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ABSTRACT

Doped-lanthanide manganites, Ln1-xMxMnO3, represent a class of commercially-attrac-

tive perovskite-structured oxides due to room-temperature magnetoresistive behavior when

0.2 < x < 0.4, Ln = La, and M = Sr, Ba, or Pb.  To date, thin-film investigations of these materi-

als have relied mainly on vapor-phase techniques such as pulsed-laser ablation, molecular

beam epitaxy, and rf-magnetron sputtering.  Deposition conditions almost universally incor-

porate lattice-matched refractory substrates, typically LaAlO3(100) or SrTiO3(100), and often

require high-temperature post-annealing (i.e., > 900 °C) to establish proper oxygen stoichi-

ometry.  Such processes then impart notable challenges for manganite film growth on tech-

nologically-relevant silicon substrates due to thermal restrictions and poor epitaxy.

This dissertation presents, for the first time, the successful development of an alkoxy-

based, sol-gel process for integrating magnetoresistive doped-lanthanide manganite thin

films onto silicon-based substrates.  Two candidate compositions (i.e., La0.67Ba0.33MnO3 and

La0.67Pb0.33MnO3), choosen for potential room-temperature properties, were deposited on

Si(100) and platinized-Si(100).  Crystallization of the requisite perovskite phase at tempera-

tures below 650 °C stems from the incorporation of all-alkoxide precursors, and in particular,

Mn[OC(CH3)3)]2.  The steric bulk of the 2-methyl-2-propoxo ligand, when combined with the

compact, polyfunctional solvent, 2-methoxyethanol, imparts high solubility and hydrolytic

reactivity.  This accomplishment represents a significant new contribution because manga-

nese(II) alkoxides derived from low carbon-content ligands (C6 and below) are well-known

to form stable, insoluble coordinate polymers.  Such an impediment has, up to this point,

forced the adaptation of surrogate manganese precursors, typically acetates.  Coatings

obtained from such solutions crystallize into the manganite perovskite phase only above 800

°C, even with the aid of lattice-matched templates.

The orange and pinkish-orange all-alkoxide solutions, also synthesized for the first time,

were free from any products of aerobic oxidation, and hence, exhibited no discoloration from

brown colloids or precipitates.  A mild, partial hydrolysis of h = 0.25 induced conversion into

a polymeric sol system, conferring both spinnable viscosities and excellent sol longevity.

Post-coating hydrolysis via slow spinning under humidified air proved essential to remove
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sufficient organic content and thereby prevent excessive carbon dioxide release during pyrol-

ysis.  Transparent, dense, and defect-free amorphous thin films were obtained by 1-minute

heat treatments at 100, 300, and 450 °C.  Conversion into a fine-grain (< 50 nm), polycrystal-

line microstructure occurred above 600 °C on platinized-Si(100) and above 650 °C on Si(100).

This low-temperature densification and crystallization reflects the development of a true sol-

gel process with active hydrolysis and condensation mechanisms.  The higher temperatures

often reported with surrogate precursors are more consistent with simple metallorganic

decomposition processes.

Microstructural characterization of the manganite thin films was carried out using X-ray

photoelectron spectrometry (XPS), glancing-incidence X-ray scattering (GIXS), scanning elec-

tron microscopy (SEM), and atomic force microscopy (AFM).  Chemical homogeneity across

the substrate was stoichiometric and exhibited no temperature dependence in the 600–750 °C

heat-treatment range studied by this investigation.  Such an observation is remarkable for

La0.67Pb0.33MnO3 given the extensive documentation which reports PbO volatilization from

the related PbZrxTi1-xO3 perovskites.  The cubic lattice parameters of the deposited films

(e.g., a = 3.900 Å for La0.67Ba0.33MnO3 and a = 3.887 Å for La0.67Pb0.33MnO3 on Si(100) at 650

°C) were in excellent agreement with values published in the literature for bulk, polycrystal-

line powders.  Cross-sectional SEM images indicated film thicknesses of 90–100 nm which

corresponded to 30–40 nm of final oxide per spin-coat.  Typical grain sizes, as determined by

tapping mode AFM, started at 10–15 nm and increased to 20–25 nm by 750 °C.  The lead-

doped composition on platinized-Si(100), however, was an exception, exhibiting larger initial

diameters of 30–35 nm, which by 750 °C, distended to 45–50 nm.

Magnetic and electrical characterization confirmed the development of ferromagnetic

and magnetoresistive behavior with the simultaneous emergence of manganite perovskite

phase.  For films deposited on Si(100), magnetoresistance was observed in specimens heat-

treated at 700 °C and 750 °C, and for platinized-Si(100), 650 °C, 700 °C, and 750 °C.  These

temperatures are in excellent agreement with magnetization onsets (i.e., TC) measured by

SQUID magnetometry.  Magnetoresistive response improved with heat-treatment tempera-

ture for the more-refractory La0.67Ba0.33MnO3 composition.  The lead-doped counterpart,

however, offered the best property evolution, with TC = 320 K and TIM = 254 K by 750 °C on

platinized-Si(100).  All corresponding transport curves were symmetric, demonstrating clear
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metal-insulator transitions (i.e., TIM).  High resistivities (i.e., ~ 106 Ω-cm) were attributed to

the fine-grain microstructure.  Weak-field cycling between ± 500 Oe yielded symmetrical

loops with appreciable linear regions, a highly-desirable characteristic for magnetic sensing

applications.
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CHAPTER 1

STATEMENT OF OBJECTIVES

1.1 INTRODUCTION

Magnetoresistance is characterized by the change in electrical resistance of a material

due to the presence of an external magnetic field.  Exploitation of this phenomenon has tre-

mendous potential for integration into hybrid microelectronics as solid-state sensors and

nonvolatile memory elements.  Current and proposed devices revolve primarily around one

of two magnetoresistive phenomena, both materials-dependent: (1) the anisotropic magne-

toresistance of 3d transition-metal alloys or (2) the so-called “giant” magnetoresistance of

artificially-engineered superlattices.  For example, hard drive manufacturers, led by IBM,

have phased out conventional thin-film inductive heads in favor of magnetoresistive ele-

ments.  As a result, read sensitivity has improved 5 to 10 times enabling dramatic increases in

both storage capacity and data transfer rates [1].  Another company, Nonvolatile Electronics,

Inc., is now pioneering the application of giant magnetoresistive elements in object position

and recognition [2, 3].  Such capabilities are required in the automotive industry where pre-

cise engine timing is instrumental in efforts to enhance performance and reduce emissions.

Recently, however, much interest has focused on the “colossal” magnetoresistance exhibited

by doped-lanthanide manganites.  As ceramic oxides, doped-lanthanide manganites bring

new deposition and processing challenges.  This chapter presents a brief overview of magne-

toresistive behavior, correlating magnetotransport with materials implementation.  A final

discussion highlights the unique opportunities offered by doped-lanthanide manganites and

concludes with research objectives for this dissertation.

1.2 ANISOTROPIC MAGNETORESISTANCE

In a ferromagnetic metal, anisotropic magnetoresistance results from differences in resis-

tivity for current traveling parallel to the magnetic moment (longitudinal) versus that travel-

ing perpendicular (transverse).  Rotation of the magnetic moment by an external magnetic

field, H, therefore changes the resistivity experienced by the current.  The performance of
1



devices based on anisotropic magnetoresistance is characterized by a “figure-of-merit”, the

anisotropic magnetoresistance ratio (AMR), which is defined by convention [4] to be

(1.1)

where  and  are, respectively, the longitudinal and transverse resistivities (both gener-

ally µΩ-cm).   Binary and tertiary alloys of ferromagnetic 3d transition-metals (Co, Ni, Fe,

and Mn), extensively studied because of their high anisotropic magnetoresistance, offer the

most useful AMR values, ranging from 2–6%.  Practical devices, however, almost universally

rely on Ni0.81Fe0.19 permalloy which provides an AMR of 2–3% in commercial operating envi-

ronments;  a maximum (saturated) AMR of 4% occurs in applied fields of  at room

temperature [5].   This specific composition offers the unusual yet attractive combination of

zero cubic magnetocrystalline anisotropy, K, and a negligible magnetostrictive coefficient,

.1  Lack of magnetocrystalline anisotropy in Ni0.81Fe0.19 permalloy results in a low coercive

force ( )2 and high permeability ( ) [6].  Negligible magnetostriction is

extremely important from a deposition and processing perspective:  the formation of residual

thin-film stresses with other alloy compositions alters their magnetotransport properties

uncontrollably, thereby precluding use in magnetoresistive elements.

1.3 GIANT MAGNETORESISTANCE

The deposition capabilities of modern vapor-phase techniques, particularly molecular

beam epitaxy (MBE), have enabled the extension of 3d transition-metal materials into super-

lattice structures, artificially-engineered to enhance potentially useful properties.  In 1988, an

investigation of alternating magnetic and nonmagnetic layers revealed magnetoresistance in

Fe(001)/Cr(001) bcc superlattices [7].   Upon application of an  magnetic field, a

30Å-Fe(001)/9Å-Cr(001) thin film superstructure lost approximately 45% of its resistance at

.  The mechanism responsible for magnetoresistance is attributed to spin-depen-

dent scattering of polarized conduction electrons.  Within this superstructure, magnetic

Fe(001) layers, separated by nonmagnetic Cr(001) layers, have moments aligned antiparallel

1 Nickel-iron alloys are face-centered cubic (FCC).
2 1 Tesla (T) = 10,000 Oersteds (Oe).
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to those of Fe(001) neighbors.  Application of a magnetic field induces an antiferromagnetic

to ferromagnetic transition resulting in parallel alignment of neighboring Fe(001) moments.

Coherent transmission of polarized conduction electrons occurs because the antiparallel scat-

tering potentials have been reduced or eliminated.

The thickness of the nonmagnetic Cr(001) layers serves to control the exchange coupling

between successive Fe(001) layers, which is quite strong.  Coupling between Fe(001) layers

can be either ferromagnetic (parallel) or antiferromagnetic (antiparallel), varying in an oscil-

latory fashion with the nonmagnetic Cr(001) layer thickness.  If the thickness of Cr(001) is

such that the coupling is ferromagnetic, application of a magnetic field does not induce a

transition and magnetoresistance is not observed.  This exchange coupling, and associated

magnetoresistance, also arises in other 3d transition-metal systems; Co(100)/Cu(100) fcc

superlattices, for example, exhibit the effect as well [8].  Because of its greater magnitude

with respect to anisotropic phenomenon, the magnetoresistance of magnetic/nonmagnetic

multilayers is referred to as “giant” and its ratio (GMR) quantified by

(1.2)

where  is the resistivity within a magnetic field of strength H; and , the resistivity in

absence of a magnetic field (both generally µΩ-cm).  For convenience, GMR values are

reported in absolute (i.e., “positive”) terms, despite the fact that, for 3d transition-metal mul-

tilayers, resistivity decreases upon application of a magnetic field.

Because of commercial implications, research emphasis has shifted from anisotropic

magnetoresistance to giant magnetoresistance and resulted in novel devices based on “spin-

valves” or spin-dependent tunneling.3  The room temperature GMR of spin-valve structures,

for example, ranges from 4–20% with saturation fields of 300 Oe, enabling the development

of higher-performing magnetic sensors [9].   Figure 1.1 provides an electrical schematic and

photomicrograph of a state-of-the-art giant magnetoresistive sensor, the NVE AA002, from

Nonvolatile Electronics, Inc.  The circuit configuration consists of a Wheatstone bridge con-

taining four lithographically-patterned multilayer elements.  Two of these elements (R2 and

R3) act as reference resistors, shielded from applied fields by permalloy plated onto the sub-

3 This newly-emerging class of electronics is referred to as “spintronics”.

GMR ρH ρ0–
ρ0

----------------- 100%×=

ρH ρ0
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strate.  The remaining elements (R1 and R4), exposed by a thin gap in the permalloy, sit in a

region of magnetic flux concentration.  Changing the shield-length to gap-width ratio

(D2:D1) allows adjustment of the flux concentration, and by extension, the saturation point

and external field sensitivity.  As illustrated with the NVE AA002, geometric optimizations

can enhance device performance, but new materials offer more efficient routes.  For example,

the substitution of insulating oxides as nonmagnetic spacer layers results in improved mag-

netoresistance: structures comprised of Co0.82Fe0.18/Al2O3/Co0.82Fe0.18 multilayers display a

“tunneling” GMR of 39–41% at room temperature [10].  Coupled with exceptionally low sat-

uration fields ( ), such spin-dependent tunneling devices are laying the foundation

for MRAM, a next-generation nonvolatile memory architecture [11].

1.4 COLOSSAL MAGNETORESISTANCE

In 1994, however, an exceptional intrinsic magnetoresistance of 99.9% (negative) was

demonstrated in La0.67Ca0.33MnO3 thin films at  (see Figure 1.2) using an applied

magnetic field of  [12].   The display of magnetoresistance in this ceramic oxide

extends to a larger class of perovskite-structured materials represented by Ln1-xMxMnO3,

where Ln represents a trivalent lanthanide ion (i.e., La, Pr, Nd, or Gd) and M, a divalent cat-

HS 50 Oe≤

T 77 K=

H 2.0 T=

FIGURE 1.1 Electrical schematic and photomicrograph of the NVE AA002
bridge sensor.  (Reprinted from [9]. Copyright 1998 MCB University Press.)
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(Adapted from [12].  Copyright 1994 American Association for the Advance-
ment of Science.)
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ion (i.e., Ca, Sr, Ba, Cd, or Pb).  Progressive substitution of Ln3+ by M2+ induces a mixed

Mn3+/Mn4+ state increasing the acceptor (Mn4+) dopant level.  Exchange coupling between

electron spins of Mn3+ and Mn4+ critically influences the magnetoresistance of doped-lan-

thanide manganites.  Depending on the composition and processing conditions, the “giant”

magnetoresistance ratio (i.e., GMR) of these ceramic oxides can be greater than 60% with 90%

not being unusual.

Magnetotransport in doped-lanthanide manganites is actually distinguished by the term

“colossal”; both the material and conduction mechanism differ fundamentally from 3d tran-

sition-metal alloys and their artificially-engineered superlattices.  To emphasize this differ-

ence, the colossal magnetoresistance ratio (CMR) is defined with respect to the “in-field”

resistivity, , and not the “zero field” resistivity,  (both generally mΩ-cm):

(1.3)

This convention results in CMR values often greater than 100% and sometimes spectacularly

so.4  Absolute values are always reported in the literature for the CMR, a negative magne-

toresistance being assumed.  To introduce the behavior of material free from interface effects,

Figure 1.3 presents the magnetotransport of bulk single crystal La0.64Pb0.36MnO3 (see inset)

grown by PbO-PbF2 molten flux methods [13].5  Suppression of the resistive peak, shown in

Figure 1.3A, results in a temperature range of maximal magnetoresistance (200–240 K) as

depicted in Figure 1.3B.  The highest CMR for this composition is approximately 230%,

occurring slightly below  at .  For comparison, a corresponding “GMR”

would be 69%.

In doped-lanthanide manganites, the CMR temperature range is affected by chemical

composition through: (1) the lanthanide/dopant pair, Ln3+/M2+, (2) the degree of substitu-

tion, x, and (3) oxygen nonstoichiometry.  For commercial applications, an ideal band of max-

imal magnetoresistance would straddle room temperature.  Manganite compositions capable

4 When comparing GMR and CMR values, this subtle convention must be remembered.  Equation 1.2 is normal-
ized with respect to , Equation 1.3 with respect to .  The La0.67Ca0.33MnO3 thin film from [12], for example,
has a “GMR” of 99.9% but a CMR of 127,000%.

5 Resistivity measurements are from an as-grown opaque black specimen, cubic in habitat, with a 2.3 mm edge
length.  {100} crystallographic planes comprise the cube faces.  An in-line four-point probe was established
across a single crystal face using 0.001” diameter gold wire attached via colloidal silver paste.

ρH ρ0

CMR ρH ρ0–
ρH

----------------- 100%×=

ρ0 ρH

T 225 K= H 7.0 T=
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FIGURE 1.3 Magnetotransport behavior of a bulk La0.64Pb0.36MnO3 single
crystal.  Resistivity (A) and the CMR (B) as a function of temperature and
applied field.  Inset in (A) shows the specimen attached to a four-point probe.
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of meeting this criteria belong to either La1-xSrxMnO3, La1-xBaxMnO3, or La1-xPbxMnO3 where

; all of these systems can demonstrate a peak CMR in the vicinity of 300 K with

optimal doping levels (i.e., x) [14].  However, one perception often associated with perovskite

manganites is poor sensitivity to weak magnetic fields ( ).  As mentioned previ-

ously, Co0.82Fe0.18/Al2O3/Co0.82Fe0.18 tunnel junctions saturate their magnetoresistance at 39–

41% with only an  applied field.  For an equivalent peak “GMR” in bulk (i.e., cen-

timeter-sized) La0.64Pb0.36MnO3 single crystals, a dramatically higher field of 

would be required.  But such comparisons are misleading: absolute changes in magnitude

(i.e., ) are obscured by the relative nature of Equations 1.2 and 1.3.  Superstructures of

3d transition-metals display resistivities between 10-4 and 10-6 Ω-cm.  In contrast, doped-lan-

thanide manganites function in the range from 10-1 to 10-3 Ω-cm.  So percentages for giant

and colossal magnetoresistance stem from notably different changes in resistivity.  To quan-

tify this point, Figure 1.4 presents the weak field ( ) magnetotransport behavior

of bulk single crystal La0.64Pb0.36MnO3.  The resistivity difference ( ) reaches its minima

of –1.27 x 10-3 Ω-cm at .  The same  field, if applied to a 14Å-Fe(001)/

8Å-Cr(001) superstructure, would lower the resistivity in the multilayer by roughly 1 x 10-7

0.2 x 0.4< <

H 1000 Oe<

H 50 Oe=

H 3.0 T=

ρH ρ0–

H 100 Oe=

ρH ρ0–

T 215 K= H 100 Oe=

FIGURE 1.4 Weak field magnetotransport behavior of bulk single crystal
La0.64Pb0.36MnO3.  The ordinate shows the resistivity difference as a function of
temperature at an applied field of .
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Ω-cm [15].  The corresponding sensitivity for each case, calculated using , approx-

imates, respectively, to –1 x 10-5 Ω-cm/Oe and –1 x 10-9 Ω-cm/Oe — 4 orders of magnitude in

favor of the doped-lanthanide manganite!  From an “absolute” perspective then, doped-lan-

thanide manganites clearly offer competitive weak-field sensitivities.  In addition, their satu-

ration fields are exceptionally high ( ), the actual upper bound not known.  This

broad dynamic range is unmatched by any other materials system displaying magnetoresis-

tance.  Such a unique property combination opens up significant opportunities for doped-

lanthanide manganites in magnetic field sensors.

