. (2006) 

that: 

 

o Increasing the geometric ratio (A/B) resulted in a significant increase in 

the peak fuse shear strains.  Approximately 50% more peak fuse shear 

strain was found for A/B=3.0 as for A/B=1.5.  This conclusion is based on 

the assumption that the fuse spans the entire width between frames, B. 

o Increasing the geometric ratio (A/B) also resulted in larger drifts. 

o Higher strength ratio (OT) results in stronger systems with increased 

stiffness and energy dissipation. 

o Higher strength ratio (OT) factors , therefore, result in reduced 

displacement response, including residual displacements.  Fuse shear 

strains are also reduced.  Doubling the lateral strength of the system 

resulted in a 25% reduction in peak displacements and peak fuse shear 

strains. 

o The benefits of higher strength ratio (OT) are tempered by the cost of 

larger forces that must be transmitted through the frame and foundation. 

o It was found that self-centering (SC) values of 0.5 still resulted in 

excellent self-centering response. 

o It was concluded that since the system self-centers well for all values of 

the self-centering (SC) ratio considered, that it is not necessary to use 

large values for SC to achieve self-centering performance. 

 

As shown in Figure 2.13, it is crucial to have fuse elements capable of stable 

hysteretic behavior to large levels of shear strain.  Fuses were designed and tested that 

employed steel plates with straight slits and steel plates with butterfly cut-outs (Deierlein 

et al. 2009, Ma et al. 2010b, Deierlein et al. 2010).  Eleven tests, described in Table 2.1 

and Figure 2.14 were conducted at Stanford University on fuses that represent 

approximately half-scale relative to the prototype building.  The ID used in Table 2.1 

starts with either the letter S to refer to slit steel panel fuses or the letter B to refer to 

butterfly steel plate.  The first number is equal to the length of the link divided by the 

thickness, and the second number is the link end width divided by the thickness. 

The test setup shown on the left of Figure 2.15, consisted of a top horizontal 

loading beam suspended by two pinned struts (hidden by the vertical columns), and 

braced against out-of-plane motion by bearing contact with the vertical columns on either 

side.  The loading beam connected to the top of the fuse with two angles, and the fuses 

connected at their bottom to a fixed base. 

The slit steel plate fuses were shown to exhibit a progression of behavior: yielding 

at the ends of the links, initiation of out-of-plane buckling, crack initiation at the link 

ends, tearing of the links, and full link fracture.  The out-of-plane buckling of the fuse 

links coupled with large tension stresses at the extreme fibers caused crack initiation at 

the ends of the links at 5.6% to 10.0% shear strain across the link length.  Significant 

strength loss due to fracture of the links caused the end of the tests at fuse link shear 

strains between 18.6% and 30%.  The onset of tearing in the fuse links caused strength 

reduction, but did not eliminate the ability of the fuse to resist load.  Fracture of one of 

the slit steel panels is shown on the right in Figure 2.15. 
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Table 2.1 Fuse Specimen Test Matrix (from [Ma et al. 2010c]) (See Figure 2.14 for 

Definition of Variables) 

ID L b t a n b/t L/t a/b ws Plate Cutting Sequence

(mm) (mm) (mm) (mm) (mm) Method No.

S12-36 229 73 6 N/A 7 12 36 N/A 3 A Laser 1

S10-40 254 60 6 N/A 13 10 40 N/A 3 A Laser 2

S10-56 356 60 6 N/A 13 10 56 N/A 3 B Laser 3

S10-36W 229 64 6 N/A 6 10 36 N/A 13 B Laser 6

S10-56BR 356 60 6 N/A 13 10 56 N/A 3 B Laser 8

B10-36 229 64 6 25 6 10 36 0.40 13 B Laser 4

B09-56 356 57 6 19 7 9 56 0.33 13 C Laser 9

B06-37 356 57 10 19 7 6 37 0.33 13 D Water 10

B02-14 356 57 25 19 3 2 14 0.33 13 E Water 11

B10-36W 229 64 6 25 6 10 36 0.40 13 B Laser 5

B07-18W 229 89 13 30 3 7 18 0.34 13 F Water 7 
ID notation:  Beginning letters “S”/“B”: Slit fuse/Butterfly fuse; two numbers: b/t and L/t ratios; 

ending letters “W”/“BR”: Welded end connection/Buckling-Restrained. 
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Figure 2.14 Nomenclature for Fuse Geometry 
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Figure 2.15 Fuse Test Setup (Left) and Fractured Slit Plate Fuse (Right)             

(from [Ma et al. 2010c]) 

Butterfly fuse plates on the other hand did not exhibit cracking or fracture in the 

links until late in the loading history.  Fracture of the fuse links in the butterfly fuse 

specimens did not occur until between 30% and 46.5% shear strain across the fuse link 

length.  Figure 2.16 shows fuse specimen B02-14, one of the more stocky fuses, before 

and during the test, along with the resulting load-deformation response.  As demonstrated 

in the plot of the steel butterfly plate response, stable hysteresis loops can be obtained up 

to and exceeding link shear strains of 30%. 

The geometry of the butterfly fuse plates was selected to cause the initiation of 

yield and the initiation of plastic hinging at the quarter point of the fuse link.  

Concentrating the yielding and maximum fiber stresses away from locations of 

discontinuity allows larger ductility and displacement capacity.  For this reason, the 

butterfly fuses were shown to have the largest and most repeatable shear strain capacity 

of the different types of fuses tested at Stanford University. 
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Figure 2.16 Butterfly Fuse B02-14 Before Test (Left), During Testing (Middle), and 

Hysteretic Response (Right) [from (Ma et al. 2010c)] 

A picture of the thinnest of the butterfly fuse tests, at the completion of the 

loading history, is shown in Figure 2.17.  It is clear from this picture that the thinner fuse 

links experienced visually significant lateral-torsional buckling whereas the thicker fuse 
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links shown in Figure 2.16 remained relatively planer.  The experimental response of 

these same fuses are shown in Figure 2.16 and Figure 2.17. 

Thinner fuse behavior is governed by several distinct modes of shear resistance.  

Initially, the fuse links act primarily in flexure.  The fuse link geometry is widest at the 

ends and smallest at the middle by a ratio of 3 to 1.  Since the section modulus is a 

function of the depth squared the moment capacity has a quadratic distribution along the 

link length.  The ratio of end depth to middle depth of 1/3 coupled with a reversed 

moment caused by shear loading creates first yield at the quarter points of the fuse link.  

Similarly the plastic section modulus is quadratic with section depth and also encourages 

plastic hinging to form at the quarter points.  Initiating inelasticity at the quarter points 

away from locations of discontinuity enhances the ductility and deformation capacity of 

these elements.   

For thinner fuses, the link then experiences lateral-torsional buckling.  During 

buckling, the flexural strength and stiffness are reduced significantly.  The link then 

transitions to represent a pinned end truss element with length equal to the length 

between buckled ends.  Further shear deformations cause tensile elongations in the 

effective truss element, whereas unloading creates compressive deformations that then 

cause compression buckling. 
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Figure 2.17 Picture of Stanford University Fuse Test B56-09 (left), and the Resulting 

Load-Deformation Response (right) 

Butterfly fuse plates were found to possess exceptional strength, ductility, and 

deformation capacity while producing predictable stable behavior.  For this reason, 

butterfly fuse plates were selected for use in the large-scale tests described later in this 

report. 
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Chapter 3  
 

DESCRIPTION OF THE CONTROLLED ROCKING 

SYSTEM 

As described in Chapter 1, the controlled rocking system is a high-performance seismic 

lateral resisting system for steel-framed buildings that has the ability to self-center after 

an earthquake and is configured to concentrate the majority of structural damage into 

replaceable elements.  The response of the system is derived and discussed in general 

terms in this section.  First the expected load-deformation response is derived based on 

simple analysis of the components.  Based on the expected response of the system, the 

following subsection describes the general system proportioning that results in desired 

response as well as specific system design considerations.  Finally, the multi-institution 

controlled rocking research project is described for which this work is a subset. 

3.1 Expected System Response 

The expected response is derived based on the idealized frames shown in Figure 3.1.  

Investigating this expected response enables an exploration of the fundamental and 

relative contributions made to the system performance by the fuses, the post-tensioning, 

and the frames. Two configurations are presented: a dual frame configuration with fuses 

between the frames, and a single frame configuration with fuses at the base.  Equations 

presented in this section are generalized for both configurations unless they are stated as 

specifically applying to one configuration or the other.  All members are idealized as 

truss elements with pinned ends.  The response is decomposed into the response of the 

rocking frames with post-tensioning and the response due to the fuses.  These two 

components are then combined in a way analogous to springs in parallel to examine the 

combined system response. 

 

The frame stiffness can be approximated as the sum of the shear deformations due 

to axial deformations of the braces: 

 

1

#

1 1floorsN

braces br
fr

ifr br br floors br

Braces

N A E
K

K A E L N L

  


 (3.1) 

Where: 

Kfr = Approximate elastic stiffness of the braced frames 

Abr = Area of one brace 

E = Modulus of elasticity 

Nbraces = Number of braces per floor 

Nfloors = Number of floors 

Lbr = Length of one brace = 2 2( / 2)A H  
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Figure 3.1 Idealized Controlled Rocking Frame in the Dual Frame Configuration 

(Left) and Single Frame Configuration (Right) 

The force applied at the roof level that causes uplift, Fup, can be estimated by 

equating the moment due to externally applied force to the initial restoring force due to 

post-tensioning: 

 

( )
2 2

pti frames

up floors pti frames up

floors

F ANA
F N H F N F

N H
    (3.2) 

Where: 

Fpti = Initial post-tensioning force  

A, H = Dimensions shown in Figure 3.1 

Nframes = Number of frames, 2 for dual frame configuration, 1 for  

single frame configuration 

 

The displacement when uplift occurs can be estimated as the quotient of Fup / Kfr.  

After uplifting, the post-tensioning continues to elongate further, increasing the post-

tensioning restoring force and thus resulting in a post uplift stiffness, Kup.  Assuming 

negligible geometric nonlinearity, negligible frame deformations due to added post-

tensioning force, and ignoring frame stiffness after uplift, the post uplift stiffness can be 

calculated by starting with similar triangles: 

 

2

pt

floorsN H A

 
       (3.3) 

Where: 

Δδ = Increment in horizontal deflection at the roof level 

Δδpt = Increment in the length of the post-tensioning 
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Rearranging for Δδ assuming positive displacement gives: 

 

2 pt floorsN H

A





        (3.4) 

 

Then, calculating the increment in post-tension force, ΔFpt, based on the 

increment in the post-tension length, Δδpt, gives: 

 

pt

pt pt

floors

F E A
N H

 
   

  

     (3.5) 

 

Equating the moment created by an increment in lateral force, ΔF, with the 

moment created by an increment in the post-tension force, ΔFpt , results in: 

 

( )
2

floors pt frames

A
N H F F N        (3.6) 

 

Rearranging equation (3.6) for ΔF , and substituting the value for ΔFpt  from 

equation (3.5) yields: 

 

 
2

2

pt pt

frames

floors

EA A
F N

N H


       (3.7) 

 

Finally, defining the secondary stiffness, Kup, as the ratio of the increment in 

lateral force, ΔF, divided by the increment in lateral displacement, Δδ results in the 

following equation: 

 

2

3

4

pt frames

up

floors

EA A NF
K

N H


 


     (3.8)  

 

The fuse behavior depends on the type of fuse, but for the purposes of examining 

the system response here, an elastic-perfectly plastic shear fuse is assumed.  Figure 3.2 

shows the idealized forces due to the fuse yielding assuming the frames have already 

uplifted. 
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Figure 3.2 Idealized External Forces Due to Fuse Yielding for Dual Frame 

Configuration (left) and Single Frame Configuration (Right) 
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Figure 3.3 Idealized Fuse Shear Deformation for Dual Frame Configuration (left) 

and Single Frame Configuration (Right) 

 

The force applied at the roof level required to yield the fuses, Ffsy, is calculated by 

summing the moments around point p as shown in Figure 3.2: 

 

 fp

fsy

floors

V A B
F

N H


   (DUAL FRAME)  (3.9) 
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 2fp

fsy

floors

AV
F

N H
   (SINGLE FRAME)  (3.10) 

  Where: 

  Vfp = Yield force of the fuse in shear 

 

It is demonstrated on the right side of Figure 3.2 that the shear deformation of the 

fuse is amplified relative to the shear deformation of the system as a whole.  The right 

side of Figure 3.2 shows idealized rigid body rotation of the frames through some roof 

drift angle, α.  Using the small angle assumption, the fuse shear strain angle, γ, can be 

calculated as a function of the roof drift angle, α, as follows: 

 

 d A Ba     (DUAL FRAME)  (3.11) 

d A B

B B
 a


    (DUAL FRAME)  (3.12) 

Fframe

A

B
 a    (SINGLE FRAME)  (3.13) 

  Where: 

  BFframe = Width of the Fuse Frame as Shown in Figure 3.3 

 

Furthermore, if the shear strain across the fuse link length is desired, the 

relationship can be modified as: 

 

link

link

A B

L
 a


   (DUAL FRAME)  (3.14) 

2
link

link

A

L
 a    (SINGLE FRAME)  (3.15) 

 

The response of the rocking frames with post-tensioning as derived in this section 

is shown in Figure 3.4(a), and the response of rigid frames with fuses is shown in Figure 

3.4(b).  The combination of these two systems in parallel is given in the combined 

response shown in Figure 3.4(c).  The flag shape of the combined response is 

characteristic of a self-centering system which is intuitive in that the displacement returns 

to near zero as the force is removed. 
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Figure 3.4 Response of Uplifting Frames with Post-Tensioning (a), System with 

Fuses Only (b), and Combined Response (c) 

Some of the important aspects of the response are identified with letters in Figure 

3.4(c).  The response of the combined system is defined by the following stages: 

a. Uplift of the frames 

b. Yield of the fuse 

c. Arbitrary point of load reversal 

d. Fuse is at zero force and begins to load in the opposite direction 

e. Fuse yields in the opposite direction 

f. Frames set back down 

g. At zero total force there is minor residual drift as the fuse is still at yield 

force and frame experiences elastic deformations due to this force. 

h. The frames start to uplift as they are reloaded 

i. The fuse starts to yield.  Note that the path is different for the second cycle 

because the fuse starts the cycle with forces equal to negative yield. 

3.2 System Proportioning and Design Considerations 

General proportioning guidelines for this structural system have been derived to promote 

self-centering and mitigate negative limit states.  These guidelines are presented in a 

general form in this section, applied specifically to a prototype structure in a subsequent 

section, and discussed again in the development of the sensitivity study and design 

recommendations. 
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3.2.1 Design of System Strength 

Equivalent lateral forces can be calculated according to building codes such as ASCE 7-

05.  Using load combination 7 given in Section 2.3.2 of ASCE 7-05 (ASCE 2005) the 

overturning moment is found to be: 

 

ED 0.19.0            (3.16) 

#

1

Floors

ovt i i

i

M F H


        (3.17) 

Where: 

 Fi = Equivalent lateral force at level i 

 Hi = Height of level i 

 

The resistance to overturning is calculated with an assumed resistance factor of 

0.9 applied.  The ability of the system to resist lateral forces is checked using Equation 

(3.18) which expands out to Equation (3.19) and Equation (3.20). 

 

resist ovtM M         (3.18)  

   0.9 0.9pti D fp ovtF P A V A B M    
 

  (DUAL FRAME) (3.19) 

 0.9 1.8
2

pti D fp ovt

A
F P V M

 
   

 
   (SINGLE FRAME) (3.20) 

  Where: 

  Fpti = Initial post-tension force 

  Vfp = shear yield capacity of all fuses 

  A, B  = Dimensions Shown in Figure 3.1 

  PD = Total dead load applied to one exterior uplifting column (it is  

   assumed that significant gravity load is only applied to the  

   exterior columns) 

3.2.2 Proportioning Fuse Strength and Initial Post-Tension Force 

To create a fully self-centering flag-shaped load-deformation response, the restoring 

moment must be greater than the moments that are resisting self-centering, namely the 

fuses.  Equation (3.21) gives the general condition for full self-centering which is then 

expanded in Equation (3.22) and Equation (3.23). 

 

restore fuseM M       (3.21) 

   0.9pti D fpF P A V A B     (DUAL FRAME) (3.22) 

1.8pti D fpF P V     (SINGLE FRAME) (3.23) 
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Subtracting Equation (3.19) from Equation (3.22) or subtracting Equation (3.20)

from Equation (3.23), causes the contribution of the P/T force and gravity load to drop 

out leaving an equation for proportioning the fuse strength based on the design 

overturning moment: 

 

 1.8
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   (DUAL FRAME) (3.24) 
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     (SINGLE FRAME) (3.25) 

 

After designing the fuse, the initial post-tension force required for full self-

centering can be calculated by rearranging Equation (3.22) and Equation (3.23), which 

results in the following: 

 
0.9pti fp D

A B
F V P

A


    (DUAL FRAME) (3.26) 

1.8pti fp DF V P     (SINGLE FRAME) (3.27) 

Equation (3.26) and Equation (3.27) demonstrate that the dead load and the initial 

post-tension force are essentially interchangeable.  The dead load can be used, therefore, 

to offset the amount of post-tensioning required. 

3.2.3 Global Uplift Design Check 

If the fuses are too strong, the frames experience global uplift characterized by both legs 

of a frame lifting off the supports.  In the dual frame configuration, this corresponds to 

the windward frame being lifted off the ground.  In the single frame configuration global 

uplift corresponds to the frame sitting up in the air supported on the fuses.  See Figure 3.5 

for a schematic representation of global uplift for the dual frame configuration and the 

single frame configuration.  To prevent the global uplift, the post-tensioning force has to 

be greater than the resisting force of the fuses.   

 

 pti sh fpF C V        (3.28) 

  Where: 

  Csh = Factor for Strain Hardening 

 

Although the post-tensioning force is increased during rocking, it is necessary to 

use the initial post-tension force in this calculation to prevent global uplift even at low 

levels of roof drift.  Furthermore, it may be desired to use a factor that accounts for strain 

hardening of the fuse, Csh. 
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Figure 3.5 Global Uplift for the Dual Frame Configuration (Left) and the Single 

Frame Configuration (Right) 

3.3 Overview of the Project Phases and Objectives 

The conceptual design, development, and validation of the controlled rocking system was 

divided into several phases:  

 

1. Schematic design to define feasible configurations and schematic 

construction details. 

2. SDOF study to examine the characteristics of the flag-shaped hysteresis 

loop and study the proportioning of the system (Described in Chapter 3). 

3. Initial parametric study using an MDOF model to identify key variables 

and their effect on the system response (Hall et al. 2006). 

4. Fuse development through analysis and large-scale testing at Stanford 

University (Ma et al. 2010c). 

5. Large-scale quasi-static cyclic and hybrid simulation tests of the rocking 

frame at the University of Illinois (Described in Chapters 4, 5, 7, and 8, 

and summarized in Eatherton et al. 2008, Eatherton et al. 2010a, Eatherton 

et al. 2010b, Hajjar et al. 2008, and Hajjar et al. 2010). 

6. Large-scale shake table testing at E-Defense in Miki, Japan (Deierlein et al. 

2010, Ma et al. 2010a, Ma et al. 2010b, Ma 2010). 

7. Development of computational models to capture salient features of 

system response (Described in Chapter 6 and [Ma 2010]). 

8. SDOF study to examine the residual drifts of self-centering systems in the 

presence of ambient building resistance (Described in Chapter 9). 

9. MDOF Parametric studies to investigate the application of the controlled 

rocking system to a range of practical building situations (Described in 

Chapter 10 and 11). 
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10. Development of design recommendations to enable implementation in 

practice (Included in Chapter 12 and [Ma 2010]).  Development of direct 

displacement based design methodology (Ma 2010). 

 

This project was conducted in conjunction with Stanford University and many of 

the phases listed above were performed by the group.  References to chapters of this 

report and other publications where information can be found on each phase are included 

in the list above.  Testing was conducted at Stanford University (item 4), the UIUC 

MUST-SIM facility (item 5), and the E-Defense facility in Japan (item 6).  This report 

describes the large-scale testing at UIUC, multiple analytical investigations, and some of 

the development of the controlled rocking system for implementation in practice.  The 

research included in this report had several objectives which fit into the above listed 

phases including: 

 

 Investigate the response of the controlled rocking system through 

conducting a series of half-scale quasi-static and hybrid simulation 

experiments with the following objectives: 

o Validate system performance by examining the ability of the 

system to self-center and concentrate the majority of damage in the 

fuse elements. 

o Provide data for use in developing the computational model. 

o Examine detailing of the system which uses components not 

typical to steel construction such as post-tensioning and column 

bases allowed to uplift. 

o Study fuse performance as it acts as part of the overall system as 

well as determining the forces imparted to the fuse during testing. 

o Define the distribution of member forces in this indeterminate 

system. 

o Investigate the performance of post-tensioning in this type of 

application, specifically examining post-tension force losses and 

tendon fracture. 

 Develop a computational model that accurately represents the significant 

aspects of the experimental response. 

 Conduct MDOF analyses using the developed computational model to: 

o Examine the response of the system as applied to buildings with 

different heights and frame geometry. 

o Investigate the occurrence of limit states. 

o Build on the work done by Hall et al. (2006) to further investigate 

system demands due to given seismic hazard levels. 

 Conduct SDOF analyses to determine the amount of restoring force 

necessary to reliably self-center a building 

o Examine the range of self-centering from all restoring force 

(elastic-bilinear) to all energy dissipation (elastic-plastic). 

o Include the resistance of the rest of the building to determine its 

effect on self-centering. 

 Develop design recommendations for implementation in practice: 
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o Develop a capacity design method for selecting framing members 

and verify this proposed method 

o Create proportioning guidelines for design fuse strength, initial 

post-tensioning force, and post-tensioning area. 

o Provide guidance for column base details that are allowed to uplift 

and post-tensioning details in steel frames subjected to cyclic 

loading. 
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Chapter 4  
 

EXPERIMENTAL PROGRAM 

The large-scale quasi-static cyclic and hybrid testing program was conducted at the 

Multi-Axial Full-Scale Substructure Testing and Simulation (MUST-SIM) facility at the 

University of Illinois at Urbana-Champaign.  A prototype three-story building is used to 

define realistic masses and forces tributary to a controlled rocking frame which are then 

scaled using similitude.  The preliminary proportioning guidelines presented in the 

previous section are then applied and the design of the test specimen is described.  

Features of the construction are then explained including key connection details, the 

construction schedule, and material tests.  The chapter then concludes with details of the 

testing program, including the test matrix, loading protocol, ground motions used for 

hybrid simulation, test control architecture, and instrumentation. 

4.1 Prototype Building 

The design resistance of the tested configurations is based on a prototype building that is 

one of the SAC configurations (Gupta and Krawinkler 1999).  The building is three 

stories tall and has a 36.6m x 54.9m (120’x180’) plan with typical floor and roof framing 

shown in Figure 4.1.  The building is located in Los Angeles, California with site class D 

as defined in ASCE 7-05 (ASCE 2005).  Floor weights and masses are summarized in 

Table 4.1. 

The controlled rocking system has substantial ductility so it is therefore believed 

that the system will warrant a large response modification factor, similar to eccentrically 

braced frames.  A value of R = 8 (ASCE 7-05) is assumed.  Design spectral accelerations 

were calculated for an arbitrary location in Los Angeles, California to be: 

 

11.00 0.60DS DS g S g       (4.1) 

 

Table 4.1 Weights and Masses for the Prototype Building 

Level Seismic Mass 
kN-sec2/m 

(kips-sec2/ft) 

Total Dead 
Load, kN 

(kips) 

Reduced Total Live 
Load, kN (kips) 

Total Gravity 
Load, kN 

(kips) 

Roof 1033  
(70.9) 

10151 
(2282) 

1183 
(266 for 12 psf) 

11,334 
(2548) 

Third 
Floor 

955.5 
(65.5) 

10373 
(2332) 

1975 
(444 for 20 psf) 

12,348 
(2776) 

Second 
Floor 

955.5 
(65.5) 

10373 
(2332) 

1975 
(444 for 20 psf) 

12,348 
(2776) 
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Figure 4.1 Prototype Building Typical Floor and Roof Framing Plan (top), and 

Elevation (bottom) 

 

The approximate initial fundamental building period using was determined using 

Section 12.8.2.1 (ASCE 7-05) with Ct = 0.02 and x = 0.75 for a braced frame: 

 

0.750.02 39 0.31 secx

a t nT C h        (4.2) 

 

The response coefficient and resulting design base shear was then calculated 

using Equations 12.8-1 through 12.8-6 (ASCE 7-05) to be: 
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0.125 28922 3615 kNsV C W        (4.5) 

 

The vertical distribution of the lateral forces is then calculated using Section 

12.8.3 (ASCE 7-05) as shown in Table 4.2 using k = 1 since the period is less than 0.5 

seconds. 

 

Table 4.2 Vertical Distribution of Lateral Forces  

Level 

wi 
kN 

(kips) 

hi 
m 

(ft) 

wihi
k 

kN-m 
(k-ft) Cvx 

Fx 
kN 

(kips) 

Roof 10151 
(2282) 

11.9 
(39) 

89,007 
(65650) 0.52 

1878 
(422.3) 

3rd 9386 
(2110) 

7.9 
(26) 

54,853 
(40450) 0.32 

1158 
(260.3) 

2nd 9386 
(2110) 

4.0 
(13) 

27,427 
(20230) 0.16 

579 
(130.1) 

Total 28922 
(6502) 

 171,287 
(126300)  

3615 
(812.7) 

 

There are two bays of controlled rocking frames in each direction as shown in 

Figure 4.1.  The loads applied to each controlled rocking frame and resulting overturning 

moments are summarized in Table 4.3.  The lateral resisting elements are located such 

that the center of rigidity coincides with the center of gravity.  For the purposes of these 

calculations, accidental torsion has been neglected. 

 

Table 4.3 Design Lateral Loads Applied To Each Controlled Rocking Frame 

Level Story Shear, 
kN (kips) 

Overturning 
Moment, 

kN-m (k-ft) 

Roof 939.5 (211.2) 11168 (8237) 

3rd 579.2 (130.2) 4589 (3385) 

2nd 289.6 (65.1) 1147 (846) 

Total 1808 (407) 16904 (12468) 
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All rocking frames are on the exterior of the building.  The gravity load is only 

applied at the outside columns of the frame as shown in Figure 4.1.  Dead load, PD, and 

live load, PL, at each exterior column and at each level are given by: 

 

2 29.14 4.57 41.8 (450 ft )tribA m m m     (4.6) 

2

2

kN
41.8m 4.60 192kN (43.2 kips)

m
DP     (4.7) 

2

2

kN
41.8m 2.39 100kN (22.5 kips)

m
LP     (4.8) 

4.2 Test Variables and Testing Matrix 

The testing matrix was created to vary key design variables.  The parametric study 

presented in Hall et al. (2006) defined three primary dimensionless design variables: a 

geometric ratio, a design strength ratio, and a self-centering ratio.  Two of these design 

parameters were investigated experimentally along with several other design parameters.  

The variables that are investigated in the testing program include: 1) OT strength ratio, 2) 

SC self-centering ratio, 3) Fuse thickness, 4) Number and location of fuses, 5) dual frame 

configuration (series A) versus single frame configuration (series B), 6) Single width fuse 

for dual frame configuration (series A) versus double width fuses for single frame 

configuration (series B), 7) Single thickness fuses (Typical) versus double thickness fuses 

with a restraining plate between (B1 Right), 8) Initial stress level in post-tensioning 

strands, and 9) Quasi-static cyclic loading versus hybrid simulation.   

Based on the variation of these parameters, the test matrix given in Table 4.4 was 

defined.  The reasons for selecting specific ranges of values for the parameters are 

discussed in the following paragraphs. 

The testing program was divided into two series.  The first series, designated as 

series A, is a dual frame configuration including fuses and struts between the frames.  

The second series is designated as series B, in which the two frames act independently 

and the fuses are located at the base of the frames as shown in Figure 4.7.  The two B 

series specimens were tested simultaneously. 

The geometric ratio, (A/B), is the ratio of the frame width, A to the fuse width, B.  

Both dimensions are from centerline of column to centerline of column and are shown 

schematically in Figure 3.1.  Due to the need to limit the number of specimen 

configurations it was not possible to vary the A/B ratio in the testing program, but the 

effects of this geometric ratio have been studied computationally as described in Chapter 

10. 

The overturning ratio (OT) is the ratio of the strength of the system to the effects 

of the equivalent lateral forces calculated using ASCE 7-05 (ASCE 2005).  Since the 

design strength of the system consists primarily of vertical acting elements whereas the 

lateral forces are horizontal acting, the ratio is executed in the moment domain as the 

moment resistance divided by the design overturning moment.  The ratio is obtained by 

dividing the left hand side of Equation 3.19 or Equation 3.20 by the right hand side as 

given in Equation (4.9) and Equation (4.10).  Since gravity loads were not applied in the 
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experiments they were neglected in this calculation of the overturning ratio.  The design 

overturning moment was found using ASCE 7-05 assuming a response modification 

factor, R = 8.  A value of the OT ratio greater than one means, therefore, that the system 

has strength greater than that required by current U.S. building codes based on the 

prototype building configuration and R = 8. 

 

 0.9 PT Pn

ovt ovt

A F V A BM
OT

M M
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 0.9
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M M


 
     (SINGLE FRAME) (4.10) 

 

Table 4.4 Matrix Defining the Testing Program 

Spec-
imen ID 
(Config) 

OT 
Ratio 

 

SC 
Ratio 

Num. of 
12.7 mm 
(0.5”) P/T 
Strands 

Initial P/T 
Stress and 

Force 

Fuse Type and 
Fuse Strength 

Fuse Configuration 
/ Notes 

Testing 
Protocol 

A1 
(Dual) 

0.96 
(R=8.3) 

0.86 
8 
 

0.287 Fu 
422 kN 

(94.8 kips) 

8 Links 
349 kN 

(78.4 kips) 

Six – 6.4 mm (¼”) 
thick fuses 

Quasi-
Static 

A2 
(Dual) 

1.07 
(R=7.5) 

0.71 
8 
 

0.287 Fu 
422 kN 

(94.8 kips) 

10 Links 
425 kN 

(95.5 kips) 

Two – 15.9 mm 
(5/8”) thick Fuses 

Quasi-
Static 

A3 
(Dual) 

0.88 
(R=9.1) 

1.01 
8 
 

0.287 Fu 
422 kN 

(94.8 kips) 

7 Links 
297 kN 

(66.8 kips) 

Two – 15.9 mm 
(5/8”) thick Fuses 

Quasi-
Static 

A4 
(Dual) 

1.43 
(R=5.6) 

1.13 
8 
 

0.489 Fu 
718 kN 

(161.5 kips) 

7 Links 
455 kN 

(102.2 kips) 

Two – 25.4 mm (1”) 
thick Fuses 

Quasi-
Static 

A5 
(Dual) 

1.03 
(R=7.8) 

1.05 8 
0.338 Fu 
497 kN 

(111.8 kips) 

8 links 
340 kN 

(76.4 kips) 

Two – 15.9 mm 
(5/8”) thick Fuses 

Hybrid 
Sim. 

A6 
(Dual) 

1.04 
(R=7.7) 

1.02 8 
0.338 Fu 
497 kN 

(111.8 kips) 

8 Links 
349 kN 

(78.4 kips) 

Six – 6.4 mm (¼”) 
thick fuses 

Hybrid 
Sim. 

A7 
(Dual) 

1.04 
(R=7.7) 

1.02 8 
0.338 Fu 
497 kN 

(111.8 kips) 

8 Links 
349 kN 

(78.4 kips) 

Six – 6.4 mm (¼”) 
thick fuses 
no struts 

Quasi-
Static 

B1 
(Single)  

1.09 for 
ten 

frames 
1.84 4 

0.454 Fu 
334 kN 

(75.0 kips) 

6 links total 
181 kN 

(40.8 kips) 

One 19.1 mm (3/4”) 
thick with bar strut 

across the top Quasi-
Static 

B2  
(Single)  

1.04 for 
ten 

frames 
2.08 4 

0.454 Fu 
334 kN 

(75.0 kips) 

20 links total 
161 kN 

(36.1 kips) 

Two 4.8 mm (3/16”) 
thick plates  with 
Plate In Between 
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The range of the OT strength ratio selected to be tested was based on the 

parametric study by Hall et al. (2006).  Higher OT factors could be used to satisfy higher 

performance requirements by limiting interstory drifts.  As shown in Figure 2.12, the 

effectiveness of the OT factor in limiting drifts starts to plateau around a value of OT=1.5.   

Larger OT factors also require the frame to be designed for larger loads so it was decided 

to limit the OT factor to 1.5 for the specimen configurations.  Conversely, lower OT 

factors require greater fuse shear strain capacity as shown in Figure 2.13.  At the time that 

the test matrix was defined, it was thought that the fuses would not have large enough 

shear strain capacity to validate the use of OT less than 1.0.  Furthermore, since OT less 

than 1.0 corresponds to R greater than 8 and ASCE 7-05 currently does not use R>8 for 

any systems (ASCE 2005), it was decided to set 1.0 as the lower limit for the specimen 

configurations. 

The self-centering ratio (SC) is a measure of how well the system will return to its 

original position after unloading.  Similar to the OT ratio, it is computed in the moment 

domain as the restoring moment divided by the resistance to self-centering.  Similar to 

the OT ratio the SC ratio is computed neglecting gravity since there was no gravity load 

applied in the experiment.  The SC ratio is found by dividing the left hand side of 

Equation (3.22) or Equation (3.23) by the right hand side as given in Equation (4.11) and 

Equation (4.12).  An SC ratio value greater than 1 means that the initial post-tensioning 

force is capable of overcoming the fuse yield capacity and bring the system back to 

center upon unloading.  For the purposes of the test specimen design, the resistance to 

self-centering that is associated with the rest of the building (simple beam-column 

connections, partitions, etc.) is neglected.  However, the effects of the rest of the building 

on the self-centering performance of the system is investigated in Chapter 9. 

 

( )

pti

fp

A F
SC

V A B



  (DUAL FRAME)  (4.11) 

pti

fp

F
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V
    (SINGLE FRAME)  (4.12) 

 

The preliminary parametric study found that the controlled rocking system 

exhibits almost no residual drift even when the SC ratio is less than 1.0 (Hall et al. 2006).  

SC values as low as 0.5 still resulted in negligible residual roof drift or residual uplift.  

This phenomenon is explored in Chapter 9.  For this reason the test matrix was initially 

defined with SC = 0.8 for every specimen.  After specimen A2, however, it was decided 

to increase the SC factor so that load-deformation plots of future specimens would 

demonstrate near zero drift when the load was removed. 

The SC ratio needed to be larger for the single frame configurations to prevent 

global uplift.  As discussed in Chapter 3 and given in Equation (3.28), the initial post-

tensioning force, Fpti, must be greater than the hardened fuse shear capacity, CshVfp to 

prevent global uplift.  For the dual frame configuration, an SC ratio less than 1.0 may still 

satisfy this requirement.  For Specimen A1 and A2, the SC=0.8 resulted in an initial post-

tensioning force that was larger than the fuse capacity because the moment arm for the 

fuse is larger than the moment arm for the post-tensioning.  However, the single frame 
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configuration SC is calculated using Equation (4.12) which shows that the SC ratio 

cannot be less than 1.0 and still satisfy the global uplift requirement.  For the nonbuckling 

fuses, a strain hardening factor, Csh=1.5 was assumed based on previous tests which also 

includes hardening due to fuse axial forces.  The single frame configuration specimens, 

B1 and B2, therefore, used SC greater than 1.5. 

The dual frame configuration used for most of the specimens depends on a shear 

fuse with large shear strain capacity.  The butterfly steel plate fuses are especially well 

suited for this application.  The number of fuses was varied to represent different possible 

configurations such as one fuse location and multiple fuse locations, one at each of the 

three floors.  Also, the fuse thickness was varied to be 4.8 mm (3/16”), 65.4 mm (1/4”), 

15.9 mm (5/8”), 19.1 mm (3/4”) and 25.4 mm (1”) thick to examine the difference in 

behavior between thin fuses which exhibit lateral-torsional buckling and thick fuses that 

don’t buckle. 

As will be discussed in later chapters, selecting the proper initial PT stress is 

important for allowing adequate strain capacity to preclude yielding or strand fracture.  

Although it is advantageous in some cases to use the lowest possible initial PT stress in 

order to allow the most strain capacity, there may be a practical limit.  A lower limit of 

approximately 0.3 Fu and an upper limit of approximately 0.5 Fu were selected.  No 

issues were encountered with implementing these levels of initial post-tension force. 

4.3 Specimen Design 

4.3.1 Scaling 

The specimen is scaled to be 0.43 times the dimensions of the full-scale prototype 

structure.  The prototype structure has a center-to-center spacing of the columns, 

A=3.66m (12’-0”), and center-to-center spacing between the frames, B=1.46m (4’ 9-

7/16”), which yields a total bay width of 8.77m (28’ 9-7/16”) and an A/B ratio of 2.5.  

The specimen frame width, measured between the column centerlines, is A=0.43x3.66” = 

1.57m (5.16’).  Figure 4.2 shows key specimen dimensions relative to the prototype 

frame. 

Table 4.5 gives the scale factors used to reduce prototype dimensions to specimen 

scale.  To satisfy similitude, the design overturning moment calculated above is scaled 

down by the cube of the length.  Since the scale of the specimen is 0.43 times the size of 

the prototype building frame, the design overturning moment is scaled by Mr = 0.43
3
 = 

0.0795 and for the specimen is: 

 

0.0795 16,904 1344kN-mu r ovt prototypeM M M x     (4.13) 
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3.96m x 0.43=1.70m

(13'-0"x0.43=5' 7-1/16")

3.96m x 0.43=1.70m

(13'-0"x0.43=5' 7-1/16")

3.96m x 0.43=1.70m

(13'-0"x0.43=5' 7-1/16")

0.29m x 0.43=0.13m

(11-½”x0.43=4-15/16")

0.29m x 0.43=0.13m

(11-½”x0.43=4-15/16")

1.51m

(4' 11-9/16")

1.70m

(5' 7-1/16")

1.76m

(5' 9-7/16")

0.15m x 0.43=0.07m

(6"x0.43=2-9/16")

3.66m x 0.43 = 1.57m

(12'-0"x0.43=5' 1-15/16")

3.66m x 0.43 = 1.57m

(12'-0"x0.43 =5' 1-15/16")

0.15m x 0.43=0.07m

(6"x0.43=2 9/16")

8.77m x 0.43 = 3.77m

(28' 9-7/16"x0.43 = 12' 4-9/16")

1.46m x 0.43 = 0.63m

(4' 9-7/16"x0.43 = 2' 0-¾”)

 
Figure 4.2 Scale of Specimen Compared to the Prototype 

 

Table 4.5 Scale Factors to Satisfy Similitude 

Scaling Parameters Derivation Values 

Length 
rl  Decided by test design 0.43 

Young’s modulus 
rE  Decided by test design 1.0 

Accel. of Gravity gr Decided by test design 1.0 

Displacement 
r  = rl  0.43 

Rotation 
r  Dimensionless 1.0 

Force 
rF  =

2

rrlE =
2

rl  0.185 

Moment 
rM  =

3

rrr llF   0.0795 

Acceleration ar = rg  1.0 

Mass mr 
=

2
2r r

r

r

E l
l

a
  

0.185 

Time tr 
= r

r

r r

m
l

E l
  

0.656 

Period Tr = rt  0.656 

 



 45 

4.3.2 Experimental Test Setup 

The experimental program was conducted at the Multi-axial Full-scale Substructure 

Testing and Simulation (MUST-SIM) facility at the University of Illinois at Urbana-

Champaign, which is part of the National Science Foundation (NSF) George E. Brown, Jr. 

Network for Earthquake Engineering Simulation (NEES).  Loading is applied using one 

of the Loading and Boundary Condition Boxes (LBCB), which contains six actuators 

making it possible to control all six DOFs at the top of the specimen.  The stroke limits 

and force capacities for the LBCB are listed in Table 4.6.  The actuators are single-sided 

pistons, so the force capacities when the actuators are in compression are greater than 

those listed in Table 4.6.  The LBCB coordinate system is shown in Figure 4.3 and Figure 

4.4. 

 

Table 4.6 Stroke Limits and Force Capacities for the LBCB 

Direction 
Stroke, 
mm (in) 

Capacity, 
kN (kips) 

δx ± 250 (± 10) 1921 (432) 

δy ± 125 (± 5) 960 (216) 

δz ± 125 (± 5) 2882 (648) 

Direction 
Stroke, degrees 

(rad) 
Capacity, 

kN-m (k-in) 

Roll, θx ± 16° (0.279) 862 (636) 

Pitch, θy ± 11.8° (0.206) 1152 (850) 

Yaw, θz ± 16° (0.279) 862 (636) 

 

As shown in Figure 4.3, the LBCB is bolted to the strong wall and the LBCB 

loading platform is bolted to a loading beam.  The loading beam is connected to the 

specimen through two biaxial load cell pins that measure the vertical and horizontal load 

applied to each frame. 
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Figure 4.3 Test Setup at the MUST-SIM Facility 
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Figure 4.4 Side View (left) and Plan View (right) of the Test Setup 

 

The frames are braced against out-of-plane movement as shown in Figure 4.4 by 

bumpers at the bottom and guides at the top.  The guides are bolted to the loading beam, 

Z

o

o

p

 

f

o

r 

M

o

m

e

n

t 

i

n

 

t

h

e

 

T

h

e

t

a

 

Y

  

D

i

r

e

c

t

i

o

n 

Z 

Y 

Y 

X 

X

o

o

p

 

f

o

r 

M

o

m

e

n

t 

i

n

 

t

h

e

 

T

h

e

t

a

 

Y

  

D

i

r

e

c

t

i

o

n 



 47 

but not to the frames.  A stand-off piece at the top of the frame is designed to slide 

against the inside of the guides.  It was found during the testing of the first few specimens 

that the guides were not being engaged and that the rotational resistance proved at the pin 

connections was sufficient to brace the frame from out of plane motion.  The guides were 

removed after the testing of specimen A4.  The LBCB loading platform is restrained by 

the test control not to move in the out-of-plane directions: δy = 0, θx = 0, and θz = 0, 

which is discussed further in a later section on test control.  A photograph of the test 

setup is shown in Figure 4.5. 

 
Figure 4.5 Photograph of the Test Setup 

4.3.3 Member and Connection Design 

The two specimen frames were designed for a range of possible fuse and post-tensioning 

combinations experiencing roof drift ratios greater than 4%.  For this reason the frame 

sections and connections are designed for much more severe loading than would be 

required of the prototype frames which would be designed for a specific combination of 

post-tensioning strands, initial post-tensioning force, fuse location, and fuse strength.  

OpenSees analyses were conducted with models similar to that described in Chapter 8 for 

every combination of: 

 

1. Three different fuse configurations: 6 fuses that are 6.4 mm (¼”) thick, 2 

fuses that are 15.9 mm (5/8”) thick, or 2 fuses that are 25.4 mm (1”) thick. 

2. Two different fuse widths: B=628 mm (2.06’) for A/B=2.5, B=933 mm 

(3.06’) for A/B=1.69.  However, the final testing program eliminated the 

A/B=1.69 configuration. 

3. Two different OT ratios: OT = 1.0, and OT = 1.5. 
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The combination of the above listed parameters resulted in 12 different design 

configurations.  In addition to these design configurations another configuration was 

considered which uses fuses at the base of the frames: 

 

4. Two individual frames with fuses at the base of the frames (Series B). 

 

OpenSees analysis was performed to predict the frame element forces as the 

model was subjected to the full extent of the LBCB stroke which is ±254 mm (±10”).  

The maximum forces were then used to check the adequacy of the braced frame members 

according to AISC 360-05 (2005) for: compression, tension, bending, shear, combined 

peak tension and flexure, combined peak compression and flexure, combined axial and 

peak moment for end 1, and combined axial and peak moment for end 2. 

The adequacy of the gusset plate connections were calculated in a similar way 

using the same analyses results.  The design calculations included assessment of edge 

distance limits, bolt shear, bolt bearing, block shear, Whitmore section yield, net section 

fracture, and slip critical strength of the bolts.  The material used and nominal strength of 

each is provided in. Ancillary material tests are reported in Section 4.4.3.  Wide flange 

member sizes and some other key design information are given in Figure 4.6.  The single 

frame configuration used in the B series specimens is shown in Figure 4.7. 

 

Table 4.7 Material Grades and Nominal Strengths Used for the Specimen 

Item 
ASTM Material 

Specification 

Nominal 
Yield 

Strength 

Nominal 
Ultimate 
Strength 

½” Post-Tensioning 
Strand 

A416 N/A 
1862 MPa 
(270 ksi) 

Wide Flange 
Shapes 

A992 Grade 50 
345MPa 
(50 ksi) 

448 MPa 
(65 ksi) 

Typical Bolts A490 N/A 
1034MPa 
(150 ksi) 

Threaded Rod A193 Grade B7 N/A 
862MPa 
(125 ksi) 

Gusset Plates A572 Grade 50 
345MPa 
(50 ksi) 

448MPa 
(65 ksi) 

Fuse Plates A36 
248MPa 
(36 ksi) 

400MPa 
(58 ksi) 
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Figure 4.6 Specimen Design Information Including Member Sizes Showing the 

Series A Configuration 
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FOUR 1/2" ∅ 

POST-TENSIONING 

STRANDS

CENTER COLUMN 

CONNECTED TO 
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CENTER COLUMN 

ATTACHES TO THE 

FUSE WITH A PIN 
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TO MOVE 
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THICKNESS WITH A 
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THE TOP

RIGHT FRAME USES 

TWO THINNER FUSES 

ON EITHER SIDE OF A 

THICKER PLATE

 
Figure 4.7 Single Frame Configuration Used in the B Series Specimens 

4.3.4 Key Details of the Experimental Test Specimen 

4.3.4.1 Post-Tensioning Anchorage 

An important goal of the experimental program was to examine and improve details not 

typical in steel construction such as post-tensioning anchorage and uplifting column 

bases.  The 12.7 mm (½”) post-tensioning strands are anchored at the top of the specimen 

using two-part wedges that fit in conical shaped holes machined in a thick anchorage 

plate as shown in Figure 4.8.  The wedges were obtained from Dywidag along with 

details for the shape of the wedge shaped holes.  Machining the conical holes required the 

use of two specialized tapered reamers.  The wedges before and after installation are 

shown on the right side of Figure 4.9.  The top anchorage plate was welded to gusset 

plates which were welded to the beam and bolted to the braces.  The post-tensioning 

strands passed through a large hole in the beams and connections as they extended down 

to the lower anchorage plate so as to allow sufficient clearance that the strands were not 

contacted along their length during the rocking motion. 
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Figure 4.8 Details of the Post-Tensioning Anchorage 

The strands pass through the anchorage plate to be anchored below by post-

tension chucks.  The post-tension chuck, as shown in the top left portion of Figure 4.9, 

consists of a cylindrical casing that has a conical shape on its interior, a three-part wedge 

held together by a rubber band, and a spring loaded cap that pushes the wedges down.  

Load cells were designed and built to measure the load in each post-tensioning strand and 

were placed between the chuck and the anchorage plate.  The anchorage plate is held 

down by six 38.1 mm (1-1/2”) threaded anchor rods.  Each anchor rod was machined 

down to a smooth 31.8 mm (1-1/4”) diameter for 152 mm (6”) length at which location 

two strain gages were applied to provide a second measurement for the verification of 

post-tension force.  This entire assembly is shown in the bottom left portion of Figure 4.9. 
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Figure 4.9 Post-Tension Chucks (top left), Wedges (top right), Installed Chucks 

(bottom left), and Installed Wedges (bottom right) 

4.3.4.2 Column Base 

The base connection is shown in Figure 4.10.  The column, brace, and beam are bolted to 

a 25.4 mm (1”) thick gusset plate that has a 127 mm (5”) radius on the edge facing the 

stiffened bumper.  The curved portion is machined and acts as the horizontal bearing 

surface between the frame and the bumper.  A 38.1 mm (1-1/2”) thick base plate is 

welded to the gusset plates and has a 12.7 mm (½”) bull nose on three sides.  As the 

frame rocks, the vertical bearing surface is the bull-nosed edge pivoting on the base plate 

below. 
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25.4mm (1") GUSSET 

PLATE FRONT AND 

BACK

25.4mm (1") A490 BOLTS

127mm (5") RADIUS 

ON GUSSET PLATE

SIDE BUMPERS

STIFFENED 

BUMPER

38.1mm (1 1/2") BASE 

PLATE WELDED TO 

GUSSET WITH 12.7mm 

(1/2") BULL NOSE

THREADED HOLES 

IN BASE PLATE

STRONG FLOOR  
Figure 4.10 Column Base Detail Allowing Pivoting and Uplifting 

4.3.4.3 Replaceable Fuse Plates 

The fuses were designed based on the results of fuse component tests carried out at 

Stanford University.  Stanford University conducted a testing program on a range of fuse 

materials and configurations (Ma et al. 2010c) as described in the literature review of 

Chapter 2.  Fuse plates with diamond shaped cutouts exhibited outstanding plastic shear 

strain capacity and allowed adjustable shear force capacity.  The shape of the cutouts, 

demonstrated in Figure 4.11, is designed to promote the initiation of inelastic action and 

plastic hinging at the quarter point away from areas of discontinuity.  The reason for this 

is demonstrated in Figure 8.15. 

 

Radius 6.4mm (¼”)

Link Length, L

a
=

b
/3

b

Plate Thickness, t

Number of Links, n

Radius = 25.4mm (1”)

 
Figure 4.11 Fuse Geometry and Variable Definitions Used in Design 

 

Since the plastic hinging is designed to occur at the quarter point of the fuse link, 

the shear capacity of the fuse is derived based on the plastic moment capacity at the 

quarter point of the fuse which is given in Equation (4.14) and simplified in Equation 

(4.15).  The shear capacity of the fuse is calculated as given in Equation (4.16) and 

simplified in Equation (4.17).  The definitions of the variables are given in Figure 4.11.  



 54 

Fuses were designed using Equation (4.17) to have the total shear capacity for all fuses 

given in Table 4.4.  The resulting fuse designs are given in Table 4.8.  The fuse link 

geometry used for Specimen A1 through Specimen A7 was selected to match three of the 

Stanford fuse component tests, B09-56, B06-37, and B02-14, which performed well (Ma 

et al. 2010c).  These three component test specimens, as well as the fuses for Specimens 

A1 through Specimen A7, use a link length, L=355.6 mm (14”), end depth, b=58.7 mm 

(2.31”), and middle depth, a=19.6 mm (0.77”). 
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Table 4.8 Fuse Geometry and Design Shear Capacities 

  
  

Specimen 

Link 
Length, 

L, mm (in) 

Depth 
at End, 

 b, 
mm (in) 

Depth at 
Middle, 

a, 
mm (in) 

Thick- 
ness 

t, 
mm (in) 

 Number 
of 

Links 
n 

Measured 
Yield  

Stress, Fyp, 
MPa (ksi) 

Fuse Shear 
Capacity, 
Vfp-one, kN 

(kips) 

A1 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

6.4 
(0.25) 

8 
265 

(38.5) 
58.1 

(13.1) 

A2 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

15.9 
(0.625) 

10 
310 
(45) 

212 
(47.7) 

A3 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

15.9 
(0.625) 

7 
310 
(45) 

149 
(33.4) 

A4 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

25.4 
(1.0) 

7 
296 
(43) 

227 
(51.1) 

A5 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

15.9 
(0.625) 

8 
310 
(45) 

170 
(38.2) 

A6 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

6.4 
(0.25) 

8 
265 

(38.5) 
58.1 

(13.1) 

A7 
355.6 
(14) 

58.7 
(2.31) 

19.6 
(0.77) 

6.4 
(0.25) 

8 
265 

(38.5) 
58.1 

(13.1) 

B1 
152.4 

(6) 
42.9 

(1.69) 
14.3 

(0.56) 
19.1 

(0.75) 
3 

296 
(43) 

90.8 
(20.4) 

B2 
152.4 

(6) 
47.6 

(1.87) 
15.9 

(0.63) 
4.8 

(0.188) 
5 

255 
(37) 

40.2 
(9.0) 
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4.4 Specimen Construction 

4.4.1 Frames 

The frames were fabricated by Tefft Iron and Steel of Tefft, Indiana.  The majority of the 

specimen was fabricated with methods and tolerances typical to steel construction.  

Portions that required machining such as the milled based plates, base gusset plates with 

machined 127 mm (5”) radius, conical holes in the top post-tension anchorage plate, and 

high tolerance pin connections at the top were fabricated at the UIUC Civil and 

Environmental Engineering Machine Shop.  Fuses were manufactured separately and are 

discussed in the next section. 

4.4.2 Fuses 

The fuses were manufactured by Wagner Machine Company of Champaign, Illinois 

using water cutting technology.  Water cutting capabilities were found to be common in 

large machine shops and therefore not expensive, ranging in price from approximately 

$80 for the 6.4 mm (¼”) thick specimen A1 fuses to as much as $500 for the 25.4 mm 

(1”) thick specimen A4 fuses.  The left side of Figure 4.12 shows the water cutting 

process.  Different levels of water cutting quality are possible depending on the speed at 

which the water jet moves.  Inelastic action during loading is primarily concentrated 

along the length of the butterfly link so all of the diamond shaped cutouts were cut with 

the highest waterjet cutting quality.  The outside straight edges of the fuses were cut 

using a low quality setting.  It was also required that the cutting not begin near the fuse 

links. 

 

 
Figure 4.12 Photo of Water Cutting (Left) and Finished Fuse (Right) 

 



 56 

4.4.3 Ancillary Tests 

4.4.3.1 Post-Tension Strand Material Tests 

Four ancillary tension coupons were cut from the same post-tensioning strand material 

that was used in the large-scale specimen.  The material tests took place at the Newmark 

Structural Engineering Laboratory (NSEL) at the University of Illinois at Urbana-

Champaign (UIUC) on December 20, 2007 using the 445kN (100 kip) capacity MTS 

machine.  The tests were performed according to ASTM standard A370-07a Section A7 

(ASTM 2007), which outlines the method for testing multi-wire strand for pre-stressed 

concrete.  The monotonic loading rate started at 3.8 mm/min (0.15 in/min) and was raised 

incrementally to 10.2 mm/min (0.4 in/min) during each test. A 51 mm (2”) gage length 

and a 610 mm (24”) gage length extensometer were used to measure strain during the 

loading.  Both are shown in Figure 4.13, and a representative force-strain relationship is 

shown in Figure 4.14.  The results of the post-tensioning strand material tests are given in 

Table 4.9.  Additional information about the ancillary tests on post-tensioning strand 

coupons is located in Tanamal et al. (2007). 

 

 
Figure 4.13 Post-Tension Strand Material Test Setup 
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Figure 4.14 Representative Force-Strain Relationship from Post-Tension Strand 

Material Tests 

 

Table 4.9 Summary of the Results of the Post-Tension Strand Material Tests 

Test 
Modulus of 

elasticity,  GPa 
(ksi) 

Max Load, kN 
(kips) 

Yield Load, kN 
(kips) 

Elongation 
(%) 

1 200.6 (29,100) 191.7 (43.1) 173.5 (39.0) - 

2 199.3 (28,900) 192.6 (43.3) 171.7 (38.6) 4.73 

3 206.8 (30,000) 194.4 (43.7) 174.8 (39.3) 4.82 

4 202.0 (29,300) 193.5 (43.5) 173.9 (39.1) 4.78 

Average 202.0 (29,300) 193.1 (43.4) 173.5 (39.0) 4.78 

 

The minimum values for yield strength and elongation required to satisfy ASTM 

A416/A416M-06 (ASTM 2006) are 172.2 kN (37,710 lbs) and 3.5% respectively.  All 

four tests exceeded these minimum values.  Copper tubing was used to protect the grip 

ends during testing, but failure still occurred at the end of the grips.   

These tests were intended to test the behavior of the material and not the behavior 

of the post-tensioning system which heavily depends on the type of anchorage used.  

During the large-scale testing program it was found that strand fracture can occur at 

elongations well below the elongations experienced in the material tests. 

4.4.3.2 Fuse Plate Material Tests 

Sixteen dogbone-shaped tension coupon tests were conducted on the fuse plate material. 

The tests took place at the Newmark Structural Engineering Laboratory (NSEL) at the 

University of Illinois at Urbana-Champaign (UIUC) in February, 2008. The 25.4 mm (1”) 

thick coupons were tested using the 2669kN (600 kip) capacity MTS machine and the 

445kN (100 kip) capacity MTS machine was used to test the 19.1 mm (3/4”), 15.9 mm 
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(5/8”), 6.4 mm (1/4”), and 4.8 mm (3/16”) thick coupons.  ASTM standard A370-07a 

was used to define the geometry of the tensile coupons.  Gage lengths for instruments, 

types of instrumentation, speed of testing, and procedures for computing pertinent values 

from the data were based on ASTM standard E8-01 (ASTM 2001). The Structural 

Stability Research Council (SSRC) Technical Memorandum Number 7 was used to 

determine static yield strength (Galambos, 1998).  Additional information about the 

ancillary tests on fuse plate coupons is located in Tanamal et al. (2009). 

Figure 4.15 shows the tension specimens. The specimens were cut using a 

waterjet cutting machine at Wagner Machine Company in Champaign, Illinois. 

Specimens were cut from the same material used for the fuses. The geometry of the 

reduced section was the same for all specimens, but the grip section was enlarged for the 

25.4 mm (1”) thick plate to allow more gripping area for use in the 2669kN (600 kip) 

machine.  Overall outside dimensions of the coupons were 584 mm x 76.2 mm (23”x3”) 

for the 6.4 mm (¼”) thick and 15.9 mm (5/8”) specimens and 787 mm x 102 mm 

(31”x4”) for the 25.4 mm (1”) thick specimens.  The reduced section was 38.1 mm (1-

1/2”) wide and 229 mm (9”) long between fillets. 

 

              
Figure 4.15 Tension Coupons for 25.4 mm (1”) Thick (left), 15.9 mm (5/8”) Thick 

(middle), and 6.4 mm (¼”) Thick Fuses (right) 

A 51 mm (2”) gage length extensometer and an 203 mm (8”) extensometer was 

used to measure strain as shown in Figure 4.16.  The monotonic loading rate started at 1.3 

mm/min (0.05 in/min) and was raised to 12.7 mm/min (0.5 in/min) after yielding. In 

accordance with the SSRC appendix (Galambos, 1998), loading was halted at multiple 

points during yielding to get static yield strength.  The 15.9 mm (5/8”) thick plate did not 

exhibit a defined yield plateau, so the yield stress was calculated using the 0.2% offset 

method.  The results of the ancillary tests are summarized in Table 4.11, Table 4.12, and 

Table 4.14.  Necking and fracture occurred in the middle of the reduced section on all ten 

tension specimens. 
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Figure 4.16 Photograph of the Fuse Material Tension Test 

 

Table 4.10 Summary of Results from 4.8 mm (3/16”) Thick Fuse Material Tests 

4.8 mm 
(3/16") 

Test 

Static yield 
strength, MPa 

(ksi) 

Dynamic yield 
strength, MPa 

(ksi) 

Ultimate 
strength, 
MPa (ksi) 

% Elongation 
based on 8” 

Extensometer 

1 245 (35.5) 255 (37.0) 360 (52.2) 30.2 

2 261 (37.9) 272 (39.4) 363 (52.6) 30.6 

3 245 (35.5) 255 (37.0) 360 (52.2) 31.1 

average 250 (36.3) 261 (37.8) 361 (52.3) 30.6 

 

Table 4.11 Summary of Results from 6.4 mm (1/4”) Thick Fuse Material Tests 

6.4 mm 
(1/4") 
Test 

Static yield 
strength, 
MPa (ksi) 

Dynamic yield 
strength, MPa 

(ksi) 

Ultimate 
strength, 
MPa (ksi) 

Yield Point 
Elongation 

(%) 

% Elongation 
based on 8” 

Exten-someter 

1 257 (37.3) 269 (39.0) 420 (60.9) 0.56 27.8 

2 263 (38.1) 277 (40.2) 429 (62.2) 0.43 28.4 

3 260 (37.7) 274 (39.8) 423 (61.4) 0.45 28.9 

4 261 (37.9) 276 (40.0) 424 (61.5) 0.47 29.0 

average 261 (37.8) 274 (39.8) 424 (61.5) 0.48 28.5 
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Table 4.12 Summary of Results from 15.9mm (5/8”) Thick Fuse Material Tests 

15.9 mm 
(5/8") 
Test 

Static yield 
strength, 
MPa (ksi) 

Dynamic yield 
strength, MPa 

(ksi) 

Ultimate 
strength, 
MPa (ksi) 

Yield Point 
Elongation 

(%) 

% Elongation 
based on 8” 

Extensometer 

1 303 (43.9) 313 (45.4) 403 (58.5) 0.44 28.2 

2 309 (44.8) 319 (46.2) 411 (59.6) 0.39 24.6 

3 308 (44.6) 319 (46.3) 410 (59.5) 0.41 24.9 

average 306 (44.4) 317 (46.0) 408 (59.2) 0.41 25.9 

 

 

Table 4.13 Summary of Results from 19.1 mm (3/4”) Thick Fuse Material Tests 

19.1 mm 
(3/4") 
Test 

Static yield 
strength, 
MPa (ksi) 

Dynamic yield 
strength, MPa 

(ksi) 

Ultimate 
strength, 
MPa (ksi) 

Yield Point 
Elongation 

(%) 

% Elongation 
based on 8” 

Extensometer 

1 267 (38.7) 276 (40.0) 366 (53.1) 0.66 29.0 

2 288 (41.8) 299 (43.3) 389 (56.4) 0.68 27.6 

3 319 (46.2) 327 (47.4) 415 (60.2) 0.92 23.9 

average 291 (42.2) 301 (43.6) 390 (56.6) 0.75 26.8 

 

Table 4.14 Summary of Results from 25.4 mm (1”) Thick Fuse Material Tests 

25.4 mm 
(1") Test 

Static yield 
strength, 
MPa (ksi) 

Dynamic yield 
strength, MPa 

(ksi) 

Ultimate 
strength, 
MPa (ksi) 

Yield Point 
Elongation 

(%) 

% Elongation 
based on 8” 

Extensometer 

1 -  297 (43.1) 495 (71.8) 1.25 29.4 

2 293 (42.5) 304 (44.1) 495 (71.8) 1.47 28.3 

3 -  301 (43.7) 498 (72.2) 1.32 28.7 

average 293 301 (43.6) 496 (71.9) 1.35 28.8 

 

4.4.4 Post-Tensioning Process During Specimen Construction 

The post-tensioning strands in the specimen were stressed from above the top anchor 

plate as shown on the right of Figure 4.17.  The post-tension jack, shown on the left of 

Figure 4.17, uses an automatic seating mechanism consisting of a half circle protrusion 

that shoots forward when the strand is released.  As is common in post-tensioning, some 

force was lost as the wedges found traction on the strand and seated in the conical hole.  

The post-tension load cells were used to monitor the amount of load held in the strands 

and the force was increased in steps until the target load was acquired.  A calibrated 

pressure gage on the post-tension pump was monitored and found to correlate well with 

the load cell reading. 
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Figure 4.17 Post-Tensioning Jack (left), and Post-Tensioning in Progress (right) 

4.5 Timeline for Construction and Testing 

The process for the procurement of materials, shop drawings, fabrication, and erection 

took place from August 2007 to July 2008.  The tests were conducted between August 

2008 and March 2009.  The timeline of events was as follows: 

 

 February 2007 – First set of design drawings was completed.  Several 

refinements to the design were made in the subsequent months based on 

using one LBCB instead of two, more accurate computational modeling, 

and further investigation of design detailing. 

 August 9, 2007 – The design drawings were sent to the fabricator. 

 August to October, 2007 - Steel material was procured. 

 November 28, 2007 - Final shop drawings were completed by M. C. 

Detailers. 

 December to January - Fabrication was conducted at Tefft Bridge and Iron, 

Infra-Metals, and Munster Steel Co.  Bolts, nuts and washers were 

obtained from Textron / Flexalloy Fastener Systems Division. 

 February 6, and February 27, 2008 - Fabricated frames and materials were 

delivered to the University of Illinois. 

 March to April, 2008 - Whitewashing was conducted and strain gages 

were applied. 

 May 15, 2008 – The MUST-SIM strong wall and LBCB became available 

for this project. 

 May to July, 2008 - The UIUC Civil and Environmental Engineering 

Machine Shop performed final fabrication, fit-up, and erection. 

 July, 2008 – Test runs with the LBCB 

 August 4, 2008 to August 6, 2008 – Testing Specimen A1 

 August 25, 2008 to August 27, 2008 – Testing Specimen A2 

 September 8, 2008 to September 12, 2008 – Testing Specimen A3 
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 October 1, 2008 to October 3, 2008 – Testing Specimen A4 

 November 14, 2008 to November 17, 2008 – Testing Specimen A5 

 December 19, 2008 to December 20, 2008 – Testing Specimen A6 

 January 28, 2009 to January 30, 2009 – Testing Specimen A7 

 March 9, 2009 to March 11, 2009 – Testing Specimens B1 and B2 

 

4.6 Loading Protocol 

Testing was conducted with quasi-static cyclic loading and hybrid simulation.  The quasi-

static loading protocol consists of cyclic displacement histories designed to approximate 

the cumulative inelastic fuse shear strain expected during design level earthquakes as 

described in the next section.  Hybrid simulation testing was performed in which the 

experimental setup was linked to two computational components and computationally 

subjected to earthquake ground motions.  The two computational models simulated the 

lateral forces due to the P-Δ effect and the lateral resistance of the rest of the building due 

to interior wall partitions and simple shear beam-to-column connections.  These tests 

were conducted to examine and validate the self-centering performance of the controlled 

rocking system during real earthquake ground motions in the presence of ambient 

building resistance and destabilizing P-Δ effects. 

4.6.1 Quasi-Static Cyclic Loading Protocol 

For eccentrically braced frames (EBF), the cumulative link rotation demand has been 

found to be an important parameter in the testing of shear dominated links (Richards and 

Uang 2006).  The fuses that are part of the proposed controlled rocking system have 

similarities to shear-dominated EBF links in function.  Richards and Uang (2006) created 

a quasi-static loading protocol that simulates the cumulative inelastic fuse shear strain 

and total number of inelastic cycles as a 90
th

 percentile earthquake with a 10% chance of 

exceedance in 50 years.  The primary purpose for this loading protocol is to ensure that 

tested shear links do not fail prematurely compared to the response that might be 

expected during earthquake ground motions.  The loading sequence in Appendix S of the 

AISC Seismic Provisions (AISC 2005) is based on the work by Richards and Uang 

(2006). 

The loading protocol consists of 38 cycles up to the target fuse shear strain, then 

continues loading in 2% increments of fuse shear strain with one cycle of loading at each 

step.  Since the target EBF link rotation angle was based on the 90
th

 percentile ground 

motion with a 10% chance of exceedance in 50 years, a loading protocol target for the 

controlled rocking tests was selected based on similar criteria.  The target fuse shear 

strain was determined to be 9% for a representative specimen configuration with A/B=2.5, 

OT=1.0, and SC=1.0 using Figure 2.13 to find the fuse shear strain demand that 

correlates to the median plus one standard deviation for the earthquake motion that has 

10% probability of exceedance in 50 years.  The target fuse shear strain in this case, is 

given as the shear strain between column centerlines.  The resulting fuse shear strain 

loading protocol has 18 inelastic cycles with shear strain greater than 0.75% and a 

cumulative fuse shear strain of 110%.  The displacement history and fuse shear strain 
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goals for specimen A1 are shown in Figure 4.18.  The shear strain targets reported in 

Figure 4.18 are given as shear strain between the bolts connecting the fuse to the columns. 

 

 
Figure 4.18 Loading Protocol for Specimen A1 

4.6.2 Hybrid Simulation Test Setup for Specimen A5 

Hybrid simulation testing was conducted using the UI-SIMCOR software (Kwon et al. 

2007).  A computational model of a leaning column was created in OpenSees to simulate 

the P-Δ effect.  The leaning column model consisted of a single near-rigid element with a 

pinned-base and height equal to the height of the prototype structure.  A single degree-of-

freedom model was chosen over a leaning column with nodes at each floor to simplify 

the communications between OpenSees and UI-SIMCOR and to eliminate higher modes.  

Displacements were applied only at the top of the specimen so it was not possible to link 

the specimen horizontal degrees of freedom at the intermediate floors to the 

computational model.  

The mass and gravity loads given in Table 4.1 and shown on the left of Figure 

4.19 were converted to an equivalent SDOF system as shown on the right of Figure 4.19.  

The equivalent SDOF mass was found by applying an arbitrary ground acceleration, 

determining the moments about the base due to inertial loads, and setting them equal to 

the moments created by the SDOF system subjected to the same acceleration: 

 

 3 11511 kN-mDOF i iM m h a a     (4.18) 

11.89 kN-mSDOFM m a         (4.19) 

-5

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 35 40

Cycle Number

R
o
o
f 
D

ri
ft
 R

a
ti
o
 (

%
)

6 @ 

g = 

0.375%

6 @

g = 

0.5%

6 @

g = 

0.75%

6 @

g = 

1.0%

4 @

g = 

1.5%

4 @

g = 

2.0%

2@3.0%

 1@4.0%

1@5.0%

1@7.0%

1@9.0%

3@11.0%

APPROXIMATE FUSE SHEAR 

STRAINS:



 64 

 
2 2kN-sec k-sec

968 68.15
m ft

m       (4.20) 

 

The equivalent gravity loads were found by applying an arbitrary rotation of the 

column relative to vertical, b, determining the P- moments about the base due to the 

gravity loads, and setting them equal to the P- moments created by the SDOF system 

subjected to the same rotation angle. 

 

3 sin( ) 140800sin( ) kN-mDOF i iM Fh b b    (4.21) 

11.89 sin( )SDOFM F b      (4.22) 

11860kN 2662 kipsF    

 

 
Figure 4.19 Converting Mass and Gravity to an Equivalent SDOF System 

 

For specimen A5, UI-SIMCOR computationally linked the top of the OpenSees 

leaning column model to the roof drift of the experimental setup and assigns mass to this 

location which is called a control node in UI-SIMCOR.  UI-SIMCOR uses the α-OS 

method (Combescure and  Pegon 1997) for numerical integration.  In this method, the 

displacement for the first step is computed without using the restoring force.  This 

displacement is then imposed on the test specimen and an applied force is measured from 

the experiment.  Similarly the displacement at the control node is applied to the 

computational model and the associated applied force is calculated.  The displacement for 

the next step is computed using the total current applied force and the time step is 

incremented.  The time step used for the hybrid simulation tests of Specimen A5 was set 

to 0.005 seconds which is equal to the time increment for the ground motion that is 
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described in a subsequent section.  The maximum size of the displacement increment 

applied to the specimen in any given substep is discussed in a subsequent section. 

To reduce the chances of errors in scaling the ground motion, periods used for 

damping, computational model geometry, and computational model gravity load, the time 

stepping algorithm and OpenSees models were both conducted at prototype scale.  

Similitude scaling was only required in the interaction between UI-SIMCOR and the test 

specimen.  Target displacements computed for the control node were multiplied by the 

length scale factor, lr, as given in Table 4.5 before being applied to the specimen.  

Similarly, the measured forces were divided by the force scale factor, Fr before being 

incorporated in the time-stepping calculations. 

4.6.3 Hybrid Simulation Test Setup for Specimen A6 

The hybrid simulation test setup for Specimen A6 incorporated the SDOF leaning column 

from the previous section along with a three-story one-bay model that simulated the 

lateral resistance of the rest of the building.  As the elements of a building become 

inelastic, they then resist the ability of the restoring force to bring the building back to 

center.  One of the purposes of the Specimen A6 hybrid simulation was to examine 

whether the resistance of the rest of the building would hamper the ability of the 

controlled rocking frame to self-center.  The building resistance due to partition walls and 

simple shear beam-to-column connections was included in the model.  The computational 

model is shown in Figure 4.20 and consists of diagonal braces representing the resistance 

of partitions tributary to one bay, and rotational springs which represent the resistance of 

the simple shear beam to column connections. 

 

 
Figure 4.20 Computational Model Approximating the Building Resistance Used in 

the Hybrid Simulation Tests 

 

The average density of partition walls in an office building was determined by 

examining the architectural floor plan for one floor of a high rise building in San 
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Francisco.  On average there was approximately 9.14 lineal meters (30’) of partition wall 

in each direction contained in a 9.14m x 9.14m (30’ x 30’) area which represents one bay 

of the prototype building used in this study.  An experimental study that represents 

typical office partition construction with gypsum board over metal studs (Gad 1999) was 

used to calibrate the diagonal brace hysteretic response.  The test used 2.44m x 2.44m 

(8’x8’) panels.  The pinching4 material was used in OpenSees with four points defined 

along the backbone curve, reloading stiffness degradation and unloading stiffness 

degradation.  The calibrated response is shown in Figure 4.21 compared to the 

experimental response adapted from Gad (1999).  The OpenSees pinching model had the 

following parameters: 

 Backbone stresses are 7.08 kPa, 15.3 kPa, 25.1 kPa, and 21.8 kPa 

 Corresponding backbone strains are 0.00015, 0.0012, 0.0039, and 0.0057 

mm/mm. 

 OpenSees parameters for the Pinching4 material, rdispp=0.6, rforcep=0.45, 

and uforcep=0.1 

 

The partition was implemented as a truss element with an area equal to one square 

meter.  The backbone was modified as described below to be input into the model shown 

in Figure 4.23. 
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Figure 4.21 Calibration of the Partition Response to Experimental Curve  

 

A study conducted by Liu and Astaneh (2000) provides experimental data for 

simple shear beam-to-column connections with and without floor slabs.  The tests used a 

W18x35 beam with four 22 mm (7/8”) diameter A325 bolts in a single shear plate 

connection to the minor axis of a W14x90 column.  The slab consisted of 152 mm (6”) 

lightweight concrete on metal deck.  It was assumed that this configuration 

approximately represents the beam to column connections that might be used in the 

prototype building.  The pinching4 material was used in OpenSees to calibrate the 

rotational spring with four points defined along the backbone curve.  Reloading stiffness 
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degradation was incorporated for the case with slab, but not for the case without slab.  

The calibrated rotational spring responses are shown in Figure 4.22.  

The opensees pinching model calibrated for the connection with slab had the 

following parameters: 

 Backbone moments are 70 kN-m, 143 kN-m, 140 kN-m, 60 kN-m 

 Corresponding backbone rotations are 0.005 rad, 0.023 rad, 0.035 rad, and 

0.065 rad. 

 Opensees parameters for the Pinching4 material, rdispp=0.6, rforcep=0.45, 

and uforcep=0.1 

The opensees pinching model calibrated for the connection without slab had the 

following parameters: 

 Backbone moments are 33 kN-m, 49 kN-m, 56 kN-m, 46 kN-m 

 Corresponding backbone rotations are 0.006 rad, 0.03 rad, 0.06 rad, and 

0.011 rad. 

 Opensees parameters for the Pinching4 material, rdispp=0.6, rforcep=0. 5, 

and uforcep=0.3 

The calibrated constitutive was modified as described below to be input into the 

model shown in Figure 4.23 as a rotational spring. 

 

    
Figure 4.22  Calibration of the Beam-To-Column Connection Response With Slab 

(Left) and Without Slab (Right) 

 

The experimental results for the case with the slab are unsymmetric because the 

moment capacity is greater when the slab is in compression.  The computational model 

was made symmetric to represent the average of the positive and negative bending 

response.  The experimental results for the case without slab were shifted on the moment 

axis by 23 kN-m because of applied gravity load.  The experimental curve shown in 

Figure 4.22 has been shifted by this amount to facilitate the comparison to the analysis. 

After calibration of the diagonal brace and rotational spring elements, the 

resistance of the 14 bays that are tributary to one controlled rocking frame, as shown in 

Figure 4.1, was lumped into the one bay model.  The backbone forces for the diagonal 

brace that represent partition resistance were first multiplied by 9.14m / 2.44m (30’/8’) to 

simulate 9.14m (30’) of wall for one bay compared to the 2.44m (8’) long test specimen.  

Then, assuming that all the partitions on the floor experience the same deformation 
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history, the backbone forces for multiple bays were also considered additive.  The 

backbone forces for the diagonal brace representing one bay were therefore multiplied by 

14 to represent all of the tributary bays of partition walls. 

Similarly, the simple beam-to-column connections at a floor are assumed to 

experience the same rotation angle history so the backbone moments were multiplied by 

14 to represent all of the tributary bays of beam-to-column connections.  The parameters 

that govern degradation are unitless and therefore do not require scaling.  The 

effectiveness of the lumping was validated by creating a separate two-dimensional model 

of the tributary prototype building frames, lined up one next to the other and linked 

together with multi-point constraints.  An increasing cyclic roof displacement was 

applied and compared to the results from the lumped frame model and the two were 

found to produce identical results. 

The hybrid test setup is shown schematically in Figure 4.23.  The horizontal 

degrees of freedom associated with the top corner of the building resistance frame, the 

top of the leaning column, and the roof drift of the specimen were constrained using UI-

SIMCOR to move together.  This control node was subjected to ground motion 

accelerations.  Since the time stepping algorithm was carried out at full-scale, scaling of 

the target displacements that are applied to the specimen as well as scaling of the force 

feedback was carried out as described in the previous subsection. 

 
Figure 4.23 Schematic Representation of the Hybrid Simulation Setup 

Used for Specimen A6 

 

4.6.4 Ground Motions for Hybrid Simulation Tests 

The ground motion selected for the hybrid simulation testing was the JMA Kobe ground 

motion from the January 16, 1995 Kobe, Japan Earthquake.  The primary reason for 
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selecting this ground motion was to match the ground motion that was used for the 

majority of the associated shake table tests conducted at E-Defense in Miki, Japan.  The 

earthquake had a magnitude of Mw=6.8 and the JMA station is 18.27 km from the 

epicenter.  The peak ground acceleration (PGA), peak ground velocity (PGV), and peak 

ground displacement (PGD) were 0.7105 g, 77.83 cm/sec, and 18.87 cm, respectively.  

The north-south component of the record, which is shown in Figure 4.24, was chosen 

because it has larger energy content in the period range of interest. 

 

  
Figure 4.24 JMA Kobe Ground Motion Used in Pseudo-Dynamic and Hybrid 

Simulation Tests 

The ground motion was scaled to best match the design spectrum over a range of 

periods.  As the controlled rocking frames uplift, the stiffness and therefore the period of 

the system changes dramatically.  The range of periods used the initial stiffness as a 

lower bound, and the secant stiffness at a roof displacement of 140 mm (5.5”) as the 

upper bound.  The displacement used in the upper bound was determined by subjecting 

the preliminary computational model of Specimen A5 to the largest scaling of the JMA 

Kobe ground motion that was to be used in the hybrid simulation test. 

As shown in Figure 4.25, the initial stiffness of the analytical model of the 

specimen is 145 kN/mm (827 k/in).  The secant stiffness at the upper bound displacement 

is 4.0 kN/mm (23 k/in).  Using the above stiffnesses scaled to full scale and a full scale 

mass of 968 kN-sec
2
/m (68.15 kip-sec

2
/ft), the periods that this structure was found to 

experience ranged from 0.34 sec to 2.0 sec.  The system acts as a single degree-of-

freedom system, so an example of the calculation of natural period is as follows: 
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Figure 4.25 Initial Stiffness and Final Secant Stiffness for Simulated Response 

A least squares method was used to find the scale factor that minimized the 

difference between the design spectrum and the scaled response spectrum.  The scale 

factors for the hazards that have a 50% probability of exceedance in 50 years (50% in 50), 

10% probability of exceedance in 50 years (10% in 50), and 2% probability of 

exceedance in 50 years (2% in 50), were found to be 0.200, 0.461, and 0.691 respectively, 

as shown in Figure 4.26.   The least squares calculation took the following form: 
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ADS(T) = Design Acceleration at Period T 

F = Scale Factor 

ARS(T) = Spectral Acceleration at Period T (5% Damping) 

T = Increment in the Period 
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Figure 4.26 Unscaled 5% Damping Response Spectrum (upper left), 50% in 50 

Years Scaling (upper right), 10% in 50 Years (lower left), and 2% in 50 Years 

(lower right) 

4.7 Data Flow and Test Control 

4.7.1 Data Flow 

The large-scale test control was devised and implemented to synchronize as many 

components as possible.  Figure 4.27 shows the data flow between computers, cameras, 

and instrumentation.  The LBCB Plugin computer acted as the main test interface and 

was capable of sending commands to the LBCB Operations Manager software, triggers to 

take step data to the data acquisition (DAQ) computer, and triggers to take pictures to the 

camera control computers.  Step data recorded by the DAQ software included 

measurements from the LBCB and control instrumentation that were acquired through a 

TCP / IP link with the Operations Manager Software.  The typical large-scale test used 9 

computers and the hybrid simulation tests used 10 computers: 

 

 LBCB Plugin Computer 

 LBCB Operations Manager Computer 

 Shore Western DAQ Computer and Shore Western Control Computer 

 Data Acquisition Computer 

 Two Camera Control Computers 

 Remote Data Viewer Computer which was also used to view webcam 

feeds through the internet  

  Computer to run UI-SIMCOR (Only used during hybrid simulation tests) 
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 Krypton Computer 
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Figure 4.27 Data Flow Diagram for the Large-Scale Test 

4.7.2 Test Control Architecture 

The LBCB Plugin served as the main interface for running the large-scale tests, but it also 

carried out the mixed mode control using external feedbacks.  The control scheme and 

mixed mode control algorithm used in the LBCB Plugin are discussed in this section. 