1.5 SUMMARY

The potential for doped-lanthanide manganites to exceed the magnetoresistive perfor-

mance of newly-introduced GMR-based elements remains promising.  Already, “proof-of-

concept” investigations utilizing bulk, polycrystalline material have resulted in sensors for

magnetic fluxgates [16], object proximity and discrimination [17], and angular orientation

and velocity [18].  But integration into hybrid microelectronics will require the development

of effective thin-film deposition techniques.  The elemental complexity of doped-lanthanide

manganites creates stringent demands for compositional control, without which, variations

in doping would severely degrade the magnetoresistive response.  Solution chemical meth-

ods, and in particular “sol-gel” processing, provide capabilities well-suited for the growth of

homogeneous, stoichiometric thin films of complex ceramic oxides.  Yet the literature, while

rife with examples from vapor-phase techniques (i.e., pulsed-laser ablation, molecular beam

epitaxy, rf-magnetron sputtering, etc.), contains few reports of solution chemical deposition.

Accordingly, this dissertation presents the investigation of a new “sol-gel” process for the

growth of high-quality magnetoresistive manganite thin films.  The following three research

objectives were investigated and successfully completed:

(1) The development of a chemical solution system using all alkoxide precursors

Prior published research into the chemical-solution processing of doped-lan-

thanide manganites (and manganese oxides in general) has relied almost

exclusively on carboxylate precursors.  The principal disadvantage of man-

ganese carboxylates, though, revolves around their insolubility in common

∆ρ ∆H⁄( )T

HS 7 T>
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organic solvents and poor reactivity.  To circumvent these limitations, the

highly-reactive, soluble, non-oxidized manganese(II) alkoxide, 2-methyl-2-

propoxo manganese(II), Mn[OC(CH3)3]2, was synthesized using the ligand-

selective silylamide technique.  When combined with the other requisite

alkoxides (i.e., lanthanum, barium, and lead), the resulting all-alkoxide solu-

tion could be hydrolyzed, forming “sol-gel” system readily adapted to thin-

film deposition.  Because reports of manganese alkoxides for solution chem-

ical processing remain virtually unkown, this achievement represents an

important contribution to the field.

(2) The demonstration of low-temperature densification and crystallization

For solution systems utilizing carboxylate precursors, high crystallization

temperatures (i.e., greater than 800 °C) are required to fully form the doped-

lanthanide manganite phase.  Yet for the all alkoxy-based “sol-gel” deposi-

tion process, the onset of crystallization begins below 650 °C, enabling com-

patibility with commercially-desirable silicon substrates.  Therefore, the

investigation presented herein of thin-film structure and property evolution

on Si(100) and platinized-Si(100) remains noteworthy.  In contrast, reports

from the literature, whether from vapor-phase or chemical solution process-

ing, favor thin films grown at higher temperatures (e.g., 800 °C) on lattice-

matched, refractory substrates such as LaAlO3 and SrTiO3.

(3) The measurement of magnetoresistance in standard and weak-field conditions

The magnetotransport behavior of epitaxial doped-lanthanide manganite

films on oxide substrates has been extensively characterized in the literature.

But electrical property measurements for thin films grown on silicon sub-

strates remains sparse, particularly when solution chemical processing is

considered.  The new alkoxy-based “sol-gel” process successfully integrated

magnetoresistive manganite films on both Si(100) and platinized-Si(100).

Transport curves under conventional magnetic fields ( ) yielded

the anticipated insulator-to-metal transition; and weak field ( )

measurements demonstrated an intrinsic sensitivity competitive with that of

GMR superstructures.

H 0–5 T=

H 500 Oe=
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 INTRODUCTION

The adaptation of alkoxy-based sol-gel techniques for perovskite-structured oxides

remains perhaps best-established for titanates and zirconates, prized for their commercially-

attractive dielectric, ferroelectric, piezoelectric, and pyroelectric properties.  Pioneering con-

tributions to this development included the investigations of BUDD, DEY, and PAYNE [1, 2] into

the sol-gel processing of PbTiO3 and PbZrxTi1-xO3 during the mid-1980s.  A critical factor

enabling the materials chemistry of these systems stems from the general availability of

Group IVB (i.e., titanium, zirconium, and hafnium) alkoxides; various moieties of either ele-

ment can be readily obtained in both quantity and high-purity.  In stark contrast to this situa-

tion stands that of the manganites.  The needed manganese(II) alkoxides suffer from two

immediate drawbacks:  poor chemical characterization and a paucity of industrial sources.

So their utilization in alkoxy-based sol-gel methods has been virtually unknown.

Yet the new, resurgent interest in manganese perovskites, driven by potential applica-

tions for magnetoresistance, offers a seminal research opportunity similar to that of titanates

and zirconates nearly two decades ago.  This chapter provides an overview of doped-lan-

thanide manganites, describing relationships between structure, magnetic ordering, and

transport phenomena.  The chemistry and mechanisms of alkoxy-based sol-gel processing

are illustrated through an examination of Group IVB alkoxides, their oxo-polymerization, the

corresponding oxide end-products, and the physics of film deposition.  Design of an all-

alkoxide La1-xMxMnO3 sol-gel method (where M = Ca, Sr, Ba, or Pb) concludes the literature

review.  Synthetic routes to Mn, La, Pb, and Group II alkoxides are discussed with an empha-

sis on the ability of the silylamido ligand to assist in the design of alkoxide precursors.

2.2 DOPED-LANTHANIDE MANGANITES

Magnetoresistive properties in doped-lanthanide manganites were first reported in 1954

by VOLGER [3] using polycrystalline specimens of La0.7Sr0.3MnO3.  Subsequent investigations
13



by SEARLE and WANG [4] in 1970 demonstrated similar magnetoresistive behavior in bulk sin-

gle crystals of La1-xPbxMnO3 grown by MORRISH, et al. [5].  Doped-lanthanide manganites

represent a class of correlated electron systems wherein spin, valence, and orbital degrees of

freedom interact simultaneously; magnetoresistance then emerges from a cooperative inter-

play between magnetic, charge, and orbital ordering, which in turn, produces a competition

between metallic and semiconducting ground states.  After nearly fifty years, the nature of

such interactions is only partially understood and remains the focus of active research in

solid-state chemistry and physics.  This section seeks to present only the salient features of

doped-lanthanide manganites as developed from empirical structure-property observations.

For a more exhaustive treatment of the subject, the reader is referred to the excellent review

by SALAMON and JAIME [6].

2.2.1 STRUCTURAL CHEMISTRY

Doped-lanthanide manganites crystallize in a distorted perovskite structure, so-called

after the mineral perovskite, CaTiO3.1  A general stoichiometry for perovskites, XIIAVIBO3,

can be developed from considerations of ionic neutrality and coordination.  First, the cum-

mulative cation valence must equal six (i.e., A1+B5+, A2+B4+, A3+B3+, etc.) otherwise the

charge of oxygen (i.e., ) remains uncompensated.  Substitutional variations on the basic
XIIAVIBO3 formula unit, expressed as , then result in complex

oxides often containing mixed valence states, the deliberate manipulation of which, can

induce useful properties.2  Second, perovskite oxides represent only one of many structural

subclasses displaying ABO3 stoichiometry.  The perovskite lattice itself derives from the

cubic close-packing of oxygen planes wherein one quarter of the oxygen atoms have been

replaced with large A cations [8].  Oxygen octahedra enclose the smaller B cations.  As shown

in Figure 2.1, an ideal, undistorted perovskite unit cell contains three easily-distinguished

features: (1) a single 6-fold-coordinated B cation at the body center (i.e., VIB), (2) eight 12-fold-

coordinated A cations situated at the corners (i.e., XIIA), and (3) six face-centered oxygen

atoms forming an octahedral “cage”.  The stability of the perovskite structure can be approx-

1 An extensive catalog of known perovskite compounds has been complied by GALASSO [7], covering prepatory
methods, lattice parameters, and physical properties.

2 Overall charge neutrality must still be preserved so y1 + y2 + . . . = 1 and z1 + z2 + . . . = 1.
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FIGURE 2.1 The ideal XIIAVIBO3 perovskite unit cell.  Specific site perspectives
can be emphasized by drawing the unit cell with either an A-site center (A) or a
B-site center (B).  The conventional representation highlights the sixfold symme-
try of the BO6 octahedra.  Cubic close-packed planes of oxygen have one quarter
of their lattice sites occupied by A-site cations (C).  Note that for clarity, the oxy-
gen anions are drawn smaller than normal (see Table 2.1 for effective radii).

A B
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imated by the Goldschmidt tolerance factor (t), which when equal to unity, implies a purely

cubic Bravais lattice.  This metric, introduced by GOLDSCHMIDT, et al. [9] in 1926, has proven

highly useful despite its simple geometric assumptions (i.e., purely spherical atoms):

(2.1)

Here, rA, rB, and rO denote, respectively, the radii of the A, B, and O ions.  Modern adapta-

tions of the tolerance factor, however, presume effective ionic radii that are corrected for

coordination and spin state (when applicable).  Accordingly, Table 2.1 provides an excerpt of

values relevant to manganites from the comprehensive tables of SHANNON and PREWITT [10,

11].  Extensive studies of ABO3 compositions by ROTH, et al. [12–15] reveal that when

, the corresponding oxide crystallizes in the perovskite structure.  Tolerance fac-

tors outside these bounds, though, indicate a transition in coordination away from
XIIAVIBO3.  For example, VIAVIBO3 structures, such as ilmenite, bixbyite, or corundum, pre-

dominate when  [16].  Above unity, VIAIVBO3 polymorphs form, typically enstatite or

pseudowollastonite [12].

In doped-lanthanide manganites, the A-site incorporates both trivalent lanthanides and

divalent dopants.  The presence of multiple A-site species therefore requires the use of a

weighted average when calculating t (i.e., ).  Although manganese

occupies the B-site exclusively, the mixed Mn3+/Mn4+ valence state compels a similar

approach:  .  Investigations by JONKER and VAN SANTEN [17] estab-

lished an upper critical limit of  for manganite perovskites, beyond which, non-per-

ovskite impurity phases appear.3  The smallest value, , occurred in the undoped

manganite, GdMnO3, but a lower limit was not determined.  Full substitutional ranges for

various dopants, though, were shown to meet the stability criteria given above.  For example,

the La1-xCaxMnO3 perovskite series (i.e., ) corresponds to .

The conventional formula for doped-lanthanide manganites, Ln1-xMxMnO3, can be inter-

preted as a solid solution of LnMnO3 and MMnO3 whose A-site substitutions yield compati-

ble values for t (i.e.,  and ).  Accordingly, the end-members themselves need not be

3 The actual value reported by JONKER and VAN SANTEN [17], , relies on uncorrected Goldschmidt radii.
For consistency with Table 2.1, all tolerance factors in this dissertation have been recalculated using radii from
the revised tables of SHANNON [11].

t
rA rO+

2 rB rO+( )
-----------------------------=

0.8 t 1.0< <

t 0.8<

rA〈 〉 y1rA1 y2rA2 …+ +=

rB〈 〉 z1rMn3+ z2rMn4++=

tC 0.97≤

t 0.88=

tC 0.96≤

0 x 1≤ ≤ t 0.90 0.95–=

rA〈 〉 rB〈 〉
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CATION OR
ANION

ELECTRONIC
CONFIGURATION

COORDINATION RADIUS
(Å)

Lanthanide, Ln3+

La3+ [Xe] 9a

a Any distortion of the perovskite structure lowers A-site symmetry from its ideal 12-fold coor-
dination.  The mineral itself, for example, exhibits 10-fold coordination [8].  A 9-fold coordi-
nation agrees well with Goldschmidt tolerance factors currently reported in the literature for
doped-lanthanide manganites.

1.216
Pr3+ [Xe]4f2 9a 1.179
Nd3+ [Xe]4f3 9a 1.163
Sm3+ [Xe]4f5 9a 1.107
Gd3+ [Xe]4f7 9a 1.132

Divalent Dopant, M2+

Ca2+ [Ar] 9a 1.18
Sr2+ [Kr] 9a 1.31
Ba2+ [Xe] 9a 1.47
Cd2+ [Kr]4d10 9a 1.16b

b Fitted from values of 4-, 5-, 6-, 7-, 8-, and 12-fold coordination.

Pb2+ [Xe]4f145d106s2 9a 1.35

Manganese
Mn3+ [Ar]3d4 6 0.645c

c Corresponds to the high-spin configuration.

Mn4+ [Ar]3d3 6 0.530

Oxygen
O2- [Ne] 6 1.40
TABLE 2.1 The effective ionic radii of elements relevant to doped-lan-
thanide manganites [11].
17



perovskites even though the resulting composition often is:  YMnO3 and SrMnO3, which

crystallize in a hexagonal “perovskite-like” lattice, form a compound, Y0.40Sr0.60MnO3, with a

perovskite structure [18, 19].4  This observation highlights the influential role played by the

ionic radii of A-site cations in stabilizing crystal structure.  Undoped lanthanide manganites,

LnMnO3, generally form orthorhombic Bravais lattices, transitioning to rhombohedral

(pseudocubic) cells with progressive substitution of MMnO3.  At some value of x, a fully

cubic perovskite structure occurs, depending specifically on the chemical nature of the A-site

species.5  For example, the composition La1-xCaxMnO3 starts with a rhombohedral

(pseudocubic) lattice at x = 0.1 but by x = 0.2 becomes cubic [20].  La1-xSrxMnO3, on the other

hand, requires  for a cubic unit cell [20, 21].  Substitution on the A-site serves to create

an internal “pressure”, distorting, tilting, and/or rotating the MnO6 octahedra, which in

turn, effects lattice geometry.6  From a survey of Ln1-xMxMnO3 systems, experimental evi-

dence suggests that optimal magnetoresistive behavior occurs for cubic perovskites with

 and  (i.e., ) [24].

Closely interrelated with A-site doping is the presence of a mixed Mn3+/Mn4+ valence

state, the product of both M2+ substitution and cation defect states in the crystal structure.   A

more descriptive formula unit, derived from considerations of composition and charge neu-

trality, would then be , where for simplic-

ity, the representation of defect chemistry has been temporarily omitted (see Section 2.2.4 for

further discussion).  Clearly, substitution of M2+ for Ln3+ on the A-site induces Mn3+ to ionize

into Mn4+ on the B-site.  Larger M2+ sizes then lead to structural transitions that approach the

cubic unit cell.  But increasing the concentration of Mn4+ via cation vacancies alone can stabi-

lize a cubic structure (i.e., varying  independently of ).  This outcome is achieved by

annealing in strong oxidizing atmospheres.  For instance, La1-εMn1-εO3 exhibits three poly-

morphs including orthorhombic, rhombohedral, and cubic, which correspond to [Mn4+] =

4 The difference between the cubic and hexagonal structure lies in the cubic stacking of AO3 layers;  the former
contains an fcc stacking sequence (abc) while the latter has an hcp sequence (ab or abac).  Notable MnO6 distor-
tion occurs in the hexagonal lattice, which for YMnO3, results in a change of manganese coordination from six-
fold (i.e., octahedral) to fivefold (i.e., trigonal dipyramid).  Larger tolerance factors (i.e., ) suggest
crystallization in the hexagonal “perovskite-like” structure, although YMnO3 with its small non-lanthanide Y3+

cation remains an exception with .
5 The chemistry of the A-site also restricts the ability of [Mn4+] to deviate from x (i.e., cation defects).  See discus-

sion in Section 2.2.4 for further details.
6 GLAZER [22, 23] originally classified octahedral tilt mechanisms in perovskites, relating structural displace-

ments to Bravais lattice geometries.
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12%, 24%, and 33% (ε = 0.020, 0.038, and 0.052) [25].7  Yet the composition incorporates no

divalent dopants, indicating a structural effect for vacancy mechanisms similar to that of A-

site internal pressure.  Because [Mn4+] is common to both M2+ and cation defect composi-

tions, the correlation of [Mn3+]/[Mn4+] with equilibrium lattice geometry then suggests an

influence of electronic state on manganese site symmetry.

General relationships between electronic configuration and point group symmetry were

first explored in a pair of seminal papers by JAHN and TELLER [26, 27] resulting in the subse-

quent classification of octahedral Mn3+ as a “Jahn-Teller ion”.  For octahedral point groups,

transition metal 3d orbitals form two distinct symmetry-adapted sets:  a  set from the

three , , and  orbitals and an  set from the two  and  orbitals.  The elec-

tronic state for octahedral manganese then reduces to either  (i.e., Mn3+) or  (i.e.,

Mn4+) depending on the cation.  But the  set contains a double degeneracy, which if split,

allows the single  electron of Mn3+ to occupy the lower of the two levels, thereby decreas-

ing its energy.  The manganite crystal achieves this splitting by deforming the Mn3+O6 octa-

hedra, diminishing the site symmetry and creating a so-called static Jahn-Teller distortion.

Splitting the three (degenerate)  orbitals, however, provides no energetic benefit as all

three levels remain singly occupied.8

As exemplified by LaMnO3, a competitive interaction between Mn3+O6 and Mn4+O6

octahedra determines the equilibrium phase.  WOLD, et al. [28, 29] pointed out that the large

orthorhombic distortion from cubic symmetry stems from cooperative Jahn-Teller deforma-

tions of Mn3+O6 octahedra throughout the lattice.  But the presence of Mn4+ cations progres-

sively relieves the non-cubic distortion as [Mn4+] increases, eventually destroying the

structural Mn3+O6 ordering.  Careful measurements of the lattice parameters by BOGUSH, et

al. [30] showed three distinct Mn—O bond distances of 2.20 Å, 1.96 Å, and 1.89 Å in the

orthorhombic phase; a rapid convergence to 1.96 Å occurred at [Mn4+] = 14%, with the rhom-

bohedral (pseudocubic) unit cell emerging at [Mn4+] = 22%.9  The inclusion of M2+ and/or

7 A subtle O’- to  O-orthorhombic transition occurs at [Mn4+] = 14% due to mismatch of the La3+ radius and vol-
ume available to its cubo-octohedral site.  Overall morphology, however, remains dominated by [Mn4+].