The LBCB was only capable of applying force to the top of the specimen and it 

was not desirable to incorporate additional actuators at the floor levels.  For this reason, 

the applied loads in the experiment do not exactly represent the loads that might be 

experienced in a building frame subjected to actual earthquake loading.  However, since 

the controlled rocking system is designed to resist lateral loads through a global rocking 

mechanism rather than through energy dissipation mechanisms relying on interstory 

displacements, it was found that global overturning moment was a more important 

parameter than interstory shear.  This point is supported by the fact that the frames were 

designed to remain elastic so the deformations of the frame were small relative to the 

rigid body rotation of the frame. 

Also, since the lateral load is applied at a height above the roof of the specimen, 

the lateral load that corresponds to a given overturning moment will not equate to the 

lateral loads associated with the same overturning moment created by different loading 

patterns such as a lateral load at the roof level or inverted triangular loading.  For these 

reasons, the results of the experiments are almost exclusively presented in the overturning 

moment domain to eliminate any ambiguity or load distribution dependence. 
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In an effort to better simulate the forces experienced in the frame members, it was 

desired to reduce the moments that are induced at the roof level of the specimen due to 

the eccentricity between the LBCB and the roof level.  As shown in Figure 4.28, there is 

1.36m (4’-5½”) between the LBCB and the centerline of the roof beam with a true pin 

connection 0.71m (2’-4”) below the LBCB.  The pins make it impossible for the LBCB 

to create zero moments at the roof level while applying horizontal force, Fx.  It is only 

possible, therefore, to eliminate the moment due to the eccentricity between the LBCB 

and the pins.  This is accomplished by making one of the test control goals to maintain 

zero vertical force at the load cell pins (Fz1 = Fz2 = 0). 

 

 
Figure 4.28 Free Body Diagram of the Large-Scale Test Specimen 
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It was shown in a previous section that gravity load accomplishes the same effect 

as post-tensioning force.  Instead of applying constant vertical force equal to the gravity 

load during the tests, the gravity loads were neglected and considered to be incorporated 

into the post-tension force.  The amount of post-tensioning required in the prototype 

building could therefore be reduced relative to the specimen based on the action of the 

gravity loads. 

 

One of the test control goals is to iterate to get the vertical forces, Fz1, and Fz2 to 

be zero.  See Figure 4.29 for locations and abbreviations for the displacement and force 

feedbacks.  The external feedbacks listed below and the goals for the controls on each 

degree-of-freedom are given in Table 4.15. 

 

External Feedbacks Used in Control: 

Fx1, Fz1, Fx2, Fz2, δx3L, and δx3R 

Internal Feedbacks Used in Control: 

          δy, θx, and θz 

 

Table 4.15 Control Goals for Each Degree-of-freedom 

DOF Control Goals Notes 

1 3 3
3

2

x R x L
x

 



 = Applied Displacement History 

External Displacement 
Feedback 

2 0y   
Internal Displacement 
Feedback  

3 1 2 0z z zF F F    External Force Feedback 

4 0x   
Internal Displacement 
Feedback 

5 1 2 0
2

z z
y

F F
M

L


   External Force Feedback 

6 0z   
Internal Displacement 
Feedback 
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Figure 4.29 Displacement and Force Feedbacks 

Figure 4.30 and Figure 4.31 show the flow charts that were the basis of the LBCB 

Plugin mixed mode control algorithm.  The algorithm shown in Figure 4.30 and Figure 

4.31 was chosen because of its inherent reliability in consistently converging.  The 

process requires the vertical stiffness, Kδz, and the rotational stiffness, Kθy to be input 

before the test.  Since both stiffnesses depend primarily on the vertical stiffness of the 

frames, it is not expected that these values would change significantly even during 

rocking.  A modified Newton-Raphson approach is therefore reasonable.  In Figure 4.31, 

the calculation of the new command in the loop for force in the Z direction and the loop 

for moment in the theta Y direction consists of dividing the force residual by the initially 

input stiffness value. 

In the control scheme, a step was defined by a peak roof displacement in either 

the positive or negative direction.  For cyclic tests, the step targets were loaded from a 

file.  For the hybrid simulation, the targets for each step corresponded to each time step.  

Each step was then split up into substeps with maximum X-Displacement of 0.69 mm 

(0.027”).  The LBCB Operations Manager was set to execute each command with a ramp 

time of 0.25 seconds and a hold time of 0.15 seconds.  The maximum substep size was 

calculated to not exceed the pump flow capacity when executed with the specified ramp 

time.  Each substep consisted of multiple iterations of commands being executed by the 

LBCB to bring all degrees-of-freedom within tolerances as described in Figure 4.31. 
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Figure 4.30 Flow Chart for the Main Body of the LBCB Plugin Programming 
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Figure 4.31 Flow Chart for the Mixed Mode Convergence Loop Programming 

4.8 Instrumentation 

Approximately 500 channels of data were recorded during each test.  The types and 

typical number of gages used in one of the large-scale tests are contained in Table 4.16.  

The general instrumentation plan is shown in Figure 4.32 and Figure 4.33, and a detail of 

the strain gages that are applied to each wide flange shape at a strain-gaged section is 

shown in Figure 4.34.  This section provides an overview of the instrumentation plan and 

objectives of the instrumentation.  More detailed information on the instrumentation 

setup is included in Appendix B. 

As shown in Figure 4.33, the strain gages on the frame members are grouped into 

three horizontal sections.  Where the section crosses each wide flange member there are 

four strain gages and two strain gage rosettes applied to the member as shown in Figure 

4.34.  These measurements were used to calculate axial force, major axis moment, minor 

axis moment, and shear force for each wide flange member.  The individual member 

forces can then be summed to calculate total resultant axial force, shear, and moments at 

the section as a whole. 

The LBCB force feedbacks provide the resultant forces and moments input into 

the system at the top, and the load cell pins provide all of the in-plane forces at that level.  
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Between these two locations and the three strain-gaged sections, there are a total of five 

sections in which the resultant axial force, shear force, and in-plane moment were 

calculated.  This redundancy allowed the verification of the data as well as calculation of 

the distribution of forces in the frame members. 

High-strain, strain gage rosettes were applied at three locations on the trunk of 

every fuse.  Although the strain fields in the fuse are complex, it was expected that these 

gages might give a general level of fuse shear force as the fuse trunk was expected to stay 

relatively elastic.  However, these gages were placed within 25 mm (1”) of the end of the 

links and inelasticity occurred at these locations. 

Krypton LED’s were applied at approximately 100 locations on and around one of 

the fuses of each specimen.  There were many applications for this data including 

measurement of fuse shear strain, out-of-plane buckling of the fuse links, slip of the fuse 

or gusset plates relative to the columns, axial deformations of the fuse links, axial 

deformation of the struts, and more as described in Appendix D. 

Two measurements allowed the calculation of post-tensioning force.  Load cells 

were designed, manufactured, and calibrated to measure the force in each post-tensioning 

strand.  Also, strain gages were installed on a reduced portion of the anchor rods that hold 

the lower post-tensioning anchorage plate down.  These strain gages allow a calculation 

of the force in each anchor rod.  The comparison of the total anchor rod force to the total 

post-tensioning strand force allowed validation of the data’s accuracy. 

 

Table 4.16 Summary of Instrumentation Used in a Typical Large-Scale Test 

Type of Gage Number of Sensors 

Strain Gages 130 

Strain Gage Rosettes 48 x 3 channels each 

High Strain – Strain Gage Rosettes 18 x 3 channels each 

Linear Potentiometers 15 

String Potentiometers 16 

Post-Tension Load Cells 16 

LBCB Actuator Load Cells 6 

LBCB Actuator LVDTs 6 

Inclinometers 3 

Pin Type Load Cells 2 x 2 channels 

Krypton LEDs 100 

Web-Based Video Cameras 4 

Digital Still Cameras 5 

High Resolution Video Cameras 2 
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String potentiometers were used to measure the movements of the system 

including horizontal drifts, uplift, out-of-plane movement, and post-tensioning elongation.  

Linear potentiometers were used to measure diagonal displacement across the fuses and 

elongation across the struts.  Together these measurements allowed the calculation of the 

fuse shear strain. 

Several digital still cameras were triggered in a synchronized way during the test 

so that time lapse video can be created from the images.  High resolution video was taken 

during the largest cycles to provide more detailed record including sound.  Web-based 

video cameras were also recorded to allow playback using NEES IT tools. 
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Figure 4.32 General Instrumentation Plan Excluding Strain Gages 
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Figure 4.33 Strain Gage Instrumentation Plan 

SECTION OF 

INTEREST

SEE ELEVATION

ON UNDERSIDE 

OF FLAGE

ROSETTE 

2

1

3
4

5   TO 7

GAGE NUMBER, SEE 

NUMBERING SYSTEM 

ON ELEVATION

ROSETTE 

8   TO 10

 
Figure 4.34 Diagram of Strain Gaged Section at Wide Flange Shape 
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Chapter 5  
 

QUASI-STATIC CYCLIC EXPERIMENTAL 

BEHAVIOR 

With approximately 500 channels recorded for each specimen, the experimental program 

produced a large amount of data for investigating the local and global response of the 

controlled rocking system and for validating the accuracy of the data through analysis of 

redundant measurements.  Only plots demonstrating salient features of the experimental 

behavior are included in this chapter.  Plots showing all of the raw data are included in 

Appendix B, the calculations used to convert the measurements into other useful 

quantities are given in Appendix C, and plots showing the validation of the data and other 

details of the response are given in Appendix D. 

This chapter discusses the quasi-static cyclic behavior of the controlled rocking 

system.  There were seven quasi-static cyclic tests and the results from those tests are 

presented in this section in chronological order: Specimen A1, Specimen A2, Specimen 

A3, Specimen A4, Specimen A7, Specimen B1, and Specimen B2. 

The load-deformation response of the specimens is generally shown in the 

overturning moment domain.  As discussed in Chapter 3, the response of the controlled 

rocking specimen is governed primarily by first mode rigid body rotation of the frames.  

For this reason, the overturning moment is a more important quantity for examining 

response than base shear.  For example, the overturning moment that causes yielding of 

the fuses will be relatively constant for different distributions of lateral loads even though 

the associated base shear will change.  The lateral load in the experimental program is a 

point load above the roof level which will produce less base shear when the fuses yield 

than an inverted triangular load pattern, for example.  Plotting the applied load as an 

overturning moment therefore gives more generalized information that is not as tied to a 

specific lateral load distribution. 

The fuse shear force and overturning moment are normalized to calculated 

capacities.  The shear capacity of the fuses, Vfp, is based on the plastic moment capacity 

at the quarter point which is given in Equation (5.1).  The moment capacity of the system 

is based on the fuse capacity and the initial post-tension force as given in Equation (5.2) 

and Equation (5.3) for dual frame configuration and single frame configuration 

respectively. 

 

 
24

9
fp fuses links y

b t
V N N F

L
      (5.1) 

 Where:  Nfuses = number of fuses 

   Nlinks is the number of links per fuse 

   b is the link depth at the end 

   t is the thickness of the fuse 

   L is the length of the link 

   Fy is the measured yield strength of fuse plate 
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  y pti fpM F A V A B    (DUAL FRAME)  (5.2) 

  
2

y pti fp

A
M F V    (SINGLE FRAME)  (5.3) 

5.1 Specimen A1 

Specimen A1 consisted of a dual frame configuration with six fuses between the frames.  

The fuses were, t=6.35 mm (¼”) thick with 8 tapered links each that had a link length, 

L=356 mm (14”), a link depth at the ends, b=58.7 mm (2.3125”), and a link depth at the 

middle that was one-third the link depth at the end.  The resulting design capacity for all 

the fuses was calculated to be Vfp=348.7 kN (78.4 kips).  The post-tensioning consisted of 

eight 12.7 mm (½”) diameter post-tensioning strands stressed to 29% of their ultimate 

strength or Fpti=421.7 kN (94.8 kips) total. 

Using the equations defined in Chapter 3, the overturning ratio was found to be, 

OT=0.96, the self-centering ratio was SC=0.86, and the geometric ratio of frame width to 

fuse width was A/B=2.5. 

 

 
Figure 5.1 Photograph of Specimen A1 

 

The load-deformation response for Specimen A1 is shown in Figure 5.2.  As 

shown in Figure 5.3, the specimen was tested up to 3% roof drift ratio.  The general 

behavior of specimen A1 was quite similar to the expected response.  The flag-shaped 

hysteretic behavior described in Chapter 3 is evident in the experimental response which 
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corresponds to the ability of the assembly to return to its original position when the 

lateral load was removed. 

Since the self-centering ratio is less than 1.0, it might be expected that that this 

configuration would not possess full self-centering capability.  Examining the response 

for cycles at individual displacement levels as shown on the right in Figure 5.3 shows that 

the drift at zero load was increasing up to the 1.2% roof drift ratio displacement level.  

The fuses began to experience lateral-torsional buckling on the following displacement 

level effectively reducing the resistance against the restoring force.  As a result, the roof 

drifts at zero force actually decreased after fuse buckling even though the associated roof 

displacement levels were increasing.  
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Figure 5.2 Load-Deformation Response for Specimen A1 
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Figure 5.3 Roof Displacement History (Right) and Selected Hysteresis Loops (Left) 

for Specimen A1 

Another effect of fuse buckling on system behavior is the reduced ability to 

absorb energy.  The right side of Figure 5.3 demonstrates that at large drifts, such as the 

3.2% roof drift ratio displacement level, the loading and unloading branches start to 

approach one another which represents a trend toward less area under the load-

deformation curve and therefore reduced hysteretic energy. 

An examination of the fuse hysteretic response given on the left of Figure 5.4 

further demonstrates these points.  The fuse response shows an evolution of behavior that 

begins with significant flexural inelasticity up to a shear strain of 8% across the fuse link 

length.  The right side of Figure 5.4 shows almost half of the loading protocol was 

complete before the fuses began to buckle and degrade.  During this initial pre-buckling 

portion of the response, the fuse exhibited shear loads during reloading that exceeded the 

shear loads of the loading regime.  Since this increase in shear force appears to vanish as 

the fuse passes from positive to negative or negative to positive shear strain, this hump is 

attributed to a snap-through type of response related to axial compression and the 

geometric configuration.  As shown on the left side of Figure 5.5, the fuse links are not 

moving out-of-plane significantly during this portion of response implying that the snap-

through is occurring in the plane of the fuse. 
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Figure 5.4 Fuse Hysteretic Behavior (Left) and Fuse Shear Strain History (Right) 

for Specimen A1 

After a fuse link shear strain of approximately 8%, the fuses begin to experience 

lateral-torsional buckling.  This is shown in the photograph included in Figure 5.6 and the 

plot on the left of Figure 5.5 which shows the out-of-plane location of four points on the 

top fuse link of the fuse that was instrumented with Krypton LED’s.  The four points are 

at the top and bottom of the fuse link at the quarter points of the link.  The out-of-plane 

motion of these points demonstrates that lateral-torsional buckling occurs at 

approximately step 4900 in the displacement history.  This plot also shows that after 

buckling the bottom of the fuse link moves inward toward the strong wall and the top of 

the fuse link moves outward away from the strong wall.  Upon further cycling, the left 

side of the fuse link moves outward with negative fuse shear strain and the right side of 

the fuse link moves outward with positive fuse shear strain.  This type of motion implies 

initial lateral-torsional buckling followed by both lateral-torsional deformations and 

second mode axial buckling deformations. 

In fact the fuse behavior shown on the left of Figure 5.4 shows that as the fuse 

link shear strain cycles exceed 10%, the fuse links act primarily as axial members.  

During loading, the buckled fuses pick up load as they are engaged in tension.  Upon 

reloading in the other direction, the fuse link compression dominates the response which 

reduces to very small shear resistance as the fuse passes through zero shear strain and 

begins loading in the opposite direction.  The photographs in Figure 5.6 show the fuse at 

the beginning of the test, after lateral-torsional buckling, and at the end of the test.  The 

photograph at the end of the test illustrates the significant amount of inelastic buckling 

experienced by the fuse links. 

As discussed above, buckling reduces the fuse resistance against self-centering.  

The force that the fuse applies in resisting self-centering can be viewed as the fuse shear 

force at zero shear strain.  For the purposes of the test program, other building elements 

are ignored and this is the fuse force that the post-tensioning needs to overcome to 
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completely close the gap at the base of the frames.  As shown in Figure 5.4 the fuse shear 

force at zero shear strain reduces significantly after buckling.  Similar to the examination 

of the system response, the ability of the fuse to absorb seismic energy is demonstrated 

by the area enclosed by the load-deformation response through a cycle.  Figure 5.4 shows 

that the trade-off for improved self-centering is a loss in the ability of the fuse to dissipate 

seismic energy. 

The axial forces in the fuse are primarily reacted by the pinned end struts between 

the frames in addition to the restraint provided at the top and bottom of the frames.  The 

axial forces in the struts are shown on the right of Figure 5.5.  The effectiveness of the 

struts in reacting the fuse axial forces was hampered by pin hole tolerances in the strut 

connections.  Figure 5.5 shows the strut forces are near zero for large portions of the test.  

The strut forces are compressive and can be correlated to the time when the fuse is 

experiencing large tension forces during loading.  
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Figure 5.5 Out-of-Plane Movement of Fuse (Left) and Strut Forces (Right) for 

Specimen A1 

 



 87 

 
Figure 5.6 Photographs of the Specimen A1 Fuse at the Beginning of the Test (Left), 

After Lateral-torsional Buckling (Right), and at the End of the Test (Right) 

 

After buckling, the effect of the fuse axial forces can be examined by comparing 

the response of Specimen A1 with a trial run conducted on the same configuration as 

Specimen A1 without fuses shown on the left of Figure 5.7.  It is shown that at drift 

levels greater than 2% roof drift ratio, the Specimen A1 response starts to approach the 

response without fuses with the largest departure occurring during loading when the fuse 

links sustain tension forces.  The two components of response are decoupled on the right 

side of Figure 5.7.  The system force is essentially the sum of the forces from these two 

components at any given time step.  
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Figure 5.7 Comparison of Trial Run Without Fuses to Run With Fuses (Left) and 

Components of Response Due to Fuse and Post-Tensioning (Right) for Specimen A1 
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Although the load-deformation response of the trial run without fuses shown on 

the left of Figure 5.7 is quite similar to the response of the component of the system 

response due to the post-tensioned frame shown on the right of Figure 5.7, there are some 

differences.  The post-tensioned frame component is shown to experience some loss in 

force as the test is conducted.  The left side of Figure 5.8 shows the stress in a post-

tensioning strand versus effective strain.  The strain is measured using the change in 

distance between the anchorage plates.  This strain, however, does not take into account 

the change in seating at the anchorage and is therefore labeled as effective strain.  As the 

post-tensioning strand is stressed to a load higher than it has previously attained, the 

wedges in the anchorage are pulled a little deeper into the mating conical hole.  This 

additional seating leads to a reduction in the post-tension force commonly referred to as 

post-tension seating losses.  Figure 5.8 shows that this occurs at stress levels well below 

yield. 

The occurrences of seating losses during the testing of Specimen A1 are 

quantified in the plot on the right side of Figure 5.8.  As the post-tension strand forces 

were cycled up and down during the test, the amount of seating loss can be quantified as 

the change in the minimum post-tension strand force from one cycle to the next.  The 

cause of the additional seating can be quantified as the amount that the post-tension 

strand force is increased above any previous peak or in other words the change in 

maximum post-tension strand force from one cycle to the next.  This relationship is 

explored further in Chapter 8. 

The effect of seating losses on the post-tension forces is illustrated in Figure 5.9.  

As discussed at the beginning of this section the post-tension forces started the test at 

29% of ultimate.  The seating losses accumulated during the test and the post-tension 

forces at the end of the test were 24% of ultimate and 22% of ultimate for the right frame 

and left frame respectively. 
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Figure 5.8 Example of Post-Tensioning Stress-Strain Response (Left) and 

Characterizing Post-Tension Seating Losses (Right) for Specimen A1 
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Figure 5.9 Post-Tensioning Response as Plotted Against Roof Drift (Left) and Step 

Number (Right) for Specimen A1 

 

The motion of the frames was found to be near rigid body rotation as shown on 

the left of Figure 5.10.  Because the interstory drift at all three levels is almost identical 

and equal to the roof drift, it is shown that the deformations of the system are dominated 

by rigid body rotation of the frames.  Similarly, the uplift at the base of the columns on 

the right of Figure 5.10 demonstrates linear uplift behavior with roof drift implying rigid 

body rotation of the frames.  The uplift of the four columns also shows that the two 

frames are tilting toward each other during rocking.  During rocking motion to the right 

which is represented by positive roof drift ratio, the left frame experiences more uplift 

and therefore more rotation than the right frame.  This also explains why the post-tension 

forces for the windward frame are greater than the leeward frame as shown in Figure 5.9. 
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Figure 5.10 Interstory Drift (Left) and Column Uplift (Right) for Specimen A1 

   

Finally, the post-tension strand forces during the stressing operation are presented 

in Figure 5.11.  These plots show the process that was used during stressing and will be 

discussed further in the discussion of post-tension strand fracture for Specimen A4.  All 

strands were stressed to a preliminary force level between 3 kN and 7 kN (0.7 kips to 1.6 

kips) to take up the slack in the strands.  Then the strands were stressed up to the desired 

loads sometimes through two additional pulls or three total pulls.  As one strand was 

being stressed, the forces in the other strands of that frame are shown to reduce as the 

frames undergo elastic shortening.  The stress in any one strand could be as much as 10% 

different from the target, but the sum of the post-tension forces for each frame was within 

1% of the target. 
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Figure 5.11 Post-Tension Strand Stressing for the Left Frame (Left) and Right 

Frame (Right) for Specimen A1 

5.2 Specimen A2 

Specimen A2 has similar proportioning as Specimen A1.  The overturning ratio was, 

OT=1.07, the self-centering ratio was SC=0.71, and the geometric ratio of frame width to 

fuse width was A/B=2.5.  The primary difference between Specimen A1 and Specimen 

A2 was the type and locations of the fuses. 

Specimen A2 consisted of a dual frame configuration with two fuses between the 

frames concentrated at the second floor level.  The fuses were, t=15.9 mm (5/8”) thick 

with 10 tapered links each that had a link length, L=356 mm (14”), a link depth at the 

ends, b=58.7 mm (2.3125”), and a link depth at the middle that was one-third the link 

depth at the end.  The resulting design capacity for all the fuses was calculated to be 

Vfp=424.8 kN (95.5 kips).  The post-tensioning consisted of eight 12.7 mm (½”) diameter 

post-tensioning strands stressed to 29% of their ultimate strength or Fpti=421.7 kN (94.8 

kips) total. 
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5.12 Photograph of Specimen A2 

 

The load-deformation response for Specimen A2 is shown in Figure 5.13.  The 

displacement history shown on the left of Figure 5.14 and the backbone curve are similar 

to Specimen A1, but the response at roof drift ratios greater than 1% is distinct in several 

ways.  As shown on the right of Figure 5.14 the hysteretic response continues to absorb 

significant seismic energy through the entire displacement protocol but the drift at zero 

force continues to grow throughout the test.  The drift at zero force ranges between -

0.82% and 0.49% at the end of the test.  It is not surprising that there is drift at zero force 

because the self-centering ratio is less than 1.0.  The comparison between Specimen A1 

and Specimen A2 demonstrates that fuse buckling improves the ability of the system to 

eliminate drift at zero force, but reduces the ability of the system to absorb seismic 

energy compared to systems with fuses that don’t buckle. 
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Figure 5.13 Load-Deformation Response for Specimen A2 
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Figure 5.14 Roof Displacement History (Right) and Selected Hysteresis Loops (Left) 

for Specimen A2 

 

The fuse response is shown on the left of Figure 5.15 to be a very full hysteretic 

behavior throughout the test which reached fuse shear strains across the link of 18%.  

Because the fuse did not buckle, two of the struts did not even become engaged during 
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the test as illustrated on the right of Figure 5.15 as the primarily flat lines.  Strut 1, which 

is the lowest strut in the setup, picked up a nominal amount of axial load.  The Specimen 

A2 fuse also did not exhibit any snap-through response as did Specimen A1.  Both points 

imply that axial forces did not play as large a factor in the Specimen A2 response 

compared to Specimen A1.  A photograph of the deformed fuse is included on the left of 

Figure 5.16. 

The uplifting base is shown in a photograph on the right of Figure 5.16.  The 

uplift history and interstory drift responses were similar to Specimen A1 so were not 

included here.  The frames in this configuration were found to tilt toward one another as 

roof drift ratios increased as was demonstrated for Specimen A1 and as was found to 

occur for all of the dual frame configuration tests. 
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Figure 5.15 Fuse Hysteretic Behavior (Left) and Strut Forces (Right) for Specimen 

A2 
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Figure 5.16 Photograph of the Deformed Specimen A2 Fuse (Left) and Uplifted 

Column Base (Right) 

 

Another difference between the Specimen A1 response and Specimen A2 related 

to post-tension seating losses.  In the Specimen A1 test, the post-tension forces were 

increasing past their previous maximum during each displacement level.  Since the post-

tension strands were not removed between Specimen A1 and Specimen A2, the strands 

had already been stressed to approximately 75% of their ultimate force during the testing 

of Specimen A1.  The post-tension strand forces were not, therefore, exceeding their 

previous maximum at any time during the Specimen A2 test.  As expected, there were no 

seating losses observed in the post-tensioning response as demonstrated on the left of 

Figure 5.17.  The total post-tension force shown on the right of Figure 5.17 also 

demonstrates that there were no losses in the total post-tension force during the testing of 

Specimen A2. 
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Figure 5.17 Example of Post-Tensioning Stress-Strain Response (Left) and Total 

Post-Tensioning Force (Right) for Specimen A2 

 

5.3 Specimen A3 

Specimen A3 was similar to Specimen A2 in configuration and fuse thickness, but 

utilized slightly different system proportioning.  The overturning ratio was, OT=0.88, the 

self-centering ratio was SC=1.01, and the geometric ratio of frame width to fuse width 

was still A/B=2.5.  This represents an increase in the SC ratio to near the limit for full 

self-centering, and a reduction in the overall system strength compared to Specimen A2. 

Specimen A3 consisted of a dual frame configuration with two fuses between the 

frames.  The fuses were, t = 15.9 mm (5/8”) thick with 7 tapered links each that had a link 

length, L=356 mm (14”), a link depth at the ends, b=58.7 mm (2.3125”), and a link depth 

at the middle that was one-third the link depth at the end.  The resulting design capacity 

for all the fuses was calculated to be Vfp=297.3 kN (66.8 kips).  The post-tensioning 

consisted of eight 12.7 mm (½”) diameter post-tensioning strands stressed to 29% of their 

ultimate strength or Fpti=421.7 kN (94.8 kips) total. 

A photograph of the Specimen A3 configuration is included in Figure 5.18.  The 

load deformation response for Specimen A3 is shown in Figure 5.19.  The effect of 

adjusting the self-centering ratio from 0.71 to 1.01 can be seen by comparing the ability 

of Specimen A2 to self-center compared to Specimen A3.  The drifts at zero force are 

reduced by half to a range between -0.42% and 0.09%.  The selected hysteresis loops 

shown on the left of Figure 5.20 demonstrate that the drift at zero force is less than 0.2% 

up to the cycles at 2.2% roof drift ratio. 

The decomposed system response included on the right of Figure 5.20 shows that 

the component due to the fuses has almost identical strength as the component due to 
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post-tensioning.  The ratio of these two components at near zero roof drift is a graphical 

representation of the self-centering ratio which in this case is near 1.0.  As shown in 

Figure 5.21, the fuses did not buckle and as such did not create enough axial force to 

engage the struts. 

The post-tensioning response was extremely similar to Specimen A2 as shown in 

Figure 5.22.  The post-tensioning strands did not experience any appreciable nonlinearity 

due to seating losses or inelasticity.  As a result the post-tensioning forces returned to the 

same value at zero roof drift.  The difference in the post-tensioning forces between the 

left and right frames as shown on the right of Figure 5.22, demonstrates that the fuses 

tilted toward one another with growing drift levels similar to the previous specimens. 

 

 
Figure 5.18 Photograph of Specimen A3 
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Figure 5.19 Load-Deformation Response for Specimen A3 
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Figure 5.20 Selected Hysteresis Loops (Left) and Decomposed Component Response 

(Right) for Specimen A3 
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Figure 5.21 Fuse Hysteretic Behavior (Left) and Strut Forces (Right) for Specimen 

A3 
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Figure 5.22 Example of Post-Tensioning Stress-Strain Response (Left) and Total 

Post-Tensioning Force (Right) for Specimen A3 
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5.4 Specimen A4 

Specimen A4 was different from the previous tests in that it had higher resistance to 

overturning forces with an overturning ratio, OT=1.43, a higher capacity to self-center 

with a self-centering ratio, SC=1.13, and the highest initial post-tensioning stress of any 

of the specimens.  The geometric ratio of frame width to fuse width was still constant at 

A/B=2.5.  Specimen A4 also used thicker fuses than any other specimen in this testing 

program and this was the first specimen for which the post-tension strands were pushed 

past their yield strain. 

Specimen A4 consisted of a dual frame configuration with two fuses between the 

frames.  The fuses were, t = 25.4 mm (1”) thick with 7 tapered links each that had a link 

length, L=356 mm (14”), a link depth at the ends, b=58.7 mm (2.3125”), and a link depth 

at the middle that was one-third the link depth at the end.  The fuses were concentrated at 

the second floor level as shown in Figure 5.23.  The resulting design capacity for all the 

fuses was calculated to be Vfp=454.6 kN (102.2 kips).  The post-tensioning consisted of 

the same eight 12.7 mm (½”) diameter post-tensioning strands as Specimens A1 through 

A3.  The initial force in the post-tensioning strands was increased to 49% of their 

ultimate strength or Fpti=718.4 kN (161.5 kips) total by adjusting the lower anchorage 

plate downward.  This was accomplished by turning the nuts that held the anchorage 

plate down. 

 
Figure 5.23 Photograph of Specimen A4 
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The load-deformation response included in Figure 5.24 demonstrates several 

distinct aspects of response compared to the previous specimens.  It is shown that at drifts 

greater than 2.7% there is a loss in self-centering ability and degradation in the load-

deformation backbone.  This is due to post-tension strand yield and fracture.  One of the 

purposes of this specimen was to examine the behavior of the post-tensioning strands 

when the yield strain was exceeded.  Large post-tension strand strains were encouraged 

by starting with a large initial strain and then conducting this test to larger roof drifts than 

the previous specimens.  Near the positive peak of the 2.7% roof drift ratio cycle one of 

the wires in one of the strands fractured.  Each post-tensioning strand is made up of 7 

individual wires twisted together.  In total, six of the 112 wires that made up the 16 post-

tensioning strands fractured as the strands were elongated to strains as high as 1.06%.  

The details of each fracture are summarized further in Chapter 7 including discussion 

about possible methods for mitigating post-tension wire fracture. 
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Figure 5.24 Load-Deformation Response for Specimen A4 

 

Examining selected hysteresis loops as shown in Figure 5.25, reveals that the drift 

at zero force was small prior to the post-tensioning wire fractures, and even though it 

increases after the wire fractures, the zero-force drift remains small relative to the peak 

roof drift of 3.7%.  It is also shown that the strength of the system continues to increase 

with increasing drift due to additional elongation of the post-tensioning strands and 

hardening in the fuses. 

These points are demonstrated on the right side of Figure 5.25 in the decomposed 

component responses.  At the beginning of the test, the post-tensioning force at uplift 

makes up almost 60% of the systems resistance to overturning whereas the fuses 
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comprise only 40% of the system strength.  After cycles at roof drift ratios above 2.7% 

the secondary branch of the post-tensioning bilinear elastic response starts shifting 

downward as the strands yield and wires fracture.  The fuses, on the other hand, continue 

to gain in strength through a combination of isotropic and kinematic hardening.  At the 

end of the test, the post-tensioning force at uplift makes up only 40% of the systems 

resistance to overturning and the fuse makes up the other 60%.  The overturning moment 

at uplift remains relatively constant, but the ability of the system to eliminate drifts when 

the load is removed is reduced. 
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Figure 5.25 Selected Hysteresis Loops (Left) and Decomposed Component Response 

(Right) for Specimen A4 

 

An example of a post-tensioning strand that experienced wire fracture and one 

that did not is included on the left of Figure 5.26.  The strand that fractured, L-PT-L-1, 

experienced a sharp 25% drop in effective stress and related force.  The vertical axis is 

labeled as effective stress because this is calculated based on the original area of the 

strand before fracture.  The stiffness of the strand is shown to change after fracture 

because of the reduction in area.  However, the strand that did not fracture, L-PT-L-4, 

experienced yielding.  At the end of the test, strand L-PT-L-1 experienced a total loss of 

initial prestress of 59% whereas strand L-PT-L-4 experienced a total loss of 37% of its 

initial prestress. 

The loss of post-tensioning force due to post-tension strand yield and wire 

fracture are further demonstrated on the right of Figure 5.26.  At the beginning of the test, 

the post-tension force was approximately 49% of the strands ultimate strength.  At the 

end of the test, the total post-tension forces were 30% and 26% of ultimate for the left 

and right frame respectively which represents a loss of 43% of the total post-tension force 

for both frames.  In general, yielding of the post-tensioning strands and wire fracture 
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were found to reduce the post-tensioning force in a controlled gradual manner in this 

quasi-static displacement-controlled test. 

As the wires fractured, the wire rebounded toward the opposite anchorage and 

was found to unravel from the rest of the strand.  Figure 5.27 shows multiple unraveled 

wires at the bottom anchorage due to wire fractures at the top anchorage. 
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Figure 5.26 Example Stress-Strain Response (Left) and Total Post-Tension Force 

(Right) for Specimen A4 

 
Figure 5.27 Photograph of Specimen A4 Unraveled Post-Tensioning Strands After 

Single Wire Fractures 
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Another difference in the load-deformation response shown in Figure 5.24 

compared to previous specimens is a sharper change in stiffness on unloading from large 

displacements.  This can be traced to the component of response due to the fuses as 

shown on the right of Figure 5.25 and then to the fuse hysteretic behavior shown on the 

left of Figure 5.28.  The fuse response was significantly influenced by slipping of the fuse 

plate at its connections to the columns.  The amount of slip was measured using the 

krypton measurements and is shown on the left of Figure 5.29 to be as much as 5 mm 

(0.2”) in the direction parallel to the columns and 2.5 mm (0.1”) in the direction 

perpendicular to the columns. 

The prevalence of slip, and the amount of slip experienced by the fuses in 

Specimen A4 were dictated by several factors.  Since the fuse was thicker and the number 

of bolts was more correlated to the number of fuse links than the fuse capacity, the bolted 

fuse connection had less strength relative to the fuse capacity than other specimens.  

Second, the frames were reused from one specimen to the next and deformations of the 

frame and displacements of the frames relative to one another caused alignment issues 

with the fuse bolts.  To accommodate these dimensional changes, the standard size bolt 

holes in the fuse were drilled out to 38.1 mm (1.5”) diameter holes and large washers 

were used between the nut and the fuse plate. 

The fuse shear force at first slip was approximately 325 kN (73 kips) and the 

maximum shear force sustained by the fuse was 396 kN (89 kips).  The slip critical 

strength of a 1” diameter A490 bolt is calculated to be 96.5 kN (21.7 kips) for class B 

surfaces including a resistance factor, =0.6 corresponding to long-slotted holes to be 

conservative (AISC 360-05).  It is clear from these calculations, that the connection, if 

loaded in pure shear, should not have slipped.  However, the fuse connection to the 

column acts as an eccentrically loaded bolt group.  The eccentricity of the loading can be 

considered to be the distance from the quarter point of the fuse link to the bolt line which 

is 156 mm (6.13”).  Using this eccentricity and a slip capacity of 96.5 kN (21.7 kips) per 

bolt, the connection should have had a shear capacity of 443 kN (99.5 kips) before 

slipping.  It is expected that the reason for the difference was due to improper surface 

preparation to achieve class B slip resistance.  The column surfaces were not sand-blasted 

between use, and the fuse plate surfaces were sand-blasted months prior to bolting.  If the 

surfaces were more representative of class A surfaces, then the slip capacity of the bolts 

would correspond to 292 kN (65.7 kips) fuse shear force which relates to the approximate 

level of shear force in the fuse at the initiation of slip. 

Despite the slippage of the fuse connections, the fuses still dissipated significant 

amounts of energy through inelastic deformations.  The photograph included in Figure 

5.30 shows the large zones of inelasticity as a slightly darker gray areas where the mill 

scale has flaked off.  The photograph also shows the extent of slip that occurred as the 

dark area on the column next to the fuse. 

Similar to previous tests, the forces in the struts remained relatively small as 

shown on the right of Figure 5.28.  The struts only became engaged at large roof drifts 

after the fuses began to slip relative to the columns. 
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Figure 5.28 Fuse Hysteretic Behavior (Left) and Strut Forces (Right)  

for Specimen A4 

The slipping of the fuse was not the only slip that was occurring in the specimen.  

All of the specimens experienced some amount of sliding at the base of the frames.  The 

right side of Figure 5.29 shows the average displacement of the two frames at a height of 

375 mm (14.75”) above the bearing point.  The lateral movement of this point shows a 

jump as the frames pass through zero roof drift ratio.  This jump corresponded to the base 

of one or both frames sliding from one bumper to hit the other bumper.  As shown in 

Figure 5.29, there was approximately 5 mm (0.2”) of sliding occurring during this test.  

This amount of sliding correlates well with the amount of tolerance observed between the 

frames and the bumpers.  Figure 5.31 shows photographs of both the pivoting and 

uplifting column bases when the frame was subjected to its second largest displacement 

cycle. 
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Figure 5.29 Fuse Slip Relative to the Column (Left) and Horizontal Displacement 

Near the Base Demonstrating Sliding (Right) for Specimen A4 

 

 
Figure 5.30 Photograph of Fuse Showing Slip Relative to the Column and Yielding 

Along the Fuse Links for Specimen A4 
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Figure 5.31 Photograph of Pivoting Column Base (Left) and Uplifting Column Base 

(Right) 

5.5 Specimen A7 

Specimen A7 was a similar configuration as Specimen A1 except that it was the only 

dual-frame configuration that was tested without struts between the frames.  Specimen 

A7 was also one of the three tests that were conducted to over 3.5% roof drift ratio 

allowing the post-tension strands to reach strains past yield.  The self-centering ratio was 

slightly larger than Specimen A1 through a slightly larger initial post-tension force. 

The fuses were, t = 6.35 mm (1/4”) thick with 8 tapered links each that had a link 

length, L=356 mm (14”), a link depth at the ends, b=58.7 mm (2.3125”), and a link depth 

at the middle that was one-third the link depth at the end.  The resulting design capacity 

for all the fuses was calculated to be Vfp=348.9 kN (78.4 kips).  The post-tensioning 

consisted of eight 12.7 mm (½”) diameter post-tensioning strands stressed to 34% of their 

ultimate strength or Fpti=497.3 kN (111.8 kips) total. 

Using the equations defined in Chapter 3, the overturning ratio was found to be, 

OT=1.04, the self-centering ratio was SC=1.02, and the geometric ratio of frame width to 

fuse width was A/B=2.5.  A photograph of the Specimen A7 configuration is provided in 

Figure 5.32. 
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Figure 5.32 Photograph of Specimen A7 

 

The system response as shown in Figure 5.33 is similar to the response of 

Specimen A1.  The slightly larger self-centering ratio is evident in the reduction of drift 

at zero force compared to Specimen A1 and the height to the base of the flag in the 

hysteresis loops.  Buckling of the fuses occurred in a manner similar to Specimen A1 and 

caused similar reduction in energy absorbing capability.  As shown on the left of Figure 

5.34, this test was conducted to approximately 4% roof drift ratio compared to the 3% 

peak roof drift ratio of Specimen A1.  The effect of the buckled fuse as the system is 

pushed to 4% roof drift is shown on the right of Figure 5.34 to continue the trend noted 

for Specimen A1 in approaching the bilinear elastic response of the post-tension only 

system with additional resistance at large drifts due to tension in the fuses. 
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Figure 5.33 Load-Deformation Response for Specimen A7 
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Figure 5.34 Roof Displacement History (Right) and Selected Hysteresis Loops (Left) 

for Specimen A7 

 

The decomposed component behavior shown on the left Figure 5.35 further 

illuminates this point.  After cycles at large roof drift, the fuse resistance is quite small 

through most of the cycle and then increases significantly as the fuse links engage in 
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tension at large drifts.  As the fuse is stretched in a cycle and yields in tension, the 

amount of roof drift required to engage the fuse in tension for the next cycle is increased. 
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Figure 5.35 Decomposed Component Responses for Specimen A7 (Left) and 

Distance Between the Columns for Specimen A1 and A7 (Right) 

 

It is noted that the fuse response shown in Figure 5.35 and Figure 5.36 does not 

include the first set of cycles up to 5% fuse shear strain which comprise the first 4550 

steps.  The beginning data is left out of the plots because the force measurements were 

erratic.  Fuse shear forces are calculated as the difference in vertical force resultants in 

each frame above and below the fuse as calculated with all of the strain gages at the 

section just above and just below the fuse.  At the start of the Specimen A7 test, 

approximately 20% of the strain gage wire connections to the junction boxes had become 

loose and were resulting in erratic strain measurements.  After the problem was identified, 

the connections were fixed and the subsequent data was found to be stable and validated 

well between redundant measurements. 

The hysteretic behavior of the fuses shown on the left of Figure 5.36, exhibits 

similar behavior as Specimen A1.  The same initial elastic-plastic response is evident 

through the cycles at 8% fuse link shear strain at which point the response transitions into 

lateral-torsional buckling and then into axial tension and compression.  The out-of-plane 

motion of the top fuse link as shown on the right of Figure 5.36 shows more dominance 

of the axial buckling mode than Specimen A1.  This is shown by the amplitude of the 

second mode buckling deformations.  After step number 6000, the left side of the fuse 

link is moving out-of-plane with a magnitude of approximately 25 mm (1”) in a motion 

that is out of phase with the right side of the fuse link which is moving out-of-plane with 

an amplitude of 20 mm (0.79”).  This implies a second mode axial buckling shape and the 
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deformations associated with this buckling are greater than those experienced in 

Specimen A1 which had struts between the frames. 

The effect of struts on the dual frame configuration was measured in several ways.  

The effect of struts on frame member forces is investigated further in Chapter 11.  The 

deformations and displacements of the frame are demonstrated by the fuse buckling 

described above and also by the distance between the columns shown on the right of 

Figure 5.35.  The interior columns of the two rocking frames of a dual frame 

configuration get closer together during rocking due to the kinematics of rigid body 

rotation.  It has been shown earlier in this section that the frames are also tilting toward 

each other as they rock.  Figure 5.35 shows, however, that the columns of Specimen A7 

were drawn closer together than for Specimen A1.  This is due to less restraint between 

the columns because of the absence of the struts.  The frames were still constrained 

against relative motion by bumpers at the bottom and the loading beam at the top.  The 

axial forces in the fuses were transferred through the frames to the top and bottom 

constraint. 
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Figure 5.36 Fuse Hysteretic Behavior (Left) and Fuse Out-Of-Plane Displacements 

(Right) for Specimen A7 

Two of the post-tensioning strand wires fractured in the right frame at drifts 

exceeding 3% roof drift ratio.  Figure 5.37 shows a comparison of two strands that 

underwent similar strain histories but one fractured while the other did not.  Similar to the 

discussion above for Specimen A4, only one wire of the seven wires fractured leading to 

a reduction in the initial prestress force and a slight reduction in stiffness.  As shown in 

Figure 5.38, both frames experienced a loss of post-tension force during the test.  The 

losses in post-tensioning force for the left frame were due exclusively to yielding of the 

post-tensioning strands, while the losses in post-tensioning force for the right frame were 

due to a combination of yielding and two wire fractures.  Both frames lost 38% of their 
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initial post-tensioning force but the frames did not exhibit significant losses in system 

strength or self-centering ability for this configuration. 
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Figure 5.37 Examples of Stress-Strain Response for a Strand That Did Not Fracture 

(Left) and One that Did (Right) 
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Figure 5.38 Total Post-Tension Force Versus Roof Drift Ratio (Left) and Versus 

Step Number (Right) 

5.6 Specimen B1 

Specimen B1 was one of the two single frame configuration specimens tested.  The two 

single frame configurations had similar system proportioning and configuration but 

differed on the type of fuse.  The fuse for Specimen B1 consisted of a single plate with 

fuse links on both sides of the central connection.  The fuse was, t = 19.1 mm (3/4”) thick 

with 3 tapered links on each side that had a link length, L=152.4 mm (6”), a link depth at 
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the ends, b=42.9 mm (1.6875”), and a link depth at the middle that was one-third the link 

depth at the end.  The resulting design capacity for the fuse was calculated to be 

Vfp=181.6 kN (40.8 kips).  The post-tensioning consisted of four 12.7 mm (½”) diameter 

post-tensioning strands stressed to 45% of their ultimate strength or Fpti=333.6 kN (75.0 

kips) total.  Using the equations defined in Chapter 3, the overturning ratio was found to 

be, OT=1.09, and the self-centering ratio was SC=1.84.  The two single frame tests used 

higher self-centering ratios than the dual frame configurations because of the difference 

in the requirement to avoid global uplift. 

A photograph of the setup for the Specimen B1 and Specimen B2 tests is shown 

on the left of Figure 5.39 and the fuse assembly is shown on the right of Figure 5.39.  The 

fuse is anchored down on the two sides by double channels bolted onto the front and back 

of the fuse.  The center of the fuse is attached to a center column through a pin 

connection and the other end of the center column is attached to the frame with a pin 

connection.  As the frame rocks, the middle of the frame will uplift engaging the center 

column and through it, the fuse.  The single frame configuration is described in more 

detail in Chapter 4. 

Figure 5.39 shows the two specimens, B1 and B2 side by side.  In fact the 

specimens were tested simultaneously using the same displacement history.  Since there 

were no connections between the frame and the pin load cells at the top monitored the 

loads input into the frames separately, the two specimens did not interact during the test. 

 

        
Figure 5.39 Photograph of Specimen B1 and B2 (Left) and Close-Up Photograph of 

the Specimen B1 Fuse Assembly (Right) 
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The load-deformation response for Specimen B1 is given in Figure 5.40.  

Although the general response is similar to the dual frame configurations, there are 

several distinct features.  There are lags in the loading and unloading curves that indicate 

horizontal displacement of the frame without associated change in lateral load.  These 

lags in the response are due to pin hole tolerance in the connection of the fuse to the 

frame.  There are two pin connections, one from the fuse to the center strut and one from 

the center strut to the frame which both have pin hole tolerances in both the outer plies of 

plates and the inner plies.  In total, the cumulative tolerances for four pin holes combine 

to create the amount of uplift that the middle of the frame must experience before the 

load in the fuse can change direction.  The lags in response are therefore occurring when 

the fuse is at zero force. 

Furthermore, even though the displacement history is similar to Specimen A7 as 

shown on the left of Figure 5.41, there is almost no energy dissipation until after the cycle 

at 0.6% roof drift ratio as shown on the right of Figure 5.41.  The effect of the pin hole 

tolerance is further described by the response of the decomposed component responses 

shown on the left of Figure 5.42.  The lag in fuse shear force upon load reversal is clear.  

However, the fuse hysteretic response shown on the right of Figure 5.47 demonstrates 

that the fuse response has no lags in behavior.  Note that the issue of pin hole tolerances 

are addressed in Chapter 7 and methods for mitigating the problem are described and 

were successfully implemented in the single frame configuration shake table tests at E-

Defense. 

The fuse response as shown on the right of Figure 5.47 exhibits full hysteresis 

loops and near elastic-plastic behavior.  It is shown that the fuse is only strained in the 

positive shear strain direction.  This is because positive shear strain is defined as the 

middle of the fuse displacing upward which is the only direction in which the frame can 

apply displacements. 
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Figure 5.40 Load-Deformation Response for Specimen B1 
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Figure 5.41 Roof Displacement History (Left) and Selected Hysteresis Loops (Right) 

for Specimen B1 
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Figure 5.42 Decomposed Component Response (Left) and Fuse Hysteretic Behavior 

(Right) for Specimen B1 

 

The post-tensioning behavior for Specimen B1 and Specimen B2 highlighted the 

uncertainty associated with post-tension wire fracture.  As shown on the left of Figure 

5.43, the post-tensioning forces in the Specimen B1 strands reached as high as 95% of 
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ultimate without fracturing.  Instead, all four of the strands underwent significant yielding, 

reaching strains as large as 1.06%.  On the right side of Figure 5.43, the post-tension 

forces for Specimen B1 are compared to Specimen B2.  As discussed in the next section, 

the post-tension strands in Specimen B2 experienced multiple wire fractures. 

Even with the loss in post-tension force experienced by the system, the overall 

system response still exhibited almost no drift at zero force as shown in Figure 5.40.  This 

is in part due to the large self-centering ratio, but also due to the difference in 

configuration compared to the dual frame configuration.  The dual frame configuration 

has fuses along the height of the frames.  The fuses retain large loads when the lateral 

loads are removed which cause elastic deformations and displacements of the frames.  

The single frame configuration on the other hand has the fuses concentrated at the base 

where they can not cause any significant deformations in the frames. 
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Figure 5.43 Post-Tension Strand Forces Throughout the Test for Specimen B1 (Left) 

and Comparison of Total Post-Tension Forces in Specimens B1 and B2 (Right) 

5.7 Specimen B2 

Specimen B2 was the other of the two single frame configuration specimens tested.  The 

fuse consisted of two plates with a bracing plate in between, as shown in Figure 5.44.  

The central bracing plate was not connected to the center strut or pin and instead acted to 

brace the double channels on either side of the fuse against inward pull.  The bracing 

plate also restricted the fuse link buckling to only occur away from the bracing plate. 

The fuse was , t = 4.76 mm (3/16”) thick with 5 tapered links on each side that 

had a link length, L=152.4 mm (6”), a link depth at the ends, b=47.6 mm (1.875”), and a 

link depth at the middle that was one-third the link depth at the end.  The resulting design 

capacity for both fuses was calculated to be Vfp=160.7 kN (36.1 kips).  The post-

tensioning consisted of four 12.7 mm (½”) diameter post-tensioning strands stressed to 

45% of their ultimate strength or Fpti=333.6 kN (75.0 kips) total.  Using the equations 
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defined in Chapter 3, the overturning ratio was found to be, OT=1.04, the self-centering 

ratio was SC=2.08. 

 

   
Figure 5.44 Photograph of the Specimen B2 Fuse Assembly (Left) and Photograph 

of the Deformed Fuse (Right) 

The same lag in response due to pin hole tolerances is seen in Figure 5.45 as was 

demonstrated in Specimen B1.  The lag was found to be even greater in Specimen B2 and 

is illustrated in both plots of Figure 5.46.  The initial load-deformation response exhibits 

a sharp change in stiffness at uplift at approximately 60% or 70% of the system yield 

force.  The response does not develop the full system yield force until a roof drift ratio 

0.7% or 0.8%.  As noted above for Specimen B1, however, the experimental program 

described here was successful in identifying this issue and methods for mitigating the lag 

have been devised and successfully implemented in the E-Defense shake table test 

specimen.  These mitigation techniques are discussed in Chapter 7. 
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Figure 5.45 Load-Deformation Response for Specimen B2 
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Figure 5.46 Selected Hysteresis Loops (Left) and Hysteresis Loops Up to 1.7% Roof 

Drift (Right) for Specimen B2 

 

The fuses as shown in the photograph in Figure 5.44 were thin and buckled 

regardless of bracing on one side.  The buckled fuse response is shown in Figure 5.47.  
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The backbone continues to increase after buckling and the reduction in energy dissipating 

capacity was not reduced as much as the Specimen A1 or A7 fuses. 

As mentioned in the previous section, the post-tensioning behavior for Specimen 

B2 was significantly different than the post-tensioning response for Specimen B1.  Both 

frames were fabricated using the same methods and processes, the post tension anchorage 

was nearly identical and the post-tensioning strand installation procedures were the same 

for both Specimens.  However, of the 28 wires contained in the 4 strands of each 

Specimen, five fractured in Specimen B2 whereas none of the wires in Specimen B1 

fractured.  The strands in Specimen B2 reached slightly larger strains as high as 1.14%, 

but for the most part experienced similar displacement histories as Specimen B1.  The 

effect of the strand fracture on the decomposed post-tension component response is 

shown on the left of Figure 5.47. 
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Figure 5.47 Decomposed Component Responses (Left) and Fuse Hysteretic Behavior 

(Right) for Specimen B2 

 

The loss in force for each post-tension strand is shown on the left of Figure 5.48.  

Unlike the strands that don’t fracture, the strands loose large portions of their prestress at 

distinct moments of the test.  The right side of Figure 5.48 shows the one strand in any of 

the tests that experienced fracture of more than one wire.  It is shown that the post-

tension force in this strand is near zero by the end of the test.  However, similar to 

Specimen A4 and Specimen A7, the fracture of individual post-tension wires did not 

propagate through to other wires or to other strands in this displacement controlled test.  

Also, for this specimen, the strand yielding and wire fracture did not cause a significant 

loss of system load carrying capacity or the ability of the system to eliminate drift when 

the loads are removed. 
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Figure 5.48 Post-Tension Forces for Each Strand in Specimen B2 (Left) and Stress-

Strain Response for a Strand that Fractured Two Wires (Right) 

5.8 Summary of the Cyclic Test Results 

As described in Chapter 4, and at the beginning of this chapter, the large-scale cyclic tests 

produced a considerable amount of data for use in quantifying the performance of the 

individual components, validating the performance of the system, and developing 

computational models.  The reader is directed to Appendix B for the raw data, Appendix 

C for the calculations performed on the data, and Appendix D for the validation of the 

data. 

The controlled rocking system exhibited cyclic performance similar to the 

expected response described in Chapter 3.  The global load-deformation response was a 

flag-shape which possessed near zero displacements when the forces were removed.  The 

frames were reused for all the cyclic test specimens and did not experience any observed 

damage.  The cyclic tests were successful in experimentally validating the expected 

system performance, identifying which connection details worked well, and identifying 

details and construction methods that could be improved.  See chapter 8 for further 

conclusions and interpretation of the test results. 

The cyclic tests included variations in several of the system parameters to allow 

their effect on component response and global behavior to be investigated.  Observations 

about the response of each specimen tested cyclically were described in this chapter.  

Chapter 8 includes synthesis of all the test data obtained from the testing program to draw 

conclusions about the global system response, effectiveness of specimen detailing, post-

tensioning behavior, fuse behavior, effect of struts in the dual frame configuration, and 

comparisons of the single frame and dual frame configurations. 
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Chapter 6  
 

COMPUTATIONAL MODEL DEVELOPMENT 

6.1 Description of the Model 

A two-dimensional computational model of the specimen was created using the 

OpenSees software (Mazzoni et al. 2009).  The model primarily uses frame elements and 

includes a simplified phenomenological model for the fuses.  The purpose of this model 

is to provide an experimentally verified, computationally inexpensive model that can be 

used to examine the application of the controlled rocking system to different 

configurations, to conduct the sensitivity study described in a later chapter, and to inform 

design procedures. 

A corotational transformation is used to map local coordinates to global 

coordinates incorporating large displacements and large rotations.  Since the tests were 

conducted to roof drift ratios exceeding 4% in some cases, capturing the geometric 

nonlinearity due to the associated displacements was found to have a significant effect.  

Geometric nonlinearity is most noticeable in the fuse response as the fuse experiences 

large axial deformations and forces which are not captured in a linear analysis.  Fuse 

axial forces contribute to the global resistance of the system to horizontal loads and are 

an important consideration in frame design. 

The model is built in stages to simulate actual construction sequencing.  First the 

frames, spring supports, and post-tensioning are modeled.  The initial post-tension force 

is applied as an initial strain in the material constitutive model.  Ten analysis steps are run 

to allow the post-tension force to be applied to the frames.  Some post-tension force is 

lost as the frames shorten, and iterations are performed, if necessary, to increase the 

initial strain in the post-tension strands until the target initial force is obtained.  

Subsequently, the fuses are added to the model and the ends of the fuses are secured to 

the frames using multi-point constraints through the use of the OpenSees command, 

equalDOF. 

The geometry of the analytical model is defined to closely match the physical 

specimen as shown in Figure 6.1.  The typical frame members were defined with the 

same area and moment of inertia as the wide flange shapes they represent and used an 

elastic beam column element.  The ends of the frame members are allowed to transfer 

moment, except for the struts and the post-tensioning, as shown by open circles in Figure 

6.1.  Horizontal displacement is applied equally at the load cell pin locations to produce 

the target displacement.  Since the test control is designed such that the vertical force at 

the load cell pins is zero, the application of horizontal load at the load cell pins simulates 

the effect of the test control.  
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Figure 6.1 Computational Model for the Dual Frame Configuration (Left) and 

Single Frame Configuration (Right) 

 

The frames sit on gap elements that are stiff in compression, but have no stiffness 

in tension.  Conversely, the post-tensioning strand element connects at the bottom to a 

gap element that is stiff in tension, but has no stiffness in compression so that the post-

tensioning strands which have negligible buckling capacity are not allowed to experience 

compression forces.  The stiffness of both types of elements is 1751 kN/mm (10,000 

kips/in) which is four times greater than the stiffness of the specimen frame columns.   

The struts that connect the two frames utilize an elastic perfectly plastic 

constitutive relationship with 345 MPa (50 ksi) yield stress and modulus of elasticity of 

200 MPa (29,000 ksi), but were not found to experience yielding in the computational 

simulations of the tests.  As discussed in the previous chapter, one of the characteristics 

of the strut behavior observed from the tests was a lag in picking up force due to hole 

tolerances in the pin connections.  The pin holes were machined to be approximately 1.6 

mm (1/16”) greater than the size of the pin.  At the pin connections on both ends of the 

struts, there were holes in both parts being connected.  The tolerances from all four holes 

were cumulative in creating the lag in engaging the struts.  This totaled approximately 

6.35 mm (0.25”) of displacement to go from axial tension to axial compression or vice 

versa.  This lag was modeled using a zero length spring that represented the pin hole 

tolerance.  As shown schematically on the small inset load-deformation plot on Figure 

6.2, the spring had a low stiffness of 0.88 kN/mm (5 k/in) and then at displacements of 
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3.18 mm (0.125”) the stiffness was increased to 880 kN/mm (5000 k/in).  This type of 

bilinear elastic constitutive was implemented using the self-centering material in 

OpenSees with zero energy dissipation and properly set stiffness values. 
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Figure 6.2 Computational Model for the Axial Struts 

 

As discussed in Chapter 5, sliding at the base was another form of slip observed in 

the experimental behavior.  Sliding at the base is also discussed further in Chapter 8.  The 

frames were found to slide as much as 5.7 mm (0.22”) during the tests.  Zero length 

springs similar to those described above for the strut connections were attempted at the 

base connections of the computational model, but were ultimately abandoned for four 

reasons.  First, unlike the strut connections, sliding at the base experiences more friction 

between the two bearing surfaces.  It was determined that the simple zero-length spring 

with bilinear elastic constitutive was not accurately capturing the friction aspect of 

behavior.  Second, the computational model including base sliding had problems 

converging during slippage.  Third, it was determined that sliding at the base is 

something that can be controlled in practical applications of the controlled rocking 

system.  Lastly, the amount of tolerance between frames and bumpers is not expected to 

be larger for full scale buildings than those for the half-scale specimen.  As a result, base 

sliding will have less effect on full scale building response.  As described in Chapter 8, 

sliding at the base was virtually eliminated with the addition of shim plates between the 

bumpers and the frames.  Adding shims is a quick and simple method for allowing 

tolerances during construction and eliminating any adverse affects of sliding. 

The computational model for the single frame configuration consisted of the same 

components as the dual frame model.  As shown on the right of Figure 6.1, there were 

two fuses, one on each side of the center strut.  The center strut is connected to the frame 

with a zero-length spring that simulates the pin hole tolerances in the pin connections a 

the top and bottom of the center strut.  This zero-length spring was implemented in an 

identical way as the zero-length spring representing pin hole tolerances for the struts 

described above.  In this case, the hole tolerances were approximately 1.27 mm (0.050”) 

larger than the pin which were cumulative over the four sets of holes totaling the 5.1 mm 

(0.2”) of pin hole tolerance that was implemented in the model. 
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6.2 Post-Tensioning Model 

The post-tensioning strands utilize a trilinear constitutive relationship as shown in Figure 

6.3 to account for seating losses and yielding of the post-tensioning strands.  As discussed 

in Chapter 5, the post-tensioning strands experience losses in force as the wedges at the 

anchorages get pulled farther into the anchorage.  This occurs whenever the strand is 

stressed past its previous maximum force.  Chapter 8 discusses methods for mitigating 

seating losses through some simple additional steps in the installation procedure, but 

seating losses are included in the computational model to facilitate the investigation of 

their effect in the later sensitivity study. 

The post-tensioning strand element uses a trilinear constitutive relationship 

denoted in Figure 6.3 as Material 3 which is the combination of two other constitutive 

relationships in parallel.  First, an elastic-perfectly plastic material, denoted Material 1 in 

Figure 6.3, is created with an initial stress, 0, equal to the target initial stress in the post-

tensioning strands, modulus of elasticity, E1, as given in Equation (6.3), and yield stress, 

1, as given in Equation (6.5).  The second component, denoted Material 2 in Figure 6.3 

is a hardening material with stiffnesses, E2 and E3 as defined in Equation (6.1) and 

Equation (6.3) respectively and yield stress, 1, as given in Equation (6.6). 

 

 2 1 PTE E        (6.1) 

3 2 PTE E        (6.2) 

1 2PTE E E         (6.3) 

0

1

prev

PTE

 



       (6.4) 

1 1 1 0E           (6.5) 

2 1y           (6.6) 

 Where: 

  E1, E2, E3, and ε1 are Defined in Figure 6.3 

EPT is modulus of elasticity from material tests = 202 GPa (29,300 

ksi) 

  1 is calibrated ratio for seating losses =0.90 

   2 is kinematic hardening ratio from material tests = 0.017 

  prev is the previous maximum strand stress 

  0 is the initial stress in the post-tension strand 

  y is yield stress from material tests = 1750 MPa (253.8 ksi) 

   

By combining Material 1 and Material 2 in parallel, a third constitutive 

relationship is created which is denoted Material 3 in Figure 6.3.  This material 

approximates the behavior of the post tension strands.  The initial stress, 0, is set to the 

initial pretension stress, and then elastic loading occurs with a modulus of elasticity equal 

to EPT.  At the previous maximum stress, prev, the stiffness changes to a secondary slope, 

E2, which is calibrated based on test results as described in Chapter 8.  When the yield 

stress, y is attained, the material starts to yield in a kinematic hardening regime.  Upon 



 125 

unloading from any point along the backbone, the unloading stiffness will follow the 

initial modulus of elasticity, EPT.  Figure 6.4 gives an example of the material constitutive 

with multiple unloading and reloading branches. 
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Figure 6.3 Creation of the Post-Tensioning Constitutive Relationship that Includes 

Initial Force and PT Seating Losses 
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Figure 6.4 Example of the Post Tension Constitutive Relationship 

 

Comparing the computational model results for the post-tensioning to the 

experimental response such as shown in Figure 6.10, demonstrates some error in 

modeling the stiffness of the experimental frame with post-tensioning.  This difference 

was found to be due to the stiffness of lower anchorage.  It was verified that the 

difference in PT stiffness was due to the anchorage by evaluating the modulus of 

elasticity obtained from the force and elongation measurements for the experimental 

post-tension response.  The modulus of elasticity obtained using these measurements is 

given in Table 8.7 and was similar to the value obtained in the material.  It was deduced 

that the discrepancy in stiffness must be occurring because not as much elongation was 
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being applied to the post-tensioning strands as compared to the computational model, and 

that the lower anchorage was the cause. 

The anchorage at the bottom end of the post-tensioning strands consisted of a 

chuck on the bottom side of a 76 mm (3”) thick anchorage plate.  The anchorage plate 

was held approximately 305 mm (12”) above the base plate and anchored down to the 

anchor plate using six 38 mm (1.5”) diameter anchor rods.  In the computational model 

this anchorage was modeled using a stiffness equal to 1751 kN/mm (10,000 k/in).  

However, it was found that a value closer to 70 kN/mm (400 k/in) was necessary to more 

accurately model the stiffness obtained from the experiment.  Ultimately, the larger 

stiffness of 1751 kN/mm (10,000 k/in) was used for the computational models.  Since the 

anchorage stiffness was an artifact of the experimental setup that might not represent an 

anchorage assembly to be used in practice, it was decided to neglect the reduction in 

stiffness.  The computational model, therefore, represents post-tension anchorage that is 

nearly rigid. 

6.3 Component Model of the Fuses 

A phenomenological model was created to simulate the flexural, axial, and lateral-

torsional buckling behavior of the fuse links.  As shown in Figure 6.5, the fuse is 

modeled with twelve fiber section elements.  The depth of the fiber section matches the 

average depth of the fuse link along that portion of its length.  The thickness of the 

section is set equal to the thickness of the fuse plate multiplied by the number of links 

being represented.  Since the model is two-dimensional, both the fuse on the front of the 

frames and the back of the frames is represented by this one modeled fuse link.  This 

implicitly assumes that all fuse links are undergoing the same displacements and rotations 

which appeared to be a reasonable assumption based on observations from the tests. 

One of the advantages of modeling the geometry of the link directly is the ability 

to simulate the behavior of different fuse geometries using a fairly standard steel material 

constitutive model.  The left side of Figure 6.6 shows an example of the application of the 

fuse material constitutive relationship.  The yield stress was obtained from the coupon 

tests performed on the fuse plate material.  The Steel02 material was used in OpenSees 

with an isotropic hardening ratio of 0.005 and a kinematic hardening ratio of 0.0005.  It 

was found that using kinematic hardening with the rotational spring configuration 

presented here best fit the experimental data for the thin fuses that were allowed to buckle.  

Conversely, the isotropic hardening was found to better represent the behavior of the 

thick fuses that did not buckle.  The resulting compromise with a mix of both kinematic 

and isotropic hardening was found to best fit all seven of the quasi-static cyclic tests 

presented in the previous chapter. 
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Figure 6.5 Phenomenological Model of the Fuse 

 

At the third points of the fuse link, rotational springs are included to simulate 

lateral-torsional buckling.  The rotational spring is a zero-length element with a behavior 

using the Pinching4 material in OpenSees.  It has a steep initial stiffness up to a lateral-

torsional buckling critical moment as shown on the right of Figure 6.6.  The method used 

to calculate the critical moment is discussed in Chapter 8.  Then the backbone curve 

exhibits a sharp reduction in moment capacity which simulates the reduced moment 

capacity after lateral-torsional buckling.  The shape of the post-buckling backbone curve 

was calibrated based on the quasi-static cyclic test results, namely Specimens A1, A7, 

and B2.  The final parameters for the rotational spring which are included in Table 6.1 

were also based on values that produced relatively reliable convergence of the model. 

 

Table 6.1 Parameters Used to Define the Fuse Rotational Spring in OpenSees 

Backbone Moment / Mcr Rotation (rad) Other Parameters 

Coordinate 1 1.0 0.02 rDispP = 0.9 

Coordinate 2 0.75 0.1 rForceP = 0.35 

Coordinate 3 0.60 0.2 uForceP = 0.3 

Coordinate 4 0.55 0.3  
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Figure 6.6 Examples of Fuse Fiber Constitutive Response (Left) and Fuse Rotational 

Spring Response that Simulates Lateral-Torsional Buckling (Right) 

 

Two examples of computational model simulation compared to experimental 

behavior are provided here, and then comparisons for all of the quasi-static cyclic tests 

are presented in the next section.  For thick fuses that did not buckle, the rotational 

springs remain elastic and do not contribute significantly to the fuse response.  Figure 6.7 

demonstrates the response of the fuse model compared to the hysteretic response of the 

Specimen A2 fuses.  In this case, the computational simulation proves to be quite 

accurate in representing the fuse behavior using only the actual fuse geometry and 

representative steel constitutive.  Since none of the parameters are calibrated to a specific 

configuration or set of tests, this model should be able to accurately model fuses with 

links of different sizes and geometries. 

The second example comparison provided here shows the response of a thin fuse 

compared to the computational model.  Figure 6.8 shows that the character of the 

hysteretic response of specimen A1 is generally captured by the computational model.  

The model undergoes elastic-plastic type of behavior up to a point at which buckling 

occurs.  After buckling, the modeled fuse transitions into an axial dominated response as 

the rotational resistance is lost.  The axial forces in the fuse are shown in Figure 6.8 

compared to the computational simulation.  Because of the isotropic hardening, there is a 

gain in axial strength with additional straining which results in larger axial forces than the 

experimental fuse experienced.  This strength gain is shown in the fuse hysteretic 

response as increased strength after loading the fuse past 10% shear strain across the fuse 

link. 
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Figure 6.7 Example Computational Simulation Compared to Experimental 

Response for a Thick Fuse 
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Figure 6.8 Example Computational Simulation Compared to Experiment for Fuse 

Hysteretic Response (Left) and Fuse Axial Forces (Right) for a Thin Fuse 

6.4 Calibration and Validation of the Computational Model 

There are two components of the computational model that are calibrated to the results of 

the experimental program.  The secondary stiffness representing seating losses in the 

post-tensioning strand constitutive model was calibrated to the experiments.  Several 



 130 

parameters in the fuse model were calibrated, including the steel material hardening ratio, 

the buckling strength, and the variables governing post-buckling response of the 

rotational spring.  The calibration of these parameters is discussed in Chapter 8 and was 

based on the quasi-static cyclic tests presented in the previous chapter and the fuse 

component tests conducted at Stanford University. 

In this section, the ability of the computational model to simulate the response of 

the quasi-static cyclic tests is presented.  Since these experiments were also used in the 

calibration of some of the parameters as listed above, additional verification of the 

computational model is presented in the next chapter as the computational simulations are 

compared to the hybrid simulation experimental response. 

6.4.1 Specimen A1 

The load-deformation response of the tested Specimen A1 is compared to the 

computational simulation in Figure 6.9.  The backbone curve of the experiment is well 

captured as is the character of the post-buckled fuse response.  It is noted that the critical 

buckling moment for the fuse rotational spring was adjusted by a factor 0.95 to account 

for the fact that the fuse buckled a little earlier than the characterization from Chapter 8 

predicted.   

The left side of Figure 6.10 demonstrates the strengths and weaknesses of the 

computational model of the post-tensioning.  As shown, the loss of post-tensioning force 

due to seating losses is simulated well by the specialized constitutive described above.  

The right side of Figure 6.10 shows that the response of the post-tensioning element 

represents the stress-strain behavior with seating losses experienced by an individual 

strand, in this case strand L-PT-L-2 from Specimen A1.  Specimen A1 is the only one of 

the experimental tests that experienced significant post-tensioning seating losses.  The 

strands in the other specimens had all been previously stressed to high loads eliminating 

seating losses before the test began.  However, additional data was obtained during trial 

runs of the frames without fuses in which seating losses were experienced. 

The left side of Figure 6.10 also shows that the stiffness of the post-tensioning 

system was different from the experiment.  The juxtaposition of the accuracy of the 

simulated stress-strain behavior with the inexactness of the post-tension stiffness 

illustrates that this error is not due to post-tension strand behavior, but instead due to the 

stiffness of the anchorage.  As discussed above, it was decided not to consider anchorage 

flexibility in the computational model. 

The fuse response for Specimen A1 was compared to the computational model in 

Figure 6.8 above.  As discussed above, the computational model of the thin fuses 

captures the character of the pre- and post-buckled fuse behavior. 

The uplift of the columns for Specimen A1 is shown in Figure 6.11.  Since the 

column uplift is governed by rigid body rotation of relatively stiff elastic frames, it is not 

surprising that the computational model accurately simulates the uplift response of the 

column bases.  It is shown that the apparent uplift at the pivoting column base is also 

matched reasonably well.  Although the pivoting column base is not uplifting, the 

centerline experiences upward motion as the pivot point is at an eccentricity to the 

column centerline. 
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Figure 6.9 Load-Deformation Response for Specimen A1 Compared to the 

Computational Model 
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Figure 6.10 Post-Tensioning Response (Left) and Stress-Strain Response (Right) 

Compared to Experiment for Specimen A1 
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Figure 6.11 Uplift of the Left Frame (Left) and the Right Frame (Right) Compared 

to Experiment for Specimen A1 

6.4.2 Specimen A2 

The load-deformation response of Specimen A2 is compared to the computational 

simulation in Figure 6.12.  It is shown that the backbone is matched well, but the 

unloading stiffness of the computational model is smaller than the experiments.  A slight 

hardening in the system observed in the experimental response at drifts greater than 2% is 

not exhibited in the computational response.  It is believed that this hardening is due to 

forces developed due to the constraint between the two frames which is difficult to model 

because of the actual tolerances and stiffnesses of these constraints are difficult to match 

exactly. 

It is noted that the roof drift ratios for the computational model were shifted by -

0.12% to match the starting location of the experiment.  Since previous testing of the 

frames ended with the negative roof drift ratio portion of the loading cycle, the frames 

started the test all the way against the left bumpers (negative direction).  It was therefore 

necessary to adjust the computational results to account for these initial conditions. 

The fuse response and post-tensioning response are compared to the 

computational model in Figure 6.13.  The lack of losses in post-tensioning force is 

evident in Figure 6.13 as is the difference in stiffness discussed above.  The fuse behavior 

was found to be captured well by the fuse model. 
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Figure 6.12 Load-Deformation Response of Specimen A2 Compared to Experiment 
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Figure 6.13 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen A2 

6.4.3 Specimen A3 

The comparison of experimental response of Specimen A3 is compared to the 

computational load-deformation response in Figure 6.14.  As shown, the positive loading 

regime including backbone and unloading are well represented by the computational 

model.  There is a slight hardening in the experimental system response that is not 

captured by the model similar to that observed to in Specimen A2 and discussed above. 
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The most dramatic difference in the computational and experimental response is 

the relative shift in the negative loading regime.  It is believed that this shift could be due 

to several factors including sliding at the base, nonsymmetry in the fuse response due to 

hardening, forces between the frames due to constraint, and loads in the experiment that 

are erroneously transferred through the specimen in a way not modeled.  In general, the 

computational model did not accurately represent the variation in tolerances and variation 

in the initial position of the moving parts within their tolerance of this experimental setup.  

Specific connections in question included the frame to bumper bearing, the strut pin 

connections, and the pin connection at the top of the specimen to the loading beam.  

These connections directly governed the amount of constraint between the two frames 

during rocking and the corresponding forces that were developed, but their exact 

configuration and variation are not modeled exactly thus creating error. 

The experimental and computational fuse responses as shown in Figure 6.15 is 

not exactly anti-symmetric because of the axial forces developed by in the fuse due to 

constraint between the frames.  The applied displacement history for the computational 

model was the displacements at the pin load cells as measured during the testing of 

Specimen A3.  Because the actual displacements were applied, the model response is not 

as symmetric as would be expected from a perfectly symmetric displacement history.  

The post-tensioning response shown on the right of Figure 6.15 is similar to the response 

discussed above for Specimen A2. 

 

-4 -2 0 2 4
-3

-2

-1

0

1

2

3
Load-Deformation Response of Test A3

Roof Drift Ratio (%)

O
v
e
rt

u
rn

in
g
 M

o
m

e
n
t 

R
a
ti
o
 (

M
/M

y
)

 

 

Experimental

Computational

 
Figure 6.14 Load-Deformation Response of Specimen A3 Compared to Experiment 
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Figure 6.15 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen A3 

6.4.4 Specimen A4 

The experimental load-deformation behavior of Specimen A4 is compared to the 

computational simulation in Figure 6.16.  The majority of the differences between the 

experimental response and the computational model response are attributed to not 

considering slip of the fuse relative to the columns, and the approximation of post-

tensioning yielding response at large strains.  
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Figure 6.16 Load-Deformation Response of Specimen A4 Compared to Experiment 

 



 136 

The fuse hysteretic behavior shown on the left of Figure 6.17 shows significant 

differences between the fuse model results and the experimental results.  As discussed in 

the previous chapter, the fuses for Specimen A4 slipped relative to the column.  Since the 

measurement of fuse shear strain is based on aggregated deformations from column to 

column as opposed to local fuse shear strain, the experimental fuse behavior shown 

includes the slip displacements.  The effect of slip is shown to increase the secondary 

stiffness of the fuses.  This is attributed to the fact that the fuses rotated as they slipped 

thus orienting themselves to resist more load through axial tension than if the fuse were 

stationary.  As a result the effect of axial forces on the Specimen A4 fuses was found to 

be more significant. 

The post-tensioning response shown on the right of Figure 6.17 demonstrates that 

although the yield force in the modeled post-tensioning strands was larger than the 

experiment, the amount of loss in  post-tensioning force due to yielding is reasonable 

well represented. 
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Figure 6.17 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen A4 

6.4.5 Specimen A7 

The experimental load-deformation response for Specimen A7 is compared to the 

computational simulation in Figure 6.18.  Similar to Specimen A1, the character of the 

pre- and post-buckled responses are captured by the computational model.  Similar to 

Specimen A2 and Specimen A3 discussed above, there was some hardening noted at roof 

drifts exceeding 2% that were not captured in the computational model. 

The computational fuse response shown on the left of Figure 6.19 experiences 

some increases in shear strength after exceeding fuse link shear strains greater than 10%.  

This is due largely to the isotropic hardening used in the fuse material constitutive model.  

As discussed in the section on the fuse model, it was found that isotropic hardening 
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resulted in the best fit with experimental data for the thick non-buckling fuses whereas 

kinematic hardening resulted in more accurate models of the thin buckling fuses.  The 

final computational model presented in this chapter represented a compromise to allow 

reasonable accuracy for the range of fuse thicknesses studied. 

Similar to Specimen A4, the right side of Figure 6.19 shows that the post-

tensioning response can simulate the forces during much of the loading regime, but 

results in larger yield forces, and slightly lower force at zero roof drift. 
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Figure 6.18 Load-Deformation Response of Specimen A7 Compared to Experiment 
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Figure 6.19 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen A7 

6.4.6 Specimen B1 

Figure 6.20 demonstrates the ability of the computational model to simulate the response 

of a single frame configuration.  The lag in response due to pin hole tolerances in the 

center strut are captured through the use of the zero-length spring described above.  The 

comparison between experimental system response and computational simulation as well 

as the comparison shown on the right of Figure 6.21 demonstrates that the computational 

model can simulate post-tension strand yielding better than post-tensioning strand wire 

fracture as was experienced in Specimen B2 and shown in Figure 6.22. 

The fuse response shown on the left of Figure 6.21 exhibits some discrepancies in 

the fuse link shear strain history as the computational modeled fuse was not subjected to 

the exact same displacements as the experiment.  The computational simulation was 

controlled by applying the same lateral displacement at the load cell pin as was 

experienced by the experiment.  As a result of differences in frame deformations and 

displacements as well as differences in the center strut connections relative to the 

computational model, the fuse did not undergo the exact same displacements as the 

experiment. 

 



 139 

-5 0 5
-3

-2

-1

0

1

2

3
Load-Deformation Response of Specimen B1

Roof Drift Ratio (%)

O
v
e
rt

u
rn

in
g
 M

o
m

e
n
t 

R
a
ti
o
 (

M
/M

y
)

 

 

Computational

Experimental

 
Figure 6.20 Load-Deformation Response of Specimen B1 Compared to Experiment 
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Figure 6.21 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen B1 

6.4.7 Specimen B2 

The computational simulation and experimental load-deformation response are compared 

in Figure 6.22.  It is illustrated in the system response as well as in the post-tensioning 

response shown on the right of Figure 6.23 that the computational model does not capture 

the loss in post-tensioning stiffness and underestimates the loss in post-tensioning force 

when the post-tensioning strand wires fracture.  An examination of the load-deformation 



 140 

response reveals this to be more of an issue in predicting unloading stiffness and drifts 

during unloading than it is for representing the backbone response and strength of the 

system. 

The experimental fuse shear strain history is different than the experiment similar 

to Specimen B1 discussed above.  Similar to Specimen A1 and Specimen A7, the fuse 

hysteretic behavior as shown on the left of Figure 6.23 demonstrates that the 

computational model can capture the character of the pre- and post-buckled response. 

 

-5 0 5
-3

-2

-1

0

1

2

3
Load-Deformation Response of Specimen B2

Roof Drift Ratio (%)

O
v
e
rt

u
rn

in
g
 M

o
m

e
n
t 

R
a
ti
o
 (

M
/M

y
)

 

 

Experimental

Computational

 
Figure 6.22 Load-Deformation Response of Specimen B2 Compared to Experiment 
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Figure 6.23 Fuse Response (Left) and Post-Tensioning Response (Right) Compared 

to Experiment for Specimen B2 



 141 

6.5 Conclusions Regarding the Computational Model 

A summary of the advantages and limitations of the computational model described in 

this chapter are presented here.  Phenomena that the computational model does not 

capture include: 

 Sliding of the frames relative to the base plate as they moved between 

bumpers was neglected for four reasons as listed above. 

 The slip of the fuse relative to the column experienced during the testing 

of Specimen A4 was neglected.  The testing of this specimen succeeded in 

highlighting fuse slip as a limit state, but this was ignored in the model 

because it is expected that slip would be avoided in practical designs. 

 The computational stiffness of the post-tensioning anchorage is 

represented by a near rigid support.  The experimental response indicates 

that the post-tensioning anchorage has a finite but stiff resistance.  This 

was ignored in the computational model because it was specific to the test 

configuration and may not be applicable to practical full scale buildings. 

 The reduction in post-tensioning element stiffness and loss in post-

tensioning prestress force are not accurately represented when the post-

tensioning stand wires fracture. 

 

Advantages of the computational model described in this chapter include: 

 The model presented here is a computationally compact 2D frame model 

that has been shown to capture the salient features of system and 

component behavior. 

 No new formulations or specialized elements were required.  Only 

elements and material constitutive models readily available in OpenSees 

were utilized allowing similar implementation in many nonlinear software 

packages. 

 The range of behavior experienced by the thinner buckling fuses was 

captured through a phenomenological model including rotational springs 

that simulated the effects of lateral-torsional buckling. 

 The response of thicker non-buckling fuses was shown to be well 

represented without calibrating any parameters to the experimental data. 

 The constitutive model used for the post-tensioning can account for post-

tensioning seating losses, yield, and initial pretension.  Even though some 

aspects of post-tensioning wire fracture were not fully captured, it was 

shown that the backbone curve and strength of the computational model 

were not significantly inaccurate. 
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Chapter 7  
 

QUASI-STATIC HYBRID SIMULATION RESPONSE 

 

There were several purposes for the hybrid simulation tests.  One of the primary reasons 

for conducting hybrid simulation tests was to validate the performance of the controlled 

rocking system when subjected to earthquake ground motions. Second, the ability of the 

controlled rocking frames to eliminate residual drifts in the presence of destabilizing 

second-order gravity load effects and the resistance of the rest of the building was 

investigated.  The resistance of the rest of the building is an important consideration 

when investigating self-centering because the components of the remainder of the 

building will counteract the restoring forces.  After the components of the remainder of 

the building undergo inelastic action, it will require additional restoring forces to force 

these elements back to their original position.  The effect of ambient building resistance 

and P-Δ forces were therefore considered to give a more accurate assessment of the 

system’s ability to self-center a building. 

Specimen A5 and Specimen A6 were tested using hybrid simulation as part of the 

testing program.  This chapter provides a description of the hybrid simulation test setup 

and presents the results from these specimens. 

7.1 Hybrid Simulation Setup 

The hybrid simulation configuration consisted of the experimental component and 

computational components representing portions of the rest of the building.  The 

computational model components were created using the OpenSees software (Mazzoni et. 

al 2009) to represent the second order effects of the gravity load, and the effect of 

ambient building resistance.  These computational components were linked to the 

experimental setup using the UI-SIMCOR software (Kwon et al. 2007), as schematically 

demonstrated in Figure 7.1.  Test A5 included only one computational component that 

represented second order gravity effects, whereas Test A6 also included a computational 

component representing ambient building resistance as shown in Figure 7.1. 

The second-order gravity effects were modeled as a pinned-base leaning column 

with an effective gravity load lumped at the top.  Chapter 4 contains the details of the 

leaning column model.  The other model which was used with Specimen A6, simulated 

two of the largest contributors to ambient building resistance, namely wall partitions and 

simple shear beam-to-column connections.  As shown in Figure 7.1, the simple shear 

beam-to-column connections were modeled as rotational springs between the beams and 

columns of a one bay frame.  The rotational springs were calibrated to match 

experimental tests as described in Chapter 4 and amplified to represent all connections 

tributary to one controlled rocking frame.  The partitions were represented by a nonlinear 

hysteretic truss element that were calibrated to match experimental tests and were 

similarly amplified to represent all of the partitions tributary to the controlled rocking 

frame.  Additional details can be found in Chapter 4. 
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The JMA Kobe ground motion was selected to allow direct comparison with 

dynamic shake table tests performed at the E-Defense facility in Miki, Japan.  The ground 

motion was scaled to best match the design spectrum using a least squares method over a 

period range of interest as described in Chapter 4.  Multiple trials were conducted for 

both Specimen A5 and Specimen A6.  Specimen A5 was tested at a scale level with a 2% 

probability of exceedance in 50 years, and then two trials with a scale factor of 1.10 

applied to the JMA Kobe record.  Specimen A6 was tested at a scale level with a 2% 

probability of exceedance in 50 years, the same scale level with out-of-plane motion also 

applied, and then with a scale factor of 1.20 times the JMA Kobe ground motion. 

In the hybrid simulation process, a displacement, Δ, is applied to both 

computational components, and a displacement reduced by the length scale factor, rL, is 

applied to the experimental setup.  The resulting forces are measured and summed 

together.  The displacement for the next time step is calculated using the α-OS time 

stepping method (Comberscure and Pegon 1997) using the measured force, F
i
, 

computationally applied mass, M, computationally applied Rayleigh damping, ζ=0.02 at 

periods of 0.34 seconds and 1.0 seconds full scale, velocity, v
i
, acceleration, a

i
, an elastic 

stiffness, Ke, and the ground acceleration, g. 

The computational simulations presented in this chapter were conducted using the 

UI SIMCOR software and the same process as described above for the experiment, 

except that the experimental module was replaced with a computational model of the 

system at specimen scale.  Additional information about the computational model is 

located in Chapter 6. 
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Figure 7.1 Schematic Representation of the Hybrid Simulation Setup 
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7.2 Specimen A5 Behavior 

Specimen A5 consisted of a dual frame configuration with two fuses between the frames 

as shown in Figure 7.2.  The fuses were, t=15.9 mm (5/8”) thick with 8 tapered links each 

that had a link length, L=356 mm (14”), a link depth at the ends, b=58.7 mm (2.3125”), 

and a link depth at the middle that was one-third the link depth at the end.  The resulting 

design capacity for all the fuses was calculated to be Vfp=348.7 kN (78.4 kips).  The post-

tensioning consisted of eight 12.7 mm (½”) diameter post-tensioning strands stressed to 

34% of their ultimate strength or Fpti=497.3 kN (111.8 kips) total.  Using the equations 

defined in Chapter 3, the overturning ratio was found to be, OT=1.03, the self-centering 

ratio was SC=1.05, and the geometric ratio of frame width to fuse width was A/B=2.5. 

 
Figure 7.2 Photograph of Specimen A5 

 

All of the hybrid simulation tests demonstrated the effectiveness of the controlled 

rocking system in satisfying the performance goals.  All observed inelasticity was 

concentrated in the fuses and residual drifts were found to be negligible.  Figure 7.3 and 

Figure 7.4 demonstrate the response of Specimen A5 when subjected to the JMA Kobe 

ground motion scaled to a level that has a 2% probability of exceedance in 50 years.  A 

peak drift of 1.65% roof drift ratio was achieved 6.5 seconds into the ground motion.   

The computational model displacement response is shown in Figure 7.3 to capture 

the frequency content of the response quite well. A summary of the ability of the 

computational model to predict the peak drift is included at the end of this chapter.  The 

computational simulation was conducted with UI SIMCOR and the leaning column 
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computational component just like the hybrid simulation but with a computational model 

substituted for the experimental component.  Details about the computational model of 

the specimen are included in Chapter 6.  The system backbone, hysteretic shape, and fuse 

response are shown to be represented well by the computational model. 

The column uplift for this ground motion and scaling was found to be 20 mm 

(0.79”).  The peak roof drift, residual drift, and peak uplift were small enough to not 

trigger any negative limit states for this large magnitude earthquake ground motion. 
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Figure 7.3 Displacement History (Left) and Load-Deformation Response (Right) for 

the Scale Level With 2% Probability of Exceedance in 50 Years 
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Figure 7.4 Fuse Hysteretic Response (Left) and Column Uplift History (Right) for 

the Scale Level With 2% Probability of Exceedance in 50 Years 

 

Since the performance of the system when subjected to a ground motion with 2% 

probability of exceedance in 50 years was found to be more than satisfactory, two trials 

were performed at a larger scale level.  The 2% in 50 scale level corresponded to a scale 

factor of 0.691 applied to the JMA Kobe ground motion.  The second and third trials 
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were performed with a scale factor of 1.10 which represents a ground motion 69% larger 

than the 2% in 50 years event. 

The response due to the first trial at the 1.10 scale factor level is shown in Figure 

7.5, Figure 7.6, and Figure 7.7.  A peak drift of 2.4% roof drift ratio was experienced at 

6.55 seconds.  The computational model response had a peak roof drift ratio of 2.78% at 

the same time. 

The ability of the computational model to simulate the fuse and post-tensioning 

response was similar to that observed for Specimen A2 and specimen A3 which used 

similar configurations.  The stiffness of the computationally simulated post-tensioning 

was found to be larger than the experiment, again because the anchorages were modeled 

as near rigid. 

The leaning column simulating the destabilizing second order effects of gravity 

loads acting on a displaced configuration had a near linear negative stiffness as shown in 

Figure 7.7. 
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Figure 7.5 Displacement History (Left) and Load-Deformation Response (Right) for 

the First Trial at 1.10 Times JMA Kobe 
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Figure 7.6 Fuse Hysteretic Behavior (Left) and Post-Tensioning Response (Right) 

for the First Trial at 1.10 Times JMA Kobe 
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Figure 7.7 Computational Component Response for the First Trial at 1.10 Times 

JMA Kobe 

 

Two trials were conducted at the scale level of 1.10 x JMA Kobe to investigate 

the amount of degradation in the system response.  As shown in Figure 7.8, there was 

little degradation in the system response or fuse hysteretic behavior after being subjected 

to a ground motion that is 69% larger one that has a 2% probability of exceedance in 50 

years.  In other words, the specimen was subjected to a ground motion significantly larger 

than the 2% in 50 event and did not exhibit any degradation or damage outside of the fuse.  

Based on the performance demonstrated here, it could be concluded that this specimen 

could be subjected to multiple large earthquakes without requiring any repair. 
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Figure 7.8 Load-Deformation Response (Left) and Fuse Hysteretic Behavior (Right) 

for Both Trials at 1.10 Times JMA Kobe 

7.3 Specimen A6 Behavior 

Specimen A6 as shown in Figure 7.9, consisted of a dual frame configuration with six 

fuses between the frames as shown .  The fuses were, t=6.35 mm (¼”) thick with 8 

tapered links each that had a link length, L=356 mm (14”), a link depth at the ends, 

b=58.7 mm (2.3125”), and a link depth at the middle that was one-third the link depth at 

the end.  The resulting design capacity for all the fuses was calculated to be Vfp=348.7 kN 

(78.4 kips).  The post-tensioning consisted of eight 12.7 mm (½”) diameter post-

tensioning strands stressed to 34% of their ultimate strength or Fpti=497.3 kN (111.8 kips) 

total.  Using the equations defined in Chapter 3, the overturning ratio was found to be, 

OT=1.04, the self-centering ratio was SC=1.02, and the geometric ratio of frame width to 

fuse width was A/B=2.5. 
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Figure 7.9 Photograph of Specimen A6 

 

Test A6 also consisted of three trials, one at the MCE level (scale factor of 0.69), 

a second at the MCE level including out-of-plane motion, and a third at a scale factor of 

1.20 applied to the JMA Kobe ground motion.  Test A6 used 6.4 mm (¼”) thick fuse 

plates that experienced significant lateral-torsional and axial buckling during the last trial, 

but not during the trials at ground motion scaling that has 2% probability of exceedance 

in 50 years. 

As shown in Figure 7.10, the computational model predicted buckling during this 

trial, but the experiment did not experience buckling in the fuses.  This is clear in the fuse 

hysteretic behavior shown on the left of Figure 7.11.  Regardless of this shortcoming, the 

computational model accurately captures the frequency content as shown on the right of 

Figure 7.10.  The additional energy dissipation exhibited by the experimental fuse may 

have contributed to the fact that the computational model over-predicted the peak roof 

drift. 

The right side of Figure 7.11 shows the horizontal displacements at a point near 

the base of the frames and is presented here to highlight a trend that occurred during the 

progression of the testing program.  During the course of the tests, the frames slide 

relative to the base plate and impact the bumpers.  Over several tests, the bumpers were 

found to be slipping creating larger tolerances between the frames and the bumpers.  

Figure 7.11 shows that the frames are sliding approximately 5 mm (0.2”) as they move 

from one bumper to the other. 
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Figure 7.10 Load-Deformation Response (Left) and Displacement History (Right) 

for the Trial at Scaling that has 2% Probability of Exceedance in 50 Years 
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Figure 7.11 Fuse Hysteretic Behavior (Left) and Displacement Trace Near the Base 

(Right) for the Trial at Scaling that has 2% Probability of Exceedance in 50 Years 

 

A trial was performed at the scale level that has 2% probability of exceedance in 

50 years while applying out-of-plane motion in the proportion of 10% of the in-plane 

motion.  This trial was performed in recognition that earthquake ground motions rarely 

occur in only one direction.  The ability of the system to sustain out-of-plane 

displacements while resisting loads in plane was investigated.  Figure 7.12 shows the 

displacement history and load-deformation response during this test.  The out-of-plane 

drift ratio is also shown on the left of Figure 7.12.  No damage or undesirable limit states 

were observed as a result of the out-of-plane motion.  The pivoting column was found to 

bear on just one corner of the bearing plate.  However, no local buckling or inelasticity 

was observed besides some almost imperceptible indentation in the bearing plate. 
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Figure 7.12 Displacement History (Left) and Load-Deformation Response (Right) 

for the 2% in 50 Scale Level With Out-Of-Plane Motion 

 

 The results from the last hybrid simulation trial are presented in Figure 7.13 and 

Figure 7.14.  It is noted that from one experimental trial to the next, the resistance of the 

rest of the building was reset and started fresh with no previous degradation.  However, 

in the computational simulation it was not possible to reset the resistance of one 

computational model while retaining the current state of the controlled rocking frame 

model.  The computational model results shown in the following figures is obtained by 

running the 2% in 50 ground motion and the 1.20 x JMA Kobe ground motion both 

through the same model.  This represents a basic difference in the ambient building 

resistance component between the experiment and the computational model. 

As shown on the left of Figure 7.14 and the right of Figure 7.13, the fuse model 

captures the fact that the fuse has buckled, but does not accurately capture the post-

buckling degradation for this case.   The experimental results show a dominance of axial 

forces as demonstrated by the sharp rise in shear force at large deformations and 

corresponding compression snap-through type behavior upon loading in the opposite 

direction.  The computational model also exhibits similar axial dominated post-buckling 

load-deformation response, but does not exhibit enough degradation in the shear strength 

especially for the large positive shear strain excursion.  The main reason for the 

difference is that this comparison is for the third hybrid simulation test on the same 

specimen.  The computational simulation was conducted for all three trials run 

sequentially without resetting the model.  It might be concluded from the experimental 

response, that there is damage accumulating in the fuses that is affecting the fuse shear 

behavior.  As described in Chapter 6, the computational model for the fuse does not 

consider the accumulation of damage.  Implementing more advanced degradation related 

to quantities such as cumulative energy absorbed by the fuse, peak shear deformation, or 

cumulative shear deformations would likely improve the match with experimental results. 

Regardless of the computational fuse response, the resulting computational 

system response exhibits similar strength and hysteretic shape as the experiment as 

shown on the right in Figure 7.13.  The dominance of the post-tensioned frame 

component of the system after fuse buckling and degradation is evident. 
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The right side of Figure 7.14 shows the response of the leaning column and the 

ambient building resistance computational components.  The ambient building resistance 

is shown to produce initial resistance as large as the yield strength of the lateral resisting 

system.  The strength and stiffness of the ambient building resisting elements degrades 

significantly.  The degradation is simulating phenomena such as crushing of the concrete 

in the composite simple beam-to-column connections and ovalization in gypsum board at 

the screw connections to the metal studs. 

It is noted that the ambient building resistance response shown on the right of 

Figure 7.14 comes from the hybrid simulation test.  The computational model, on the 

other hand, was run sequentially for all three trials without resetting the ambient building 

resistance model.  It is not possible in the OpenSees software to reset the ambient 

building resistance model without also resetting the computational model of the specimen.  

As a result, the ambient building resistance computational models had already 

experienced two prior MCE level events along with the associated degradation in 

hysteretic behavior.  This difference is likely to be part of the reason that the 

computational model experienced larger drifts than the experimental hybrid simulation 

test. 

 The Specimen A6 trials demonstrated that the controlled rocking system can self-

center after very large earthquakes (74% larger than the scaling that has 2% probability of 

exceedance in 50 years) in the presence of destabilizing second order gravity effects and 

ambient building resistance. 
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Figure 7.13 Displacement History (Left) and Load-Deformation Response (Right) 

for the 1.20xJMA Kobe Scale Level 
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Figure 7.14 Fuse Hysteretic Behavior (Left) and Computational Component 

Responses (Right) for the 1.20xJMA Kobe Scale Level 

7.4 Summary of Hybrid Simulation Response 

As described at the beginning of this chapter, the hybrid simulation tests served several 

important purposes.  The ability of the controlled rocking system to eliminate residual 

drifts and concentrate structural damage in the fuse elements was validated in all six of 

the hybrid simulation trials.  The residual drifts are summarized in Table 7.1 and shown 

to be negligible for all trials even for trials including second order gravity effects and 

ambient building resistance.  Furthermore, the thicker fuses that don’t buckle such as 

those used in Specimen A5 were shown not to experience significant degradation even 

after multiple trials with an earthquake record scaled to 69% larger than the motion that 

has 2% probability of exceedance in 50 years.  This implies that thicker non-buckling 

fuses may not need to be replaced even after very large earthquakes. 

The hybrid simulation tests also represented an opportunity to validate the 

computational model against a set of experiments not used to calibrate any of the model 

parameters.  It was shown in this section that the computational model accurately 

captured the frequency content of the displacement response.  Furthermore, the strength 

and stiffness of the thicker fuse configurations was accurately represented.  Some 

limitations in the ability of the fuse model to capture accumulated damage from repeated 

testing were discussed, but overall system strength and self-centering were found to be 

well represented. 
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Table 7.1 Summary of Drifts During the Hybrid Simulation Tests 

Spec-
imen 

Scale 
Level 

Experiment 
Peak Roof 
Drift Ratio 

(%) 

Time at 
Peak 
Roof 
Drift 
(sec) 

Compu-
tational 
Model 

Peak Roof 
Drift Ratio 

(%) 

Time 
at 

Peak 
Roof 
Drift 
(sec) 

Percent 
Difference 

in Peak 
Drift (%) 

Experimental 
Residual Roof 

Drift (%) 

A5 
MCE 

 
1.65% 6.49 1.76% 6.43 6.7% 0.04% 

A5 
1.10xKobe 

Trial 1 
2.42% 6.55 2.78% 6.50 14.9% -0.02% 

A5 
1.10xKobe 

Trial 2 
2.62% 6.60 2.78% 6.50 6.1% 0.00% 

A6 
MCE 

 
1.38% 4.10 1.70% 4.10 23.2% -0.03% 

A6 
MCE w/ 

10% OOP 
1.51% 5.10 1.70% 4.10 12.6% -0.13% 

A6 
1.20x JMA 

Kobe 
2.54% 5.59 3.29% 6.47 29.5% -0.02% 
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Chapter 8  
 

INTERPRETATION OF EXPERIMENTAL RESULTS 

 

There were numerous aspects of global and local response of the controlled rocking 

system that were investigated as part of the experimental program.  Additionally, the 

effects of varying parameters such as system proportioning, configuration type, fuse 

geometry, and inclusion of struts were studied.  This chapter synthesizes the data from all 

of the specimens tested in the experimental program to allow conclusions to be made 

about the salient features of the experimental response as system parameters are varied.  

The flow of forces in the frame members is discussed in Chapter 11. 

Behavior of the experimental specimens is divided up into global system response, 

post-tensioning response, fuse response, effect of struts, and comparison of the single 

frame versus dual frame configuration response. 

8.1 Global System Response 

This section on global system response starts with an investigation into the ability of the 

system to resist lateral loads including strength, stiffness, and energy dissipation.  Then, 

the deformations and displacements experienced by the system as it resists lateral loads 

are examined.  The section ends with a discussion about the effectiveness of the steel 

connections and details. 

8.1.1 Strength, Stiffness and Energy Dissipation 

As lateral loads are applied, the first response parameter of interest is the stiffness of the 

system.  Table 8.1 gives the initial stiffness of each specimen.  Comparisons between the 

initial stiffness obtained from the experiment and the initial stiffness of the computational 

models revealed that the experimental stiffness was generally less than half of the value 

predicted using a model with perfect geometry.  The difference is demonstrated in Figure 

8.1 which includes the experimental and computational results from the test of Specimen 

A3 without fuses attached. 

However, computational simulations were also conducted in which the frames 

were pulled together before the simulation of the test began to simulate possible initial 

conditions in which fit-up of the specimen might have caused the frames to not bear 

uniformly on all four columns.  This was implemented by applying an initial strain to 

elements between the frames as allowed with the elastic perfectly plastic material model 

in the Opensees software.  Pulling the frames together causes one or both of the exterior 

columns to have an initial uplift.  This initial condition, shown schematically on the right 

side of Figure 8.1, results in non-uniform bearing at the bases of the columns as well as 

uplift of the column bases that is not synchronized between the two frames.  As shown on 

the left of Figure 8.1 the computational model with non-uniform bearing exhibits an 

initial stiffness similar to the experiment.  The fact that all of the specimens had a smaller 
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initial stiffness relative to the computational model with perfect geometry means that it is 

likely that all of the specimens were affected by this phenomenon. 

 

Table 8.1 Initial Stiffness, Roof Drift Ratio at Uplift, and Roof Drift Ratio at Fuse 

Yield for All Specimens 

Spec- 
imen 

Experiment 
Initial 

Stiffness, 
kN-m/%  
(K-ft/%) 

Roof Drift 
Ratio at 
Uplift 

(%) 

Roof Drift 
Ratio at 

Fuse Yield 
(%) 

A1 10433 (7695) 0.12 0.48 

A2 11555 (8523) 0.13 0.56 

A3 9286 (6849) 0.20 0.51 

A4 6536 (4821) 0.32 0.69 

A5 8165 (6022) 0.23 0.68 

A6 8164 (6021) 0.25 0.67 

A7 9371 (6912) 0.24 0.70 

Mean for A Series = 0.21 0.61 

B1 2279 (1681) 0.11 1.41 

B2 2669 (1969) 0.11 1.50 

Mean for B Series = 0.11 1.46 

 

The load-deformation response near zero drift for the computational model was 

found to change with the amount that the frames were pulled together.  For small values 

of initial inward displacement, one column may be uplifted, and the other is partially 

decompressed resulting in a load-deformation response with the same initial larger 

stiffness as the perfect model which transitions to the lower stiffness prior to uplift.  For 

large values of initial inward displacement, both exterior columns begin the simulation 

with uplift and the load-deformation response exhibits the lower initial stiffness, except 

that horizontal sliding at the base occurs at zero force causing a horizontal jog in the load-

deformation response.  Because of the sensitivity of the computational model to the 

amount of initial inward displacement and the unknown nature of the exact initial 

conditions of the specimen, this phenomenon was neglected in the computational model. 
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Figure 8.1 Effect of Non-Uniform Bearing on Initial Stiffness (Left) Schematic 

Drawing of Non-Uniform Bearing 

 

The roof drift ratio at uplift is given in Table 8.1.  These values were obtained as 

the point in the load-deformation response when significant nonlinearity occurs.  Table 

8.1 shows that the roof drift ratio at uplift was small for Specimen A1 and A2, but 

increased for Specimen A3 and A4.  The roof drift ratio includes the drift due to sliding at 

the base of the frames.  As discussed later in this chapter and given in Table 8.6, the 

sliding at the base of the frame accounted for 0.11% of the roof drift ratio for Specimen 

A4 but less for the other specimens. 

The overturning moment applied to the specimen when the fuse yielded is 

included in Table 8.2.  The definition of fuse yield is defined later in this chapter.  The 

predicted overturning moment at yield was calculated with Equations 5.2 and Equation 

5.3 using the initial post-tensioning force and the calculated fuse yield capacity based on 

measured material yield strength.  As given in Table 8.2, the average ratio of actual 

moment at fuse yield to the predicted is 1.14 for the A series specimens and 1.43 for the 

B series specimens.  The reason that the B series specimens exhibited larger overturning 

moment at fuse yield than the equations predict was because the average roof drift ratio at 

fuse yield was 1.46%.  The post-tensioning provides additional resistance to overturning 

moment as the strands stretch due to uplift.  The additional post-tensioning forces above 

the initial post-tensioning force account for the differences noted here. 
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Table 8.2 System Response Parameters 

Specimen 

Predicted Yield 
Moment, 

kN-m (k-ft) 

Experiment Moment at 
Fuse Yield, 
kN-m (k-ft) 

Ratio of Actual to 
Predicted 

Yield 

A1 1432 (1057) 1589 (1172) 1.11 

A2 1599 (1180) 1702 (1256) 1.06 

A3 1319 (973) 1419 (1047) 1.08 

A4 2132 (1573) 2705 (1995) 1.27 

A5 1531 (1129) 1722 (1270) 1.12 

A6 1551 (1144) 1834 (1353) 1.18 

A7 1551 (1144) 1752 (1292) 1.13 

  
Mean for A Series =         1.14 

B1 404 (298) 595 (439) 1.47 

B2 389 (287) 540 (398) 1.39 

  
Mean for B Series =  1.43 

 

As discussed in Chapter 5 and as discussed at the end of this chapter, the B series 

specimens had a lag in the fuse response due to pin hole tolerances in the connection of 

the frame to the fuses.  This lag led to the larger drifts required to yield the fuse.  Proven 

methods for mitigating the pin hole tolerances are presented at the end of this chapter. 

To further illuminate the load-deformation behavior of the controlled rocking 

system, the equations derived in Chapter 3 for analytically predicting the SDOF response 

were applied to Specimen A3.  The load-deformation response is presented in Figure 8.2 

compared to the experimental response up to 1% roof drift ratio. 

The difference in initial stiffness discussed above is noticeable in Figure 8.2.  The 

analytical solution also predicts a change in stiffness when the frames uplift at an 

overturning moment ratio of approximately 0.6.  With the possible exception of the B 

series specimens, the experimental response did not exhibit a sharp change in stiffness at 

the moment associated with fuse yield as the analytical response suggests.  Instead the 

change in stiffness due to fuse yielding was gradual. 

The roof drift ratio at fuse yield is given in Table 8.1 to be 0.5% for Specimen A3.  

Significant nonlinearity had occurred prior to this point, unlike the analytical solution 

which assumes that the fuse is elastic-perfectly plastic prior to fuse yield.  The backbone 

of the analytical prediction overestimates the experimental response therefore.  The 

overturning moment at fuse yield is given in Table 8.2 to be 8% larger than the calculated 

yield moment.  Since this occurs at a roof drift ratio of 0.5%, the post-tensioning is 

supplying the system with additional resistance due to further elongation of the post-

tensioning strands during uplift.  Similarly this is the reason that the analytical response 

shows a change in stiffness associated with fuse yield that is above the yield moment of 

the system, My. 

The post-yield stiffness is slightly underestimated because the hardening in the 

fuse is neglected in the analytical derivation.  The unloading regime is shown in Figure 
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8.1 to be the most inaccurate aspect of the analytical prediction.  The Bauschinger effect 

and associated delay in reaching the yield force in the opposite direction caused the 

discrepancy with the elastic-perfectly-plastic assumption used in the analytical derivation. 
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Figure 8.2 Comparison of Analytical Response to Experimental Response for a 

Portion of Specimen A3 Response 

 

The peak drifts and the drifts at zero force are given in Table 8.3 and Table 8.4 for 

each specimen and are shown graphically in Figure 8.3.  A significant difference is noted 

in the ability of the system to eliminate drifts when the load is removed between the 

Specimens with buckling fuses ant the specimens with non-buckling fuses.  The drift at 

zero force for Specimen A1 as shown on the left of Figure 8.3 demonstrates the 

advantages the thin buckling fuses possess in promoting self-centering.  The drift at zero 

force is shown to increase steeply up to a roof drift ratio of approximately 1.1%.  At this 

point, the fuses buckled reducing their resistance to the post-tensioning’s restoring force.  

After reaching a roof drift ratio of 3%, Specimen A1 only exhibited 0.04% roof drift ratio 

when the loads were removed. 

On the other hand, Specimen A2 which has a similar self-centering ratio and 

overturning ratio as Specimen A1 (see Equation 4.9, Equation 4.10, Equation 4.11, and 

Equation 4.12 for the definition of these variables) shows a much different drift at zero 

force response as shown on the right of Figure 8.3.  The residual roof drift ratio when the 

loads were removed was found to continue to increase up to a value greater than 0.5% at 

the end of the test.  As expected, the ability to self-center is also adversely affected by 

post-tensioning strand yield and fracture as demonstrated by the drifts at zero force for 

Specimen A4 as the displacement history exceeded 2.7% roof drift ratio.   

However, Specimen A2 had a self-centering ratio of , SC=0.71 which implies less 

than full self-centering ability, and Specimen A4 was specifically designed to investigate 

behavior when post-tensioning strand yield stress is exceeded.  It is concluded from the 

results shown here that if the self-centering ratio is designed to be greater than 1.0 and the 
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post-tensioning is designed not to yield, that the roof drifts at zero force are limited to 

0.2% after cycles at 2% roof drift ratio and 0.35% after cycles at 3% roof drift ratio. 

 

Table 8.3 Summary of Peak Drifts and Drifts at Zero Force for Specimens A1 

Through A4 

  Specimen A1 Specimen A2 Specimen A3 Specimen A4 

Displace- Peak Drift at Peak Drift at Peak Drift at Peak Drift at 

ment Drift Zero Drift Zero Drift Zero Drift Zero 

Level Ratio Force Ratio Force Ratio Force Ratio Force 

1 0.09% 0.01% 0.10% 0.10% 0.09% 0.01% 0.11% 0.03% 

2 0.18% 0.01% 0.20% 0.12% 0.18% 0.03% 0.22% 0.02% 

3 0.22% 0.01% 0.23% 0.10% 0.20% 0.03% 0.25% 0.02% 

4 0.30% 0.03% 0.28% 0.10% 0.25% 0.03% 0.30% 0.02% 

5 0.37% 0.03% 0.33% 0.11% 0.30% 0.03% 0.36% 0.02% 

6 0.49% 0.05% 0.46% 0.11% 0.43% 0.03% 0.48% 0.04% 

7 0.64% 0.07% 0.57% 0.11% 0.53% 0.03% 0.59% 0.05% 

8 0.92% 0.11% 0.81% 0.13% 0.78% 0.03% 0.83% 0.07% 

9 1.19% 0.16% 1.04% 0.17% 1.01% 0.05% 1.07% 0.09% 

10 1.48% 0.16% 1.38% 0.26% 1.24% 0.07% 1.30% 0.11% 

11 2.03% 0.08% 1.74% 0.24% 1.71% 0.10% 1.77% 0.17% 

12 2.58% 0.05% 2.21% 0.46% 2.17% 0.13% 2.24% 0.23% 

13 3.14% 0.04% 2.69% 0.56% 2.64% 0.24% 2.71% 0.35% 

14 N/A N/A 2.99% 0.52% 3.10% 0.29% 3.19% 0.59% 

15 N/A N/A N/A N/A N/A N/A 3.66% 0.82% 
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Table 8.4  Summary of Peak Drifts and Drifts at Zero Force for Specimens A7, B1, 

and B2 

  Specimen A7 Specimen B1 Specimen B2 

Displace- Peak Drift at Peak Drift at Peak Drift at 

ment Drift Zero Drift Zero Drift Zero 

Level Ratio Force Ratio Force Ratio Force 

1 0.09% 0.00% 0.29% 0.06% 0.29% 0.05% 

2 0.18% 0.01% 0.33% 0.06% 0.33% 0.05% 

3 0.22% 0.03% 0.41% 0.06% 0.41% 0.05% 

4 0.29% 0.04% 0.48% 0.05% 0.49% 0.05% 

5 0.36% 0.05% 0.64% 0.05% 0.64% 0.05% 

6 0.49% 0.07% 0.79% 0.05% 0.80% 0.05% 

7 0.63% 0.09% 1.10% 0.05% 1.11% 0.04% 

8 0.90% 0.12% 1.41% 0.05% 1.42% 0.06% 

9 1.17% 0.13% 1.72% 0.05% 1.74% 0.08% 

10 1.45% 0.13% 2.35% 0.05% 2.37% 0.07% 

11 2.00% 0.10% 2.96% 0.04% 2.99% 0.08% 

12 2.55% 0.09% 3.56% 0.05% 3.60% 0.07% 

13 3.10% 0.09% 4.16% 0.04% 4.20% 0.11% 

14 3.65% 0.08% N/A N/A N/A N/A 

15 4.20% 0.08% N/A N/A N/A N/A 
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Figure 8.3 Drift at Zero Force for Specimens with Buckling Fuses (Left) and Non-

Buckling Fuses (Right) 
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The hysteretic energy absorbed by the specimen is presented in Table 8.5 for each 

of the cyclically tested specimens.  The energy was calculated as the amount of energy 

absorbed in that cycle as normalized by the energy dissipated by a corresponding elastic-

plastic hardening system.  As shown in Figure 8.4, the normalizing energy quantity 

represents the amount of energy absorbed by an elastic-perfectly plastic hardening system 

with the same initial stiffness and secondary stiffness as the controlled rocking specimen.  

If a self-centering hysteresis loop fully encloses the first and third quadrants of the load-

deformation response, the absorbed energy would be 50% of the elastic perfectly plastic 

system.  For a fully self-centering system, the maximum normalized energy absorption is 

therefore 50%. 

 

 
Figure 8.4 Definition of the Drift at Zero Force and Hysteretic Absorbed Energy 



 163 

 

Table 8.5 Summary of Energy Absorbed Per Displacement Level 

  A1 A2 A3 A4 A7 B1 B2 

Displace- Norm- Norm- Norm- Norm- Norm- Norm- Norm- 

ment alized alized alized alized alized alized alized 

Level Energy Energy Energy Energy Energy Energy Energy 

1 -1.9% 6.3% 2.2% 11.8% -1.0% 12.9% 15.4% 

2 15.1% 24.8% -0.5% 35.5% 12.1% 5.2% 5.3% 

3 15.1% 27.0% -1.0% 11.9% 24.9% 4.4% 4.8% 

4 19.8% 20.7% 3.0% 5.3% 19.5% 4.1% 4.4% 

5 22.7% 20.6% 7.4% 8.1% 20.9% 3.0% 2.8% 

6 27.9% 24.5% 8.7% 15.7% 25.0% 5.2% 5.0% 

7 32.3% 29.1% 14.8% 23.0% 29.2% 4.6% 3.4% 

8 38.5% 29.9% 23.1% 30.7% 33.0% 6.9% 5.8% 

9 42.9% 40.1% 28.1% 35.7% 33.3% 17.5% 14.1% 

10 42.3% 44.6% 31.7% 40.0% 33.9% 23.7% 20.8% 

11 33.7% 48.5% 36.8% 45.0% 28.5% 28.0% 23.8% 

12 27.6% 52.1% 40.4% 49.0% 24.2% 36.5% 36.1% 

13 20.8% 55.3% 43.4% 51.3% 23.9% 40.4% 28.4% 

14 N/A 54.4% 46.1% 54.4% 24.7% 24.2% 14.7% 

15 N/A N/A N/A 53.1% 20.0% N/A N/A 

 

The data included in Table 8.5 is also shown in Figure 8.5.  The specimens with 

thinner fuses allowed to buckle, exhibited similar energy dissipating ability as the thicker 

fuse configurations up to 1% roof drift ratio.  After this point, the fuses in Specimen A1 

and Specimen A7 buckled causing a decline in the ability of the system to absorb energy.  

The systems with thicker fuses, however, continued to increase the amount of seismic 

energy that was being absorbed each cycle approaching 50%.  The response of the single 

frame configurations had some additional aspects that will be discussed in a subsequent 

section. 
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Figure 8.5 Hysteretic Absorbed Energy for Specimens with Buckling Fuses (Left) 

and Non-Buckling Fuses (Right) 

8.1.2 System Displacements and Deformations 

The displacements of the experimental specimen were shown to be governed largely by 

rigid body rotation of the frames.  This was demonstrated by showing that the interstory 

drift for all three stories was equal to each other and equal to the roof drift ratio on the 

left of Figure 5.10.  This was also demonstrated by the linearity of the uplift with 

increases in roof drift as shown on the right of Figure 5.10. 

It was also shown in Chapter 5 that the two frames tilt toward each other as they 

rock.  The post-tensioning forces demonstrate this point such as the right side of Figure 

5.17 in that the post-tensioning forces in the windward frame are larger than the leeward 

frame.  Similarly, the uplift as shown on the right of Figure 5.10 shows that the windward 

frame experiences more uplift than the leeward frame. 

The reason that the frames tilt together stems from the fact that there are elements 

such as fuses and struts connecting points on the interior columns.  As the frames 

undergo rigid body rocking, the points on the interior columns tend to get farther apart 

unless otherwise constrained.  Figure 8.6 shows an initial configuration, denoted as 

configuration a, with an element at a height, h, between the frames with an initial length, 

La.  Although the struts and fuses are actually connected at some eccentricity from the 

column centerline, this idealized connecting element is useful for examining the 

stretching effect.  Similar derivations can be conducted for specific connecting element 

geometries.  The frames have width, A, and a width between the frames, B.  If it is 

assumed that both frames undergo the same roof drift angle, α, then the coordinates for 

the two ends of the connecting element can be derived based on geometry.  Equation 

(8.1), Equation  (8.2), Equation (8.3), and Equation (8.4) give the location of the two ends 

in configuration a and in configuration b.  The length of the connecting element is 

calculated in Equation (8.5) and Equation (8.6). 
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Figure 8.6 Derivation of the Distance Between Points on the Two Frames 
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The length of the connecting element is shown to grow as a nonlinear function of 

the roof drift angle, α.  When plotted against the roof drift angle as shown in Figure 8.7, it 

is clear that the connecting element is undergoing tension as the frames rock in unison.  

The specimens had constraint at the bottom in the form of bumpers and at the top in the 

form of pin connections to the loading beam.  Since the constraint at both the top and 

bottom had some tolerance, it was possible for the frames to not move in unison as 

assumed in the above derivation.  However, the amount of constraint provided between 

the two frames is an important consideration.  As discussed in an upcoming section, axial 

forces in the fuses due to the amount of constraint provided by the frames, is a significant 

aspect of the fuse response.  Preliminary computational models that used perfect pins at 

the connection to the loading beam and struts along with zero tolerances between the 

frames and the bumpers at the base experienced significantly larger member forces due to 

the added constraint. 
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Figure 8.7 Plot of Derived Distance Between Frames Assuming A=1573 mm (61.92”) 

and B=628 mm (24.72”) 

 

The member forces are discussed further in Chapter 11, but it is noted here that 

although minor yielding of extreme fibers may have occurred during some tests,  the 

frame members, struts, and connections remained essentially elastic throughout the tests.  

No local buckling or global buckling was encountered.  In fact, the same pair of frames 

was used for all nine specimens.  The controlled rocking system succeeded in 

concentrating all structural damage in the fuse elements. 

8.1.3 Effectiveness of System Detailing 

One of the significant discoveries about detailing of the controlled rocking system as 

evidenced from the experimental program was the importance of understanding and 

controlling the tolerances used in connections with moving parts.  The effect of the 

tolerances in the strut pin connections is examined in a subsequent section on struts.  The 

effect of the tolerances in the pin connections between the frame and the fuse in the 

single frame configuration are discussed in a subsequent section on the single frame 

configuration.  The tolerances between the frames and the bumpers are examined further 

here. 

In the erection of the rocking frame on the base plate it was necessary to make the 

distance between bumpers larger than the width of the frames.  It is not reasonable to 

attempt to assemble the system with zero tolerances.  Figure 8.8 shows the effect of the 

sliding at the base of the frames on the displacement near the base.  The example shown 

in Figure 8.8 demonstrates that Specimen A4 had a total tolerance between the frames 

and bumpers of approximately 5.7 mm (0.22”).  The amount of slip experienced in the 

tests is summarized in Table 8.6. 

The holes in the bumper assembly in its connection to the larger base plate below 

were oversized to allow some adjustment in the bumper location.  At the beginning of the 

Specimen A1 test, the bumpers were pushed against the specimen and the bolts were 

pretensioned.  As given in Table 8.6, the amount of sliding at the base increased in the 

testing of Specimen A4 as the bumpers slipped relative to the larger base plate below.  

Before the testing of Specimen A7, the bumpers were adjusted to reduce the tolerance 
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between the frames and bumpers, but as given in Table 8.6, the bumpers likely slipped 

again. 

However, for the testing of Specimen B1 and Specimen B2, shims were added 

between the frames and the bumpers.  The shims which consisted of 1.59 mm (1/16”) 

thick plates were added at two the locations and were spot welded to the bumpers.  Table 

8.6 shows that the sliding at the base for Specimen B1 and Specimen B2 was negligible.  

Adding shims after erection was found to be an easy and effective way to eliminate 

sliding at the base. 
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Figure 8.8 Example of Sliding From Specimen A4 Test 

 

Table 8.6 Approximate Sliding Displacements at the Base of the Frames 

  Sliding Equivalent 

  Displacement, Roof Drift 

Specimen  mm (in) Ratio 

A1 1.5 (0.06) 0.03% 

A2 2.7 (0.11) 0.05% 

A3 1.3 (0.05) 0.03% 

A4 5.7 (0.22) 0.11% 

A5 5.1 (0.20) 0.10% 

A6 4.6 (0.18) 0.09% 

A7 3.2 (0.13) 0.06% 

B1 0.0 (0.00) 0.00% 

B2 0.6 (0.02) 0.01% 

 

The effectiveness of the detailing to allow efficient repair of the system after an 

earthquake was demonstrated several times.  Disregarding the adjustment of post-tension 

force, the preparation between specimens often replicated the repair that might take place 
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in a real building after a large earthquake.  The fuses were removed, and replaced with 

new ones.  Since the fuses had been yielding, they often had large forces in them which 

made it difficult to unbolt and remove.  However, if desired, the fuse links could easily be 

torch cut with portable equipment which would relieve any built-up internal forces.   

The bearing connections at the base of the columns performed well in that they 

were subjected to nine sets of tests and did not exhibit significant signs of wear.  Figure 

8.9 shows the bottom of one of the column base plates after all of the testing was 

complete.  At the right edge of the plate an almost imperceptible amount of angle 

between a straight edge and the base plate was noted at the last 12 mm (0.5”) or so.  The 

corresponding base plate shown in Figure 8.10 did not show any noticeable indentation 

where the frame was pivoting. 

 

 
Figure 8.9 Photograph of the Bottom of a Column Base Plate After the 

Experimental Program Showing Lack of Damage 

 
Figure 8.10 Photograph of the Base Plate Showing Lack of Indentation 

 

In general the connections and details used for the specimen performed as 

intended without experiencing damage.  The tolerances between pieces as discussed in 
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this section and others in this chapter were identified as an important aspect, but easy 

mitigation techniques have been devised and shown to be effective. 

8.2 Post-Tensioning Behavior 

8.2.1 Elastic and Yield Behavior 

The post-tensioning strands were designed to remain elastic through the majority of the 

tests.  Stress in the post-tensioning strands was calculated using the measurements from 

specially made load cells that were placed between the lower post-tensioning anchorage 

chuck and the anchorage plate.  Strain in the post-tensioning strands was calculated using 

string potentiometers that measured the change in distance between the upper and lower 

anchorage plates.  Using these measures for stress and strain, the modulus of elasticity 

was calculated for all of the strands in Specimen A2 and included in Table 8.7.  As 

shown in Table 8.7, the values for the modulus of elasticity did not vary much with a 

mean of 197.2 GPa (28595 ksi) and a standard deviation of 2.7 GPa (396 ksi).  Specimen 

A2, A3, and A4  did not undergo significant seating losses because the post-tensioning 

seating losses  had already occurred for these strands during the testing of Specimen A1.  

The seating losses for specimens A5, A6, A7, B1, and B2 were exhausted by conducting 

cycles on the post-tensioned frame without the fuses attached prior to testing of the 

specimen.   

The modulus of elasticity measured from the four ancillary tests on coupons from 

the same post-tension strand material was found to have more variation with a mean of 

202 GPa (29300 ksi).  It is shown in Figure 8.11, that the monotonic behavior from 

coupon test number 4 was quite similar to the backbone of the response of one of the 

strands in the Specimen A4 test. 

It was noted in Chapter 6 that the lower anchorage of the post-tensioning was not 

rigid.  The stiffness of the lower anchorage was found to reduce the amount of elongation 

and force in the post-tensioning compared to the computational model which assumed 

near rigid anchorage. 
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Table 8.7 Measured Modulus of Elasticity for Post-Tensioning Strands in Specimen 

A2 

Specimen Modulus 
of Elasticity A2 

Strand (GPa) (ksi) 

L-PT-L-1 194.8 28251 

L-PT-L-2 194.6 28220 

L-PT-L-3 197.9 28703 

L-PT-L-4 193.2 28020 

L-PT-L-5 197.1 28585 

L-PT-L-6 198.5 28791 

L-PT-L-7 198.6 28799 

L-PT-L-8 198.6 28799 

L-PT-R-1 199.6 28950 

L-PT-R-2 195.8 28397 

L-PT-R-3 203.5 29522 

L-PT-R-4 200.6 29093 

L-PT-R-5 194.2 28160 

L-PT-R-6 196.2 28458 

L-PT-R-7 196.9 28560 

L-PT-R-8 194.5 28209 

Mean =  197.2 28595 

Std. Dev. = 2.7 396 
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Figure 8.11 Comparison of the Post-Tensioning Behavior in Specimen A4 to the 

Monotonic Coupon Test 
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8.2.2 Post-Tensioning Seating Losses 

As part of the examination of experimental behavior of Specimen A1 in Chapter 5 the 

phenomenon referred to as seating losses was demonstrated in the data and discussed.  It 

was found that as the force in a post-tensioning strand exceeded its previous maximum 

force that the wedges at the anchorage were pulled incrementally further into the mating 

conical hole.  The associated displacement results in a loss of post-tensioning strand force.  

The amount of loss is characterized in Figure 8.12 including data from Specimen A1, the 

trial run before Specimen A5 without fuses, and the trial run before Specimen B1/B2 

without fuses.  The cause of the seating losses is the change in the maximum post-tension 

force above its previous level.  The amount of loss is quantified as the change in the post-

tensioning force because of a cycle when the configuration returns to its original position.  

In other words, the loss is the change in the minimum post-tension force from one cycle 

to the next.  A linear regression was performed to fit a trend line to the data.  The 

resulting relationship is given by Equation (8.7). 

 

 
Figure 8.12 Characterization of Post-Tensioning Seating Losses 

 

 min max0.1422F F          (8.7) 

 

Chapter 6 describes the implementation of a constitutive model for the post-

tensioning that captures the effect of seating losses.  The constitutive model is shown in 

Figure 8.13 and includes a secondary slope with slope αE.  The seating loss parameter, α, 

can be derived based on equal triangles to be as given in Equation (8.8).  Using the slope 

of the seating losses trendline presented in Equation (8.7), the stiffness of the secondary 

seating loss slope is found to be α=0.88 times the elastic modulus. 
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Figure 8.13 Applying Post-Tensioning Seating Losses in Material Constitutive 
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It is possible to eliminate seating losses, though.  Techniques were devised as part 

of the E-Defense test specimen installation (Ma 2010) to mitigate seating losses.  The 

method is described in Chapter 12. 

8.2.3 Post-Tensioning Strand Wire Fracture 

Four of the specimens (A4, A7, B1, and B2) were tested to displacement levels that 

caused the post-tensioning strand stress to exceed its yield stress.  During these tests 

some of the individual wires in the post-tensioning strand fractured.  Each post-

tensioning strand consists of seven wires twisted together.  In all cases of fracture, it was 

only one wire that fractured at a time and never did it propagate to the other wires or to 

the other strands.  In one case (L-PT-R-4 for Specimen B2), the same strand experienced 

two wire fractures, but the fractures occurred during different cycles. 

It the time a fracture occurred, a loud twang noise could be heard as the wire 

experienced elastic rebound toward the opposite anchorage.  The wire unraveled from the 

rest of the strand for the last meter or so at the opposite anchorage.  Photographs of the 

unraveled wire and plots of the stress-strain response of fractured strands are presented in 

Chapter 5. 

Table 8.8 gives the stress and strain at fracture for all 13 strands that fractured in 

these four specimens.  The lowest strain at wire fracture was 0.85% for strand L-PT-R-8 

in Specimen A7.  From the range of strains at wire fracture and the fact that 267 wires did 

not fracture during these tests it is concluded that there is considerable variability in the 

fracture strain.  It is expected that conditions such as the type of anchorages used and 

installation procedures would have a considerable effect on post-tensioning strand wire 

fracture. 
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Table 8.8 Summary of Post-Tensioning Wire Fractures 

Specimen Strand ID 

Stress at 
Wire 

Fracture 
(f/fu) 

Stress at 
Wire 

Fracture, 
MPa (ksi) 

Strain at 
Wire 

Fracture 
(%) 

A4 L-PT-R-8 0.871 1622 (235.3) 0.86 

A4 L-PT-L-2 0.910 1695 (245.8) 0.88 

A4 L-PT-R-7 0.885 1647 (238.8) 0.91 

A4 L-PT-R-6 0.910 1695 (245.8) 0.93 

A4 L-PT-L-1 0.928 1727 (250.4) 0.95 

A4 L-PT-R-4 0.995 1852 (268.6) 1.05 

A4 Other 106 Wires Exceeded 1% strain without Fracture 

A7 L-PT-R-8 0.871 1621 (235.2) 0.85 

A7 L-PT-R-7 0.924 1720 (249.5) 0.98 

A7 Other 110 Wires Exceeded 1% strain without Fracture 

B1 All of the 28 Wires Exceeded 1% strain without Fracture 

B2 L-PT-R-3 0.880 1637 (237.5) 0.87 

B2 L-PT-R-4 0.934 1738 (252.1) 0.91 

B2 L-PT-R-1 0.939 1747 (253.4) 0.94 

B2 L-PT-R-2 0.944 1757 (254.9) 0.96 

B2 L-PT-R-4 0.800 1490 (216.1) 1.10 

B2 Other 23 Wires Exceeded 1% strain without Fracture 

 

 

A probability distribution for single wire fracture can be imagined for which the 

data in Table 8.8 represents the frequencies for fracture at the lower end of fracture 

strains.  Although there is not enough data to fully define this probability distribution, 

some useful conclusions can be made about the probability of wire fracture.  For instance, 

after loading to 1% post-tensioning strand strain, 11 of the 280 wires fractured.  This 

implies that there is a 3.93% probability that any given wire will fracture when subjected 

to 1% strain.  The cumulative distribution function for a binomial distribution can be used 

to calculate the probability of a certain number of wire fractures.  Equation (8.9) gives the 

probability that the number of wire fractures will be less than or equal to a limiting 

number for a set of post-tensioning wires subjected to a limiting strain.  The calculated 

probabilities are given in Table 8.8 for limiting post-tensioning strains of 0.9%, 0.95%, 

and 1.0%.  The probabilities are calculated for different amount of wire fracture that 

might be allowed including 1%, 3%, 5%, 7%, and 10% of the wires. 
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  Where: Nf = number of wire fractures 

   X = a limiting number of wire fractures for consideration 

   N = number of post-tensioning wires (7 per strand) 

 Pr f N
N X  = the probability that less than X wires will 

fracture in a set of N wires subjected to the limiting 

strain 

p = the probability of a given wire fracturing when 

subjected to the given strain (given as the percent of 

wire fractures in Table 8.9) 

 

Table 8.9 Probability that No More Than the Given Fraction of Wires Will Fracture 

If Post-Tensioning Strains Are Limited to the Given Values 

Post-
Tensioning 
Strain Limit 
(mm/mm) 

Number of 
Fractured 

Wires Out of 
280 

Percent of 
Wires that 
Fractured 

Fraction of Wires Allowed to Fracture 

0.01 0.03 0.05 0.07 0.10 

0.0090 4 1.43% 58% 94% 100% 100% 100% 
0.0095 9 3.21% 17% 60% 90% 98% 100% 
0.0100 11 3.93% 9% 44% 80% 96% 100% 

 

For example, Specimen A4 had N=112 wires and if it is desired to limit the 

number of wire fractures to no more than 5% of the total wires or X=6, then it can be 

calculated using Equation (8.9) that there is an 80% probability of this occurring if the 

post-tensioning strain is limited to 1%.  Using Table 8.9, a limit could be set on the post-

tensioning strain to create a high likelihood of controlling the number of wire fractures.  

Since Specimen A4 retained its ability to resist lateral loads and its ability to eliminate 

drifts at zero force was impaired but not completely lost after fracturing 5% of the wires 

in the post-tensioning strands, it might be desirable to limit the number of acceptable wire 

fractures to 5% of the total number of wires.  Using Table 8.9, it is shown that limiting 

the post-tensioning strand strain to 1% leads to an 80% probability that less than 5% of 

the post-tensioning wires will fracture.  Allowing some post-tensioning wires to fracture 

during extreme events might be acceptable especially considering that in post-tensioned 

concrete bridge construction it is not unusual to allow 2% of the wires to fracture during 

installation (Corven and Moreton 2004). 

The stress-strain behavior of a post-tensioning strand that experienced wire 

fracture is shown in Figure 8.14.  The stress shown in this figure is engineering stress 

using the original strand area.  A 25% loss of stress is experienced at the time of fracture.  

The slope of the stress-strain response reduces from the modulus of elasticity for this 

strand, 196.5 GPa (28,500 ksi), to an effective modulus of elasticity after wire fracture of 

180.0 GPa (26,100 ksi) representing an 8% reduction.  These reductions in force and 

stiffness were found to be fairly typical for the wire fractures.  It was found that neither of 

these values equated to the reduction in area due to the removal of one of seven wires 

which is 14%. 

 



 175 

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.2

0.4

0.6

0.8

1

Strain (in/in)

E
ff
e
c
ti
v
e
 S

tr
e
s
s
 (

f 
/ 
fu

)

 
Figure 8.14 Typical Stress-Strain Behavior of a Post-Tensioning Strand that 

Experienced Wire Fracture 

 

The installation of the post-tensioning strands was discussed in Chapter 4 and 

plots of post-tensioning force during stressing are given for Specimen A1 in Chapter 5.  

The strands were stressed to a preliminary force level between 3 kN and 7 kN (0.7 kips to 

1.6 kips) to take up the slack in the strands.  Subsequently, the strands were stressed up to 

the desired loads.  For some strands an additional round of stressing was required as the 

forces in the strands was reduced as the frames underwent elastic shortening.  In total, 

each strand was stressed between 2 and 4 times.  References such as the FHWA Post-

Tensioning Manual (Corven and Moreton 2004) discourages re-gripping a strand in a 

portion of the strand that was previously gripped by the anchorage wedges. 

It is likely that re-gripping the post-tensioning strands by stressing multiple times 

contributed to some of the post-tensioning wire fractures experienced in the tests.  An 

example of the performance of post-tensioning strands that were not re-gripped are the 

controlled rocking specimens tested dynamically at E-Defense (Ma 2010).  The last test 

of the series of shake table tests used the Canoga Park ground motion record from the 

Northridge earthquake scaled by a factor of 1.75.  The eight post-tensioning strands all 

exceeded 1.2% strain without fracturing a single wire. 

8.3 Fuse Behavior 

8.3.1 Fuse Hysteretic Behavior 

The fuses demonstrated excellent ability to dissipate seismic energy without fracturing.  

As derived in Chapter 3, the amount of shear strain is amplified relative to the roof drift 

ratio based on a geometric ratio as given by Equation 3.14 and Equation 3.15.  As a result 

the fuse links underwent shear strains as large as 25% across the link as the specimens 

were displaced to roof drifts as large as 4.2%.  None of the fuses fractured during these 

tests. 

The deformation capacity of the fuses is attributed to two things.  The tapered 

geometry of the fuse links encourages first yield and plastic hinging at the quarter point 
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of the fuse link away from areas of discontinuity.  This is demonstrated in Figure 8.15.  

The moment associated with first yield along the length of the fuse link is plotted as a 

quadratic curve.  The yield moment is quadratic because the section modulus is a 

quadratic function of the fuse link depth and the fuse link depth is linearly varying along 

the length.  Similarly, the plastic moment capacity of the fuse link along its length is 

plotted in Figure 8.15 and shown to be quadratic.  The applied moment due to shear 

loading is also shown as the shear force is increased from zero to the plastic shear force, 

Vfp.  It is shown that the moment demand contacts the yield moment distribution at the 

quarter point.  This will be the location of first yield.  The same location will also be the 

location of the plastic hinge as shown in Figure 8.15. 

The large deformation capacity of the fuses is also attributed to the smooth cuts 

along the sides of the links.  The fuse plates were cut using water jet cutting.  This 

technology is becoming ubiquitous in machine shops and is capable of producing 

extremely smooth cut surfaces. 
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Figure 8.15 Moments Along the Length of the Link Showing Location of First Yield 

and Plastic Hinging 

 

The zones of plasticity are clearly indicated in Figure 8.16 as the darker grey 

areas along the link lengths where the mill scale has flaked off.  The plasticity is 

concentrated along the tapered portion of the link but is not as prevalent at the middle or 

end of the link where the plate develops stress concentrations. 
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Figure 8.16 Photograph of Specimen A4 Fuse Showing Plasticity in the Links 

The progression of fuse behavior for the buckling fuses is demonstrated in Figure 

8.17, Figure 8.18, Figure 8.19, Figure 8.20, and Figure 8.21 for the Specimen A1 fuse.  

Stage 1 of the fuse behavior is primarily flexural dominated with significant yielding 

along the link length similar to that experienced by the thick fuse shown in Figure 8.16.  

In stage 1 shown in Figure 8.17, the fuses are also resisting axial loads as the ends of the 

fuse move apart during large deformations.  Stage 2 shown in Figure 8.18 demonstrates 

that upon reloading in the opposite direction the fuse develops a hump in the load-

deformation response due to axial compression in addition to the flexural yielding.  

Figure 8.19 shows the first cycle in which lateral-torsional buckling occurs.  After lateral-

torsional buckling, the flexural resistance of the fuse links is reduced and instead shear 

forces due to axial elongation start to dominate as in Stage 4 shown in Figure 8.20.  The 

Krypton measurements were used in Chapter 5 to show that soon after lateral-torsional 

buckling, second mode axial buckling takes over the deformations of the fuse link.  Stage 

5 shown in Figure 8.21 represents the portion of the fuse response when the fuse is 

undergoing axial buckling.  The final fuse hysteretic response shown in Figure 8.22 

includes the full response from flexural dominated, to lateral-torsional buckling, to axial 

buckling. 
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Figure 8.17 Stage 1 of Buckling Fuse Behavior – Flexural Inelasticity 
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Figure 8.18 Stage 2 of Buckling Fuse Behavior – Compression on Load Reversal 
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Figure 8.19 Stage 3 of Buckling Fuse Behavior – Lateral-Torsional Buckling 
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Figure 8.20 Stage 4 of Buckling Fuse Behavior – Axial Elongation 
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Figure 8.21 Stage 5 of Buckling Fuse Behavior – Compression Buckling 
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Figure 8.22 Fuse Hysteresis at End of Test (Left) and Photograph of Fuse After 

Testing (Right) 

 

To compare computational and analytical predictions for the strength of the fuse 

to the experimental response, the shear yield strength of the fuses must be defined.  Since 

the fuse response exhibits a gradual yielding as it transitions from elastic to a secondary 

post-yield stiffness, it is necessary to develop a consistent method for defining the shear 

yield strength of each fuse.  A method similar to the 0.2% offset strain method for 

calculating yield stress in metals was adopted in which the shear yield strength, Vy, is 

defined by offsetting the initial stiffness by 1.5% fuse link shear strain, and finding the 

intersection with the experimental response.  The value of 1.5% was obtained by plotting 

the intersection of lines fit to the initial stiffness and post-yielding secondary stiffness and 

determining the offset that produced similar force on average for the set of fuses tested.  

The calculation of the experimentally obtained fuse yield force is shown in Figure 8.23 

for Specimen A1. 

The buckling strength, Vb, is defined as the largest shear force experienced by the 

fuse prior to lateral-torsional buckling.  Figure 8.23 shows the buckling strength and 

associated fuse link shear strain for Specimen A1. 
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Figure 8.23 Calculation of the Fuse Yield Strength and Fuse Buckling Strength 

 

The geometry of the fuses from all of the specimens along with four of the 

specimens tested as part of the testing program conducted at Stanford University 

(Deierlein et al. 2010) are included in Table 8.10.  The experimentally obtained and 

predicted values for stiffnesses are given in Table 8.11, and the yield strength and 

buckling strengths are given in Table 8.12.  The equation for stiffness is derived in Ma 

(2010) and given in Equation (8.10) based on a ratio of the depth at the middle to the 

depth at the ends of 1/3. 
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    (8.10) 

 

It is shown in Table 8.11 that the equation for predicting fuse shear stiffness is 

most accurate for thicker non-buckling fuses.  The stiffness is over-predicted for buckling 

fuses and found to significantly over-predict the stiffness of the fuses with short link 

lengths such as Specimen B1 and Specimen B2 fuses. 
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Table 8.10 Fuse Geometry for All Tests Including Four Tests From Stanford 

Testing Series (Deierlein et al. 2010) 

  
  

Speci-
men 

Link 
Length, 

L, mm (in) 

Depth 
at End, 

 b, 
mm (in) 

Depth at 
Middle, 

a, 
mm (in) 

Thick- 
ness 

t, 
mm (in) 

  
Number 
of Links 

Slender- 
ness 
L/t 

  
Ratio 
b/t 

A1 355.6 (14) 58.7 (2.31) 19.6 (0.77) 6.4 (0.25) 8 56 9.25 

A2 355.6 (14) 58.7 (2.31) 19.6 (0.77) 15.9 (0.625) 10 22.4 3.7 

A3 355.6 (14) 58.7  (2.31) 19.6 (0.77) 15.9 (0.625) 7 22.4 3.7 

A4 355.6 (14) 58.7 (2.31) 19.6 (0.77) 25.4 (1.0) 7 14 2.3125 

A5 355.6 (14) 58.7 (2.31) 19.6 (0.77) 15.9 (0.625) 8 22.4 3.7 

A6 355.6 (14) 58.7 (2.31) 19.6 (0.77) 6.4 (0.25) 8 56 9.25 

A7 355.6 (14) 58.7 (2.31) 19.6 (0.77) 6.4 (0.25) 8 56 9.25 

B1 152.4 (6) 42.9 (1.69) 14.3 (0.56) 19.1 (0.75) 3 8 2.25 

B2 152.4 (6) 47.6 (1.87) 15.9 (0.63) 4.8 (0.188) 5 32 10 

SS5 228.6 (9) 63.5 (2.5) 25.4 (1) 6.4 (0.25) 6 36 10 

SS9 355.6 (14) 57.2 (2.25) 19.1 (0.75) 9.5 (0.375) 7 37 6 

SS10 355.6 (14) 57.2 (2.25) 19.1 (0.75)  6.4 (0.25) 7 56 9 

SS11 355.6 (14)  57.2 (2.25) 19.1 (0.75)  25.4 (1.0) 3 14 2.3 

 

Table 8.11 Fuse Stiffnesses for All Tests Including Four Tests From Stanford 

Testing Series (Deierlein et al. 2010) 

  Initial Predicted Secondary Secondary 

  Stiffness, Stiffness, Stiffness Stiffness 

Specimen kN/mm (k/in) kN/mm (k/in) kN/mm (k/in) Ratio 

A1 15.3 (87.5) 13.5 (103.2) 0.22 (1.26) 0.0144 

A2 47.4 (270.9) 11.0 (312.7) 1.63 (9.30) 0.0343 

A3 36.6 (209.1) 11.0 (218.9) 0.93 (5.32) 0.0254 

A4 64.6 (368.8) 22.6 (451.8) 1.86 (10.62) 0.0288 

A5 35.7 (203.7) 11.0 (250.2) 1.24 (7.07) 0.0347 

A6 9.0 (51.6) 13.5 (103.2) 0.42 (2.38) 0.0460 

A7 8.2 (46.9) 13.5 (103.2) 0.07 (0.40) 0.0085 

B1 49.0 (280.1) 211.9 (1210.1) 1.70 (9.69) 0.0346 

B2 54.0 (308.6) 200.9 (1147.4) 1.29 (7.35) 0.0238 

SS5 19.0 (108.3) 64.7 (369.7) 0.62 (3.56) 0.0328 

SS9 12.7 (72.4) 24.5 9 (139.9) 0.20 (1.12) 0.0154 

SS10 16.2 (92.6) 16.3 (93.2) 0.80 (4.56) 0.0492 

SS11 19.1 (109.1) 28.0 (159.8) 1.01 (5.79) 0.0531 
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On average, the measured fuse yield strength was approximately 89% of the 

calculated fuse strength based on plastic hinging at the quarter point.  This may be due in 

part to the axial forces that are present in the fuse but neglected in the calculation of the 

fuse shear strength. 

 

Table 8.12 Fuse Response Parameters for All Tests Including Four Tests From 

Stanford Testing Series (Deierlein et al. 2010) 

  
  

Speci-  
men 

 Measured  
Yield 
Force 

kN (kips) 

Predicted 
Shear  

Capacity 
kN (kips) 

  
Yield 
Strain 

(%) 

 Buckling  
Shear 
Force, 

kN (kips) 

 Link 
Strain at 
Buckling 

(%) 

A1 44.8 (10.1) 58.1 (13.1) 2.32 54.7 (12.3) 8.07 

A2 177.3 (39.9) 212.4 (47.7) 2.55 N/A N/A 

A3 126.2 (28.4) 148.7 (33.4) 2.47 N/A N/A 

A4 223.7 (50.3) 227.3 (51.1) 2.47 N/A N/A 

A5 153.2 (34.4) 169.9 (38.2) 2.71 N/A N/A 

A6 46.0 (10.4) 58.1 (13.1) 2.93 49.9 (11.2) 6.10 

A7 48.0 (10.8) 58.1 (13.1) 3.15 51.7 (11.6) 10.40 

B1 131.7 (29.6) 181.6 (40.8) 2.25 N/A N/A 

B2 80.6 (18.1) 80.4 (18.1) 2.34 112.7 (25.3) 15.10 

SS5 106.2 (23.9) 98.8 (22.2) 3.08 121.6 (27.3) 8.73 

SS9 53.4 (12.0) 90.1 (20.3) 2.68 60.1 (13.5) 9.90 

SS10 82.1 (18.5) 60.1 (13.5) 2.92 129.5 (29.1) 18.52 

SS11 90.3 (20.3) 102.9 (23.1) 2.83 N/A N/A 

 

8.3.2 Characterizing Fuse Buckling 

The lateral-torsional buckling capacity of the fuse links was investigated.  Two methods 

for approximating the lateral-torsional buckling strength are presented and a third method 

is discussed.  The second method which correlates the lateral-torsional buckling shear 

force to the slenderness of the fuse link was implemented in the computational model. 

The elastic lateral-torsional buckling strength of a tapered section was calculated 

using equations derived by Challamel et al. (2007).  For the case when the depth at the 

middle of the fuse link is 1/3 of the depth at the ends, the critical shear force, Vcr, is given 

by Equation (8.11), where Iyo is the minor axis moment of inertia at the end of the link, 

and Jo is the torsional constant for the end of the link.  The critical moment associated 

with this critical shear force is given by Equation (8.12). 
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The first yield moment strength, Mr, is given in Equation (8.13).  The residual 

stresses in the plate, Fr, are assumed to be 0.3 times the yield stress.  Studies such as 

Leon-Salamanca (2005) and Bahadur et al. (2007) suggest that residual stresses in 19 mm 

(¾”) thick and 63.5mm (2-1/2”) thick hot rolled steel plates are as large as 100 Mpa.  

Assuming a yield stress of 345 MPa (50 ksi), the maximum residual stresses might be 

approximately 0.3 times the yield stress.  By setting the elastic lateral-torsional moment 

strength, Mcr, equal to the first yield moment strength, Mr, the link length, Lr, that marks 

the transition from elastic to inelastic lateral-torsional buckling can be found.  The length 

that allows the fuse link to become plastic, Lp, is found using equation(8.15), (Salmon 

and Johnson 2008).  The inelastic lateral-torsional buckling regime is assumed to be a 

linear fit between these two points as shown in Figure 8.24. 
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Figure 8.24 Sample Fuse Shear Capacity Curve for Specimen A1 with the Measured 

Yield Force 

The shear yield force and the measured shear buckling strength for Specimen A1 

are plotted compared to the analytical solution for the fuse shear capacity in Figure 8.24.  

The link length of Specimen A1 is shown to be well within the range associated with 

inelastic lateral-torsional buckling.  The fuse links, however, buckled at a load well above 

the capacity curve.  In fact, the fuse in Specimen A1 underwent significant plastic 

hinging before buckling occurred. 

All of the tested fuses including the Stanford component tests are shown in Figure 

8.25 for the inelastic LTB range.  The axes are made to be dimensionless so different 

configurations can be compared.  The range of tested fuse link lengths extends from near 
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the plastic range well into the inelastic lateral-torsional buckling regime.  It is shown in 

Figure 8.25 that the capacity curve as derived above, while largely conservative, does not 

predict the shear load at which the fuse will buckle.  One of the reasons for the 

discrepancy stems from the applied loads on the fuses.  Axial forces and additional 

moments are present in the fuses during the test and are not considered in the equations 

derived above. 
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Figure 8.25 Fuse Shear Capacity for All Tests in the Inelastic Lateral-torsional 

Buckling Range 

Figure 8.26 shows a second method for predicting the fuse buckling force.  A 

linear regression was conducted on the available buckling strength data and the resulting 

relationship is given in Equation (8.17).  This method has the advantage that the buckling 

strengths used in this calibration have the types of axial forces and moments experienced 

in the fuses applied to the controlled rocking system.  This can also be considered a 

drawback of this method if it is desired to predict the buckling capacity of a fuse with 

different boundary conditions. 
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Figure 8.26 Characterizing Fuse Buckling Force Based on a Slenderness Parameter 
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As mentioned in the beginning of this section, the relationship given in Equation 

(8.17) was used in the computational model to predict fuse buckling.  The calculation of 

the critical moment to use in the lateral-torsional buckling rotational spring is given in 

Equation (8.18). 
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A third method for predicting buckling of the fuses was not conducted but is 

discussed here as future research needs.  Since the buckling strength of the fuses was 

found to be only marginally greater than the yield strength, it is believed that the 

mechanism for buckling may be more related to deformations than force.  A multivariate 

regression analysis could be used to characterize fuse buckling as a function of variables 

such as shear strain, cumulative shear strain, and measures of energy.  This type of 

relationship is expected to be more accurate in predicting buckling, but would also create 

complexities for implementation in computational models. 

 

8.3.3 Kinematics of Fuse Deformation and Axial Forces 

The kinematics of the fuse deformation were found to be an important factor in the forces 

that were developed in the fuses.  The relative motion of the two sides of the fuse 
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included shear deformations, axial deformations, and in some cases slip relative to the 

columns. 

Slip of the fuses relative to the columns was observed in a small degree in 

Specimen A2 and in a much more significant way in Specimen A4.  The slip capacity of 

the connection was compared to the applied forces in the discussion of Specimen A4 in 

Chapter 5.  It was determined that to provide adequate resistance to slip, it is necessary to 

consider the fuse to column bolts as an eccentrically loaded bolt group.  A reasonable 

assumption is that the fuse shear force acts at an eccentricity equal to the distance to the 

fuse link quarter point. 

The axial and shear deformations of the fuse were investigated by plotting the 

kinematics of the motion of one of the interior columns relative to the other as provided 

by the Krypton measurements.  Figure 8.27 shows the relative motion of the interior 

columns for a specimen with a representative thick fuse (Specimen A4), and a specimen 

with a representative thin fuse (Specimen A1).  As shown in this figure, the motion of the 

thick fuse specimen occurs along a path with a diameter of 628 mm (24.7”) which 

corresponds to the distance between column center lines.  The interior columns of the 

specimen with a thin fuse are shown to move relative to one another with a diameter of 

178 mm (7.0”) which corresponds to the distance between the quarter points of the fuse 

links. 
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Figure 8.27 Relative Motion of Interior Columns for a Representative Specimen 

with a Thick Fuse (Left) and a Thin Fuse (Right) 

 

The axial forces in the fuse are shown for all specimens in Figure 8.28 plotted 

against the moment.  An axial force-moment interaction surface was created for the fuse 

link element based on the plastic strength of the critical sections and assuming reversed 

moments due to shear loading.  The vertical and horizontal axes of this plot are the axial 

force and moment at the ends of the link as normalized to the plastic axial capacity and 

plastic moment capacity at the end of the fuse link respectively.  The area of the middle 

of the link represents a limiting factor in the tension capacity of the fuse link.  As such, 
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the axial force is capped at one third of the plastic capacity at the end of the link because 

that is the ratio of the areas.  The moment capacity is controlled by the plastic capacity of 

the fuse link quarter point.  The maximum moment at the end of the link is 8/9 times the 

plastic capacity at the end of the link due to the plastic hinging at the quarter point.  The 

relationship between axial force and moment was derived by assuming an arbitrary 

plastic neutral axis at the quarter point.  The interaction surface for a fuse link element 

with a ratio of middle depth to end depth of 1/3 is given in Equation (8.19) and shown in 

Figure 8.28. 
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Figure 8.28 Axial Force and Moment Interaction for the Fuse Links 

 

Figure 8.28 shows that the fuses, although exceeding the interaction surface in the 

moment domain because of strain hardening, did not reach their maximum axial forces 

based on the plastic capacity at the middle of the fuse.  Furthermore, it is shown in Figure 

8.28 that the axial forces divided by the plastic axial capacity at the end of the fuse links 

range between -0.1 to 0.1 for thin fuses with struts, -0.05 to 0.05 for thick fuses with 

struts and -0.1 to 0.2 for the thin fuse specimen without struts. 

For the design of the frames in the dual frame controlled rocking system, it is 

necessary to consider the axial forces that develop in the fuses.  If nonlinear time history 

analyses are not performed a method for predicting fuse forces is necessary.  A capacity 

design method is presented in Chapter 11 that uses the maximum possible post-tensioning 

forces and fuse forces for frame design.  However, designing for the maximum axial 

force the fuses can develop in conjunction with the maximum moment is overly 
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conservative as demonstrated above.  Instead, the range of axial forces listed above, 

provide a basis for axial forces that might be experienced in a dual frame configuration.  

See Chapter 11 for more information about how this can be incorporated into a capacity 

design methodology. 

 

8.4 Effect of Struts 

The elimination of the struts was included in the testing program because it is considered 

a possible option for implementation in practice.  It might be desired to eliminate the 

struts to simplify the erection and installation of the frames.  Specimen A7 was a 

configuration that used thin fuses and no struts.  However, the two frames still had 

constraints on their motion in the form of the top connection to the loading beam and the 

bumpers at the base. 

To investigate the effect that the struts had on the system, data was examined 

regarding the motion of the columns relative to one another, the forces experienced by 

the struts, and the forces in the members.  A further discussion of the member forces is 

included in Chapter 11. 

The distance between the two interior columns is shown for both Specimen A1 

and Specimen A7 in Figure 8.29.  In the testing of Specimen A1, the distance between 

frames is found to increase at zero roof drift ratio after the fuses have elongated.  

Specimen A7, on the other hand, shows only negative displacements that are larger than 

those experienced by Specimen A1.  The larger displacements were found to translate 

into larger frame forces and specifically interior column moments at the locations of the 

fuses.  The amount of fuse tension force shown previously in Figure 8.28 also 

demonstrates the additional tension forces experienced in the fuses when the struts were 

not present to hold the columns apart. 
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Figure 8.29 Distance Between Columns For a Specimen With struts (Specimen A1) 

and a Specimen Without Struts (Specimen A7) 

 

 

The strut forces for a representative specimen with thin fuses (Specimen A1) and 

a representative specimen with thick fuses (Specimen A3), are shown in Figure 8.30.  

The axial forces in the struts are found to be larger for the specimens with thin fuses but 

still a small proportion of the fuse axial capacity.  In fact, the struts were designed based 

on a computational model that did not consider pin hole tolerances in the strut 

connections.  As a result, the amount of constraint between the frames was over-predicted 

relative to the actual specimen.  The differences in the forces experienced by the thin fuse 

configuration and the thick fuse configuration are largely due to the pin hole tolerances.  

Large axial deformations are required to occur in the fuse before the struts become 

engaged.  Thus, the struts in the thick fuse specimens hardly become engaged as shown 

in Figure 8.30 because the distance between interior columns is held more constant by the 

thick fuses. 

It is concluded, therefore, that the struts were not necessary for use with thicker 

non-buckling fuses.  This conclusion, however, is based on tests in which the frames still 

possessed significant relative restraint of the two frames at the top and bottom of the test 

setup.  For specimens with thinner buckling fuses, the struts became engaged in 

compression and were effective in resisting the axial tension developed in the fuses.  The 

frames of Specimen A7, although they did not use struts, were constrained relative to one 

another by a loading beam at the top and bumpers at the base.  In this context, it was 

noted that the system performance was not significantly affected by the elimination of the 

struts.  If there were no constraints between the two frames, it is expected that the frames 
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would tilt toward each other even more than what was experienced in the tests, and that 

the portion of the fuse shear response due to axial forces would be diminished. 

In practice, however, it will be necessary to transfer collector forces through or 

around the controlled rocking frames and it will be necessary to transfer diaphragm shear 

to the controlled rocking system.  If struts are not included, alternate means for collector 

load transfer and diaphragm shear transfer will be necessary which may introduce 

constraint between the two frames. 
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Figure 8.30 Strut Axial Forces for a Representative Specimen with Thin Fuses (Left) 

and a Representative Specimen with Thick Fuses. 

 

8.5 Single Frame and Dual Frame Configuration 

The single frame configuration and the dual frame configuration offer several advantages 

relative to each other for different applications. A comparison of the single frame and 

dual frame configurations is discussed in this section in the context of experimental 

behavior.  A list of advantages of both systems is included in Chapter 12 including 

architectural, engineering, and construction considerations. 

The two most significant aspects of the single frame configuration behavior not 

common to the dual frame configuration are the improved ability to eliminate drifts at 

zero force and the effect of pin connections between the frame and the fuses.  There are 

residual drifts that remain in a dual frame configuration when the loads are removed due 

to the built-up forces in the fuses which cause elastic deformations in the frames.  The 

single frame configuration is immune to this effect because the fuses are concentrated at 

the bottom of the frame instead of distributed along the height of the frames.  The two 

single frame specimens exhibited near zero drift at zero force even after significant 
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yielding and fracture of the post-tensioning strands as demonstrated in Figure 8.3.  This is 

also shown in the load-deformation behavior of the single frame configuration specimens 

included in Figure 5.40 and Figure 5.45. 

The effects of the pin hole tolerance in the connection of the fuse to the frame 

through a center strut were found to cause delayed fuse yield and lack of energy 

absorbing capability early in the displacement history.  The reduction in energy absorbing 

capacity is shown in Figure 8.5.  The lag in engaging the fuse during fuse load reversal is 

shown in Figure 5.42 and Figure 5.47. 

The testing program was successful in identifying pin hole tolerance as an 

important issue and the corresponding shake table tests performed at E-Defense utilized a 

modified detail that mitigated the effect (Ma 2010).  The pin hole connection was 

eliminated at the top of the center strut and the pin hole tolerances were used in the 

connection of the center strut to the fuse.  The associated details are discussed further in 

Chapter 12. 
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Chapter 9  

 

SDOF INVESTIGATION OF SELF-CENTERING RESPONSE WITH 

AMBIENT BUILDING RESISTANCE 
 

The development of the controlled rocking system has as one of its primary performance 

goals to virtually eliminate residual drifts after large earthquakes.  The ability of the 

system to eliminate drifts when the load is removed has been quantified in Chapter 8, but 

as described in the Chapter 2, several studies have investigated the ability of systems to 

reduce residual drifts without eliminating static drifts when the forces are removed. 

As discussed in Chapter 7, the elements of the building not included in the 

seismic force resisting system can resist the restoring forces after becoming inelastic.  In 

effect, the restoring force has to pull the remainder of the building back to center in order 

to successfully achieve self-centering.  On the other hand, there is a probabilistic 

mechanism that can lead to significant reductions in residual drifts compared to the 

maximum residual drifts which are the drifts obtained by removing the loads from the 

peak drift.  In fact, it will be shown in this chapter that reliable control of residual drifts 

can be achieved even for lateral force resisting systems that do not return to zero 

displacement when the lateral loads are removed. 