8 Orbital splitting, by itself, preserves energy between initial and final configurations.  But the occupancy, based
on the availability of electrons to populate levels, can still lower the energy of the crystal.  See the discussion in
Appendix B for further details.

9 The reported rhombohedral lattice parameters were a = 5.576 Å and α = 60.65°, or in terms of a pseudocubic
basis, a = 3.879 Å and α = 90.40°.
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cation vacancies on the A-site therefore results in similar phase transitions as related through

[Mn4+], and by extension, manganese octahedral site symmetry.

The interrelationship between A-site chemistry and [Mn4+] in manganese perovskites

was directly explored by MAHENDRIAN, et al. [31].  Their detailed survey of the La1-εMn1-εO3,

La1-xCaxMnO3, and La1-xSrxMnO3 systems demonstrated magnetoresistive behavior in all

compositions but only for those structures with rhombohedral (i.e., pseudocubic) or cubic

symmetry.  The presence of magnetotransport was always accompanied by [Mn4+] greater

than 20%, with an ideal concentration ranging between 25–35%.  Equally important, the dis-

play of magnetoresistive behavior in undoped La1-εMn1-εO3, first reported by MANOHARAN, et

al. [32], emphasizes the crucial role of [Mn4+] via Mn3+—Mn4+ interactions in manganite

transport phenomena.  A-site chemistry modifies this interaction by distorting the MnO6

octahedra, influencing both the Mn—O—Mn bond lengths and angles.  Considerations of

structural chemistry then offer parameters such as , [Mn4+], and lattice geometry (i.e.,

reflected in part through t) that provide guidelines for optimizing magnetoresistive behavior.

Hence, smaller lanthanides (i.e., Pr3+, Nd3+, or Gd3+) and M2+ species (i.e., Ca2+ or Cd2+)

should be avoided, doping should fall in between , the structure of crystalliza-

tion should preferentially be cubic, and so forth.  Indeed, the best candidate compositions

have been identified empirically as cubic La1-xMxMnO3 where  and M = Sr, Ba,

and Pb, all of which, display magnetoresistance at or near room temperature.

2.2.2 MAGNETIC ORDERING AND TRANSPORT BEHAVIOR

In their pioneering investigations of doped-lanthanide manganites, specifically, the sys-

tem La1-xMxMnO3 where M = Ca, Sr, Ba, and Pb, JONKER and VAN SANTEN [17, 33, 34]

observed the development of ferromagnetic ordering with increasing [Mn4+], a result which

they attributed to positive Mn3+—Mn4+ exchange interactions.  The exclusion of 4f lan-

thanide electrons from the magnetization was rationalized by the following:  saturation val-

ues, MS, when extrapolated to 0 K for the ferromagnetic range of , corresponded

to the spin-only character of unpaired manganese 3d electrons.  The emergence of ferromag-

netism with the Mn3+/Mn4+ mixed valence stands in contrast to that of the end members,

LnMnO3 and MMnO3.  Both of these undoped binary oxides order antiferromagnetically, the

former containing only Mn3+—Mn3+ exchange interactions and the latter, Mn4+—Mn4+.

rA〈 〉

0.2 x 0.4< <

0.2 x 0.4< <

0.2 x 0.4< <
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Specifically, LnMnO3 compositions like LaMnO3, PrMnO3, and NdMnO3 transform into A-

type spin structures below  with adjacent ferromagnetic planes being antiferro-

magnetically coupled.10  Compositions of MMnO3, such as CaMnO3, form G-type lattices at

 wherein every manganese cation coordinates to six nearest-neighbors of opposite

spin [35].11  Both types of magnetic ordering are illustrated in Figure 2.2.  A solid solution of

the two, however, exhibits ferromagnetism even when MMnO3 represents as little as ten per-

cent of the content (i.e., x = 0.10).

Jonker and Van Santen noted that different compositions with the same lattice parame-

ter displayed varying Curie points (TC).  This behavior suggested that the manganese bond

angle played a more crucial role in affecting Mn3+—Mn4+ exchange interactions than the

bond distance.  Interestingly, such a conclusion also arises from considerations of the Gold-

schmidt tolerance factor.  Since t for manganese perovskites represents the ratio of A—O and

Mn—O distances, its deviation from unity measures bond mismatch, thereby scaling with

the Mn—O—Mn angle.  So t decreases as the space group symmetry lowers, corresponding

to angles less than 180°.  For example, cubic La0.7Ca0.3MnO3, and La0.6Sr0.4MnO3 all have

experimental Mn—O—Mn bond angles of 180°.  But their non-cubic counterparts, rhombo-

hedral La0.9Ca0.1MnO3 and rhombohedral La0.9Sr0.1MnO3 exhibit lower angles of 164° [31].

Accordingly, the Curie points of compositions with linear Mn—O—Mn angles are higher

than those without:  260 K and 315 K versus 245 K and 260 K, respectively.

Magnetic ordering and the resulting exchange interactions within manganese perovs-

kites were examined by GOODENOUGH [37], yielding a detailed but qualitative “theory of

semicovalent exchange”.  The predictions provided therein summarized structural, mag-

netic, and transport properties as a function of [Mn4+], represented (ideally) through x.

Three conclusions in particular remain noteworthy: (1) the saturation magnetization, MS,

should attain its largest magnitude in the range , (2) the Curie temperature, TC,

should reach a maximum when x = 0.31 and (3) a resistivity minima should occur for x = 0.31,

increasing as x departs on either side.  Indeed, all of these predictions correlate exceptionally

well with the empirical observations of Jonker and Van Santen.  But the simultaneous onset

10Magnetic ordering occurs below a critical temperature, which if antiferromagnetic, is given by the Néel point
(TN), and if ferromagnetic, the Curie point (TC).

11A discussion of the various antiferromagnetic arrangements in perovskite structures for manganese ions (i.e.,
Type A, B, C, C-E, D, D-E, D-F, E, F, and G) is given by WOLLAN and KOEHLER [36] based on neutron diffraction
studies of La1-xCaxMnO3.

TN 150 K≈

TN 130 K≈

0.2 x 0.4< <
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A

B

FIGURE 2.2 Examples of magnetic ordering in LnMnO3 and MMnO3 com-
positions.  LaMnO3 displays A-type ordering (A) whereas CaMnO3 exhibits
G-type ordering (B).  A classification of magnetic structures for doped-lan-
thanide manganites can be found in WOLLAN and KOEHLER [36].
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of ferromagnetism with metallic-like conductivity had never been observed previously in

oxides.12  Doped-lanthanide manganites therefore exhibited novel behavior with positive,

but indirect (i.e., through the oxygen anion) exchange interactions occurring concomitantly

with transport.  Subsequent measurements [33] reported an anomalous peak in the resistivity

near TC which, as discovered in collaboration with VOLGER [3], could be suppressed when

subjected to magnetic fields.

To illustrate these physical properties, Figure 2.3 presents the ferromagnetic ordering of

a bulk Pr0.63(Ca,Pb)0.37MnO3 single crystal specimen grown by the author for this dissertation

[39].  The Curie point in Figure 2.3A (i.e., ) marks the transition from a paramag-

netic to ferromagnetic state as confirmed by Figure 2.3B; for , the M-H curve displays

linear, paramagnetic behavior but when , the field-induced magnetization increases

rapidly, reaching a saturation plateau beginning at .  This composition crystallizes in

an orthorhombic cell having lattice parameters of a = 5.487 Å, b = 5.494 Å, and c = 7.746 Å.13

In comparison, single crystals of the related manganite, La0.65(Ca,Pb)0.35MnO3, were reported

as cubic (a = 7.791 Å), displaying a much higher transition of  [40].  Clearly,

incorporation of the smaller Pr3+ cation in place of La3+ stabilizes a lower-symmetry lattice,

distorting the Mn—O—Mn bond angle and lowering the Curie point.  Extrapolation of the

saturated magnetization to 0 K (i.e., the ferromagnetic state) for Pr0.63(Ca,Pb)0.37MnO3 gives

 — very close to the theoretical spin-only value ( ) calcu-

lated from an ideal consideration of the stoichiometry (see Appendix A for further details).

Closely correlated with magnetic ordering is electronic transport; Figure 2.4 shows a

notable and sharp peak in the resistivity, centered at  for the zero-field curve but

increasing to  when .  This cusp delineates a transition between semicon-

ducting (i.e.,  negative) and metallic (i.e.,  positive) states.  For manganites, the

semiconducting state is considered p-type when  (i.e., doping generates Mn4+ accep-

tors in a host Mn3+ lattice) and n-type when  (i.e., doping generates Mn3+ donors

in a host Mn4+ lattice).  The composition Pr0.63(Ca,Pb)0.37MnO3 therefore exhibits p-type resis-

tivity when in the semiconducting regime.  Conventions in the literature, however, dictate

12Semiconductivity, however, had been observed in ferrimagnetic oxides [38].  But these materials contain dis-
tinct magnetic sublattices, unlike the doped-lanthanide manganites, whose ferromagnetic state derives solely
from randomly-distributed manganese cations within  [37].

13However, a pseudocubic basis (i.e., ) would give  and .
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FIGURE 2.3 Ferromagnetic ordering for a bulk Pr0.63(Ca,Pb)0.37MnO3 single
crystal.  The onset of a magnetic moment at 175 K (A) marks the transition
between paramagnetic and ferromagnetic states (B).  The inset in (A) shows a
large, as-grown single crystal on a mm2 background grid.  (Adapted from
[39].  Copyright 1999 Kluwer Academic Publishers.)
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that the semiconducting state, in fact, be designated as “insulating” — an unusual nomencla-

ture.  Typical insulating oxides such as BaTiO3 or Al2O3 exhibit resistivities of 1013–1014 Ω-

cm.  In contrast, metallic behavior, as exemplified by copper or aluminum, falls in the range

of 10-5–10-6 Ω-cm.  Relative placement of doped-lanthanide manganites, whose resistivity

generally lies between 10-1–10-3 Ω-cm, therefore compares better with that of a “dirty” metal,

not an insulator.  But instead, convention characterizes a so-called “insulator”-to-metal tran-

sition at the resistivity peak (i.e., TIM and ρIM).  A comparison of TC with the zero-field TIM for

doped-lanthanide manganites shows that both transition points coexist in relative close prox-

imity.  For for the Pr0.63(Ca,Pb)0.37MnO3 composition, the corresponding 29 K difference dis-

appears as the applied field, when increased, displaces TIM past TC.  So the sensitivity of ρIM

and TIM to magnetic fields implies the onset of a spin-mediated transport strongly dependent

on ferromagnetic ordering.

The interplay between magnetic and electronic states in doped-lanthanide manganites

results in rich phase diagrams.  Figure 2.5 displays the characterization of the La1-xCaxMnO3

system by SCHIFFER, et al. [41].  Although not indicated directly, an Mn3+—Mn3+ antiferro-

FIGURE 2.5 Magnetic and electronic phase diagram of the La1-xCaxMnO3
system.  Paramagnetic (PM), ferromagnetic (FM), antiferromagnetic (AFM),
and canted-spin (CS) states are given as a function of temperature and compo-
sition. (Adapted from [41].  Copyright 1995 The American Physical Society.)
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magnetic interaction (i.e., from the parent LaMnO3) maintains a presence up until ,

diminishing with increasing [Mn4+].  The influence of this negative exchange remains signif-

icant enough below  to maintain a canted (antiferromagnetic) order but with a weak

ferromagnetic moment overall.  Suppression of the resistivity peak (as indicated by TIM)

remains confined to , outside of which, only poorly-defined insulator-to-metal

transitions occur, if at all.  The switch from paramagnetic, insulating (PI) to ferromagnetic,

metallic (FM) states produces sharp cusps, a prerequisite for large CMR values.  The associa-

tion of optimal magnetoresistive properties with  stems specifically from the PI

to FM transition.  This characteristic, highlighted by the La1-xCaxMnO3 phase diagram,

extends to other Ln1-xMxMnO3 systems as well.

But the actual complexity of interactions in manganese perovskites cannot be illustrated

by magnetic-electronic phase diagrams alone.  Neutron diffraction studies of La1-xCaxMnO3

by WOLLAN and KOEHLER [36] and a subsequent theoretical interpretation by GOODENOUGH

[37] suggested another state:  charge-ordering, the product of cooperative orbital and spin

alignments.  Nominal compositions of , and in particular, smaller average A-site radii,

, favor the advent of charge ordering due to increased orthorhombic distortion and

buckling of the Mn-O-Mn bond angle.14  But only the capabilities of modern analytical tech-

niques have allowed such states to be visualized directly.  For example, CHEN, et al. [42] in

1997 used high resolution transmission electron microscopy (HRTEM) to image alternating

Mn3+O6 and Mn4+O6 stripes in La0.33Ca0.67MnO3 thin films.15  The emergence of charge-

ordering in systems with smaller  such as Pr1-xCaxMnO3, Pr1-xSrxMnO3, and Nd1-

xSrxMnO3 have been extensively studied by KUWAHARA, et al. [46] and TOKURA, et al. [47].

Zero-field transport shows a discontinuous (i.e., first-order) jump in resistivity at the onset of

charge-ordering (TCO).  Applied magnetic fields, though, can induce a “melting” of the

orbital and spin alignments, causing this transition to disappear.  The interaction of struc-

tural, magnetic, and charge states, however, remains a complicated phenomenon and cannot

14This structural shift away from cubic symmetry decreases the overlap of the manganese eg orbitals with the
oxygen 2p orbitals, reducing the one-electron bandwidth of the eg-state carriers.  As a result, charge ordering
(i.e., carrier localization) can more effectively compete against double exchange, becoming dominant at certain
temperatures and doping levels (see Appendix B for further details).

15Current HRTEM investigations by ZUO and TAO [43–45] have added significant detail to the La1-xCaxMnO3
phase diagram of Figure 2.5, revealing new charge-ordered states for .  The updated phase dia-
gram was not included here due to the “on-going” nature of this research.  Current progress, however, is sum-
marized in [45].
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be adequately presented here.  Further discussion of orbital and spin degrees of freedom in

doped-lanthanide manganites can be found in a review by TOKURA and NAGAOSA [48].

2.2.3 COLOSSAL MAGNETORESISTANCE

For doped manganese perovskites, transport in the semiconducting state arises from an

activated hopping mechanism.  Thermal ionization converts some of the Mn3+ cations into

Mn4+ according to the process:  .  The disassociated electrons occupy

hydrogenic-like orbits, a state easily absorbed by neighboring Mn4+ cations.  Any corre-

sponding reduction to Mn3+ then activates ionic migration since Mn3+ and Mn4+ effectively

switch places.  Depending on the doping level, either n- or p-type conductivity emerges as

the carriers, Mn3+ or Mn4+, respectively, “hop” through the lattice.  In doped-lanthanide

manganites, the range  coincides with a minimum resistivity (p-type) but maxi-

mum CMR, both occurring during the PI to FM transition.  This empirical observation sug-

gests the influence of a positive, spin-dependent exchange between Mn3+ and Mn4+ cations

below TC.  Such an interaction, however, must be indirect (i.e., mediated through the oxygen

anion) because the distance separating manganese sites in the perovskite structure inhibits

direct orbital overlap.  Furthermore, measurements of MS indicate a spin alignment of

unpaired manganese 3d electrons in the metallic state.

The relationship between itinerant electron behavior and ferromagnetic ordering in

doped-lanthanide manganites was first discussed by ZENER [49], who developed the so-

called theory of double exchange.  This model presumes the hybridization of vacant 3d, 4s,

and 4p orbitals, which for Mn3+, results in a square-planar dsp2 configuration (i.e., , s,

, and ), and for Mn4+, an octahedral d2sp3 configuration (i.e., , , s, , , and

).16  Spatial extension of the  set via hybridization allows orbital overlap with the adjoin-

ing O2– 2p manifolds, bringing covalent character to otherwise ionic bonds.  Below the Curie

point, the emergence of a magnetic moment induces exchange interactions with the shared

oxygen 2p electrons:  both Mn3+ and Mn4+ have  orbitals less than half-filled, a characteris-

tic which, in accordance with Hund’s rule, favors parallel spin alignment during covalent

16GOODENOUGH [37] pointed out that, due to perturbations caused by neighboring atoms, the manganese 4s and
4p manifolds comprise lattice orbitals and not atomic orbitals.  Accordingly, their energy levels are nearly
degenerate with that of the 3d lattice orbitals (i.e., the  and  sets).
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bonding.  For example, in a single -2p interaction, one of the two oxygen electrons orients

parallel to the cation moment; the remaining electron, by Pauli’s exclusion principal, must be

antiparallel to the first (see Figure 2.6A).17  Concomitant with magnetic ordering is covalent

bond ordering, the slight shift of oxygen 2p charge density towards Mn4+ [37].  Overlap

between the Mn4+ and O2– orbitals is therefore strengthened at the expense of the Mn3+—

bond.  An empty orbital from Mn3+, however, remains coordinated to the oxygen anion

(see Figure 2.6A).  Thus, coupling between the net moments of O2– and Mn3+ proceeds via

direct exchange (i.e., an antiferromagnetic interaction), producing a ferromagnetic manga-

nese sublattice.

The conceptual basis for Zener’s double exchange derives from the degeneracy of the

possible Mn4+— —Mn3+ and Mn3+— —Mn4+ states.  As depicted in Figure 2.6 using

grey arrows, the Mn4+: — :  bond is spin-polarized (i.e., semicovalent) and delocal-

ized.  Yet because of energetic equivalence, neither state can predominate, so the oxygen 2p

orbital serves as a conduit for electron transport:  transfer of an  electron from Mn3+ to O2–

occurs simultaneously with transfer of a 2p electron from O2– to Mn4+ (see Figure 2.6B).  This

cooperative displacement provides the basis for the expression “double exchange”.  More

importantly,  electron mobility mediates the ferromagnetic coupling of  core spins (and

vice versa).  The periodic ferromagnetic potential then gives rise to a metallic-like conduction

which corresponds to low resistivities (i.e., 10-1–10-3 Ω-cm) below TC.