A parametric study is presented in this chapter, including approximately 25,000 

SDOF nonlinear time history analyses representing four prototype buildings, to 

investigate the effect of several parameters on response indices such as residual drifts 

including the effects of ambient building resistance.  The hysteretic response was built 

from components typical to all current self-centering systems, so system response is more 

accurately represented than can be achieved using an idealized flag shape.  This study 

explores the full range of self-centering from none (elastic-plastic) to zero energy 

dissipation (bilinear elastic). 

9.1 Characterizing the Self-Centering Hysteretic Response 

The self-centering hysteretic behavior is established in the context of the controlled 

rocking system which can be decoupled into the two main components discussed in 

Chapter 3: the post-tensioned frame and the fuses.  The general form of these two main 

system components which are a precompressed element that creates a restoring force and 

an energy-dissipating component, are universal to almost all of the self-centering systems 

found in the literature. 

Figure 9.1a shows the bilinear elastic response of the restoring force element that 

deforms elastically with a stiffness, Krf, until the gap opening force, Frf, is attained, after 

which the reduced stiffness, αKrf, of the system is attributed to effects such as the increase 

in post-tension force as the post-tensioning strands elongate.  Figure 9.1b shows the 

idealized energy-dissipation component as a bilinear elastic-plastic hardening hysteretic 

response with initial stiffness, Ked, up to a yield force of Fed, after which there is a post-

yield stiffness of αKed.  For simplicity, the energy-dissipating element is assumed to 

exhibit kinematic hardening with the same hardening ratio as the ratio of the two elastic 
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stiffnesses for the restoring force element.  Although this was found to approximately 

represent the experimental response of large-scale controlled rocking frames, this may 

not represent all self-centering systems. 

The combined response, shown in Figure 9.1c, is the result of the two components 

acting in parallel.  The combined hysteretic response is characterized by three stiffnesses, 

Ko, Ky, and K2, a system yield force, Fy, and a self-centering coefficient, β, which 

describes the height of the flag shape relative to the yield force.  The strength of the 

system and the self-centering coefficient are related to the component variables as given 

in Equation (9.1) through Equation (9.5).  The correlation between the self-centering 

coefficient, β, and the self-centering ratio, SC, as defined and used in other chapters, is 

given in Equation (9.6). 
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Figure 9.1 Response of a Typical Self-Centering System: (a) Gap Opening Element, (b) 

Energy-Dissipating Element; (c) Combined Gap Opening Element and Energy-Dissipating 

Element; (d) Compared to Experimental Response. 
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Although there are many examples of using the two components in parallel in the 

development of self-centering systems (e.g. Palermo 2007, fib 2003), the parametric 

studies found in the literature more commonly use an idealized flag-shape (e.g. 

Christopoulos et al. 2002, Christopoulos et al. 2003, Pampanin et al. 2003, Seo and Sause 

2005).  There are several advantages of using the flag-shaped hysteretic behavior built 

from components rather than using an idealized flag-shape.  The combined response 

more accurately represents the changes in stiffness including the reduction in stiffness 

experienced in the second cycle due to the energy-dissipating element already being at 

yield force as represented in Figure 9.1b and Figure 9.1c by dotted lines.  These changes 

in stiffness are demonstrated in the experimental system response shown in Figure 9.1d.  

Furthermore, the range of self-centering characterized by the coefficient β, can be varied 

between 0 and 2 to represent the entire range between bilinear elastic response (no energy 

dissipation component) to bilinear elastic-plastic (no self-centering component) as shown 

in Figure 9.2. 

However, it is important to note that for some types of self-centering systems 

including this one, the configuration and method of implementing energy dissipation and 

restoring force may dictate the practical range of the self-centering coefficient, β.  

Limitations can occur if the action of the self-centering system depends on the restoring 

force element being stronger than the energy dissipating element.  For instance, the 

particular configuration shown for the controlled rocking system in Figure 9.1 requires 

that initial post-tensioning force in each frame be larger than the yield capacity of the 

fuse elements to prevent a deformation mode in which the entire back frame uplifts.  

However, alternate configurations of this system that separate the two components can 

allow the full range of β. 
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Figure 9.2 Shapes of Hysteretic Response for Different Values of β 

9.2 Ambient Building Resistance 

Ambient building resistance is used here to mean the lateral load-deformation response of 

portions of a building that are not typically included in the structural model.  Although 

considered in damping, they are widely neglected in structural modeling because the 

added stiffness and strength are considered beneficial to seismic response and their effect 

is highly variable depending on the types of material, detailing, and construction.  By the 

inclusion of these elements in the study described herein, it is not suggested that ambient 
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building resistance should be included explicitly in the design process.  Instead, these 

elements are considered here to investigate the positive and negative effects that ambient 

building resistance has on residual drifts, as well as other response indices, to illuminate 

the proportioning of self-centering seismic force resisting systems that can reliably 

eliminate residual drifts.  Although it may not be advisable to rely on the highly variable 

elements of ambient building resistance in cases where they reduce residual drifts, the 

negative impacts of these elements on residual drifts should be considered. 

A non-inclusive list of building elements that contribute to ambient building 

resistance includes interior partitions, simple shear beam-to-column connections, stair 

stringers, hysteretic behavior of horizontal diaphragms including floor coverings and 

ceilings, mechanical systems, and exterior cladding such as precast concrete panels, 

stucco, brick, glass curtain walls or other material. 

Masonry infill walls and stair stringers that are rigidly tied into the structure can 

significantly alter the seismic response of a building.  To achieve expected seismic 

response, these elements can be detailed not to transfer lateral loads and therefore are not 

incorporated in this investigation.  It is expected that the interior partitions and simple 

shear beam-to-column connections will dominate the ambient building response and are 

thus included in this study.  Although future work will explicitly include exterior 

cladding, for simplicity, it is assumed that exterior cladding has a similar load-

deformation response as the interior partitions.  Since this study was developed in the 

context of steel-framed buildings, the beam-to-column connections considered are typical 

of steel framing and commercial partition construction is assumed, consisting of gypsum 

board over metal stud infill framing. 

9.2.1 Interior Partitions 

A review of experimental research reveals many factors that influence the shear 

resistance of interior partitions including wall geometry, gypsum wall panel thickness and 

orientation, construction quality and finishing, fastener spacing, uplift anchorage, and 

stud framing.  However, four general types of partition construction were identified, and 

are listed in Table 9.1, which separate levels of shear wall action in the gypsum panels. 
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Table 9.1 General Categories of Interior Gypsum Board on Metal Stud 

Construction 

 Gypsum Board Category Description 

1 

No connection between the gypsum board panels or the metal studs to the 

bottom track (Blume 1966, Blume 1968, Freeman 1971, Rihal 1980); the 

shear transfer is due solely to friction 

2 

The studs are attached to the track with either rivets or screws, but the 

gypsum board panels are not attached to top or bottom track (Blume 1966, 

Blume 1968, Freeman 1971); some amount of shear wall action is realized 

3 

The studs and gypsum board panels are attached to the top and bottom tracks 

(Adham 1988, Gad et al. 1999, Serrette and Ogunfunmi 1996, Serrette et al. 

1997, Tarpy 1980, Tarpy 1984); the gypsum board has fasteners along the 

perimeter of each panel resulting in full shear wall response 

4 Combination of gypsum board and diagonal steel straps (e.g., Adham 1988) 

 

Although interior partitions found in practice demonstrate many variations, the 

objective here is to calibrate an SDOF oscillator to represent the resistance of typical 

interior partitions.  Type 3 interior partitions were considered representative of typical 

construction and were used in this study.  Test specimen 1 from Adham (1988) and Stage 

2 EW Racking Test from Gad et al. (1999) were used for calibration.  Both experimental 

specimens were approximately 2.4m x 2.4m (8’x 8’) panels with two gypsum board faces 

attached with screws around the perimeter. 

A calibration of the pinching4 material in OpenSees (Mazzoni et al. 2006) , which 

can reproduce a pinched hysteretic response with four points along the backbone curve, 

cyclic stiffness degradation, and strength degradation, was conducted by defining an 

average backbone curve with reloading rules to simulate the experimental strength and 

stiffness degradation.  Strength and stiffness degradation due to screw hole elongation, 

resulting slip in the connections, and cracking of the gypsum wall panels are an important 

feature of interior partition response.  The calibrated response is shown with the 

experimental response from Gad (1999) and Adham (1988) in Figure 9.3. 
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(a)      (b) 

Figure 9.3 (a) Calibrated Partition Response Shown with Experimental Response 

from Gad (1999); (b) Calibrated Partition Response Shown with Experimental 

Response from Adham (1988) 

9.2.2 Simple Shear Beam-to-Column Connections 

The type of building being examined in this study is intended to represent a typical steel-

framed structure with concrete on metal deck floor system.  Relatively limited data is 

available on the cyclic response of simple shear beam-to-column connections with 

concrete slabs.  One of the most extensive testing programs on these types of connections 

was conducted by Liu and Astaneh (2000).  The experimental curve from Liu and 

Astaneh (2000) shown in Figure 9.4 is the moment at the centerline of the column due to 

the connections on both sides.  Thus the response is relatively symmetric and was 

assumed to be so in the calibration, since the connection on one side is in positive 

bending while the connection on the other side is in negative bending.  

Test specimens 6A (lightweight concrete) and 6B (normal weight concrete) were 

used to calibrate a computational model representing W24x55 beams connected to a 

W14x90 column each using six 22 mm (7/8”) diameter A325 bolts through 9.5 mm 

(3/8”) thick shear tabs.  Figure 9.4 shows the representative response of the rotational 

spring using the pinching4 material as defined in OpenSees compared to Specimen 6B of 

Liu and Astaneh (2000).  The calibrated peak moment is within 5% of the peak moments 

from Specimen 6A and 6B.  The experimental response is distinguished by a significant 

loss of moment capacity when the slab cracks and crushes, leading to complete loss of 

slab participation by 0.04 radians rotation.  At larger rotations, the beam flange begins to 

bear on the column flange resulting in the increase in moment capacity shown in Figure 

9.3(b) after 0.08 radians.  As shown in Figure 9.4, the loss of slab participation is 

captured in the calibrated model, but flange bearing was neglected because the 

computational study did not produce such large rotations. 
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Figure 9.4 Calibrated Beam-to-Column Connection Response Shown with 

Experimental Response from Liu and Astaneh (2000) 

 

The calibrated moment-rotation relationship was converted to a force-deformation 

response by assuming that the beams and columns are rigid relative to the rotational 

springs as shown in Figure 9.5.  The resulting relationships are given in Equation (9.7) 

and Equation (9.8). 

 
1tanH          (9.7) 
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Figure 9.5 Conversion of Rotational Spring Moment-Rotation Relationship to 

Force-Deformation 

9.3 Description of Analyses 

This section describes how the calibrated computational elements representing ambient 

building resistance were amplified to represent the load-deformation response of 

complete prototype buildings and then simplified into an SDOF system.  Time history 

analyses are then detailed; these were conducted using 17 ground motions and a range of 

parameters to examine their effect on system response. 
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9.3.1 Prototype buildings 

In order to develop context for using the calibrated elements of ambient building 

resistance, four prototype buildings were chosen.  The prototype buildings are shown in 

Figure 9.6 and include 3-story, 6-story, 9-story, and 12-story buildings.  The buildings all 

have 3.96m (13’) story heights, use the same floor plan, and have a seismic force 

resisting system along two portions of the perimeter in each coordinate direction, which 

leads to the tributary floor area and tributary floor mass shown in Figure 9.6 for a typical 

seismic force resisting system along the 36.6m (120’) side. 
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Figure 9.6 Plan and Elevation of Buildings Used in the Parametric Study 

 

The seismic force-resisting system is proportioned using an equivalent lateral 

force type procedure (ASCE 7-05 2005).  The yield force of the equivalent SDOF system, 

Fy, is set equal to the design spectral acceleration, Sa, multiplied by the seismic dead load, 

divided by the response modification factor, R, as given in Table 9.5.  As described in a 

subsequent section, the design spectral acceleration is based on a location in Los Angeles, 

CA with site class D.  The response modification factor, R, is varied between 10, 8, 6, 

and 4 in the parametric study and the ratio of restoring force to energy dissipation, β, is 

varied between 0 and 2.0.  Only the restoring force component and the energy dissipating 

component are considered in the design resistance of the system. 

The ratio of the energy dissipating components stiffness to the total stiffness of 

the lateral force resisting system, Kratio, was varied between 0.25 to 0.9 as given in Table 

9.5 and shown in Figure 9.1.  The post-yield stiffness ratio, α, was varied between 0 and 

0.05 as given in Table 9.5 and shown in Figure 9.1.  P-Δ effects were not explicitly 

considered in this study.  If desired, however, the post-yield stiffness ratio, α, can be 

reduced to approximate the destabilizing effect of P-Δ moments.  The stiffness reduction 

can be approximated, for example, by multiplying the effective SDOF mass given in 

Table 9.2 by the acceleration of gravity and dividing by the effective height of the SDOF 

system.  The reduction in the post-yield stiffness ratio calculated in this way was found to 

be between 0.002 and 0.008 for the range of prototype buildings from 3-story to 12-story. 

The resistance of partitions and simple shear beam-column connections was 

extrapolated to represent the cumulative resistance for an entire floor in the prototype 
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building.  The partition wall backbone curve was first adjusted to account for the 

difference between the prototype building floor height and test specimen height by 

multiplying the backbone curve displacements by the ratio of heights, 3.96m / 2.4m 

(13’/8’).  This might represent a wall in which the gypsum board does not extend above 

the ceiling level, but there is still adequate shear transfer between the wall and the 

diaphragm above.  To account for longer and multiple partition walls, the forces in the 

backbone curve were then amplified as given in Equation (9.9) to account for the 

parameter ρwall, which is the density of interior partition walls in units of length per floor 

area.   

The calibrated response of the simple shear beam-to-column connection was 

converted to a lateral force vs. displacement relationship by assuming that the beams and 

columns are rigid relative to the connection.  To account for multiple bays of connections, 

the forces in the backbone curve were then amplified as given in Equation (9.10) by the 

parameter Nbc which is the number of tributary bays of simple shear beam-to-column 

connections.  This is demonstrated in Figure 9.7. 
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Figure 9.7 Amplifying the Response of One Element to Represent the Entire Floor 

 

Equation (9.9) and Equation (9.10) use the terms Fi-p and Fi-bc, which are the i
th

 

ordinate of force along the backbone for partion walls and beam-column connections, 

respectively.  Fia-p and Fia-bc are the adjusted values to represent an entire floor and A is 

the tributary floor area given in Figure 9.6. 

The resulting load-deformation responses for a single floor were then extrapolated 

to represent the entire multistory prototype buildings.  To determine the appropriate scale 

factor, a base shear, V, was applied to a multistory simplified model in proportion to the 

first mode shape.  Assuming that all stories have the same stiffness, Kfloor, the resulting 

roof displacement was calculated as a coefficient, dtop, multiplied by the base shear, V, 

divided by Kfloor as given in Equation (9.11).  The values for dtop are summarized in Table 

9.2. 
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K
    (9.11) 

If it is assumed that each floor experiences approximately the same interstory 

displacement history such that the secant stiffness, Kfloor, is the same for all floors and 

that all floors experience approximately the same force, V, Equation (9.11) can be 

converted into a relationship between the roof displacement and floor displacement as 

given in Equation (9.12).  Figure 9.8 demonstrates this type of condition.  Using Equation 

(9.12), the displacement coordinates on the backbone curves were amplified by the factor 

dtop to account for multiple stories. 

 roof top floord    (9.12) 
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Figure 9.8 Amplifying the Response of One Floor to Represent Multiple Floors 

9.3.2 Simplifying the System to SDOF 

After extrapolating the response of individual partition wall and beam-to-column 

elements to represent the resistance of an entire building, the load-deformation response 

and related tributary mass of the prototype building were then converted into an 

equivalent SDOF system.  It is noted, however, that there are inherent limitations in using 

an SDOF model to represent the nonlinear response of an MDOF system.  The method 

used herein assumes that the distribution of deformations along the height of the structure 

is uniform.  Although the rocking structures previously described are designed to have 

elastic frames and thus resist significant concentration of inelastic deformations or soft 

story mechanisms, this is not the case for all self-centering systems.  Also, the derivation 

below is based on the first mode response.  In structures that experience inelasticity that 

is not uniform along the height of the building, the first mode shape changes thus 

changing the effective height of the SDOF system.  Varying the SDOF effective height is 

not included in this SDOF representation. 

The MDOF system was simplified into an SDOF model by isolating the first 

mode response as is used in the capacity spectrum method (e.g., Fajfar 1999).  The 

equation of motion of an MDOF system is given in Equation (9.13).  The decoupled 
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equation of motion for the first mode is given in Equation (9.14) using the modal 

participation factor given in Equation (9.15) where q1 is the 1
st
 mode response, 1  is the 

modal participation factor, and f1 is the 1
st
 mode shape normalized to 1.0 at the roof. 
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The equivalent single degree of freedom (SDOF) system consists of an equivalent 

mass, msdof, given in Equation (9.16) and a set of equivalent load-deformation responses.  

The roof drift vs. base shear response is scaled to represent the first mode response using 

Equation (9.17) and Equation (9.17), and the response indices are inversely scaled after 

the analysis was completed.  The resulting modal participation factors and SDOF masses 

are tabulated in Table 9.2.   
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Table 9.2 Summary of Masses, Periods, and Initial Stiffnesses 

Number of 
Stories, n 

dtop 1 
MSDOF       

kg 
(kip-sec2/in) 

Assumed 
Initial 

Period, To 

Ko 
kN/mm 
(k/in) 

3 2.25 1.22 1.08x106 (6.14) 0.3 sec 
648 

(3700) 

6 4.15 1.26 
1.98x106 
(11.33) 

0.6 
324 

(1850) 

9 6.05 1.27 
2.89x106 
(16.52) 

0.9 
216 

(1233) 

12 7.96 1.27 
3.81x106 
(21.73) 

1.2 
162 

(925) 
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9.3.3 SDOF System and Analyses 

The initial stiffness of the flag-shaped system, Ko, as shown in Figure 9.1c, was 

calculated so that the elastic natural period would be equal to 0.1n, where n is the number 

of stories.  The elastic period and initial stiffness are given in Table 9.2.  The rest of the 

self-centering hysteretic response was parameterized using variables described in Figure 

9.1 and Table 9.5. 

Typical damping values used in time history analyses include consideration for 

nonstructural elements such as interior partitions and simple shear beam-to-column 

connections.  Because those elements are modeled explicitly here, a reduced amount of 

damping is appropriate.  Damping was implemented using Rayleigh damping to impose 

1% damping at the fundamental period and at 3 times the fundamental period. 

The resulting SDOF system used in the computational analyses has three 

nonlinear hysteretic springs that represent the simple shear beam-to-column connections, 

Fbc, the partition walls, Fp, and the self-centering system, Fsc which is the sum of the 

restoring force component, Frf, and energy-dissipating, Fed component.  This 

configuration is shown schematically in Figure 9.9.  The equation of motion given in 

Equations (9.19) and Equation (9.20) was solved using OpenSees with the Newmark-beta 

constant acceleration time integration method. 
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Figure 9.9 SDOF Computational Model Used in the Parametric Study 
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9.3.4 Ground Motions 

Time history analyses were performed using ground motions that were taken from the 

large magnitude, short range (LMSR-N) group defined in Medina (2002).  Scale factors 

were computed to match the spectral acceleration at one second for a design spectrum 

that was based on a site in Los Angeles, California with site class D.  One second design 

spectral accelerations were 0.90g and 0.60g for the hazard level that has 2% probability 

of exceedance in 50 years and the 10% in 50 years event, respectively.  Ground motions 

that required a scale factor greater than 4.0 for the 2% in 50 years event were discarded, 

leaving 17 ground motions.  The resulting group of ground motions includes records with 

source distance between 13 km and 37 km and soil shear wave velocities between 192 

m/s and 425 m/s.  The design spectrum parameters are given in Table 9.3, and the list of 
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ground motions is included in Table 9.4.  Response spectra for the set of ground motions 

are shown in Figure 9.10 as scaled for the hazard level with 2% probability of exceedance 

in 50 years. 

 

Table 9.3 Parameters for Each of the Hazard Levels Considered 

Parameter 2% / 50 Yrs 10% / 50 Yrs 

Short Period Spectral 
Acceleration, SS 

1.5g 1.0g 

One Second Period Spectral 
Acceleration, S1 

0.90g 0.60g 
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Figure 9.10 Ground Motion Spectra for the Hazard Level that Has 2% Probability of 

Exeedance in 50 Years 



 205 

 

Table 9.4 Ground Motion Records Used in the SDOF Computational Study 

Mat-
lab # Record Event Year Station Direction 

R 
(km) 

PGA 
(g) 

Scale 
Factor 

for 
10% in 

50 

Scale 
Factor 
for 2% 
in 50 

1 IV79chi 
Imperial 

Valley 
1979 Chihuahua 012 28.7 0.270 2.13 3.20 

2 IV79qkp 
Imperial 

Valley 
1979 Cucapah 085 23.6 0.309 1.78 2.68 

3 LP89cap Loma Prieta 1989 Capitola 090 14.5 0.443 2.14 3.22 

4 LP89g03 Loma Prieta 1989 Gilroy Array #3 090 14.4 0.367 1.58 2.38 

5 LP89g04 Loma Prieta 1989 Gilroy Array #4 090 16.1 0.212 1.76 2.64 

6 LP89hch Loma Prieta 1989 
Hollister City 

Hall 
090 28.2 0.247 1.18 1.77 

7 LP89hda Loma Prieta 1989 
Hollister 

Differential 
Array 

255 25.8 0.279 1.09 1.63 

8 LP89svl Loma Prieta 1989 
Sunnyvale – 
Colton Ave 

270 28.8 0.207 2.31 3.47 

9 NR94cnp Northridge 1994 
Canoga Park – 
Topanga Can. 

196 15.8 0.420 1.19 1.78 

10 NR94hol Northridge 1994 
LA – Hollywood 

Stor FF 
090 25.5 0.231 2.58 3.88 

11 NR94stc Northridge 1994 
Northridge – 

17645 Saticoy 
St. 

090 13.3 0.368 2.07 3.10 

12 SH87icc 
Superstition 

Hills 
1987 

El Centro Imp. 
Co. Cent 

000 13.9 0.358 1.94 2.91 

13 SH87wsm 
Superstition 

Hills 
1987 

Westmorland 
Fire Station 

090 13.3 0.172 2.44 3.67 

14 LP89slc Loma Prieta 1989 
Palo Alto – SLAC 

lab 
270 36.3 0.194 1.08 1.63 

15 NR94cen Northridge 1994 
LA – Centinela 

St. 
245 30.9 0.322 1.75 2.63 

16 NR94lh1 Northridge 1994 Lake Hughes #1 000 36.3 0.087 2.56 3.84 

17 NR94stn Northridge 1994 LA – Saturn St 020 30.0 0.474 1.64 2.46 

 

9.3.5 Parameters and Response Indices 

Eight parameters are varied as part of this study.  The parameters, their range, and a 

description are provided in Table 9.5. 



 206 

 

Table 9.5 Parameters Varied in the Computational Study 

 Parameter Name Range of 
Values 

Description / Comment 

1 Response 
Modification 
Factor 

R 10, 8, 6, 4 
a sdof

y

S g m
R

F
  

Higher R means 
Weaker Lateral 
Resisting System 

2 Flag-Shape 
Height Ratio 

 0, 0.25, 0.5 
0.75, 1.0, 
1.25, 1.5, 
1.75, 2.0 

See 
Figure 

9.1 

0 means Elastic Bilinear,  
1.0 means Full Flag Shape,  
2.0 means Elastic Perfectly Plastic 

3 Partition Wall 
Density 

ρwall 0, 0.1, 0.16, 
0.33 

Units of m of wall / m2 of 
floor area 

Area = 1003 m2 per 
floor 

4 Number of 
Tributary  Bays of 
Connections 

Nbc 0, 14, 31, 48 Floor plan in Figure 9.6 
with 9.14m bays has 

Nbc=14 

For column spacing of 
4.57m in each 

direction, Nbc=48 

5 Number of 
Stories 

Nflr 3, 6, 9, 12 See Figure 9.6 

6 Stiffness Ratio Kratio 0.25, 0.5, 
0.75, 0.9 

Ratio of Energy 
Dissipating Stiffness to 

Total Stiffness 

See Figure 9.1, Kratio 
= Ked / Ko, Krf = (1-

Kratio) Ko 

7 Post-Yield 
Stiffness Ratio 

α 0, 0.01, 
0.025, 0.05 

Ratio of Post Yield Stiffness to 
Initial Stiffness 

See Figure 
9.1 

8 Ground Motion 
Intensity 

Igrnd 10% in 50 
years, 2% in 

50 years 

Mean and Mean + One Standard Deviation are 
Considered 

 

Four response indices were examined in this study including residual roof drift 

ratio (the primary index of interest in this study), peak roof drift ratio, ductility demand, 

and hysteretic absorbed energy.  As the oscillations had not fully damped out by the end 

of the ground motion, the time integration was carried out for an additional 30 to 120 

seconds depending on the ground motion, with zero ground acceleration.  The drift was 

averaged over this time and used as the residual drift.  The ductility demand was 

calculated as the peak displacement divided by the displacement at which the energy-

dissipating element yielded.  Absorbed hysteretic energy was calculated as the 

cumulative area within the traced load-deformation response. 

Acceptable residual drifts were determined using the out-of-plumb limits for new 

steel construction outlined in the AISC Code of Standard Practice (AISC 2005).  The 

maximum out-of-plumbness of an individual element is the length over 500, or 0.2%.  

However, limits are also placed on the total out-of-plumbness to restrict cumulative 

tolerances.  The maximum cumulative out-of-plumbness is 25 mm (1”) toward the 

building line, and since the residual drift will always be toward a building line on one 

side of the building, the maximum limit of 25 mm (1”) is used.  The resulting proposed 

limits on residual roof drift ratios are 0.2%, 0.1%, 0.07%, and 0.05% for the 3-story, 6-

story, 9-story, and 12-story buildings respectively.  These limits are given in Table 9.6 

and shown as thick dashed lines in Figure 9.14, Figure 9.15, and Figure 9.16 . 
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Table 9.6 Residual Drift Limits Based on the AISC Code of Standard Practice 

Building 
Height 
m (in) 

L/500 
mm (ft) 

Out- of- 
Plumbness Limit 

mm (ft) 
Effective Limit 

mm (ft) 

Residual 
Drift Ratio 

Limit 

3 Story 11.89 (468”) 23.9 (0.94”) 25.4 (1”) 23.9 (0.94”) 0.2% 

6 Story 23.77 (936”) 47.5 (1.87”) 25.4 (1”) 25.4 (1”) 0.1% 

9 Story 35.66 (1404”) 71.4 (2.81”) 25.4 (1”) 25.4 (1”) 0.07% 

12 Story 47.55 (1872”) 95.0 (3.74”) 25.4 (1”) 25.4 (1”) 0.05% 

 

9.4 Results and Discussions 

Thousands of individual analyses were performed to examine trends in system response.  

Two samples of computational runs are described and then results for groups of analyses 

are presented thereafter. 

9.4.1 Example Analyses 

A sample of the analyses is shown in Figure 9.11, Figure 9.12, and Figure 9.13.  A six-

story structure is chosen with an interior partition density, ρwall = 0.33 m/m
2
 (0.05 ft/ft

2
), 

Nbc = 31 bays of simple shear beam-to-column connections, lateral resistance based on R 

= 8, stiffness ratio, Kratio = 0.5, post-yield stiffness ratio, α = 0.01, and the 2% in 50 year 

hazard level scale factor applied to the 1989 Loma Prieta ground motion measured at the 

Hollister Differential Array.  For the six-story building, a limit on residual drifts of 0.1% 

is considered as described in the previous section.  Flag-shape height ratios of β = 0.5 and 

β = 1.5 were examined.  The resulting hysteretic response of the lateral resisting system, 

the simple shear beam column connections, and the interior partitions are shown in 

Figure 9.11.  The total response including ambient building resistance for both systems is 

shown in Figure 9.12, and the displacement histories are shown in Figure 9.13. 

The difference in the self-centering hysteresis is pronounced as the flag-shape 

height ratio is changed from a system with reserve self-centering capacity, β = 0.5, to a 

system without full static self-centering capability, β = 1.5.  As shown in Figure 9.11b, 

the self-centering lateral system with β = 1.5 does not pass near zero displacement when 

the force is removed from the peak displacement.  This allows the possibility for 

significant residual drifts.  On the other hand, the greater hysteretic energy dissipation of 

the more full hysteretic response causes reduced drifts in general. 
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(a)  β = 0.5 (b)  β = 1.5

 

Figure 9.11 Comparison of Hysteretic Response for Each Element in the Analysis (a) 

Example Run with β = 0.5 (b) Example run with β = 1.5 

 

As expected, the ambient building resistance causes an increase in lateral 

resistance.  As shown in Figure 9.12a, a 25% additional force at yield and a 100% larger 

peak force were realized for this example when ambient building resistance was included.  

Also, as expected, the inclusion of partitions and beam-to-column connections increase 

hysteretic absorbed energy.  In general, the added stiffness, strength, and absorbed energy 

associated with ambient building resistance results in reduced peak drifts. 

However, after the ambient building resistance elements experience inelastic 

deformations, they also act to resist restoring forces.  Partitions develop significant 

resistance, but strength degradation depletes the majority of the resistance after the initial 

large displacement excursions.  Afterwards, the partitions behave similar to a weak 

friction damper.  The simple shear beam-to-column connections experience little 

inelasticity at these small drift levels which are less than 1% for this ground motion. 

One way to compare the efficacy of a self-centering system at eliminating residual 

drifts is to examine the range of possible residual drifts when the load is slowly removed 

from the points of maximum and minimum drifts.  The flag-shaped system shown in 

Figure 9.11a allows a range of ±0.045% drift at zero force, whereas the  system including 

ambient building resistance shown in Figure 9.12a allows a range of ±0.075% drift at 

zero force.  This range is labeled as full self-centering on Figure 9.12a because the 

restoring force can overcome the other components, thus not allowing residual 

displacement outside of this range.   Figure 9.13a shows that the final residual drift was 

found to be -0.01% drift for the sample system with β = 0.5. 
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Figure 9.12 Comparison of Hysteretic Response Including Ambient Building Resistance (a) 

Example Run with β = 0.5 (b) Example run with β = 1.5 

 

Unlike the fully self-centering system (β ≤ 1.0), the β = 1.5 system shown in 

Figure 9.11b does not restrict residual drifts to a small range when the load is removed.  

Drift levels as great as 0.5% were experienced at zero load, implying that for this 

configuration and ground motion, the largest possible residual drift is 0.5%.  However, 

the actual residual drift was found to be -0.085%.  In fact, besides three large 

displacement excursions, the majority of the drifts experienced at zero force were found 

to land between ±0.1% which is within the proposed limit on residual drift for the six-

story building.  This range is labeled as probabilistic self-centering on Figure 9.12b 

because there is a propensity for the residual drifts to land in this range.  The mechanism 

for this propensity to self-center is described in detail in a later section and is governed by 

an increased probability for the system to experience inelastic deformations in the 

direction toward zero displacement rather than away. 
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(a)  β = 0.5      (b)  β = 1.5 

Figure 9.13 Comparison of Displacement Histories (a) Example Run with β = 0.5 (b) 

Example run with β = 1.5 
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9.4.2 Effect of Hazard Level and System Strength 

The variables given in Table 9.5 were grouped into three parametric studies which are 

summarized in this section and the following two sections.  All of the parametric studies 

consider four building heights and all nine flag-shape height ratios, β.  The first study 

focuses on the hazard level and the strength of the system as given by the response 

modification factor, R.  For this study, the partition wall density was, ρwall = 0.16 m/m
2
 

(0.03 ft / ft
2
), there were Nbc=14 bays of simple shear beam-to-column connections 

tributary to the lateral resisting system, the self-centering element and the energy-

dissipating element had equal stiffness, Kratio=0.5, and the post-yield stiffness was α = 

0.01 times the initial stiffness, Ko.  Resulting peak drifts and residual drifts are shown in 

Figure 9.14 as a function of the amount of self-centering included in the system (). 

Figure 9.14 demonstrates that although the peak roof drifts increase significantly 

as the hazard level is increased from the 10% probability of exceedance in 50 years to the 

2% probability of exceedance in 50 years, the residual drifts remain negligible for 

buildings with flag shape height equal to 1.5 or smaller (β ≤ 1.5).  For the 2% probability 

of exceedance in 50 years earthquake event, one standard deviation above the mean 

results in residual drifts that are below the proposed limit for values of the flag-shape 

height factor of 1.5 or less (β ≤ 1.5).   

Figure 9.14 also shows that the residual drifts are quite small compared to the 

peak drifts even for systems with no self-centering component (β = 2.0).  This is in part 

due to the use of kinematic hardening with a positive post-yield stiffness as will be 

described in a subsequent section on the probabilistic mechanism for self-centering. 

Other trends shown in Figure 9.14, include that taller buildings were found to 

experience smaller roof drift ratios, although the proposed limits on residual roof drifts 

are also smaller.  For the three-story buildings, the lower system strength marked by 

higher response modification factors, R, exhibited slightly larger residual drifts for the 

structures with low self-centering capability, but generally did not have a pronounced 

affect on residual drift in other configurations.  As expected, the response modification 

factor instead had more correlation with the ductility demands, which are not shown in 

the figure. 

 



 211 

0

2.5

5

0

0.4

0.8

0

1.5

3

0 1 2
0

0.3

0.6

0 1 2 0 1 2 0 1 2

 
Figure 9.14 Peak Drift Ratios and Residual Drift Ratios for Parametric Study on Hazard 

Level and System Strength 

 

The effect of source distance was also investigated as shown in Figure 9.15 using 

the same parameters with the hazard level with 2% probability of exceedance in 50 years.  

The set of 17 ground motions were divided into a group referred to as near-source records 

consisting of 7 motions with distance less than 17 km, and a group referred to here as 

medium range records consisting of the other 10 ground motions between 17 km and 37 

km from the source.  As shown in Figure 9.15, ground motions recorded at closer 

distance to the source produce larger residual drifts although the effect is reduced as the 

building height and period are increased.  This is similar to the result found by Ruiz-

Garcia and Miranda (2005).  However, the trends in the residual drift for various levels of 

self-centering are similar for different source distances in that residual drifts are found to 

be below the proposed limit for values of β ≤ 1.5. 
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Figure 9.15 Residual Drift Ratios for Near Fault and Medium Range Ground Motion 

Records 

 

As described above for the example analyses and expanded upon in the next 

section, the elements of the ambient building resistance reduce peak drifts, but degrade 

after large cycles.  It is expected, therefore, that the sequence of large and small cycles 

will affect the way ambient building resistance effects residual drifts.  This added 

variability in the way that ambient building resistance affects residual drifts reinforces 

that it may not be advisable to rely on these elements for self-centering.  However, as 

stated previously, the possible negative effects of ambient building resistance should be 

considered. 

9.4.3 Effect of Ambient Building Resistance 

The second study focuses on the variation of the partition wall density and number of 

tributary simple shear beam-to-column connections.  As in the previous study, the 

number of stories and the flag-shape height ratio are varied.  The hazard level of the 

mean plus one standard deviation for the hazard level that has 10% probability of 

exceedance in 50 years is held constant as are the response modification factor of R=8, 

the ratio of energy-dissipating stiffness to total stiffness, Kratio=0.5, and the post-yield 

stiffness ratio of α = 0.01. 

Ambient building resistance was found to have two competing effects related to 

residual drifts.  First, the strength and stiffness of the system can be significantly 

increased with the addition of partitions and shear beam-column connections which leads 

to reduced peak drifts.  On the other hand, after becoming inelastic, these elements also 

resist the ability of the restoring forces to self-center the building. 

A transition is shown in Figure 9.16 as β and the number of beam-column 

connections, Nbc, increase.  At low values of β, more beam-column connections result in 
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larger residual drifts, but as β approaches 2, more beam-column connections cause a 

reduction in residual drifts.  This transition implies that in systems with little or no 

restoring force component, ambient building resistance helps limit residual drifts, but that 

ambient building resistance actually causes larger residual drifts in systems with 

significant restoring force components. 

By comparing the change in residual drifts with interior partition density 

(difference between the lines in Figure 9.16) to the change in residual drifts with beam-

to-column connections (difference between rows in Figure 9.16), it is shown that the 

beam-column connections have more effect on self-centering than the interior partitions.  

This point is further demonstrated by Figure 9.17, which shows the residual drifts for the 

three-story building with β = 1.5.  A clear increase in residual drifts with added beam-to-

column connections is found, whereas no clear trend is noted with partition wall density.  

In the example analyses results depicted in Figure 9.11, it is shown that the 

partitions present significant resistance on the first large excursion and then strength 

degradation depletes most of their resistance.  Although simple shear beam-to-column 

connections also reduce peak drifts, they do not experience the same amount of strength 

degradation and for that reason are shown to have more effect on the ratio of residual 

drift to peak drift.  The hysteretic absorbed energy shown in Figure 9.17 supports this 

point in that beam-to-column connections cause more significant increase in absorbed 

energy than interior partitions and therefore maintain a higher level of resistance to 

restoring forces. 

The ratios of residual drift to peak drift shown in Figure 9.17 isolates the negative 

impact of ambient building resistance by showing that increasing the density of partitions 

and number of shear beam-column connections results in an increase in residual drifts 

relative to the peak drift for the configuration shown.  However, the residual drifts shown 

in Figure 9.17 experience smaller increases and in some cases decreases in residual drift 

with increasing partition wall density.  That is because the peak drifts, also shown in 

Figure 9.17, decrease with increased ambient building resistance which leads to less 

magnitude of residual drift. 

It is shown that the prototype buildings still exhibited excellent self-centering 

capability even for large values of β.  For example, the floor plan included in Figure 9.6 

shows 14 bays of tributary beam-to-column connections, whereas the value of Nbc = 48 

represents column spacing of 15 feet in both directions.  Even with this large number of 

connections resisting the restoring forces, only the three-story buildings experienced 

residual drifts larger than the proposed limit when using β ≤ 1.5, and all configurations 

satisfied the proposed limits on residual drift when using β ≤ 1.33.  A flag shape height 

factor of β = 1.33 means proportioning restoring forces to have at least one-half the 

capacity of the energy-dissipating element as calculated using Equation (9.5) and is 

shown to reliably control residual drifts for all configurations considered herein. 
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Figure 9.16 Residual Drift Ratios for Parametric Study on Ambient Building Resistance 
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Figure 9.17 Residual Drift, Peak Drift, Ductility Demand, and Hysteretic Energy for the 

Three-Story Building with β = 1.5 

9.4.4 Effect of Stiffness Variations 

The third study focuses on the variation of the stiffnesses including the ratio of the 

energy-dissipating element stiffness to the total flag-shape stiffness, Kratio, and the post-

yield stiffness, α.  As in the previous studies, the number of stories and the flag-shape 

height ratio are also varied.  The hazard level of the mean plus one standard deviation for 

the 10% probability of exceedance in 50 years event is held constant as are the response 

modification factor of R=8, the partition wall density, ρwall = 0.16 m/m
2
 (0.03 ft/ft

2
), and 

number of tributary bays of simple shear beam-to-column connections, Nbc=14.  

Representative results for the stiffness study are shown in Figure 9.18 for the three-story 

building. 

The residual drifts were found to be sensitive to the post-peak stiffness, α, when 

the flag-shape height ratio becomes large such as shown for β=2.0 in Figure 9.18a.  This 

is due to the increase in probabilistic self-centering described in the following section.  

However, Figure 9.18a also shows that in the presence of a restoring force, β<2.0, the 

increase in post-yield stiffness does not have a significant effect on residual drift because 

they are already reduced to small amounts. 

Increasing the ratio of energy-dissipating stiffness relative to the system stiffness, 

Kratio, has the effect of increasing the residual drifts for all values of β as shown in Figure 

9.18b.  This effect is due to the change in shape of the hysteresis loops and the expansion 

of the range of possible residual drift even in fully self-centering systems.  For all values 

of Kratio and α considered, the residual drifts were found to be below the proposed limit 

for values of β less than or equal to 1.5. 
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Figure 9.18 Effect of Varying Stiffness on the Residual Drifts for the Three-Story Building 

9.4.5 Minimum Amount of Energy Dissipation Required 

The computational studies in this chapter consider system proportioning with no energy 

dissipating component ( =0).  The bilinear elastic force resisting system, as shown in 

Figure 9.2 does not possess the capacity to dissipate seismic energy.  The peak drifts in 

systems without energy dissipation are larger than the peak drifts of systems with 

comparable strength and stiffness that have energy dissipating components. 

Figure 9.19 and Figure 9.20 shows the peak roof drifts for the 3-story, 6-story, 9-

story, and 12-story buildings as subjected to the hazard level with 10% probability of 

exceedance in 50 years.  The models did not include ambient building resistance 

(partition wall density, ρwall = 0.0 m/m
2
 and number of tributary bays of simple shear 

beam-to-column connections, Nbc=0), used a response modification factor, R=8.0, a ratio 

of energy-dissipating stiffness to total stiffness, Kratio=0.5, and post-yield stiffness ratio of 

α = 0.01.  The peak roof drifts from each ground motion are shown along with the median, 

one standard deviation above the median, and one standard deviation below the median.  

The standard deviation is calculated as the standard deviation of the log of the peak roof 

drifts, assuming a lognormal distribution.  A dashed line is shown at 2% roof drift ratio 

which is the allowable story drift defined in ASCE 7-05 (2005) for general building 

structures not fitting particular requirements for building type or special occupancy 

categories. 

Figure 9.19 and Figure 9.20 show that the peak roof drifts are not very sensitive to 

the flag-shape height ratio in the range of 1.0 <  < 2.0.  It was also shown that the 

shorter buildings experience larger peak roof drift ratios.  The 3-story building exhibits 

median peak roof drift ratios that just start to exceed 2% for a value of the flag shape 

height ratio of  = 0.5.  This means that for the systems included in this study, a flag 

shape height ratio of  >0.5 (SC<3.0) produced peak roof drifts below the 2% peak roof 

drift limit in most cases, and on average for the  =0.5 configurations. 

 

α Kratio = Ked / Ko 

β β β β β β β β 
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Figure 9.19 Peak Drift Ratios for 3-Story and 6-Story Buildings Subjected to the 

10% in 50 Years Hazard Level with No Ambient Building Resistance 
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Figure 9.20 Peak Drift Ratios for 9-Story and 12-Story Buildings Subjected to the 

10% in 50 Years Hazard Level with No Ambient Building Resistance 

9.5 Mechanism of Probabilistic Self-Centering 

The example analyses presented in Section 9.4.1 provide anecdotal evidence that residual 

drifts are often less than the maximum possible residual drift computed as the drift 

achieved after load is slowly removed from the point of peak drift.  Furthermore, the 

parametric studies presented above show that systems with less than full self-centering, 

(β>1.0) can still reliably eliminate residual drifts.  Systems with less than full self-

centering do not prevent the possibility of residual drift by including enough restoring 

force to eliminate the drift at zero load.  The mechanism for this type of self-centering is 

governed by an increased probability that the system will experience inelastic 

deformations in the direction toward zero displacement rather than away from zero 
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displacement.  MacRae and Kawashima (1997) outlined this concept as applied to elastic-

plastic hardening systems using the term dynamic stability.  The phenomenon is found 

here to be especially effective when any restoring force is present.  The concept and the 

reason for this increased effectiveness are described and quantified below. 

Consider a self-centering system with restoring force that is less than the lateral 

force required to yield the energy-dissipating element.  A sample time history response of 

such a system with β = 1.5 and post yield stiffness ratio, α = 0.025 is shown in Figure 

9.21a.  The load-deformation response does not prevent the possibility of residual drift 

and as such does not exhibit near zero displacement when the force is removed. 

This system was subjected to all 17 ground motions scaled to the hazard level 

with 10% probability of exceedance in 50 years.  The force at each time step was 

recorded and converted into a histogram which was then normalized into the probability 

distribution shown in Figure 9.21b.  There are spikes in the probability distribution at 

flatter portions of the load-deformation response because the force occurrences are closer 

together on the force axis.  Using this distribution, the probability that the force will be 

above or below a particular level can be calculated directly as the area above or below 

that value. 

For example, at an initial value of drift ratio equal to 0.2%, it is shown in Figure 

9.21a that the corresponding negative yield force Fny and positive yield force Fpy are   -

0.42 Fy and +1.12 Fy respectively.  Figure 9.22a shows the corresponding probabilities 

that the force will be less than Fny, P(F<Fny) or greater than Fpy, P(F>Fpy), for any given 

time step are 34% and 14% respectively.  These probabilities are shown as dots on Figure 

9.22b along with the trends for these probabilities as they vary with initial drift ratio.  As 

shown in Figure 9.22b, at zero displacement, the probability of yielding in the positive 

direction is equal to that in the negative direction at 15%.  The probability of the force 

exceeding the positive yield force goes down with increasing drift ratio because the 

positive yield force becomes larger.  Similarly, the probability of the force being below 

the negative yield force increases as the negative yield force increases.  A sharp jump in 

the probability that the negative yield force will be exceeded is shown to occur at the drift 

at which the negative yield force experiences a sharp increase due to the restoring force 

contribution. 
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The probability that inelastic deformations will occur toward zero displacement 

rather than away can therefore be calculated using Equation (9.21).  As shown in Figure 

9.22b, this probability is 50% for zero displacement implying equal probability for 

inelastic deformations in each direction.  For the example starting at a drift ratio of 0.2% 

it is shown that there is a 71% chance that inelastic deformations will be toward zero 

displacement which is marked on Figure 9.22b by a dot. 
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 (9.21) 

These probability plots provide a quick method for gauging the propensity of a 

system to self-center.  Several trends are clear from the plot of five different systems that 

are compared in Figure 9.23.  Systems with a restoring force (β <2.0) component exhibit 

a significant positive jump in probability of inelastic deformations toward zero.  This 

jump occurs at the drift level in which the absolute value of the yield force in the 

direction of zero displacement decreases.  These changes in yield forces are demonstrated 

in the system shown in Figure 9.21a. 

Positive kinematic hardening also provides a propensity to self-center as the 

positive and negative yield forces transition uniformly due to the Bauschinger effect and 

the resulting retention of a constant elastic zone within the constitutive response.  

Isotropic hardening, on the other hand, has no effect on these probabilities, as the elastic 

zone expands such that neither the positive nor the negative yield forces are closer to zero.  

The trend that larger hardening slope causes a steeper rise in the probability that inelastic 

deformations will occur toward zero is clear in Figure 9.23.  It is also shown in Figure 

9.23 that an elastic-perfectly plastic system (β = 2.0, α = 0.0) exhibits no preference to 

self-center or diverge from zero displacement. 
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Figure 9.22 (a) Calculating the Probabilities for Inelastic Deformations in the Positive and 

Negative Directions  (b) Progression of the Probabilities with the Drift Ratio 
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Figure 9.23 Probabilities that Inelastic Deformations will Occur Toward Zero 

Displacement for Different Systems 

9.6 Conclusions From SDOF Investigation of Self-Centering 

Response 

As self-centering systems have gained in popularity in the past two decades, a need has 

developed not only to quantify the ability of these systems to eliminate residual drifts in 

the presence of ambient building resistance, but also to determine how much restoring 

force is required to provide reliable self-centering.  Time history analyses were conducted 

on four prototype buildings including the effects of ambient building resistance from 

partitions and beam-to-column shear connections within the steel gravity framing.  The 

sensitivity of system response to a range of parameters was examined with a special focus 

on residual drifts. 

Two modes of self-centering were discussed.  Full self-centering, utilizes a load-

deformation response that does not allow large displacements at zero force.  The second 

mode, referred to here as probabilistic self-centering, occurs when the yield force in the 

direction towards returning to zero displacement is less than the yield force in the 

opposite direction, creating a propensity for inelastic deformations to occur in the 

direction towards zero displacement (self-centering).  It was found that reliable self-

centering performance can be accomplished even with systems that exhibit load-

deformation response that allow large static displacements when load is removed. 

This conclusion is based on the examination of typical steel framed buildings 

designed using response modification factors between R = 4 and R = 10, gypsum clad 

steel stud interior partition walls with wall length per floor area between ρwall = 0 and ρwall 

= 0.33m/m
2
 (0.1 ft/ft

2
), considering between Nbc = 0 to Nbc = 48 bays of simple shear 

beam-to-column connections tributary to the lateral resisting system, building heights 

between 3 and 12 stories, ratios of energy dissipating stiffness to total stiffness between 

Kratio = 0.25 and Kratio = 0.9, and ratios of post-yield stiffness to initial stiffness between α 

= 0 and α = 0.05.  The derivation of SDOF response was also based on the assumption 
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that deformations will not concentrate in a single story.  Although experimental and 

computational studies have shown that deformations do not focus in single stories for the 

controlled rocking system, this may not be the case for all self-centering systems.  It was 

also assumed that the kinematic hardening ratio for the energy dissipating element was 

equal to the ratio of the two elastic stiffnesses of the restoring force element.  Although 

this approximates the experimental response of the controlled rocking system, this may 

not represent some self-centering systems. 

This study showed that typical gypsum interior partitions, although opposing 

restoring forces, also reduce peak drift and experience strength degradation such that they 

do not dramatically affect residual drifts.  Residual drift is more sensitive to simple shear 

beam-to-column connections because they do not experience as much cyclic strength 

degradation and thus retain their resistance to restoring forces.  However, while ambient 

building resistance alters the total hysteretic response, it does not neutralize the ability of 

a system to self-center in part because of probabilistic self-centering. 

Probabilistic self-centering, which is especially effective in the presence of even 

small amounts of restoring force, can significantly reduce residual drifts.  Using proposed 

limits on residual drifts based on new steel construction tolerances, it was determined that 

flag-shaped height ratios of β ≤ 1.5 (where β is the flag-shape height ratio (see Figure 9.2) 

can satisfy residual drift limits for most of the configurations considered herein when 

subjected to events scaled to the hazard level with 2% probability of exceedance in 50 

years or smaller.  Furthermore, β ≤ 1.33 can reliably (with confidence of one standard 

deviation above the mean) satisfy residual drift limits for all configurations considered in 

this study when subjected to the hazard level with 10% probability of exceedance in 50 

years.  This means that proportioning restoring forces to have at least one half the 

capacity of the energy-dissipating element can reliably control residual drifts if the 

building configuration is within the range of parameters studied herein, which are 

characteristic of a wide range of multi-story steel structures. 
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Chapter 10  
 

MDOF SENSITIVITY STUDY 

The experimental program validated that the controlled rocking system can satisfy the 

stated performance goals of eliminating residual drifts and concentrating structural 

damage in fuse elements.  The experimental results were used to inform the development 

of a computational model which was then used to examine a much wider range of 

configurations. The development of the computational model was described in Chapter 6.  

This chapter presents a parametric study that investigates the behavior of the controlled 

rocking system as applied to a range of buildings with a range of input parameters. 

10.1 Introduction 

The sensitivity study consisted of seventeen configurations that included three different 

building heights.  Nonlinear time history analyses were conducted on a 2D model of each 

configuration with twenty-two ground motions scaled to four different hazard levels.  A 

total of 1496 analyses were executed.  Nonlinear static analyses were also conducted on 

each configuration to obtain initial stiffnesses and associated periods.  There were several 

objectives of the sensitivity study including: 

 

 Further validate system performance by showing the ability to control 

residual drifts and concentrate structural damage in fuses for a range of 

configurations. 

 Demonstrate the effect of rocking by comparing the response of a fixed 

base braced frame to the rocking frame. 

 Investigate the effects of building height on system behavior (e.g., 

assessing dominance of the rocking mode as height increases). 

 Investigate possible limits on building height.  (e.g., shorter buildings have 

larger post-tensioning strain demand). 

 Investigate the effect of higher modes of vibration on member force 

demands and system behavior (included in Chapter 11). 

 Investigate the effect of the A/B ratio on system behavior and demands. 

 Investigate the impact of eliminating post-tensioning seating losses on 

system demand. 

 Investigate the ability of assumed design rules to create expected seismic 

performance. 

 Compare the response for configurations with struts between the frames to 

configurations with diaphragm elements that connect the beams in the 

controlled rocking frames. 
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There are several things the sensitivity study is not intended to include.  This 

study does not include the following: 

 

 This study is not intended to fulfill the requirements of ATC 63 (FEMA 

P695 2009).  The range of variables and configurations were not selected 

for this purpose, incremental dynamic analyses (IDA) were not performed, 

and the associated post-processing required to quantify seismic 

performance factors was not conducted. 

 One set of design rules was used for determining required system 

resistance, proportioning of the system, and designing the individual 

elements and frame members.  It was not the intent of this study to 

investigate different design strategies for this structural system. 

 It was not the intent of this study to investigate the collapse behavior of 

the system.  Although the inelastic response of key components is 

considered, behavior at fracture is not modeled. 

10.2 Configurations Included in the Study 

The configurations used in the sensitivity study are listed in Table 10.1.  Three building 

heights were included: three, six, and nine-story buildings.  The majority of the frames 

were dual frame configurations meaning they consisted of two rocking frames with fuses 

attached between them.  The majority of the frames also used diaphragm elements, which 

means that there were elastic truss elements connecting the midspan of one frame to the 

mispsan of the other frame.  This element simulates the constraint provided by a beam 

that is adjacent to the rocking frames that transfers diaphragm shear into the lateral force 

resisting system. 
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Table 10.1 Matrix Showing Configurations Included in the Sensitivity Study 

Analysis 
Number 

Number 
of Stories 

Dual vs. Single 
Frame 

Configuration 
A/B 

Ratio 
Fuse  

Slenderness SC 

Eliminate 
Seating 
Losses 

Strutural 
Configuration 

Bay 
Width 
m (ft) 

1 3 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

2 6 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

3 9 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

4 3 Dual 2.5 

Thick 
(L/t=22.4) 1.5 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

5 3 Single N/A 

Thick 
(L/t=9.1) 1.5 Yes 

Diaphragm 
Element 

6.10 
(20.0) 

6 6 Dual 2.5 

Thick 
(L/t=22.4) 1.5 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

7 6 Single N/A 

Thick 
(L/t=9.1) 1.5 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

8 3 Dual 1.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

9 3 Dual 3.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

10 6 Dual 1.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

11 6 Dual 3.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

12 and 13 are omitted 

14 3 Dual 2.5 

Thick 
(L/t=22.4) 0.75 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

15 6 Dual 2.5 

Thick 
(L/t=22.4) 0.75 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

16 3 Single N/A 

Thick 
(L/t=22.4) 1.5 No 

Diaphragm 
Element 

6.10 
(20.0) 

17 6 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Strut With No 
Tolerances 

9.14 
(30.0) 

18 6 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Strut With 
Tolerances 

9.14 
(30.0) 

19 6 Dual 2.5 

Thick 
(L/t=22.4) 1.1 Yes 

Diaphragm 
Element 

9.14 
(30.0) 

 

The configurations given in Table 10.1 were organized into eight studies that 

isolated one system variable for investigation.  Table 10.2, Table 10.3, Table 10.4, and 

Table 10.5 describe the individual studies including information about the parameters that 

were held constant for all configurations in that study. 
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Table 10.2 Description of the Height Study and the Strut Study 

Height Study Strut Study 

Height 
(Config. No.) 

Fixed Parameters Config. 
(Config. No.) 

Fixed Parameters 

3-Story (1) 
 Dual Frame 

 A/B = 2.5 

 Thick Fuse 
(L/t=22.4) 

 SC=1.1 

 Seating Losses are 
Eliminated 

 Diaphgram 
Element 

 9.14m (30’) Bay 

Strut Without Pin 
Hole Tolerances (17) 

 Six-Story 

 Dual Frame 

 A/B = 2.5 

 Thick Fuse 
(L/t=22.4) 

 SC=1.1 

 Seating Losses are 
Eliminated 

 9.14m (30’) Bay 

6-Story (2) 
Struts With Pin Hole 
Tolerances (18) 

9-Story (3) 
Diaphragm Elements 
(2) 

 

Table 10.3 Description of the A/B Ratio Study and the SC Ratio Study 

A/B Ratio Study Self-Centering Ratio Study 

A/B Ratio, Height 
(Config. No.) 

Fixed Parameters SC Ratio, Height 
(Config. No.) 

Fixed Parameters 

A/B=1.5 
3-Story (8) 

 Dual Frame 

 Thick Fuse 
(L/t=22.4) 

 SC=1.1 

 Seating Losses are 
Eliminated 

 Diaphgram 
Element 

 9.14m (30’) Bay 

SC=0.75 
3-Story (14) 

 A/B = 2.5 

 Thick Fuse 
(L/t=22.4) 

 Seating Losses are 
Eliminated 

 Diaphgram 
Element 

 9.14m (30’) Bay 

A/B=2.5 
3-Story (1) 

SC =1.1 
3-Story (1) 

A/B=3.5 
3-Story (9) 

SC =1.5 
3-Story (4) 

A/B=1.5 
6-Story (10) 

SC =0.75 
6-Story (15) 

A/B=2.5 
6-Story (2) 

SC =1.1 
6-Story (2) 

A/B=3.5 
6-Story (11) 

SC =1.5 
6-Story (6) 
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Table 10.4 Description of the Single Frame vs. Dual Frame Study 

Single Frame vs. Dual Frame Study 

Config. and Height 
(Config. No.) 

Fixed Parameters 

Dual Frame 
3-Story (4) 

9.14m (30’) Bay 

 A/B = 2.5 where 
applicable 

 Thick Fuse 
(L/t=22.4) 

 SC=1.5 

 Seating Losses are 
Eliminated 

 Diaphgram 
Element 

Single Frame 
3-Story (5) 

6.10m (20’) Bay 

Dual Frame 
6-Story (6) 

9.14m (30’) Bay 

Single Frame 
6-Story (7) 

9.14m (30’) Bay 

 

Table 10.5 Description of the PT Seating Losses Study and the Rocking vs. Fixed 

Base Study 

Eliminating PT Seating Losses Study Rocking vs. Fixed Base Study 

PT Seating Losses 
(Config. No.) 

Fixed Parameters Configuration 
(Config. No.) 

Fixed Parameters 

Seating Losses 
Eliminated 
(5) 

 Singe Frame 
Configuration 

 Three-Story 

 SC=1.1 

 Thick Fuse 
(L/t=22.4) 

 Diaphgram 
Element 

 6.10m (20’) Bay 

Uplifting Base 
(2) 
 

 Six-Story 

 Dual Frame 

 A/B = 2.5 

 Thick Fuse 
(L/t=22.4) 

 SC=1.1 

 Seating Losses are 
Eliminated 

 Diaphgram 
Element 

Seating Losses Not 
Eliminated 
(16) 

Fixed Base 
 (19) 
 

 

The buildings used were based on the floor plan of the three-story building from 

the SAC buildings as described in Gupta and Krawinkler (1999).  The floor plan, shown 

in Figure 10.1 is 4 bays by 6 bays with 9.14 m (30’) bay widths and 3.96 m (13’) floor 

heights.  The mass and gravity loads also match the three-story building from Gupta and 

Krawinkler (1999) and are given in Table 10.6.  As shown in Figure 10.1, the three-story 

building has two controlled rocking elements in each direction whereas the six-story and 

nine-story buildings have four controlled rocking elements in each direction.  

Overturning moments were calculated according to ASCE 7 (ASCE 2005) using seismic 

design category D and an assumed value for the response modification factor, R=8.0.  

Design information including the design overturning moments is included in Table 10.7. 
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Table 10.6 Masses and Weights for the Floor and Roof 

Level Seismic Mass, 
kN-sec2/m 

(kips-sec2/ft) 

Total Gravity 
Load,             kN 

(kips) 

Roof 1033 (70.9) 11,300 (2548) 

Floor 955.5 (65.5) 12,350 (2776) 

 

Table 10.7 Design Information for the Buildings 

 3-Story 6-Story 9-Story 

Number of Controlled Rocking 
Elements 

2 4 4 

Seismic Coefficient, Cs 0.125 0.125 0.106 

Force Per Frame, kN (kips) 3615 
(812.7) 

7135 
(1604) 

9034 
(2031) 

Design Overturning Moment Per 
Frame, kN-m (k-ft) 

16900 
(12465) 

30940 
(22820) 

57153 
(42154) 

 

3-STORY 6-STORY 9-STORY  
Figure 10.1 Building Plans and Elevations Used in the Sensitivity Study 
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10.3 Design of the Systems 

The design rules given in this section were used to proportion the components and design 

the elements of the controlled rocking system.  As part of the sensitivity study, these 

design rules were investigated for their ability to produce the expected performance.  The 

design rules presented here were subsequently adjusted based on the results of the 

sensitivity study and the resulting design recommendations are presented in Chapter 12. 

10.3.1 Proportioning the Initial Post-Tensioning Force and Fuse 

Capacity 

The controlled rocking system is proportioned based on strength and self-centering.  The 

factored design overturning moment per frame, Movt, was calculated in the previous 

section and presented in Table 10.7.  The overturning resistance of the controlled rocking 

system comes from fuse yield capacity, Vfp, initial post-tensioning force, Fpti, and dead 

load, PD, multiplied by their respective moment arms.  The equation that governs the 

strength check is given in Equation (10.1), and includes a resistance factor assumed to be 

=0.9.  The dead load, PD, is the load applied to the exterior columns of the frames which 

is assumed to be a tributary area of 9.14m x 4.57m (30’x15’) based on the assumed 

configuration shown in Figure 10.2. 

 

    0.9pti D fp ovtF P A V A B M     
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CONTROLLED 

ROCKING 

FRAMES

EXTERIOR 

WALL

PLATES TRANSFER 

DIAPHRAGM SHEAR 

BUT ALLOW UPLIFT  
Figure 10.2 Plan View of Floor Connection to Controlled Rocking Frames Assumed 

in the Sensitivity Study 

 

Proportioning the system for self-centering was one of the variables investigated 

as part of this study.  The self-centering ratio, SC, is given in Equation (10.2) as the ratio 

of the restoring forces divided by the forces resisting self-centering motion.  If the self-

centering ratio is greater than one, the hysteretic response will exhibit small drifts when 

the forces are removed. 
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The two relationships given in Equation (10.1) and Equation (10.2) are then used 

to proportion the required fuse capacity and the initial post-tensioning force.  Equation 

(10.3) gives the required fuse capacity based on the design overturning moment.  The 

proportioning and design of the fuse is carried out first so that any overstrength built into 

the fuse design can be accounted for in the proportioning of the post-tensioning.  

Equation (10.4) was used to calculate the required initial post-tensioning force to satisfy 

the specified self-centering ratio, SC, considering the actual supplied fuse shear capacity, 

Vfp. 
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10.3.2 Post-Tensioning Design 

Once the initial post-tensioning force is calculated, the number of post-tensioning strands 

was selected.  A lower bound on the initial post-tensioning stress was imposed at 20% of 

the nominal ultimate strength which is taken as 1862 MPa (270 ksi).  The experimental 

program used initial stresses as low as 28% of ultimate without any related problems. 

However it is advantageous to use the largest possible initial post-tensioning 

stress to reduce the number of strands required.  An upper bound on initial post-

tensioning strain was set to restrict the total post-tensioning strain to 0.85% when the 

frames undergo 2.5% roof drift ratio.  The first post-tensioning strand wire fracture 

occurred at 0.85% strain in the experimental program.  In this case, a simple closed form 

calculation was performed to assess the strain in the post-tensioning strands assuming 

rigid body rotation of the frames added to the initial strain.  A limiting roof drift ratio of 

2.5% was chosen because the parametric study discussed in the literature review (Hall et 

al. 2006) found a mean peak roof drift ratio of 2.5% when subjected to the hazard level 

that has 2% probability of exceedance in 50 years for most of configurations considered. 

Equation (10.5) describes the general rule adopted for selecting the initial post-

tensioning stress and Equation (10.6) includes the simplifying calculation of the post-

tensioning strain at 2.5% roof drift ratio based on rigid body rotation of the frames.  The 

number of 15 mm (0.6”) diameter post-tensioning strands was calculated using Equation 

(10.7) with AStrand = 140 mm
2 

(0.217 in
2
).  The resulting post-tensioning design 

information is given in Table 10.8. 
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Table 10.8 Post-Tensioning Design Information for Each Configuration 

Config- 
uration 
Number 

Initial PT Force, 
Fpti, 

kN (kips) 

Provided 
Number of 15 
mm Strands 

PT Area, 
mm2 (in2) 

Initial PT 
Stress / 

Fu 

1 2026 (455) 17 2380 (3.69) 0.46 

2 3613 (812) 20 2800 (4.34) 0.69 

3 7060 (1587) 36 5040 (7.81) 0.75 

4 2409 (542) 20 2800 (4.34) 0.46 

5 3139 (706) 54 7560 (11.72) 0.22 

6 4292 (965) 24 3360 (5.21) 0.69 

7 3394 (763) 33 4620 (7.16) 0.39 

8 2317 (521) 17 2380 (3.69) 0.52 

9 1906 (428) 16 2240 (3.47) 0.46 

10 4129 (928) 23 3220 (4.99) 0.69 

11 3378 (759) 19 2660 (4.12) 0.68 

12 and 13 are omitted 

14 1550 (348) 13 1820 (2.82) 0.46 

15 2744 (617) 16 2240 (3.47) 0.66 

16 3147 (707) 54 7560 (11.72) 0.22 

17 3613 (812) 20 2800 (4.34) 0.69 

18 3613 (812) 20 2800 (4.34) 0.69 

19 3613 (812) 20 2800 (4.34) 0.69 

 

10.3.3 Fuse Design 

The fuse design consists of selecting the thickness, t, link length, L, link depth, b, and 

number of links, Nlinks.  It was assumed that there were two fuses at each floor so the 

number of fuses, Nfuses, is equal to two times the number of floors.  The fuse yield force 

was assumed to be  fy=310MPa (45 ksi) for an A36 steel.  It was demonstrated in the 

experimental program that the fuses with L/t ratios of 22.4 did not buckle as they were 

displaced up to 19% shear strain across the link.  This ratio was used for most of the 

configurations.  The fuse design information is included in Table 10.9. 
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Table 10.9 Fuse Design Information for Each Configuration 

Config- 
uration 
Number 

Fuse Thickness,  
t, mm (in) 

Fuse Link 
Length, L,  
mm (in) 

Link Depth at 
Ends, b,  
mm (in) 

Number of 
Links Per 

Fuse, Nlinks 
Vfp Provided, 

kN (kips) 

1 31.8 (1.25) 711 (28) 107 (4.2) 4 1681 (378) 

2 31.8 (1.25) 711 (28) 102 (4.02) 4 3081 (693) 

3 31.8 (1.25) 711 (28) 113 (4.46) 4 5688 (1279) 

4 31.8 (1.25) 711 (28) 113 (4.45) 3 1416 (318) 

5 44.5 (1.75) 406 (16) 76 (3.01) 14 2468 (555) 

6 31.8 (1.25) 711 (28) 108 (4.25) 3 2583 (581) 

7 44.5 (1.75) 406 (16) 77 (3.02) 17 3017 (678) 

8 31.8 (1.25) 711 (28) 103 (4.06) 4 1571 (353) 

9 31.8 (1.25) 711 (28) 109 (4.28) 4 1746 (393) 

10 31.8 (1.25) 711 (28) 114 (4.48) 3 2870 (645) 

11 31.8 (1.25) 711 (28) 104 (4.09) 4 3189 (717) 

12 and 13 are omitted 

14 31.8 (1.25) 711 (28) 104 (4.11) 5 2013 (452) 

15 31.8 (1.25) 711 (28) 112 (4.4) 4 3691 (830) 

16 31.8 (1.25) 711 (28) 109 (4.28) 17 2474 (556) 

17 31.8 (1.25) 711 (28) 102 (4.02) 4 3081 (693) 

18 31.8 (1.25) 711 (28) 102 (4.02) 4 3081 (693) 

19 31.8 (1.25) 711 (28) 102 (4.02) 4 3081 (693) 

 

10.3.4 Designing Frame Members 

The frame was designed using a capacity design approach described in the following 

chapter.  As shown in Figure 11.34, the left frame in the dual frame configuration is 

designed and then the frame member sizes are mirrored for use in the right frame.  The 

maximum forces for the fuses were applied to the frame as shown on the right of Figure 

11.34.  The post-tensioning is considered as an elastic element in the frame model and the 

lateral loads are calculated to produce the maximum post-tensioning force, Fptu.  The 

calculation of the lateral load factor, , is given in Equation (11.5) for and Equation 

(11.6) for the dual frame configuration and Equation (11.7) for the single frame 

configuration. 

  Three different lateral load distributions, shown in Figure 11.34 and Figure 

11.35, were considered in an effort to capture the range of inertial load distributions that 

might control frame member design forces.  The approach used for designing the frame 

members in the sensitivity study was to use the worst case effects of load case IT1 and 

IT2 for column design and the worst case effects of load cases UT1, UT2, RL1, and RL2 

in brace and beam design.  The resulting axial forces, shear forces, and moments were not 
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amplified.  Member design checks for tension, compression, flexure, shear, and flexure-

axial interaction were conducted for all frame members using AISC 360-05 (2005). 

10.3.5 Resulting Designs for Each Configuration 

Five representative examples of the frame design and system proportioning are presented 

here in figure form.  Figure 10.3 shows the first three configurations which are three-

story, six-story, and nine-story examples of the dual frame configuration.  Figure 10.4 

shows two single frame configurations for the three-story building, and the six-story 

building.  The brace sizes for the single frame configuration are larger than those for the 

dual frame configuration because the post-tensioning force in the single frame is larger 

than the post-tensioning force in one of the dual frames.  It is also shown that the brace 

forces for the three-story frames are larger than the six-story or nine-story frames.  This is 

because the three-story building only used two frames in each direction, whereas the six-

story and nine-story buildings were designed using four frames in each direction. 
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Figure 10.3 Frame Designs for Configuration 1 (Left) Configuration 2 (Middle) and 

Configuration 3 (Right) 

 

The dual frame configurations shown in Figure 10.3 have the fuses located at the 

mid-height of each floor.  In this case, the fuses apply significant forces to the interior 

frame columns and require larger interior column section sizes as compared to 
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configurations with the fuses located at the floor lines.  However, depending on the floor 

construction, locating the fuses between the floors may allow easier replacement after 

larger earthquakes.  If floor construction allows access to the fuses at the floor line, it is 

suggested to locate the fuses at the floor level to optimize the frame design. 

W14X99

W14X120

W14X99

W
1

4
X

3
1

1

W
1

4
X

3
1

1

FUSES:

1 TOTAL

1.75" THICK

14 LINKS PER 

FUSE

L=16", b=3.0"

POST-

TENSIONING

54 - 0.6" ∅ 

Strands

Fpti=706 KIPS

Fpti=0.22Fptu

W14X61

W14X61

W14X61

W
1

4
X

2
3

3

FUSES:

1 TOTAL

1.75" THICK

17 LINKS PER 

FUSE

L=16", b=3.0"

POST-

TENSIONING

33 - 0.6" ∅ 

Strands

Fpti=763 KIPS

Fpti=0.39Fptu

W14X61

W14X82

W14X61

W
1

4
X

1
5

9

W
1

4
X

1
5

9

W
14

X
31

1

W
14

X
21

1

W
14

X
31

1

W
14X

311

W
14X

211

W
14X

311

W
14X193

W
14X120

W
14X82

W
14X82

W
14X82

W
14X211

W
14X193

W
14X120

W
14X82

W
14X82

W
14X82

W
14X211

W
1

4
X

2
3

3

 
Figure 10.4 Frame Designs for Configuration 5 (Left) and Configuration 7 (Right) 

 

10.4 Description of the Analyses 

10.4.1 Computational Model 

The computational model described in Chapter 6 was used for the sensitivity study with 

two modifications.  First leaning columns were included in the model as shown in Figure 

10.5.  The gravity loads and mass tributary to the controlled rocking frames were applied 

to the leaning column nodes.  Second, the majority of the analyses used a diaphragm 

element instead of struts.  This condition, which is shown in plan view in Figure 10.2, 

represents a floor beam adjacent to the rocking frame that connects to the rocking frame 

bean through a connection that is stiff in shear, but allows uplifting motion. 

The fuse model was the same as described in Chapter 6 and shown graphically in 

Figure 6.5.  The base springs and post-tensioning are also the same as described in 

Chapter 6. 
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Figure 10.5 Drawings of the Computational Model Used for the Sensitivity Study 

 

10.4.2 Ground Motions and Dynamic Analyses Parameters 

A subset of the ground motions from the ATC 63 project were used (FEMA P695 2009).  

One component of each of the twenty-two ground motion records was selected from the 

far field set.  The choice of which of the two horizontal components to use was made at 

random and the resulting set of ground motions is given in Table 10.10.  Scaling of the 

ground motions was conducted using the method recommended in FEMA P695 (2009).  

Ground motions were first normalized based on peak ground velocity with factors that 

are included in Table A-4D of FEMA P695 (2009).  Then, the median of the ground 

motion set was found by fitting a lognormal distribution to the spectral accelerations 

associated with each period.  The medians of the lognormal distributions were assembled 

into a median spectral acceleration which is shown in Figure 10.6.  Scale factors were 

calculated based on the ratio of the design spectral acceleration to this median spectral 

acceleration and the entire set of ground motions was scaled using the resulting scale 

factor. 
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Table 10.10 Ground Motion Information 

 
Earthquake Recording NEHRP Distance Component Recorded Normal- 

    
Station Site Closest Name PGAmax ization 

ID M Year Name Name Class to Plane Selected (g) Factor 

12011 6.7 1994 Northridge 
Beverly Hills - 

Mulhol 
D 17.2 

NORTHR/ 
MUL279 

0.52 0.65 

12012 6.7 1994 Northridge 
Canyon 

Country-WLC 
D 12.4 

NORTHR/ 
LOS000 

0.48 0.83 

12041 7.1 1999 Duzce, Turkey Bolu D 12 
DUZCE/ 
BOL000 

0.82 0.63 

12052 7.1 1999 Hector Mine Hector C 11.7 
HECTOR/ 
HEC090 

0.34 1.09 

12061 6.5 1979 
Imperial 

Valley 
Delta D 22 

IMPVALL/ H-
DLT352 

0.35 1.31 

12062 6.5 1979 
Imperial 

Valley 
El Centro Array 

#11 
D 12.5 

IMPVALL/ H-
E11230 

0.38 1.01 

12071 6.9 1995 Kobe, Japan Nishi-Akashi C 7.1 
KOBE/ 
NIS000 

0.51 1.03 

12072 6.9 1995 Kobe, Japan Shin-Osaka D 19.2 
KOBE/ 
SHI090 

0.24 1.10 

12081 7.5 1999 
Kocaeli, 
Turkey 

Duzce D 15.4 
KOCAELI/ 
DZC180 

0.36 0.69 

12082 7.5 1999 
Kocaeli, 
Turkey 

Arcelik C 13.5 
KOCAELI/ 
ARC000 

0.22 1.36 

12091 7.3 1992 Landers 
Yermo Fire 

Station 
D 23.6 

LANDERS/ 
YER270 

0.24 0.99 

12092 7.3 1992 Landers Coolwater D 19.7 
LANDERS/ 

CLW-LN 
0.42 1.15 

12101 6.9 1989 Loma Prieta Capitola D 15.2 
LOMAP/ 
CAP090 

0.53 1.09 

12102 6.9 1989 Loma Prieta Gilroy Array #3 D 12.8 
LOMAP/ 
G03000 

0.56 0.88 

12111 7.4 1990 Manjil, Iran Abbar C 12.6 
MANJIL/ 
ABBAR--T 

0.51 0.79 

12121 6.5 1987 
Superstition 

Hills 
El Centro Imp. 

Co. 
D 18.2 

SUPERST/ B-
ICC000 

0.36 0.87 

12122 6.5 1987 
Superstition 

Hills 
Poe Road 

(temp) 
D 11.2 

SUPERST/ B-
POE360 

0.45 1.17 

12132 7.0 1992 
Cape 

Mendocino 
Rio Dell 

Overpass 
D 14.3 

CAPEMEND/ 
RIO270 

0.55 0.82 

12141 7.6 1999 
Chi-Chi, 
Taiwan 

CHY101 D 10 
CHICHI/ 

CHY101-N 
0.44 0.41 

12142 7.6 1999 
Chi-Chi, 
Taiwan 

TCU045 C 26 
CHICHI/ 

TCU045-N 
0.51 0.96 

12151 6.6 1971 San Fernando 
LA - Hollywood 

Stor 
D 22.8 

SFERN/ 
PEL180 

0.21 2.10 

12171 6.5 1976 Friuli, Italy Tolmezzo C 15.8 
FRIULI/ A-
TMZ000 

0.35 1.44 
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Four scaling levels were selected: 50% probability of exceedance in 50 years, 

10% in 50 years, 2% in 50 years, and 150% of the 2% in 50 years event.  Scaling was 

based on the spectral acceleration at different periods depending on the height of the 

building.  The three-story, six-story, and nine-story buildings were scaled based on the 

1.0 second, 1.5 second, and 2.0 second spectral accelerations respectively.  These periods 

were intended to represent the approximate dominant period of the inelastic system.  The 

resulting scale factors are given in Table 10.11. 
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Figure 10.6 Example of Scaling for the Event with 2% Probability of Exccedance in 

50 Years Based on 1 Second Period (Left) and 2 Second Period (Right) 

Table 10.11 Summary of Scale Factors 

 
Hazard Level 

3 story Building 
Scaled Based on 1.0 

second period 

6 story Building 
Scaled Based on 1.5 

second period 

9 story Building 
Scaled Based on 2.0 

second period 

50% in 50 Years Event 0.76 0.78 0.86 

10% in 50 Years Event 1.75 1.79 1.98 

2% in 50 Years Event 2.63 2.68 2.96 

1.5 x 2% in 50 Years 3.95 4.02 4.44 

 

The sensitivity study analyses were conducted using the OpenSees software 

(Mazzoni et al. 2009).  The tributary horizontal mass was assigned to the leaning column 

nodes.  Vertical mass was assigned to the exterior frame columns to match the tributary 

area of 9.14m x 4.57m (30’x15’).  Vertical mass consistent with the tributary frame 

weight was assigned to the nodes of the frame interior columns.  Gravity load was 

applied to the leaning column nodes and the frame exterior column nodes based on their 

tributary area.  Rayleigh damping was applied with 2% damping at a period equal to 0.1 

times the number of stories (0.3 sec for 3 story, 0.6 sec for 6 story, and 0.9 sec for 9 
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story), and at a period that was three times this period (0.9 sec for 3 story, 1.8 sec for 6 

story, and 2.7 sec for 9 story). 

10.4.3 Response Indices 

A number of response indices were examined to assist in achieving the objectives of the 

sensitivity study which include verifying expected performance of the controlled rocking 

system as designed for a range of applications.  Median and standard deviation were 

calculated for each response index for the set of 22 ground motions at a given hazard 

level.  Response measures include: 

 Peak roof drift ratio and peak uplift ratio 

 Initial elastic period, simple building code formula for period, secant 

period at 1% drift, secant period at 2% drift, dominant periods from FFT 

of the displacement histories. 

 Peak base shear 

 Peak vertical reactions and vertical accelerations 

 Peak fuse shear strain 

 Peak post-tensioning strain 

 Residual roof drift, residual interstory drifts, and residual uplift 

 Magnitude of global uplift defined as the lesser uplift experienced by the 

two columns in a frame. 

 Total hysteretic absorbed energy 

 Ratio of member axial force demand to design axial force (results are 

discussed in Chapter 11). 

 

Values for residual quantities are calculated by taking the mean of the response 

over the last 5 seconds.  The last 5 seconds of every input ground motion has zero 

acceleration. 

10.5 Example Results for Configuration 1 

10.5.1 Example Time History Analysis Results 

An example of the time history results is presented for one of the analyses out of the 1496 

computational simulations conducted.  Configuration 1 was selected which is a three-

story building with frame width divided by fuse width ratio, A/B=2.5, self-centering ratio, 

SC=1.1, bay width equal to 9.14m (30’), a diaphragm element connecting the midspan of 

the beams, and no post-tensioning seating losses.  The hazard level with 2% probability 

of exceedance in 50 years was selected for the ground motion ID = 120121, which is the 

Northridge earthquake as measured at the Canyon Country – WLC recording station. 
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Figure 10.7 Roof Drift History (Left) and Hysteretic Response (Right) for the 

Example Analysis 

 

Figure 10.7 shows the roof drift history and hysteretic response obtained from the 

example analysis.  A peak roof drift of 3.8% was experienced at a time approximately 

equal to 7 seconds.  The left side of Figure 10.7 demonstrates that the residual drift was 

zero as the roof drift oscillates around zero during the last 5 seconds of the simulation for 

which the ground acceleration is zero.  The shape of the hysteresis loops matches the 

expected response with near full self-centering associated with SC=1.1 demonstrated as 

the drifts return to near zero when applied overturning moment is zero.  After some of the 

large excursions the post-tensioning strands yielded as shown in Figure 10.8 causing the 

self-centering ability to reduce. 