Colossal magnetoresistance in doped-lanthanide manganites (i.e., ) can be

related to a competition between thermally-activated and double-exchange transport mecha-

nisms near TC.  An external magnetic field enhances the ordering of manganese spins, and

hence, increases the mobility of the  electrons.  This intuitive understanding, however,

belies the actual complexity of concurrent interactions between spin, valence, orbital, and

structural degrees of freedom.  For example, double exchange fails to consider the coupling

of electrons to lattice vibrations, and hence, the influence of polarons.  Because the conver-

sion of Mn3+O6 into Mn4+O6 removes the Jahn-Teller distortion associated with octahedrally-

coordinated Mn3+, polaronic effects should be present during FM-state transport.  Accord-

ingly, Appendix B presents a more thorough discussion of double exchange, given from the

17The emergence of an unpaired, spin-polarized covalent bond below TC is referred to as semicovalency.  Con-
cepts of covalence and semicovalence were originally introduced by GOODENOUGH and LOEB [50] during their
theoretical investigation of spinel-structured magnetic oxides.
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perspective of manganese octahedral site symmetry (i.e., point group theory).  A discussion

of current issues in the transport and structure of manganite oxides, however, can be found

in the comprehensive review by SALAMON and JAIME [6].

As a final comment, Zener’s double exchange mechanism should not be confused with

superexchange interactions which also occur in doped-lanthanide manganites.18  Superex-

change presumes — —  configurations that exhibit either double semicova-

lent (i.e., ) or semicovalent-ionic (i.e., ) bonding [37].19  The

former orders antiferromagnetically, and the latter, ferromagnetically.  Both arrangements,

however, leave participating electrons in highly-localized bonds, and hence, yield semicon-

ducting or insulating states (i.e., not the metallic state concomitant with double exchange).

2.2.4 NON-STOICHIOMETRY AND DEFECT STRUCTURE

As presented in Section 2.2.1, control over the mixed Mn3+/Mn4+ valence state, and

hence the extent of Mn3+O6 and Mn4+O6 interactions, can be exercised through manipulation

of A-site chemistry.  But a review of manganite compositions, summarized in Table 2.2, high-

lights an important characteristic:  [Mn4+] should not necessarily be presumed equivalent to

[M2+].  The influence of defect states on [Mn4+] occurs in addition to that of M2+, often raising

[Mn4+] beyond the nominal doping value, x.  The practical upper bound for [Mn4+] in oxi-

dized, unsubstituted LaMnO3 (i.e., La1-εMn1-εO3) is almost 35% ( ), beyond which,

decomposition begins.  This threshold therefore suggests a limit for purely defect-induced

acceptor doping.  But the substitution of divalent cations for the trivalent lanthanide (i.e.,

) can stabilize higher ranges (i.e., 30% < [Mn4+] < 45%), attractive because both

TC and TIM shift toward useful operating temperatures.  Of the manganese perovskites, the

defect chemistry of LaMnO3 has been most extensively studied, followed by the doped deriv-

atives La1-xMxMnO3 where M = Ca, Sr, and Ba.  Investigations by TOFIELD and SCOTT [54]

explored three potential defect mechanisms resulting from oxidation:  (1) interstitial oxygen

atoms, whether at the midpoint of unit cell edges or inside the smaller LaO3 tetrahedral sites,

18Superexchange coupling, also an indirect interaction, was originally proposed by KRAMERS [51] in 1934 and
subsequently refined by ANDERSON [52], GOODENOUGH, et al. [37, 50], and KANAMORI [53].

19Ionic bonding occurs when the square-planar dsp2 hybrid on Mn3+ is orthogonal to (i.e., does not point
towards) the oxygen 2p manifold.  In contrast, the d2sp3 hybrid of Mn4+, due to its octahedral geometry, over-
laps with all 2p orbitals from its oxygen neighbors.

Mnn1+ O2- Mnn2+

n1, n2 3 or 4= n1 3 or 4; n2 3==

ε 0.06≤
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(2) La and Mn site vacancies, or (3) oxygen nonstoichiometry compensated by La migration

onto Mn sites.  The corresponding chemical formula units are LaMnO3+δ, La3/(3+δ)Mn3/(3+δ)O3,

and La(3-δ)/(3+δ)(Laδ/(3+δ)Mn3/(3+δ))O3, respectively.20  Neutron diffraction of polycrystalline

LaMnO3.12 revealed an actual stoichiometry of La0.94Mn0.98O3, implicating La and Mn site

vacancies as the preferential defect mechanism.  The absence of secondary phases eliminated

the possibility of a decomposition reaction.  For example, depleting the La or Mn sublattices

through the formation of La2O3 or Mn2O3, respectively, can also create vacancies:

(2.2)

(2.3)

But the characterization of La0.94Mn0.98O3 demonstrates that manganese perovskites do not

incorporate excess oxygen into their structure (i.e., no interstitial mechanism).  Instead, the

uptake of atmospheric oxygen expands the crystalline sublattice, increasing the number of

cation sites available for occupancy.  The La and Mn cations, in turn, must redistribute to pre-

serve both structural continuity and charge neutrality.  This rearrangement generates vacan-

cies because, unlike oxygen, the La and Mn atoms cannot increase their number.  So the

formula unit LaMnO3+δ, sometimes cited in the literature, is erroneous; its usage implies an

interstitial mechanism, .  The correct reference should be La1-εMn1-εO3.  Con-

version to the proper nomenclature is easily obtained by first normalizing LaMnO3+δ to gen-

erate La3/3+δMn3/3+δO3 and then comparing with La1-εMn1-εO3 to yield .

Subsequent studies into the defect chemistry of La1-εMn1-εO3 by VAN ROOSMALEN and

CORDFUNKE [55–58] verified the cation vacancy mechanism of TOFIELD and SCOTT [54].  Their

meticulous and detailed examinations conclusively proved that La and Mn vacancies popu-

late the structure randomly but in equal amounts [55].21  Additional investigations using

electron diffraction and HRTEM indicated no defect clustering or crystallographic shear (i.e.,

from inclusion of fine La2O3 or Mn2O3 impurities within the lattice).  So in an oxidizing envi-

20For the third case, La vacancies form due to LaMn cation anti-site point defects.
21VAN ROOSMALEN and CORDFUNKE [55] pointed out that the lattice parameter associated with the sample of

TOFIELD and SCOTT [54] strongly suggested a starting (i.e., prepatory) La:Mn ratio less than unity, hence the
unequal La0.94Mn0.98O3 stoichiometry.

LaMnO3
δ
2
---O2  +   LaMnO3 δ+     La1 2δ 3⁄– MnO3

δ
3
---La2O3+→ →

LaMnO3
δ
2
---O2  +   LaMnO3 δ+     LaMn1 2δ 3⁄– O3

δ
3
---Mn2O3+→ →

LaMnO3 Oi
′′( )δ

ε δ 3 δ+( )⁄=
34



ronment at annealing temperatures (i.e., > 700 °C), a complete description of the defect chem-

istry of La1-εMn1-εO3 using the standardized Kröger-Vink notation [59, 60] is written as:

(2.4)

Growth of the oxygen sublattice, however, occurs via oxidation of manganese cations.  So the

mixed Mn3+/Mn4+ valence state is introduced by noting that formation of a single O2- anion

converts two Mn3+ cations into Mn4+

(2.5)

where, in terms of the reaction species alone:

(2.6)

In Kröger-Vink notation, the positive (i.e., •) and negative (i.e., ) charge states reference a

standard state (i.e., x) derived from the perfect crystal, LaMnO3.  For example,  carries a

triply negative valence relative to the  species it replaces.  But in absolute terms, the La

cation remains positively charged (i.e., 3+) and its corresponding vacancy, charge neutral

(i.e., 0).  So growth of the oxygen sublattice, indicated by , occurs via charged O2- anions

which generate neutral vacancies, not  and . 

But adaptation of Equation 2.6 to doped-lanthanum manganites, La1-xMxMnO3, encoun-

ters a minor challenge:  the premises of this defect model would, by logical extension, require

[Mn4+] to be calculated using x + 2δ.  Yet determination of [Mn4+] in La1-xSrxMnO3 reveals

that, for the tested range , [Mn4+] stays more or less constant at 40% [61].  Such a

value matches the 40% bound in La1-εMn1-εO3 (i.e., ) for purely defect-induced

[Mn4+].22  So the inclusion of a divalent dopant, M2+, suggests that δ decreases as a function

22The best reported value for [Mn4+] is 40% [57].  But a preponderance of the literature suggests that oxidizing
conditions, even when strong, rarely produce [Mn4+] greater than 35%.
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of x, reaching zero at x = 0.4.  To account for this behavior, VAN ROOSMALEN and CORDFUNKE

[57] proposed a charge disproportionation mechanism wherein Mn3+ ionizes into Mn2+ and

Mn4+ at elevated temperatures.   Charge disproportionation has been reported for Fe4+ in the

perovskite ferrite La1-xCaxFeO3-y, evidenced via Mössbauer spectroscopy by a lattice distribu-

tion of Fe3+ and Fe5+ [62].  Interestingly, Mn3+ and Fe4+ both occur in the  octahedral

Jahn-Teller state which, as already discussed, is quite susceptible to electronic activity.  Start-

ing from the perfect crystal then:

(2.7)

In charge disproportionation, Mn2+ cations are preferentially oxidized over Mn3+.  So the full

mechanism expands to:

(2.8)

where, in terms of the reaction species alone:

(2.9)

To substantiate the charge disproportionation mechanism, Van Roosmalen and Cordfunke

analyzed an La1-εMn1-εO3 sample thermogravimetrically from 737 to 1017 °C.  The resulting

 versus δ data curves fit the model of Equation 2.8 exceptionally well, but the vacancy-

only counterpart, represented by Equation 2.5, exhibited a poor fit.  To extend charge dispro-

portionation to doped compositions then,  is presumed to act as a substitutional impu-

rity for the  species remaining after vacancy creation:

(2.10)

t2g
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A careful examination of Equation 2.10 shows that the species-only reaction will stay

unchanged from that given by Equation 2.9.  In similar fashion to La1-εMn1-εO3, thermogravi-

metric analysis showed that the nominal composition La0.85Sr0.15MnO3 also followed a charge

disproportionation model.  The primary difference between the charge disproportionation

and vacancy-only models emerges through a determination of [Mn4+].  For the former,

[Mn4+] = x + ξ, while for the latter,  [Mn4+] = x + 2δ.  By shifting the product of oxidation from

Mn4+ to Mn3+, charge disproportionation presumes that the divalent dopant, M2+, influences

[Mn4+] in a manner reminiscent of Le Châtelier’s principle.  For example, by raising the dop-

ing level, and hence x, the corresponding increase in [Mn4+] progressively suppresses the

ability of Mn3+ to ionize into Mn2+ and Mn4+ at elevated temperatures.  So ξ should decrease

with increasing x.  This prediction is confirmed empirically: in LaMnO3 (i.e., ), ξ

reaches 0.38, yet for La0.85Sr0.15MnO3, ξ drops to 0.24 [58].  In both cases, [Mn4+] comes close

to the 40% upper bound discussed earlier.

The measurements of Van Roosmalen and Cordfunke depended on in situ characteriza-

tion at elevated temperatures.  However, the presence of Mn2+ required by charge dispropor-

tionation is not observed at ambient temperatures or below; magnetization curves from 4.2 to

400 K contain no signatures from either a manganese  high spin (i.e., , ) or

low spin (i.e., , ) state.  So the disproportionation mechanism must remain con-

fined to higher temperatures.  But the influence of disproportionation on [Mn4+] does

decrease with increasing [M2+] during oxidizing processes.  Furthermore, vacancy concentra-

tions decrease as the doping level rises.  VAN ROOSMALEN and CORDFUNKE [56] determined

that for La1-xMxMnO3 compositions fired in air, δ becomes less than 0.025 (i.e., ) by

the time x exceeds 0.30 — regardless of whether of M is Ca, Sr, or Ba.  Clearly then, the inclu-

sion of divalent dopants serves to stabilize the ideal chemical stoichiometry of doped-lan-

thanide manganites.  This observation carries important ramifications for the thin film specimens

presented by Chapter 4:  any deviations from ideal stoichiometry for the x = 0.33 compositions (i.e.,

La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3) should be minimal, if at all.

Two other defect mechanisms have also been explored in perovskite manganites:  (1) the

creation of oxygen vacancies through reducing atmospheres (i.e., LaMnO3-δ and La1-

xMxMnO3-δ) [63, 64] and (2) deliberate A-site nonstoichiometry via reduction of lanthanum

content (i.e., La1-xMnO3) [65].   These models will not be discussed here as neither carries any

x 0=

d5 t2g
3 eg

2 S 5 2⁄=

t2g
5 eg

0 S 1 2⁄=

ε 0.009<
37



particular relevance to the thin film process presented in this dissertation.  Specifically, all fir-

ing processes transpire in air (i.e., an oxidizing environment) and formulation of the A-site is

for a net occupancy of unity.

2.3 SOL-GEL PROCESSING

Conventional techniques for preparing perovskite manganites rely on a generic mixed-

oxide method wherein:  (1) homometallic oxides or carbonates are ground in a mortar and

pestle, and (2) the resulting mixture is fired at high temperature to enable both reaction and

solid-state diffusion.  Regrinding and refiring of the intermediate product is often required to

ensure a complete transformation to the desired crystalline phase.  For example, during the

conventional synthesis of La1-xBaxMnO3 and La1-xPbxMnO3 powders, a multi-stage “grind

and fire” employs temperatures of 1500 °C and 950 °C, respectively [66, 67].  A modification

to the starting procedure can sometimes lower processing temperatures:  simple dissolution

of metal salts in aqueous media creates a uniform, atomically-mixed solution.  Subsequent

evaporation then leaves a precipitate whose intimate association reduces the necessary diffu-

sion lengths during heating.  But La1-xBaxMnO3 and La1-xPbxMnO3 powders prepared with

this modification still require temperatures in excess of 950 °C for phase-pure material.23

Such high formation temperatures, even after atomic mixing, reflect the refractory nature of

perovskite manganites and therefore present a notable challenge for integration onto com-

mercially-desirable silicon substrates.

By comparison, the sol-gel process developed in Chapter 3 for manganites produces

crystalline La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 perovskite phases below 650 °C, a dramatic

improvement over conventional methods.  The ability of sol-gel processing to lower the ther-

mal barrier to phase formation stems from a polymerized metal-oxygen framework formed

in solutia (i.e., M—O—M—O—M—O—, etc. where M = metal).  In essence, chemical reac-

tions between intimately-mixed metal precursors initiate metal-oxygen bonding, reducing

the thermal energy needed to complete the transformation to final oxide.  Besides lower tem-

peratures of formation, however, sol-gel processing also offers excellent compositional uni-

23The author has prepared La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 by dissolving the appropriate acetate salts
in deionized water.  Intermediate “grind and fire” steps followed heating at 350 °C and 500 °C in air.  A final
step at 1100 °C and 950 °C in air, respectively, ensured perovskite-only X-ray diffraction patterns.
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formity and microstructural control, resulting in homogeneous end-products with tailored

grain and pore morphologies.  When applied as a coating technology (i.e., for thin-film depo-

sition), this solution-based approach produces uniform, conformal coverage on non-planar

substrates and readily adapts to large surface areas without compositional gradients.  Con-

ventional thin-film methods, dependent on vapor phase deposition in vacuum, do not offer

such flexibility.  In addition, the capital-intensive requirements of vacuum-based deposition

make sol-gel processing an economically-attractive alternative for multi-element, complex

oxides such as the doped-lanthanide manganites.  Accordingly, this section presents a

description of sol-gel processing and terminology, focusing on the effects of alkoxide chemis-

try upon the underlying hydrolysis and condensation mechanisms.  A discussion of poly-

merization behavior and structural evolution during heating details the transition to the final

ceramic product.  Adaptation of sol-gel processing to thin film deposition, specifically spin-

coating, concludes the section.  For an in-depth examination of sol-gel processing, the reader

is referred to the seminal reference text by BRINKER and SCHERER [68].

2.3.1 PREPATORY ROUTES TO CERAMICS

In ceramic preparation, sol-gel processing can be broken down into three stages:  (1) dis-

solution and reaction of metallorganic precursors in solutia to form the “sol”, (2) continued

reaction via hydrolysis and condensation to create the “gel”, and (3) removal of solvent

thereby leaving a porous, self-supporting body.  The principal feature distinguishing a sol

from standard solutions is that the reaction of dissolved precursors produces regions of solid

phase within the solvent.  The term “sol” therefore refers to a diphasic system wherein the

solvent serves as a suspending medium.  Depending on the nature of the solid phase, sols

can be differentiated as either colloidal or polymeric.  Colloidal sols contain a dispersion of

small (i.e., 1–100 nm) particles or aggregates whereas polymeric sols support randomly-

branched molecular networks.  Unfortunately, the term “colloid” originally referred to mac-

romolecules unable to pass through porous membranes [69].  Such a definition would then

imply that virtually all sol systems are, in fact, colloids.   So to avoid the confusion produced

by pre-existing convention, FLORY [70] and RABINOVICH [71] have recommended the revised

terminology, “particulate sol”.  In addition, certain aqueous-based sols can produce dense

“particles” with an average diameter approaching 1 nm — a dimension also characteristic of
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the oligomeric species found in polymeric sols.24  But at this length scale, the molecular dis-

tinction between “crystalline” (i.e., particulate) or randomly-branched (i.e., polymeric) can be

nebulous.  So BRINKER and SCHERER [68] have suggested a further refinement:  particulate sols

represent systems exhibiting dense particles larger than 1 nm; polymeric sols contain ran-

domly-branched molecules where any “crystalline” component is less than 1 nm.