During the three largest cycles, the mean period was found to be 1.9 seconds.  A 

discrete fast fourier transform of the displacement history identified 2.05 seconds as the 

dominant period which is the period of the largest cycle.  The displacement history free 

vibration during the last 5 seconds of the ground motion was found to have a period of 

approximately 0.75 seconds.  Higher frequency oscillations are also shown to occur in the 

overturning moment (Figure 10.7) and the first floor drift ratio (Figure 10.9).  These 

higher frequency vibrations had a period of approximately 0.23 sec.  The values for free 

vibration period, and higher frequency vibrations match the first mode and second mode 

eigenvalues calculated from the computational model which corresponded to periods of 

0.68 sec and 0.21 sec. 

The fuse hysteretic behavior shown in Figure 10.8 appears to exhibit degradation, 

but a closer examination of the response shows that the fuse is not representing a buckled 

state.  After the large displacement cycles, the fuse response returns to full hysteretic 

behavior.  The post-tensioning behavior shown on the right of Figure 10.8 demonstrates 

that the post-tensioning reached the yield force for this ground motion with 2% chance of 

exceedance in 50 years.  The peak post-tensioning strain is 1.1%. 
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Figure 10.8 Fuse Hysteretic Response (Left) and Post-Tensioning Response for the 

Example Analysis 

The total drift ratios for each floor relative to the ground are plotted against time 

and against the roof drift ratio in Figure 10.9.  These two plots show the strong 

dominance of the first mode as the drifts of the floors are nearly identical through the 

simulation.  The second mode is also clear in these plots as the oscillations of the 1
st
 floor.  

Global uplift is shown in Figure 10.10 and defined as the lesser uplift experienced 

by the two columns in a frame.  If both columns are uplifted, this value will be greater 

than zero.  The global uplift at given time steps may be larger than zero implying that one 

of the frames lifted off the ground.  This occurs when the post-tensioning has yielded 

such that the post-tensioning force at zero drift is less than the fuse capacity. 

It was found that the horizontal and vertical accelerations of the column nodes 

had frequency content that was too high to accurately investigate with the time step used 

in these analyses.  The accelerations oscillated between large positive and large negative 

values at each time step. 

 

4 6 8 10
-4

-3

-2

-1

0

1

2

3

4
Drifts for Each Floor

Time (sec)

D
ri
ft
 R

a
ti
o

s
 (

%
)

 

 
ULR

1st Flr

2nd Flr

RDR

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
Validate Rigid Body Rotation

Roof Drift Ratio (%)

D
ri
ft
 R

a
ti
o

s
 (

%
)

 

 

ULR

1st Flr

2nd Flr

RDR

 
Figure 10.9 Excerpt of the Drift History for Each Floor (Left), and Comparison of 

Different Drift Ratios (Right) for the Example Analysis 
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Figure 10.10 Global Uplift of Both Frames for the Example Analysis 

 

10.5.2 Example Summary Results for Configuration 1 

Example results for one configuration are shown in this section with plots that contain 

data points for every analysis conducted for this configuration.  Lines showing the 

median and median plus one standard deviation of the data are also shown on each plot.  

In the following sections, only the median and median plus one standard deviation lines 

are shown to allow clear comparisons between configurations.  The first configuration 

was chosen which is described at the beginning of the previous section.  Figure 10.11 

shows the peak roof drift ratios and peak uplift ratios for all 88 analyses run for this 

configuration.  The vertical axis is spectral acceleration and shows increasing severity of 

the hazard level as the spectral acceleration increases. 

As expected, the median uplift ratios and the median roof drift ratios are almost 

identical because the dominant mode of displacement is rigid body rotation of the frames.  

The median peak roof drift ratio is 0.69%, 1.71%, 2.91%, and 4.72% for the hazard levels 

with 50% probability of exceedance in 50 years, 10% in 50 years, 2% in 50 years, and 1.5 

x 2% in 50 years respectively.  The current building code which is based on the 10% in 

50 years hazard level, imposes a limit on the drift equal to 2%. Using the median and 

standard deviation and assuming a lognormal distribution, it was calculated that there is a 

34% probability that the roof drift ratio will exceed 2% for the 10% in 50 years event.  

This limit state and associated objectives are discussed in the following section. 

The peak global uplift values shown in Figure 10.12, demonstrate that at the 

hazard level with 2% probability of exceedance in 50 years and above, global uplift starts 

to occur.  This is related to the amount of yielding in the post-tensioning, but provides a 

targeted examination of the probability of this limit state being breached.  The residual 

roof drift ratios shown on the right of Figure 10.12 demonstrates that this configuration is 

well proportioned to eliminate residual drifts up to the 2% in 50 years hazard level, but 

starts to allow residual drifts for larger events. 

 



 

 241 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Peak Roof Drift Ratio for 1-D3-AB25-SC11-BAY30

Roof Drift Ratio (%)

50%/50

10%/50

2%/50

1.5x2%/50

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Median

Median+STD

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Peak Uplift Ratio for 1-D3-AB25-SC11-BAY30

50%/50

10%/50

2%/50

1.5x2%/50

Uplift Ratio (%)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Median

Median+STD

 
Figure 10.11 Peak Roof Drift Ratios (Left) and Peak Uplift Ratios (Right) for 

Example Configuration 
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Figure 10.12 Peak Global Uplifts (Left) and Residual Roof Drifts (Right) for the 

Example Configuration 

 

The roof drift ratio for the hazard level with 2% probability of exceedance in 50 

years has a median of 2.91% which is larger than the roof drift ratio of 2.5% assumed for 

this hazard level in the calculation of the allowable initial post-tensioning strain.  

Regardless of this discrepancy, Figure 10.13 shows that the peak post-tensioning strain 

for the 2% in 50 years hazard level was found to have a median value of 0.89%.  

According to Table 8.9, if the post-tensioning strain is less than 0.9%, there is a 94% 

probability that less than 3% of the post-tensioning wires will fracture.  It is expected, 

therefore, that the majority of ground motions scaled to the 2% in 50 years hazard level 

would cause less than 3% of the wires to fracture which can produce good system 

performance.. 

The median values for peak fuse shear strain were 3.5%, 12.4%, 22.4%, and 

37.3% for the hazard levels with 50% probability of exceedance in 50 years, 10% in 50 

years, 2% in 50 years, and 1.5 x 2% in 50 years respectively.  Although the fuses did not 
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reach fracture in the testing program described in previous chapters, fracture of the fuses 

was achieved in the fuse component tests conducted at Stanford University.  Fracture of 

the fuse links occurred at shear strains across the link between 30% and 46.5% with a 

mean value of 37.6% as discussed below.  Using the median and standard deviation of 

the assumed lognormal distribution for peak fuse shear strain for the 2% in 50 years event, 

a 23.8% probability of reaching 30% fuse shear strain was calculated.  This is a relatively 

small chance that the fuses would reach the levels of shear strain in which fractures 

occurred in component tests. 
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Figure 10.13 Peak Post-Tensioning Strains (Left) and Peak Fuse Shear Strains 

(Right) for the Example Configuration 

 

The peak base shear and peak overturning moment shown in Figure 10.14 

demonstrate the need for different design rules for columns and braces in the elastic 

braced frame.  The peak overturning moments have medians that range from 1.4 to 2.3 

times the moment associated with yield.  This factor is consistent with the overstrength 

created by additional post-tensioning force above the initial force, and strain-hardening in 

the fuses.  The peak base shears on the other hand demonstrate that the shear forces 

experienced by the frame are significantly larger than the yield base shear, which is 

calculated assuming an inverted triangular lateral load distribution.  Since the lateral load 

distribution varies throughout the test, the peak story shears can be several times larger 

than the predicted yield base shear with inverted triangular lateral load distribution.  The 

resulting member forces and recommendations are included in Chapter 11. 
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Figure 10.14 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

the Example Configuration 

10.6 Interpretation of the Analyses Results 

10.6.1 Assessing the Performance of the Designed Systems 

To assess the performance of the configurations that were designed and proportioned 

using the design rules described earlier in this chapter, it is necessary to define the 

possible undesirable limit states along with targets for restricting these limit states for 

given hazard levels.  A list of undesirable limit states includes: 

 Fracture of the fuse links 

 Yielding of the post-tensioning strands and fracture of post-tensioning 

wires 

 Global uplift in which the frame as a whole lifts off the support 

 Frame member reaches a strength limit state (discussed in following 

chapter) 

 Connection reaches some limit state (related to frame member limit states 

discussed in the following chapter) 

 

It is noted that the frame members and connections are assumed to be elastic in 

the computational model.  Methods for reliably achieving elastic frame performance are 

discussed in the following chapter.  For the purposes of examining system response, 

however, it is assumed that since the frame elements are modeled elastically, slight 

changes in the stiffness of these members will have negligible effect compared to the 

larger rigid body rotations of the frames, deformations in the post-tensioning, and 

inelasticity in the fuse elements.  Therefore, if the designed member sizes in this section 

are inadequate and a slightly larger size is required, it is assumed that the difference in 

the section properties will have negligible impact on the response measures. 

Fracture of the fuse links is an undesirable limit state that removes the major 

contributor to energy dissipation in the system.  The experimental program described in 

previous chapters did not experience any fractures in the fuses.  However, the fuse 

component tests conducted at Stanford University applied larger shear strains across the 
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fuse links and were able to produce fractures.  Fractures in the fuses for SS5, SS9, SS10, 

and SS11 were experienced at 46.5%, 38.5%, 30.0%, 35.5% fuse link shear strain 

respectively.  The mean fuse link shear strain at fracture was 37.6%.  More information 

about these specimens is included in Chapter 8. 

Since fuse fracture is a highly undesirable limit state, it is advantageous to have a 

low probability of reaching strains where fracture is likely.  For the four butterfly fuse 

tests conducted at Stanford there is approximately a 50% chance of fuse link fracture 

occurring at a fuse link shear strain of 37.6%.  The goal, therefore, was to have a low 

probability of exceeding 37.6% fuse link shear strain at the hazard level that has a 2% 

probability of exceedance in 50 years.  Table 10.12 gives the probabilities that the fuses 

will reach this level of fuse link shear strain.  As shown in Table 10.12, configuration 4 

has the largest probability (16%) of reaching this limit state for the 2% in 50 years hazard 

level.  This represents a probability of exceedance that is approximately the same as one 

standard deviation above the median for a normal distribution or 16%. 

 

Table 10.12 Probabilities of Exceeding Fuse Shear Strain Limit 

  50% in 50 10% in 50 2% in 50 1.5x(2% in 50) 

Model P(Fuse>37.6%) P(Fuse>37.6%) P(Fuse>37.6%) P(Fuse>37.6%) 

1 0.0% 1% 12% 33% 

2 0.0% 2% 4% 13% 

3 0.0% 1% 2% 9% 

4 0.0% 1% 16% 45% 

5 0.2% 1% 7% 34% 

6 0.0% 2% 7% 22% 

7 0.4% 6% 15% 42% 

8 0.0% 2% 13% 36% 

9 0.0% 1% 11% 32% 

10 0.0% 2% 7% 19% 

11 0.0% 2% 4% 16% 

12 and 13 are omitted 

14 0.0% 1% 7% 15% 

15 0.0% 1% 2% 11% 

16 0.0% 0% 1% 8% 

17 0.0% 2% 8% 22% 

18 0.0% 2% 8% 22% 

19 0.0% 0% 1% 9% 

 

The post-tensioning strains at wire fracture are discussed in Chapter 8.  Based on 

the types of anchorage and installation procedures used in the experimental program, it 

was found that limiting the post-tensioning strand strain to 1% leads to an 80% 

probability that fewer than 5% of the post-tensioning wires will fracture as given in Table 

8.9.  As shown in Chapter 5, Specimen A4 had 5% of the post-tensioning wires fracture 
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with minor effect on strength and self-centering.  Depending on the self-centering ratio, 

wire fractures exceeding 5% of the total post-tensioning wires may start to deteriorate the 

ability of the post-tensioning to overcome the fuse yield strength, resulting in global 

uplift.  Since this limit state is based on a lower probability of adverse effects compared 

to the fuse fracture, a more relaxed probability of exceedance is appropriate.  A target of 

limiting the probability of exceeding 1% strain in the post-tensioning to 50% or the 

median value is adopted for the hazard level that has a 2% probability of exceedance in 

50 years.   

Table 10.13 shows that the designed configurations satisfy this limit.  The largest 

probability of exceeding 1% strain are given for configuration 16 to be 47%. 

 

Table 10.13 Probabilities of Exceeding Post-Tension Strain Limit 

  50% in 50 10% in 50 2% in 50 1.5x(2% in 50) 

Model P(εPT>1.0%) P(εPT>1.0%) P(εPT>1.0%) P(εPT>1.0%) 

1 0% 3% 37% 77% 

2 0% 1% 30% 62% 

3 0% 0% 16% 46% 

4 0% 2% 40% 79% 

5 0% 4% 39% 78% 

6 0% 1% 22% 58% 

7 0% 4% 28% 63% 

8 0% 2% 41% 79% 

9 0% 4% 43% 81% 

10 0% 0% 19% 56% 

11 0% 1% 33% 62% 

12 and 13 are omitted 

14 0% 3% 44% 80% 

15 0% 0% 33% 63% 

16 0% 6% 47% 81% 

17 0% 0% 15% 53% 

18 0% 0% 16% 53% 

19 0% 0% 0% 0% 

 

Goals for the roof drift ratio included limiting the roof drift ratio to 2% for the 

event that has 10% probability of exceedance in 50 yearsto be consistent with limits in 

the current U.S. building code (ASCE 2005).  Goals for the peak roof drift ratios during 

the 50% in 50 years event and the 2% in 50 years event were assigned as 0.75% and 3.0%, 

respectively.  Table 10.14 shows that the largest probability of exceeding the goal for the 

10% in 50 years event is 51% and all others are below 50%.   
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Table 10.14 Probabilities of Exceeding Roof Drift Limits 

  50% in 50 10% in 50 2% in 50 

Model P(RDR>0.75%) P(RDR>2.0%) P(RDR>3.0%) 

1 38% 34% 43% 

2 36% 27% 26% 

3 34% 20% 22% 

4 34% 32% 44% 

5 48% 44% 51% 

6 34% 26% 26% 

7 52% 42% 36% 

8 52% 30% 43% 

9 36% 36% 44% 

10 35% 23% 21% 

11 38% 29% 28% 

12 and 13 are omitted 

14 46% 34% 43% 

15 38% 23% 22% 

16 47% 51% 58% 

17 44% 31% 29% 

18 45% 31% 29% 

19 28% 16% 16% 

 

Global uplift is defined above as the lesser uplift of the two columns in a frame 

and is equal to the height that a frame is lifted off the ground.  Global uplift less than 25 

mm (1”) will not cause significant loss in energy dissipating capacity and thus is used as 

a limit state for the 25 in 50 hazard level.  The probabilities of exceeding a global uplift 

limit state of 25 mm (1”) are tabulated in Table 10.15.  It is shown in Table 10.15 that the 

probability of exceeding this limit state is at most 28% for the hazard level with 2% 

probability of exceedance in 50 years. 
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Table 10.15 Probabilities of Exceeding Global Uplift Limits 

  50% in 50 10% in 50 2% in 50 1.5x(2% in 50) 

Model P(Up>25 mm) P(Up>25 mm) P(Up>25 mm) P(Up>25 mm) 

1 0% 0% 7% 51% 

2 0% 4% 12% 39% 

3 0% 1% 10% 24% 

4 0% 1% 11% 40% 

5 0% 0% 10% 34% 

6 0% 1% 10% 30% 

7 0% 0% 8% 40% 

8 0% 1% 7% 48% 

9 0% 0% 10% 56% 

10 0% 3% 12% 35% 

11 0% 5% 13% 40% 

12 and 13 are omitted 

14 0% 0% 26% 70% 

15 0% 2% 28% 59% 

16 0% 0% 13% 45% 

17 0% 2% 7% 28% 

18 0% 2% 7% 28% 

19 0% 0% 0% 0% 

 

The dispersion of the peak roof drifts were calculated as the standard deviation of 

the log of the peak roof drift ratios.  The resulting dispersions are tabulated in Table 

10.16 and provide a measure of the record-to-record variability in peak roof drifts.  The 

dispersions are shown to increase as the hazard level increases with a maximum value of 

0.78 for configuration 15. 
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Table 10.16 Dispersions of the Peak Roof Drifts 

  50% in 50 10% in 50 2% in 50 1.5x(2% in 50) 

Model (LN Peak RDR) (LN Peak RDR) (LN Peak RDR) (LN Peak RDR) 

1 0.31 0.42 0.44 0.41 

2 0.39 0.47 0.50 0.58 

3 0.47 0.57 0.56 0.49 

4 0.34 0.41 0.46 0.42 

5 0.54 0.38 0.43 0.43 

6 0.40 0.49 0.50 0.55 

7 0.44 0.49 0.47 0.52 

8 0.29 0.40 0.41 0.37 

9 0.35 0.42 0.45 0.42 

10 0.38 0.45 0.47 0.53 

11 0.40 0.48 0.53 0.69 

12 and 13 are omitted 

14 0.33 0.43 0.41 0.45 

15 0.36 0.45 0.54 0.78 

16 0.56 0.39 0.48 0.42 

17 0.41 0.51 0.52 0.52 

18 0.41 0.51 0.52 0.52 

19 0.43 0.45 0.46 0.45 

 

10.6.2 Building Height Study 

Three building heights were examined, three-story, six-story, and nine-story.  As 

described in Table 10.2, the configurations included in this study were all dual frame 

configurations with geometric ratio, A/B=2.5, thicker non-buckling fuses, self-centering 

ratio, SC=1.1, no seating losses, a diaphragm element connecting the centers of the two 

frames floor beams, and a 9.14m (30’) bay width.  The analyses configuration numbers 

included in this study were 1, 2, and 3 consisting of the three-story, six-story, and nine-

story buildings respectively. 

Figure 10.15 shows minor differences between the hysteretic response of the 

controlled rocking system with three different heights.  The system experiences uplift at a 

smaller roof drift ratio as the building becomes shorter.  The roof drift ratio at uplift was 

found to be 0.133%, 0.189%, and 0.255% for the three-story, six-story, and nine-story 

frames respectively.  The taller frames are therefore experiencing larger roof drifts due to 

frame deformations.  In particular, the taller frames experience global bending 

deformations that cause additional roof displacement not experienced by the shorter 

frames.  The shorter frames also experience larger post-yield stiffness.  This is due to the 

ratio of post-tensioning area between the different configurations.  The shorter 
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configurations have larger post-tensioning strain demands for a given roof drift ratio 

because the length of the strands is shorter.  The initial strains in the post-tensioning were 

proportioned accordingly, resulting in initial stresses in the strands equal to 46%, 69%, 

and 75% of the ultimate stress for the three-story, six-story, and nine-story buildings 

respectively.  Using higher initial stresses in the taller frames allowed the use of fewer 

post-tensioning strands, and the area of strands in the six-story and nine-story buildings 

was 117% and 212% of that used in the three-story building.  The fact that the increase in 

post-tensioning strand area was less than the increase in height from one configuration to 

the next leads to a reduction in the post-yield stiffness with height. 

The peak roof drifts on the right of Figure 10.15, show that all three 

configurations had similar roof drift ratios through the event that has 10% probability of 

exceedance in 50 years which has a spectral acceleration of 0.6g.  Above this level, the 

shorter structures experience larger peak roof drift ratios.  The post-tensioning strains 

shown on the left of Figure 10.17 are in the elastic range for the smaller earthquake levels, 

but at the 2% in 50 years event (spectral acceleration of 0.9) and above, the post-

tensioning was experiencing yield in almost half of the time histories.  As shown in 

Figure 10.17, the peak post-tensioning strains are larger in the shorter buildings relative 

to the taller buildings for spectral accelerations at 2% in 50 years and above.  For this 

reason, the strands are more likely to yield in the shorter buildings during large 

earthquake events, which leads to larger drifts. 
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Figure 10.15 Hysteretic Behaviors (Left), and Peak Roof Drift Ratios (Right) for 

Varying Heights 

 

Figure 10.16 shows that the median residual roof drift ratios were negligible for 

all three configurations at all considered spectral accelerations including 1.5 times the 

hazard level with 2% probability of exceedance in 50 years.  The median plus one 

standard deviation values are relatively large at 1.5 times the 2% in 50 years event, but 

only the six-story building has appreciable residual roof drift at the 2% in 50 years event.  

The controlled rocking system successfully eliminated residual drifts up to the 2% in 50 

years event with a less than 50% probability that the six-story building will experience 

some residual drift at this hazard level.  The right side of Figure 10.16 shows that the 
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median response had only negligible peak global uplift up to the 2% in 50 years hazard 

level.  
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Figure 10.16 Residual Roof Drift Ratios (Left) and Peak Global Uplifts (Right) for 

Varying Heights 

 

Figure 10.17 demonstrates that these three configurations adequately avoid the 

limit states outlined in the previous section for post-tensioning strand yield, post-

tensioning strand wire fracture, and fuse link fracture.  This is shown by the fact that all 

three configurations have a median post-tensioning strand strain less than 1% when 

subjected to ground motions with 2% probability of exceedance in 50 years (Sa=0.9), 

which implies that there is a low probability that more than 5% of the post-tensioning 

wires will fracture, and that the median plus one standard deviation fuse link shear strain 

is less than 37.6%, indicating a low probability that the fuse links will fracture. 

The effect of increasing building height on post-tensioning strain appears as an 

increase in the slope of the spectral acceleration vs. peak post-tensioning strain 

relationship.  For a given uplift ratio at the base of the frames, the amount of strain in the 

strands is inversely proportional to the length of the strands.  The initial post-tensioning 

strain was adjusted for this fact with the intent that the peak post-tensioning strains would 

be approximately equal at the 2% in 50 years hazard level. 
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Figure 10.17 Peak Post-Tensioning Strains (Left) and Peak Fuse Link Shear Strains 

(Right) for Varying Heights 

 

 The peak base shear and peak overturning moment shown in Figure 10.18, give 

some indication on the effect of building height on frame design.  The peak base shear 

relates to the peak force in the first floor braces, and is shown to increase well above the 

yield base shear with increasing building height and hazard level.  The overturning 

moment is related to column axial forces and is shown to be much more consistent as the 

hazard level increases and across the different heights.  
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Figure 10.18 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Varying Heights 

10.6.3 Single Frame vs. Dual Frame Configuration 

Both single frame and dual frame configurations were investigated in the experimental 

program.  The differences in their dynamic response are discussed in this section.  As 

described in Table 10.4, the dual frame configurations included in this study had a 

geometric ratio, A/B=2.5.  All configurations used thicker non-buckling fuses, self-

centering ratio, SC=1.5, no seating losses, and a diaphragm element connecting the 

centers of the two frames floor beams.  All configurations used 9.14m (30’) bay width 
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except for the three-story single frame configuration which used 20’ bay width to reduce 

the post-tension strain demand so that the initial post-tensioning stress was greater than 

0.2 times the ultimate stress.  The analyses configuration numbers included in this study 

were 4, 5, 6, and 7 consisting of the three-story dual frame, three-story single frame, six-

story dual frame, and six-story single frame respectively. 

The hysteretic response on the left of Figure 10.19 shows several differences in 

the load-deformation response of the different configurations.  The stiffnesses of the 

single frame configurations were larger than the dual frame configurations.  The three-

story single frame single frame configuration was especially stiff after uplift and yielding 

compared to the other configurations.  The post-yield stiffness is controlled by the post-

tensioning component and is sensitive to the total area of post-tensioning strands and the 

length of the post-tensioning strands.  The three-story single frame configuration had the 

largest area of post-tensioning for all configurations considered here with 54 strands and 

the shorter strand length compared to the six-story single frame configuration which had 

33 strands.  The three-story dual frame configuration had 40 total strands which is less 

than the 48 strands for the six-story dual frame configuration.  The three-story dual frame 

configuration has a larger post-yield stiffness than the six-story dual frame due to shorter 

strand lengths. 

Because the single frame configurations have post-tensioning components with 

greater stiffness, the overturning moment at fuse yield is slightly greater for single frame 

configurations compared to the dual frame configurations.  The left side of Figure 10.19 

also demonstrates that the single frame systems exhibit almost no drift when the forces 

are removed.  In the dual frame configurations, the drifts that remain when the force is 

removed are related to elastic frame deformations due to yield level forces that remain in 

the fuses along the height of the frames.  In the single frame configuration, the fuses are 

concentrated at the base of the frames which does not cause any residual elastic 

deformations in the frames. 

The peak roof drift ratios shown on the right of Figure 10.19 and the peak uplift 

ratios shown on the left of Figure 10.20 are found to be more dependent on building 

heights than frame configuration.  The peak global uplifts shown on the right of Figure 

10.20 were small at the hazard level with 2% probability of exceedance in 50 years for all 

four configurations considered here. 
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Figure 10.19 Hysteretic Behavior (Left) and Peak Roof Drift Ratios (Right) for 

Single and Dual Frame Configurations 

 

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Peak Uplift Ratios

Median

Median+STD

Uplift Ratio (%)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

3 Story Dual

6 Story Dual

3 Story Single

6 Story Single

-50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Peak Global Uplifts

Global Uplift (mm)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Median

Median+STD

3 Story Dual

6 Story Dual

3 Story Single

6 Story Single

 
Figure 10.20 Peak Uplift Ratios (Left), and Peak Global Uplifts (Right) for Single 

and Dual Frame Configurations 

 

Even though the monotonic loading of Figure 10.19 demonstrated that the roof 

drifts at zero force are smaller for the single frame configurations, there was not a similar 

clear trend in the residual roof drift ratios and residual uplift ratios shown in Figure 10.21.  

This implies that the residual deformations are more related to the amount of post-

tensioning strand yielding than the load-deformation shape before post-tensioning yield. 

The peak post-tensioning strains shown on the left of Figure 10.22 illustrate the 

effect of post-tensioning strand length and frame width.  For a given uplift ratio, the 

amount of strain in the post-tensioning strands is proportional to frame width and 

inversely proportional to original strand length.  Therefore shorter buildings and wider 

frames will experience more post-tensioning strain for a given uplift ratio.  This is shown 

in Figure 10.22, by decreasing slope of the post-tensioning strain demand as the spectral 

acceleration increases. The initial strain was designed to create post-tensioning strain 
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demand around 0.85% at the hazard level with 2% probability of exceedance in 50 years.  

Figure 10.22 shows that the median post-tensioning strain demand at the 2% in 50 years 

hazard level is similar among the four configurations and less than 1%. 

The peak fuse link shear strain demands shown on the right of Figure 10.22 show 

relatively little dependence on frame configuration.  The peak base shears and peak 

overturning moments were found to be larger for the single frame configuration 

compared to the dual frame as shown in Figure 10.23. 

 

 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Residual Roof Drift Ratios

Residual Roof Drift Ratio (%)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Median

Median+STD

3 Story Dual

6 Story Dual

3 Story Single

6 Story Single

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Residual Uplift Ratios

Residual Uplift Ratio (%)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Median

Median+STD

3 Story Dual

6 Story Dual

3 Story Single

6 Story Single

 
Figure 10.21 Residual Roof Drift Ratios (Left) and Residual Uplift Ratios (Right) 

for Single and Dual Frame Configurations 
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Figure 10.22 Peak Post-Tensioning Strains (Left) and Peak Fuse Link Shear Strains 

(Right) for Single and Dual Frame Configurations 
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Figure 10.23 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Single and Dual Frame Configurations 

10.6.4 A/B Geometric Ratio Study 

The ratio of the frame width, A, to the fuse width, B, was studied by varying the 

geometric ratio A/B between 1.5 and 3.5.  Six configurations were considered, three that 

were three-story, and three that were six-story, with A/B ratios of 1.5, 2.5, and 3.5.  As 

described in Table 10.3, the configurations included in this study were all dual frame 

configurations with thicker non-buckling fuses, self-centering ratio, SC=1.1, no seating 

losses, a diaphragm element connecting the centers of the two frames floor beams, and a 

9.14m (30’) bay width.  The fuse link length was also held constant at 711 mm (28”) as 

given in Table 10.9.  The analyses configuration numbers included in this study were 8, 1, 

9, 10, 2, and 11 for the three-story buildings with A/B=1.5, 2.5, and 3.5, and the six-story 

buildings with A/B=1.5, 2.5, and 3.5 respectively. 

As shown on the left of Figure 10.24, the hysteretic shape does not change much 

with the varying A/B ratio.  As a result, the peak roof drift ratios were also fairly 

independent of the A/B ratio as shown on the right of Figure 10.24.  In fact, the median 

values for most of the response indices up to the 2% probability of exceedance in 50 

years event were relatively unaffected by the A/B ratio as shown in Figure 10.24, Figure 

10.25, Figure 10.26, and Figure 10.28.   

The shear strain across the fuse link as derived in Equation (3.14) and Equation 

(3.15), is shown to be dependent only on the link length, Llink, and not on the width 

between the interior columns, B.  Because the link length was constant through these 

analyses, the fuse shear response was similar in all runs.  The median peak fuse shear 

strain for the three-story buildings subjected to the 2% in 50 years hazard level was found 

to be 15.3%, 17.0%, and 19.8% for A/B ratios of 1.5, 2.5, and 3.5 respectively.  This 

trend in which the larger A/B ratios created slightly larger fuse link shear strains was also 

noted in the six-story buildings.  It is expected that varying the link length may have a 

more pronounced effect on fuse response than varying the A/B ratio. 

The peak post-tensioning strains show the trend that larger A/B ratios experience 

larger post-tensioning strains because the width of the frame is greater, leading to larger 

uplift for the same amount of roof drift. 
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Figure 10.24 Hysteretic Response (Left) and Peak Roof Drift Ratios (Right) for 

Varying A/B Ratios 
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Figure 10.25 Peak Uplift Ratios (Left) and Peak Global Uplifts (Right) for Varying 

A/B Ratios 
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Figure 10.26 Residual Roof Drift Ratios (Left) and Residual Uplift Ratios (Right) 

for Varying A/B Ratios 
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Figure 10.27 Peak Post-Tensioning Strains (Left) and Peak Fuse Link Shear Strains 

(Right) for Varying A/B Ratios 
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Figure 10.28 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Varying A/B Ratios 

10.6.5 Self-Centering Ratio Study 

The relative proportioning of the fuse and initial post-tensioning force were investigated 

by varying the self-centering ratio between 0.75 and 1.5 for the three and six-story dual 

frame configurations.  As described in Table 10.3, the configurations included in this 

study were all dual frame configurations with geometric ratio, A/B=2.5, thicker non-

buckling fuses, no seating losses, a diaphragm element connecting the centers of the two 

frames floor beams, and a 9.14m (30’) bay width.  The analyses configuration numbers 

included in this study were 14, 1, 4, 15, 2, and 6 for the three-story buildings with 

SC=0.75, 1.1, and 1.5, and the six-story buildings with SC=0.75, 1.1, and 1.5 respectively. 

The left side of Figure 10.29 shows the effect of varying the SC ratio on the 

hysteretic behavior of the controlled rocking system.  The self-centering ratios greater 

than one have small drift at zero force whereas the three-story and six-story 

configurations that have SC=1.5 have flag-shaped behavior that dips below the horizontal 
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axis on load reversal.  It is also shown that the systems with larger SC ratios have more 

post-tensioning and therefore the post-yield slope is greater. 

It is shown on the right of Figure 10.29 and the left of Figure 10.30 that the 

changes in hysteretic behavior did not cause much change in peak roof drifts or peak 

uplifts.  It is concluded that reducing the hysteretic absorbed energy in the range 

considered here, did not have significant effect on peak roof drifts.  Furthermore, larger 

self-centering ratios may be possible without adversely affecting drift demands.  The 

response of SDOF systems with no energy dissipating component was studied in Chapter 

9.   

The right side of Figure 10.31 shows that the lower SC ratios are more susceptible 

to the global uplift limit state.  The self-centering ratio, SC=0.75, actually violates the 

global uplift check described in Chapter 3 in that the initial post-tensioning force is less 

than the fuse shear capacity for these two configurations.  It is not surprising, then, that 

the global uplift for the 2% probability of exceedance in 50 years hazard level was 49 

mm, and 74 mm for the three-story and six-story buildings at median plus one standard 

deviation.  Because of strain hardening in the fuses, the configurations with SC=1.1 also 

experienced some global uplift for one standard deviation above the median. 
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Figure 10.29 Hysteretic Response (Left) and Peak Roof Drift Ratios (Right) for 

Varying SC Ratios 
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Figure 10.30 Peak Uplift Ratios (Left) and Peak Global Uplifts (Right) for Varying 

SC Ratios 

The residual roof drifts and uplifts were found to be small up to the 2% 

probability of exceedance in 50 years hazard level even for the configurations with self-

centering ratios less than 1.0.  Chapter 9 discusses a probabilistic mechanism by which 

systems can self-center even if the monotonic hysteretic behavior has large drifts when 

the loads are removed. 

The range of self-centering ratios considered here were not found to have a 

significant effect on median peak post-tensioning strains up to the 2% in 50 years hazard 

level.  Although variation in the median fuse link shear strains was noted with varying 

self-centering ratio, all configurations considered here were found to have values at one 

standard deviation above the median for the 2% in 50 years  hazard level that were below 

the mean fracture strain of 36.7%.  The peak base shears and peak overturning moments 

were not found to vary significantly with the self-centering ratio. 
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Figure 10.31 Peak Residual Roof Drift Ratios (Left) and Residual Uplift Ratios 

(Right) for Varying SC Ratios 
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Figure 10.32 Peak Post-Tensioning Strains (Left) and Peak Fuse Link Shear Strains 

(Right) for Varying SC Ratios 
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Figure 10.33 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Varying SC Ratios 

10.6.6 Effect of Eliminating Seating Losses 

Two configurations were compared to investigate the effect of eliminating post-

tensioning seating losses.  A single frame configuration was selected in which the 

computational model for one configuration did not include seating losses in the post-

tensioning constitutive model, and another configuration that did.  The two 

configurations were analysis number 5, and 16 respectively.  Post-tension seating losses 

are described and quantified in Chapter 8.  These losses in the post-tension force are due 

to the wedges of the post-tensioning anchorage getting pulled farther into the anchorage 

as the strand is stressed to forces higher than previously obtained.  Methods for 

eliminating post-tensioning seating losses have been devised and implemented (Ma 2010) 

and are discussed in more detail in Chapter 12.  For the sake of this sensitivity study, it 

was assumed that post-tensioning seating losses were eliminated for all configurations 

except for one.  The effect that these seating losses have on system performance is 

discussed in this section.  As described in Table 10.5, both configurations were three-
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story buildings with single frame controlled rocking system.   Both configurations used 

thicker non-buckling fuses, self-centering ratio, SC=1.1, and a 6.10m (20’) bay width. 

For the loading and unloading pushover analysis shown on the left of Figure 

10.34, the effect of seating losses on the hysteretic response of the system is a reduction 

in post-uplift stiffness and a loss of post-tensioning force during large displacement 

excursions.  During the monotonic excursion to 3% roof drift ratio and subsesquent 

unloading, 19.5% of the post-tensioning force is lost as shown on the right of Figure 

10.34 by the difference in stress at the beginning of the loading at the end of the loading. 
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Figure 10.34 Hysteretic Response (Left) and Associated Post-Tensioning Response 

with Seating Losses (Right) 

 

The difference in hysteretic response has some effects on several of the response 

parameters.  The peak roof drifts shown on the left of Figure 10.35 are similar between 

the two configurations up to the hazard level that has 2% probability of exceedance in 50 

years.  Above this level, the post-tension force losses due to seating are compounded by 

yielding of the strands.  The configuration with seating losses experiences slightly larger 

peak roof drifts and global uplift as shown in Figure 10.35 at the largest spectral 

acceleration investigated here.  This same trend is noted in the residual roof drift ratios 

and residual uplifts shown in Figure 10.36. 
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Figure 10.35 Peak Roof Drift Ratios (Left) and Peak Global Uplifts (Right) for Post-

Tensioning Seating Loss Study 
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Figure 10.36 Residual Roof Drift Ratios (Left) and Residual Uplift Ratios (Right) 

for Post-Tensioning Seating Loss Study 

 

Although the peak post-tensioning strains are similar up through the 2% in 50 

years hazard level, the loss in post-tensioning force and the reduced stiffness of the 

system is experienced by the fuses as larger peak fuse link shear strains as shown in 

Figure 10.37.  The peak base shear and peak overturning moments are not greatly 

affected, implying that frame member forces would not be greatly affected either. 
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Figure 10.37 Peak Post-Tensioning Strains (Left) and Peak Fuse Link Shear Strains 

(Right) for Post-Tensioning Seating Loss Study 
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Figure 10.38 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Post-Tensioning Seating Loss Study 

10.6.7 Strut Study 

The effect of using struts versus diaphragm elements was investigated by comparing the 

results of three configurations.  The first configuration included struts between the frames 

that had pinned connections to the frame.  The second configuration was identical except 

the pin connections included a zero length element representing pin hole tolerances.  

More information about this zerolength element is located in Chapter 6.   The third 

configuration used beam elements that connect to points at the middle of the floor beam 

of both frames.  These elements represent the stiffness of an adjacent floor beam and 

connection of the diaphragm to the lateral resisting system. 

As described in Table 10.5, all three configurations were six-story dual frames 

with geometric ratio, A/B=2.5, thicker non-buckling fuses, self-centering ratio, SC=1.1, 

9.14m (30’) bay width, and no seating losses.  The analyses configuration numbers 



 

 264 

included in this study were 17, 18, and 2 for the struts with no pin hole tolerances, struts 

with tolerances, and diaphragm elements respectively. 

As shown in Figure 10.39, Figure 10.41, Figure 10.42, Figure 10.43, and Figure 

10.44, considering pin hole tolerances had almost no effect on the configuration with 

struts.  Figure 10.40 is an example of the strut forces for these two configurations when 

subjected to the first ground motion scaled to the hazard level with 2% probability of 

exceedance in 50 years.  The pin hole tolerances are shown to reduce the strut forces, but 

the roof drift response for these two examples is virtually identical. 

The diaphragm element creates more constraint between the two frames than the 

strut elements as shown on the left of Figure 10.39 by larger stiffness.  However, the 

diaphragm element did not have a large effect on the median response parameters 

compared to the configurations with struts as shown in Figure 10.41, Figure 10.42, Figure 

10.43, and Figure 10.44.  There was more noticeable difference at one standard deviation 

above the median for which the diaphragm configurations showed larger peak global 

uplift, residual displacements, post-tensioning strains and forces.  The added degree of 

constraint associated with the diaphragm element caused larger variability in the response 

indices. 

 

0 1 2 3
-1

-0.5

0

0.5

1

1.5
Hysteretic Response

Roof Drift Ratio (%)

A
p

p
lie

d
 O

v
e

rt
u

rn
in

g
 M

o
m

e
n

t 
(M

/M
y
)

 

 

Strut No Tolerance

Strut With Tolerance

Diaphragm Element

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Peak Roof Drift Ratios

Roof Drift Ratio (%)

S
p

e
c
tr

a
l 
A

c
c
e

le
ra

ti
o

n
 a

t 
1

 s
e

c
 (

g
)

 

 

Strut No Tol. Median

Strut No Tol. Median+STD

Strut W/ Tol. Median

Strut W/ Tol. Median+STD

Diaphragm Median

Diaphragm Median+STD

 
Figure 10.39 Hysteretic Response (Left) and Peak Roof Drift Ratios (Right) for the 

Strut Study 
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Figure 10.40 Example of the Strut Forces for the Configuration Without Pin Hole 

Tolerance (Left) and With Pin Hole Tolerance (Right) 
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Figure 10.41 Peak Uplift Ratios (Left) and Peak Global Uplifts (Right) for the Strut 

Study 
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Figure 10.42 Residual Roof Drift Ratios (Left) and Residual Uplift Ratios (Right) 

for the Strut Study 
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Figure 10.43 Peak Post-Tensioning Strains (Left) and Peak Fuse Shear Strains 

(Right) for the Strut Study 
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Figure 10.44 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

the Strut Study 

10.6.8 Rocking Base vs. Fixed Base Comparison 

A comparison is made between the controlled rocking system and an identical 

configuration with fixed bases.  The fixed base model is intended to highlight the 

comparison of response parameters given different base constraints.  Neither model 

captures inelasticity or buckling of the frame members, but providing an elastic frame 

may not represent a practical design for the fixed base braced frame.  Conversely, the 

uplifting frame members are expected to respond elastically. 

The two configurations compared in this section are analysis number 2 and 

analysis number 19, which simulate the uplifting base and fixed base respectively.  As 

described in Table 10.5, both configurations were six-story dual frame systems with 

geometric ratio, A/B=2.5, thicker non-buckling fuses, self-centering ratio, SC=1.1, no 

seating losses, 9.14m (30’) bay width, and diaphragm elements between the two frames. 
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The left side of Figure 10.45 shows that the fixed base frame experiences some 

nonlinearity as the fuses yield.  Although the bases of the columns are fixed, the elastic 

deformations of the frame are large enough to cause yielding of the fuses.  This point is 

further demonstrated by the area enclosed by the load-deformation response representing 

hysteretic absorbed energy.  The rocking frame, on the other hand, experiences uplift in 

addition to fuse yield.  Allowing uplift acts to limit the forces applied to the system.  

Figure 10.49 shows that the base shear and overturning moments are limited when the 

bases are allowed to uplift.  In the controlled rocking system this effect is used to protect 

the frame members from experiencing inelasticity and damage.  The peak roof drift is 

shown to be larger for the uplifting frame as given in Figure 10.45.  At the 50% 

probability of exceedance in 50 years hazard level, the median roof drift ratio are 0.56% 

and 0.63% for the fixed base and uplifting frames respectively.  At the 2% in 50 years 

hazard level, the median roof drift ratios are 1.81% and 2.30%. 
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Figure 10.45 Hysteretic Response (Left) and Peak Roof Drift Ratios (Right) for 

Uplifting and Fixed Base Frames 
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Figure 10.46 Peak Uplift Ratios (Left) and Peak Global Uplift (Right) for Uplifting 

and Fixed Base Frames 
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Figure 10.47 Residual Roof Drift Ratios (Left) and Residual Uplift Ratios (Right) 

for Uplifting and Fixed Base Frames 

 

The peak post-tensioning strains and peak fuse link shear strains are shown in 

Figure 10.48.  The uplifting frame undergoes more deflections than the fixed base frame, 

but as discussed in a previous section, the post-tensioning strains and fuse link shear 

strains are within a range that has a low probability of triggering negative limit states. 
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Figure 10.48 Peak Post-Tensioning Strains (Left) and Peak Fuse Shear Strains 

(Right) for Uplifting and Fixed Base Frames 
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Figure 10.49 Peak Base Shears (Left) and Peak Overturning Moments (Right) for 

Uplifting and Fixed Base Frames 
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Chapter 11  
 

FRAME MEMBER FORCE DISTRIBUTIONS  

AND FRAME MEMBER DESIGN 

 

This chapter includes discussion of the forces experienced by the frame members in the 

controlled rocking system and a proposed capacity design procedure.  First, the resultant 

forces and moments calculated from measured strains in the testing program are 

presented and compared to computational simulation.  This comparison is shown to 

validate the use of the computational model for predicting force distributions.  Next, a 

general-purpose capacity design approach is defined for the design of the controlled 

rocking system that allows flexibility in the target hazard level at which the design is 

assessed and in the lateral load distribution utilized to the obtain force distribution. The 

capacity design approach was used to compute axial force demands for the range of 

configurations described in the previous chapter.  The resulting design force distributions 

are compared to force demands determined from the suite of time history analyses 

described in the previous section, which enables the derivation of amplification factors 

for use in design to produce specific probabilities of exceedance for different hazard 

levels. 

11.1 Experiment and Computational Model Force 

Distributions 

In order to validate the use of the computational model in predicting frame member 

forces in the controlled rocking system, the experimentally obtained resultant force 

envelopes are compared to forces obtained from computational models exposed to the 

same displacement histories.  The experimental specimens are described in Chapter 4, 

and the computational models are described in Chapter 6.  Observations are also made in 

this section about the level of strains and forces experienced by the frame members 

during the tests. 

There are several assumptions used in the development of the force distribution 

plots shown in this section.  These assumptions include: 

1. Forces and moments due to post-tensioning strand initial force are 

calculated based on the initial stressing operation and do not consider 

intermediate tests, test runs without fuses, or adjusting of the lower 

anchorage to attain the same initial post tension force level. 

2. The forces are shown to go from centerline to centerline, but in actuality 

the forces and moments change at the gussets plates.  Gusset plate 

dimensions are ignored. 

3. On the interior columns, there are both fuses and struts attached.  The 

envelope is shown in a lighter color in these regions because these forces 

and moments do not show the change in forces and moments at these 

attachment locations. 



 

 271 

4. Beam strains were recorded for some specimens, but they are not included 

here to allow easier comparison between all specimens. 

5. Moment envelopes are shown by connecting the maximum and minimum 

moments at the two ends of a member with a line.  Since the maximum 

and minimum values at the two ends do not occur at the same time, the 

moment envelope along the length of a member may not be accurately 

represented; these plots are thus more useful to gain a relative sense of the 

maximum values that occur along the length. 

11.1.1 Resultant Forces From Post-Tensioning Stressing 

Strain gage data was recorded during all post-tensioning strand stressing operations.  

Resultant axial forces, shear forces, and moments were calculated based on strain gage 

data using equations given in Appendix C. 

Initial post-tensioning forces were set to the same level for groups of the 

specimens.  Specimen A1, A2, and A3 had the same initial post-tensioning force.  

Specimen A4 had a larger initial post-tensioning force.  Specimens A5, A6, and A7 used 

the same initial post-tensioning force which was then changed for Specimens B1 and B2.  

Therefore, there were four unique levels of initial post-tensioning force for which plots 

are included below.  These plots are presented because the associated data was added to 

the resultant forces and moments for the specimen tests presented in the next section 

where they are then compared to computational predictions. 

The left sides of Figure 11.1, Figure 11.3, Figure 11.5, and Figure 11.7 show the 

resultant axial forces due to the initial post-tensioning forces.  The left side of Figure 11.1 

shows that the axial forces associated with post-tensioning strand stressing were fairly 

uniform throughout the columns in some cases.  On the other hand, Figure 11.5 shows a 

case where the axial forces in the columns were not uniformly distributed.  The bases of 

the columns were likely not in uniform bearing when the stressing operation began for 

Specimen A5 causing the non-uniform distribution of column axial forces.  Figure 11.1 

through Figure 11.8 show that the shears and moments experienced were small relative to 

the axial forces. 
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Figure 11.1 Resultant Axial Forces (Left) and Shear Forces (Right) Due to Post-

Tensioning Strand Initial Stress for Specimens A1, A2, and A3 
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Figure 11.2 Resultant Moments Due to Post-Tensioning Strand Initial Stress for 

Specimens A1, A2, and A3 
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Figure 11.3 Resultant Axial Forces (Left) and Shear Forces (Right) Due to Post-

Tensioning Strand Initial Stress for Specimen A4 
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Figure 11.4 Resultant Moments Due to Post-Tensioning Strand Initial Stress for 

Specimen A4 
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Figure 11.5 Resultant Axial Forces (Left) and Shear Forces (Right) Due to Post-

Tensioning Strand Initial Stress for Specimens A5, A6, and A7 
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Figure 11.6 Resultant Moments Due to Post-Tensioning Strand Initial Stress for 

Specimens A5, A6, and A7 
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Figure 11.7 Resultant Axial Forces (Left) and Shear Forces (Right) Due to Post-

Tensioning Strand Initial Stress for Specimens B1 and B2 
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Figure 11.8 Resultant Moments Due to Post-Tensioning Strand Initial Stress for 

Specimens B1 and B2 

 

11.1.2 Resultant Forces for Specimen A1 

In this section, the envelopes of resultant axial forces, shear forces, and moments are 

presented for the testing of specimen A1 and compared to the force envelopes produced 

by computational simulation.  As shown in Figure 11.9, the column axial forces are 

generally well approximated by the computational simulation with average errors being 

conservative relative to the experiment by 18%, 22%, and 16% for the first, second, and 

third floors respectively.  The computationally obtained brace axial forces were less 

consistent with average errors of 14%, -13%, and 33% relative to the experiment for the 

first, second, and third floors respectively.  The interior braces at the second floor were 

one of the few locations where the experimental axial forces were larger than the 

computational model. 
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Figure 11.9 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A1 
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The shear forces shown in Figure 11.10 are small compared to the axial forces.  

The shear forces are relatively similar between the experiment and the computational 

model except for the interior columns in the areas shown with unfilled rectangles (e.g., 

the top of the first floor interior columns).  As explained at the beginning of this section, 

there were fuses and struts connecting to the columns along this portion of the interior 

columns.  The distribution of shear forces and moments are not represented exactly by 

the unfilled envelope rectangles shown in these regions. 

Only four strain gages experienced maximum strains larger than 1000 με during 

the testing of Specimen A1 (not including strains due to initial post-tensioning force).  

See Appendix B for raw strain gage data.  The maximum strains in the frame were 

experienced by the four outer gages applied to the base of the exterior columns.  The 

largest strains occurred in the base of the exterior columns because of the moments 

related to the eccentricity of axial bearing relative to the column centerline when the 

frame is pivoting on that column.  These four strain gages experienced a maximum strain 

of 1634 με not including the strains due to post-tensioning and 1718 με including forces 

due to post-tensioning.  This is just nine percent less than the yield strain associated with 

the material certification reported yield strength of 55 ksi which is equal to 1897 με.  

Considering that the strain-gaged section was not at the location of maximum moment, 

strains due to initial post-tensioning were not included in the figure cited above, and the 

gages were not applied at the extreme fiber of the flange tip (they were applied 0.75” 

from the flange tip), it is possible that the flange tips at the outside edge of the exterior 

columns reached the material yield stress.  However, no yielding or local buckling was 

observed in the inspection of Specimen A1 after testing. 

The resultant axial forces and moments shown in Figure 11.9 and Figure 11.11 

respectively are misleading in that the forces shown near the joint are not being resisted 

by the frame member alone.  Large gusset plates at the ends of members participate in the 

moment resistance at locations such as the base of the exterior columns.  The maximum 

moment, M=1010 k-in, and maximum axial force, P=404 kips, at the base of the right 

exterior column suggests that the maximum stress at the flange tips might be as large 79 

ksi, but this does not consider that the maximum axial force and maximum moment 

might not occur at the same time, nor that there are 1” thick gusset plates on the front and 

back of the specimen at this location contributing to moment resistance. 
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Figure 11.10 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A1 
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Figure 11.11 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A1 

11.1.3 Resultant Forces for Specimen A2 

In this section, the envelopes of resultant axial forces, shear forces, and moments are 

presented for the experimental response of Specimen A2 and compared to the force 

envelopes produced by computational simulation.  Since most of the results are similar to 

Specimen A1, only the differences are highlighted here. 

Similar to Specimen A1, the maximum strains were experienced at the outside 

flange tips of the exterior columns.  The raw strain data from Appendix B shows that the 

maximum strain in the four gages at the outside flange tips of the exterior column was 

1450 με not including strains due to initial post-tensioning forces.  The maximum strain 

of any of the other gages was 900 με.  In general, the resultant forces were less for 

Specimen A2 relative to Specimen A1.  The buckled fuse configurations are expected to 



 

 278 

apply larger loads to the frames because of the larger axial loads present in buckled fuses.  

See Chapter 8 for a discussion of axial forces in the fuses. 

The forces and moments obtained using the computational model were similar to 

those obtained through the testing of Specimen A2 as shown in Figure 11.12, Figure 

11.13, and Figure 11.14. 
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Figure 11.12 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A2 
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Figure 11.13 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A2 
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Figure 11.14 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A2 

 

11.1.4 Resultant Forces for Specimen A3 

In this section, the envelopes of resultant axial forces, shear forces, and moments are 

presented for the experimental response of Specimen A3 and compared to the force 

envelopes produced by computational simulation.  As shown in Figure 11.15, Figure 

11.16, and Figure 11.17, similar trends can be observed for Specimen A3 as were 

discussed in the previous section for Specimen A2. 
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Figure 11.15 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A3 
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Figure 11.16 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A3 
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Figure 11.17 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A3 

 

11.1.5 Resultant Forces for Specimen A4 

In this section, the envelopes of resultant axial forces, shear forces, and moments are 

presented for the experimental response of Specimen A4 and compared to the force 

envelopes produced by computational simulation.  The comparison of axial forces shown 

in Figure 11.18 between the braces in the experiment and the computational simulation 

highlights a trend observed in most of the specimens.  The braces going from the interior 

columns at the second floor to the exterior columns at the base of the frames have axial 

force that is consistently under-predicted by the computational simulation by an average 

of 35%.  In this case, the computational model predicted that the vertical forces would be 

transferred more through the exterior columns than the braces which may have resulted 
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from the way the fuse attached to the frame in the computational model.  Other member 

axial forces are generally slightly overpredicted by the computational simulation. 

The maximum strains experienced at the outside flange tips of the exterior 

columns was 1650 με not including strains due to initial post-tensioning forces and 1670 

με including the forces due to post-tensioning.  The maximum strain of any of the other 

gages was 1260 με.  This range of strain is similar to Specimen A1 meaning that there 

may have been local yielding of extreme fibers at the base of the exterior columns, but no 

visible damage was noticed in the inspection. 

Figure 11.19 and Figure 11.20 show that the shear forces are generally small and 

Figure 11.20 shows that the moment distributions in the base of the columns are similar 

in the computational model as the experiment even if the moments experienced in the 

tests were generally larger than the near zero moments predicted by the computational 

simulation.  As explained at the beginning of this chapter, the large shear forces shown 

on the right of Figure 11.19 are in a region of the interior columns where the fuses and 

struts attach.  The shear forces shown do not accurately consider how the fuses transmit 

forces to the column along their height and also stiffen the column. 
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Figure 11.18 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A4 
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Figure 11.19 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A4 

 
Specimen A4 Experiment Moment Envelope (k-in)

241

78

275

-848

-97

6

262

47

22

-45

-54

-400

328

166

545

-64

-276

-85

28

278

120

-248

-155

-522

169

186

324

-136

-45

-842

119

131

663

-239

-225

-208

443

151

259

-106

-184

-489

209

488

385

-186

-517

-174

189

36

481

-366

-195

-390

158

543

170

-75

-418

-138

229

33

696

-296

-140

-406

326

262

241

-146

-94

-566

555

296

78

-440

-162

-519

339

134

426

-239

-323

-120

1218

101

34

-325

-225

-161

398

110

226

-18

-68

-145

               

Specimen A4 Opensees Moment Envelope (k-in)

52

165

30

-1355

-21

-111

8

5

27

-174

-12

-2

67

26

138

-3

-17

-318

940

117

727

-119

-276

-244

61

294

175

-827

-272

-403

2

18

186

-60

-44

-127

138

17

19

-8

-8

-46

1084

17

116

-49

-121

-39

19

110

19

-204

-55

-48

-1

0

37

-58

-10

4

27

42

62

-1

-33

-190

261

548

1039

-102

-356

-35

218

568

425

-260

-50

-9

-1

34

109

-24

-71

-54

53

17

-5

-5

-10

-44

174

60

48

-32

-119

-19

 
Figure 11.20 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A4 

11.1.6 Resultant Forces for Specimen A5 

Specimen A5 and A6 were tested as hybrid simulations.  The peak roof drift ratio for 

Specimen A5 was 2.5% whereas Specimen A4 was tested to 3.7% roof drift ratio.  The 

forces in the members are therefore smaller than that of the previous specimen.  Three 

hybrid simulation tests were conducted at the hazard level with 2% probability of 

exceedance in 50 years, and twice at a level 60% larger than the 2% in 50 years hazard 

level.  The enveloped forces and moments shown in Figure 11.21, Figure 11.22, and 

Figure 11.23, are for all three runs.  The resultant forces and moments did not cause 

yielding in any members. 
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Figure 11.21 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A5 
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Figure 11.22 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A5 
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Figure 11.23 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A5 

11.1.7 Resultant Forces for Specimen A6 

In this section, the envelopes of resultant axial forces, shear forces, and moments are 

presented for the experimental response of Specimen A6 and compared to the force 

envelopes produced by computational simulation.  Three runs were conducted, one at the 

hazard level that has 2% probability of exceedance in 50 years, a second at the 2% in 50 

years hazard level with out-of-plane motion applied concurrently, and a third at a level 

74% larger than the 2% in 50 years hazard.  The trial with out-of-plane motion was 

conducted to investigate the performance of the rocking system in conditions 

representing earthquake excitation in multiple directions.  As given in Appendix B, the 

maximum strains in the exterior columns during this run was 850 με compared to 745 με 

measured during the test with no out-of-plane motion.  The maximum strains in the 

interior columns were 575 με with out-of-plane motion and 600 με without. 

The trends in axial force, shear force, and moment resultants shown in Figure 

11.24, Figure 11.25, and Figure 11.26 were found to be similar to those noted for 

Specimen A5. 
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Figure 11.24 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A6 
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Figure 11.25 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A6 
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Figure 11.26 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A6 

11.1.8 Resultant Forces for Specimen A7 

The resultant axial force, shear force, and moment envelopes for Specimen A7 are 

presented in this section and compared to the force and moment envelopes calculated 

using the computational model.  The forces and moments experienced by Specimen A7 

are also compared to Specimen A1 to illuminate the effect of struts on the frame member 

force distributions. 

It is shown in Figure 11.27 that the axial force is better predicted for Specimen A7 

than for most of the other specimens.  The amount of pin hole tolerance, and the starting 

location of the pin and connected plies is highly variable throughout the specimens.  

Minor differences can cause changes in the force distribution.  Eliminating the struts and 

associated pin hole tolerances increased the accuracy of the computational model in 

matching the experimental resultant forces. 

The experimental shear forces and moments shown in Figure 11.28 and Figure 

11.29 for the interior columns are larger than those experienced by Specimen A1 and 

shown in Figure 11.10 and Figure 11.11.  The frames in Specimen A7 are still 

constrained in their movement by the top loading beam and at the bottom by the bumpers, 

but eliminating the five struts between the frames increased the maximum shear from 54 

kips in Specimen A1 to 75 kips in Specimen A7.  The experimental moments in the 

interior columns were similar for Specimen A7 compared to Specimen A1at the first and 

second floors, but doubled for the bottom of the third floor interior column relative to 

Specimen A1.  There was not a clear trend in axial forces for Specimen A7 compared to 

Specimen A1.  In general, the axial forces did not change significantly with the 

elimination of the struts, while the shear forces and moments experienced an increase in 

some members and little change in the majority of members. 

As discussed in Chapter 8, the fuses act to pull the frames together as they rock.  

The forces that develop in the frames related to forces between the two frames is 

dependent on the fuse thickness, fuse location, amount of constraint between the frames, 

and location of constraint between the frames.  These considerations can be important in 

frame design.  
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Figure 11.27 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A7 
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Figure 11.28 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimen A7 
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Figure 11.29 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimen A7 

 

11.1.9 Resultant Forces for Specimen B1 and B2 

The force and moment envelopes for Specimen B1 and Specimen B2 demonstrate the 

behavior of a single frame configuration that has less degrees of indeterminacy than the 

dual frame configuration.  The axial force envelopes shown in Figure 11.30 demonstrate 

that the computational model is more accurate in matching the experimental forces.  This 

improved accuracy also applies to the shear and moment distributions shown in Figure 

11.31 and Figure 11.32. 
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Figure 11.30 Axial Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimens B1 and B2 
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Figure 11.31 Shear Force (kips) Envelope Comparison Between Experiment (Left) 

and Computational Simulation (Right) for Specimens B1 and B2 
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Figure 11.32 Moment (k-in) Envelope Comparison Between Experiment (Left) and 

Computational Simulation (Right) for Specimens B1 and B2 

 

11.2 Capacity Design Approach and Lateral Load 

Distributions Considered 

A capacity design approach is investigated in this chapter wherein the maximum forces 

that the fuses and post-tensioning can sustain are applied to the frame.  A linear elastic 

frame analysis is performed based on the loads described in this section.  The resulting 

frame member forces and moments would then be amplified to account for dynamic 

effects and higher modes.  Also, it may be desired to use the worst case loads from 

multiple load cases. 
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The maximum post-tensioning force is the area of the post-tensioning, Apt, 

multiplied by the post-tensioning ultimate stress, u, as given in Equation (11.2).  The 

maximum shear force in the fuses, Vfp, is given by Equation (11.1).  The moment 

associated with the fuse shear force, Mfp, is given in Equation (11.3) as the fuse shear 

force multiplied by the distance from column centerline to the fuse link quarter point.  

The axial force in the fuse was calculated based on the maximum fuse axial forces 

realized in the experimental program which is shown in Figure 8.28 and described 

mathematically in Equation (11.4).  The equations given here assume an accurate 

estimate of the yield stress of the fuse plate, fy.  If nominal stresses are used, appropriate 

amplification factors, Ry, such as those given in the AISC Seismic Provisions (AISC 

2005) should be applied to the yield stress in the following equations. 

 
24

9
pf fy links fuses

b t
V N N

L
       (11.1) 

ptu u ptF A         (11.2) 

2

link
fp fp

B L
M V


        (11.3) 

 2f fy links axialP b t N C       (11.4) 

 Where:  Caxial = 0.05 for non buckling fuses 

   Caxial = 0.1 for buckling fuses with struts 

   Caxial = 0.2 for buckling fuses without struts 

 

As shown in Figure 11.34, the left frame in the dual frame configuration is 

designed and then the frame member sizes are mirrored for use in the right frame.  The 

maximum forces for the fuses were applied to the frame as shown on the right of Figure 

11.34.  The post-tensioning is considered as an elastic element in the frame model and the 

lateral loads are calculated to produce the maximum post-tensioning force, Fptu.  The 

calculation of the lateral load factor, , is given in Equation (11.5) for and Equation 

(11.6) for the dual frame configuration and Equation (11.7) for the single frame 

configuration. 

 

1
2 2

flrs flr

flrs fp fp flrs D ptu

i i

N h A
N T M N P A F

c h


  




  Dual Frame (11.5) 
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     Single Frame (11.7) 

 Where  1 and 2 are the load factors applied to the lateral loads as shown 

in  

Figure 11.34 and Figure 11.35 
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ci = coefficient for the lateral load given in Figure 11.34 and Figure 

11.35 

  hi = height of the lateral load 

 

  There are two different loading states considered and three different lateral load 

distributions, totaling six load cases for the dual frame configuration.  The single frame 

configuration only uses one loading state and three load cases.  The capacity design 

methodology proposed here would use the forces for each member found to be the worst 

from all of the load cases for use in design.  The two loading states are shown graphically 

by the middle two configurations shown in Figure 11.33.  As discussed below, the left 

frame will be designed and the resulting frame sections will be mirrored for use with the 

right frame.  In Load State 1 shown in Figure 11.33, the frames are unloading after an 

excursion to the right.  The fuse is exerting a downward force on the left frame and the 

left frame is pivoting on its right column.  Load State 2 shows loading to the left in which 

case the fuse shear is still acting downward, but the frame is pivoting on its left column.  

These two conditions were found to control member forces over the other two possible 

loading states shown in Figure 11.33. 

Three different lateral load distributions were considered in order to capture a 

range of inertial load distributions that might control frame member design forces.  Other 

seismic force resisting systems typically include elements at each floor that are capable of 

inelastic action when a critical interstory shear is achieved.  Inelasticity can therefore be 

activated due to higher mode actions, and it is not an issue if interstory shears exceed the 

design shear capacity of a given floor.  Conversely, it is a performance target for the 

controlled rocking frames that they remain essentially elastic during earthquakes as large 

as the hazard level with 2% probability of exceedance in 50 years.  Inertial load 

distributions associated with higher modes create interstory shears that are larger than 

those associated with first mode rocking and must be considered in frame design. 

The inverted triangular load cases, IT1 and IT2 shown in Figure 11.34, were 

intended to create an accurate distribution of column axial forces.  The upward triangular 

load cases, UT1 and UT2, were intended to predict the story shears in lower floors, 

whereas the reversed linear distributions, RL1 and RL2, were meant to predict the peak 

story shears in the upper floors.  The efficacy of these lateral load distributions are 

examined in the following sections by comparing the resulting design axial forces to 

those obtained from nonlinear time history analyses. 
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LOADING TO THE RIGHT

Motion Motion Motion Motion

UNLOADING FROM THE RIGHT LOADING TO THE LEFT UNLOADING FROM THE LEFT

LOAD STATE 1 LOAD STATE 2
 

Figure 11.33 Loading States During a Typical Cycle Used to Define Worst Case 

Loading Conditions for the Left Frame 
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Figure 11.34 Schematic Drawing of Frame Being Designed (Left) and Load Cases 
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There are several assumptions implicit in the capacity design method proposed 

here.  These assumptions include: 

1. The struts and diaphragm elements between the frames are neglected in 

the capacity design.  The constraint provided by the strut and diaphragm 

elements would change the lateral load distributions and result in 

interstory shears that are less severe.  It is therefore conservative to neglect 

them in the capacity design process. 

2. Nonlinear time history analyses reflect the additional forces due to vertical 

modes because vertical mass was included in the sensitivity study 

computational model.  However, the effect of impact and radiation 

damping during impact are neglected.  It is expected, however, that the 

additional forces due to impact will not be significant for member design 

because the impact occurs when the column first sets down and the axial 

load is small. 

3. Strain hardening and buckling of the fuses are ignored. 

4. The frame member sections used in the sensitivity study were designed 

based on the method described in Chapter 10.  It is assumed that since the 

frame elements are elastic, that small changes in the section sizes due to 

different design methods will not significantly change the resulting 

response. 
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11.3 Validation of the Capacity Design Approach 

All six load cases described in the previous section were applied to all 17 configurations 

considered in the sensitivity study discussed in the preceding chapter.  Linear elastic 

frame analyses were performed using SAP 2000 software (CSI 2010).  The design axial 

forces predicted for the frame members are compared to those obtained through nonlinear 

time history analyses of the same configurations with 22 ground motions at varying 

hazard level.  See Chapter 10 for more information about the configurations and ground 

motions.  Chapter 6 contains details about the computational model. 

This section starts by showing an example of the comparisons for one 

configuration subjected to one load case compared to the nonlinear time history analysis 

results.  The comparisons focus on axial forces and are divided into exterior columns, 

interior columns, and braces.  The following subsection shows examples for five of the 

configurations.  Finally, results from all 17 configurations are combined and the ability of 

the different lateral load distributions to predict the axial forces in the frame members is 

quantified. 

11.3.1 Example Results for Configuration 2 with Inverted Triangular 

Load Distribution 

This section includes the results for one example configuration.  The plots presented in 

this section show the results from each individual analysis run.  Since so much data was 

produced as part of this study, it would not be useful to include similar plots for all of the 

configurations.  The plots in the following section show the results for five representative 

configurations with only the median and median plus one standard deviation for the data 

set.  The subsequent section shows the results from all configurations combined. 

Figure 11.36 shows the ratio of axial demand to design axial force for the interior 

columns, exterior columns, and braces of Configuration 2 described in Chapter 10.  The 

axial demand is calculated as the peak member force experienced when subjected to the 

suite of ground motions scaled to the hazard level with 10% probability of exceedance in 

50 years.  The design axial forces were calculated using the worst case of the two 

inverted triangular load cases.  Figure 11.37 shows similar plots using the demand related 

to the 2% in 50 years hazard level. 

It is shown in Figure 11.36 and Figure 11.37 that the axial forces in the columns 

were as much as 5 times larger than the design axial forces for the 10% in 50 years 

hazard level and 7 times larger than the design axial forces for the 2% in 50 years hazard 

level.  The expected brace forces were even larger relative to design axial forces with 

ratios of 12 and 19 for the 10% in 50 years and 2% in 50 years hazard levels respectively.  

The median axial force ratios and one standard deviation above the median  axial force 

ratios are also plotted in these figures and shown to be larger than 1.0 in almost all cases. 

It is also shown that the axial force demand to design axial ratios are largest at the 

upper floors whereas the largest ratios for the braces occurs a the lower floors.  The 

difference in axial force ratios suggests that it might be worthwhile to use different 

methods to obtain design forces for the columns and braces. 
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Figure 11.36 Axial Force Demand to Design Ratios for Configuration 2 Using the 

Inverted Triangular Load Patterns Compared to the 10% in 50 Years Hazard Level 
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Figure 11.37 Axial Force Demand to Design Ratios for Configuration 2 Using the 

Inverted Triangular Load Patterns Compared to the 2% in 50 Years Hazard Level 

11.3.2 Resulting Axial Force Ratios for Five Configurations 

The sensitivity study described in Chapter 10, consisted of almost 1500 analyses.  Each 

of the dots in Figure 11.36 and Figure 11.37 represent the axial demand to design axial 

ratio for each floor due to one analysis.  Instead of presenting plots showing the results of 

every computational simulation, a representative group of five configurations are 

presented with the median axial force ratio and one standard deviation above the median.  

Figure 11.38 shows the axial demand to design axial force ratios for Configuration 1 

which was a three-story dual frame configuration.  The design axial forces used for 

Figure 11.38 were computed as the worst case axial forces for each member due to the 

two inverted triangular load patterns. 

It is seen that the columns at the first and second floor exhibit axial force demand 

close to the design axial force.  The columns at the third floor, on the other hand, 

experience axial forces that are larger than the design force using the inverted triangular 

load pattern.  The design axial forces for the third floor columns are quite small because 

there is little load applied to them.  The nonlinear dynamic time history analyses predict 

larger forces in these members because vertical accelerations are exciting the mass at the 

roof level.  Although this also occurs at the first and second floor columns, the force 
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associated with vertical accelerations is small relative to the column axial force.  It is also 

important to note that the consequences of failure of the top floor column are typically 

not as significant as the consequences of the lower floor columns failing. 

The ratios of axial demand to design axial for the braces shown in Figure 11.38 

shows the opposite trend in that it is the lower floor braces that exhibit axial force ratios 

that are significantly larger than 1.0.  In conventional seismic force resisting systems, 

there are typically yielding elements at each floor that limit the amount of force exerted 

on the steel frame.  Since the controlled rocking frame is intended to remain elastic 

during most ground motions, the distribution of member forces for large earthquake 

motions is different than conventional systems.  The frame not only must resist the forces 

associated with the first mode, but also the maximum interstory shear forces associated 

with higher modes. 
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Figure 11.38 Axial Force Demand to Design Ratios for Configuration 1 Using the 

Inverted Triangular Load Patterns 

 

Figure 11.39 and Figure 11.40 demonstrate how these trends shift as the building 

is made taller.  Figure 11.39 shows the axial force ratios for Configuration 2 which is a 

six-story structure and Figure 11.40 shows the axial force ratios for Configuration 3 

which is a nine-story structure.  The largest axial force ratios for the columns occur in the 

top floor for the same reasons described above for the three-story building.  The 

magnitude of the column axial ratios remains in the same range as the building height 

increases, but the magnitude of the brace axial ratios increases as the building is made 

taller.  This relationship highlights the fact that maximum brace forces are related to peak 

interstory shears which are sensitive to higher dynamic modes.  The columns on the other 

hand are more related to cumulative frame shears which are not as sensitive to higher 

modes. 
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Figure 11.39 Axial Force Demand to Design Ratios for Configuration 2 Using the 

Inverted Triangular Load Patterns 
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Figure 11.40 Axial Force Demand to Design Ratios for Configuration 3 Using the 

Inverted Triangular Load Patterns 

 

Figure 11.41 and Figure 11.42 show the axial demand to design axial force ratios 

for two single frame configurations including a three-story and six-story structure 

respectively.  Comparing these figures to Figure 11.39 and Figure 11.40 reveals that the 

axial force ratios and in particular the brace axial force ratios are smaller for the single-

frame configuration.  The exception is the column axial force ratio at the top floor for 

which the effect of vertical accelerations is found to be worse than the dual frame 

configuration. 
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Figure 11.41 Axial Force Demand to Design Ratios for Configuration 5 Using the 

Inverted Triangular Load Patterns 
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Figure 11.42 Axial Force Demand to Design Ratios for Configuration 7 Using the 

Inverted Triangular Load Patterns 

11.3.3 Axial Force Ratios for all Configurations Combined 

The examples provided in the previous section all used the inverted triangular lateral load 

pattern.  In this section the results from all configurations are combined to investigate the 

effect of using different lateral load patterns and how these methods might be reliably be 

used to design controlled rocking frame members.  Each plot in this section represents the 

result of 374 nonlinear time history analyses. 

Figure 11.43 and Figure 11.44 present the axial demand to design axial force 

ratios for the hazard level with 10% probability of exceedance in 50 years and 2% in 50 

years hazard level respectively.  The maximum column axial force ratio occurs at the top 

floor as described in previous sections.  Since the consequences of top column axial 

failure are less severe than failure of the lower columns, it is instructive to look at the 

maximum axial force ratio not at the top level.  For the median response to the 10% in 50 

years hazard level, the maximum interior column axial force ratio (not including the top 
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floor) occurs near 80% of the building height and is equal to 1.39.  If it is desired to limit 

the interior column’s median 10% in 50 years axial demand to be less than the design 

axial force obtained using the inverted triangular lateral load distribution, the design axial 

forces should therefore be multiplied by 1.39.  This maximum axial force ratio can be 

used as an amplification factor to account for dynamic effects and higher modes. 

All of the maximum axial force ratios are summarized in Table 11.1.  The 

maximum axial force ratios for the interior columns and braces are 1.53 and 8.40 for the 

same conditions described above. It is clear that while the inverted triangular load 

distribution approximates the axial load effects on the columns, it does not capture the 

significant effect of higher modes on the brace design. 
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Figure 11.43 Ratios of Axial Force Demand Based on the 10% in 50 Years Hazard 

Level to Design Axial Forces Calculated Using the Inverted Triangular Load 

Pattern for All Configurations 
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Figure 11.44 Ratios of Axial Force Demand Based on the 2% in 50 Years Hazard 

Level to Design Axial Forces Calculated Using the Inverted Triangular Load 

Pattern for All Configurations 

As described in a previous section, alternate lateral load distributions were 

considered in an attempt to simulate some of the forces associated with higher modes.  

Figure 11.45 and Figure 11.46 show the results of using an upward triangular load 

distribution, shown in Figure 11.35, to compute the design axial forces.  It is shown that 

the brace axial forces in the lower half of the structure are more accurately predicted with 
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the design forces associated with the upper triangular load distribution.  However, as 

given in Table 11.1, the brace axial forces are under-represented by a factor between 22 

and 52 compared to the median 10% in 50 years axial forces and the median plus one 

standard deviation for the 2% in 50 years hazard level respectively. 
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Figure 11.45 Ratios of Axial Force Demand Based on the 10% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Upward Triangular Load Pattern for All 

Configurations 
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Figure 11.46 Ratios of Axial Force Demand Based on the 2% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Upward Triangular Load Pattern for All 

Configurations 

 

Similarly, a reverse linear lateral load distribution, shown on the right of Figure 

11.35 was used to calculate design axial forces which led to the axial force ratios given in 

Figure 11.47 and Figure 11.48.  This lateral load distribution is shown to more accurately 

predict the brace axial forces in the upper half of the building.  The brace axial forces in 

the lower floors are considerable underestimated however. 
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Figure 11.47 Ratios of Axial Force Demand Based on the 10% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Reversed Linear Load Pattern for All 

Configurations 
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Figure 11.48 Ratios of Axial Force Demand Based on the 2% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Reversed Linear Load Pattern for All 

Configurations 

 

Clearly, both the upward triangular lateral load distribution and the reversed linear 

lateral load distribution are not efficient on their own in simulating the brace forces 

experienced in the nonlinear time history analyses.  These lateral load distributions were 

instead intended to be used together to simulate worst case load combinations.  Figure 

11.49 and Figure 11.50 show the axial demand to design axial force ratios in which the 

design axial forces for each member are taken to be the larger of the axial forces resulting 

from the upward triangular and reversed linear lateral load distributions.  As shown in 

Figure 11.49, the maximum brace axial force ratios were 2.06 for the median response to 

motions with 10% probability of exceedance in 50 years and 2.74 for the median plus one 

standard deviation response to the 10% in 50 years motions.  The axial demand to design 

axial force ratios are smaller and more consistent for the braces using this method for 

calculating design axial forces.  
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Figure 11.49 Ratios of Axial Force Demand Based on the 10% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Worst of the Upward Triangular and 

Reversed Linear Load Pattern for All Configurations 
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Figure 11.50 Ratios of Axial Force Demand Based on the 2% in 50 Hazard Level to 

Design Axial Forces Calculated Using the Worst of the Upward Triangular and 

Reversed Linear Load Pattern for All Configurations 

 

The maximum axial force ratios for all of the lateral load distributions considered 

are given in Table 11.1.  These maximum axial force ratios can be used as amplification 

factors to be applied to the design axial forces to account for dynamic effects and higher 

modes.  Different levels of exceedance probability and hazard level can be considered in 

design by choosing the amplification factor that corresponds to either the hazard level 

with 10% probability of exceedance in 50 years or the 2% in 50 years hazard level and 

the probability of exceeding the design forces (e.g., 50% probability of exceedance for 

the median value and 84% probability of exceedance for the median plus one standard 

deviation value).  Other probabilities of exceedance are possible by assuming a 

lognormal distribution with the given median and standard deviation. 
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Table 11.1 Maximum Demand to Design Ratios* for Different Capacity Design 

Lateral Load Distributions and Different Hazard Levels (Amplification Factors) 

   
Exterior Interior 

 

   
Column Column Braces 

Inverted 10% / 50 Median 1.53 1.39 8.40 

Triangular 
 

Med + STD 1.92 1.71 11.18 

Load 2% / 50 Median 1.94 1.72 10.94 

Distribution 
 

Med + STD 2.51 2.20 14.98 

Upward 10% / 50 Median 2.60 1.90 22.82 

Triangular 
 

Med + STD 3.14 2.36 34.24 

Load 2% / 50 Median 3.18 2.48 34.00 

Distribution 
 

Med + STD 3.93 3.18 52.09 

Reversed 10% / 50 Median 1.07 1.07 6.84 

Linear 
 

Med + STD 1.31 1.32 15.74 

Load 2% / 50 Median 1.34 1.32 8.92 

Distribution 
 

Med + STD 1.71 1.69 21.71 

Worst of 10% / 50 Median 1.07 1.07 2.06 

UT and RL 
 

Med + STD 1.31 1.33 2.74 

Load 2% / 50 Median 1.34 1.32 2.70 

Distributions 
 

Med + STD 1.71 1.69 3.67 

* Maximum demand to design ratios do not include the top floor columns 

 

An example of how this table might be used is as follows.  For a given controlled 

rocking frame it is decided that the frame member axial forces should not have more than 

a 50% probability of exceedance when subjected to an earthquake at that has a 2% 

probability of exceedance in 50 years.  A linear elastic frame analysis model is created 

with four load cases including the upward triangular lateral load pattern and the reversed 

linear lateral load pattern shown in Figure 11.35.  The amplification factors of 1.34 and 

2.70 are obtained from Table 11.1 (after further research, these may be rounded to values 

appropriate for more general design) for the column and braces respectively.  The worst 

case axial forces from the four load cases are multiplied by these amplification factors 

and used to design the members.  

The FEMA document used to calculate building seismic performance factors 

(FEMA P695 2009), provides context for the choice of hazard level.  The acceptability of 

seismic performance factors is based on a margin of safety against collapse at the hazard 

level with 2% probability of exceedance in 50 years as defined using the median of the 

set of ground motions.  Also, as discussed in Chapter 12, it is desirable to prevent 

inelasticity in the frame members for the majority of ground motions that have a 2% 

probability of exceedance in 50 years. 

Using the median 2% in 50 years values from Table 11.1 for the design of the 

controlled rocking frame is expected to produce frames that satisfy these performance 

goals although the current study did not investigate flexure-axial interaction or 
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probabilities of collapse.  Further investigation is needed to determine whether the 

proposed capacity design method satisfies FEMA P695 or the goal that the frame 

members stay elastic for the average 2% in 50 years ground motion. 

11.4 Summary of Frame Member Forces 

Peak resultant axial forces, shear forces, and moments from the experimental program 

were presented and discussed in conjunction with some maximum strains recorded for 

individual strain gages.  The largest resultant forces, moments, and strains occur at the 

base of the exterior columns.  Based on the available data, it is likely that the outside 

flange tips at the base of the exterior columns experienced localized inelastic strains 

during some of the specimen tests.  However, no yielding or buckling was observed in 

the post-test inspections of the specimens.  

In general, the computational simulations were shown to produce axial forces, 

shear forces, and moments similar to those experienced in the experimental program.  

The computational model was therefore considered adequate for predicting member force 

demands using nonlinear time history analyses for comparison with design forces. 

A capacity design methodology was presented in which a linear elastic frame 

model is used to calculate force demands based on multiple load cases.  The worst case 

member forces are then multiplied by an amplification factor to account for dynamic 

effects and higher modes.  The amplification factors were calculated as the maximum 

ratio of axial force obtained using nonlinear time history analyses on a range of buildings 

to the design axial force.  Although amplification factors are presented for different 

hazard levels, it is the goal of the capacity design methodology that the frame members 

remain elastic for the majority of ground motions that have a 2% probability of 

exceedance in 50 years. 

It is important to note that there are limitations to the capacity design method 

presented here and needs for future research: 

 The assessment of the capacity design method only considered axial forces.  

A more thorough assessment of the methodology is warranted considering 

shear, moment, and flexure-axial force interaction. 

 The effect of vertical modes was included in the computational model, but 

other dynamic effects such as radiation damping due to impact were 

neglected.   However, it is conservative to neglect the effect of radiation 

damping.  

 The assessment of the capacity design method included in this chapter 

does not represent a full reliability study.  A more comprehensive 

reliability study would also consider the statistical distribution of member 

resistance to investigate probabilities of member failure.   

 A more comprehensive reliability study should also consider the 

consequences of member failure.  The proposed method presented in this 

chapter uses the maximum ratio across the height of the building of axial 

force demand (for either median or median plus one standard deviation) to 

design axial force as the factor to amplify the design forces.  This does not 

take into account the fact that the failure of some members has more 

severe consequences than  others. 
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Finally, it is noted that the capacity design method presented in this chapter is 

intended to be easy to conduct.  However, there are more advanced and accurate methods 

for conducting frame design for the controlled rocking system.  Three tiers of frame 

design are identified and include: 

1. A capacity design method based on elastic frame analysis such as the 

method presented in this chapter. 

2. Modal combination approaches, such as those described in Roke et al. 

(2009). 

3. Nonlinear time history analyses. 
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Chapter 12  
 

RECOMMENDED DESIGN STRATEGY 

12.1 Introduction 

The purpose of this chapter is to synthesize the results, observations, and conclusions 

from all of the previous chapters as they pertain to the practical design of the controlled 

rocking system.  As such, some information is repeated and in other cases reference is 

made to previous chapters.  A summary list of recommended design steps is included in 

Chapter 13. 

The limit states for the controlled rocking system are given in Table 12.1.  The 

target performance when subjected to different hazard levels is described.  Methods for 

preventing the listed limit states are discussed in this chapter. 

 

Table 12.1 Goals for Preventing Limit States for Different Hazard Levels 

Limit State 50% in 30 Years 10% in 50 Years 2% in 50 Years 

Uplift Small Allowed Allowed 

Fuse Yield Small Allowed Allowed 

Post-Tension Yield Not Allowed Not Allowed Limit to Low 
Probability 

Post-Tension Wire 
Fracture 

Not Allowed Not Allowed Limit to Small 
Percentage of 
Wires if Any 

Fuse Fracture Not Allowed Not Allowed Limit to Low 
Probability 

Inelasticity in 
Frames or Frame 

Connections 

Not Allowed Not Allowed Limit to Low 
Probability 

Global Uplift Not Allowed Not Allowed Not Allowed 

Fracture of all 
Post-Tensioning 

Strands 

Not Allowed Not Allowed Not Allowed 

 

There are a variety of structural configurations that may use a controlled rocking 

approach with energy-dissipating fuses. This research investigated both single frame and 

dual frame configurations.  As a first step to design, it is necessary to select the structural 

configuration; in the context of this research either a dual frame configuration or a single 

frame configuration would be selected to initiate design.  Considerations for this decision 

are given in Table 12.2. 
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Table 12.2 Summary of the Advantages of the Dual Frame and Single Frame 

Configurations 

Advantages of the 

Dual Frame Configuration 

Advantages of the 

Single Frame Configuration 

 Fuses along the height of the 

frames can dissipate energy due to 

higher mode deformations 

 Less congested detailing because 

fuse is away from the post-

tensioning 

 No need for pin connections 

between the fuse and the frame 

eliminating issues with pin hole 

tolerances 

 No additional fuse frame assembly 

is necessary as is needed for single 

frame. 

 Post-tensioning is split into two 

bundles which may be easier to 

detail 

 Ability to use smaller self-

centering ratios 

 Fuses do not apply forces along the 

height of the frames and thus do not 

cause residual elastic frame 

deformations 

 One frame can be applied to shorter 

bay widths than two frames 

 Flow of forces in the frame is 

simpler 

 No issues related to relative motion 

of two frames such as constraint or 

forces between the dual frames 

 Only one fuse location for each 

frame translates into less cost for 

replacement 

 Less fit-up issues in the field with 

only one frame 

 

12.2 System Proportioning 

The design process then begins with the calculation of design earthquake forces.  Based 

on strength requirements, self-centering goals, and the prevention of global uplift, the 

desired fuse capacity and initial post-tensioning force are calculated, as discussed below.  

Alternative methods for proportioning the fuse capacity and initial post-tensioning force 

may have advantages, such as direct displacement-based design (Ma 2010). 

12.2.1 Proportioning for Strength 

Equivalent lateral forces can be calculated according to building codes such as ASCE 7-

05 (ASCE 2005).  A response modification factor of R=8.0 has been assumed in this 

work based on the large ductility of the system and the performance of the sensitivity 

study configurations.  The configurations designed as part of the sensitivity were shown 

to have between 15.9% and 51.1% probability of exceeding a roof drift ratio of 2.0% for 

the hazard level with 10% probability of exceedance in 50 years and between 15.9% and 

58.3% probability of exceeding a roof drift ratio of 3.0% for the 2% in 50 years hazard 
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level.  Probabilities of exceeding fuse and post-tensioning limit states were found to be 

low and are discussed in the following sections.  Although the probability of adverse 

limit states or large drifts was found to be relatively low using a response modification 

factor of R=8.0, the sensitivity study was not conducted to meet the requirements of an 

ATC 63 investigation (FEMA P695 2009).  

The load combination for use in designing the system is given in Equation (12.1) 

which is load combination 7 from Section 2.3.2 of ASCE 7-05 (ASCE 2005).  The design 

overturning moment, Movt, is given as the sum of the equivalent lateral forces multiplied 

by their respective heights as given in Equation (12.2) and shown schematically in Figure 

12.1 for an example three-story structure. 

 

ED 0.19.0             (12.1) 

#

1

Floors

ovt i i

i

M F H


         (12.2) 

Where: 

 Fi = Equivalent lateral force at level i 

 Hi = Height of level i 
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Figure 12.1 Idealized Controlled Rocking Frame in the Dual Frame Configuration 

(Left) and Single Frame Configuration (Right) 

 

The resistance to overturning is calculated in Equation (12.3), (12.4), and (12.5).  

A resistance factor of 0.9 was applied to the overturning moment.  As shown in Figure 

12.1, the overturning moments are resisted by the initial post-tensioning force, Fpti, the 

total fuse shear capacity, Vfp, and the tributary dead load PD.  The dead load is assumed to 

act only on the exterior columns for the sake of these equations, but application of dead 
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load in different patterns can be considered by adjusting the dead load term to account for 

the horizontal eccentricity of the dead load relative to the pivot points. 

The ability of the system to resist lateral forces results in the first design 

relationship given in Equation (12.3) which expands out to Equation (12.4) and (12.5).  

This relationship is combined with the self-centering goals in the next section to solve for 

the required fuse capacity and initial post-tensioning force. 

 

resist ovtM M          (12.3)  

   0.9 0.9pti D fp ovtF P A V A B M    
 

 (DUAL FRAME) (12.4) 

 0.9 1.8
2

pti D fp ovt

A
F P V M

 
   

 
  (SINGLE FRAME) (12.5) 

  Where: 

  Fpti = Initial post-tension force 

  Vfp = shear yield capacity of all fuses 

  A, B  = Dimensions Shown in Figure 12.1 

  PD = Total dead load applied to one exterior uplifting column 

 

12.2.2 Proportioning for Self-Centering 

To proportion the fuse capacity and initial post-tensioning force, it is necessary to define 

the desired level of self centering.  To create a fully self-centering flag-shaped load-

deformation response, the self-centering ratio presented in chapter 3 will be equal to or 

larger than 1.0.  However, it was demonstrated through a parametric study presented in 

Chapter 9 that probabilistic self-centering can reliably eliminate residual drifts with self-

centering ratios as low as 0.5.  To utilize self-centering ratios significantly less than 1.0 

will require the use of different configurations that are not susceptible to global uplift, as 

discussed in the following section. 

The restoring moment is set equal to the moments that are resisting self-centering 

multiplied by the self-centering ratio.  Equation (12.6) gives the general condition which 

is then expanded in Equation (12.7) and (12.8) for dual frame configurations and single 

frame configurations respectively. 

 

restore fuseM SC M        (12.6) 

   0.9pti D fpF P A SC V A B    (DUAL FRAME)  (12.7) 

1.8pti D fpF P SC V     (SINGLE FRAME)  (12.8) 

 

Subtracting Equation (12.4) from Equation (12.7) or subtracting Equation (12.5) 

from Equation (12.8), causes the contribution of the P/T force and gravity load to drop 

out leaving an equation for proportioning the fuse strength based on the design 

overturning moment given in Equation (12.9) and (12.10). 
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  0.9 1

ovt
fp

M
V

SC A B


 
  (DUAL FRAME)  (12.9) 

 
2

0.9 1

ovt
fp

M
V

SC A



   (SINGLE FRAME)  (12.10) 

 

After designing the fuse, the initial post-tension force required to satisfy the 

specified self-centering ratio can be calculated by rearranging Equation (12.7) and (12.8), 

which results in Equation (12.11) and (12.12). 

 
0.9pti fp D

SC A B
F V P

A


    (DUAL FRAME)  (12.11) 

1.8pti fp DF SC V P     (SINGLE FRAME)  (12.12) 

12.2.3 Proportioning Against Global Uplift 

It is necessary to prevent undesirable limit states and deformation modes.  Global uplift is 

characterized by both legs of a frame lifting off the supports.  In the dual frame 

configuration, this corresponds to the windward frame being lifted off the ground.  In the 

single frame configuration global uplift corresponds to the frame not being supported by 

the column supports, but instead supported on the fuses.  See Figure 3.5 for a schematic 

representation of global uplift for the dual frame configuration.  To prevent global uplift, 

the post-tensioning force has to be greater than the resisting force of the fuses as given in 

Equation (12.13). 

 

 pti sh fpF C V         (12.13) 

  Where: 

  Csh = Factor for Strain Hardening 

 

Alternative configurations are possible that are not susceptible to global uplift.  

For instance, the energy-dissipating elements might be separated from the rocking frame 

(e.g., a buckling restrained braced frame in a different bay than the rocking frame).  If the 

energy-dissipating components and restoring force components are separated, the global 

uplift limit state would not apply. 

 

12.3 Fuse Design and Considerations 

The steel fuse plates can be designed based on plastic hinging at the quarter points of the 

fuse links.  Equation (12.14) gives the plastic shear capacity of the fuses. 
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24

9
fp fy links fuses

b t
V N N

L
       (12.14) 

 Where  b = link depth at the ends 

   t = fuse plate thickness 

   L = link length 

   fp = fuse plate yield strength 

   Nlinks = Number of links per fuse 

   Nfuses = Number of fuses 

 

The slenderness of the fuse should be set to produce either buckling or non-

buckling response.  Tested fuses with slenderness ratios between L/t=8 and L/t=22.4 did 

not exhibit buckling.  Tested fuses with slenderness ratios of L/t=32 and larger 

experienced lateral-torsional buckling.  Based on the experimental program and 

computational simulations, it is concluded that thicker non-buckling fuses offer several 

advantages over thin buckling fuses: 

 

 It was found that buckling fuses experienced significantly larger axial 

forces after buckling than the non-buckling fuses. 

 Larger fuse axial forces create larger frame column moments and shears 

 Buckled fuses absorb less seismic energy 

 Fuse link buckling occurs due to the combination of shear, moment, and 

axial forces.  In this indeterminate system, the axial forces vary making it 

difficult to predict fuse buckling and making seismic performance less 

consistent. 

 Thick fuses exhibit an elastic-plastic hardening response that is easy to 

simulate in a computational model. 

 Based on the hybrid simulation tests of Specimen A5 and the other thick 

fuse specimens, it is concluded that thick fuses may not need to be 

replaced even after large earthquakes. 

 

Another consideration in fuse design is preventing fuse link fracture.  Although 

none of the large-scale system tests experienced fuse fracture, the fuse component tests 

conducted at Stanford University were conducted up to fuse fracture.  The four steel 

butterfly plate fuses that were bolted to the supports experienced fracture between 30% 

and 46% shear strain across the fuse link.  The large-scale cyclic system tests reached 

fuse shear strains of 25% without any fractures of the fuse links.   

It is advisable therefore, to limit the expected fuse shear strain to 30% across the 

fuse link for the hazard level that has 2% probability of exceedance in 50 years.  This 

would represent a low probability of fracturing the fuse in a long return period earthquake.  

This limit can be enforced by estimating the fuse link shear strain for a given level of roof 

drift ratio.  The sensitivity study suggests that the controlled rocking system will have a 

50% probability or less of exceeding 3% roof drift ratio under the 2% in 50 years event.  

Equation (12.15) and (12.16) give the fuse link shear strain, link assuming rigid body 

motion of the frames. 
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 Where   α = Roof drift ratio 

 

12.4 Post-Tensioning Design and Considerations 

Designing the post-tensioning consists of selecting the number of post-tensioning strands 

and the initial post-tensioning stress to satisfy the required initial post-tensioning force.  

A minimum initial post-tensioning stress will be dictated by the lowest initial force that 

can be practically applied to a strand.  The large-scale testing program utilized initial 

post-tensioning stress as low as 28.7% of ultimate.  Use of lower initial post-tensioning 

stress may be possible, but should be verified. 

A maximum initial post-tensioning stress is dictated by the amount of elastic 

strain capacity required for a given configuration.  Table 8.9 gives the maximum post-

tensioning strains required to limit the probability of fracturing post-tensioning wires to 

an acceptable level.  For instance, since Specimen A4 did not experience significant loss 

of strength, stiffness, or self-centering abilities after 5% of the post-tensioning wires 

fractured, it might be deemed acceptable to allow a 50% probability of fracturing 5% of 

the post-tensioning wires during the earthquake event that has 2% probability of 

exceedance in 50 years.  According to Table 8.9, if the post-tensioning strands are limited 

to 1% strain, then there will be a 78% probability that no more than 5% of the post-

tensioning wires will fracture.  According to Table 10.14, a roof drift ratio of 3.0% will 

approximately represent the median 2% in 50 years event.  By estimating the amount of 

superimposed elastic strain in the post-tensioning strands due to this level of roof drift, 

and subtracting from the limit of 1% strain, a maximum initial post-tensioning strain can 

be calculated. 

An initial post-tensioning stress that is between the minimum and maximum 

values described above is then selected.  The required area of the post-tensioning strands 

can then be calculated as the required initial post-tensioning force divided by the initial 

post-tensioning strand stress.  The exact area of post-tensioning will have to be selected 

based on the available sizes for strands such as 0.5” diameter strands (A=0.153 in
2
) or 

0.6” diameter strands (A=0.217 in
2
).  The initial post-tensioning stress should then be 

adjusted based on the actual area of strands used by dividing the required post-tensioning 

force by the area of post-tensioning strands. 

Another consideration regarding the post-tensioning is the seating losses 

associated with the wedges getting pulled farther into the anchorage as the strand is 

stressed to forces larger than previously attained.  If seating losses are not eliminated as 

described in the section on detailing below, it may be worthwhile to use a larger self-

centering ratio that has additional post-tensioning.  The effect of seating losses was 

studied as part of the sensitivity study and more details about the effects on response are 

included in Chapter 10. 
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12.5 Frame Design 

Three tiers of frame member design were identified at the end of Chapter 11 and they 

include: 

1. A capacity design method based on elastic frame analysis. 

2. Modal combination approaches, such as those described in Roke et al. 

(2009). 

3. Nonlinear time history analyses. 

 

Chapter 11 presented a capacity design approach wherein the maximum forces 

that the fuse can produce are applied to an elastic frame analysis model that includes the 

post-tensioning as a truss element.  The maximum fuse forces to be used with this method 

were given in Equation (11.1), (11.2), (11.3), and (11.4).  One or more lateral load 

distributions are considered, such as the inverted triangular distribution shown in Figure 

11.34, the upward triangular distribution shown in Figure 11.35, or the reversed linear 

distribution shown in Figure 11.35.  The lateral load factor, , is calculated using 

Equation (11.5), (11.6), or (11.7) which will cause the post-tensioning element to reach 

the ultimate force of the post-tensioning strands.   

The worst case member forces calculated from all the load cases considered is 

then multiplied by an amplification factor to account for dynamic effects and higher 

modes.  The amplification factors are given in Table 11.1 for different hazard levels, 

probabilities of exceedance (e.g., median has a 50% probability of exceedance), and load 

cases. 

 

12.6 Detailing and Construction Considerations 

One of the goals of the large-scale tests conducted at the University of Illinois was to 

investigate and improve the performance of controlled rocking construction details not 

common in steel structures such as post-tensioning anchorage and column bases allowed 

to uplift and pivot.  The key details are described in Chapter 4 and the design details are 

included in Appendix A.  In this section, the experiences gained through the experimental 

program are used to define suggestions for detailing the controlled rocking specimen.   

As discussed in Chapter 5, the testing of Specimen A1 illuminated the effects of 

post-tensioning strand seating losses.  Since these losses in the post-tensioning force are 

due to the wedges being pulled down farther into the anchorage when the forces in the 

strands increase above previous maximum levels, it is recommended that the seating 

losses be eliminated by subjecting the strands to forces on the same order as what they 

might experience in an earthquake.  Figure 12.2 shows pictures from the large-scale 

shake table testing of the controlled rocking system conducted at E-Defense in Japan (Ma 

2010).  On the left of Figure 12.2, there is a set of split washers wrapped in green tape 

immediately above the anchorage plate.  The post-tensioning chucks were stressed 

against these temporary washers to a force level near the maximum expected to occur 

during the shake table testing.  On the right of Figure 12.2, the procedure for jacking the 

strand against an open steel block is shown.  Installers were careful not to disengage the 

post-tensioning chuck, pulling the strand up just high enough to remove the temporary 
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washers.  Afterwards, the post-tensioning strand was released and the chuck came to bear 

directly on the anchorage plate.  The thickness of the temporary washers was calculated 

such that the post-tensioning force after removal equaled the required initial post-

tensioning force.  This method was found to be effective in eliminating post-tensioning 

seating losses. 

  

        
Figure 12.2 Method for Mitigating Seating Losses During Installation Including 

Installation of Temporary Washers (Left), and Removal of Temporary Washers 

(Right) 

 

As described in Chapter 8 in the section on post-tensioning wire fracture, it is not 

recommended to regrip the post-tensioning strands on portions of the strand previously 

gripped.  In the large scale tests conducted at the University of Illinois, the strands were 

re-jacked such that the strand was gripped more than once on the same portion of the 

strand.  It is believed that this contributed to the post-tensioning wire fractures 

experienced in the experimental program.  The post-tensioning strands in the E-Defense 

specimen were intentionally stressed only one time and the strands reached strains greater 

than 1.2% without fracturing any wires. 

The connection of the fuses to the columns was examined in Chapter 6 as it 

pertained to slippage of the fuse in Specimen A4.  Using the measured fuse forces and 

assumed values for the coefficient of friction, it was determined that the moment applied 

to this bolted connection caused significant increase in the shear force at each bolt.  

Based on these results, it is recommended that the fuse to column connection be designed 

for the moment associated with the fuse shear capacity acting at the quarter point of the 

fuse links. 

Sliding of the frames between the base bumpers was observed during the testing 

and in the displacement data.  The amount of sliding and the equivalent roof drift ratio 
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were reported in Table 8.6 for each specimen.  Although tolerances are necessary to 

allow erection of the frames, it was determined that the sliding at the base could be 

mitigated.  Before the testing of Specimen B1 and Specimen B2, the gap between the 

frames and bumpers were filled with thin shims that were then tack welded to the bumper.  

These shims were easy to install and eliminated sliding at the base of the frames.    

The effect of tolerances was also found to be an issue in the single frame 

configuration where the center column connects to the frame and to the fuse.  Standard 

pin hole tolerances in all plies added up to a lag in the fuse response when the fuse force 

changed directions.  This effect was mitigated in the E-Defense specimen by eliminating 

the pin connection at the top of the center column as shown on the left of Figure 12.3.  To 

further mitigate the effect of pin hole tolerance, the bottom of the center column, shown 

on the right of Figure 12.3, can be welded to the pin.  Although this was not tested in the 

E-Defense specimen, the combination of these two approaches effectively eliminates the 

pin hole tolerances in three of the four plies reducing the associated lag in fuse response 

by 75%. 

 

     
Figure 12.3 Mitigating Pin Hole Tolerances in the Single Frame Configuration at 

the Top of the Center Column (Left) and at the Bottom of the Center Column 

(Right) 

The effect of out-of-plane motion on the in-plane rocking of the frames was 

investigated during Test A6 of the experimental program as described in Chapter 7.  Out-

of-plane motions equal to 10% of the in-plane motions were applied during an MCE level 

event.  As described in Chapter 8 and Chapter 11, the effect of out-of-plane motions on 

system response and member forces was not found to be significant.  The strains in the 

columns were slightly larger for the hybrid simulation test that included out-of-plane 

motion, but otherwise there was little effect on the system.  This suggests that no 

additional detailing requirements to account for out-of-plane motion are likely to be 

necessary. 

12.7 Connection with the Diaphragm and Collectors 

Column uplift could cause local floor damage and creates challenges in connecting the 

floor diaphragm to the controlled rocking frames.  A range of possible details have been 
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created and are presented in this section in schematic drawings.  Possible options for 

connecting the diaphragm to the rocking frame include: 

1. Typical connection of the diaphragm to the frame beam and from the 

collector beam to the end of the frames.  Some localized damage is 

expected at the uplifting columns as shown in Figure 12.4. 

2. The collectors are split around the rocking frame into adjacent beams.  

The adjacent beams would attach to the rocking frame through shear 

plates that allow the frame to uplift through flexure in the plate.  As shown 

in Figure 12.5, the floor slab could be blocked out around the rocking 

frame.  The resulting configuration would transfer shear to the controlled 

rocking frame but protect the floor slab from damage associated with 

uplifting elements. 

3. Similar to the previous option, the collectors feed into adjacent beams.  A 

roller attaches between the adjacent beams and bears on the side of the 

rocking frame.  This type of yoke configuration transfers lateral loads only 

through compression.  This option is shown in Figure 12.6.  The large-

scale shake table specimen tested at E-Defense used a similar attachment 

to the masses, using beams on either side of the specimen with a bolted 

connection on one end of the frame only. 

4. The possible floor damage in dual frame configurations is exacerbated by 

the close proximity of the interior columns.  As shown in Figure 12.7, an 

option for reducing floor damage involves blocking out the slab next to the 

rocking frames and adding an adjacent beam.  This detail has the 

collectors connecting directly to the rocking frame similar to the first 

option. 

 
Figure 12.4 Isometric View of a Standard Diaphragm Connection 
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Figure 12.5 Isometric View of a Possible Diaphragm to Rocking Frame Connection 

that Allows Uplift Without Damage 

 
Figure 12.6 Isometric View of a Possible Diaphragm to Rocking Frame Connection 

Using a Yoke 

SLAB WITH 

BLOCKOUT AT 

CONTROLLED 

ROCKING FRAME

ADJACENT 
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ROCKING 

FRAMES

EXTERIOR 

WALL

PLATES TRANSFER 

DIAPHRAGM SHEAR 
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Figure 12.7 Plan View of a Possible Diaphragm to a Dual Frame Rocking System 

Connection that Reduces Damage 
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Chapter 13  
 

CONCLUSIONS 

 

Current seismic building codes use inelasticity in structural elements to protect buildings 

from collapse.  As a result, conventional seismic force resisting systems subjected to 

large earthquakes can experience structural damage that is distributed throughout a 

building and permanent drifts after the earthquake motions cease.  Distributed structural 

damage and residual drifts can make a building difficult if not economically unreasonable 

to repair. 

To create a structure that has a high level of repairability after a large earthquake 

requires that the structural damage be concentrated in replaceable elements and the 

residual drifts be eliminated.  Conventional seismic force resisting systems cannot satisfy 

these goals without strengthening them to near elastic behavior.  It is necessary, therefore, 

to create innovative higher performance seismic resisting systems that inherently satisfy 

the stated performance goals related to repairability. 

The controlled rocking seismic force resisting system for steel-framed buildings is 

a higher performance system that concentrates inelasticity in replaceable steel fuse 

components and eliminates residual drifts using vertical post-tensioning to close uplifting 

gaps at the base of rocking frames.  The work described in this report is part of a multi-

institution, international research project to investigate and develop the controlled 

rocking system for practical implementation. 

Work that is associated with the larger research project but was not part of the 

research reported in this report includes fuse component tests and development, large-

scale shake table testing at the E-Defense facility in Miki, Japan, parametric 

computational studies to investigate different configurations and building heights, and the 

development of a direct displacement based design methodology for system 

proportioning.  Chapter 3 includes the references for these phases of the work. 

This report describes several phases of the validation and development of the 

controlled rocking system including an experimental program and computational studies.  

The experimental program consisted of large-scale cyclic and hybrid simulation testing.  

Computational studies included a parametric study on SDOF systems to investigate the 

amount of restoring force necessary to control residual drifts in the presence of ambient 

building resistance, and an MDOF sensitivity study to examine the application of the 

controlled rocking system to a range of building configurations.  Both the experimental 

program and the computational studies validated that the controlled rocking system is 

capable of eliminating residual drifts and concentrating virtually all of the structural 

damage in replaceable fuse elements.  The results of the work described herein suggest 

that the controlled rocking system is a valid higher performance seismic force resisting 

system that can be implemented in practice to achieve significantly improved structural 

repairability after large earthquakes. 
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13.1 Description of the Controlled Rocking System 

The controlled rocking system for steel-framed buildings employs the following three 

main components: (1) Steel frames that remain essentially elastic and are allowed to rock 

about the column bases. The column base detail permits column uplift but restrains 

horizontal motion using bumpers or an armored foundation trough.  (2) Vertical post-

tensioning strands provide active self-centering forces. The strands are initially stressed 

to less than half of their ultimate strength, so as to permit additional elastic straining 

when the frames rock.  (3) Replaceable energy dissipating elements act as structural fuses 

that yield, effectively limiting the forces imposed on the rest of the structure. The fuses 

are configured as yielding shear elements between two frames in a dual frame 

configuration or at the base of the frame in a single frame configuration. 

The controlled rocking system has a flag-shaped hysteretic response that is 

characteristic of self-centering systems. The post-tensioned frame creates a bilinear 

elastic response with an initial stiffness due to elastic deformations in the frame and a 

secondary stiffness due to additional elongation of the post-tensioning strands after uplift. 

The fuse, on the other hand, can have full hysteretic load-deformation behavior. The 

effect of combining the two components is a flag-shaped hystersis loop that returns to 

near zero displacement when the load is removed. 

13.1 Summary of Experimental Program 

The large-scale cyclic and hybrid simulation tests were conducted at the University of 

Illinois at Urbana-Champaign MUST-SIM facility, which is part of the George E. Brown, 

Jr. Network for Earthquake Engineering Simulation (NEES).  The specimen was based 

on a three-story prototype building that is 36.6 m x 54.9 m (120’ x 180’) located in Los 

Angeles, California.   

Nine specimens were tested consisting of seven dual frame configuration 

specimens (A series), in which the two frames are linked together with fuses, and two 

single frame configurations (B series), in which the fuses were concentrated at the base of 

the frame.  The specimen design strength was calculated using an assumed response 

modification factor of R=8.0, four frames in each direction for the dual frame 

configuration, ten frames in each direction for the single frame configuration, and a scale 

factor of 0.43 relative to the prototype. 

A three-story test specimen was constructed using W8 wide flange members 

turned minor axis and connected using gusset plates on both sides.  Eight post-tensioning 

strands were used for the dual frame configuration and four post-tensioning strands were 

used for the single frame configuration.  The post-tensioning consisted of 12.7 mm (½”) 

diameter strands anchored at the roof beam and to an anchorage plate at the base that was 

connected to the strong floor.  Steel plates with diamond shaped cut-outs served as the 

energy dissipating fuses.  The base of the frames were not attached to the base plate, 

instead a milled base plate with rounded bull nose edges was allowed to pivot and uplift 

between bumpers on all sides. 

Load was applied to the specimen using a Load and Boundary Condition Box 

(LBCB) connected to a loading beam at the top of the specimen.  The loading beam was 

connected to the specimen through two load cell pins that measured horizontal and 
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vertical forces input into the two frames.  The vertical forces in the pins were maintained 

at zero force throughout the test. The displacement of the specimen was controlled using 

feedback from two horizontal string potentiometers at the roof level.  Seven of the tests 

were conducted with cyclic displacement protocol and two of the dual-frame 

configuration tests, Specimen A5 and Specimen A6, were conducted as hybrid simulation 

tests. 

The nine specimens were designed to vary several variables including 1) OT 

strength ratio, 2) SC self-centering ratio, 3) Fuse thickness, 4) Number and location of 

fuses, 5) Dual frame configuration (series A) versus single frame configuration (series B), 

6) Single width fuse for dual frame configuration (series A) versus double width fuses for 

single frame configuration (series B), 7) Single thickness fuses (Typical) versus double 

thickness fuses with a restraining plate between (Specimen B2), and 8) Initial stress level 

in post-tensioning strands. 

The frames were reused for all nine specimens with some modifications made to 

the frames for the single frame configuration specimens.  In between specimen tests, the 

fuses were replaced and the post-tensioning strands were either adjusted or replaced.  The 

same post-tensioning strands were used without de-stressing for Specimen A1 through 

Specimen A4 and were then replaced for use in Specimen A5 through Specimen A7.  The 

strands were again replaced for Specimen B1 and Specimen B2. 

13.2 Observations from the Experimental Program 

13.2.1 Global System Behavior 

The cyclic and hybrid simulation tests validated that the controlled rocking system 

satisfies the stated performance goals.  The hysteretic behavior of the system was found 

to be predictable and several aspects of the system response such as strength can be 

computed with closed form equations. 

Uplift of the frames occurred at roof drift ratios between 0.11% and 0.32%.  The 

roof drift ratio at uplift was found to be sensitive to the amount of sliding allowed at the 

base of the frame relative to the foundation.  The average roof drift ratio at fuse yield was 

approximately 0.6% for the dual frame configuration but almost 1.5% for single frame 

configuration.  Accumulation of pin hole tolerances in the connections between the frame 

and the fuse caused a lag in engaging the fuses for the single frame configurations.  As 

discussed below, this issue was mitigated for shake table tests conducted at E-Defense.  

The cyclic tests were conducted to roof drift ratios between 3% and 4.2%.  The 

permanent drift that remained after the force was removed was between 0.0% and 0.8%, 

although the majority of specimens exhibited 0.1% drift or less. 

The displacements of the frames were shown to be almost entirely due to rigid 

body rotation of the stiff steel braced frames.  For the dual frame configuration, it was 

shown that the frames tilt toward one another because equal drift of the two frames would 

cause significant axial elongation in elements that connect the two frames.  The constraint 

between the two frames provided by the fuses acts to pull the frames together. 

Large-scale testing of the dual frame configuration and the single frame 

configuration show that both are valid arrangements for the controlled rocking system.  

Comparisons of the hysteretic energy absorbed by the two configurations showed that the 

single frame configuration required larger displacements to absorb the same amount of 
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energy as the dual frame configuration.  This was due to the pin hole tolerances in the 

center column that connected the frame to the fuse.  Based on the results of this 

experimental program, the pin hole tolerances were successfully mitigated for the E-

Defense tests by using a bolted connection at the top of the center column instead of a pin 

connection, and reducing the tolerances used for the lower pin connection. 

Another difference between the dual frame and single frame configuration relates 

to the frame drifts that remain after the loads are removed.  There are residual drifts that 

remain in a dual frame configuration when the loads are removed due to the built-up 

forces in the fuses which, because they are distributed along the height of the system, 

cause elastic deformations in the frames.  The single frame configuration is immune to 

this effect because the fuses are concentrated at the bottom of the frame.  The two single 

frame specimens exhibited almost no drift at zero force even after yielding of the post-

tensioning strands and fracture of several post-tensioning wires.  On the other hand, the 

single frame configuration requires larger self-centering ratios to prevent global uplift 

because the moment arm associated with the fuse force is shorter in the single frame 

configuration. 

13.2.2 Post-Tensioning Behavior 

The post-tensioning strands are intended to remain elastic in most earthquake events.  To 

understand the possible limit states, the post-tensioning strands were elongated past the 

yield strain in the experimental program.  The post-tensioning strand behavior was 

investigated including post-tensioning seating losses, strand yielding, and wire fracture. 

It was found that as the force in a post-tensioning strand exceeded its previous 

maximum force, that the wedges at the anchorage were pulled incrementally further into 

the mating conical hole.  Through the testing of specimen A1 up to a roof drift ratio of 

3%, seating losses caused approximately 18% loss in the initial post-tensioning force.  

However, due to the testing of Specimen A1, the anchorages were well seated and the 

post-tensioning strands did not experience significant seating losses in the testing of 

Specimen A2, A3, or A4.  Seating losses were eliminated before the testing of Specimen 

A5, A6, A7, B1, and B2, by conducting large displacement cycles after installing the 

post-tensioning strands but before installing the fuses.  A method for eliminating seating 

losses in practical applications was developed for the E-Defense tests and consisted of 

including a removable shim between the post-tensioning chuck and anchorage plate, 

stressing the strand to a force greater than the design initial post-tensioning force, and 

then removing the shim. 

A linear trendline was fit to the data to correlate the amount of force reduction 

due to seating losses to the increase in peak post-tension force above previous force 

levels.  The relationship was then used to create a post-tensioning material constitutive 

relationship for use in the computational model that allowed the investigation of the 

effects of seating losses on system performance in the sensitivity study.  The constitutive 

model uses the previous maximum force experienced by the post-tensioning strands as an 

input to define the force at which the seating losses would initiate. 

At large strains, individual wires in the seven-wire post-tensioning strand 

fractured.  In the four specimens that were subjected to post-tensioning strains greater 

than yield, 13 of 280 wires fractured.  In all cases, the fractures did not propagate to other 

wires, nor did the fractures propagate to the other strands.  Furthermore, the system 
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strength was not affected, and ability of the system to eliminate drifts at zero force was 

only slightly affected. 

Based on the post-tensioning wire fractures experienced in the experimental 

program, the probability of fracturing a certain proportion of the strands in a controlled 

rocking frame was computed for several limits on post-tensioning strain.  These results 

could be used in design to define a limit on post-tensioning strain that creates a desired 

probability of post-tensioning wire fracture. 

13.2.3 Fuse Behavior 

The fuses demonstrated excellent ability to dissipate seismic energy without fracturing.  

The shape of butterfly links was designed to cause initiation of first yield and plastic 

hinging at the quarter point of the fuse link away from locations of discontinuity.  

Because of this design feature and smooth cut surfaces, the fuses possessed large ductility 

and deformation capacity.  In the experimental program, the fuses were deformed to as 

much as 25% shear strain across the fuse link and none fractured. 

A range of fuse thicknesses were included in the experimental program.  Thinner 

fuses were allowed to buckle and underwent a progression of behavior including flexural 

yielding, lateral-torsional buckling, axial elongation at large deformations, and 

compression buckling.  Thicker fuses did not buckle and exhibited full hysteretic 

behavior.  The buckling fuses were found to improve self-centering by exerting less 

resistance to oppose the post-tensioning restoring force, but also had reduced ability to 

absorb seismic energy compared to the non-buckling fuses.  A linear relationship was fit 

to the data to relate the buckling shear load for thinner fuses to the fuse link slenderness 

defined as the link length divided by the fuse plate thickness.  The relationship was then 

used to define the buckling load to be used in the computational model.  Based on the 

results of the experimental program, the thicker non-buckling fuses were found to have 

several advantages over the buckling fuses: 

 Buckling fuses experienced larger axial forces after buckling than the non-

buckling fuses.  Larger fuse axial forces create larger frame column 

moments and shears 

 Buckled fuses absorb less seismic energy. 

 Fuse link buckling occurs due to the combination of shear, moment, and 

axial forces.  In this indeterminate system, the axial forces vary making it 

difficult to predict fuse buckling and making seismic performance less 

consistent. 

 Thick fuses exhibit an elastic-plastic hardening shear force-shear 

deformation response that is easier to simulate in a computational model 

than the more complex pinched behavior of the thinner fuses. 

 Based on the hybrid simulation tests of Specimen A5 and cyclic testing of 

other thick fuse specimens, it is concluded that thick fuses may not need to 

be replaced even after large earthquakes. 

13.2.4 Frame Behavior and Detailing 

Resultant forces and moments were calculated for the frame members using 

measurements from the strain-gaged sections.  The largest resultant forces, moments, and 
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strains occur at the base of the exterior columns.  Based on the data, it is likely that the 

outside flange tips at the base of the exterior columns experienced inelastic strains during 

some of the specimen tests.  However, no yielding or buckling was observed in the post-

test inspections of the specimens and the braced frames were largely undamaged as they 

were used for all nine specimens.   

The construction tolerances used in several of the bearing details were found to 

have an effect on system behavior.  Details for which the tolerances played a role 

included pin hole tolerances in dual frame strut connections, pin hole tolerances in the 

single frame center column connections, pin hole tolerances in the pin load cell 

connections and bumper to frame tolerances at the base.  Sliding at the base of the frame 

was found to be as large as 6 mm for one of the specimen tests, but effective mitigation 

of base sliding was implemented for Specimen B1 and Specimen B2 by inserting shims 

between the frames and bumpers. 

The effectiveness of the struts between the frames in a dual frame configuration 

was found to be governed by the amount of pin hole tolerance.  Thicker fuse 

configurations hardly engaged the struts as the relative displacements were not large 

enough to engage the pin with all connecting plies. 

Thinner, buckling fuse configurations engaged the struts because the buckled 

fuses developed larger axial forces and axial deformations.  Specimen A7 which did not 

use struts exhibited larger moments and forces in the frame members than the comparable 

Specimen A1.  It was determined that for the tested configurations, struts were not 

necessary for use with the thicker fuse specimens.  For the thinner fuse specimens, the 

struts served a purpose in reducing the frame member forces, but the global performance 

was not affected by the removal of the struts.  If the frames are designed accordingly, it 

was determined that struts may not be necessary for thinner fuse configurations.   

However, it will still be necessary to transfer collector forces through or around 

the controlled rocking frames and it will be necessary to transfer diaphragm shear into the 

controlled rocking system.  If struts are not included, alternate means for collector load 

transfer and diaphragm shear transfer will be necessary, which may introduce constraint 

between the two frames similar to the struts.  The experimental and computational studies 

included in this report did not examine dual frame controlled rocking configurations that 

have no constraint between the frames.   

The tests were also quite successful in identifying several details that could be 

improved for the subsequent large-scale shake table tests conducted at E-Defense.  

Construction details and processes that were improved include eliminating post-

tensioning seating losses, mitigating pin hole tolerances in the singe frame configuration, 

and eliminating sliding at the base.  

13.2.5 Observations from the Hybrid Simulation Testing 

The ability of the controlled rocking system to eliminate residual drifts and concentrate 

structural damage in the fuse elements was validated in all six of the hybrid simulation 

trials.  The residual drifts were shown to be negligible for all trials even for trials 

including second order gravity effects and ambient building resistance.  Furthermore, the 

thicker fuses that don’t buckle, such as those used in Specimen A5, did not to experience 

any significant degradation even after multiple trials with an earthquake record scaled 

69% larger than the event that has 2% probability of exceedance in years.  This implies 
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that thicker non-buckling fuses may not need to be replaced even after very large 

earthquakes. 

13.3 Conclusions from the Computational Investigations 

13.3.1 Conclusions from the SDOF Study on Self-Centering 

The first computational study consisted of a parametric SDOF study that was conducted 

using time-history analyses on several prototype buildings to quantify the effect of 

varying system parameters on structural response including residual drifts.  Over 25,000 

analyses were performed.  SDOF elements that represented the resistance of the rest of 

the building were included to investigate the effect of ambient building resistance on self-

centering ability.  The full range of restoring force from none (all energy dissipation), to 

only restoring force (elastic bilinear) was considered to identify the required amount of 

restoring force. 

After undergoing inelastic deformations, the gravity system and other elements of 

the building will resist the ability of the restoring forces to bring the building back to 

center.  On the other hand, the added strength and stiffness provided by the rest of the 

building reduces peak drifts.  To determine the amount of restoring force required to self-

center an actual building, it is therefore necessary to consider ambient building resistance.  

The resistance of the rest of the building was represented by two SDOF elements which 

simulated interior partitions and beam to column connections.  An SDOF model was 

calibrated to experimental test data from the literature for gypsum board on metal stud 

partitions walls, and for simple shear beam to column connections.  The calibrated 

models were then extrapolated to represent the resistance of these types of elements for 

an entire building. 

System parameters varied in the study included: response modification factor, 

height of the load-deformation flag shape, partition wall density, number of tributary 

shear beam to column connections, number of stories, ratio of energy dissipating stiffness 

to total stiffness, and ratio of post-yield stiffness to initial stiffness.  Time history 

analyses were conducted for 17 ground motions scaled to two earthquake hazard levels.  

Response indices included residual roof drift, peak roof drift, ductility demand, and 

hysteretic absorbed energy. 

This study showed that typical gypsum interior partitions, although opposing 

restoring forces, also reduce peak drift and experience strength degradation such that they 

do not dramatically affect residual drifts.  Residual drift is more sensitive to simple shear 

beam-to-column connections because they do not experience as much cyclic strength 

degradation and thus retain their resistance to restoring forces. 

The minimum amount of energy dissipation required to limit peak roof drifts was 

investigated for the hazard level that has a 10% probability of exceedance in 50 years.  

For the systems included in this study, a flag shape height ratio of  >0.5 (SC<3.0) 

produced peak roof drifts below a 2% limit in most cases, and on average for the worst 

case configuration ( =0.5 three-story) when subjected to the 10% in 50 years hazard 

level. 

As part of this computational study, a probabilistic mechanism was identified that 

causes self-centering in systems with even small amounts of restoring force.  
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Probabilistic self-centering, which is especially effective in the presence of even small 

amounts of restoring force, can significantly reduce residual drifts.  Using proposed limits 

on residual drifts based on new steel construction tolerances, it was determined that 

proportioning restoring forces to have at least one half the capacity of the energy-

dissipating element can reliably control residual drifts (with confidence of one standard 

deviation above the mean for the event that has 10% probability of exceedance in 50 

years). 

13.3.2 Observations from the MDOF Sensitivity Study 

The experimental results were used to inform the development of a computational model 

that can capture the salient features of controlled rocking system behavior.  The 2D 

computational model was built using the OpenSees software and included geometric 

nonlinearity.  A phenomenological component model was used to simulate lateral-

torsional buckling of the thinner fuses.  The behavior of the thicker fuses was captured 

without calibrating any parameters to the experimental data.  A constitutive model was 

created for the post-tensioning that accounted for post-tensioning seating losses, yield, 

and initial pretension. 

The computational model was used to investigate the application of the controlled 

rocking system to 17 different configurations.  Nonlinear time history analyses were 

performed with twenty-two ground motions scaled to four different hazard levels.  A total 

of 1496 analyses were conducted.  The study was used to investigate the application of 

the controlled rocking system to different height structures, investigate higher mode 

effects, examine the effects of different frame geometries, evaluate proposed system 

proportioning concepts, and assess a proposed capacity design approach.  Conclusions 

drawn from the MDOF sensitivity study include: 

 The probabilities of exceeding limit states were calculated, including post-

tensioning wire fracture, fuse link fracture, and drift limits.  It was shown 

through the tabulation of these probabilities that the risk of exceeding 

negative limit states can be controlled. 

 Varying the self-centering ratio between 0.75 and 1.5, which effectively 

varied the amount of hysteretic energy dissipation in the system, was not 

found to have a significant effect on peak roof drifts. 

 The residual drifts were found to be negligible up to the hazard level with 

2% probability of exceedance in 50 years for self-centering ratios as low 

as 0.75.  However, for the configurations studied in this report, preventing 

the global uplift limit state does not allow the use of smaller self-centering 

ratios.  Global uplift occurs when the fuse shear capacity is greater than 

the initial post-tensioning force and results in the entire frame being lifted 

off the support. 

 The dual frame geometric ratio equal to the frame width divided by the 

fuse width was revealed to have little effect on the response indices if the 

fuse link length was held constant. 

 The controlled rocking system was investigated for building heights from 

three stories to nine stories and all were shown to perform well, engage the 

rocking mechanism, and dissipate energy.  Differences were noted such as 
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the roof drift ratio at uplift was larger for taller buildings because of elastic 

frame deformations. 

 Seating losses were shown to cause increases in the response indices at 

and above the 2% in 50 years hazard level.  The seating losses were found 

to exacerbate the loss of post-tensioning forces as they reached yield 

strains. 

 The drifts experienced by the controlled rocking system were found to be 

similar to other traditional seismic force resisting systems.  As such, it is 

expected that standard detailing for the rest of the structure would be 

reasonable.  However, to facilitate effective reuse after self-centering is 

achieved, it is advantagaeous to use either repairable details or details that 

sustain minimal damage during the expected drifts. 

13.4 Recommendations for Practical Application 

 

The information collected from the experimental program and computational studies was 

condensed into a recommended design strategy.  Within the limitations of the 

experimental and computational studies presented herein, it is believed that the controlled 

rocking system can be safely implemented in practice to achieve higher seismic 

performance. 

Limit states were identified as frame uplift, fuse yield, post-tensioning strand 

yield, post-tensioning wire fracture, fuse link fracture, inelasticity in the frames or frame 

connections, global uplift, and fracture of all post-tensioning strands.  Only uplift and 

fuse yield are allowed for hazard levels up to those with 10% probability of exceedance 

in 50 years.  For the 2% in 50 years hazard level, the probability of post-tension strand 

yield, post-tensioning wire fracture, or frame inelasticity is limited to small values.  The 

steps included in the recommended design strategy include: 

1. Decide between a dual frame or single frame configuration.  The advantages of 

each are given in Table 12.2.  Define preliminary frame width, A, and width 

between the frames, B, for a dual frame configuration. 

2. Calculate the design earthquake forces using a method such as the equivalent 

lateral force method.  Calculate the design overturning moment due to these 

lateral forces. 

3. Proportion the fuse shear capacity and initial post-tensioning force: 

a. Select a desired self-centering ratio. 

b. Calculate the required fuse capacity and initial post-tensioning force to 

satisfy strength requirements and the selected self-centering ratio.  

Equations based on the strength requirement and self-centering ratio were 

presented in Equations (12.9), (12.10), (12.11), and (12.12). 

c. Check that global uplift is prevented using Equation (12.13).  Adjust the 

self-centering ratio, fuse capacity, and initial post-tensioning force as 

necessary to satisfy this requirement. 

4. Design the butterfly fuse plates:  

a. Select a trial fuse link length.  Compute the expected fuse link shear strain 

associated with 3% roof drift ratio (3% roof drift ratio is associated with 
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the hazard level with 2% probability of exceedance in 50 years according 

to the sensitivity study).  Equations (12.15) and (12.16) provide an 

approximate method for calculating the fuse shear strain based on assumed 

rigid body rotation of the frames.   

b. Adjust the fuse link length as necessary to limit the fuse link shear strain 

to 30% which was the smallest fuse shear strain that produced fracture in 

the Stanford fuse component tests.  If necessary, adjust the frame 

geometry and start the design process over. 

c. Select fuse plate thickness to prevent buckling.  The tested fuses that did 

not experience buckling had slenderness ratios as large as L/t=22.4 where 

L is the fuse link length and t is the plate thickness. 

d. Select the fuse link depth, number of links, and number of fuses to satisfy 

the fuse shear force computed in Step 3.  Equation (12.14) gives the 

plastic shear capacity of the fuses. 

5. Design the post-tensioning:   

a. Estimate the superimposed post-tensioning strain for a roof drift ratio of 

3%, which, as stated above, is associated with the 2% in 50 years hazard 

level. 

b. Determine the post-tensioning strain limit to produce the desired level of 

reliability related to post-tensioning wire fracture using Table 8.9.  For 

instance limiting the post-tensioning strain to 1.0% will result in a low 

probability that more than 5% of the wires will fracture. 

c. Subtract the superimposed strain from the limiting strain to get the 

allowable initial post-tensioning strain.  Convert the initial strain to initial 

stress and determine the number of post-tensioning strands to satisfy initial 

post-tensioning force computed in Step 3. 

d. If necessary, adjust the frame geometry to reduce the amount of 

superimposed post-tensioning strain and begin the design process again. 

6. Design the frame members: 

a. Conduct linear elastic frame analyses for a set of load cases.  Six load 

cases are presented in Chapter 11 and shown in Figure 11.34 and Figure 

11.35.  These load cases are intended to represent a range of inertial load 

distributions. 

b. Identify the worst case forces for a given member and amplify these forces 

by a factor to approximate the forces that might be experienced in a 

dynamic event.  Examples of the amplification factors based on axial 

forces are presented in Table 11.1. 

c. Design the frame members for the amplified forces. 

7. Design and detail the frame and connections: 

a. Recommendations are provided in Chapter 12 for eliminating post-

tensioning seating losses 

b. Recommendations are presented in Chapter 12 for mitigating motion due 

to pin hole tolerances and sliding at the base. 

c. A discussion is presented in Chapter 12 regarding the connection of the 

controlled rocking frame to the diaphragm and collectors. 
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d. Other parts of the structure may also need to be detailed to ensure minimal 

damage or a minimum level of repairability after the earthquake. 

13.5 Further Research Needs 

Additional research needs were identified throughout this report and are summarized in 

this section.  The research needs are categorized into three groups: further 

characterization of component performance, further computational studies, and the 

development of other details and configurations. 

 

Further characterization of component performance: 

 Although post-tensioning strain wire fracture was investigated at lower 

levels of post-tensioning strains, it is necessary to characterize post-

tensioning wire fracture and full strand fracture for different types of 

anchorage and different types of post-tensioning strands.  This is 

necessary to ensure the desired level of reliability in preventing 

undesirable post-tensioning limit states. 

 To ensure consistent system performance at any time during a buildings 

service life it will be necessary to investigate time dependent effects on the 

perpetually stressed frame, such as relaxation in the post-tensioning 

strands. 

 Further characterization of butterfly fuse links is warranted.  A linear 

regression was described in Chapter 6 that approximates the buckling 

shear load to a fuse link slenderness parameter.  It is recommended that a 

multivariate regression analysis be performed to examine the dependence 

of fuse buckling on parameters such as an energy measure, peak shear 

strain, or cumulative shear strain.    This would be useful for more 

accurately defining limits on fuse link slenderness for fuses that are not 

allowed to buckle and predicting the behavior of thinner buckling fuses.  

 It would be beneficial to characterize the conditions that cause fuse link 

fracture.  Only a limited number of tests were conducted at Stanford 

University up to fuse fracture, which does not provide a statistically large 

amount of data for characterizing fuse link fracture. 

 The effect of impact and other dynamics on member forces requires 

further study.  The data from the shake table tests conducted at E-Defense 

coupled with some additional computational simulations could be used to 

clarify these dynamic effects. 

 

Further computational studies and simulations 

 More advanced models for predicting the behavior of the thinner buckling 

fuses would allow more accurate simulation of a wider range of fuse 

geometries.  A phenomenological model of the fuse was presented in 

Chapter 6 that predicts buckling based on the moment experienced in the 

fuse link.  A method that predicts buckling based on an energy measure or 

fuse link shear strain may provide enhanced accuracy. 
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 The sensitivity study reported in Chapter 10 did not include any thin 

buckling fuse configurations.  Nonlinear time history analyses of 

configurations with thinner buckling fuses are necessary to ensure 

expected dynamic response if those types of fuses are to be used. 

 A larger reliability study should be conducted to validate the frame 

member design methodology.  A reliability study could use the statistical 

distribution of demand coupled with the statistical distribution of member 

capacities to produce probabilities of member failure that consider axial, 

shear and moment.  This type of reliability study would also take into 

account the consequences of member failure. 

 Seismic design parameters such as the response modification factor were 

assumed based on the performance of the system in experimental and 

computational phases of this research.  An ATC 63 (FEMA P695 2009) 

type of analysis could be performed to provide a solid basis for the seismic 

design parameters. 

 The sensitivity study did not include any structures taller than nine stories.  

Although the structures up to nine stories were found to perform well, it is 

necessary to investigate taller buildings to determine the height at which 

the controlled rocking system is not viable. 

 A lower limit on the amount of energy dissipation required in the system 

was investigated in several portions of this report, but more research is 

warranted.  The self-centering ratio was varied between 0.75 and 1.5 in the 

MDOF sensitivity study without significant effect on peak roof drifts.  The 

amount of energy dissipation was varied in the SDOF parametric study 

from no energy dissipation to energy dissipation without self-centering.  

The resulting peak roof drifts became large as the energy dissipation was 

eliminated.  Further study is needed to define the minimum amount of 

energy dissipation required in a self-centering system to adequately limit 

peak drifts. 

 

 

Development of other details and configurations. 

 As discussed in Chapter 9, restoring forces less than the capacity of the 

energy dissipating component can still reliably self-center.  To achieve 

proportioning with smaller restoring forces will require the investigation 

of configurations where the restoring force is separated from the energy 

dissipating component.  This will allow the use of less restoring force 

without initiating negative limit states such as global uplift. 

 The connection of the diaphragm and collectors to the rocking frame may 

require additional study.  Schematic details were proposed in Chapter 12, 

but details utilizing nonstandard mechanisms should be verified. 

 To ensure repairability after an earthquake, it is necessary to investigate 

the performance of other details throughout the building.  It may be 

necessary to develop more repairable details for the rest of the structure to 

ensure that the whole structure is reusable after self-centering following an 

earthquake. 
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 To further limit downtime and repair costs, it is also necessary to reduce 

nonstructural damage.  Improved detailing of nonstructural components to 

resist damage or allow repairability is necessary. 
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Appendix A  
 

SPECIMEN DRAWINGS, DISPLACEMENT PROTOCOLS, 

AND INSTRUMENTATION DETAILS 

 

This appendix includes information about the experimental program including specimen 

design drawings, work plan drawings, erection drawings, design drawings for the single 

frame configuration tests, shop drawings, loading protocol for each specimen, data 

acquisition setup information, and lists of channels recorded for each specimen. 

A.1 Specimen Design Drawings 

The following drawings consist of a set of drawings labeled with “S” drawing 

identification labels, and a set of drawings with “F” drawing identification labels.  The 

“S” set of drawings were drawings for pieces that were used for all tests.  The “F” set of 

drawings showed pieces that would be specific to a test or specimen.  The preliminary 

test plan included a B series of specimens that were a dual frame configuration with a 

distance between the two frame that was different from the value used in the A series.  

This set of tests was not conducted and does not correspond to the B series of tests used 

in the final test plan which refers to single frame configurations. 

It is also important to note that the fuses and configurations for the A series of 

specimens changed from these design drawings.  The drawings in the subsequent sections 

show many of these changes, and the configurations that were actually tested are 

summarized in Chapter 4. 
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Figure A.1 Specimen Design Drawing – Frame Elevation 
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Figure A.2 Specimen Design Drawing – Column Base 
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Figure A.3 Specimen Design Drawing – Beam-to-Column Connection 
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Figure A.4 Specimen Design Drawing – Bracing Connection at 2

nd
 Floor 
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Figure A.5 Specimen Design Drawing – Bracing Connection at 2

nd
 Floor 
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Figure A.6 Specimen Design Drawing – Top Post-Tensioning Anchorage 
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Figure A.7 Specimen Design Drawing – Top Post-Tensioning Anchorage 
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Figure A.8 Specimen Design Drawing – Bracing Connection 
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Figure A.9 Specimen Design Drawing – Elevation of Base Post-Tensioning 

Anchorage 
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Figure A.10 Specimen Design Drawing – Section of Base Post-Tensioning 

Anchorage 



 352 

 
Figure A.11 Specimen Design Drawing – Plan View of Base Post-Tensioning 

Anchorage 
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Figure A.12 Specimen Design Drawing – Frame Attachment at Top 
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Figure A.13 Specimen Design Drawing – Load Beam and Upper Pin Plate 
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Figure A.14 Specimen Design Drawing – Pin Connection 
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Figure A.15 Specimen Design Drawing – Frame Attachment to One LBCB – Side 

View 
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Figure A.16 Specimen Design Drawing – Base Plate and Bumpers 
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Figure A.17 Specimen Design Drawing – Base Plate Layout 
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Figure A.18 Specimen Design Drawing – Bumper Detail 
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Figure A.19 Specimen Design Drawing – Bumper Detail 
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Figure A.20 Specimen Design Drawing – Additional Notes for Struts and Fuses 
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Figure A.21 Specimen Design Drawing – Setup for Test A1 
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Figure A.22 Specimen Design Drawing – Setup for Test A2 and A3 
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Figure A.23 Specimen Design Drawing – Setup for Test A3 Alternate 
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Figure A.24 Specimen Design Drawing – Setup for Test A4 
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Figure A.25 Specimen Design Drawing – Setup for Test B1 and B3 
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Figure A.26 Specimen Design Drawing – Setup for Test B2 
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Figure A.27 Specimen Design Drawing – Setup for Test B3 Alternate 
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Figure A.28 Specimen Design Drawing – Setup for Test B4 
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Figure A.29 Specimen Design Drawing – Axial Strut Between Frames 
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Figure A.30 Specimen Design Drawing – Fuse for Test A1 
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Figure A.31 Specimen Design Drawing – Fuse for Test A2 and A3 
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Figure A.32 Specimen Design Drawing – Fuse for Test A3 Alternate 
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Figure A.33 Specimen Design Drawing – Fuse for Test A4 
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Figure A.34 Specimen Design Drawing – Fuse for Test B1 and B3 
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Figure A.35 Specimen Design Drawing – Fuse for Test B2 
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Figure A.36 Specimen Design Drawing – Fuse for Test B3 Alternate 
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Figure A.37 Specimen Design Drawing – Fuse for Test B4 
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Figure A.38 Specimen Design Drawing – Fuse for Test A6 
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Figure A.39 Specimen Design Drawing – Fuse for Test B1 – Left Frame 
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Figure A.40 Specimen Design Drawing – Fuse for Test B1 – Right Frame 
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A.2 Drawings for Fabrication Conducted at UIUC 

The following set of drawings was created to facilitate work done by the UIUC CEE 

machine shop and is designated with “WP” drawing identification to indicate they were 

part of the UIUC work plan. 

 



 383 

 
Figure A.41 Work Plan Drawing – Construction Sequence 
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Figure A.42 Work Plan Drawing – Base Plate Layout 
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Figure A.43 Work Plan Drawing – Column Base Plate and Base Gusset Plate 
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Figure A.44 Work Plan Drawing – Assembly of the Column Base 
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Figure A.45 Work Plan Drawing – Top Post-Tensioning Anchorage Plate 
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Figure A.46 Work Plan Drawing – Top Post-Tensioning Anchorage Plate 

Installation 
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Figure A.47 Work Plan Drawing – Load Beam and Upper Pin Plate 
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Figure A.48 Work Plan Drawing – Axial Strut Between Frames 
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Figure A.49 Work Plan Drawing – Axial Strut Between Frames 
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Figure A.50 Work Plan Drawing – Anchor Rods for Post-Tensioning Anchorage 

Plate 
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A.3 Drawings for Erection of the Specimens and Their 

Components 

The following set of drawings was created to facilitate the erection of the specimens.  The 

drawings were given the designation “EP” to indicate that they are part of the erection 

plan. 

 



 394 

 
Figure A.51 Erection Plan Drawing for Specimen A1 
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Figure A.52 Erection Plan Drawing – Side View for Specimen A1 
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Figure A.53 Erection Plan Drawing – Plan View for Specimen A1 
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Figure A.54 Erection Plan Drawing – Bolt Allocation Plan 
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Figure A.55 Erection Plan Drawing – Lubrication Plan 
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Figure A.56 Erection Plan Drawing – Lower Post-Tensioning Anchorage 
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Figure A.57 Erection Plan Drawing – Post-Tensioning Installation 
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Figure A.58 Erection Plan Drawing for Specimen A2 
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Figure A.59 Erection Plan Drawing – Modifications for Specimen A3 Fuse 
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Figure A.60 Erection Plan Drawing for Specimen A3 
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Figure A.61 Erection Plan Drawing – Modifications for Specimen A4 Fuse 
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Figure A.62 Erection Plan Drawing for Specimen A4 
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Figure A.63 Erection Plan Drawing – Modifications for Specimen A5 Fuse 
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Figure A.64 Erection Plan Drawing for Specimen A5 
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Figure A.65 Erection Plan Drawing for Specimen A6 
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Figure A.66 Erection Plan Drawing for Specimen A6 Fuse 
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Figure A.67 Erection Plan Drawing for Specimen A7 
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Figure A.68 Erection Plan Drawing for Specimen A7 Fuse 
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A.4 Design Drawings for the Single Frame Configuration 

This section includes the design drawings for the single frame configuration.  It should be 

noted that at the time these drawings were created, the single frame configurations were 

referred to as the C series of specimens.  In the final testing program, these specimens 

were renamed to be the B series of specimens, which is how they are referenced in the 

main body of this report. 
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Figure A.69 Design Drawing for the Single Frame Configuration – Construction 

Sequence 
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Figure A.70 Design Drawing for the Single Frame Configuration – Elevation View 
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Figure A.71 Design Drawing for the Single Frame Configuration – Specimen B1 

Close-Up 
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Figure A.72 Design Drawing for the Single Frame Configuration – Specimen B1 

Plan 
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Figure A.73 Design Drawing for the Single Frame Configuration – Specimen B1 

Side View 
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Figure A.74 Design Drawing for the Single Frame Configuration – Specimen B1 

Close-Up 
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Figure A.75 Design Drawing for the Single Frame Configuration – Specimen B2 

Close-Up 
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Figure A.76 Design Drawing for the Single Frame Configuration – Specimen B2 

Plan 
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Figure A.77 Design Drawing for the Single Frame Configuration – Specimen B2 

Side 
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Figure A.78 Design Drawing for the Single Frame Configuration – Fabrication 

Pieces 



 423 

 
Figure A.79 Design Drawing for the Single Frame Configuration – Fabrication 

Pieces 
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Figure A.80 Design Drawing for the Single Frame Configuration – Fabrication 

Pieces 
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Figure A.81 Design Drawing for the Single Frame Configuration – Fabrication 

Pieces 
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Figure A.82 Design Drawing for the Single Frame Configuration – Specimen B1 

Fuse 
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Figure A.83 Design Drawing for the Single Frame Configuration – Specimen B2 

Fuse 
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Figure A.84 Design Drawing for the Single Frame Configuration – Specimen B2 

Plate 
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A.5 Shop Drawings 

This section includes the shop drawings created by MC detailers for the fabrication of the 

frames at Tefft Iron and Steel. 
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Figure A.85 Shop Drawing for Fabrication – Base Plate 
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Figure A.86 Shop Drawing for Fabrication – Base Plate 



 432 

 
Figure A.87 Shop Drawing for Fabrication - Columns 
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Figure A.88 Shop Drawing for Fabrication - Connections 
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Figure A.89 Shop Drawing for Fabrication - Braces 
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Figure A.90 Shop Drawing for Fabrication – Gusset Plates 
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Figure A.91 Shop Drawing for Fabrication - Fuses 
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Figure A.92 Shop Drawing for Fabrication - Struts 
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Figure A.93 Shop Drawing for Fabrication – Miscellaneous Pieces 
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Figure A.94 Shop Drawing for Fabrication – Loading Beam and Top Connections 
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Figure A.95 Shop Drawing for Fabrication – Frame Erection Drawing 
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Figure A.96 Shop Drawing for Fabrication – Frames Erection Drawings 
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A.6 Loading Protocol 

This section includes the loading protocol for each test including the displacement targets 

that were used as part of the control and the target fuse shear strain which was the 

implicit goal for each displacement step. 

 

Table A.1 Displacement Targets for Specimen A1 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.1781 0.356 0.408 0.00288 

2 6 0.005 0.2125 0.425 0.488 0.00291 

3 6 0.0075 0.3000 0.600 0.685 0.00304 

4 6 0.01 0.3625 0.725 0.828 0.00313 

5 4 0.015 0.4875 0.975 1.108 0.00333 

6 2 0.02 0.6425 1.275 1.448 0.00358 

7 2 0.03 0.9175 1.825 2.068 0.00398 

8 1 0.04 1.1800 2.350 2.660 0.00435 

9 1 0.05 1.4725 2.925 3.310 0.00483 

10 1 0.07 2.0225 4.025 4.548 0.00563 

11 1 0.09 2.5775 5.125 5.788 0.00651 

12 1 0.11 3.1325 6.225 7.033 0.00733 

13 3 0.12 3.4100 6.775 7.655 0.00774 
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Table A.2 Ramp Information for Specimen A1 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.018 20 4 5 1.2 28.8 

2 0.018 24 4 6 1.4 34.6 

3 0.025 24 4 6 1.4 34.6 

4 0.025 29 4 7 1.7 41.8 

5 0.025 39 4 9 2.3 37.4 

6 0.025 51 5 10 3.1 24.5 

7 0.025 73 6 12 4.4 35.0 

8 0.025 94 7 13 5.6 22.6 

9 0.025 117 8 14 7.0 28.1 

10 0.025 161 11 14 9.7 38.6 

11 0.025 205 13 15 12.3 49.2 

12 0.025 249 16 15 14.9 59.8 

13 0.025 271 18 15 16.3 195.1 

     

Total Ramp Times 
(hours) =  10.5 
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Figure A.97 Roof Displacement Targets for Specimen A1 
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Table A.3 Displacement Targets for Specimen A2 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.1938 0.388 0.446 0.00289 

2 6 0.005 0.2250 0.450 0.520 0.00295 

3 6 0.0075 0.2750 0.550 0.635 0.00306 

4 6 0.01 0.3250 0.650 0.745 0.00308 

5 4 0.015 0.4500 0.900 1.030 0.00330 

6 4 0.02 0.5667 1.133 1.290 0.00347 

7 2 0.03 0.8050 1.600 1.820 0.00380 

8 1 0.04 1.0300 2.050 2.355 0.00409 

9 1 0.05 1.3725 2.725 3.088 0.00469 

10 1 0.07 1.7400 3.450 3.905 0.00521 

11 1 0.09 2.2025 4.375 4.950 0.00593 

12 1 0.11 2.6783 5.317 6.015 0.00664 

13 3 0.13 3.1325 6.225 7.038 0.00735 

 

Table A.4 Ramp Information for Specimen A2 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.019 21 7 3 1.3 30.2 

2 0.022 21 7 3 1.3 30.2 

3 0.02 28 7 4 1.7 40.3 

4 0.024 28 7 4 1.7 40.3 

5 0.023 40 8 5 2.4 38.4 

6 0.0252 45 9 5 2.7 43.2 

7 0.0268 60 10 6 3.6 28.8 

8 0.0258 80 10 8 4.8 19.2 

9 0.0248 110 10 11 6.6 26.4 

10 0.0266 130 10 13 7.8 31.2 

11 0.0258 170 10 17 10.2 40.8 

12 0.0254 210 10 21 12.6 50.4 

13 0.0249 250 10 25 15.0 180.0 

     

Total Ramp Times 
(hours) =  10.0 
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Figure A.98 Roof Displacement Targets for Specimen A2 

 

Table A.5 Displacement Targets for Specimen A3 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.18 0.356 0.412 0.0029 

2 6 0.005 0.20 0.400 0.460 0.0029 

3 6 0.0075 0.24 0.483 0.552 0.0030 

4 6 0.01 0.30 0.600 0.680 0.0031 

5 4 0.015 0.43 0.850 0.965 0.0033 

6 4 0.02 0.53 1.050 1.193 0.0034 

7 2 0.03 0.77 1.533 1.738 0.0038 

8 1 0.04 1.01 2.000 2.265 0.0041 

9 1 0.05 1.24 2.450 2.770 0.0045 

10 1 0.07 1.70 3.375 3.813 0.0052 

11 1 0.09 2.17 4.300 4.855 0.0059 

12 1 0.11 2.63 5.225 5.903 0.0066 

13 3 0.13 3.08 6.125 6.918 0.0073 
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Table A.6 Ramp Information for Specimen A3 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.02 18 6 3 1.1 25.9 

2 0.023 18 6 3 1.1 25.9 

3 0.024 21 7 3 1.3 30.2 

4 0.022 28 7 4 1.7 40.3 

5 0.0245 35 7 5 2.1 33.6 

6 0.0252 42 7 6 2.5 40.3 

7 0.024 64 8 8 3.8 30.7 

8 0.0249 81 9 9 4.9 19.4 

9 0.0247 100 10 10 6.0 24.0 

10 0.026 130 10 13 7.8 31.2 

11 0.0253 170 10 17 10.2 40.8 

12 0.0262 200 10 20 12.0 48.0 

13 0.0256 240 10 24 14.4 172.8 

     

Total Ramp Times 
(hours) =  9.4 
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Figure A.99 Roof Displacement Targets for Specimen A3 
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Table A.7 Displacement Targets for Specimen A4 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.22% 0.429 0.499 0.0028 

2 6 0.005 0.25% 0.493 0.571 0.0028 

3 6 0.0075 0.30% 0.600 0.692 0.0029 

4 6 0.01 0.36% 0.707 0.813 0.0030 

5 4 0.015 0.47% 0.943 1.078 0.0032 

6 4 0.02 0.59% 1.173 1.338 0.0034 

7 2 0.03 0.82% 1.638 1.864 0.0037 

8 1 0.04 1.06% 2.109 2.396 0.0041 

9 1 0.05 1.30% 2.580 2.927 0.0044 

10 1 0.07 1.77% 3.510 3.977 0.0051 

11 1 0.09 2.23% 4.440 5.027 0.0059 

12 1 0.11 2.70% 5.371 6.078 0.0066 

13 1 0.13 3.17% 6.308 7.138 0.0073 

14 1 0.15 3.64% 7.238 8.188 0.0081 

15 3 0.17 4.11% 8.169 9.238 0.0088 

 

Table A.8 Ramp Information for Specimen A4 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.018 20 4 5 1.2 28.8 

2 0.018 24 4 6 1.4 34.6 

3 0.025 24 4 6 1.4 34.6 

4 0.025 29 4 7 1.7 41.8 

5 0.025 39 4 9 2.3 37.4 

6 0.025 51 5 10 3.1 24.5 

7 0.025 73 6 12 4.4 35.0 

8 0.025 94 7 13 5.6 22.6 

9 0.025 117 8 14 7.0 28.1 

10 0.025 161 11 14 9.7 38.6 

11 0.025 205 13 15 12.3 49.2 

12 0.025 249 16 15 14.9 59.8 

13 0.025 271 18 15 16.3 195.1 

     

Total Ramp Times 
(hours) =  10.5 
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Figure A.100 Roof Displacement Targets for Specimen A4 

 

Table A.9 Trial Runs for Specimen A5 

Trial Specimen A5 Trial Description 

1 MCE 0.69 x JMA Kobe 

2 1.10 x JMA Kobe 

3 1.10 x JMA Kobe 

 

Table A.10 Trial Runs for Specimen A6 

Trial Specimen A6 Trial Description 

1 MCE 0.69 x JMA Kobe 

2 MCE 0.69 x JMA Kobe with 30% out-of-plane motion 

3 1.20 x JMA Kobe 
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Table A.11 Displacement Targets for Specimen A7 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.18% 0.361 0.415 0.0028 

2 6 0.005 0.22% 0.441 0.505 0.0029 

3 6 0.0075 0.29% 0.575 0.657 0.0030 

4 6 0.01 0.36% 0.709 0.808 0.0031 

5 4 0.015 0.49% 0.977 1.109 0.0033 

6 4 0.02 0.63% 1.245 1.412 0.0035 

7 2 0.03 0.90% 1.782 2.018 0.0039 

8 1 0.04 1.17% 2.322 2.626 0.0043 

9 1 0.05 1.44% 2.864 3.238 0.0047 

10 1 0.07 1.99% 3.955 4.470 0.0056 

11 1 0.09 2.54% 5.041 5.696 0.0064 

12 1 0.11 3.09% 6.135 6.933 0.0072 

13 1 0.13 3.64% 7.230 8.172 0.0081 

14 3 0.15 4.18% 8.315 9.401 0.0089 

 

Table A.12 Ramp Information for Specimen A7 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.019 20 5 4 1.2 28.8 

2 0.023 20 5 4 1.2 28.8 

3 0.024 24 6 4 1.4 34.6 

4 0.024 30 6 5 1.8 43.2 

5 0.0235 42 7 6 2.5 40.3 

6 0.0255 49 7 7 2.9 47.0 

7 0.028 64 8 8 3.8 30.7 

8 0.0288 81 9 9 4.9 19.4 

9 0.0261 110 10 11 6.6 26.4 

10 0.0265 150 10 15 9.0 36.0 

11 0.0266 190 10 19 11.4 45.6 

12 0.0267 230 10 23 13.8 55.2 

13 0.0268 270 10 27 16.2 64.8 

14 0.026 320 10 32 19.2 230.4 

     
Total Ramp Times (hours) =  12.2 
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Figure A.101 Roof Displacement Targets for Specimen A7 

 

Table A.13 Displacement Targets for Specimen B1 and B2 

    Fuse Expected     Expected 

    Shear Roof Expected Expected Post- 

Displ- Number Strain Drift Roof LBCB Tension 

acement of Target Ratio Drift Displ. Strain 

Step Cycles (in/in) (%) (in) (in) (in/in) 

1 6 0.00375 0.29% 0.569 0.652 0.0044 

2 6 0.005 0.33% 0.651 0.746 0.0045 

3 6 0.0075 0.41% 0.809 0.924 0.0046 

4 6 0.01 0.49% 0.960 1.096 0.0048 

5 4 0.015 0.64% 1.268 1.444 0.0050 

6 4 0.02 0.79% 1.572 1.789 0.0053 

7 2 0.03 1.10% 2.185 2.482 0.0059 

8 1 0.04 1.41% 2.800 3.178 0.0064 

9 1 0.05 1.73% 3.423 3.882 0.0070 

10 1 0.07 2.36% 4.668 5.289 0.0081 

11 1 0.09 2.97% 5.887 6.664 0.0092 

12 1 0.11 3.58% 7.083 8.011 0.0103 

13 1 0.13 4.18% 8.274 9.351 0.0114 
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Table A.14 Ramp Information for Specimen B1 and B2 

        Total Expected Expected 

  Substep Number Substeps Pictures Time Per Time for 

Load Size of Per per Quarter All Cycles 

Step (in) Substeps Picture Ramp Cycle (min) (min) 

1 0.019 30 5 6 1.8 43.2 

2 0.022 30 5 6 1.8 43.2 

3 0.023 36 6 6 2.2 51.8 

4 0.023 42 6 7 2.5 60.5 

5 0.023 56 7 8 3.4 53.8 

6 0.025 63 7 9 3.8 60.5 

7 0.0275 80 8 10 4.8 38.4 

8 0.0285 99 9 11 5.9 23.8 

9 0.0265 130 10 13 7.8 31.2 

10 0.026 180 10 18 10.8 43.2 

11 0.0268 220 10 22 13.2 52.8 

12 0.0263 270 10 27 16.2 64.8 

13 0.0267 310 10 31 18.6 74.4 

     
Total Ramp Times (hours) =  10.7 
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Figure A.102 Roof Displacement Targets for Specimen B1 and B2 



 452 

 

A.7 LBCB Plugin Screen Shot and Floor Plan for the Test 

Setup 

This section contains a screen shot of the LBCB Plugin used in the experimental program 

and a drawing of the experimental setup on a floor plan of the MUST-SIM facility. 