In order to transition into a gel, the constituents dispersed in the sol, whether particulate

or polymeric, must form a continuous solid skeleton with an interspersed, but connected liq-

uid phase.  Growth of this network reaches the so-called gel point when a single giant span-

ning cluster achieves the boundaries of its container.  As a result, a sharp rise in viscosity

occurs and the viscoelastic behavior of a gel replaces the fluidity of a sol.  The gelation pro-

cess itself, however, depends on the nature of the system.  For particulate sols, modification

of surface charges, steric interactions, and Van der Waals forces induces flocculation, typi-

cally through changes in concentration, pH, temperature, and/or the addition of a gelation

agent [72, 73].  But in polymeric sols, the reaction of monomeric and oligomeric functional

units creates macromolecules which continue to crosslink to form randomly-branched, three-

dimensional structures.  So gel formation in polymeric sols stems from chemical bonding

whereas an aggregation mechanism dominates particulate sols.  In general though, both sys-

tems drive the growth of small individual clusters which eventually impinge on one another

to form a spanning cluster.  The gel point, however, does not correspond to the end of the

sol-to-gel transition.  Fluid entrapped within the solid network still contains particle aggre-

gates or polymer fragments capable of attaching to the spanning cluster.  During the subse-

quent period of aging then, continued reinforcement of the skeletal structure causes the

stiffness of the gel to increase with some gels undergoing spontaneous shrinkage.25

The complete evaporation of solvent from a gel leaves a solid, amorphous preform ready

for heat treatment and conversion to the desired ceramic.  But control over the evaporative

process aids in the selection of the gel morphology, and hence, the end-product.  For exam-

ple, drying under standard atmospheric conditions generates capillary pressures within the

24An oligomer is a molecule of intermediate relative mass comprised of a small number of monomeric functional
units of lower relative mass.  For example, many metallic or metalloid alkoxides are sufficiently reactive to
form oligomers in solutia by themselves.

25Spontaneous shrinkage results from syneresis, a process wherein continued bond formation or attraction
between particles contracts the solid network.  As a result, pore volume decreases, expelling entrapped fluid
from the gel.
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gel, compressing the solid framework and creating a porous xerogel (the prefix “xero” means

dry).26  The resulting shrinkage is notable, with a volume reduction of ~ 90% (or more) not

being unusual.  If instead, the gel is supercritically dried (i.e., by means of an autoclave at the

appropriate temperature and pressure), no liquid-vapor interface exists and capillary pres-

sures never develop.  Drying therefore occurs with virtually no shrinkage, leaving an excep-

tionally porous and open structure.  This structure, referred to as an aerogel, contains a low

volume fraction of solid, which with deliberate process control, can approach values less

than 1%.  Figure 2.7 summarizes the various preparative stages leading to different preforms

and their associated end-products.  During the production of xerogels (bulk) and aerogels,

evaporation occurs principally after gelation.  But for certain routes, as shown in Figure 2.7,

evaporation itself helps to induce the sol-to-gel transition:  a progressive increase in concen-

tration via solvent removal can further drive hydrolysis and condensation, eventually yield-

ing a dried gel.  Exploitation of this mechanism plays an important role during drawing or

coating, wherein respectively, fibrous or substrate-supported xerogels result.  For example,

the sol-gel route for manganite thin films detailed in Section 3.4 employs a spin-coating pro-

26Dried gels whose smallest preform dimensions exceed a couple millimeters are commonly called monoliths.
Monoliths are typically cast to shape and carefully dried to avoid cracking.

FIGURE 2.7 Prepatory routes to various ceramic end-products using sol-gel
processing.  (Adapted from [68].  Copyright 1989 Academic Press)
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cess to deposit a dried, amorphous xerogel layer on Si(100) and platinized-Si(100).  Because

this method relies on the polymerization of alkoxides, further discussion of sol-gel process-

ing will focus on the utility of these versatile precursors, emphasizing dissolution and reac-

tion in organic solvent systems.

2.3.2 CHARACTERISTICS OF ALKOXIDE PRECURSORS

Metal alkoxides, represented stoichiometrically by [M(OR)z]n, comprise a class of com-

pounds wherein an oxygen atom bridges a central metal atom to a carbon atom thereby

forming the characteristic alkoxy bond (i.e., M—O—C).  Here, R refers to any saturated

hydrocarbon ligand (i.e.,  CH3, CH2CH3, etc.); z corresponds to the valence of the metal and

n, the degree of molecular association.  The functional ligand of these compounds (i.e., OR) is

derived from the parent alcohol (i.e., HOR), hence the designation “alkoxy”.  EBELMAN [74,

75] synthesized the first alkoxide compounds, based on boron and silicon, by direct reaction

of their anhydrous chlorides with alcohol.  Since then, the systematic investigation of alkoxy

chemistry has extended to virtually all elements of the periodic table and is exhaustively cov-

ered in the texts by BRADLEY, MEHROTRA, and co-workers [76, 77] and TUROVA, et al. [78].  Of

the transition metal elements, however, the properties of Group IVB (i.e., Ti, Zr, and Hf)

remain the best-known, with Group VIIB (i.e., Mn, Tc, and Re) representing least-known [79].

Accordingly, an examination of the Group IVB alkoxides forms the basis (here) for discuss-

ing the chemistry of transition metal alkoxides, particularly as related to sol-gel processing.

From the perspective of polymerization, metal alkoxides can be viewed in terms of their

functionality, f, which corresponds to the number of bonds available for reaction.  For exam-

ple, the compound Ti[OC(CH3)3]4 contains labile (i.e., reactive) sites at each Ti—O bond so

.  When , polymerization yields chain and ring structures, but if , additional

crosslinking will generate three dimensional structures.  The chemical lability of transition

metal alkoxides stems from two principal factors:  (1) polarization of the metal-oxygen bond

resulting in high metal oxidation states and (2) the possibility of greater metal coordinations

unsatisfied by the simple molecular unit.  Both properties result from the electronegativity of

the alkoxy ligand.  Electron distribution along the alkoxy bond exhibits an ionic character

(i.e., Mδ+—Oδ-—Cδ+) due to individual electronegativity differences of the constituent atoms.

On the Pauling scale, the electronegativity of oxygen is 3.5, and along either bond direction

f 4= f 2= f 2>
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this value decreases, whether towards carbon (i.e., 2.5) or the transition metal (i.e., 1.3–1.5).27

So the oxygen atom acquires a distinct negative partial charge; the greater electric moment

along Mδ+—Oδ- therefore produces a polar covalent metal-oxygen bond.  Yet the solubility of

transition metal alkoxides in common organic solvents and their volatility indicate a greater

covalent character than suggested by considerations of electronegativity alone.  This height-

ened covalency has been postulated to arise from three mechanisms [77].  First, a +I inductive

effect (i.e., electron release), enhanced when R corresponds to branched alkyl groups, further

shifts electron density from carbon to oxygen.28  Polarization of the metal-oxygen bond

relaxes in response.  Second, hybridization of transition metal 3d orbitals with 2p orbitals on

oxygen can delocalize the electron density, particularly for early transition metals.  And

lastly, the electron-rich oxygen of the alkoxy ligand can coordinate with another metal atom

(i.e., bridging), creating oligomeric species via dipolar bonding:29

So the parameter n in [M(OR)z]n presented earlier reflects the degree of oligomerization

resulting from molecular association.  But the tendency of a metal to expand its coordination

sphere stems from the high configurational energy of its monomeric structure.  By withdraw-

ing electrons from the transition metal, the electronegative alkoxy ligands leave an electro-

positive center susceptible to nucleophilic attack (i.e., reaction via electron donation).  Oligo-

merization then corresponds to a polymerization process wherein alkoxy ligands comprise

surrogate nucleophiles; dipolar bonding to neighboring metal centers lowers the configura-

tional energy through structural aggregation.

A qualitative theory on the molecular association of metal alkoxides, developed by BRA-

DLEY [80] in 1958, predicts the equilibrium structure to be one wherein all metal centers

achieve their preferred coordination, but with a minimum degree of oligomerization.  Empir-

ical observations agree reasonably well with theory although predictions can occasionally be

27Specifically, the Group IVB series gives 1.5, 1.4, and 1.3 for Ti, Zr, and Hf, respectively.  By comparison, Group
VIIB electronegativities for Mn, Tc, and Re are, respectively, 1.5, 1.9, and 1.9.

28Removal of a hydrogen atom from its alkane (i.e., a saturated hydrocarbon like CH4, CH3CH3, etc.) creates an
alkyl ligand (i.e., CH3, CH2CH3, etc.).  An example of a branched alkyl is C(CH3)3.

29Dipolar bonding refers to the coordination of two neutral molecules, the combination of which, results in
charge-separated structures.
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incorrect.  So for example, according to Bradley, a quadrivalent metal alkoxide, M(OR)4, with

octahedral coordination should exhibit a trimeric association, [M(OR)4]3.  X-ray diffraction

patterns by IBERS [81] on single crystals of titanium ethoxide instead indicate the tetramer,

Ti4(OCH2CH3)16; subsequent collaboration with MARTIN and WINTER [82], though, did yield

the expected trimer when dissolved in benzene (i.e., an inert non-polar solvent).  In the solid

state, the preference of one oligomeric structure over another depends on:  (1) the monomeric

formula unit, M(OR)z, (2) the size and formal oxidation state of the metal center, (3) the steric

encumbrance of the alkyl ligand, R, and (4) the d orbital filling of the transition metal [83].

Comparative investigations of silicon and Group IVB alkoxides by BRADLEY, et al. [84–87]

established three trends regarding molecular association.  First, the tendency towards alkoxy

bridging increases with the electron deficiency of the metal.  Silicon ethoxides, for instance,

are monomeric (i.e., ) in non-polar solvents while the titanium, zirconium, and

hafnium moieties exhibit molecular associations of , respectively.  Such

behavior can be anticipated from comparisons of electronegativity:  1.74, 1.32, 1.22, and 1.23,

respectively.  Second, the larger the metal center, the higher the structural aggregation.

Accordingly, the aforementioned molecular associations correlate well with their metal

atomic radii of 1.11, 1.32, 1.45, and 1.44 Å, respectively.  And finally, enlarging the steric bulk

of the alkoxy ligand inhibits oligomerization since the electropositive metal center becomes

increasingly shielded.  Titanium alkoxides, representative of the Group IVB series, become

monomeric as the alkyl functional unit expands:  changing R from CH2CH3, CH(CH3)2, to

C(CH3)3 produces in turn, , , and .  Of these three trends though,

steric demands influence molecular complexity greater than the electronic nature of OR or M.

Investigations into titanium and zirconium alkoxides by BRADLEY, et al. [86] demonstrated

that symmetrical secondary alkoxides (i.e., R = CH ) reduce association more rapidly as 

lengthens than their unsymmetrical analogues (i.e., R = CHCH3 ).30  The former empha-

sizes the rapid growth of steric bulk whereas the latter allows more progressive control.  Yet

the unsymmetrical group still followed the shielding behavior of the symmetrical one.

Therefore, the magnitude of any +I inductive effects were minimal relative to steric influ-

ences.  This behavior remained the same regardless of the Group IVB metal.

30In alkoxides, the principal carbon (i.e., oxygen-bearing) can be characterized by its degree of bonding to other
carbon atoms.  So in a primary alkoxide (i.e., 1°), the principal carbon is bonded to only one other carbon atom.
In a secondary alkoxide (i.e., 2°), the principal carbon is bonded to two, and so forth.

n 1.0=

n 2.4, 3.6, and 3.6=

n 2.4= n 1.4= n 1.0=

R2
′ R′

R′
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Variations in steric bulk cause n to transition throughout a broad dynamic range (i.e.,

).  For example, virtually all transition metal methoxides, M(OCH3)z, form infinite

polymers, [M(OCH3)z]∞, which if replaced with some bulkier alkoxy ligand, convert to dis-

crete oligomers (or monomers).  From the perspective of sol-gel processing, infinite polymers

are highly undesirable because  implies the emergence of a lattice energy, thereby sta-

bilizing an insoluble, nonvolatile, and often unreactive precursor.  But discrete oligomers

contain dipolar metal-oxygen bridges with no associated lattice energy.  For instance, BRAD-

LEY, et al. [87] discovered that the latent heats and entropies of vaporization in zirconium

alkoxides correspond to a depolymerization process, [Zr(OR)4]n (liquid) ↔ nZr(OR)4 (vapor),

verified by density determinations in both phases.  This disassociation reflects the decou-

pling of weak, charge-separated metal-oxygen bonds of approximately 9 kcal.  So the steric

bulk of the alkoxy ligand plays a crucial role in stabilizing reactive precursors with small oli-

gomeric bond energies and labile Mδ+—Oδ-—Cδ+ sites.  Exploitation of this phenomenon enabled

the author to design and synthesize a highly-soluble manganese(II) alkoxide suitable for sol-gel pro-

cessing (see Section 2.5) — a new and significant contribution to the field!

Clearly, the preparation of alkoxide precursors for sol-gel processing begins with disso-

lution in a solvent medium.  But oligomerization depends strongly on both solute concentra-

tion and the nature of the solvent.  In general, dilution reduces the molecular association of

metal alkoxides.  MARTIN and WINTER [82] observed that titanium ethoxide, when dissolved

in benzene, exhibited small complexities (i.e., ) for molalities below 10 m; a rapid con-

vergence to the expected trimer, however, occurred as the concentration increased.  Coordi-

nation expansion of the metal, however, alters notably when protic, polar solvents comprise

the dissolution medium.  For example, titanium ethoxide dissolves in its parent alcohol (i.e.,

ethanol) forming the solvate species, .  Comparison with

the trimer, [Ti(OCH2CH3)4]3, reveals the loss of alkoxy bridging to solvate coordination [88].

This change highlights the susceptibility of the electrophilic titanium center, stabilized by

electronegative OCH2CH3 ligands, to attack by external nucleophiles such as CH3CH2OH.  In

essence, stronger Lewis bases (i.e., electron donors) can displace the weak dative bonds asso-

ciated with alkoxy bridging (i.e., the alkoxy ligand is a weaker Lewis base).  Protic, polar sol-

vents therefore follow a nucleophilic addition mechanism (AN) wherein the alkoxide serves

as a Lewis acid (i.e., an electron acceptor) and the solvent, a Lewis base.

1 n ∞≤ ≤

n ∞→

n 1.9<

[Ti(OCH2CH3)4]2 2CH2CH3OH⋅
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The significance of this chemical activity becomes apparent if small, highly-polar mole-

cules of water are present in the alcoholic solvent:  the electrophilic metal center is preferen-

tially attacked by H2O, cleaving the Mδ+—Oδ-R alkoxy bond and leaving an Mδ+—Oδ-H

hydroxyl bond in its place.  With respect to alkoxides then, water acts as a stronger Lewis

base than its organic analog, the alcohol (i.e., HOH versus ROH).  So a nucleophilic substitu-

tion mechanism (SN) emerges in place of the addition mechanism thereby allowing the

removal of the entire alkoxy ligand.  The ability of alkoxides to participate in such a reaction

pathway enables the construction of polymerized metal-oxygen frameworks (i.e., M—O—

M—O—M—O—).  The high reactivity of alkoxides to water therefore plays a crucial role in

sol-gel processing, underscoring their utility as precursors.

2.3.3 ALKOXY-BASED HYDROLYSIS AND CONDENSATION

Two fundamental classes of reactions drive the formation of polymeric networks in

alkoxy-based sol-gel processing:  hydrolysis and condensation reactions.  As illustrated in

Figure 2.8, a single reaction sequence comprises the hydrolysis pathway but condensation

can proceed via any of three unique sequences (i.e., alcoxolation, oxolation, or olation).  For

clarity, only the participating ligands have been drawn in Figure 2.8; the possibility of alter-

nate facile sites, however, should not be excluded (i.e., ).  From the perspective of the

metal center, basic distinctions between the two classes can be revealed by examining their

constituent pathways.  For example, an inspection of the reactants indicates that hydrolysis

always presumes the availability of an alkoxy ligand, whereas, condensation requires at least

one hydroxyl ligand.  In similar fashion, a review of the products shows that hydrolysis

always generates a terminal hydroxyl ligand.  Condensation, on the other hand, creates a

bridging ligand, whether oxo or hydroxyl.  So initiation of hydrolysis then serves as an

enabling mechanism for subsequent condensation reactions.  But condensation forms the

basis for crosslinking the metal centers, and hence, constructing the metal-oxygen frame-

work.  When interpeting Figure 2.8 though, one naive conclusion must be avoided.  Conden-

sation should not be construed to proceed via a simple sequential step after hydrolysis.  In

reality, both reaction classes occur simultaneously in solutia, particularly for polyfunctional

alkoxides; the reaction rates of all four pathways exhibit complex interdependencies under-

stood incompletely even for single precursor systems.

f 1>
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FIGURE 2.8 The reaction pathways of hydrolysis and condensaion in sol-gel
processing.  Dashed boundaries indicate oxygen coordination to the metal via
lone pair electrons.  Green color highlights atoms of the leaving group.
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During hydrolysis though (see Figure 2.8), a water molecule coordinates to the posi-

tively-charged alkoxide metal center through a lone electron pair available on the oxygen

atom.  This nucleophilic addition yields in an alkoxo-aqua intermediate, M(OR)z(OH2), with

an expanded metal coordination sphere (i.e., increased by unity).  The Lewis basicity of

water, stronger than alcohol, induces a proton transfer to the alkoxy ligand, which in turn,

produces a coordinated alcohol molecule.  The subsequent release of this new molecule,

referred to generically as a leaving group, signifies the completion of a nucleophilic substitu-

tion.  The resulting alkoxo-hydroxo complex, M(OR)z-1(OH), remains available for further

reaction.  For example, the general alkoxo-hydroxo formula, M(OR)z-y(OH)y where ,

would represent the effects of progressive hydrolysis; the end members,  or , are

the initial  alkoxide, M(OR)z, or the completed hydroxide, M(OH)y, respectively.