 

 
Figure A.103 Screen Shot of the Controlled Rocking LBCB Plugin 
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Figure A.104 Floor Plan Drawing - Layout 



 454 

 
Figure A.105 Floor Plan Drawing – Key 
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A.8 Instrumentation Plans 

This section includes instrumentation plan drawings.  The first group of drawings labeled 

with the designation “N” either apply to all of the specimens or to specific dual frame 

configurations (Series A) as labeled.  The second group of drawings labeled with the 

designation “SN” apply to the single frame configurations (Series B). 
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Figure A.106 Instrumentation Plan Drawing – Displacement and Inclinometers 
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Figure A.107 Instrumentation Plan Drawing – Strain Gage Plan 
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Figure A.108 Instrumentation Plan Drawing - Details 
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Figure A.109 Instrumentation Plan Drawing – Post-Tensioning Load Cells 
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Figure A.110 Instrumentation Plan Drawing – Krypton LED’s for Specimen A1 
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Figure A.111 Instrumentation Plan Drawing – Krypton LED’s for Specimen A2 
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Figure A.112 Instrumentation Plan Drawing – Krypton LED’s for Specimen A3 
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Figure A.113 Instrumentation Plan Drawing – Krypton LED’s for Specimen A4 
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Figure A.114 Instrumentation Plan Drawing – Krypton LED’s for Specimen A5 
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Figure A.115 Instrumentation Plan Drawing – Krypton LED’s for Specimen A6 
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Figure A.116 Instrumentation Plan Drawing – Krypton LED’s for Specimen A7 
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Figure A.117 Instrumentation Plan Drawing – Video and Digital Still Plan 
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Figure A.118 Instrumentation Plan Drawing – Digital Still Camera Location Plan 
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Figure A.119 Single Frame Instrumentation Plan – Displacement and Inclinometers 
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Figure A.120 Single Frame Configuration Instrumentation Plan – Strain Gages 
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Figure A.121 Single Frame Configuration Instrumentation Plan Drawing – 

Specimen B1 
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Figure A.122 Single Frame Configuration Instrumentation Plan Drawing – 

Specimen B2 
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Figure A.123 Single Frame Configuration Instrumentation Plan Drawing – Krypton 

LED’s 
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Figure A.124 Single Frame Configuration Instrumentation Plan Drawing – Camera 

Plan 
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A.9 Data Acquisition Chassis Configuration 

 

Table A.15 Data Acquisition Chassis Number 1 SCXI-1001: SC1 

Slot Module Terminal Sensor Type 
Max 

Channels Sensors 

1 
NI SCXI-1521B: 

"SC1Mod1" SCXI-1317 (1) Strain 24 Section 1 - Left Frame 

2 
NI SCXI-1521B: 

"SC1Mod2" SCXI-1317 (2) Strain 24 
Section 1 - Left Frame / Right 
Frame 

3 
NI SCXI-1521B: 

"SC1Mod3" SCXI-1317 (3) Strain 24 Section 1 - Right Frame 

4 
NI SCXI-1521B: 

"SC1Mod4" SCXI-1317 (4) Strain 24 
Section 1 - Right Frame / Section 
2 - Right Frame 

5 
NI SCXI-1521B: 

"SC1Mod5" SCXI-1317 (5) Strain 24 Section 2 - Right Frame 

6 
NI SCXI-1521B: 

"SC1Mod6" SCXI-1317 (6) Strain 24 
Section 2 - Right Frame / Left 
Frame 

7 
NI SCXI-1521B: 

"SC1Mod7" SCXI-1317 (7) Strain 24 
Section 2 - Left Frame / Section 3 
Left Frame 

8 
NI SCXI-1521B: 

"SC1Mod8" SCXI-1317 (8) Strain 24 Section 3 - Left Frame 

9 
NI SCXI-1521B: 

"SC1Mod9" SCXI-1317 (9) Strain 24 
Section 3 - Left Frame / Right 
Frame 

10 
NI SCXI-1521B: 
"SC1Mod10" SCXI-1317 (10) Strain 24 

Section 3 - Right Frame 

11 
NI SCXI-1521B: 
"SC1Mod11" SCXI-1317 (11) Strain 24 

Section 3 - Right Frame / Rt P/T 
anchor Rods 

12 
NI SCXI-1104c: 
"SC1Mod12" BNC-2095 (1) BNC Input 32 

Fuse, Strut, Base Slip, 
Inclinometers, Excitation Voltage, 
Pin Load Cells 
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Table A.16 Data Acquisition Chassis Number 2 SCXI-1001: SC2 

Slot Module Terminal 
Sensor 
Type 

Max 
Channels Sensors 

1 
NI SCXI-1521B: 

"SC2Mod1" SCXI-1317 (12) Strain 24 
Left P/T anchor Rods, Struts, Fuse 

2 
NI SCXI-1521B: 

"SC2Mod2" SCXI-1317 (13) Strain 24 
Fuse, Struts 

3 
NI SCXI-1520: 
"SC2Mod3" SCXI-1314 (1) Strain 8 

Fuse 

4 
NI SCXI-1520: 
"SC2Mod4" SCXI-1314 (2) Strain 8 

Struts 

5 
NI SCXI-1520: 
"SC2Mod5" SCXI-1314 (3) Strain 8 Fuse 

6 
NI SCXI-1520: 
"SC2Mod6" SCXI-1314 (4) Strain 8 Fuse 

7 
NI SCXI-1520: 
"SC2Mod7" SCXI-1314 (5) Strain 8 Fuse 

8 
NI SCXI-1520: 
"SC2Mod8" SCXI-1314 (6) Strain 8 Left P/T Load Cells 

9 
NI SCXI-1520: 
"SC2Mod9" SCXI-1314 (7) Strain 8 Right P/T Load Cells 

10 
NI SCXI-1540: 
"SC2Mod10" SCXI-1315 (1) String Pot 8 Horizontal Drift 

11 
NI SCXI-1540: 
"SC2Mod11" SCXI-1315 (2) String Pot 8 P/T Elongation, Uplift 

12 
NI SCXI-1540: 
"SC2Mod12" SCXI-1315 (3) String Pot 8 Out-Of-Plane 

 



 477 

 

Table A.17 Channels Obtained Through TCP/IP Connection with LBCB 

Operations Manager 

Sensor Type Max Channels Sensors 

LVDT 6 Actuator LVDT Displacements 

Computed Displacement 6 Cartesian Displacements 

Load Cell 6 Actuator Load Cells 

Computed Force 6 Cartesian Forces 
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Table A.18 Instrumentation Channels 

Location Measurement Instrument Expected Range Gage Range Quantity

Section 1 - Left Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

Section 1 - Right Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

Section 2 - Left Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

Section 2 - Right Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

Section 3 - Left Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

Section 3 - Right Frame Strain Strain Gages & Rosettes 1550 με 15,000  με 40

P/T Anchor Rods Strain Strain Gage 1000 με 15,000  με 24

Struts Strain Strain Gage 1550 με 15,000  με 10

Fuses Strain Strain Gage Rossetes 80,000 με 100,000  με 54

328

Diagonal Across Fuses Relative Displacement Linear Pot ± 3.25" 8" 6

Struts Relative Displacement Linear Pot ± 1/4" 1" 5

Base Slip Relative Displacement Linear Pot ± 1/8" 1" 4

15

Base Horizontal Drift Absolute Displacement String Pot ± 1/8" 2" 2

1st Floor Horizontal Drift Absolute Displacement String Pot ± 2.6" 10" 2

2nd Floor Horizontal Drift Absolute Displacement String Pot ± 5.7" 25" 2

3rd Floor Horizontal Drift Absolute Displacement String Pot ± 8.6" 25" 2

Frame Uplift Absolute Displacement String Pot + 3" 10" 4

P/T Elongation Relative Displacement String Pot + 2" 5" 2

Out-Of-Plane Absolute Displacement String Pot ± 1/4" 3" 2

16

Actuator Displacement Absolute Displacement LVDT 6

Cartesian Displacement Absolute Displacement LVDT + Transformation ± 10" ± 10" 6

Actuator Force Load Cell Load Cell 6

Cartesian Force Load Cell Load Cell + Transformation ± 230 kips ± 600 kips 6

24

Pin type Load Cells Left Frame Load Load Cell ± 230 kips ± 600 kips 2

Pin type Load Cells Right Right Load Load Cell ± 230 kips ± 600 kips 2

P/T Load Cells Load Load Cell 42 kips 55 kips 16

20

Inclinometers Rotation Inclinometer ± 2.5° 75° 3

Fuse Deformation Displacement Krypton LED N/A N/A 100

Camera Still Images Canon - 5

Video Camera Video - 4

High Resolution Video Camera Video 1

10

Linear Potentiometers

Strain Gages

Video and Cameras

Krypton

Load Cells

Inclinometers

LBCB Data From TCP/IP Connection

String Potentiometers
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A.10 Catalog of Data that Was Obtained 

 

Table A.19 Listing of the Data that was Collected From All Tests 

DAQ Computer Operations

Location Continuous Step Manager

Description Dates in Archive DAQ OM DAQ OM Record

1 Stiffness Tests 7/3/08 Test A1 X X

2 Moving LBCB 7/9/08 Test A1 X

3 Dry Run 1 7/18/08, 7/19/08 Test A1 X X X

4 Dry Run 2 7/22/08 Test A1 X X X X X

5 Dry Run 3 7/22/08 Test A1 X X X X Same folder as prev.

6 Post Tensioning 7/25/08, 7/28/08, 7/29/08 Test A1 X

7 Reattach to LBCB 7/29/08 Test A1 X X X

8 Test A1 8/4/08, 8/5/08, 8/6/08 Test A1 X X X X X

9 Removing Fuses 8/8/08 Test A1 X X X

10 Increase PT Force 8/14/08 Test A2 X X

11 Test A2 8/25/08, 8/26/08, 8/27/08 Test A2 X X X X X

12 Negative Cycle After Test A2 8/29/08 Test A2 X X X X X

13 Removing Fuses 9/2/08 Test A2 X X X

14 Installing Fuses 9/4/08 Test A3 X X X

15 Test A3 9/8/08, 9/9/08, 9/11/08, 9/12/08 Test A3 X X X X X

16 Removing Fuses 9/18/08 Test A3 X X X

17 Run without Fuses 9/18/08 Test A3 X X X X X

18 Increase PT Force 9/19/08, 9/22/08 Test A4 X X X

19 Run without Fuses 9/24/08 Test A4 X X X X X

20 Test A4 10/1/08, 10/2/08, 10/3/08 Test A4 X X X X X

21 Removing Fuses 10/8/08 Test A4 X X X

22 Disconnect From Frame 10/9/08 Test A5 X X X

23 Post Tensioning 11/10/08, 11/11/08 Test A5 X X 11/10 but not 11/11

24 Reattach to LBCB 11/12/08 Test A5 X X X

25 Run without Fuses 11/12/08 Test A5 X X X X Same folder as prev.

26 Installing Fuses 11/13/08 Test A5 X X X

27 Test A5 MCE 11/14/08 Test A5 X X X X X

28 Test A5 JMA Kobe x 1.10 Trial 1 11/15/08 Test A5 X X X X X

29 Test A5 JMA Kobe x 1.10 Trial 2 11/17/08 Test A5 X X X X X

30 Removing Fuses 12/2/08 Test A5 X X X

31 Test A6 Elastic Cycles 12/19/08 Test A6

32 Test A6 JMA Kobe x 0.69 12/19/08 Test A6 X X X X X

33 Test A6 JMA Kobe x 0.69 with OOP 12/20/08 Test A6 X X X X X

34 Test A6 JMA Kobe x 1.20 12/20/08 Test A6 X X X X Same folder as prev.

35 Remove Fuses 1/5/09 Test A6 X X X

36 Test A7 1/28/09, 1/29/09, 1/30/09 Test A7 X X X X X

37 Disconnect From LBCB 2/5/09 Test B1 / B2 X X X

38 Post Tensioning 2/24/09 Test B1 / B2 X X X

39 Reconnect to LBCB 2/25/09 Test B1 / B2 X X X

40 Run without Fuses 2/26/09 Test B1 / B2 X X X

41 Increase PT Force 3/2/09 Test B1 / B2 X X X

42 Test B1 / B2 3/9/09, 3/10/09, 3/11/09 Test B1 / B2 X X X X X

43 Detach LBCB 3/23/09 Test B1 / B2 X X X  
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Table A.20 Listing of the Data that was Collected From All Tests 

Camera Camera LBCB Krypton Roaming Low Res. High Res

Computer Computer Plugin Simcor Computer Camera Audio Web Cam Video

Description 1 2 Computer Computer Data Pictures Recordings Pictures Tapes

1 Stiffness Tests

2 Moving LBCB

3 Dry Run 1 7/18 only

4 Dry Run 2

5 Dry Run 3

6 Post Tensioning X

7 Reattach to LBCB X

8 Test A1 X X X X X X X 6

9 Removing Fuses

10 Increase PT Force

11 Test A2 X X X X X X 3

12 Negative Cycle After Test A2

13 Removing Fuses

14 Installing Fuses

15 Test A3 X X X X X X 3

16 Removing Fuses

17 Run without Fuses

18 Increase PT Force

19 Run without Fuses

20 Test A4 X X X X X X 3

21 Removing Fuses

22 Disconnect From Frame

23 Post Tensioning

24 Reattach to LBCB

25 Run without Fuses

26 Installing Fuses

27 Test A5 MCE X X X X X

28 Test A5 JMA Kobe x 1.10 Trial 1 X X X X X X 2

29 Test A5 JMA Kobe x 1.10 Trial 2 X X X X With Prev. 4

30 Removing Fuses

31 Test A6 Elastic Cycles

32 Test A6 JMA Kobe x 0.69 X X X X X

33 Test A6 JMA Kobe x 0.69 with OOP X X X X With Next With Next 2

34 Test A6 JMA Kobe x 1.20 X X X X X X 2

35 Remove Fuses

36 Test A7 X X X X 4

37 Disconnect From LBCB

38 Post Tensioning

39 Reconnect to LBCB

40 Run without Fuses

41 Increase PT Force

42 Test B1 / B2 X X X X X 3

43 Detach LBCB  
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A.11 Lists of Channels Recorded for Each Specimen 

 

Table A.21 Listing of the Channels that were Recorded for All Specimens 

File Name Test A1 Test A2 Test A3 Test A4 Test A5 Test A6 Test A7 Test B1 / B2

D_Base_Slip 4 4 4 4 4 4 4 4

D_Center_Column None None None None None None None 4

D_Fuse_Diagonal 6 6 6 6 6 6 6 None

D_Fuse_Frame None None None None None None None 6

D_Struts 5 5 5 5 5 5 5 None

EV 4 (1 is junk) 4 (1 is junk) 4 (1 is junk) 4 (1 is junk) 4 (1 is junk) 4 (1 is junk) 4 (1 is junk) 4 (1 is junk)

Inclinometers 3 3 3 3 3 3 3 3

L_Pin_Load_Cells Junk None None None None None None None

L_PT_Left 8 8 8 8 8 8 8 4

L_PT_Right 8 8 8 8 8 8 8 4

S_Fuse None None None None None None None 2

S_Horizontal 8 (2 are junk) 6 6 6 6 6 6 6

S_Out_Of_Plane 2 2 2 2 2 2 2 2

S_PT_Elongation 2 2 2 2 2 2 2 2

S_Uplift 4 4 4 4 4 4 4 4

SG_Anchor_Rods_Left 12 12 12 12 12 12 12 8

SG_Anchor_Rods_Right 12 12 12 12 12 12 12 8

SG_Center_Column None None None None None None None 24

SG_Fuse_Frame None None None None None None None 12

SG_Fuses 54 10 FL** + 18 F 18 18 18 54 54 None

SG_Gusset None None None None None None None 12

SG_Section_1_Beams None None None 8** 8** None None None

SG_Section_1_Left 40** 40** 40** 40** 40** 40** 40** 40**

SG_Section_1_Right 40** 40** 40** 40** 40** 40** 40** 40**

SG_Section_2_Beams None None None None None None None 16**

SG_Section_2_Left 40** 40** 40** 40** 40** 40** 40** 40**

SG_Section_2_Right 40** 40** 40** 40** 40** 40** 40** 40**

SG_Section_3_Beams None None None 8** 8** 8** 8** 8**

SG_Section_3_Left 40** 40** 40** 40** 40** 40** 40** 40**

SG_Section_3_Right 40** 40** 40** 40** 40** 40** 40** 40**

SG_Struts 10 6 6 6 6 10 None None  
 

** indicates the columns of raw data were out of order because the data was written in 

alphabetical order, not numerical order (e.g. 1, 10, 2, 3, etc. instead of 1, 2, 3, 4, etc.). 
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Appendix B  

 

EXPERIMENTAL RAW DATA 

 

This appendix contains all the raw data from the experimental program.  The raw data 

was recorded in engineering units as presented in the included plots.  The data is included 

for all nine specimens including all three trials for Specimen A5 and all three trials for 

Specimen A6. 

 

B.1 Specimen A1 

 
Figure B.1 Raw Data for Specimen A1 – Base Slip (Left) and Diagonal Fuse Linear 

Potentiometers (Right) 

 
Figure B.2 Raw Data For Specimen A1 – Strut Linear Potentiometers (Left) and 

Excitation Voltages (Right) 
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Figure B.3 Raw Data for Specimen A1 – Inclinometers (Left) and Left Frame PT 

Load Cells (Right) 

 
Figure B.4 Raw Data for Specimen A1 – Right Frame PT Load Cells (Left) and Left 

Frame PT Anchor Rod Strains (Right) 

 
Figure B.5 Raw Data for Specimen A1 – Right Frame PT Anchor Rod Strains (Left) 

and Bottom Back Fuse Strains (Right) 
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Figure B.6 Raw Data For Specimen A1 – Bottom Front Fuse Strain Gages (Left) 

and Mid-Height Back Fuse Strain Gages (Right)  

 
Figure B.7 Raw Data For Specimen A1 – Mid-Height Front Fuse Strain Gages 

(Left) and Top Back Fuse Strain Gages (Right) 

 
Figure B.8 Raw Data For Specimen A1 – Top Front Fuse Strain Gages (Left) and 

Left Frame Section 1-1 Strain Gages (Right) 
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Figure B.9 Raw Data For Specimen A1 – Left Frame Section 1-2 Strain Gages (Left) 

and Left Frame Section 1-3 Strain Gages (Right) 

 
Figure B.10 Raw Data For Specimen A1 – Left Frame Section 1-4 Strain Gages 

(Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.11 Raw Data For Specimen A1 – Right Frame Section 1-6 Strain Gages 

(Left) and Right Frame Section 1-7 Strain Gages (Right) 
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Figure B.12 Raw Data For Specimen A1 – Right Frame Section 1-8 Strain Gages 

(Left) and Left Frame Section 2-1 Strain Gages (Right) 

 
Figure B.13 Raw Data For Specimen A1 – Left Frame Section 2-2 Strain Gages 

(Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.14 Raw Data For Specimen A1 – Left Frame Section 2-4 Strain Gages 

(Left) and Right Frame Section 2-5 Strain Gages (Right) 
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Figure B.15 Raw Data For Specimen A1 – Right Frame Section 2-6 Strain Gages 

(Left) and Right Frame Section 2-7 Strain Gages (Right) 

 
Figure B.16 Raw Data For Specimen A1 – Right Frame Section 2-8 Strain Gages 

(Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.17 Raw Data For Specimen A1 – Left Frame Section 3-2 Strain Gages 

(Left) and Left Frame Section 3-3 Strain Gages (Right) 



 488 

 
Figure B.18 Raw Data For Specimen A1 – Left Frame Section 3-4 Strain Gages 

(Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.19 Raw Data For Specimen A1 – Right Frame Section 3-6 Strain Gages 

(Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.20 Raw Data For Specimen A1 – Right Frame Section 3-8 Strain Gages 

(Left) and Strut Strain Gages (Right) 
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Figure B.21 Raw Data For Specimen A1 – Horizontal String Potentiometers (Left) 

and Out-of-Plane String Potentiometers (Right) 

 
Figure B.22 Raw Data For Specimen A1 – Post-Tension Elongation String 

Potentiometers (Left) and Uplift String Potentiometers (Right) 

 
Figure B.23 Raw Data For Specimen A1 – LBCB Actuator Commands (Left) and 

LBCB Cartesian Commands (Right) 
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Figure B.24 Raw Data For Specimen A1 – LBCB Actuator Displacements (Left) and 

LBCB Cartesian Displacements (Right) 

 
Figure B.25 Raw Data For Specimen A1 – LBCB Cartesian Rotations (Left) and Pin 

Load Cells (Right) 

 
Figure B.26 Raw Data For Specimen A1 – Control Roof String Potentiometers 

(Left) and LBCB Actuator Forces (Right) 
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Figure B.27 Raw Data For Specimen A1 – LBCB Cartesian Forces (Left) and LBCB 

Cartesian Moments (Right) 

 
Figure B.28 Raw Data For Specimen A1 – LBCB Actuator Servo-Error 
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Figure B.29 Raw Data For Specimen A1 – Krypton LED Locations (Left) and 

Krypton LED Numbering (Right) 

 
Figure B.30 Raw Data For Specimen A1 – X Displacements for LED’s 1 to 10 (Left) 

and Y Displacements for LED’s 1 to 10 (Right) 
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Figure B.31 Raw Data For Specimen A1 – Z Displacements for LED’s 1 to 10 (Left) 

and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.32 Raw Data For Specimen A1 – Y Displacements for LED’s 11 to 20 

(Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.33 Raw Data For Specimen A1 – X Displacements for LED’s 21 to 30 

(Left) and Y Displacements for LED’s 21 to 30 (Right) 
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Figure B.34 Raw Data For Specimen A1 – Z Displacements for LED’s 21 to 30 

(Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.35 Raw Data For Specimen A1 – Y Displacements for LED’s 31 to 40 

(Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.36 Raw Data For Specimen A1 – X Displacements for LED’s 41 to 50 

(Left) and Y Displacements for LED’s 41 to 50 (Right) 
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Figure B.37 Raw Data For Specimen A1 – Z Displacements for LED’s 41 to 50 

(Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.38 Raw Data For Specimen A1 – Y Displacements for LED’s 51 to 60 

(Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.39 Raw Data For Specimen A1 – X Displacements for LED’s 61 to 70 

(Left) and Y Displacements for LED’s 61 to 70 (Right) 
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Figure B.40 Raw Data For Specimen A1 – Z Displacements for LED’s 61 to 70 

(Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.41 Raw Data For Specimen A1 – Y Displacements for LED’s 71 to 80 

(Left) and Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.42 Raw Data For Specimen A1 – X Displacements for LED’s 81 to 90 

(Left) and Y Displacements for LED’s 81 to 90 (Right) 
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Figure B.43 Raw Data For Specimen A1 – Z Displacements for LED’s 81 to 90 

(Left) and X Displacements for LED’s 91 to 99 (Right) 

 
Figure B.44 Raw Data For Specimen A1 – Y Displacements for LED’s 91 to 99 

(Left) and Z Displacements for LED’s 91 to 99 (Right) 

 

 

B.2 Specimen A2 

 
Figure B.45 Raw Data For Specimen A2 – Base Slip (Left) and Fuse Linear Pots 

(Right) 
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Figure B.46 Raw Data For Specimen A2 – Strut Linear Potentiometers (Left) and 

Excitation Voltages (Right) 

 
Figure B.47 Raw Data For Specimen A2 – Inclinometers (Left) and Left Frame PT 

Load Cells (Right) 

 
Figure B.48 Raw Data For Specimen A2 – Right Frame PT Load Cells (Left) and 

Left Frame Anchor Rod Strain Gages (Right) 
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Figure B.49 Raw Data For Specimen A2 – Right Frame PT Anchor Rod Strain 

Gages (Left) and Back Side Fuse Strain Gages (Right) 

 
Figure B.50 Raw Data For Specimen A2 – Front Fuse Strain Gages (Left) and Fuse 

Link Strain Gages (Right) 

 
Figure B.51 Raw Data For Specimen A2 – Left Frame Section 1-1 Strain Gages 

(Left) and Left Frame Section 1-2 Strain Gages (Right) 
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Figure B.52 Raw Data For Specimen A2 – Left Frame Section 1-3 Strain Gages 

(Left) and Left Frame Section 1-4 Strain Gages (Right) 

 
Figure B.53 Raw Data For Specimen A2 – Right Frame Section 1-5 Strain Gages 

(Left) and Right Frame Section 1-6 Strain Gages (Right) 

 
Figure B.54 Raw Data For Specimen A2 – Right Frame Section 1-7 Strain Gages 

(Left) and Right Frame Section 1-8 Strain Gages (Right) 
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Figure B.55 Raw Data For Specimen A2 – Left Frame Section 2-1 Strain Gages 

(Left) and Left Frame Section 2-2 Strain Gages (Right) 

 
Figure B.56 Raw Data For Specimen A2 – Left Frame Section 2-3 Strain Gages 

(Left) and Left Frame Section 2-4 Strain Gages (Right) 

 
Figure B.57 Raw Data For Specimen A2 – Right Frame Section 2-5 Strain Gages 

(left) and Right Frame Section 2-6 Strain Gages (Right) 
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Figure B.58 Raw Data For Specimen A2 – Right Frame Section 2-7 Strain Gages 

(Left) and Right Frame Section 2-8 Strain Gages (Right) 

 
Figure B.59 Raw Data For Specimen A2 – Left Frame Section 3-1 Strain Gages 

(Left) and Left Frame Section 3-2 Strain Gages (Right) 

 
Figure B.60 Raw Data For Specimen A2 – Left Frame Section 3-3 Strain Gages 

(Left) and Left Frame Section 3-4 Strain Gages (Right) 
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Figure B.61 Raw Data For Specimen A2 – Right Frame Section 3-5 Strain Gages 

(Left) and Right Frame Section 3-6 Strain Gages (Right) 

 
Figure B.62 Raw Data For Specimen A2 – Right Frame Section 3-7 Strain Gages 

(Left) and Right Frame Section 3-8 Strain Gages (Right) 

 
Figure B.63 Raw Data For Specimen A2 – Strut Strain Gages (Left) and Horizontal 

String Potentiometers (Right) 
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Figure B.64 Raw Data For Specimen A2 – Out-of-Plane String Potentiometers (Left) 

and PT Elongation String Potentiometers (Right) 

 
Figure B.65 Raw Data For Specimen A2 – Uplift String Potentiometers 

 
Figure B.66 Raw Data For Specimen A2 – LBCB Actuator Commands (Left) and 

LBCB Cartesian Commands (Right) 
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Figure B.67 Raw Data For Specimen A2 – LBCB Actuator Displacements (Left) and 

LBCB Cartesian Displacements (Right) 

 
Figure B.68 Raw Data For Specimen A2 – LBCB Cartesian Rotations (Left) and Pin 

Load Cells (Right) 

 
Figure B.69 Raw Data For Specimen A2 – Control Roof String Potentiometers 

(Left) and LBCB Actuator Forces (Right) 
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Figure B.70 Raw Data For Specimen A2 – LBCB Cartesian Forces (Left) and LBCB 

Cartesian Moments (Right) 

 
Figure B.71 Raw Data For Specimen A2 – LBCB Actuator Servo-Error 
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Figure B.72 Raw Data For Specimen A2 – Krypton LED Locations (Left) and 

Krypton LED Numbering (Right) 

 
Figure B.73 Raw Data For Specimen A2 – X Displacements for LED’s 1 to 10 (Left) 

and Y Displacements for LED’s 1 to 10 (Right) 
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Figure B.74 Raw Data For Specimen A2 – Z Displacements for LED’s 1 to 10 (Left) 

and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.75 Raw Data For Specimen A2 – Y Displacements for LED’s 11 to 20 

(Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.76 Raw Data For Specimen A2 – X Displacements for LED’s 21 to 30 

(Left) and Y Displacements for LED’s 21 to 30 (Right) 



 509 

 
Figure B.77 Raw Data For Specimen A2 – Z Displacements for LED’s 21 to 30 

(Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.78 Raw Data For Specimen A2 – Y Displacements for LED’s 31 to 40 

(Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.79 Raw Data For Specimen A2 – X Displacements for LED’s 41 to 50 

(Left) and Y Displacements for LED’s 41 to 50 (Right) 
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Figure B.80 Raw Data For Specimen A2 – Z Displacements for LED’s 41 to 50 

(Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.81 Raw Data For Specimen A2 – Y Displacements for LED’s 51 to 60 

(Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.82 Raw Data For Specimen A2 – X Displacements for LED’s 61 to 70 

(Left) and Y Displacements for LED’s 61 to 70 (Right) 
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Figure B.83 Raw Data For Specimen A2 – Z Displacements for LED’s 61 to 70 

(Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.84 Raw Data For Specimen A2 – Y Displacements for LED’s 71 to 80 

(Left) and Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.85 Raw Data For Specimen A2 –  X Displacements for LED’s 81 to 90 

(Left) and Y Displacements for LED’s 81 to 90 (Right) 
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Figure B.86 Raw Data For Specimen A2 – Z Displacements for LED’s 81 to 90 

(Left) and X Displacements for LED’s 91 to 99 (Right) 

 
Figure B.87 Raw Data For Specimen A2 – Y Displacements for LED’s 91 to 99 

(Left) and Z Displacements for LED’s 91 to 99 (Right) 

 
Figure B.88 Raw Data For Specimen A2 – X Displacements for LED’s 91 to 99 

(Left) and Y Displacements for LED’s 91 to 99 (Right) 
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Figure B.89 Raw Data For Specimen A2 – Z Displacements for LED’s 91 to 99 

 

 

B.3 Specimen A3 

 
Figure B.90 Raw Data For Specimen A3 – Base Slip (Left) and Diagonal Fuse 

Linear Potentiometers (Right) 

 
Figure B.91 Raw Data For Specimen A3 – Strut Linear Potentiometers (Left) and 

Excitation Voltages (Right) 
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Figure B.92 Raw Data For Specimen A3 – Inclinometers (Left) and Left Frame PT 

Load Cells (Right) 

 
Figure B.93 Raw Data For Specimen A3 – Right Frame PT Load Cells (Left) and 

Left Frame PT Anchor Rods (Right) 

 
Figure B.94 Raw Data For Specimen A3 – Right Frame PT Anchor Rods (Left) and 

Back Fuse Strain Gages (Right) 
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Figure B.95 Raw Data For Specimen A3 – Front Fuse Strain Gages (Left) and Left 

Frame Section 1-1 Strain Gages (Right) 

 
Figure B.96 Raw Data For Specimen A3 – Left Frame Section 1-2 Strain Gages 

(Left) and Left Frame Section 1-3 Strain Gages (Right) 

 
Figure B.97 Raw Data For Specimen A3 – Left Frame Section 1-4 Strain Gages 

(Left) and Right Frame Section 1-5 Strain Gages (Right) 
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Figure B.98 Raw Data For Specimen A3 – Right Frame Section 1-6 Strain Gages 

(Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.99 Raw Data For Specimen A3 – Right Frame Section 1-8 Strain Gages 

(Left) and Left Frame Section 2-1 Strain Gages (Right) 

 
Figure B.100 Raw Data For Specimen A3 – Left Frame Section 2-2 Strain Gages 

(Left) and Left Frame Section 2-3 Strain Gages (Right) 
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Figure B.101 Raw Data For Specimen A3 – Left Frame Section 2-4 Strain Gages 

(Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.102 Raw Data For Specimen A3 – Right Frame Section 2-6 Strain Gages 

(Left) and Right Frame Section 2-7 Strain Gages (Right) 

 
Figure B.103 Raw Data For Specimen A3 – Right Frame Section 2-8 Strain Gages 

(Left) and Left Frame Section 3-1 Strain Gages (Right) 
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Figure B.104 Raw Data For Specimen A3 – Left Frame Section 3-2 Strain Gages 

(Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.105 Raw Data For Specimen A3 – Left Frame Section 3-4 Strain Gages 

(Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.106 Raw Data For Specimen A3 – Right Frame Section 3-6 Strain Gages 

(Left) and Right Frame Section 3-7 Strain Gages (Right) 
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Figure B.107 Raw Data For Specimen A3 – Right Frame Section 3-8 Strain Gages 

(Left) and Strut Strain Gages (Right) 

 
Figure B.108 Raw Data For Specimen A3 – Horizontal String Potentiometers (Left) 

and Out-of-Plane String Potentiometers (Right) 

 
Figure B.109 Raw Data For Specimen A3 – PT Elongation String Potentiometers 

(Left) and Uplift String Potentiometers (Right) 
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Figure B.110 Raw Data For Specimen A3 – LBCB Actuator Commands (Left) and 

LBCB Cartesian Commands (Right) 

 
Figure B.111 Raw Data For Specimen A3 – LBCB Actuator Displacements (Left) 

and LBCB Cartesian Displacements (Right) 

 
Figure B.112 Raw Data For Specimen A3 – LBCB Cartesian Rotations (Left) and 

Pin Load Cells (Right) 
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Figure B.113 Raw Data For Specimen A3 – Control Roof String Potentiometers 

(Left) and LBCB Actuator Forces (Right) 

 
Figure B.114 Raw Data For Specimen A3 – LBCB Cartesian Forces (Left) and 

LBCB Cartesian Moments (Right) 

 
Figure B.115 Raw Data For Specimen A3 – LBCB Actuator Servo-Error 
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Figure B.116 Raw Data For Specimen A3 – Krypton LED Locations (Left) and 

Krypton LED Numbering (Right) 

 
Figure B.117 Raw Data For Specimen A3 – X Displacements for LED’s 1 to 10 

(Left) and Y Displacements for LED’s 1 to 10 (Right) 
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Figure B.118 Raw Data For Specimen A3 – Z Displacements for LED’s 1 to 10 

(Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.119 Raw Data For Specimen A3 – Y Displacements for LED’s 11 to 20 

(Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.120 Raw Data For Specimen A3 – X Displacements for LED’s 21 to 30 

(Left) and Y Displacements for LED’s 21 to 30 (Right) 
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Figure B.121 Raw Data For Specimen A3 – Z Displacements for LED’s 21 to 30 

(Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.122 Raw Data For Specimen A3 – Y Displacements for LED’s 31 to 40 

(Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.123 Raw Data For Specimen A3 – X Displacements for LED’s 41 to 50 

(Left) and Y Displacements for LED’s 41 to 50 (Right) 
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Figure B.124 Raw Data For Specimen A3 – Z Displacements for LED’s 41 to 50 

(Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.125 Raw Data For Specimen A3 – Y Displacements for LED’s 51 to 60 

(Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.126 Raw Data For Specimen A3 – X Displacements for LED’s 61 to 70 

(Left) and Y Displacements for LED’s 61 to 70 (Right) 
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Figure B.127 Raw Data For Specimen A3 – Z Displacements for LED’s 61 to 70 

(Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.128 Raw Data For Specimen A3 – Y Displacements for LED’s 71 to 80 

(Left) and Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.129 Raw Data For Specimen A3 – X Displacements for LED’s 81 to 91 

(Left) and Y Displacements for LED’s 81 to 91 (Right) 
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Figure B.130 Raw Data For Specimen A3 – Z Displacements for LED’s 81 to 91 

 

 

B.4 Specimen A4 

 
Figure B.131 Raw Data For Specimen A4 – Base Slip (Left) and Fuse Linear Pots 

(Right) 

 
Figure B.132 Raw Data For Specimen A4 – Strut Linear Potentiometers (Left) and 

Excitation Voltages (Right) 
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Figure B.133 Raw Data For Specimen A4 – Inclinometers (Left) and PT Load Cells 

(Right) 

 
Figure B.134 Raw Data For Specimen A4 – Right Frame PT Load Cells (Left) and 

Left Frame PT Anchor Rods (Right) 

 
Figure B.135 Raw Data For Specimen A4 – Right Frame PT Anchor Rods (Left) 

and Back Fuse Strain Gages (Right) 
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Figure B.136 Raw Data For Specimen A4 – Front Fuse Strain Gages (Left) and Left 

Frame Section 1-1 Strain Gages (Right) 

 
Figure B.137 Raw Data For Specimen A4 – Left Frame Section 1-2 Strain Gages 

(Left) and Left Frame Section 1-3 Strain Gages (Right) 

 
Figure B.138 Raw Data For Specimen A4 – Left Frame Section 1-4 Strain Gages 

(Left) and Right Frame Section 1-5 Strain Gages (Right) 
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Figure B.139 Raw Data For Specimen A4 – Right Frame Section 1-6 Strain Gages 

(Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.140 Raw Data For Specimen A4 – Right Frame Section 1-8 Strain Gages 

(Left) and Left Frame Section 2-1 Strain Gages (Right) 

 
Figure B.141 Raw Data For Specimen A4 – Left Frame Section 2-2 Strain Gages 

(Left) and Left Frame Section 2-3 Strain Gages (Right) 
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Figure B.142 Raw Data For Specimen A4 – Left Frame Section 2-4 Strain Gages 

(Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.143 Raw Data For Specimen A4 – Right Frame Section 2-6 Strain Gages 

(Left) and Right Frame Section 2-7 Strain Gages (Right) 

 
Figure B.144 Raw Data For Specimen A4 – Right Frame Section 2-8 Strain Gages 

(Left) and Left Frame Section 3-1 Strain Gages (Right) 
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Figure B.145 Raw Data For Specimen A4 – Left Frame Section 3-2 Strain Gages 

(Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.146 Raw Data For Specimen A4 – Left Frame Section 3-4 Strain Gages 

(Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.147 Raw Data For Specimen A4 – Right Frame Section 3-6 Strain Gages 

(Left) and Right Frame Section 3-7 Strain Gages (Right) 
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Figure B.148 Raw Data For Specimen A4 – Right Frame Section 3-8 Strain Gages 

(Left) and First Floor Beam Strain Gages (Right) 

 
Figure B.149 Raw Data For Specimen A4 – Third Floor Beam Strain Gages (Left) 

and Strut Strain Gages (Right) 

 
Figure B.150 Raw Data For Specimen A4 – Horizontal String Potentiometers (Left) 

and Out-of-Plane String Potentiometers (Right) 
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Figure B.151 Raw Data For Specimen A4 – PT Elongation String Potentiometers 

(Left) and Uplift String Potentiometers (Right) 

 
Figure B.152 Raw Data For Specimen A4 – LBCB Actuator Commands (Left) and 

LBCB Cartesian Commands (Right) 

 
Figure B.153 Raw Data For Specimen A4 – LBCB Actuator Displacements (Left) 

and LBCB Cartesian Displacements (Right) 
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Figure B.154 Raw Data For Specimen A4 – LBCB Cartesian Rotations (Left) and 

Pin Load Cells (Right) 

 
Figure B.155 Raw Data For Specimen A4 – Control String Potentiometers (Left) 

and LBCB Actuator Forces (Right) 

 
Figure B.156 Raw Data For Specimen A4 – LBCB Cartesian Forces (Left) and 

LBCB Cartesian Moments (Right) 
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Figure B.157 Raw Data For Specimen A4 – LBCB Actuator Servo-Error 

 
Figure B.158 Raw Data For Specimen A4 – Krypton LED Locations (Left) and 

Krypton LED Numbering (Right) 
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Figure B.159 Raw Data For Specimen A4 – X Displacements for LED’s 1 to 10 

(Left) and Y Displacements for LED’s 1 to 10 (Right) 

 
Figure B.160 Raw Data For Specimen A4 – Z Displacements for LED’s 1 to 10 

(Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.161 Raw Data For Specimen A4 – Y Displacements for LED’s 11 to 20 

(Left) and Z Displacements for LED’s 11 to 20 (Right) 
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Figure B.162 Raw Data For Specimen A4 – X Displacements for LED’s 21 to 30 

(Left) and Y Displacements for LED’s 21 to 30 (Right) 

 
Figure B.163 Raw Data For Specimen A4 -  Z Displacements for LED’s 21 to 30 

(Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.164 Raw Data For Specimen A4 – Y Displacements for LED’s 31 to 40 

(Left) and Z Displacements for LED’s 31 to 40 (Right) 
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Figure B.165 Raw Data For Specimen A4 – X Displacements for LED’s 41 to 50 

(Left) and Y Displacements for LED’s 41 to 50 (Right) 

 
Figure B.166 Raw Data For Specimen A4 – Z Displacements for LED’s 41 to 50 

(Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.167 Raw Data For Specimen A4 – Y Displacements for LED’s 51 to 60 

(Left) and Z Displacements for LED’s 51 to 60 (Right) 
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Figure B.168 Raw Data For Specimen A4 – X Displacements for LED’s 61 to 70 

(Left) and Y Displacements for LED’s 61 to 70 (Right) 

 
Figure B.169 Raw Data For Specimen A4 – Z Displacements for LED’s 61 to 70 

(Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.170 Raw Data For Specimen A4 – Y Displacements for LED’s 71 to 80 

(Left) and Z Displacements for LED’s 71 to 80 (Right) 
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Figure B.171 Raw Data For Specimen A4 – X Displacements for LED’s 81 to 91 

(Left) and Y Displacements for LED’s 81 to 91 (Right) 

 
Figure B.172 Raw Data For Specimen A4 – Z Displacements for LED’s 81 to 91 

 

B.5 Specimen A5 – MCE Trial 

 
Figure B.173 Raw Data For Specimen A5 MCE Trial – Base Slip (Left) and Fuse 

Linear Potentiometers (Right) 
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Figure B.174 Raw Data For Specimen A5 MCE Trial – Strut Linear Potentiometers 

(Left) and Excitation Voltages (Right) 

 
Figure B.175 Raw Data For Specimen A5 MCE Trial – Inclinometers (Left) and 

Left Frame PT Load Cells (Right) 

 
Figure B.176 Raw Data For Specimen A5 MCE Trial – Right Frame PT Load Cells 

(Left) and Left Frame PT Anchor Rods (Right) 
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Figure B.177 Raw Data For Specimen A5 MCE Trial – Right Frame PT Anchor 

Rods (Left) and Back Fuse Strain Gages (Right) 

 
Figure B.178 Raw Data For Specimen A5 MCE Trial – Front Fuse Strain Gages 

(Left) and Left Frame Section 1-1 Strain Gages (Right) 

 
Figure B.179 Raw Data For Specimen A5 MCE Trial – Left Frame Section 1-2 

Strain Gages (Left) and Left Frame Section 1-3 Strain Gages (Right) 
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Figure B.180 Raw Data For Specimen A5 MCE Trial – Left Frame Section 1-4 

Strain Gages (Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.181 Raw Data For Specimen A5 MCE Trial – Right Frame Section 1-6 

Strain Gages (Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.182 Raw Data For Specimen A5 MCE Trial – Right Frame Section 1-8 

Strain Gages (Left) and Left Frame Section 2-1 Strain Gages (Right) 
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Figure B.183 Raw Data For Specimen A5 MCE Trial – Left Frame Section 2-2 

Strain Gages (Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.184 Raw Data For Specimen A5 MCE Trial – Left Frame Section 2-4 

Strain Gages (Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.185 Raw Data For Specimen A5 MCE Trial – Right Frame Section 2-6 

Strain Gages (Left) and Right Frame Section 2-7 Strain Gages (Right) 
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Figure B.186 Raw Data For Specimen A5 MCE Trial – Right Frame Section 2-8 

Strain  Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.187 Raw Data For Specimen A5 MCE Trial – Left Frame Section 3-2 

Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.188 Raw Data For Specimen A5 MCE Trial – Left Frame Section 3-4 

Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 
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Figure B.189 Raw Data For Specimen A5 MCE Trial – Right Frame Section 3-6 

Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.190 Raw Data For Specimen A5 MCE Trial – Right Frame Section 3-8 

Strain Gages (Left) and First Floor Beam Strain Gages (Right) 

 
Figure B.191 Raw Data For Specimen A5 MCE Trial – Third Floor Beam Strain 

Gages (Left) and Strut Strain Gages (Right) 
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Figure B.192 Raw Data For Specimen A5 MCE Trial – Horizontal String 

Potentiometers (Left) and Out-of-Plane String Potentiometers (Right) 

 
Figure B.193 Raw Data For Specimen A5 MCE Trial – PT Elongation String 

Potentiometers (Left) and Uplift String Potentiometers (Right) 

 
Figure B.194 Raw Data For Specimen A5 MCE Trial – LBCB Actuator Commands 

(Left) and LBCB Cartesian Commands (Right) 
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Figure B.195 Raw Data For Specimen A5 MCE Trial – LBCB Actuator 

Displacements (Left) and LBCB Cartesian Displacements (Right) 

 
Figure B.196 Raw Data For Specimen A5 MCE Trial – LBCB Cartesian Rotations 

(Left) and Pin Load Cells (Right) 

 
Figure B.197 Raw Data For Specimen A5 MCE Trial – Control Roof String 

Potentiometers (Left) and LBCB Actuator Forces (Right) 
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Figure B.198 Raw Data For Specimen A5 MCE Trial – LBCB Cartesian Forces 

(Left) and LBCB Cartesian Moments (Right) 

 
Figure B.199 Raw Data For Specimen A5 MCE Trial – Krypton LED Locations 

(Left) and Kyrpton LED Numbering (Right) 
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Figure B.200 Raw Data For Specimen A5 MCE Trial – X Displacements for LED’s 

1 to 10 (Left) and Y Displacements for LED’s 1 to 10 (Right) 

 
Figure B.201 Raw Data For Specimen A5 MCE Trial – Z Displacements for LED’s 

1 to 10 (Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.202 Raw Data For Specimen A5 MCE Trial – Y Displacements for LED’s 

11 to 20 (Left) and Z Displacements for LED’s 11 to 20 (Right) 
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Figure B.203 Raw Data For Specimen A5 MCE Trial – X Displacements for LED’s 

21 to 30 (Left) and Y Displacements for LED’s 21 to 30 (Right) 

 
Figure B.204 Raw Data For Specimen A5 MCE Trial – Z Displacements for LED’s 

21 to 30 (Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.205 Raw Data For Specimen A5 MCE Trial – Y Displacements for LED’s 

31 to 40 (Left) and Z Displacements for LED’s 31 to 40 (Right) 
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Figure B.206 Raw Data For Specimen A5 MCE Trial – X Displacements for LED’s 

41 to 50 (Left) and Y Displacements for LED’s 41 to 50 (Right) 

 
Figure B.207 Raw Data For Specimen A5 MCE Trial – Z Displacements for LED’s 

41 to 50 (Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.208 Raw Data For Specimen A5 MCE Trial – Y Displacements for LED’s 

51 to 60 (Left) and Z Displacements for LED’s 51 to 60 (Right) 
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Figure B.209 Raw Data For Specimen A5 MCE Trial – X Displacements for LED’s 

61 to 70 (Left) and Y Displacements for LED’s 61 to 70 (Right) 

 
Figure B.210 Raw Data For Specimen A5 MCE Trial – Z Displacements for LEDs 

61 to 70 (Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.211 Raw Data For Specimen A5 MCE Trial – Y Displacements for LED’s 

71 to 80 (Left) and Z Displacements for LED’s 71 to 80 (Right) 
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Figure B.212 Raw Data For Specimen A5 MCE Trial – X Displacements for LED’s 

81 to 90 (Left) and Y Displacements for LED’s 81 to 90 (Right) 

 
Figure B.213 Raw Data For Specimen A5 MCE Trial – Z Displacements for LED’s 

81 to 90 (Left) and X Displacements for LED’s 91 to 98 (Right) 

 
Figure B.214 Raw Data For Specimen A5 MCE Trial – Y Displacements for LED’s 

91 to 98 (Left) and Z Displacements for LED’s 91 to 98 (Right) 
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B.6 Specimen A5 – 1.10xJMA Kobe Trial 1 

 
Figure B.215 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Base Slip (Left) 

and Fuse Linear Potentiometers (Right) 

 
Figure B.216 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Strut Linear 

Potentiometers (Left) and Excitation Voltage (Right) 

 
Figure B.217 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Inclinometers 

(Left) and Left Frame PT Load Cells (Right) 
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Figure B.218 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame PT 

Load Cells (Left) and Left Frame Anchor Rods (Right) 

 
Figure B.219 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Anchor Rods (Left) and Back Fuse Strain Gages (Right) 

 
Figure B.220 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Front Fuse 

Strain Gages (Left) and Left Frame Section 1-1 Strain Gages (Right) 
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Figure B.221 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 1-2 Strain Gages (Left) and Left Frame Section 1-3 Strain Gages (Right) 

 
Figure B.222 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 1-4 Strain Gages (Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.223 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 1-6 Strain Gages (Left) and Right Frame Section 1-7 Strain Gages (Right) 
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Figure B.224 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 1-8 Strain Gages (Left) and Left Frame Section 2-1 Strain Gages (Right) 

 
Figure B.225 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 2-2 Strain Gages (Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.226 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 2-4 Strain Gages (Left) and Right Frame Section 2-5 Strain Gages (Right) 
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Figure B.227 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 2-6 Strain Gages (Left) and Right Frame Section 2-7 Strain Gages (Right) 

 
Figure B.228 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 2-8 Strain Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.229 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 3-2 Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 
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Figure B.230 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Left Frame 

Section 3-4 Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.231 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 3-6 Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.232 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Right Frame 

Section 3-8 Strain Gages (Left) and First Floor Beam Strain Gages (Right) 
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Figure B.233 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Third Floor 

Beam Strain Gages (Left) and Strut Strain Gages (Right) 

 
Figure B.234 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Horizontal 

String Potentiometers (Left) and Out-of-Plane String Potentiometers (Right) 

 
Figure B.235 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – PT Elongation 

String Potentiometers (Left) and Uplift String Potentiometers (Right) 
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Figure B.236 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – LBCB Actuator 

Commands (Left) and LBCB Cartesian Commands (Right) 

 
Figure B.237 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – LBCB Actuator 

Displacements (Left) and LBCB Cartesian Displacements (Right) 

 
Figure B.238 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – LBCB 

Cartesian Rotations (Left) and Pin Load Cells (Right) 
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Figure B.239 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Control Roof 

String Potentiometers (Left) and LBCB Actuator Forces (Right) 

 
Figure B.240 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – LBCB 

Cartesian Forces (Left) and LBCB Cartesian Moments (Right) 
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Figure B.241 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Krypton LED 

Locations (Left) and Krypton LED Numbering (Right) 

 

 

 
Figure B.242 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – X 

Displacements for LED’s 1 to 10 (Left) and Y Displacements for LED’s 1 to 10 

(Right) 
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Figure B.243 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Z 

Displacements for LED’s 1 to 10 (Left) and X Displacements for LED’s 11 to 20 

(Right) 

 
Figure B.244 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Y 

Displacements for LED’s 11 to 20 (Left) and Z Displacements for LED’s 11 to 20 

(Right) 

 
Figure B.245 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – X 

Displacements for LED’s 21 to 30 (Left) and Y Displacements for LED’s 21 to 30 

(Right) 
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Figure B.246 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Z 

Displacements for LED’s 21 to 30 (Left) and X Displacements for LED’s 31 to 40 

(Right) 

 
Figure B.247 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Y 

Displacements for LED’s 31 to 40 (Left) and Z Displacements for LED’s 31 to 40 

(Right) 

 
Figure B.248 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – X 

Displacements for LED’s 41 to 50 (Left) and Y Displacements for LED’s 41 to 50 

(Right) 
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Figure B.249 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Z 

Displacements for LED’s 41 to 50 (Left) and X Displacements for LED’s 51 to 60 

(Right) 

 
Figure B.250 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Y 

Displacements for LED’s 51 to 60 (Left) and Z Displacements for LED’s 51 to 60 

(Right) 

 
Figure B.251 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – X 

Displacements for LED’s 61 to 70 (Left) and Y Displacements for LED’s 61 to 70 

(Right) 
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Figure B.252 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Z 

Displacements for LED’s 61 to 70 (Left) and X Displacements for LED’s 71 to 80 

(Right) 

 
Figure B.253 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Y 

Displacements for LED’s 71 to 80 (Left) and Z Displacements for LED’s 71 to 80 

(Right) 

 
Figure B.254 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – X 

Displacements for LED’s 81 to 90 (Left) and Y Displacements for LED’s 81 to 90 

(Right) 
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Figure B.255 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Z 

Displacements for LED’s 81 to 90 (Left) and X Displacements for LED’s 81 to 90 

(Right) 

 
Figure B.256 Raw Data For Specimen A5 1.10xJMA Kobe Trial 1 – Y 

Displacements for LED’s 81 to 90 (Left) and Z Displacements for LED’s 81 to 90 

(Right) 

 

B.7 Specimen A5 – 1.10xJMA Kobe Trial 2 
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Figure B.257 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Base Slip (Left) 

and Back Fuse Linear Potentiometers (Right) 

 
Figure B.258 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Strut Linear 

Potentiometers and Excitation Voltages (Right) 

 

 

 
Figure B.259 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Inclinometers 

(Left) and Left Frame PT Load Cells (Right) 

 
Figure B.260 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame PT 

Load Cells (Left) and Left Frame PT Anchor Rods (Right) 
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Figure B.261 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame PT 

Anchor Rods (Left) and Back Fuse Strain Gages (Right) 

 
Figure B.262 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Front Fuse 

Strain Gages (Left) and Left Frame Section 1-1 Strain Gages (Right) 

 
Figure B.263 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 1-2 Strain Gages (Left) and Left Frame Section 1-3 Strain Gages (Right) 
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Figure B.264 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 1-4 Strain Gages (Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.265 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Section 1-6 Strain Gages (Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.266 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Section 1-8 Strain Gages (Left) and Left Frame Section 2-1 Strain Gages (Right) 
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Figure B.267 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 2-2 Strain Gages (Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.268 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 2-4 Strain Gages (Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.269 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Section 2-6 Strain Gages (Left) and Right Frame Section 2-7 Strain Gages (Right) 
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Figure B.270 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Seciton 2-8 Strain Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.271 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 3-2 Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.272 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Left Frame 

Section 3-4 Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 
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Figure B.273 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Section 3-6 Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.274 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Right Frame 

Section 3-8 Strain Gages (Left) and First Floor Beam Strain Gages (Right) 

 
Figure B.275 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Third Floor 

Beam Strain Gages (Left) and Strut Strain Gages (Right) 
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Figure B.276 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Horizontal 

String Potentiometers (Left) and Out-of-Plane String Potentiometers (Right) 

 
Figure B.277 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – PT Elongation 

String Potentiometers (Left) and Uplift String Potentiometers (Right) 

 
Figure B.278 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – LBCB Actuator 

Commands (Left) and LBCB Cartesian Commands (Right) 



 578 

 
Figure B.279 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – LBCB Actuator 

Displacements (Left) and LBCB Cartesian Displacements (Right) 

 
Figure B.280 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – LBCB 

Cartesian Rotations (Left) and Pin Load Cells (Right) 

 
Figure B.281 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Control Roof 

String Potentiometers (Left) and LBCB Actuator Forces (Right) 
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Figure B.282 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – LBCB 

Cartesian Forces (Left) and LBCB Cartesian Moments (Right) 

 
Figure B.283 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Krypton LED 

Locations (Left) and Krypton LED Numbering (Right) 
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Figure B.284 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – X 

Displacements for LED’s 1 to 10 (Left) and Y Displacements for LED’s 1 to 10 

(Right) 

 

 
Figure B.285 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Z 

Displacements for LED’s 1 to 10 (Left) and X Displacements for LED’s 11 to 20 

(Right) 

 
Figure B.286 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Y 

Displacements for LED’s 11 to 20 (Left) and Z Displacements for LED’s 11 to 20 

(Right) 
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Figure B.287 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – X 

Displacements for LED’s 21 to 30 (Left) and Y Displacements for LED’s 21 to 30 

(Right) 

 
Figure B.288 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Z 

Displacements for LED’s 21 to 30 (Left) and X Displacements for LED’s 31 to 40 

(Right) 

 
Figure B.289 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Y 

Displacements for LED’s 31 to 40 (Left) and Z Displacements for LED’s 31 to 40 

(Right) 
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Figure B.290 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – X 

Displacements for LED’s 41 to 50 (Left) and Y Displacements for LED’s 41 to 50 

(Right) 

 
Figure B.291 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Z 

Displacements for LED’s 41 to 50 (Left) and X Displacements for LED’s 51 to 60 

(Right) 

 
Figure B.292 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Y 

Displacements for LED’s 51 to 60 (Left) and Z Displacements for LEDs 51 to 60 

(Right) 
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Figure B.293 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – X 

Displacements for LED’s 61 to 70 (Left) and Y Displacements for LED’s 61 to 70 

(Right) 

 
Figure B.294 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Z 

Displacements for LED’s 61 to 70 (Left) X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.295 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Y 

Displacements for LED’s 71 to 80 (Left) and Z Displacements for LED’s 71 to 80 

(Right) 



 584 

 
Figure B.296 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – X 

Displacements for LED’s 81 to 90 (Left) and Y Displacements for LED’s 81 to 90 

(Right) 

 
Figure B.297 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Z 

Displacements for LED’s 81 to 90 (Left) and X Displacements for LED’s 91 to 98 

(Right) 

 
Figure B.298 Raw Data For Specimen A5 1.10xJMA Kobe Trial 2 – Y 

Displacements for LED’s 91 to 98 (Left) and Z Displacements for LED’s 91 to 98 

(Right) 
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B.8 Specimen A6 – MCE Trial 

 
Figure B.299 Raw Data For Specimen A6 MCE Trial – Base Slip (Left) and Fuse 

Linear Potentiometers (Right) 

 
Figure B.300 Raw Data For Specimen A6 MCE Trial – Strut Linear Potentiometers 

(Left) and Excitation Voltage (Right) 

 

 

 
Figure B.301 Raw Data For Specimen A6 MCE Trial – Inclinometers (Left) and 

Left Frame PT Load Cells (Right) 
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Figure B.302 Raw Data For Specimen A6 MCE Trial – Right Frame PT Load Cells 

(Left) and Left Frame PT Anchor Rods (Right) 

 
Figure B.303 Raw Data For Specimen A6 MCE Trial – Right Frame PT Anchor 

Rods (Left) and Bottom Back Fuse Strain Gages (Right) 

 
Figure B.304 Raw Data For Specimen A6 MCE Trial – Bottom Front Fuse Strain 

Gages (Left) and Mid-Height Back Fuse Strain Gages (Right) 
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Figure B.305 Raw Data For Specimen A6 MCE Trial – Mid-Height Front Fuse 

Strain Gages (Left) and Top Back Fuse Strain Gages (Right) 

 
Figure B.306 Raw Data For Specimen A6 MCE Trial – Top Front Fuse Strain 

Gages (Left) and Left Frame Section 1-1 Strain Gages (Right) 

 
Figure B.307 Raw Data For Specimen A6 MCE Trial – Left Frame Section 1-2 

Strain Gages (Left) and Left Frame Section 1-3 Strain Gages (Right) 
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Figure B.308 Raw Data For Specimen A6 MCE Trial – Left Frame Section 1-4 

Strain Gages (Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.309 Raw Data For Specimen A6 MCE Trial – Right Frame Section 1-6 

Strain Gages (Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.310 Raw Data For Specimen A6 MCE Trial – Right Frame Section 1-8 

Strain Gages (Left) and Left Frame Section 2-1 Strain Gages (Right) 
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Figure B.311 Raw Data For Specimen A6 MCE Trial – Left Frame Section 2-2 

Strain Gages (Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.312 Raw Data For Specimen A6 MCE Trial – Left Frame Section 2-4 

Strain Gages (Left) and Right Frame Section 2- 5 Strain Gages (Right) 

 
Figure B.313 Raw Data For Specimen A6 MCE Trial – Right Frame Section 2-6 

Strain Gages (Left) and Right Frame Section 2-7 Strain Gages (Right) 
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Figure B.314 Raw Data For Specimen A6 MCE Trial – Right Frame Section 2-8 

Strain Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.315 Raw Data For Specimen A6 MCE Trial – Left Frame Section 3-2 

Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.316 Raw Data For Specimen A6 MCE Trial – Left Frame Section 3-4 

Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 
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Figure B.317 Raw Data For Specimen A6 MCE Trial – Right Frame Section 3-6 

Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.318 Raw Data For Specimen A6 MCE Trial – Right Frame Section 3-8 

Strain Gages (Left) and Third Floor Beam Strain Gages (Right) 

 
Figure B.319 Raw Data For Specimen A6 MCE Trial – Strut Strain Gages (Left) 

and Horizontal String Potentiometers (Right) 
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Figure B.320 Raw Data For Specimen A6 MCE Trial – Out-of-Plane String 

Potentiometers (Left) and PT Elongation String Potentiometers (Right) 

 
Figure B.321 Raw Data For Specimen A6 MCE Trial – Uplift String Potentiometers 

 
Figure B.322 Raw Data For Specimen A6 MCE Trial – LBCB Actuator Commands 

(Left) and LBCB Cartesian Commands (Right) 
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Figure B.323 Raw Data For Specimen A6 MCE Trial – LBCB Actuator 

Displacements (Left) LBCB Cartesian Displacements (Right) 

 
Figure B.324 Raw Data For Specimen A6 MCE Trial – LBCB Cartesian Rotations 

(Left) and Pin Load Cells (Right) 

 
Figure B.325 Raw Data For Specimen A6 MCE Trial – Control Roof String 

Potentiometers (Left) and LBCB Actuator Forces (Right) 
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Figure B.326 Raw Data For Specimen A6 MCE Trial – LBCB Cartesian Forces 

(Left) and LBCB Cartesian Moments (Right) 

 
Figure B.327 Raw Data For Specimen A6 MCE Trial – LBCB Actuator Servo-Error 

 



 595 

 
Figure B.328 Raw Data For Specimen A6 MCE Trial – Krypton LED Locations 

(Left) and Krytpon LED Numbering (Right) 

 
Figure B.329 Raw Data For Specimen A6 MCE Trial – X Displacements for LED’s 

1 to 10 (Left) and Y Displacements for LED’s 1 to 10 (Right) 
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Figure B.330 Raw Data For Specimen A6 MCE Trial – Z Displacements for LED’s 

1 to 10 (Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.331 Raw Data For Specimen A6 MCE Trial – Y Displacements for LED’s 

11 to 20 (Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.332 Raw Data For Specimen A6 MCE Trial – X Displacements for LED’s 

21 to 30 (Left) and Y Displacements for LED’s 21 to 30 (Right) 
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Figure B.333 Raw Data For Specimen A6 MCE Trial – Z Displacements for LED’s 

21 to 30 (Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.334 Raw Data For Specimen A6 MCE Trial – Y Displacements for LED’s 

31 to 40 (Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.335 Raw Data For Specimen A6 MCE Trial – X Displacements for LED’s 

41 to 50 (Left) and Y Displacements for LED’s for 41 to 50 (Right) 
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Figure B.336 Raw Data For Specimen A6 MCE Trial – Z Displacements for LED’s 

41 to 50 (Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.337 Raw Data For Specimen A6 MCE Trial – Y Displacements for LED’s 

51 to 60 (Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.338 Raw Data For Specimen A6 MCE Trial – X Displacements for LED’s 

61 to 70 (Left) and Y Displacements for LED’s 61 to 70 (Right) 
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Figure B.339 Raw Data For Specimen A6 MCE Trial – Z Displacements for LED’s 

61 to 70 (Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.340 Raw Data For Specimen A6 MCE Trial – Y Displacements for LED’s 

71 to 80 (Left) Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.341 Raw Data For Specimen A6 MCE Trial – X Location for LED’s 81 to 

90 (Left) and Y Displacements for LED’s 81 to 90 (Right) 
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Figure B.342 Raw Data For Specimen A6 MCE Trial – Z Displacements for LED’s 

81 to 90 (Left) and X Displacements for LED’s 91 to 102 (Right) 

 
Figure B.343 Raw Data For Specimen A6 MCE Trial – Y Displacements for LED’s 

91 to 102 (Left) and Z Displacements for LED’s 91 to 102 (Right) 

 

 

B.9 Specimen A6 – MCE Trial with Out-of-Plane Motion 

 
Figure B.344 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Base Slip (Left) and Fuse Linear Potentiometers (Right) 
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Figure B.345 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Strut Strain Gages (Left) and Excitation Voltages (Right) 

 

 

 
Figure B.346 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Inclinometers (Left) and Left Frame PT Load Cells (Right) 

 
Figure B.347 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame PT Load Cells (Left) and Left Frame PT Anchor Rods (Right) 
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Figure B.348 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame PT Anchor Rods (Left) and Bottom Back Fuse Strain Gages (Right) 

 
Figure B.349 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Bottom Front Fuse Strain Gages (Left) and Mid-Height Back Fuse Strain Gages 

(Right) 

 
Figure B.350 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Mid-Height Front Fuse Strain Gages (Left) and Top Back Fuse Strain Gages (Right) 
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Figure B.351 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Top Front Fuse Strain Gages (Left) and Left Frame Section 1-1 Strain Gages 

(Right) 

 
Figure B.352 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 1-2 Strain Gages (Left) and Left Frame Section 1-3 Strain Gages 

(Right) 

 
Figure B.353 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 1-4 Strain Gages (Left) and Right Frame Section 1-5 Strain 

Gages (Right) 
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Figure B.354 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 1-6 Strain Gages (Left) and Right Frame Section 1-7 Strain 

Gages (Right) 

 
Figure B.355 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 1-8 Strain Gages (Left) and Left Frame Section 2-1 Strain 

Gages (Right) 

 
Figure B.356 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 2-2 Strain Gages (Left) and Left Frame Section 2-3 Strain Gages 

(Right) 
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Figure B.357 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 2-4 Strain Gages (Left) and Right Frame Section 3-5 Strain 

Gages (Right) 

 
Figure B.358 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 2-6 Strain Gages (Left) and Right Frame Section 2-7 Strain 

Gages (Right) 

 
Figure B.359 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 2-8 Strain Gages (Left) and Left Frame Section 3-1 Strain 

Gages (Right) 
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Figure B.360 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 3-2 Strain Gages (Left) and Left Frame Section 3-3 Strain Gages 

(Right) 

 
Figure B.361 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Left Frame Section 3-4 Strain Gages (Left) and Right Frame Section 3-5 Strain 

Gages (Right) 

 
Figure B.362 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 3-6 Strain Gages (Left) and Right Frame Section 3-7 Strain 

Gages (Right) 
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Figure B.363 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Right Frame Section 3-8 Strain Gages (Left) and Third Floor Beam Strain Gages 

(Right) 

 
Figure B.364 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Strut Strain Gages (Left) and Horizontal String Potentiometers (Right) 

 
Figure B.365 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Out-of-Plane String Potentiometers (Left) and PT Elongation String Potentiometers 

(Right) 



 608 

 
Figure B.366 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Uplift String Potentiometers 

 
Figure B.367 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

LBCB Actuator Commands (Left) and LBCB Cartesian Commands (Right) 

 
Figure B.368 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

LBCB Actuator Displacements (Left) and LBCB Cartesian Displacements (Right) 
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Figure B.369 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

LBCB Cartesian Rotations (Left) and Pin Load Cells (Right) 

 
Figure B.370 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Control Roof String Potentiometers (Left) and LBCB Actuator Forces (Right) 

 
Figure B.371 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

LBCB Cartesian Forces (Left) and LBCB Cartesian Moments (Right) 
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Figure B.372 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

LBCB Actuator Servo-Errors 

 
Figure B.373 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – 

Krypton LED Locations (Left) and Krypton LED Numbering (Right) 
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Figure B.374 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – X 

Displacements for LED’s 1 to 10 (Left) and Y Displacements for LED’s 1 to 10 

(Right) 

 
Figure B.375 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Z 

Displacements for LED’s 1 to 10 (Left) and X Displacements for LED’s 11 to 20 

(Right) 

 
Figure B.376 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Y 

Displacements for LED’s 11 to 20 (Left) and Z Displacements for LED’s 11 to 20 

(Right) 
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Figure B.377 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – X 

Displacements for LED’s 21 to 30 (Left) and Y Displacements for LED’s 21 to 30 

(Right) 

 
Figure B.378 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Z 

Displacements for LED’s 21 to 30 (Left) and X Displacements for LED’s 31 to 40 

(Right) 

 
Figure B.379 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Y 

Displacements for LED’s 31 to 40 (Left) and Z Displacements for LED’s 31 to 40 

(Right) 
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Figure B.380 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – X 

Displacements for LED’s 41 to 50 (Left) and Y Displacements for LED’s 41 to 50 

(Right) 

 
Figure B.381 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Z 

Displacements for LED’s 41 to 50 (Left) and X Displacements for LED’s 51 to 60 

(Right) 

 
Figure B.382 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Y 

Displacements of LED’s 51 to 60 (Left) and Z Displacements for LED’s 51 to 60 

(Right) 
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Figure B.383 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – X 

Displacements for LED’s 61 to 70 (Left) and Y Displacements for LED’s 61 to 70 

(Right) 

 
Figure B.384 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Z 

Displacements for LED’s 61 to 70 (Left) and X Displacements for LED’s 71 to 80 

(Right) 

 
Figure B.385 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Y 

Displacements for LED’s 71 to 80 (Left)  Z Displacements for LED’s 71 to 80 

(Right) 
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Figure B.386 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – X 

Displacements for LED’s 81 to 90 (Left) and Y Displacements for LED’s 81 to 90 

(Right) 

 
Figure B.387 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Z 

Displacements for LED’s 81 to 90 (Left) and X Displacements for LED’s 91 to 102 

(Right) 

 
Figure B.388 Raw Data For Specimen A6 MCE Trial with Out-of-Plane Motion – Y 

Displacements for LED’s 91 to 102 (Left) and Z Displacements for LED’s 91 to 102 

(Right) 
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B.10   Specimen A6 – 1.20xJMA Kobe Trial 

 
Figure B.389 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Base Slip (Left) 

and Fuse Linear Potentiometers (Right) 

 
Figure B.390 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Strut Linear 

Potentiometers (Left) and Excitation  Voltage (Right) 

 

 

 
Figure B.391 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Inclinometers 

(Left) and Left Frame PT Load Cells (Right) 
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Figure B.392 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame PT 

Load Cells (Left) and Left Frame PT Anchor Rods (Right) 

 
Figure B.393 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame PT 

Anchor Rods (Left) and Back Bottom Fuse Strain Gages (Right) 

 
Figure B.394 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Bottom Front 

Fuse Strain Gages (Left) and Mid-Height Back Fuse Strain Gages (Right) 
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Figure B.395 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Mid-Height Front 

Fuse Strain Gages (Left) and Top Back Fuse Strain Gages (Right) 

 
Figure B.396 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Top Front Fuse 

Strain Gages (Left) and Left Frame Section 1-1 Strain Gages (Right) 

 
Figure B.397 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 1-2 Strain Gages (Left) and Left Frame Section 1-3 Strain Gages (Right) 
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Figure B.398 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 1-4 Strain Gages (Left) and Right Frame Section 1-5 Strain Gages (Right) 

 
Figure B.399 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 1-6 Strain Gages (Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.400 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 1-8 Strain Gages (Left) and Left Frame Section 2-1 Strain Gages (Right) 
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Figure B.401 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 2-2 Strain Gages (Left) and Left Frame Section 2-3 Strain Gages (Right) 

 
Figure B.402 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 2-4 Strain Gages (Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.403 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 2-6 Strain Gages (Left) and Right Frame Section 2-7 Strain Gages (Right) 
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Figure B.404 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 2-8 Strain Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.405 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 3-2 Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.406 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Left Frame 

Section 3-4 Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 
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Figure B.407 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 3-6 Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.408 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Right Frame 

Section 3-8 Strain Gages (Left) and Third Floor Beam Strain Gages (Right) 

 
Figure B.409 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Strut Strain 

Gages (Left) and Horizontal String Potentiometers (Right) 
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Figure B.410 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Out-of-Plane 

String Potentiometers (Left) and PT Elongations String Potentiometers (Right) 

 
Figure B.411 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Uplift String 

Potentiomters 

 
Figure B.412 Raw Data For Specimen A6 1.20xJMA Kobe Trial – LBCB Actuator 

Commands (Left) and LBCB Cartesian Commands (Right) 
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Figure B.413 Raw Data For Specimen A6 1.20xJMA Kobe Trial – LBCB Actuator 

Displacements (Left) and LBCB Cartesian Displacements (Right) 

 
Figure B.414 Raw Data For Specimen A6 1.20xJMA Kobe Trial – LBCB Cartesian 

Rotations (Left) and Pin Load Cells (Right) 

 
Figure B.415 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Control Roof 

String Potentiometers (Left) and LBCB Actuator Forces (Right) 
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Figure B.416 Raw Data For Specimen A6 1.20xJMA Kobe Trial – LBCB Cartesian 

Forces (Left) and LBCB Cartesian Moments (Right) 

 
Figure B.417 Raw Data For Specimen A6 1.20xJMA Kobe Trial – LBCB Actuator 

Servo-Errors 
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Figure B.418 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Krypton LED 

Locations (Left) and Krypton LED Numbering (Right) 

 
Figure B.419 Raw Data For Specimen A6 1.20xJMA Kobe Trial – X Displacements 

for LED’s 1 to 10 (Left) and Y Displacements for LED’s 1 to 10 (Right) 
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Figure B.420 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Z Displacements 

for LED’s 1 to 10 (Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.421 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Y Displacements 

for LED’s 11 to 20 (Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.422 Raw Data For Specimen A6 1.20xJMA Kobe Trial – X Displacements 

for LED’s 21 to 30 (Left) and Y Displacements for LED’s 21 to 30 (Right) 
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Figure B.423 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Z Displacements 

for LED’s 21 to 30 (Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.424 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Y Displacements 

for LED’s 31 to 40 (Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.425 Raw Data For Specimen A6 1.20xJMA Kobe Trial – X Displacements 

for LED’s 41 to 50 (Left) and Y Displacements for LED’s 41 to 50 (Right) 



 629 

 
Figure B.426 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Z Displacements 

for LED’s 41 to 50 (Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.427 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Y Displacements 

for LED’s 51 to 60 (Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.428 Raw Data For Specimen A6 1.20xJMA Kobe Trial – X Displacements 

for LED’s 61 to 70 (Left) and Y Displacements for LED’s 61 to 70 (Right) 
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Figure B.429 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Z Displacements 

for LED’s 61 to 70 (Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.430 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Y Displacements 

for LED’s 71 to 80 (Left) and Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.431 Raw Data For Specimen A6 1.20xJMA Kobe Trial – X Displacements 

for LED’s 81 to 90 (Left) and Y Displacements for LED’s 81 to 90 (Right) 
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Figure B.432 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Z Displacements 

for LED’s 81 to 90 (Left) and X Displacements for LED’s 91 to 102 (Right) 

 
Figure B.433 Raw Data For Specimen A6 1.20xJMA Kobe Trial – Y Displacements 

for LED’s 91 to 102 (Left) and Z Displacements for LED’s 91 to 102 (Right) 

 

B.11   Specimen A7 

 
Figure B.434 Raw Data For Specimen A7 – Base Slip (Left) and Fuse Linear 

Potentiometers (Right) 
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Figure B.435 Raw Data For Specimen A7 – Strut Linear Potentiometers (Left) and 

Excitation Voltage (Right) 

 

 

 
Figure B.436 Raw Data For Specimen A7 – Inclinometers and Left Frame PT Load 

Cells (Right) 

 
Figure B.437 Raw Data For Specimen A7 – Right Frame PT Load Cells (Left) and 

Left Frame PT Anchor Rods (Right) 
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Figure B.438 Raw Data For Specimen A7 – Right Frame PT Anchor Rods (Left) 

and Bottom Back Fuse Strain Gages (Right) 

 
Figure B.439 Raw Data For Specimen A7 – Bottom Front Strain Gages (Left) and 

Mid-Height Back Fuse Strain Gages (Right) 

 
Figure B.440 Raw Data For Specimen A7 – Mid-Height Front Fuse Strain Gages 

(Left) and Top Back Fuse Strain Gages (Right) 
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Figure B.441 Raw Data For Specimen A7 – Top Front Fuse Strain Gages (Left) and 

Left Frame Section 1-1 Strain Gages (Right) 

 
Figure B.442 Raw Data For Specimen A7 – Left Frame Section 1-2 Strain Gages 

(Left) and Left Frame Section 1-3 Strain Gages (Right) 

 
Figure B.443 Raw Data For Specimen A7 – Left Frame Section 1-4 Strain Gages 

(Left) and Right Frame Section 1-5 Strain Gages (Right) 
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Figure B.444 Raw Data For Specimen A7 – Right Frame Section 1-6 Strain Gages 

(Left) and Right Frame Section 1-7 Strain Gages (Right) 

 
Figure B.445 Raw Data For Specimen A7 – Right Frame Section 1-8 Strain Gages 

(Left) and Left Frame Section 2-1 Strain Gages (Right) 

 
Figure B.446 Raw Data For Specimen A7 – Left Frame Section 2-2 Strain Gages 

(Left) and Left Frame Section 2-3 Strain Gages (Right) 
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Figure B.447 Raw Data For Specimen A7 – Left Frame Section 2-4 Strain Gages 

(Left) and Right Frame Section 2-5 Strain Gages (Right) 

 
Figure B.448 Raw Data For Specimen A7 – Right Frame Section 2-6 Strain Gages 

(Left) and Right Frame Section 2-7 Strain Gages (Right) 

 
Figure B.449 Raw Data For Specimen A7 – Right Frame Section 2-8 Strain Gages 

(Left) and Left Frame Section 3-1 Strain Gages (Right) 
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Figure B.450 Raw Data For Specimen A7 – Left Frame Section 3-2 Strain Gages 

(Left) and Left Frame Section 3-3 Strain Gages (Right) 

 
Figure B.451 Raw Data For Specimen A7 – Left Frame Section 3-4 Strain Gages 

(Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.452 Raw Data For Specimen A7 – Right Frame Section 3-6 Strain Gages 

(Left) and Right Frame Section 3-7 Strain Gages (Right) 
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Figure B.453 Raw Data For Specimen A7 – Right Frame Section 3-8 Strain Gages 

(Left) and Third Floor Beam Strain Gages (Right) 

 
Figure B.454 Raw Data For Specimen A7 – Horizontal String Potentiometers (Left) 

and Out-of-Plane String Potentiometers (Right) 

 
Figure B.455 Raw Data For Specimen A7 – PT Elongation String Potentiometers 

(Left) and Uplift String Potentiometers (Right) 
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Figure B.456 Raw Data For Specimen A7 – LBCB Actuator Commands (Left) and 

LBCB Cartesian Commands (Right) 

 
Figure B.457 Raw Data For Specimen A7 – LBCB Actuator Displacements (Left) 

and LBCB Cartesian Displacements (Right) 

 
Figure B.458 Raw Data For Specimen A7 – LBCB Cartesian Rotations (Left) and 

Pin Load Cells (Right) 
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Figure B.459 Raw Data For Specimen A7 – Control Roof String Potentiometers 

(Left) and LBCB Actuator Forces (Right) 

 
Figure B.460 Raw Data For Specimen A7 – LBCB Cartesian Forces (Left) LBCB 

Cartesian Moments (Right) 

 
Figure B.461 Raw Data For Specimen A7 – LBCB Actuator Servo-Error 
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Figure B.462 Raw Data For Specimen A7 – Krypton LED Locations (Left) and 

Krypton LED Numbering (Right) 

 
Figure B.463 Raw Data For Specimen A7 – X Displacements for LED’s 1 to 10 

(Left) and Y Displacements for LED’s 1 to 10 (Right) 

 
Figure B.464 Raw Data For Specimen A7 – Z Displacements for LED’s 1 to 10 

(Left) and X Displacements for LED’s 11 to 20 (Right) 
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Figure B.465 Raw Data For Specimen A7 – Y Displacements for LED’s 11 to 20 

(Left) and Z Displacements for LED’s 11 to 20 (Right) 

 
Figure B.466 Raw Data For Specimen A7 – X Displacements for LED’s 21 to 30 

(Left) and Y Displacements for LED’s 21 to 30 (Right) 

 
Figure B.467 Raw Data For Specimen A7 – Z Displacements for LED’s 21 to 30 

(Left) and X Displacements for LED’s 31 to 40 (Right) 
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Figure B.468 Raw Data For Specimen A7 – Y Displacements for LED’s 31 to 40 

(Left) and Z Displacements for LED’s 31 to 40 (Right) 

 
Figure B.469 Raw Data For Specimen A7 – X Displacements for LED’s 41 to 50 

(Left) and Y Displacements for LED’s 41 to 50 (Right) 

 
Figure B.470 Raw Data For Specimen A7 – Z Displacements for LED’s 41 to 50 

(Left) and X Displacements for LED’s 51 to 60 (Right) 
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Figure B.471 Raw Data For Specimen A7 – Y Displacements for LED’s 51 to 60 

(Left) and Z Displacements for LED’s 51 to 60 (Right) 

 
Figure B.472 Raw Data For Specimen A7 – X Displacements for LED’s 61 to 70 

(Left) and Y Displacements for LED’s 61 to 70 (Right) 

 
Figure B.473 Raw Data For Specimen A7 – Z Displacements for LED’s 61 to 70 

(Left) and X Displacements for LED’s 71 to 80 (Right) 
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Figure B.474 Raw Data For Specimen A7 – Y Displacements for LED’s 71 to 80 

(Left) and Z Displacements for LED’s 71 to 80 (Right) 

 
Figure B.475 Raw Data For Specimen A7 – X Displacements for LED’s 81 to 90 

(Left) and Y Displacements for LED’s 81 to 90 (Right) 

 
Figure B.476 Raw Data For Specimen A7 – Z Displacements for LED’s 81 to 90 

(Left) and X Displacements for LED’s 91 to 101 (Right) 
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Figure B.477 Raw Data For Specimen A7 – Y Displacements for LED’s 91 to 101 

(Left) and Z Displacements for LED’s 91 to 101 (Right) 

 

 

B.12   Specimen B1 and Specimen B2 

 
Figure B.478 Raw Data For Specimen B1 and Specimen B2 – Base Slip (Left) and 

Center Column Uplift Linear Potentiometers (Right) 

 
Figure B.479 Raw Data For Specimen B1 and Specimen B2 – Fuse Frame Linear 

Potentiometers (Left) and Excitation Voltage (Right) 
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Figure B.480 Raw Data For Specimen B1 and Specimen B2 – Inclinometers (Left) 

and Left Frame Post-Tension Load Cells (Right) 

 
Figure B.481 Raw Data For Specimen B1 and Specimen B2 – Right Post-Tension 

Load Cells (Left) and Left Frame PT Anchor Rods (Right) 

 
Figure B.482 Raw Data For Specimen B1 and Specimen B2 – Right Frame PT 

Anchor Rods (Left) and Left Frame Center Column Strain Gages (Right) 
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Figure B.483 Raw Data For Specimen B1 and Specimen B2 – Right Frame Center 

Column Strain Gages (Left) and Left Fuse Frame Strain Gages (Right) 

 
Figure B.484 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 1-

1 Strain Gages (Left) and Left Frame Section 1-2 Strain Gages (Right) 

 
Figure B.485 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 1-

3 Strain Gages (Left) and Left Frame Section 1-4 Strain Gages (Right) 
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Figure B.486 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

1-5 Strain Gages (Left) and Right Frame Section 1-6 Strain Gages (Right) 

 
Figure B.487 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

1-7 Strain Gages (Left) and Right Frame Section 1-8 Strain Gages (Right) 

 
Figure B.488 Raw Data For Specimen B1 and Specimen B2 – Second Floor Beam 

Strain Gages (Left) and Second Floor Beam Strains (Right) 



 650 

 
Figure B.489 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 2-

1 Strain Gages (Left) and Left Frame Section 2-2 Strain Gages (Right) 

 
Figure B.490 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 2-

3 Strain Gages (Left) and Left Frame Section 2-4 Strain Gages (Right) 

 
Figure B.491 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

2-5 Strain Gages (Left) and Right Frame Section 2-6 Strain Gages (Right) 
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Figure B.492 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

2-7 Strain Gages (Left) and Right Frame Section 2-8 Strain Gages (Right) 

 
Figure B.493 Raw Data For Specimen B1 and Specimen B2 – Third Floor Beam 

Strain Gages (Left) and Left Frame Section 3-1 Strain Gages (Right) 

 
Figure B.494 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 3-

2 Strain Gages (Left) and Left Frame Section 3-3 Strain Gages (Right) 
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Figure B.495 Raw Data For Specimen B1 and Specimen B2 – Left Frame Section 3-

4 Strain Gages (Left) and Right Frame Section 3-5 Strain Gages (Right) 

 
Figure B.496 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

3-6 Strain Gages (Left) and Right Frame Section 3-7 Strain Gages (Right) 

 
Figure B.497 Raw Data For Specimen B1 and Specimen B2 – Right Frame Section 

3-8 Strain Gages (Left) and Horizontal String Potentiometers (Right) 
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Figure B.498 Raw Data For Specimen B1 and Specimen B2 – Out-of-Plane String 

Potentiometers (Left) and PT Elongation String Potentiometers (Right) 

 
Figure B.499 Raw Data For Specimen B1 and Specimen B2 – Uplift String 

Potentiometers (Left) and Fuse Uplift String Potentiometers (Right) 

 
Figure B.500 Raw Data For Specimen B1 and Specimen B2 – LBCB Actuator 

Commands (Left) and LBCB Cartesian Commands (Right) 
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Figure B.501 Raw Data For Specimen B1 and Specimen B2 – LBCB Actuator 

Displacements (Left) and LBCB Cartesian Displacements (Right) 

 
Figure B.502 Raw Data For Specimen B1 and Specimen B2 – LBCB Cartesian 

Rotations (Left) and Pin Load Cells (Right) 

 
Figure B.503 Raw Data For Specimen B1 and Specimen B2 – Control Roof String 

Potentiometers (Left) and LBCB Actuator Loads (Right) 
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Figure B.504 Raw Data For Specimen B1 and Specimen B2 – LBCB Cartesian 

Forces (Left) and LBCB Cartesian Moments (Right) 

 
Figure B.505 Raw Data For Specimen B1 and Specimen B2 – LBCB Actuator 

Servo-Error 

 

 

 
Figure B.506 Raw Data For Specimen B1 and Specimen B2 – Krypton LED 

Locations (Left) and Krypton LED Numbering (Right) 
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Figure B.507 Raw Data For Specimen B1 and Specimen B2 – X Displacements for 

LED’s 1 to 10 (Left) and Y Displacements for LED’s 1 to 10 (Right) 

 
Figure B.508 Raw Data For Specimen B1 and Specimen B2 – Z Displacements for 

LED’s 1 to 10 (Left) and X Displacements for LED’s 11 to 20 (Right) 

 
Figure B.509 Raw Data For Specimen B1 and Specimen B2 – Y Displacements for 

LED’s 11 to 20 (Left) and Z Displacements for LED’s 11 to 20 (Right) 
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Figure B.510 Raw Data For Specimen B1 and Specimen B2 – X Displacements for 

LED’s 21 to 30 (Left) and Y Displacements for LED’s 21 to 30 (Right) 

 
Figure B.511 Raw Data For Specimen B1 and Specimen B2 – Z Displacements for 

LED’s 21 to 30 (Left) and X Displacements for LED’s 31 to 40 (Right) 

 
Figure B.512 Raw Data For Specimen B1 and Specimen B2 – Y Displacements for 

LED’s 31 to 40 (Left) and Z Displacements for LED’s 31 to 40 (Right) 
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Figure B.513 Raw Data For Specimen B1 and Specimen B2 – X Displacements for 

LED’s 41 to 50 (Left) and Y Displacements for LED’s 41 to 50 (Right) 

 
Figure B.514 Raw Data For Specimen B1 and Specimen B2 – Z Displacements for 

LED’s 41 to 50 (Left) and X Displacements for LED’s 51 to 60 (Right) 

 
Figure B.515 Raw Data For Specimen B1 and Specimen B2 – Y Displacements for 

LED’s 51 to 60 (Left) and Z Displacements for LED’s 51 to 60 (Right) 
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Figure B.516 Raw Data For Specimen B1 and Specimen B2 – X Displacements for 

LED’s 61 to 70 (Left) and Y Displacements for LED’s 61 to 70 (Right) 

 
Figure B.517 Raw Data For Specimen B1 and Specimen B2 – Z Displacements for 

LED’s 61 to 70 (Left) and X Displacements for LED’s 71 to 80 (Right) 

 
Figure B.518 Raw Data For Specimen B1 and Specimen B2 – Y Displacements for 

LED’s 71 to 80 (Left) and Z Displacements for LED’s 71 to 80 (Right) 
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Figure B.519 Raw Data For Specimen B1 and Specimen B2 – X Displacements for 

LED’s 81 to 87 (Left) and Y Displacements for LED’s 81 to 87 (Right) 

 
Figure B.520 Raw Data For Specimen B1 and Specimen B2 – Z Displacements for 

LED’s 81 to 87 
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Appendix C  
 

EXPERIMENTAL DATA REDUCTION CALCULATIONS 

C.1 Calculation of System Response Values 

Figure C.1 shows the dimensions used for the following calculations along with the 

definition of some of the variables. 