In condensation, the alkoxo-hydroxo species, M(OR)z-y(OH)y, undergo three possible

nucleophilic substitutions, reacting with either alkoxy ligands (i.e., alcoxolation), hydroxyl

ligands (i.e., oxolation), or coordinated metal centers (i.e., olation).31  The alcoxolation

sequence proceeds in a manner similar to hydrolysis except that M replaces H in the entering

group (see Figure 2.8).  The final species, (RO)z-y(OH)y-1M—O—M(OR)z-y-1(OH)y, contains an

oxygen bridge with still-labile alkoxy and/or hydroxyl ligands.  Oxolation follows the same

pathway as alcoxolation but a proton substitutes for R in the both the reactant and leaving

group (see Figure 2.8).   The reaction between two hydroxyl ligands, however, ensures the

production of a water molecule instead of an alcohol molecule.  This difference provides one

reason for rate interdependencies between hydrolysis and condensation pathways.  Water

molecules produced during oxolation can catalyze further hydrolysis reactions; alcoxolation,

on the other hand, liberates only (relatively) inert alcohol groups.  As discussed previously, if

the metal center of a dissolved species contains an unsaturated coordination sphere, nucleo-

philic addition can lead to either an alcoholate or hydrate, depending on the water concentra-

tion in the solvent.  Such chemical configurations are vulnerable to olation, wherein the

hydroxyl ligand of the alkoxo-hydroxo species bridges both metals, releasing the coordi-

nated alcohol or water molecule (see Figure 2.8); in essence, the metal center trades a weak

dative bond for a stronger polar-covalent bond, stabilizing the higher coordination.  Unlike

31For descriptive simplicity, oxygen-bridged reactants have been temporarily omitted.  Alkoxo-hydroxo species
with single or multiple oxo or hydroxyl bridges may participate in condensation reactions.  A terminal
hydroxyl ligand, however, must be present.

y z≤

y 0= z 0=
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alcoxolation or oxolation, though, olation requires no protron transfer so its reaction kinetics

proceed faster.   The repetitive occurrence of these three condensation sequences enables the

construction of oxygen-bridged metal polymers.

The susceptibility of a metal center to the various hydrolysis and condensation path-

ways, however, depends considerably on the ligands populating the coordination sphere.

Otherwise, the strong Lewis basicity of water would ensure the constant dominance of

hydrolysis, causing the metal alkoxides (i.e., ) to convert directly into their full hydrox-

ides (i.e., ); little, if any, crosslinking from condensation would occur.  In order to dis-

cern the different chemical reactivities of metal oligomers during hydrolysis and

condensation, LIVAGE, et al. [89, 90] extended the theory of partial-charges to cover the sol-gel

chemistry of transition metal oxides.  The resulting thermodynamic model, whose roots

derive from the equalization of chemical potential, accounts for electron density shifts during

reaction and describes the equilibrium charge distribution of the participating species and

ligands. One limitation, however, stems from the inability to properly incorporate chemical

structure and coordination changes into the theory; resonance effects and π-orbital overlap-

ping are also neglected.  Nevertheless, predictions correlate well with empirical observations

in sol-gel systems.  Table 2.3 lists the charge distribution for titanium 2-propoxide (i.e.,

), a known monomer, and its hydolyzed moeities (i.e., ).

In general, considerations of the partial charge model dictate that, for hydrolysis, the

metal center carry a positive charge (i.e., ) and water, a negative charge (i.e., ).

This arrangement enables the coordination of a water molecule to the metal center.  Proton

transfer can then occur, provided that .  The resulting alcohol molecule de-coordi-

nates from the metal when .  A review of the titanium complexes in Table 2.3 clearly

shows that  when , indicating a barrier to protonation.  Hydrolysis then is favor-

able primarily for Ti[OCH(CH3)2]4 and Ti[OCH(CH3)2]3(OH) but poorly so, if at all, for either

Ti[OCH(CH3)2]2(OH)2 or Ti[OCH(CH3)2](OH)3.  In essence, the progressive substitution of

hydroxyl ligands is self-limiting, retarding hydrolysis after .  So the emergence of full

hydroxides remains exceedingly unprobable due to protonation barriers.  Furthermore, with

the presence of hydroxyl ligands, condensation becomes thermodynamically favorable, espe-

cially for species with multiple substitutions.  Polymerization reactions then would signifi-

cantly hinder any isolated, fully-hydroxylated species from forming (see below). 

y 0=

z 0=

z 4= y 0>

δ M 0» δ H2O 0«

δ OR 0<

δ ROH 0»

δ OR 0> y 2>
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The reaction mechanisms of condensation may be analyzed in similar fashion.  In alcox-

olation, for example, the hydroxyl ligand of the Mδ+—Oδ-H bond must exhibit a negative

charge in order to coordinate with a metal center containing an Mδ+—Oδ-R bond.  All com-

plexes in Table 2.3 satisfy this requirement, and therefore, may serve as entering groups.  But

proton transfer is favorable only for complexes displaying .   Of the alkoxo-hydroxo

species, only Ti[OCH(CH3)2]4 and Ti[OCH(CH3)2]3(OH) meet this criteria.  So for alcoxola-

tion, one of the reacting complexes must always have  or the reaction encounters an

activation barrier.  Oxolation, on the other hand, remains an unfavorable sequence entirely

because unlike alcoxolation, the leaving group (i.e., water) retains a strong negative partial

charge (i.e., ).32  In olation though, this property, combined with the unsaturated

metal sphere of titanium, enables water molecules to readily coordinate, regardless of the

alkoxo-hydroxo species.  So any hydrolyzed moiety, including a full hydroxide, can provide

the hydroxyl bridge during olation because .  The assistance of alcohol adducts dur-

ing olation, however, is highly improbable because  for all complexes.  A compari-

son of the active condensation mechanisms (i.e., alcoxolation and olation) reveals that both

these sequences are limited by the availability of  complexes.  Because both hydrolysis

and condensation operate in the regime  for the titanium 2-propoxide system, alkoxo-

32The ability of a molecule to de-coordinate is referred to as its nucleofugal character (i.e., literally “fleeing the
nucleus”).  In contrast to water,  for all complexes in Table 2.3 so repulsion from the positive metal
center gives 2-propanol a strong nucleofugal character.

δ OR 0<

y 1≤

δ H2O 0<

δ ROH 0>

δ OH 0<

δROH 0>

y 1=

y 1≤

COMPLEX δ Ti δ OR
a

a R = CH(CH3)2

δ OH δ ROH
a

Ti[OCH(CH3)2]4 - – 0.15 - - -
Ti[OCH(CH3)2]3(OH) +0.62 – 0.08 – 0.38 +0.02 – 0.28
Ti[OCH(CH3)2]2(OH)2 +0.64 +0.04 – 0.36 +0.15 – 0.25
Ti[OCH(CH3)2](OH)3 +0.67 +0.28 – 0.32 +0.41 – 0.18
Ti(OH)4 - - – 0.19 - +0.01

TABLE 2.3 Charge distribution for titanium 2-propoxide and its hydrolyzed
derivatives [90].
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hydroxo species generated by hydrolysis become rapidly incorporated into polymer struc-

tures, not isolated hydroxides.

Analysis of alkoxide sol systems using partial charge theory also highlights the effect of

competitive hydrolysis and condensation interactions on polymer growth.  For example, in

the titanium 2-propoxide system linear polymers would be expected since the removal of ter-

tiary or quartenary alkoxy ligands is thermodynamically unfavored.  Figure 2.9 presents a

hypothetical oxo-polymer comprised of four unique units labeled A–D.  The partial charge

on the alkoxy ligand, , varies with its coordination environment, which corresponds to –

0.01, +0.22, +0.04, – 0.08, respectively [90].  The ease of protonation then follows the relation,

.  Clearly, the most functional (i.e., reactive) units of the oxo-polymer are at its

ends, suggesting a predominantly linear growth mechanism.

As mentioned previously though, one deficiency of the partial charge theory remains its

inability to account for structural changes during hydrolysis and condensation.  BRADLEY, et

al. [88] investigated the structural aspects of hydrolytically-derived titanium oxoalkoxides.

The resulting three models predicted the formation of discrete or infinite oxo-polymers com-

prised of linked titanium octahedra: Ti3O6(ROH)6, [Ti3O4(OR)4]∞, and [Ti2O3(OR)2(ROH)]∞.

Discrete oxoalkoxide oligomers from initial reactions can often be crystallized from solution

if hydrolysis can be successfully quenched.  WATENPAUGH and CAUGHLEN [91], for instance,

dissolved titanium ethoxide in ethanol and after passing partially-dried air through the solu-

tion, produced Ti7O6(OCH2CH3)19 as the initial reaction product.  Another Group IVB alkox-

ide, zirconium methoxide, formed Zr13O8(OCH3)36 when exposed to sodium hydroxide in

δ OR
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HO—Ti—O—   · · ·   —O—Ti—O—   · · ·   —O—Ti—O—   · · ·   —O—Ti—OR
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O
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O
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O
R

O
R

OO
R

· · ·

A B C D

FIGURE 2.9 A hypothetical linear oxo-polymer constructed from
titanium 2-propoxide.  Four unique units (i.e., A–D) are present.  Here, R =
CH(CH3)2. (Adapted from [90].  Copyright 1989 Permagon Press.)
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methanol [92].  Crystal structures of both compounds revealed metal centers packed exclu-

sively in oxygen “cages”; oxo ligands comprised the core of the framework whereas alkoxy

ligands extended outward from the periphery (see Figure 2.10).

Both theory and experiment point towards a mechanism of coordinate expansion during

hydrolysis and condensation.  The difference between N, the maximum coordination num-

ber of a metal in its oxide, and z, its oxidation state in the starting alkoxide, provides a driv-

ing force for oxo-polymeric construction.  In the case of titanium ethoxide, Ti4(OCH2CH3)16,

 and  so  (i.e., coordinate expansion should result from hydrolysis

and condensation).  Accordingly, the oxoalkoxide intermediate, Ti7O6(OCH2CH3)19, contains

titanium atoms in an exclusively octahedral coordination as shown in Figure 2.10A [91].  This

development, not predicted by the partial charge model, carries significant practical impor-

tance for sol-gel processing:  the oxoalkoxide structures of titanium and zirconium exhibit

metal coordination environments characteristic of the full oxide.  So oxoalkoxides represent

an intermediate, derivative product whose further polymerization enables the assembly of

long-range metal oxide networks via functionalized sub-groups on the periphery:

Here, x refers to the degree of hydrolysis (see page 56).  Oxoalkoxide structure therefore

forms a basis for the chemical assembly of ceramic oxide materials.  Such a molecular “building

block” approach was first pioneered by KLEMPERER, et al. [93–95] in the design of polysilicic

acid esters (i.e., silicon oxoalkoxides) for silicates.  An extension of this technique (i.e., the

deliberate engineering of molecular structures) to multi-component ceramics remains the

focus of current research, as discussed in a recent review by KESSLER [96].

Because though, both alkoxy bridging (see Section 2.3.2) and oxoalkoxide formation

result from an underlying tendency to expand the metal coordination sphere, factors influ-

encing molecular association (i.e., oligomerization) also affect hydrolysis and condensation.

Indeed, the alkyl ligand (i.e., R) strongly impacts the reaction pathway through its chain

length, steric hindrance, ±I inductive effect, and possibly ±E mesomeric effect [90].33  For

example, hydrolysis rates decrease with increasing R because longer aliphatic groups reduce

33In general, the inductive effect refers to electron transfer in a chemical bond induced by an adjacent, polarized
bond.  The mesomeric effect (i.e., resonance effect) occurs when orbitals of a chemical subgroup overlap with
orbitals of the remaining molecule, introducing or extending electron delocalization.

N 6= z 4= N z– 2=

M OR( )z[ ]n        MOx OR( )z 2x–[ ]np
        M2Oz[ ]∞→ →
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FIGURE 2.10 Crystal structures of titanium and zirconium oxoalkoxides.   The
top half (A) shows Ti7O24(OCH2CH3)19 and the bottom half (B), Zr13O8(OCH3)36.
For clarity, the alkoxy ligands on the periphery are represented by their oxygen
atoms only. (Adapted from [91] and [92], respectively.  Copyright 1967 London:
The Chemical Society and 1977 The International Union of Crystallography.)
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the positive charge on the metal center.  Furthermore, bulky groups hinder the initial hydrol-

ysis reaction due to shielding of the electrophilic metal; cleavage of subsequent alkoxy

bonds, however, is progressively faster.  So the alkyl ligand provides a means to adjust the

competition between hydrolysis and condensation, and hence, the resulting oxo-polymer

morphology.  This synthetic structure, in turn, strongly influences the equilibrium phase

emerging in the oxide end-product.  For instance, the ratio of anatase and rutile phases in

TiO2 and the monoclinic-tetragonal transformation temperature of ZrO2 both vary with the

molecular weight of the alkoxide precursor [97, 98].  In addition to alkoxide composition, sol-

ute-solvent interactions prove equally important.  Section 2.3.2 noted the change in coordina-

tion mechanism upon switching from an inert, nonpolar to a protic, polar media.  The former

exhibited alkoxy bridging but the latter relied on alcoholate adducts.  This difference alters

reaction pathways because alkoxy bridges produce molecular structures (i.e., via oligomer-

ization) more resistant to hydrolysis than solvate bonds.  For example, zirconium 1-pro-

poxide precipitates from solutia when hydrolyzed in 1-propanol but yields polymeric gels in

cyclohexane [99].34  So deliberate selection of the solvent may be a necessary requisite to

ensure a stable sol system.

The exceptional utility of alkoxide precursors and the significance of verifiable hydroly-

sis and condensation pathways (i.e., alkoxy-based sol-gel processing) can best be appreciated

when considering the following:  film preparation via sol-gel techniques comprises a subset

of so-called “soft chemistry” approaches generically referred to as chemical solution deposi-

tion (CSD).   For example, HASENKOX, et al. [101, 102] have developed an aqueous-based CSD

method for La1-x(Ca, Sr)xMnO3 films that enabled spin-coating of carboxylate precursors (i.e.,

exclusively acetate salts) dissolved in carboxylic acid (i.e., propionic acid).35   Despite lattice-

matched templating onto LaAlO3(100) substrates, temperatures greater than 800 °C are still

required for the complete crystallization of manganite perovskite phase.  This behavior sug-

34Adducted alkoxides often form in the presence of alcohol.  For example, 
was crystallized and characterized by X-ray diffraction after exposure to excess 2-propanol [100].

35The carboxyl ligand, RCOO, contains two oxygen atoms bonded to a central carbon atom (as opposed to a sin-
gle oxygen in the alkoxy ligand).  Hybridization of p orbitals along the OCO group creates a delocalized elec-
tron cloud (i.e., negatively charged) that gives the ligand strong ionic character.  Bonding to hydrogen yields
an acid; coordination to a metal forms an organic salt.  The presence of two oxygen atoms enables chelation, the
coordination of both oxygens to the metal.  This behavior more effectively saturates the metal coordination
sphere, stablizing the complex against nucleophilic attack.  An acetate occurs when R = CH3 and a propionate
when R = CH2CH3.  A comprehensive review of carboxylate chemistry can be found in the reference text by
MEHROTRA and BOHRA [103].

Zr2[OCH(CH3)2]8 2HOCH(CH3)2⋅
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gests a basic metal-organic decomposition (MOD).  In contrast, the alkoxy-based sol-gel pro-

cess developed in Chapter 3 for La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 films indicates

crystallization below 650 °C.  So intimate mixing and complexing via dissolution and reflux should

not be construed as equivalent to hydrolysis and condensation.  The formation of oxoalkoxide

building blocks and their subsequent polymerization remains a unique advantage of alkoxy-

based sol-gel processes.  This feature enables the low-temperature preparation of oxide

ceramics, an achievement not easily obtained through other CSD approaches prior to this

dissertation.

2.3.4 SOL SYSTEMS FOR COATING PROCESSES

For the development of sols suitable for film deposition, hydrolysis and condensation

reactions must be controlled in order to ensure a polymeric or particulate system, but not

precipitation or gelation prior to coating.  For this reason, water of hydrolysis is first diluted

in pure solvent and only then subsequently added to the unhydrolyzed alkoxide solution; a

direct addition, by comparison, would generate a massive local excess of water, catalyzing

either metal oxide precipitation or a gel front at the boundary of initial contact.  Polymeric

sols are generally preferred over their particulate counterparts because, as will be discussed

in Section 2.3.5, the latter sometimes follow a diffusive (as opposed to a viscous) sintering

mechanism.  Considerations of alkoxide concentration, functionality (i.e., f), and condensa-

tion rates have led LIVAGE, et al. [90] to propose a “rule of thumb” for products obtained by

hydrolyzed sols (see Table 2.4).  Clearly for coating processes, slow hydrolysis and condensa-

HYDROLYSIS RATEa

a Relative to each other.

CONDENSATION RATEa RESULT

Slow(er) Slow(er) Metastable Solb

b Polymeric or particulate.

Fast(er) Slow(er) Polymeric Gel
Fast(er) Fast(er) Particulate Gel or

Gelatinous Precipitate
Slow(er) Fast(er) Controlled Precipitation

TABLE 2.4 Effect of relative rates of hydrolysis and condensation on a
hydrolyzed sol [90].
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tion rates are preferable; complete gelation should only be induced through evaporation (i.e.,

via concentration) after deposition.  The most direct route for selecting the desired reaction

rates stems from the control of water concentration as measured by h, the hydrolysis ratio:

(2.11)

When less than z, h can be presumed equivalent to the average degree of hydrolysis, ,

that characterizes oxoalkoxide intermediates in solutia.  Through h, BRADLEY, et al. [104–108]

established a correlation between  and , the number-average degree of polymeriza-

tion, via an empirical examination of oxo-polymers, , derived from Group

IVB and VB metals.  Ebulliometric measurements on the molecular weights of hydrolyzed

alkoxides resulted in the so-called pq model, which offers a straight-forward relationship

between  and  [108]:

(2.12)

Bradley’s pq nomenclature corresponds to the MpOq substructure of the oxo-polymeric prod-

uct [109].  Here, p refers to the extent of oligomerization of the unhydrolyzed alkoxide (i.e., n

in Section 2.3.2) and q tabulates the number of M—O—M links between adjacent MpOq units.

For example, the designation p3q4 characterizes an oxo-polymer based on an alkoxide trimer

(i.e., ) whose trimeric substructures share four M—O—M bonds (i.e., ).  The

compositions Ti6O4(OCH2CH3)16 and [Ti3O4(OCH2CH3)4]∞ belong to the p3q4 oxo-polymeric

class as illustrated in Figure 2.11.  But the dependence of  on  indicates that polymer-

ization is strongly influenced by hydrolysis.  So h in Equation 2.11 therefore provides a

method to control oxo-polymer growth, and hence, gelation.  Note though, that subsequent

investigations into oxo-polymer chemistry have shown the structure and bonding of other

transition metals to be far more complex than the Group IVB and VB constituents discussed

here.  For further details, the reader is directed towards the recent comprehensive review of

high-valent early transition metal compounds by GOLOBOY, et al. [110].

In practice, Equation 2.11 can be partitioned into three qualitative regimes for alkoxy-

based solutions: (1) , (2) , and (3)  [90].  When less than unity, the hydroly-

h
mol of H2O

mol of M OR( )z[ ]n

------------------------------------------------=

x〈 〉

x〈 〉 np〈 〉

MOx OR( )z 2x–[ ]np

x〈 〉 np〈 〉

1
np〈 〉
----------- 1

p
--- 1

q
--- x〈 〉⋅–=

p 3= q 4=

np〈 〉 x〈 〉

h 1< 1 h z≤ ≤ h z>
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O

O (Alkoxy)

[Ti(OR)4]3

Ti6O4(OR)16

[Ti3O4(OR)4]∞
FIGURE 2.11 Progressive hydrolysis of the p3q4 class of titanium alkoxide
oxo-polymers.  Alkoxy ligands are are represented by their oxygen atoms
only, and for clarity, some have been omitted entirely. (Adapted from [104].
Copyright 1961 National Research Council.)
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sis ratio ensures the dominance of alcoxolation and alcolation.36  But with regard to alcoxola-

tion, the functionality cannot exceed one because multiple hydroxyl substitutions (i.e., )

remain thermodynamically unfavorable; partial charge calculations show that unhydrolyzed

alkoxides have a greater susceptibility to nucleophilic attack by water than those already

hydrolyzed.  Accordingly, the lack of excess (localized) water severely retards the growth of

long-range structures and prevents the emergence of a spanning cluster (i.e., the gel point).

Instead, the combination of alcoxolation and alcolation leads to the synthesis of discrete

oxoalkoxides, which as mentioned in Section 2.3.3, can often be isolated from solutia via crys-

tallization.  For the intermediate domain, , the availability of multiply-hydrolyzed

species enables the development of polymer networks, principally through alcoxolation and

oxolation.  But enhanced precursor functionality beyond  (i.e., ) may only occur if

the partial charge chemistry of a system permits (see, for example, Table 2.3).37  So hydrolysis

may not go to completion even if .  Polymer growth in this regime proceeds primarily

through linear or branched construction and the formation of dense oxide particles is unfa-

vorable.  However, if the hydrolysis ratio surpasses z (i.e., ), heavily-crosslinked poly-

mers, particulate gels, or precipitates can result due to the presence of substantial quantities

of localized water.  This latter regime has been exploited to allow the controlled precipitation

of mono-dispersed TiO2 and ZiO2 powders from titanium ethoxide and zirconium 1-pro-

poxide, respectively [111, 112].

For coating, however, consideration of the three regimes suggests an optimal (partial)

hydrolysis of .  This range enables polymeric growth but minimizes the risk of precipi-

tation or premature gelation.  Clearly though, the actual value must be matched to the spe-

cific solution.  Partial hydrolysis plays a crucial role in developing soluble oxo-polymers

suitable for film deposition.  During the initial hydrolysis and condensation reactions, 

increases quickly due to the copious presence of labile alkoxy bonds.  Nucleophilic attack at

these sites, however, progressively reduces their availability, redistributing electron charge

and diminishing reactivity.38  Because of partial hydrolysis, a sol eventually enters a metasta-

ble state where  changes slowly with time, establishing a (relatively) steady viscosity for

36Alcolation refers to a reaction where the alkoxy ligand of one metal forms a bridge to another via nucleophilic
addition (i.e., an “alcol” bridge).  By comparison, olation uses the hydroxyl ligand (i.e., an “ol bridge).

37When referring to Table 2.3, assume .
38Refer to discussion concerning Figure 2.9 on page 51.
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coating.  Failure to hydrolyze before coating, however, leaves a solution vulnerable to the

adventitious behavior of atmospheric moisture.39  At the air-liquid interface, reaction layers

can form, creating a “skin”.  This condition alters the rheology of the sol during deposition

and interferes with substrate wetting and gel adhesion [113].  SAKKA, et al. [114] investigated

the film formation of hydrolyzed, alkoxy-derived sols for SiO2.  Examination of the relation-

ship with time between intrinsic viscosity, [η], and the number-average molecular weight,

Mn, highlighted three transitional regions characterized by:  (1) an initial short and rapid

jump in [η] resulting from polymerization, (2) an optimal intermediate range for [η] with lin-

ear polymers of Mn ~ 950–1900, and (3) a final spike in [η] denoting the approach of the gel

point.  Interestingly, only sols with  were considered “spinnable” by Sakka, et al.40  Sols

with higher hydrolysis ratios developed polymer morphologies unsuitable for dipping or

spinning.  So the emergence and growth of oxo-polymers before coating (i.e., partial hydroly-

sis) is critical for rheologies that produce uniform, defect-free films.

Dilute concentrations of water in solvent enable controlled hydrolysis and condensation,

producing oxo-polymers with exceptional chemical homogeneity.  By hydrolyzing in solutia,

the solvent serves as a separation medium for the reactants, tempering the reaction kinetics

by controlling diffusion [115].  Hydrolysis is slightly favored over condensation due to a

lower dependency on the reduced mobility of large oxo-polymer macromolecules.  In multi-

elemental solutions, however, strong concentrations of water can accentuate hydrolysis rate

differences between alkoxide species.  For example, during the sol-gel preparation of mullite

powder (i.e., ), a slow, restricted hydrolysis produces chemically uniform

oxo-polymers that, as measured by differential thermal analysis (DTA), decompose with a

sharp crystallization peak at 980 °C [116].  In contrast, rapid hydrolysis of the same solution

(i.e., via “excess water”) induces the synthesis of silicon-rich oxo-polymer segments; a higher

crystallization temperature results, suggesting that refractory SiO2 forms before conversion

to the final mullite phase.

Preferential hydrolysis creates notable challenges for the deposition of multi-elemental

sols.  Coating processes accelerate hydrolysis and condensation reactions through solvent

39Because of sensitivity to moisture, alkoxides and their solutions are handled exclusively under inert atmo-
sphere (see Chapter 3).  For convenience though, coating processes are generally conducted in air.

40Hydrolysis rates for silicon alkoxides are orders of magnitude slower than transition metal alkoxides [90].  So a
greater tolerance to water, and hence higher limits for h, would be expected.

h 2≤

3Al2O3 2SiO2⋅
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evaporation and exposure to moisture.  But without partial hydrolysis (and subsequent

aging), the most sensitive alkoxide species will be selectively attacked by water vapor.  The

resulting oligomers can phase segregate upon concentration, bringing inconsistent wetting

and adhesion, compositional inhomogeneities, and nonuniform film morphology.  YOLDAS

[115] explored the order of mixing in the hydrolysis of aluminum-borosilicate sols by par-

tially hydrolyzing either alkoxysilanol or trimethylborate solutions, and afterwards, adding

the needed, unhydrolyzed alkoxide constituents.  The oxo-polymer products depended criti-

cally on h and the mixing order.  Often, irreversible phase segregation occurred within the

solvent, rendering the sol unusable.

For descriptive clarity, the hydrolysis and condensation mechanisms of sol-gel process-

ing have, so far, been presented with the presumption of homometallic reactants.  Yet the

preceding discussion clearly highlights empirical observations differentiating the chemical

activity of multi-element containing solutions from that of uni-element ones.  Because many

ceramic materials, particularly the oxide perovskites, gain technological value specifically

through compositional variation, further elaboration on the lability of heterometallic alkox-

ides remains in order.  The complexity of multi-elemental solutions during hydrolysis stems

from oligomerization reactions that occur before exposure to water.  For example, the disso-

lution of two homometallic alkoxides in solutia results in a Lewis acid-base interaction, creat-

ing a heterometallic product:

(2.13)

In essence, one alkoxide species represents a better donor of electron density and the other a

stronger acceptor.  MEERWEIN and BERSIN [117] first exploited this behavior in 1929 during

attempts via titration to prove (unsuccessfully) the existence of so-called protic ansolvoacids

such as H[Al(OR)4].  Like alkoxy-bridging (i.e., ), oligomerization reactions raise

the metal coordination and lower configurational energy.  But because , any dative

bonding will activate partial charge transfer between the differing metal centers, establishing

a stable bridge.  So unlike the depolymerization exemplified by Group IVB alkoxides, many

heterometallic alkoxides volatilize unchanged upon heating with no separation into their

homometallic parents; further heating only brings decomposition, not disassociation.  Inter-

a1M1 OR1( )z1 a2M2 OR2( )z2+         Ma1

1 Ma2

2 OR1( )a1z1
OR2( )a2z2

→

M1 M2=

M1 M2≠
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estingly, Equation 2.13 offers a subtle yet useful means to incorporate otherwise insoluble

metal alkoxides into solutia:  a reactive alkoxide can often overcome the lattice energy of an

infinite polymer by cleaving alkoxy bridges and forming a soluble, heterometallic complex.

For example, in the all alkoxy-based sol-gel processing of PbTiO3, titanium 2-propoxide can

depolymerize {Pb[OCH(CH3)2]2}∞ in refluxing toluene [118].

With regard to sol-gel processing, an ideal heterometallic alkoxide would exhibit a metal

ratio that precisely matches that of its final oxide product.  CAMPION, et al. [120] synthesized

an intimate, “single source” precursor, BaTi(OCH2CH2OCH3)6, for the sol-gel preparation of

BaTiO3 by direct dissolution of equimolar Ba(OCH2CH2OCH3)2 and Ti(OCH2CH2OCH3)4 in

2-methoxyethanol.  Such an achievement remains noteworthy:  the metal ratios of heterome-

tallic products in solutia rarely correspond to the starting proportions of their homometallic

reactants.41  Characterization of alkoxy-based solutions for the titanate perovskites, CaTiO3,

SrTiO3, and BaTiO3, demonstrates that an equilibrium distribution of multiple, off-stoichio-

metric species occurs instead.  TUREVSKAYA, et al. [121] reported that the addition of calcium

and titanium ethoxides in ethanol or benzene produces the complex, Ca[Ti2(OCH2CH3)9]2,

with unreacted Ca(OCH2CH3)2 remaining.  After dissolving strontium and titanium 2-pro-

poxides in 2-propanol, RIMAN [122] measured alkoxides with strontium-titanium ratios rang-

ing from 2:1 to 1:2.  Similarly, the reaction of Ba(OR)2 with Ti(OR)4 by TUREVSKAYA, et al. [123]

in the parent alcohol or benzene yielded BaTi4(OR)18 with excess Ba(OR)2 regardless of

whether R = CH2CH3, CH(CH3)2, or CH2CH2CH3.

The presence of multiple, off-stoichiometric species in solutia requires a modification to

Equation 2.11.  Otherwise, the exact complex referenced in the denominator becomes ambig-

uous.  The most logical revision incorporates the homometallic reactants only:

(2.14)

This amended ratio defines h with respect to a controllable system quantity:  the cation(s)

content.  Here, the summation in the denominator occurs over the starting metal alkoxides as

indicated by the subscript i.  The necessity of Equation 2.14 can be better appreciated in light

41Overall solution stoichiometry, however, is preserved.

h
mol of H2O[ ]

mol of M OR( )z[ ]n[ ]
i

i
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of an additional pathway to the Lewis acid-base interaction of Equation 2.13.  In multi-ele-

ment solutions, condensation reactions can emerge despite the absence of hydrolytic water.

During this process, two alkoxy groups are replaced with a single oxo ligand, generating a

heterometallic oxoalkoxide and an ether molecule:

(2.15)

For example, when titanium 2-propoxide depolymerizes {Pb[OCH(CH3)2]2}∞ during reflux,

the presence of 2-propanol is reported to catalyze the formation of  Pb4Ti4O3[OCH(CH3)2]18

[118].  Clearly then, oligomerization reactions of homometallic alkoxides in solutia can pro-

duce both heterometallic and heteroleptic products.42  Accordingly, all values of h cited in

this dissertation (i.e., for tertiary La-Ba-Mn and La-Pb-Mn alkoxy-based sols) utilize Equation

2.14.  Further discussion concerning the synthesis, molecular structure, and reactivity of het-

erometallic alkoxides, however, will not be presented here but can be found in a comprehen-

sive review by CAULTON and HUBERT-PFALZGRAF [119].

The susceptibility of multi-elemental systems to preferential hydrolysis stems from their

tendency to distribute several alkoxide and (possibly) oxoalkoxide species in solutia.  Each

complex exhibits a different sensitivity to water that depends on the constituent metals and

their associated coordination environments.  By partially hydrolyzing in a solvent though,

these differences subside because diffusion paths play a mitigating role in the reaction kinet-

ics.  A more equitable participation in condensation results and the growing oxo-polymers

reflect overall solution stoichiometry.

But during coating, a sol experiences a disproportionately large air-liquid interface that

provides unrestricted access to moisture.  If deposited without prior hydrolysis, solvent

evaporation quickly reduces the diffusion lengths between dissolved species, accentuating

differences in hydrolytic sensitivity; water vapor preferentially attacks the most susceptible

alkoxide complex.  The emergence, in excess, of one hydrolyzed species over others virtually

guarantees oxo-polymers of off-stoichiometry.  As already discussed, Yoldas demonstrated

that such conditions are highly-undesirable for the sol-gel preparation of oxide ceramics.

42In transition metal chemistry, a complex is termed heteroleptic if the ligands occupying its coordination sphere
differ from each other.  Equation 2.13 includes the possibility of heteroleptic coordination (i.e., ) but
Equation 2.15 requires it (i.e., both oxo and alkoxy ligands).

a1M1 OR1( )z1 a2M2 OR2( )z2+         Ma1

1 Ma2

2 O( ) OR1( )a1z1 1– OR2( )a2z2 1– R1OR2+→

R1 R2≠
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The order and magnitude of hydrolysis plays a crucial role in developing usable sols.  So for

multi-elemental solutions, partial hydrolysis under dilute conditions in solutia enables the

growth of chemically uniform oxo-polymers.  In turn, the detrimental influence of atmo-

spheric moisture during coating is alleviated because the resulting oxo-polymers exhibit a

diminished lability towards water.

To prepare sols for film deposition, therefore, a partial hydrolysis ratio should be

selected that provides slow relative rates of hydrolysis and condensation (i.e., ).  But

low hydrolysis rates, unfortunately, often produce oxo-polymers with high percentages of

alkoxy groups, and hence, lower oxo-bridging (i.e., oxide yields).  This characteristic can cre-

ate a number of undesirable side-effects during the drying of gels and their subsequent

pyrolysis into ceramic end-products.

First, atmospheric carbon dioxide readily adsorbs on the surfaces of a porous, drying gel

which coordinates to the constituent metal centers via insertion or nucleophilic substitution.

This interloping ligand produces high-temperature amorphous carbonate or hydroxycarbon-

ate phases.  Such behavior is well-established in soda-silicate gels prepared for the nominal

glass compositions, (Na2O)x(SiO2)1-x [124].  But the phenomenon also applies to transition

metal perovskites, particularly compositions containing Group IIA elements.  KIRBY [125], for

example, demonstrated that the drying of alkoxy-derived gels for BaTiO3 powders avoided

carbonate formation when performed under argon.  When conducted in air, however, atmo-

spheric carbon dioxide successfully competed with water for labile barium centers, exclud-

ing a measurable fraction from hydrolysis:  carbonate stretching modes could be observed in

the xerogel by infrared spectroscopy.  Subsequent investigation by FREY [126] indicated the

availability of free barium species in the (wet) gel, which upon complete hydrolysis, formed

carbonate according to:  .

Second, the decomposition of hydrocarbon fragments during pyrolysis generates rapid,

localized pressures of water vapor and carbon dioxide.  In a xerogel film, excessive organic

content then risks the emergence of pin holes and surface defects.  Such a morphology

degrades insulating properties and prevents reliable patterning of device structures.

Lastly, high organic contents left by insufficient hydrolysis can increase the partial pres-

sures of carbon dioxide experienced by the pores of a decomposing xerogel.  This environ-

ment alters local reaction equilibria, suppressing the organic decomposition pathways.

h 2<

Ba OH( )2  CO2  +   BaCO3  H2O+→
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TEMPLETON and PASK [127] investigated the preparation of BaTiO3 from BaCO3 and TiO2 pow-

ders using conventional “grind and fire” methods; the barium metal center retained carbon-

ate at temperatures as high as 1300 °C under flowing carbon dioxide.  In contrast, carbonate

removal for the same preparation in air started at 900 °C, being complete after isothermal

treatment for four hours.  Accordingly, MOD techniques for BaTiO3 report a final reaction of

 (2.16)

suggesting that BaTiO3 formation can be hindered by increased partial pressures of carbon

dioxide [126, 128, 129].

So low partial hydrolysis ratios, while suitable for coating, may prove inadequate for

crucial organic removal.  On the other hand, higher hydrolysis ratios enhance oxide yield,

but by accelerating oxo-polymer growth, often produce unusable rheologies, accentuate

hydrolytic differences in multi-elemental solutions, and/or induce gelation.  Therefore, the

development of a sol system for coating processes, particularly from multi-elemental solu-

tions, introduces unique challenges.  The ability to prepare sol-gel derived powders does not imply

a straight-forward adaptation to film deposition — a capability often inappropriately presumed in the

literature.  As will be discussed in Section 3.4.2, alkoxy-based sol systems for manganite per-

ovskites require low partial hydrolysis ratios (i.e., ) for stable, spinnable sols.  Further

hydrolysis in a stream of humidified air, post-coating, comprises a necessary final step to

produce defect-free, chemically homogeneous La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 films.

2.3.5 DRYING, PYROLYSIS, AND SINTERING

The conversion of a gel into its corresponding dense ceramic relies on drying (i.e., xero-

gel formation), pyrolysis, and sintering.  Pyrolysis, conducted at intermediate temperatures,

causes the molecular components of a xerogel to fragment and decompose, restructuring

atomic bonds and releasing volatile by-products such as water vapor and carbon dioxide.

The resulting oxidized framework, generally still amorphous, retains the open porous struc-

ture of its parent gel.  Sintering at elevated temperatures then collapses the pore cavities of

the preform and densifies the amorphous oxide structure.  This naive description, however,

belies the underlying complexity of a seemingly simple process, begging the question:  How

Ba2Ti2O5CO3    2BaTiO3  CO2+↔ →

h 0.75<
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does a gel densify into a ceramic body?  Despite intense research, particularly during the

1980s, definitive answers remain elusive.  The following discussion presents proposed mecha-

nisms as constructed from a traditional understanding of densification and sintering.