 

H
s
p

3

d 3L

d3R

A B A

FLBCB

F
Left

F
Right

 
Figure C.1 Dimensions and Definitions for Calculation of System Response Values 

 

The measurements for the dimensions given in Figure C.1 are: 

Hsp3 = 198.05” (Height from bearing point to roof string potentiometers) 

A = 5.16’ 

B = 2.06’ 

Hpin = 223.6” (Height from bearing point to pin load cells) 

 

The roof drift ratio is calculated as the average displacement at the roof level 

divided by the height from the bearing point to the roof level as given in Equation (C.1) 

and Equation (C.2). 

 3 3

32

L R

sp

RDR
H

d d
   (DUAL FRAME)   (C.1) 
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3 3

3

L R

sp

or
RDR

H

d d
   (SINGLE FRAME)   (C.2) 

 

The overturning moment applied to the specimen is calculated as the sum of the 

forces transferred through the pin load cells multiplied by the height of the pins above the 

point of bearing as given in Equation (C.3) and Equation (C.4).  The overturning moment 

is normalized to the yield overturning moment, My, for many of the graphs presented in 

this report.  The yield overturning moment is calculated as the initial post-tensioning 

force and fuse shear yield capacity acting at their respective moment arms as given in 

Equation (C.5) and Equation (C.6). 

 

  ovt Left Right pinM F F H   (DUAL FRAME)   (C.3) 

  ovt Left Right pinM F or F H  (SINGLE FRAME)   (C.4) 

  y pti fpM F A V A B    (DUAL FRAME)   (C.5) 

 
2

y pti fp

A
M F V    (SINGLE FRAME)   (C.6) 

  

 Where   Fpti = Initial Post Tension Force 

   
24

9
fp fuses links y

b t
V N N F

L
  (Fuse Shear Capacity) 

   Nfuses = Number of fuses  

   Nlinks = Number of links per fuse 

   b = Height of fuse link at end of the link 

   t = thickness of the fuse plate 

   L = length of the fuse link 

   Fy = Yield strength of the fuse plate 

    

C.2 Calculation of Section Resultants Based on a Strain-Gaged 

Section 

The numbering for the strain gages in a strain-gaged section are included in Figure C.2.  

The beams had only longitudinal gages applied as shown in Figure C.3 and Figure C.4.  

The sign convention for force and moment resultants is shown in Figure C.5. 
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Figure C.2 Strain Gage Locations and Numbering for Brace and Column Strain-

Gaged Sections 

 

3

4 2

1

FRONT FACE BACK FACE

UP

 
Figure C.3 Strain Gage Locations and Numbering for Beam Strain-Gaged Sections 

at 1
st
 Floor and 3

rd
 Floor Beams 
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Figure C.4 Strain Gage Locations and Numbering for Beam Strain-Gaged Sections 

at 2nd Floor Beams 
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Figure C.5 Sign Convention for Resultant Forces and Moments 

 

C.2.1 Axial Force: 

The axial force was calculated as the average of the longitudinal strains multiplied by the 

modulus of elasticity and the nominal area of the wide flange section.  The calculation is 

given in Equation (C.7) 

 

 
1 2 3 4 6 9

6

ij ij ij ij ij ij

ijP EA
         

     (C.7) 

  Where E=29000 ksi 

C.2.2 Major Axis Moment 

The curvature was calculated as the difference between the average extreme fiber strain 

on the front face and the average extreme fiber strain on the back face divided by the 

nominal depth of the section as given in Equation (C.8), Equation (C.9), and Equation 

(C.10).  The major axis moment was calculated as given in Equation (C.11). 

  

3 6 4

3

ij ij ij

Fnt ij

  
 

 
   Average Strain on Front Face  (C.8) 

1 9 2

3

ij ij ij

Bck ij

  
 

 
   Average Strain on Back Face  (C.9) 

Bck ij Fnt ij

Maj ij
d

 


 




   Major Axis Curvature   (C.10) 

 

Where d = nominal depth of the section 

 

Xij Maj ij xM EI    Major Axis Moment   (C.11) 
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C.2.3 Minor Axis Moment 

The minor axis moment was calculated in a similar way as the major axis moment.  The 

calculations are given in Equation (C.12), Equation (C.13), Equation (C.14), and 

Equation (C.15). 

 

3 1

2

ij ij

Left ij

 
 


   Average Strain on Front Face  (C.12) 

4 2

2

ij ij

Right ij

 
 


   Average Strain on Back Face  (C.13) 

2

Left ij Right ij

Minor ij

yc

 


 




  Major Axis Curvature   (C.14) 

 

Where 
3

2 4

f

y

b
c    

 

Yij Minor ij yM EI    Major Axis Moment   (C.15) 

 

C.2.4 Shear Force 

The shear strains were calculated using the strain gage rosettes.  Figure C.6 shows the 

Mohr’s circle for the strain gage rosette strains. 
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Figure C.6 Mohr’s Circle for Calculation of Shear Strain For εA > εC (left) and εC > 

εA (right) 

 

The strain directions A, B, and C are related to the strain gage channels shown in 

Figure C.2 as given in Equation (C.16).  The angle from strain A to the principal strain 

axis is calculated in Equation (C.17).  The radius of the Mohr’s circle for the rosette on 

the front flange is given in Equation (C.18).  The resulting shear strains are calculated 

using Equation (C.19) and Equation (C.20). 
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 5 6 7A B C             (C.16) 

1 6 5 7

5 7

2
2 tanfrnt

  


 

   
  

 
      (C.17) 

   
2 2

5 7 6 5 7

1
2

2
frntR              (C.18) 

 2 cos 2xy frnt frnt frntR    For εA > εC    (C.19) 

 2 cos 2xy frnt frnt frntR      For εC > εA    (C.20) 

 

Similar calculations were conducted for the strain gage rosette applied to the back 

flange as given in Equation (C.21), Equation (C.22), Equation (C.23), Equation (C.24), 

and Equation (C.25). 

 

8 9 10A B C             (C.21) 

1 9 10 8

10 8

2
2 tanback

  


 

   
  

 
      (C.22) 

   
2 2

10 8 9 10 8

1
2

2
backR              (C.23) 

 2 cos 2xy back back backR    For εA > εC    (C.24) 

 2 cos 2xy back back backR     For εC > εA    (C.25) 

 

The shear stress at the middle of the flange was calculated using the average of 

the shear strain on the front and back flanges as given in Equation (C.26).  The resultant 

shear force in the section is calculated by assuming shear stress distribution associated 

with a rectangular section as given in Equation (C.27).  Since the section is used in minor 

axis bending in the frame, the flanges resist the majority of the shear and are 

approximated as a single rectangular section. 

 

 
2

xy frnt xy back
G

 


 
        (C.26) 

2

3
vV A      (C.27) 

C.2.5 Strategy for Handling Erratic Gages and Data Offsets 

Through the course of the experimental program, some strain gages gave erratic or no 

readings during a particular test.  The strategy for performing the above calculations in 

the presence of bad strain measurements are discussed below: 

 

1. All gages experienced some amount of offset between days of testing.  

The shift was as large as 150 microstrains.  For gages where this was 



 667 

significant, the change in the readings as measured in the continuous 

data from the end of the test one day to just before the test resumed the 

next day was subtracted from the subsequent data. 

2. Channels that experienced continued drift, or stop reading at some 

point during the test were identified.  These channels were neglected in 

the preceding calculations as described in the following: 

a. For bad longitudinal gages, the missing strain data was 

replaced by values calculated by fitting a plane to the other 

longitudinal strain values.  It is assumed that plane sections 

remain plane, so a plane is fit to the other strain values using 

least squares.  The strain coordinate of the plane where it 

intersects the gage location is used in place of the missing 

strain value.  This is demonstrated in Figure C.7 and Figure C.8. 

b. For a bad diagonal gage, the shear strain calculation for that 

face will be neglected.  Shear force was based on the other 

rosette only. 

c. For multiple bad strain gages in one strain-gaged section, the 

resultants were evaluated on a case by case basis. 
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Figure C.7 Example of a Strain Distribution With a Missing Strain Value at 

Coordinates (0,0) 
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Figure C.8 Example of Replacing the Missing Strain Data with a Value Calculated 

Using a Least Squares Fit Plane 

 

C.2.6 Possible Sources of Error 

The primary possible sources of error in calculating the resultant forces and moments 

were identified and are listed below: 

1. Strain gages were not attached exactly in line with member axes 

2. Calculation of axial and moment resultants assume that the axial strain 

distribution is planar.  The actual axial strain distribution is not always 

planar. 

3. Calculation of shear force assumes that shear is only carried in the 

flanges and conforms to the shear distribution in a rectangular section.  

The rosette is attached on the face of the flange opposite the web.  

Shear flow at this location may not conform to that of a rectangular 

section. 

4. Strain gages that stopped reading correctly during a test are discarded.  

The resultants are calculated without that gage which is an 

approximation. 

5. Strains were measured as the frame was moving.  Movement consisted 

of quick jerky steps which could have caused dynamic spikes in forces 

or slight differences in the time when the strain gage measurements 

were taken. 
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C.3 Calculation of Resultant Forces and Moments for the 

Entire Frame 

The strain-gaged sections and associated gage location numbers are included in Figure 

C.9.  Resultant forces and moments were calculated for the entire frame to allow 

comparison of the data across the three strain gaged section and comparison to the pin 

load cell forces and LBCB forces.   
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Figure C.9 Strain-Gage Section Locations 

 

Sample calculations are presented here for the left frame, but similar calculations 

were applied to the right frame.  The frame resultants at the third floor were calculated 

using Equation (C.28).  The resultants for the second floor were calculated using 

Equation (C.29).  The resultants for the first floor were calculated using Equation (C.30). 

 

Resultants at the third floor: 
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1 2 3 2 3 3 3 3 3 4
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Resultants at the second floor: 

1 2 2 2 2 3 2 3 2 4

1 2 2 2 2 3 2 3 2 4

cos sin cos sin

( )

sin cos sin cos

( ) ( )

Left PT

Left Rotated Left Left

Left

Left Rotated Left Left PT Left

P P P V P V P F

P P Cos
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 (C.29) 

  

Resultants at the first floor: 

 

1 2 1 2 1 3 1 3 1 4

1 2 1 2 1 3 1 3 1 4

cos sin cos sin

( ) (Dual Frame)
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sin cos sin cos

(
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P P P V P V P F
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 ) ( )Left PT LeftF Sin 

  (C.30) 

 

 Where: 

θ is the angle the brace makes relative to vertical and is θ1=28.14°, 

θ2=24.03°, and θ3=24.78° for the first floor, second floor and 

third floor respectively. 

α is tilt of the frame and was measured using the inclinometer 

attached to the beam at the second floor. 

FPT is the total post tension force in that frame relative to the 

beginning of  the test (the initial PT force is zeroed out to allow 

comparison to pin load cell forces and LBCB forces). 

FCC  is the force in the center column attached to the fuse (single 

frame configuration only) 

 

Possible sources of error were identified as: 

1. See calculation of strain gage resultants for possible error related to 

the calculation of resultant forces at a strain-gaged section. 

2. Columns may not be perfectly vertical.  Braces may not be exactly at 

the angle prescribed in the design drawings.  Beams may not be 

exactly horizontal. 

3. The tilt of the frame at any time is measured using the inclinometers.  

Elastic deformation of the frame may cause different tilt angle at each 

section. 

4. The pin load cells have a retainer bar holding them rotationally fixed 

relative to the loading beam.  The loading beam stays relatively 

horizontal during the test.  An inclinometer measures the rotation of 

the loading beam, but this is currently not being used in the 

comparison of section forces relative to pin load cell readings. 

5.  The post-tensioning strands are assumed to be at the same angle 

relative to vertical as the inclinometer reading.  This is not exactly 

accurate as the bottom anchorage of the post-tensioning is at a fixed 

location. 
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C.4 Fuse Response 

This section contains the calculation of fuse shear strains, fuse shear forces, and the 

development of a consistent method for calculating fuse yield. 

C.4.1 Fuse Shear Strain for A Series 

The configuration for linear potentiometers that were measuring deformations across the 

fuse and struts in the dual frame configuration is given in Figure C.10. 

 

DF11

DF12

DS1
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Figure C.10 Linear Potentiometer Configuration for the A Series 

 

The calculation for the fuse shear strain is given in Equation (C.31), Equation 

(C.32), and Equation (C.33). 
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      (C.31) 
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           (C.32) 

 11 12

2

DF DF linPot
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       (C.33) 

Where WlinPot = Width between linear pot fixture to the frame measured at  

beginning of test and included at end of this 

appendix 

 HLinPot = Height between linear pot fixture to the frame measured  
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at beginning of test and included at end of this 

appendix 

Lfinal = Linit + Measured Change in Length 

Linit = Initial length of linear potentiometer measured at the 

beginning of test and included at end of this 

appendix 

CL = Shear Strain Between Column Center Lines 

 = Shear Strain Across the Fuse Link 

 

 

C.4.2 Fuse Shear Strain for B Series 

The fuse shear strain for the single frame configuration was calculated three different 

ways and compared in Appendix D.  Fuse shear strain was calculated using the diagonal 

linear potentiometer connected to the center column, the vertical linear potentiometers 

spanning from the frame down to the post-tensioning anchorage plate, and string 

potentiometers between the anchorage plate and the fuse. 

DCC1   DCC2 

SF

L2

L1

H

H
C

C

 
Figure C.11 Linear Potentiometer Arrangement for the Single Frame Configuration 
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Table C.1 Measured Distances for Test B1 and B2 

 Test B1 

Left Frame 

Test B2 

Right Frame 

L1-initial 12.125” 12.06” 

L2-initial 13.58” 13.42” 

Hinitial 6.125” 5.875” 

 

A. Calculating fuse shear strain using diagonal linear potentiometer: 

 

A triangle can be formed using the two linear potentiometers, DFF2 and DFF3.  The 

lengths of the sides of the triangle are calculated using Equation (C.34) and Equation 

(C.35).  The law of cosines is used to find the angle, α, as given in Equation (C.36).  The 

shear strain between linear pot attachments is calculated in Equation (C.37), and the shear 

strain across the fuse link is calculated in Equation (C.38) and Equation (C.39). 

 

2 2 2current initial FFL L D         (C.34) 

2 2

3 2 3current initial initial FFL H L D         (C.35) 
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           (C.37) 

 2 sin 'A currentL          (C.38) 
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         (C.39) 

 

B. Calculating fuse shear strain using vertical linear potentiometers: 

The shear strain was also calculated using the vertical linear potentiometers 

shown in Figure C.11.  The calculation is given in Equation (C.40) and Equation (C.41). 

 

1 2

2

CC CC
B

D D
         (C.40) 
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         (C.41) 

 

C. Calculating fuse shear strain using vertical string potentiometers: 

The third method for calculating fuse shear strain used the vertical string 

potentiometers.  The calculation is given in Equation (C.42) and Equation (C.43). 

 

C FS          (C.42) 

C
C

LinkL



         (C.43) 
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The main difference between the three measurements for fuse shear strain in the 

single frame configuration was the amount of motion due to pins moving in pin holes.  

The pin hole tolerances allowed motion of the frame and center column that did not cause 

an increase in fuse deformation.  The amount of pin hole tolerances can be calculated 

based on the quantities given above.  Measurement C does not include any motion due to 

pin hole tolerances.  Measurement A includes the bottom pin hole tolerance only.  

Measurement B includes both the top and bottom pin hole tolerances.  The amount of pin 

hole tolerances were calculated using Equation (C.44), Equation (C.45), and Equation 

(C.46). 

 

 slop bot A C           (C.44) 

slop top B A           (C.45) 

Tot slop B C           (C.46) 

 

C.4.3 Fuse Shear Force for the Dual Frame Configuration 

The fuse shear forces were calculated as the difference between the resultant forces above 

and below the fuses.  Figure C.12 shows an example for the dual frame configuration that 

has six fuses.  Total section resultants consisting of all forces crossing the section line 

were resolved to vertical components for each frame as described earlier in this Appendix.  

The difference in the vertical resultant for the left frame was averaged with the difference 

in the vertical resultants for the right frame and taken to be the fuse shear force.  This 

difference was divided by four to represent average fuse shear force in the four fuses.  

Similar calculations were conducted for the dual frame configurations that used only two 

fuses.  In that case, it was the difference between section 1 and section 2 resultants that 

were calculated and they were divided by two to represent the average for the two fuses. 
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Figure C.12 Strain Gaged Sections Used to Calculate Shear Forces For Specimen A1, 

A6, and A7 

The fuse shear forces were also approximated by the difference in column axial 

forces above and below the fuses.  The differences in column axial forces were divided 

by the number of fuses and averaged for the left and right interior columns.  These values 
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are compared to the fuse shear forces calculated using the entire frame section in 

Appendix D. 

C.4.4 Fuse Shear Force for B Series 

The fuse shear force for the single frame configuration was calculated based on the strain 

gage measurements on the center columns.  The calculation is given in Equation (C.47). 

 

 
 3 6

2
fuseF EA

 
        (C.47) 

 

Where ε3 is the vertical strain gage at the top rosette and ε6 is the vertical strain at 

the bottom rosette.  E is assumed to be 29,000 ksi, and A is assumed equal to the nominal 

cross-sectional area of the center column equal to 5 in
2
. 

 

C.4.5 Consistent Calculation of Fuse Yield Force 

It was desired to quantify the fuse shear yield force and associated displacements.  The 

yield force is assumed to be the intersection of the post-yield stiffness and the initial 

stiffness.  Computing the yield force this way is subjective though especially when the 

post-yield stiffness is unclear.  Furthermore, this method for calculating yield force does 

not produce a meaningful fuse yield displacement.  A more consistent approach was 

adopted using an offset strain.  An offset strain approach can be applied more 

consistently.  A 1.5% offset fuse link shear strain was used to determine fuse shear yield 

force.  The average fuse shear yield force was computed to be 27.8 kips compared to the 

average intersection of the initial slope with the post-yield slope which was 26.9 kips.  

Therefore, the 1.5% offset approach produces yield forces that are similar to those 

obtained as the intersection of the initial stiffness and post-yield stiffness.  The 

calculation of the offset fuse yield force is demonstrated in Figure C.13, Figure C.14, 

Figure C.15, Figure C.16, and Figure C.17. 
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Figure C.13 Calculation of the 1.5% Offset Fuse Yield Force 
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Figure C.14 Calculation of the 1.5% Offset Fuse Yield Force 
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Figure C.15 Calculation of the 1.5% Offset Fuse Yield Force 
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Figure C.16 Calculation of the 1.5% Offset Fuse Yield Force 

 



 677 

-5 0 5 10 15 20
-60

-40

-20

0

20

40

60
Fuse Hysteresis for Test B1

Fuse Link Shear Strain(%)

S
h

e
a

r 
F

o
rc

e
 (

k
ip

s
)

 
-5 0 5 10 15 20

-60

-40

-20

0

20

40

60
Fuse Hysteresis for Test B2

Fuse Link Shear Strain(%)

S
h

e
a

r 
F

o
rc

e
 (

k
ip

s
)

 
Figure C.17 Calculation of the 1.5% Offset Fuse Yield Force 

 

C.5 Post-Tensioning Response 

C.5.1 Calculate Stress and Strain in the PT Strand 

The post-tensioning instrumentation, dimensions, and variable definitions are shown in 

Figure C.18.  The post-tensioning stress was calculated using  
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Figure C.18 Post-Tensioning Configuration and Instrumentation 
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PT i initial PT
PT strand

PT PT PT

P S
ULR e

A E H
   

       (C.49) 

 

 Where   PPT-i  is the force in the load cell i 

APT = 0.153 in
2
 nominal 

   EPT = 29,300 ksi from material test 

ΔSPT = Change in String Potentiometer Reading Relative to 

the Beginning of the Test 

   
 up left up right

ULR
A

d d 
  = uplift ratio 

   δup-left = Uplift String Potentiometer Reading on Left Side  

of Frame 

   δup-right = Uplift String Pot. Reading on Right Side of Frame 

   estrand = eccentricity of the strand relative to the center 

 

The total post-tensioning force was calculated by two methods: 

 

 PT A PT i

i

F P         (C.50) 

6

1 2

iA iB
PT B rod rod

i

F E A
 





 
  

 
       (C.51) 

  Where Erod = 29,000 ksi nominal 

  Arod is based on 1-1/4” diameter 

 

C.5.2 Calculating PT Force Offsets for Test A1 through A4 

The post-tensioning load cells were not zeroed properly before post-tensioning the frames 

prior to the Specimen A1 test.  As a result, there were offsets in the post-tensioning load 

cell data for all tests until the post-tensioning strands were replaced after the Specimen 

A4 test.  The offsets listed in Table C.2 were subtracted from the post-tensioning load 

cell data for Specimens A1 through A4. 

 

Table C.2 Offsets for the Post-Tensioning Strands Used for Tests A1 Through A4 

 Left Frame Right Frame 

L-PT- 1 12.21 2.99 

L-PT- 2 10.19 -1.43 

L-PT- 3 5.47 -16.80 

L-PT- 4 -9.75 34.78 

L-PT- 5 9.35 -21.64 

L-PT- 6 -12.78 2.72 

L-PT- 7 -13.10 16.43 

L-PT- 8 1.07 2.40 
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C.6 Decomposing Response into Post-Tensioned Frame and 

Fuse 

It was desired to examine the behavior of the two main components of the controlled 

rocking system.  The restoring moment due to the post-tensioning, MPT, and fuse, Mfuse, 

were calculated and summed together to equal the total restoring moment, Mrestore.  The 

restoring moment is compared to the applied overturning moment in Appendix D. 

 

C.6.1 Calculation of Restoring Moments for the Dual Frame 

Configuration 

The calculation of the restoring moment due to post-tensioning force is given in Equation 

(C.52).  For small values of the uplift ratio, both legs of the frame may be bearing on the 

support.  If both legs are in bearing, then the freebody diagram of the frame changes.  

Equation (C.52), takes this into account using the vertical reactions at the base of the 

frame (measured using the strain gage sections and converted to resultant forces as 

described above). 

 

 PT PT rockM F W   For 0.1%ULR    

 PT PT rock rockM F W R  For 0.1% 0.1%ULR      (C.52) 

 PT PT rockM F W   For 0.1%ULR   

 Where: 

  react
rock

react

R
R

R
   For 1.0reactR   

  rock reactR R    For 1.0reactR   

  
 lefts rights

react

PTi

R R
R

F


   

  Rlefts  = Total vertical reaction on left side of both frames 

  Rrights  = Total vertical reaction on right side of both frames 

  FPTi  = Total initial post tension force 

  Wrock = 34.7” 

 

The restoring moment due to the fuse were calculate using Equation (C.53), and 

the total restoring force for the frame was calculated as the sum of the restoring force due 

to the post-tensioning and fuse as given in Equation (C.54). 

 

  fuse FM F A B         (C.53) 

 restore PT fuseM M M         (C.54) 
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C.6.2 Calculation of the Restoring Moments for the Single Frame 

Configuration 

The forces due to the post-tensioning, fuse, and base reaction after uplift are shown in 

Figure C.19 for the single frame configuration. 

H
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Figure C.19 Freebody Diagram for a Single Frame for the Single Frame 

Configuration  

 

The restoring moment due to post-tensioning was calculated the same as for the 

dual frame configuration.  The restoring moment due to the fuse was calculated as given 

in Equation (C.55). 

 

 fuse fuse rockM F W   For 0%ULR      (C.55) 

 fuse fuse rockM F W  For 0%ULR   

 

 

C.7 Motion of the System 

Several values were computed based on the motion of the controlled rocking frames.  

Figure C.20 shows the schematic locations for the string potentiometers that measured 

the displacement of the frames. 
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Figure C.20 Schematic Locations for String Potentiometers 

 

The interstory drift ratios were calculated as given in Equation (C.56), Equation 

(C.57), and Equation (C.58). 
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       (C.58) 

 

The amount of sliding at the base of the frames was calculated using similar 

triangles as given in Equation (C.59). 

 1 0
1 1

1 0

slide

S S
S H

H H


  


      (C.59) 

 

Although the figures showing column uplift throughout this report show 

uncorrected data, a correction was conducted and investigated in Appendix D.  The uplift 

reading, Δup, was corrected to eliminate horizontal movement of the dead end using 

similar triangles and trigonometry.  This correction is given in Equation (C.60), Equation 

(C.61), Equation (C.62), Equation (C.63), and Equation (C.64). 

 

  1 0
1 1 2

1 0

hor up

S S
S H H

H H


   


     (C.60) 

 2 1string up upH H H         (C.61) 
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 string string upL H S         (C.62) 

 1sin hor

stringL
 

 
   

 

       (C.63) 

  cosup string stringL H         (C.64) 

 

The uplift reported in prior chapters of this report was measured at the centerline 

of the column.  Since there was an eccentricity between the centerline of the column and 

the pivot point at the base of the column, the measured uplift was found to change for the 

pivoting columns as the frame rotated.  An uplift at the pivot point was calculated and is 

examined in Appendix D.  The calculation is given in Equation (C.65) based on an 

eccentricity, w=3.75” from the centerline of the column. 

 

 *3.75"up pivot up RDR          (C.65) 

 

It was also found in the examination of the frame motion that the center of 

rotation was not at the pivot point.  The height at which the horizontal displacement was 

zero, Hn was calculated using Equation (C.66) and is discussed in Appendix D.  

 1 0
0 0

1 0

n

H H
H H S

S S


 


      (C.66) 

 

The amount of pin hole tolerances in the load cell pin connections was calculated.  

As given in (C.67), the frame displacement at the height of the pins was extrapolated 

based on ground floor and 3
rd

 floor displacements. The amount of pin hole tolerance was 

calculated as the difference between frame displacement at the height of the pin and the 

LBCB displacement as given in Equation (C.68).  The amount of pin hole tolerance at the 

pin load cell connection is discussed in Appendix D. 

 

  3 0
3 0

3 0

calc pin Pin

S S
S H H

H H



   


     (C.67) 

 slop LBCB calc pin          (C.68) 

  

 

C.8 Measured String Potentiometer Locations 

The measured locations of the ends of the string potentiometer are included in this section.  

The coordinates are given in reference to the corner of the strong wall as shown in Figure 

C.21.  The coordinate of the gage end is measured to the location where the string comes 

out of the gage.  The coordinate of the frame end is measured to the attachment on the 

stud which is welded to the frame.  The measurements given in this section were 

executed using a tape measure.  The measurements are given in Table C.3, Table C.4, 

Table C.5, Table C.6, and Table C.7. 
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Figure C.21 Coordinate System for Measured String Potentiometer Locations 
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Table C.3 Measured String Potentiometer Locations on 7/7/08 for Specimen A1 

(inches) 

Gage End Frame End 

S-L-3 

X: 4.13 

S-L-3 

X: 93.50 

Y: 39.50 Y: 39.13 

Z: 200.94 Z: 200.94 

S-R-3 

X: 3.31 

S-R-3 

X: 180.38 

Y: 53.13 Y: 53.44 

Z: 200.75 Z: 200.81 

S-L-2 

X: 3.31 

S-L-2 

X: 93.69 

Y: 38.63 Y: 38.63 

Z: 131.31 Z: 131.38 

S-R-2 

X: 3.31 

S-R-2 

X: 180.13 

Y: 53.38 Y: 53.38 

Z: 131.81 Z: 132.31 

S-L-1 

X: 3.31 

S-L-1 

X: 93.75 

Y: 38.56 Y: 38.56 

Z: 64.19 Z: 64.25 

S-R-1 

X: 3.31 

S-R-1 

X: 180.25 

Y: 54.25 Y: 54.25 

Z: 64.19 Z: 64.25 

S-L-0 

X: 3.31 

S-L-0 

X: 180.50 

Y: 38.25 Y: 38.25 

Z: 17.56 Z: 17.69 

S-R-0 

X: 3.31 

S-R-0 

X: 180.50 

Y: 3.31 Y: 54.25 

Z: 17.63 Z: 17.56 

DOOP-1 

X: 87.31 

DOOP-1 

X: 87.31 

Y: 3.44 Y: 41.88 

Z: 109.63 Z: 109.63 

DOOP-2 

X: 248.00 

DOOP-2 

X: 248.00 

Y: 3.44 Y: 41.69 

Z: 109.81 Z: 109.50 

S-PT-1 

X: 124.50 

S-PT-1 

X: 124.61 

Y: 54.69 Y: 54.38 

Z: 22.50 Z: 205.25 

S-PT-2 

X: 211.13 

S-PT-2 

X: 211.19 

Y: 54.69 Y: 54.63 

Z: 22.50 Z: 205.19 
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Table C.4 Measured String Potentiometer Locations on 8/20/08 for Specimen A2 

(inches) 

Gage End Frame End 

S-L-3 

X: 4.13 

S-L-3 

X: 93.50 

Y: 39.50 Y: 39.13 

Z: 200.94 Z: 200.88 

S-R-3 

X: 3.31 

S-R-3 

X: 180.25 

Y: 53.13 Y: 53.25 

Z: 200.75 Z: 200.88 

S-L-2 

X: 3.31 

S-L-2 

X: 93.75 

Y: 38.63 Y: 38.50 

Z: 131.31 Z: 131.25 

S-R-2 

X: 3.31 

S-R-2 

X: 179.81 

Y: 53.38 Y: 53.38 

Z: 131.81 Z: 131.50 

S-L-1 

X: 3.31 

S-L-1 

X: 93.75 

Y: 38.56 Y: 38.56 

Z: 64.19 Z: 64.00 

S-R-1 

X: 3.31 

S-R-1 

X: 180.19 

Y: 54.25 Y: 54.25 

Z: 64.19 Z: 64.00 

S-L-0 

X: 3.31 

S-L-0 

X: 93.44 

Y: 38.25 Y: 38.25 

Z: 17.56 Z: 18.13 

S-R-0 

X: 3.50 

S-R-0 

X: 180.25 

Y: 54.63 Y: 54.14 

Z: 11.63 Z: 12.38 

DOOP-1 

X: 87.31 

DOOP-1 

X: 88.06 

Y: 3.44 Y: 42.00 

Z: 109.63 Z: 109.88 

DOOP-2 

X: 248.00 

DOOP-2 

X: 249.13 

Y: 3.44 Y: 42.00 

Z: 109.81 Z: 109.63 

S-PT-1 

X: 124.50 

S-PT-1 

X: 124.63 

Y: 54.69 Y: 54.75 

Z: 22.50 Z: 205.13 

S-PT-2 

X: 211.13 

S-PT-2 

X: 211.38 

Y: 54.69 Y: 54.75 

Z: 22.50 Z: 205.38 
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Table C.5 Measured String Potentiometer Locations on 9/5/08 for Specimen A3 

(inches) 

Gage End Frame End 

S-L-3 

X: see previous 

S-L-3 

X: 93.69 

Y: see previous Y: 39.06 

Z: see previous Z: 200.81 

S-R-3 

X: see previous 

S-R-3 

X: 180.14 

Y: see previous Y: 53.56 

Z: see previous Z: 200.88 

S-L-2 

X: see previous 

S-L-2 

X: 93.75 

Y: see previous Y: 38.25 

Z: see previous Z: 131.13 

S-R-2 

X: see previous 

S-R-2 

X: 179.94 

Y: see previous Y: 131.50 

Z: see previous Z: 53.31 

S-L-1 

X: see previous 

S-L-1 

X: 93.75 

Y: see previous Y: 38.25 

Z: see previous Z: 64.13 

S-R-1 

X: 3.25 

S-R-1 

X: 178.19 

Y: 52.25 Y: 54.19 

Z: 64.25 Z: 64.19 

S-L-0 

X: 5.00 

S-L-0 

X: 93.38 

Y: 38.25 Y: 38.25 

Z: 17.88 Z: 18.06 

S-R-0 

X: see previous 

S-R-0 

X: 180.44 

Y: see previous Y: 54.31 

Z: see previous Z: 12.38 

DOOP-1 

X: see previous 

DOOP-1 

X: 88.25 

Y: see previous Y: 41.06 

Z: see previous Z: 109.75 

DOOP-2 

X: 248.19 

DOOP-2 

X: 249.25 

Y: 3.44 Y: 41.75 

Z: 109.69 Z: 109.75 

S-PT-1 

X: see previous 

S-PT-1 

X: 124.69 

Y: see previous Y: 53.88 

Z: see previous Z: 205.13 

S-PT-2 

X: see previous 

S-PT-2 

X: 211.19 

Y: see previous Y: 54.56 

Z: see previous Z: 205.19 

 



 687 

Table C.6 Measured String Potentiometer Locations on 9/29/08 for Specimen A4 

and Specimen A5 (inches) 

Gage End Frame End 

S-L-3 

X: see previous 

S-L-3 

X: 93.25 

Y: see previous Y: 39.13 

Z: see previous Z: 200.88 

S-R-3 

X: see previous 

S-R-3 

X: 180.25 

Y: see previous Y: 54.44 

Z: see previous Z: 200.88 

S-L-2 

X: see previous 

S-L-2 

X: 93.75 

Y: see previous Y: 58.50 

Z: see previous Z: 131.13 

S-R-2 

X: see previous 

S-R-2 

X: 180.63 

Y: see previous Y: 53.50 

Z: see previous Z: 131.50 

S-L-1 

X: see previous 

S-L-1 

X: 93.75 

Y: see previous Y: 38.38 

Z: see previous Z: 64.00 

S-R-1 

X: see previous 

S-R-1 

X: 180.00 

Y: see previous Y: 54.25 

Z: see previous Z: 64.00 

S-L-0 

X: see previous 

S-L-0 

X: 93.25 

Y: see previous Y: 38.25 

Z: see previous Z: 18.00 

S-R-0 

X: see previous 

S-R-0 

X: 180.13 

Y: see previous Y: 54.44 

Z: see previous Z: 12.50 

DOOP-1 

X: see previous 

DOOP-1 

X: 88.25 

Y: see previous Y: 41.69 

Z: see previous Z: 109.75 

DOOP-2 

X: see previous 

DOOP-2 

X: 248.50 

Y: see previous Y: 41.94 

Z: see previous Z: 109.50 

S-PT-1 

X: see previous 

S-PT-1 

X: 124.38 

Y: see previous Y: 54.75 

Z: see previous Z: 205.00 

S-PT-2 

X: see previous 

S-PT-2 

X: 211.13 

Y: see previous Y: 55.19 

Z: see previous Z: 205.00 
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Table C.7 Measured String Potentiometer Locations on 12/18/08 for Specimen A6, 

Specimen A7, Specimen B1, and Specimen B2 (inches) 

Gage End Frame End 

S-L-3 

X: 93.38 

S-L-3 

X: 4.9375 

Y: 39.25 Y: 39.69 

Z: 201.00 Z: 200.25 

S-R-3 

X: 180.13 

S-R-3 

X: 3.25 

Y: 54.13 Y: 35.38 

Z: 200.88 Z: 192.75 

S-L-2 

X: 93.50 

S-L-2 

X: 3.5 

Y: 38.25 Y: 39 

Z: 131.00 Z: 131.19 

S-R-2 

X: 179.88 

S-R-2 

X: 3.4375 

Y: 54.13 Y: 53.4375 

Z: 132.13 Z: 131.8125 

S-L-1 

X: 93.63 

S-L-1 

X: 3.375 

Y: 38.38 Y: 38.75 

Z: 64.00 Z: 64.19 

S-R-1 

X: 180.13 

S-R-1 

X: 3.375 

Y: 54.00 Y: 52.4375 

Z: 63.88 Z: 64.25 

S-L-0 

X: 93.25 

S-L-0 

X: 4.9375 

Y: 38.38 Y: 38.3125 

Z: 18.00 Z: 17.6875 

S-R-0 

X: 179.94 

S-R-0 

X: 3.4375 

Y: 54.50 Y: 54.625 

Z: 12.38 Z: 11.5625 

DOOP-1 

X: 88.00 

DOOP-1 

X: 87.5 

Y: 41.63 Y: see previous 

Z: 109.75 Z: see previous 

DOOP-2 

X: 248.50 

DOOP-2 

X: 24.5 

Y: 41.50 Y: 3.375 

Z: 109.50 Z: 109.75 

S-PT-1 

X: 124.63 

S-PT-1 

X: 124.25 

Y: 54.50 Y: 54.63 

Z: 205.00 Z: 24.5 

S-PT-2 

X: 211.25 

S-PT-2 

X: 211 

Y: 54.50 Y: 54.89 

Z: 205.25 Z: 24.5 
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C.9 Measured Linear Potentiometer Locations 

The measured locations of the linear potentiometers are included in this section.  The 

height (or Z coordinate) above the 2” thick steel base plate was measured for each end of 

each linear potentiometer.  The width between the studs that were used for linear 

potentiometer attachment was measured at each height.  For diagonal linear 

potentiometers, there is a measurement of the width between the studs at the bottom and 

top attachment.  Figure C.22 shows an example of these measurements.  The 

measurements are given in Table C.8, Table C.9, Table C.10, Table C.11, Table C.12, 

and Table C.13. 
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Figure C.22 Key to the Measured Linear Potentiometer Locations 
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Table C.8 Measured Linear Potentiometer Locations on 7/8/08 for Specimen A1 

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 30.75 30.44 25.94 -- 

D-ST-2 62.50 62.38 24.69 -- 

D-ST-3 94.31 94.19 24.56 -- 

D-ST-4 130.25 130.38 24.44 -- 

D-ST-5 166.38 166.31 24.44 -- 

D-F-1-1 56.19 36.69 25.06 24.81 

D-F-1-2 37.06 56.06 25.06 24.81 

D-F-2-1 87.69 68.63 24.63 24.69 

D-F-2-2 68.88 87.88 24.63 24.69 

D-F-3-1 191.75 172.69 24.50 24.38 

D-F-3-2 172.63 191.94 24.50 24.38 

 

Table C.9 Measured Linear Potentiometer Locations on 8/20/08 for Specimen A2 

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 16.13 16.25 24.94 -- 

D-ST-2 36.75 36.63 24.75 -- 

D-ST-3 62.25 62.25 24.63 -- 

D-ST-4 110.13 110.19 24.50 -- 

D-ST-5 150.31 150.06 24.50 -- 

D-F-1-1 56.06 36.63 24.75 24.63 

D-F-1-2 36.75 56.06 24.75 24.63 

D-F-2-1 87.94 68.56 24.63 24.50 

D-F-2-2 68.75 87.75 24.63 24.50 

D-F-3-1 141.50 116.88 24.31 24.56 

D-F-3-2 116.69 141.69 24.31 24.56 
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Table C.10 Measured Linear Potentiometer Locations on 9/5/08 for Specimen A3 

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 16.19 16.19 25.13 -- 

D-ST-2 36.63 36.63 24.94 -- 

D-ST-3 62.25 62.31 24.69 -- 

D-ST-4 109.88 110.13 24.56 -- 

D-ST-5 150.19 150.06 24.50 -- 

D-F-1-1 56.00 36.63 24.94 24.75 

D-F-1-2 36.63 55.81 24.94 24.75 

D-F-2-1 87.75 68.50 24.63 24.63 

D-F-2-2 68.75 87.50 24.63 24.63 

D-F-3-1 141.44 116.81 24.50 24.63 

D-F-3-2 116.56 141.56 24.50 24.63 

 

Table C.11 Measured Linear Potentiometer Locations on 9/30/08 for Specimen A4 

and Specimen A5 

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 16.19 16.25 25.00 -- 

D-ST-2 36.56 36.63 24.94 -- 

D-ST-3 62.25 62.25 24.69 -- 

D-ST-4 110.06 110.06 24.50 -- 

D-ST-5 150.19 150.00 24.44 -- 

D-F-1-1 56.06 36.63 24.94 24.75 

D-F-1-2 36.56 55.88 24.94 24.75 

D-F-2-1 87.94 68.56 24.63 24.50 

D-F-2-2 68.81 87.88 24.63 24.50 

D-F-3-1 141.63 116.88 24.50 24.50 

D-F-3-2 116.75 141.50 24.50 24.50 
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Table C.12 Measured Linear Potentiometer Locations on 12/18/08 for Specimen A6  

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 30.25 30.00 24.88 -- 

D-ST-2 62.25 62.25 24.75 -- 

D-ST-3 94.00 94.00 24.63 -- 

D-ST-4 130.13 130.00 24.63 -- 

D-ST-5 166.13 166.00 24.63 -- 

D-F-1-1 56.00 36.88 25.00 24.75 

D-F-1-2 36.75 56.00 25.00 24.75 

D-F-2-1 87.88 68.50 24.75 24.63 

D-F-2-2 68.75 87.75 24.75 24.63 

D-F-3-1 191.63 172.50 24.75 24.63 

D-F-3-2 172.25 191.63 24.75 24.63 

 

Table C.13 Measured Linear Potentiometer Locations on 1/28/09 for Specimen A7  

  
Left Z Coordinate 

 (in) 
Right Z Coordinate 

 (in) 
Bottom Width 

 (in) 
Top Width  

(in) 

D-ST-1 36.63 36.75 25.00 -- 

D-ST-2 56.00 55.88 24.88 -- 

D-ST-3 87.88 87.63 24.63 -- 

D-ST-4 116.75 116.69 24.63 -- 

D-ST-5 168.19 168.25 24.75 -- 

D-F-1-1 56.00 36.75 25.00 24.88 

D-F-1-2 36.63 55.88 25.00 24.88 

D-F-2-1 87.88 68.50 24.75 24.63 

D-F-2-2 68.75 87.63 24.75 24.63 

D-F-3-1 191.63 172.56 24.75 24.63 

D-F-3-2 172.63 191.63 24.75 24.63 
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Table C.14 Measured Linear Potentiometer Locations on 3/6/09 for Specimen B1 

and Specimen B2 (See Figure C.11 for Dimension Locations) 

 

Specimen B1 
Dimension 

 (in) 

Specimen B2 
Dimension 

 (in) 

L1 24.00 24.13 

L2 12.06 12.13 

H 5.88 6.13 

HCC 31.38 31.40 



 694 

 

C.10 Measured Strain Gage Locations 

The measured locations of the strain-gaged sections are given in Figure C.23. 
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Figure C.23 Measured Strain Gage Section Locations 
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Appendix D  
 

REDUCED DATA AND DATA VALIDATION 

 

The experimental data was converted into useful quantities using the calculations given in 

Appendix C.  The experimental data was also validated by comparing quantities that were 

measured in more than one way.  This section is organized by specimen.  All of the plots 

are discussed for Specimen A1, but only the unique trends are discussed for the other 

specimens.  The plots are included for all specimens. 

D.1 Specimen A1 

Notes on data reduction for Specimen A1: 

 The first 133 lines of data from the step data correspond to a test of the 

DAQ system before the test began.  These lines of data do not have a step 

number or substep number and were deleted from the data prior to plotting.  

Similarly, there were two other lines of data without corresponding step 

numbers that were deleted. 

 Offsets for the post-tension load cells were calculated using data points 

just before the stressing process began.  These same offsets were used to 

compute post-tension forces for Test A1. 

 

D.1.1 System Response 

The system response was decomposed into the components due to the post-tensioned 

frame and fuse as shown on the left of Figure D.1.  The plot is given in the moment 

domain for the reasons given at the beginning of Chapter 5.  Since these two components 

are meant to be the primary means for resisting lateral loads, the sum of the two 

components should approximately equal the applied moments.  The right side of Figure 

D.1 shows that the sum of the post-tensioning and fuse resistance components, referred to 

as restoring moment, is similar to the applied overturning moment.  Figure D.2 shows 

that the restoring moment is nearly equal to the overturning moment for small drifts, but 

is less than the overturning moment at larger drifts.  As the drifts increased, the struts and 

other constraint between the two frames created small additional resistance to lateral 

loads.  For specimens with fewer struts between the frames and thicker fuses, the effect 

of forces between the frames was not as great and the restoring moment more closely 

matched the overturning moment. 
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Figure D.1  Specimen A1 - Decomposing System Response into Fuse and Post-

Tensioning Components 
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Figure D.2 Specimen A1 - Comparing Restoring Moment and Overturning Moment 

 

The horizontal forces measured by the pin load cells was compared to the 

horizontal force measured with the LBCB.  Figure D.3 shows that the two methods for 

measuring horizontal force produced very similar results. 
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Figure D.3 Specimen A1 - Validation of Horizontal Forces Applied to the Frames 

D.1.2 Post Tension Force Validation 

The stress-strain response of every post-tensioning strand is included in Figure D.4 and 

Figure D.5.  The total post-tensioning force was calculated as the sum of the post-

tensioning load cell readings and separately using the strain gaged anchor rods that held 

down the post-tensioning anchorage plate.  The six anchor rods were lathed down at the 

area of the gage and the average diameter was found to be 1.274”.  Using this area and a 

modulus of elasticity of E=29,000 ksi, the axial load was calculated.  Figure D.6 shows 

the comparison of these two measurements. 
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Figure D.4 Specimen A1 - Post-Tensioning Stress-Strain Response 



 698 

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o
 (

f/
fu

)

L-PT-R-1

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-2

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-3

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)
L-PT-R-4

 

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-5

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-6

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)
S

tr
e

s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-7

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-R-8

 
Figure D.5 Specimen A1 - Post-Tensioning Stress-Strain Response 
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Figure D.6 Specimen A1 - Validation of Post-Tensioning Forces 
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D.1.3 Data Validation for Fuse Response 

As described in Appendix C, the fuse shear force was typically calculated using the 

difference in resultant frame forces above and below the fuses.  Figure D.7 shows a 

comparison of the fuse load-deformation behavior as plotted with the difference in frame 

forces and the difference in interior column forces.  For specimen A1, it was determined 

that errors in some of the strain-gaged sections caused errors in the frame resultant forces.  

Figure D.7 shows that the fuse shear forces calculated using frame section forces were 

less antisymmetric, exhibited positive shear force when loading into the negative shear 

strain regime late in the displacement history, and when used to calculate restoring 

moment had worse correlation with overturning moment.  For these reasons, the fuse 

shear force calculated using the difference in column forces above and below the fuse 

was used for the plots shown in this report.  For all other specimens, the difference in 

frame resultants was used for calculation of fuse shear force. 

The right side of Figure D.7 shows the fuse shear strain for all three floors.  The 

fuse shear strain is shown to be within 6% for each of the three floors.  For plots in the 

report, the average of the three values was used. 

 

 

 

-20 -10 0 10 20
-1.5

-1

-0.5

0

0.5

1

1.5
Fuse Hysteresis for Test A1 Using Different Forces

Fuse Shear Strain Between Bolts (%)

S
h

e
a

r 
F

o
rc

e
 R

a
ti
o

 (
V

/V
y
)

 

 

Using Section Force

Using Column Force

 

0 2000 4000 6000 8000 10000
-20

-15

-10

-5

0

5

10

15

20
Fuse Link Shear Strain

Time Step

F
u

s
e

 L
in

k
 S

h
e

a
r 

S
tr

a
in

 (
%

)

 

 

Fuse 1

Fuse 2

Fuse 3

 
Figure D.7 Specimen A1 - Fuse Shear Force Calculated Two Ways (Left), Fuse Link 

Shear Strain For All Three Floors (Right) 

 

The out-of-plane motion of the top fuse link in the fuse that was instrumented 

with Krypton LEDs is shown in Figure D.8.  The fuse link is shown to be virtually planar 

up to step number 4800.  The behavior of the fuse link changes at this point, which is 

evidenced in the axial strains shown on the right of Figure D.8. 
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Figure D.8 Specimen A1 - Out-of-Plane Motion of Fuse Link Using Krypton (Left) 

and Axial Strain in the Top Fuse Link of the Lowermost Fuse (Right) 

 

D.1.4 Motion of the System 

The interstory drift ratios for all three floors are shown in Figure D.9.  The interstory 

drifts are shown to be nearly equal to each other and to the roof drift ratio.  The 

displacement of the controlled rocking frame is close to rigid body rotation and 

deformations in the frame are small in comparison.  This point is further supported by the 

uplift ratio which is shown in Figure D.10 to closely match the roof drift ratio. 

The drift ratio for each floor relative to the bearing point is shown in Figure D.9.  

Although the 2
nd

 floor and LBCB exhibit drift ratios that are almost equal to the 3
rd

 floor 

(roof drift) ratio, the first floor and ground floor show some deviation.  The deviation in 

drift at the ground floor and 1
st
 floor is due to sliding at the base of the frames.  

The measured amount of pin hole tolerance at the pin load cells is shown in 

Figure D.10.  The calculation for this quantity is given in Appendix C and consists of 

extrapolating the horizontal drift of the frame up to the height of the pin load cells and 

subtracting the amount of LBCB horizontal drift.  The movement at zero roof drift is 

approximately 6mm which corresponds to 3mm of hole tolerance in each ply. 
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Figure D.9 Specimen A1 - Interstory Drifts (Left) and Drift Ratios Relative to Base 

(Right) 
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Figure D.10 Specimen A1 - Pin Hole Tolerances for the Pin Load Cells (Left), and 

Uplift Ratio (Right) 

D.1.5 Member Resultants 

The resultant axial force, shear force, minor axis moment, and major axis moment were 

calculated for each strain-gaged member using the calculations described in Appendix C.    

The resulting member forces are given in Figure D.11, Figure D.12, Figure D.13, Figure 

D.14, Figure D.15, Figure D.16, Figure D.17, and Figure D.18. 
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Figure D.11 Specimen A1 - Calculated Member Resultant Forces 
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Figure D.12 Specimen A1 - Calculated Member Resultant Forces 



 703 

0 2000 4000 6000 8000 10000
-150

0

150
Shear - Left Frame

Time Step

S
h

e
a

r 
(k

N
)

Location 1-1

Location 1-2

Location 1-3

Location 1-4

0 2000 4000 6000 8000 10000
-150

0

150

Time Step

S
h

e
a

r 
(k

N
)

Location 2-1

Location 2-2

Location 2-3

Location 2-4

0 2000 4000 6000 8000 10000
-300

0

300

Time Step

S
h

e
a

r 
(k

N
)

Location 3-1

Location 3-2

Location 3-3

Location 3-4

 
Figure D.13 Specimen A1 - Calculated Member Resultant Forces 
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Figure D.14 Specimen A1 - Calculated Member Resultant Forces 
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Figure D.15 Specimen A1 - Calculated Member Resultant Forces 
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Figure D.16 Specimen A1 - Calculated Member Resultant Forces  
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Figure D.17 Specimen A1 - Calculated Member Resultant Forces 
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Figure D.18 Specimen A1 - Calculated Member Resultant Forces 
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D.1.6 Sum of the Forces at Each Section 

The resultant forces for the entire frame were calculated using the member forces 

reported in the previous section.  The calculations are given in Appendix C.  Figure D.19 

shows the total shear force across both frames.  It is shown that the total shear forces for 

all three strain-gaged sections match each other and the horizontal pin load cell force and 

the horizontal LBCB force.  This point is further demonstrated in Figure D.20.  Figure 

D.21 shows the total vertical force resultant for both frames compared for all three strain-

gaged sections along with the pin load cells and LBCB. 
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Figure D.19 Specimen A1 - Sum of the Shear Forces 
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Figure D.20 Specimen A1 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.21 Specimen A1 - Vertical Forces  Calculated From Strain-Gaged Sections 

 

D.2 Specimen A2 

Note on Data Reduction: 

 The same offsets for post-tension load cell forces from Specimen A1 were 

used for this specimen. 

D.2.1 System Response 
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Figure D.22 Specimen A2 - Comparing Restoring Moment to Applied Overturning 

Moment 
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Figure D.23 Specimen A2 - Validation of Horizontal Forces Applied to the Frames 

D.2.2 Post-Tensioning Force Validation 

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o
 (

f/
fu

)

L-PT-L-1

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-2

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-3

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-4

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-5

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-6

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-7

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f/
fu

)

L-PT-L-8

 
Figure D.24 Specimen A2 - Post-Tensioning Stress-Strain Response 
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Figure D.25 Specimen A2 - Post-Tensioning Stress-Strain Response 

 

Anchor rod forces for the right frame were calculated without gage 6b which may 

cause the forked response in the sum of the right frame anchor rods shown in Figure D.26. 
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Figure D.26 Specimen A2 - Validation of Post-Tensioning Forces 
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D.2.3 Motion of the System 
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Figure D.27 Specimen A2 - Interstory Drifts (Left) and Drift Ratios Relative to Base 

(Right) 
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Figure D.28 Specimen A2 - Pin Hole Tolerances for the Pin Load Cells (Left), and 

Uplift Ratio (Right) 
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D.2.4 Member Resultants 
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Figure D.29 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.30 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.31 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.32 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.33 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.34 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.35 Specimen A2 - Calculated Member Resultant Forces 
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Figure D.36 Specimen A2 - Calculated Member Resultant Forces 
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D.2.5 Sum Forces at Each Section 
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Figure D.37 Specimen A2 - Sum of the Shear Forces 
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Figure D.38 Specimen A2 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.39 Specimen A2 - Vertical Forces  Calculated From Strain-Gaged Sections 

 

D.3 Specimen A3 

Notes on Data Reduction: 

 The same offsets for post-tension load cell forces from Specimen A1 were 

used for this specimen. 

D.3.1 System Response 
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Figure D.40 Specimen A3 - Comparing Restoring Moment to Applied Overturning 

Moment 
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Figure D.41 Specimen A3 - Validation of Horizontal Forces Applied to the Frames 

 

D.3.2 Post-Tensioning Force Validation 
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Figure D.42 Specimen A3 - Post-Tensioning Stress-Strain Response 
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Figure D.43 Specimen A3 - Post-Tensioning Stress-Strain Response 

Anchor rod force for the right frame was calculated without gage 6b which may 

cause the forked response in the sum of the right frame anchor rods shown in Figure D.44. 
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Figure D.44 Specimen A3 - Validation of Post-Tensioning Forces 

 



 719 

D.3.3 Motion of the System 
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Figure D.45 Specimen A3 - Interstory Drifts (Left) and Drift Ratios Relative to Base 

(Right) 
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Figure D.46 Specimen A3 - Pin Hole Tolerances for the Pin Load Cells (Left), and 

Uplift Ratio (Right) 
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D.3.4 Member Resultants 
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Figure D.47 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.48 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.49 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.50 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.51 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.52 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.53 Specimen A3 - Calculated Member Resultant Forces 
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Figure D.54 Specimen A3 - Calculated Member Resultant Forces 
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D.3.5 Sum Forces at Each Section 
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Figure D.55 Specimen A3 - Sum of the Shear Forces 
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Figure D.56 Specimen A3 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.57 Specimen A3 - Vertical Forces  Calculated From Strain-Gaged Sections 

D.4 Specimen A4 

Notes on Data Reduction 

 The same offsets for post-tension load cell forces from Specimen A1 were 

used for this specimen. 

 

 

D.4.1 System Response 
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Figure D.58 Specimen A4 - Comparing Restoring Moment to Applied Overturning 

Moment 
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In the middle of the testing of Specimen A4 it was found that load was being 

transferred through friction between the pin plates.  This was fixed by adjusting the 

LBCB in the out of plane direction so that the frame was more vertical and then adjusting 

the out of plane rotation so that there was no moment being applied through the pin plates.  

As shown in Figure 1.7, after the fix was implemented, almost all of the load was then 

transferred through the pin load cells. 
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Figure D.59 Specimen A4 - Validation of Horizontal Forces Applied to the Frames 

D.4.2 Post-Tensioning Force Validation 
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Figure D.60 Specimen A4 - Post-Tensioning Stress-Strain Response 
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Figure D.61 Specimen A4 - Post-Tensioning Stress-Strain Response 
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Figure D.62 Specimen A4 - Validation of Post-Tensioning Forces 
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D.4.3 Motion of the System 
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Figure D.63 Specimen A4 - Interstory Drifts (Left) and Drift Ratios Relative to Base 

(Right) 
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Figure D.64 Specimen A4 - Pin Hole Tolerances for the Pin Load Cells (Left), and 

Uplift Ratio (Right) 
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D.4.4 Member Resultants 
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Figure D.65 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.66 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.67 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.68 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.69 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.70 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.71 Specimen A4 - Calculated Member Resultant Forces 
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Figure D.72 Specimen A4 - Calculated Member Resultant Forces 
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D.4.5 Sum Forces at Each Section 
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Figure D.73 Specimen A4 - Sum of the Shear Forces 
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Figure D.74 Specimen A4 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.75 Specimen A4 - Vertical Forces Calculated From Strain-Gaged Sections 

D.5 Specimen A5 – MCE Trial 

D.5.1 System Response 
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Figure D.76 Specimen A5 MCE Trial - Comparing Restoring Moment to Applied 

Overturning Moment 
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Figure D.77 Specimen A5 MCE Trial - Validation of Horizontal Forces Applied to 

the Frames 

D.5.2 Post-Tensioning Force Validation 
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Figure D.78 Specimen A5 MCE Trial - Post-Tensioning Stress-Strain Response 
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Figure D.79 Specimen A5 MCE Trial - Post-Tensioning Stress-Strain Response 
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Figure D.80 Specimen A5 MCE Trial - Validation of Post-Tensioning Forces 
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D.5.3 Motion of the System 
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Figure D.81 Specimen A5 MCE Trial - Interstory Drifts (Left) and Drift Ratios 

Relative to Base (Right) 
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Figure D.82 Specimen A5 MCE Trial - Pin Hole Tolerances for the Pin Load Cells 

(Left), and Uplift Ratio (Right) 
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D.5.4 Member Resultants 
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Figure D.83 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.84 Specimen A5 MCE Trial - Calculated Member Resultant Forces 



 739 

0 1000 2000 3000 4000 5000
-10

0

10
Shear - Left Frame

Time Step
S

h
e
a
r 

(k
ip

s
)

Location 1-1

Location 1-2

Location 1-3

Location 1-4

0 1000 2000 3000 4000 5000
-5

0

5

Time Step

S
h
e
a
r 

(k
ip

s
)

Location 2-1

Location 2-2

Location 2-3

Location 2-4

0 1000 2000 3000 4000 5000
-20

0

20

Time Step

S
h
e
a
r 

(k
ip

s
)

Location 3-1

Location 3-2

Location 3-3

Location 3-4

 
Figure D.85 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.86 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.87 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.88 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.89 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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Figure D.90 Specimen A5 MCE Trial - Calculated Member Resultant Forces 
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D.5.5 Sum Forces at Each Section 
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Figure D.91 Specimen A5 MCE Trial - Sum of the Shear Forces 
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Figure D.92 Specimen A5 MCE Trial - Validation of Shear Forces Calculated From 

Strain-Gaged Sections 
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Figure D.93 Specimen A5 MCE Trial - Vertical Forces Calculated From Strain-

Gaged Sections 

 

D.6 Specimen A5 – Both Trials at 1.10 x JMA Kobe 

The restoring moment due to fuse force for the 1.10 JMA Kobe run was found to 

be not centered around zero because although all the channels were zeroed out at the 

beginning of this trial, there were initial forces in the fuse.  The fuse restoring moment 

was adjusted by adding 0.0694My.  This number was determined to make the total 

restoring moment best fit the overturning moment. 
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D.6.1 System Response 
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Figure D.94 Specimen A5 1.10xJMA Kobe Trials - Comparing Restoring Moment to 

Applied Overturning Moment 

D.6.2 Post-Tensioning Force Validation 
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Figure D.95 Specimen A5 1.10xJMA Kobe Trials - Post-Tensioning Stress-Strain 

Response 
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Figure D.96 Specimen A5 1.10xJMA Kobe Trials - Post-Tensioning Stress-Strain 

Response 
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Figure D.97 Specimen A5 1.10xJMA Kobe Trials - Validation of Post-Tensioning 

Forces 
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D.6.3 Motion of the System 
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Figure D.98 Specimen A5 1.10xJMA Kobe Trials - Interstory Drifts (Left) and Drift 

Ratios Relative to Base (Right) 

D.6.4 Member Resultants 
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Figure D.99 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.100 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.101 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.102 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 

0 2000 4000 6000 8000 10000
-100

0

100
Major Axis Moment - Right Frame

Time Step

M
o
m

e
n
t 
(k

-i
n
)

Location 1-5

Location 1-6

Location 1-7

Location 1-8

0 2000 4000 6000 8000 10000
-200

0

200

Time Step

M
o
m

e
n
t 
(k

-i
n
)

Location 2-5

Location 2-6

Location 2-7

Location 2-8

0 2000 4000 6000 8000 10000
-200

0

200

Time Step

M
o
m

e
n
t 
(k

-i
n
)

Location 3-5

Location 3-6

Location 3-7

Location 3-8

 
Figure D.103 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.104 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.105 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 
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Figure D.106 Specimen A5 1.10xJMA Kobe Trials - Calculated Member Resultant 

Forces 

D.6.5 Sum Forces at Each Section 
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Figure D.107 Specimen A5 1.10xJMA Kobe Trials - Sum of the Shear Forces 
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Figure D.108 Specimen A5 1.10xJMA Kobe Trials - Validation of Shear Forces 

Calculated From Strain-Gaged Sections 
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Figure D.109 Specimen A5 1.10xJMA Kobe Trials - Vertical Forces Calculated 

From Strain-Gaged Sections 

D.7 Specimen A6 – MCE Trial 

Notes on Data Reduction: 

 All of the data for Specimen A6 was recorded with only 3 significant 

digits of precision as opposed to 7 significant digits which was used for all 

other tests.  However, the data recorded by the NEES Data Turbine still 

had all seven significant digits.  The Data Turbine data files were 

continuous data recorded at 1 Hz.  The step data files were rebuilt from the 

Data Turbine files by selecting the appropriate records using the time 

stamps. 
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D.7.1 System Response 
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Figure D.110 Specimen A6 MCE - Comparing Restoring Moment to Applied 

Overturning Moment 
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Figure D.111 Specimen A6 MCE - Validation of Horizontal Forces Applied to the 

Frames 
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D.7.2 Post-Tensioning Force Validation 
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Figure D.112 Specimen A6 MCE - Post-Tensioning Stress-Strain Response 
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Figure D.113 Specimen A6 MCE - Post-Tensioning Stress-Strain Response 
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Figure D.114 Specimen A6 MCE - Validation of Post-Tensioning Forces 

D.7.3 Data Validation for Fuse Response 
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Figure D.115 Specimen A6 MCE - Fuse Link Shear Strain For All Three Floors 

(Left) Out-of-Plane Motion of Fuse Link Using Krypton (Right) 
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D.7.4 Motion of the System 
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Figure D.116 Specimen A6 MCE - Interstory Drifts (Left) and Drift Ratios Relative 

to Base (Right) 
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Figure D.117 Specimen A6 MCE - Pin Hole Tolerances for the Pin Load Cells (Left), 

and Uplift Ratio (Right) 
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D.7.5 Member Resultants 
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Figure D.118 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.119 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.120 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.121 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.122 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.123 Specimen A6 MCE - Calculated Member Resultant Forces 
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Figure D.124 Specimen A6 MCE - Calculated Member Resultant Forces 

0 1000 2000 3000 4000 5000 6000
-100

0

100
Axial Force - Right Frame

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 1-5

Location 1-6

Location 1-7

Location 1-8

0 1000 2000 3000 4000 5000 6000
-200

0

200

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 2-5

Location 2-6

Location 2-7

Location 2-8

0 1000 2000 3000 4000 5000 6000
-200

0

200

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 3-5

Location 3-6

Location 3-7

Location 3-8

 
Figure D.125 Specimen A6 MCE - Calculated Member Resultant Forces 
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D.7.6 Sum Forces at Each Section 
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Figure D.126 Specimen A6 MCE - Sum of the Shear Forces 
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Figure D.127 Specimen A6 MCE - Validation of Shear Forces Calculated From 

Strain-Gaged Sections 
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Figure D.128 Specimen A6 MCE - Vertical Forces Calculated From Strain-Gaged 

Sections 

D.8 Specimen A6 – MCE Trial with Out-of-Plane Motion 

Notes on Data Reduction: 

 All of the data for Specimen A6 MCE trial with out-of-plane motion was 

recorded with only 3 significant digits of precision as opposed to 7 

significant digits which was used for all other tests.  The plots for this trial 

appear jagged as a result. 

 The MCE with out of plane motion trial was started, stopped, and restarted.  

The first 1110 data points in the MCE with OOP set are discarded, but are 

left in for the member resultant plots. 
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D.8.1 System Response 
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Figure D.129 Specimen A6 MCE with OOP Trial - Comparing Restoring Moment 

to Applied Overturning Moment 
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Figure D.130 Specimen A6 MCE with OOP Trial - Validation of Horizontal Forces 

Applied to the Frames 
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D.8.2 Post-Tensioning Force Validation 
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Figure D.131 Specimen A6 MCE with OOP Trial - Post-Tensioning Stress-Strain 

Response 
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Figure D.132 Specimen A6 MCE with OOP Trial - Post-Tensioning Stress-Strain 

Response 
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Figure D.133 Specimen A6 MCE with OOP Trial - Validation of Post-Tensioning 

Forces 

D.8.3 Data Validation for Fuse Response 
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Figure D.134 Specimen A6 MCE with OOP Trial - Fuse Link Shear Strain For All 

Three Floors (Left) Out-of-Plane Motion of Fuse Link Using Krypton (Right) 
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D.8.4 Motion of the System 
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Figure D.135 Specimen A6 MCE with OOP Trial - Interstory Drifts (Left) and Drift 

Ratios Relative to Base (Right) 
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Figure D.136 Specimen A6 MCE with OOP Trial - Pin Hole Tolerances for the Pin 

Load Cells (Left), and Uplift Ratio (Right) 
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D.8.5 Member Resultants 
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Figure D.137 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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Figure D.138 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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Figure D.139 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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Figure D.140 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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Figure D.141 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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Figure D.142 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 



 769 

0 2000 4000 6000 8000
-50

0

50
Shear - Right Frame

Time Step
S

h
e
a
r 

(k
ip

s
)

Location 1-5

Location 1-6

Location 1-7

Location 1-8

0 2000 4000 6000 8000
-50

0

50

Time Step

S
h
e
a
r 

(k
ip

s
)

Location 2-5

Location 2-6

Location 2-7

Location 2-8

0 2000 4000 6000 8000
-50

0

50

Time Step

S
h
e
a
r 

(k
ip

s
)

Location 3-5

Location 3-6

Location 3-7

Location 3-8

 
Figure D.143 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 

0 2000 4000 6000 8000
-100

0

100
Axial Force - Right Frame

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 1-5

Location 1-6

Location 1-7

Location 1-8

0 2000 4000 6000 8000
-200

0

200

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 2-5

Location 2-6

Location 2-7

Location 2-8

0 2000 4000 6000 8000
-200

0

200

Time Step

A
x
ia

l 
F

o
rc

e
 (

k
ip

s
)

Location 3-5

Location 3-6

Location 3-7

Location 3-8

 
Figure D.144 Specimen A6 MCE with OOP Trial - Calculated Member Resultant 

Forces 
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D.8.6 Sum Forces at Each Section 
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Figure D.145 Specimen A6 MCE with OOP Trial - Sum of the Shear Forces 
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Figure D.146 Specimen A6 MCE with OOP Trial - Validation of Shear Forces 

Calculated From Strain-Gaged Sections 
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Figure D.147 Specimen A6 MCE with OOP Trial - Vertical Forces Calculated From 

Strain-Gaged Sections 

 

D.9 Specimen A6 – 1.20 x JMA Kobe Trial 

D.9.1 System Response 
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Figure D.148 Specimen A6 1.20xJMA Kobe Trial - Comparing Restoring Moment 

to Applied Overturning Moment 
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Figure D.149 Specimen A6 1.20xJMA Kobe Trial - Validation of Horizontal Forces 

Applied to the Frames 

 

 

D.9.2 Post-Tensioning Force Validation 
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Figure D.150 Specimen A6 1.20xJMA Kobe Trial - Post-Tensioning Stress-Strain 

Response 



 773 

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o
 (

f 
/ 
fu

) L-PT-R-1

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-2

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-3

0 0.5 1
0

0.5

1

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)
L-PT-R-4

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-5

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-6

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)
S

tr
e

s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-7

0 0.5 1
0

0.2

0.4

0.6

0.8

Strain (%)

S
tr

e
s
s
 R

a
ti
o

 (
f 
/ 
fu

)

L-PT-R-8

 
Figure D.151 Specimen A6 1.20xJMA Kobe Trial - Post-Tensioning Stress-Strain 

Response 
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Figure D.152 Specimen A6 1.20xJMA Kobe Trial - Validation of Post-Tensioning 

Forces 
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D.9.3 Data Validation for Fuse Response 
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Figure D.153 Specimen A6 1.20xJMA Kobe Trial - Fuse Link Shear Strain For All 

Three Floors (Left) Out-of-Plane Motion of Fuse Link Using Krypton (Right) 

D.9.4 Motion of the System 
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Figure D.154 Specimen A6 1.20xJMA Kobe Trial - Interstory Drifts (Left) and Drift 

Ratios Relative to Base (Right) 
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Figure D.155 Specimen A6 1.20xJMA Kobe Trial - Pin Hole Tolerances for the Pin 

Load Cells (Left), and Uplift Ratio (Right) 

D.9.5 Member Resultants 
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Figure D.156 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 



 776 

0 1000 2000 3000 4000 5000 6000
-200

0

200
Minor Axis Moment - Left Frame

Time Step
M

o
m

e
n
t 
(k

-i
n
)

Location 1-1

Location 1-2

Location 1-3

Location 1-4

0 1000 2000 3000 4000 5000 6000
-200

0

200

Time Step

M
o
m

e
n
t 
(k

-i
n
)

Location 2-1

Location 2-2

Location 2-3

Location 2-4

0 1000 2000 3000 4000 5000 6000
-500

0

500

Time Step

M
o
m

e
n
t 
(k

-i
n
)

Location 3-1

Location 3-2

Location 3-3

Location 3-4

 
Figure D.157 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.158 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.159 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.160 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.161 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.162 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 
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Figure D.163 Specimen A6 1.20xJMA Kobe Trial - Calculated Member Resultant 

Forces 

 

D.9.6 Sum Forces at Each Section 
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Figure D.164 Specimen A6 1.20xJMA Kobe Trial - Sum of the Shear Forces 
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Figure D.165 Specimen A6 1.20xJMA Kobe Trial - Validation of Shear Forces 

Calculated From Strain-Gaged Sections 
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Figure D.166 Specimen A6 1.20xJMA Kobe Trial - Vertical Forces Calculated From 

Strain-Gaged Sections 

 

D.10   Specimen A7 

Notes on Data Reduction: 

 Midway through the test it was found that many of the strain gage 

terminals had become loose.  This caused significant problems in the 

strain gage data with drifting of signals and cutting out of signals.  After 

the problem was identified, all strain gage terminals were tightened and all 

strain gages were zeroed out.  The data was zeroed out for step 3539 and 

the offsets at this time step as determined using the continuous data are 

added into the data before 3539. 
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D.10.1 System Response 

As with test A1, there is force going somewhere other than the PT and fuse as 

shown in the differences between the restoring moment and overturning moment 

demonstrated in Figure D.167.  This force is likely due to the forces between the frames 

due to constraint and exacerbated by axial forces in thinner buckling fuses. 
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Figure D.167 Specimen A7 - Comparing Restoring Moment to Applied Overturning 

Moment 
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Figure D.168 Specimen A7 - Validation of Horizontal Forces Applied to the Frames 
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D.10.2 Post-Tensioning Force Validation 
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Figure D.169 Specimen A7 - Post-Tensioning Stress-Strain Response 
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Figure D.170 Specimen A7 - Post-Tensioning Stress-Strain Response 
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Figure D.171 Specimen A7 - Validation of Post-Tensioning Forces 

D.10.3 Data Validation for Fuse Response 

The right side of Figure D.172 shows that lateral-torsional buckling followed by 

cycles of compression buckling occured around step number 4000.  This is demonstrated 

by the left side moving in the positive Y direction as the right side of the fuse link moves 

in the negative Y direction.  The buckling appears to continue in a predominately 

compression mode instead of a lateral-torsional buckling. 
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Figure D.172 Specimen A7 - Fuse Link Shear Strain For All Three Floors (Left) 

Out-of-Plane Motion of Fuse Link Using Krypton (Right) 
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D.10.4 Motion of the System 
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Figure D.173 Specimen A7 - Interstory Drifts (Left) and Drift Ratios Relative to 

Base (Right) 
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Figure D.174 Specimen A7 - Pin Hole Tolerances for the Pin Load Cells (Left), and 

Uplift Ratio (Right) 
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D.10.5 Member Resultants 
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Figure D.175 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.176 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.177 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.178 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.179 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.180 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.181 Specimen A7 - Calculated Member Resultant Forces 
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Figure D.182 Specimen A7 - Calculated Member Resultant Forces 
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D.10.6 Sum Forces at Each Section 
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Figure D.183 Specimen A7 - Sum of the Shear Forces 
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Figure D.184 Specimen A7 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 

 



 790 

4000 6000 8000 10000 12000 14000
-20

-10

0

10

20

30

40

50
Total (Both Frames) Vertical Resultants

Time Step

F
o
rc

e
 (

k
ip

s
)

Section 1

Section 2

Section 3

Pin Load Cell

LBCB

 
Figure D.185 Specimen A7 - Vertical Forces Calculated From Strain-Gaged 

Sections 

D.11   Specimen B1 

D.11.1 System Response 
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Figure D.186 Specimen B1 - Comparing Restoring Moment to Applied Overturning 

Moment 
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D.11.2 Post-Tensioning Force Validation 
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Figure D.187 Specimen B1 - Post-Tensioning Stress-Strain Response (Left) and 

Validation of Post-Tensioning Force (Right) 
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Figure D.188 Specimen B1 - PT Strand Forces Throughout the Stressing and 

Testing Process 

 

D.11.3 Motion of the System 

The bearing point for horizontal loads occurs at the height where the rounded 

gusset touches the bumper which is 3.5” above the bearing point.  The calculation of the 

point that doesn’t displace horizontally is given in Appendix C and is shown in Figure 

D.189.  Although the calculation becomes prone to error at small roof drift, the trend at 
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large roof drift levels approximately confirms the height of 3.5” as the point on the 

frames that does not displace horizontally. 
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Figure D.189 Specimen B1 - Height to Zero Horizontal Displacement (Left) and 

Interstory Drifts (Right) 
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Figure D.190 Specimen B1 - Pin Hole Tolerances for the Pin Load Cells 
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D.11.4 Member Resultants 
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Figure D.191 Specimen B1 - Calculated Member Resultant Forces 
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Figure D.192 Specimen B1 - Calculated Member Resultant Forces 
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Figure D.193 Specimen B1 - Calculated Member Resultant Forces 
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Figure D.194 Specimen B1 - Calculated Member Resultant Forces 

D.11.5 Sum Forces at Each Section 

The horizontal resultants for all three sections are similar as shown in Figure 

D.195, Figure D.196, and Figure D.197.  Overall, the accuracy of the strain-gaged section 

resultants validate the measurements and calculations performed to obtain resultants.  

Table D.1 shows that the strain gage section resultants at the last positive and negative 

peaks are within 30% of the pin load cell reading. 

The resultant vertical forces in the system are part of the test control.  The vertical 

pin load cell force is controlled to be within a few kips of zero.  The left frame resultant 

vertical forces were as high as 60 kips in section 3, but 25 kips in section 1 and 2.  Since 

the vertical resultant force in the left frame strain-gaged sections is not zero and do not 

match each other, there is likely some error in either the strain gage data. 
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Figure D.195 Specimen B1 - Sum of the Shear Forces 
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Figure D.196 Specimen B1 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.197 Specimen B1 - Vertical Forces Calculated From Strain-Gaged Sections 

 

Table D.1 Specimen B1 - Left Frame Horizontal Resultants at the End of the Test 

  Last Difference Last Difference 

  Positive From Negative From 

  Peak Pin Load Peak Pin Load 

  (kips) Cell (kips) Cell 

Section 1 32.08 0.6% -43.23 23.8% 

Section 2 35.9 12.6% -45.51 30.3% 

Section 3 33.34 4.6% -34.11 2.3% 

Pin Load Cell 31.88 0.0% -34.92 0.0% 
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D.12   Specimen B2 

D.12.1 System Response 
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Figure D.198 Specimen B2 - Comparing Restoring Moment to Applied Overturning 

Moment 

D.12.2 Post-Tensioning Force Validation 

0 1 2
0

100

200

300

Strain (%)

S
tr

e
s
s
 (

k
s
i)

L-PT-R-1

0 1 2
0

100

200

300

Strain (%)

S
tr

e
s
s
 (

k
s
i)

L-PT-R-2

0 1 2
0

100

200

300

Strain (%)

S
tr

e
s
s
 (

k
s
i)

L-PT-R-3

0 1 2
0

100

200

300

Strain (%)

S
tr

e
s
s
 (

k
s
i)

L-PT-R-4

-50 0 50 100
-50

0

50

100

Sum Load Cell Force (kips)

S
u

m
 A

n
c
h

o
r 

R
o

d
 F

o
rc

e
 (

k
ip

s
)

Validation of PT Force for Test B2

 



 798 

Figure D.199 Specimen B2 - Post-Tensioning Stress-Strain Response (Left) and 

Validation of Post-Tensioning Force (Right) 
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Figure D.200 Specimen B2 - PT Strand Forces Throughout the Stressing and 

Testing Process 

D.12.3 Motion of the System 

The bearing point for horizontal loads occurs at the height where the rounded 

gusset touches the bumper which is 3.5” above the bearing point.  The calculation of the 

point that doesn’t displace horizontally is given in Appendix C and is shown in Figure 

D.201.  Although the calculation becomes prone to error at small roof drift, the trend at 

large roof drift levels approximately confirms the height of 3.5” as the point on the 

frames that does not displace horizontally. 
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Figure D.201 Specimen B2 - Height to Zero Horizontal Displacement (Left) and 

Interstory Drifts (Right) 
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Figure D.202 Specimen B2 - Pin Hole Tolerances for the Pin Load Cells 

D.12.4 Member Resultants 
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Figure D.203 Specimen B2 - Calculated Member Resultant Forces 
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Figure D.204 Specimen B2 - Calculated Member Resultant Forces 
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Figure D.205 Specimen B2 - Calculated Member Resultant Forces 
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Figure D.206 Specimen B2 - Calculated Member Resultant Forces 

D.12.5 Sum Forces at Each Section 

The horizontal resultants for all three sections are similar as shown in Figure D.207, 

Figure D.208, and Figure D.209.  Overall, the accuracy of the strain-gaged section 

resultants validate the measurements and calculations performed to obtain resultants.  

Table D.2 shows that the strain gage section resultants at the last positive and negative 

peaks are within 43% of the pin load cell reading. 

The resultant vertical forces in the system are part of the test control.  The vertical 

pin load cell force is controlled to be within a few kips of zero.  The left frame resultant 

vertical forces were as high as 20 kips in section 2, but 12 kips in section 1 and 3.  The 

data and calculations for the right frame are validated by near zero vertical resultants. 
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Figure D.207 Specimen B2 - Sum of the Shear Forces 
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Figure D.208 Specimen B2 - Validation of Shear Forces Calculated From Strain-

Gaged Sections 
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Figure D.209 Specimen B2 - Vertical Forces Calculated From Strain-Gaged Sections 
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Table D.2 Specimen B2 - Right Frame Horizontal Resultants at the End of the Test 

  Last Difference Last Difference 

  Postive From Negative From 

  Peak Pin Load Peak Pin Load 

  (kips) Cell (kips) Cell 

Section 1 34.71 10.5% -27.59 43.2% 

Section 2 38.08 21.2% -27.35 41.9% 

Section 3 34.09 8.5% -26.75 38.8% 

Pin Load Cell 31.41 0.0% -19.27 0.0% 
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