An examination of alkoxy-derived borosilicate bulk gels led BRINKER, et al. [130–132] to

conclude that four principal mechanisms influence the densification of polymeric gels:  (1)

capillary contraction, (2) condensation polymerization, (3) structural relaxation, and (4) vis-

cous sintering.  Capillary contraction arises during solvent removal when the receding liquid

creates surface tensions that compress the viscoelastic framework.  Oxo-polymer fragments

impinge on one another, enabling unreacted hydroxy and alkoxy groups to further crosslink

(i.e., condensation polymerization).  When the skeleton is sufficiently stiff to resist continued

compaction, the remaining open volume forms a residual porosity.  Sols containing weakly-

crosslinked oxo-polymers (i.e., linear or marginally-branched) leave highly-compacted xero-

gels with fine pores and low porosities (i.e., 35–40%) [130].  Heavily-crosslinked oxo-poly-

mers, on the other hand, desiccate to produce globular clusters whose low-compliance

approximates particulate behavior; porosity approaches values of 60–70%.43

The thermodynamic driving force to densify a dried gel stems from its considerable free

energy relative to that of the corresponding melted glass (see Figure 2.12).  Large surface

areas contribute the most to a xerogel’s free energy but other factors include:  (1) a low

crosslink density and (2) a high free volume, both with respect to the glass [130].44   Heating

an alkoxy-derived xerogel then causes an exothermic conversion that enhances crosslinking,

reduces free volume (i.e., structural relaxation), and diminishes surface area (i.e., viscous sin-

tering).  But as depicted in Figure 2.12, particulate xerogels exhibit lower free energies than

their polymeric counterparts.  This difference results from the dense oxide cores comprising

the skeleton of the former:  hydroxy and alkoxy groups, primarily on the surface, are unable

to produce meaningful crosslinking and the framework itself contains little free volume.  So

unlike polymeric xerogels, particulate systems exhibit little skeletal transformation upon

heating; densification occurs mostly through surface area reductions.

43Particulate gels contain extended networks of rigid oxide microgranules.  Solvent removal compacts this struc-
ture, but only moderately.  So high porosities (i.e., 70–80%) are common [130].

44Non-periodic bonding in amorphous materials creates spacing in excess of ordered, crystalline structures.
This openness is referred to as free volume.  In polymeric xerogels, a low crosslink density arises from large
numbers of nonbridging oxygen atoms  (i.e., terminal hydroxy and alkoxy ligands).  Skeletal density is thereby
reduced, producing “extra” free volume within the framework.
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FIGURE 2.12 Free energy versus temperature of a xerogel, glass, and ideal
supercooled liquid.  All curves reflect the same oxide composition. (Adapted
from [130].  Copyright 1985 Elsevier Science Publishers B. V.)
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FIGURE 2.13 Linear shrinkage and weight loss of multicomponent silicate
bulk gels.  (Adapted from [131].  Copyright 1985 Elsevier Science Publishers
B. V.)
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Measurements of linear shrinkage and weight loss in alkoxy-derived borosilicate gels

during thermal processing (see Figure 2.13) highlight three qualitative trends applicable to

bulk polymeric xerogels:  (1) weight loss without shrinkage (i.e., ), (2) shrink-

age proportional to weight loss (i.e., ), and (3) shrinkage without weight

loss (i.e., ) [131].  In Region I, physisorbed water and alcohol detaches from the

xerogel, decreasing its weight.  As a result, the surface energy increases, inducing a capillary

pressure that shrinks the xerogel slightly (i.e., capillary contraction).  Further heating into

Region II, however, activates condensation and pyrolysis.  Water vapor and carbon dioxide

volatilize from the skeletal structure as crosslinking generates leaving groups (i.e., condensa-

tion polymerization) and hydrocarbon fragments decompose.  As expected, the weight of the

xerogel continues to decline.

Shrinkage in Region II proceeds via skeletal densification but with negligible rearrange-

ment of oxo-polymer packing.  Such behavior is attributed to the mobility of oxo-polymers

which diffuse to relax the skeleton and decrease its free volume.  For example, observations

on silica xerogels demonstrate that polymeric systems exhibit substantial intermediate-tem-

perature shrinkage; the contraction of (comparable) particulate systems, however, is negligi-

ble [131].  This latter characteristic stems from the density of anhydrous oxide particles which

varies only slightly from that of the melted glass.  Any driving force for skeletal densification

is therefore very small.45  Thus, shrinkage in Region II arises predominantly from condensa-

tion polymerization and structural relaxation.  Attempts to quantify their relative contribu-

tions, however, have proven inconclusive so far.

The onset of rapid shrinkage, accompanied by a stabilization in weight, marks the transi-

tion into Region III.  Here, surface tension emerges within the oxide framework, activating

viscous flow (i.e., viscous sintering).  Densification proceeds to completion as the amorphous

preform decreases its solid-vapor interfacial area; the free energy of the densifying body

approaches that of an ideal supercooled liquid (refer to Figure 2.12).  The mechanism of vis-

cous flow, however, remains exclusive to Region III [131].  If extended into Region II, only

pores with diameters less than ~ 4 Å would be susceptible to surface tension, a feature length

indistinguishable from the free volume within the structural skeleton.  By comparison, con-

45The lack of skeletal densification in particulate xerogels requires all shrinkage to result from increases in pack-
ing efficiency (i.e., particle rearrangement).  But because empirical observations show virtually no intermediate
temperature contraction, the packing efficiency must remain unchanged.

T 25 150–  °C=

T 150 525–  °C=
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densation polymerization and structural relaxation still play a role within Region III, albeit

ancillary to viscous flow.

Caution, however, must be exercised when adapting the observations of bulk gel densi-

fication to coated preforms.  In films, sub-micron thicknesses and exceptionally high (planar)

surface areas combine to significantly reduce the diffusive length of escape paths for volatile

species.  Furthermore, the low values of h conducive to coatable, alkoxy-based sols corre-

spond to systems containing weakly-crosslinked oxo-polymers (i.e., linear or marginally-

branched morphologies).  Deposition then leaves a compacted preform of minimal porosity,

particularly for spin-coating (see Section 2.3.6).  These characteristics tend to shift the onset of

Region III to lower temperatures, compressing (or even eliminating) Regions I and II.  For

example, Figure 2.14 presents the shrinkage and weight loss of a densifying, polymeric gel

coating on Si(100) [133].  Comparison with Figure 2.13 highlights the virtual absence of

behavior associated with either Region I or II.  This difference suggests the early activation,

with respect to bulk gels, of condensation polymerization, structural relaxation, and most
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FIGURE 2.14 Shrinkage and weight loss of a gel coating on Si(100).  The ini-
tial 131 nm thickness densified and crystallized into a 82 nm PbTiO3 thin film.
(Adapted from [133].  Copyright 1996 Samit S. Sengupta)
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notably, viscous sintering.  Unfortunately, the relative contributions of these three mecha-

nisms cannot be determined without further investigation.

The desirability of viscous sintering during the densification of xerogels becomes clearer

when contrasted with diffusive sintering.  The ensuing discussion, developed from conven-

tional sintering theory, offers a qualitative framework that supports the preferential deploy-

ment of polymeric systems in sol-gel processing.  But the analysis provided here represents

an approximation and cannot adequately model the phenomenon of gel densification.  As

stated previously, the complexity of gel behavior during heat treatment continues to defy

complete characterization and remains an area of active research.

The first theoretical model for viscous sintering, derived from considerations of viscous

flow, was proposed in 1945 by FRENKEL [134] who developed a time-dependent relationship

describing the fusion of two juxtaposed spheres via neck growth.  Subsequent experiments

by KUCZYNSKI [135] with pairs of alkali-silicate glass spheres confirmed the validity of Fren-

kel’s model for amorphous materials.46   The definition of viscous flow, , presumes

the availability of an acting stress (σ) which creates a strain (ε), enabling bulk motion as

quantified by viscosity (η).  In amorphous materials, the emergence of surface tension during

heating provides this stress.  Accordingly, the linear shrinkage (i.e., ) of an amorphous

body comprised of spheres with initial radii a is given by

(2.17)

where  is the surface energy of the solid-vapor interface; and η, the viscosity [136].  In

contrast, KINGERY and BERG [137] determined that lattice diffusion for an identical system of

spheres produces linear shrinkage following

(2.18)

where  is the surface energy of the solid-vapor interface; , the lattice diffusion coeffi-

cient; δ, the molecular radius; k, the Boltzmann constant; and T, the sintering temperature.47

46Kuczynski also corrected an erroneous factor of π in Frenkel’s original derivation.
47For comparison with Equation 2.17, the results of Kingery and Berg (i.e., Equation 2.18) were reformulated

using the procedure adapted by [136] for Frenkel’s derivation.
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A simple comparison of the exponents (i.e., t versus ) suggests that, at a given tempera-

ture, linear shrinkage occurs faster with viscous flow.  The strong temperature dependence

of η in amorphous materials lends further credence to this conclusion:  small increases in

temperature (i.e., 25–50 °C) often decrease viscosity by orders of magnitude [138].  Thus at

sintering temperatures, the scaling term in Equation 2.17 is greater than Equation 2.18.

Both Equations 2.17 and 2.18 refer to the initial stage of sintering but their predictions

extend qualitatively to subsequent stages.48  SEIGLE [140] demonstrated that neck growth and

void closure in amorphous materials is dominated by viscous flow during all stages of sinter-

ing.  Furthermore, pore elimination proceeds more rapidly with viscous flow than lattice dif-

fusion.  This latter observation carries notable implications for the densification of xerogel

preforms if the end-product is crystalline.  Unlike the borosilicate composition investigated

by Brinker, et al., many technologically-relevant ceramic oxides do not incorporate glass net-

work formers (i.e., B, P, Si, Ge, etc.).  So contrary to Figure 2.12, an equilibrium crystalline

phase emerges as the high-temperature reference state instead of an ideal supercooled liquid.

For example, FREY and PAYNE [141] reported that alkoxy-based monoliths, after copious

hydrolysis and thorough drying, could form nascent perovskite BaTiO3 crystallites at

 — an astonishing result!  Subsequent growth of such regions during heating can

transition a xerogel from viscous to diffusive sintering.  The rate of densification drops

accordingly and undesirably high processing temperatures may be required to fully elimi-

nate entrapped voids.49  So for the thermally-efficient processing of xerogel preforms, nucleation of

crystallites should be suppressed until viscous flow accomplishes complete densification.  For this rea-

son, polymeric gels are preferable to their particulate counterparts.  Skeletal structures of the

former contain lower desiccated porosities and densify at reduced temperatures.  Anhydrous

oxide cores of the latter, on the other hand, exhibit little free volume, a characteristic which

delays densification and increases the susceptibility to crystallization.

The preservation of viscous sintering is particularly important for the thermal process-

ing of coatings.  Constraints associated with an underlying substrate may prohibit tempera-

48Sintering progresses through three sequential steps classified as initial, intermediate, and final.  Qualitative
divisions are based on the relative density (ρrel):  ρrel < 0.65 (initial), 0.65 < ρrel < 0.90 (intermediate), and ρrel >
0.90 (final).  For further details, see the reference text by RAHAMAN [139].

49In crystalline materials, any decrease in pore volume requires grain growth, and hence, increases in grain
boundary area.  But gains in surface energy from pore reduction are partially offset by larger grain boundaries
which have crystallographically-mismatched interfaces.
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tures necessary for sintering crystalline oxide particles into pore-free films.  For example, this

dissertation employs Si(100) and platinized-Si(100) wafers which limit thermal processing to

; exceeding this threshold initiates unwanted film-substrate interactions.  Equally

important, pre-patterned structures and devices on a substrate often require further consid-

eration beyond the substrate itself.  Thus, for compatibility with silicon-based microelectron-

ics, processing temperatures below 700 °C are highly-preferable.50  But with electroceramic

oxides, such as the doped-lanthanide manganites, residual porosity must be avoided to pre-

vent the degradation of desirable transport properties.  So sol-gel processes for film deposition

should offer both low-temperature densification (i.e., viscous sintering) and crystallization, the former

completing before onset of the latter.  Alkoxide precursors are optimally-suited to satisfy this

stringent criteria because their hydrolysis can be readily controlled to ensure polymeric sols.

As will be discussed in Section 3.4.3, the La-Ba-Mn and La-Pb-Mn polymeric gels (i.e., 2:1:3)

deposited onto Si(100) and platinized-Si(100) substrates easily produced dense, pore-free

amorphous coatings at ; subsequent heating to 600–650 °C then activated nucle-

ation of the perovskite phase.  Details on the crystallization of amorphous oxides, however,

will not be presented here.  Instead, the reader is referred to standard texts on the processing

and physical properties of inorganic glasses (e.g., see VARSHNEYA [138]).

2.3.6 SPIN-COATING OF THIN FILMS

Sol-gel processes for thin-film deposition have typically involved spinning, dipping, or

spraying [68].  However, the extreme sensitivity of manganese(II) alkoxides to atmosphere

(see introduction in Section 2.4) precludes the convenient adaptation of dipping or spraying

to manganite perovskite coatings.  Both of these latter techniques, if conducted in air, allow

excessive exposure of the sol to water vapor and oxygen, enabling the development of fine,

insoluble, brown (i.e., oxidized) precipitates within the solvent media.51  The need for inert

environments, though, can be mitigated by spinning, a relatively quick method that induces

gelation before any appreciable products of oxidation emerge.  In addition, spin-coating is an

50Above 700 °C, dopant diffusion in silicon becomes significant, dissolving source and drain channels into the
crystal and contaminating the gate oxides [142].

51Dipping or spraying under inert atmosphere, although feasible, requires the utilization of glove box tech-
niques or specialized equipment.  As demonstrated in Section 3.4.3, the spin-coating of partially-hydrolyzed
sols was routinely achieved without contamination from oxidized particles.

T 800 °C<
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accepted method in the microelectronics industry, employed universally for the deposition

of ultrathin photoresist films.  Accordingly, this dissertation utilizes spin-coating to integrate

La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 thin films onto silicon-based substrates.  Further elab-

oration on dipping and spraying will, therefore, not be discussed here but can be found, with

references, in BRINKER and SCHERER [68].

To model the physics of film formation by spinning, BORNSIDE, et al. [143] and SCRIVEN

[144] divided the process into four qualitative stages: (1) deposition, (2) spin-up, (3) spin-off,

and (4) evaporation.  As depicted in Figure 2.15, spin-coating is a batch process wherein the

first three stages proceed sequentially.  The last two, however, sometimes occur concomi-

tantly although all stages can overlap to some extent.  During deposition, fluid from the sol

inundates the substrate, displacing gas at the solid-vapor interface thereby wetting the sur-

face.  Rotation of the substrate imparts angular velocity to the fluid via viscous drag, leading

to spin-up.  But viscous drag forces remain insufficient to establish a circumferential-only

velocity.  So a wave front propagates radially outward, carrying excess fluid off the edge of

the substrate.  The sol left in its wake forms a liquid coating of nearly even height — pro-

vided that Newtonian behavior dominates (i.e., η is not shear-dependent).  Droplets continue

to spin off the side, causing further thinning which enhances film uniformity.  During this

period, mass loss also occurs from the volatilization of solvent at the liquid-vapor interface.

A rapid, progressive increase in concentration (i.e., ~ 20–30 fold) reduces the diffusion length

of solvated oxo-polymers (or particulates), and hence, improves the kinetics for hydrolysis

and condensation.  Polymerization and aggregation then raise the viscosity, which in turn,

decreases the mobility of the film.  Eventually, mass loss through the surface exceeds that

leaving the edge, marking the transition to a final, evaporative stage.  During evaporation,

convective currents quickly transport volatile solvent molecules away from the body and

induce gelation.  The resulting immobile layer, however, still contains solvent entrapped

within its pores and therefore cannot yet be considered a xerogel.  At this point, dessication

becomes limited by the rate of molecular diffusion through the porous network.  Thus, in the

short timeframe allotted to spinning, the deposited gel may be unable fully convert into a sol-

vent-free body.

The effectiveness of spin-coating as a process stems from its ability to ensure that a rotat-

ing liquid film ultimately approaches a uniform height.  This behavior was first modeled by
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FIGURE 2.15 Stages of the spin-coating batch process.  Although portrayed
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1987 The Society for Imaging Science and Technology.)
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EMSLIE, et al. [145], who derived the time-dependent height, h(t), of a liquid coating during

spin-off, assuming negligible evaporation:

(2.19)

Here,  is the initial height at spin-off; ρ, the fluid density; ω, the angular velocity; t, the

time; and η, the fluid viscosity.  According to Equation 2.19, deviations in film thickness

should monotonically converge with time to zero (i.e., a uniform height); this prediction is

confirmed empirically for Newtonian viscosities [143, 144].  But the presence of η in the

denominator also underscores the importance of relatively stable rheologies during spin-

coating.  As pointed out in Section 2.3.4, polymeric sols used immediately after hydrolysis or

close to the gel point offer poor coating performance.  In either state, small increases in con-

centration (i.e., from evaporation) can raise the viscosity notably and therefore impart non-

Newtonian flow to the thinning liquid film.

The effects of evaporation are challenging to incorporate into any model because ambi-

guity surrounds the transition points at which:  (1) solvent loss through the surface domi-

nates mass loss at the edge and (2) forced convection yields to diffusive transport [143, 144].

Fortunately, the planar geometry of a substrate-supported rotating film allows the mass

transfer coefficient, k, to be presumed constant over the entire liquid-vapor interface.  This

simplification enabled MEYERHOFER [146], who also separated the spin-off and evaporation

stages, to determine , the final film thickness, and , the total elapsed time:

(2.20)

(2.21)

Evaporative effects are accounted for through e, the evaporation rate, which depends on the

aforementioned mass transfer coefficient, k.  The variable  refers to the mass of volatile sol-

vent per unit volume.  The null sub- and superscripts correspond, in all cases, to the initial

values at the onset of spin-off.  All other variables are as before (i.e., Equation 2.19).  In Mey-

erhofer’s model, evaporation commences only after the film-thinning rate during spin-off
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reaches .  Then, the coating is assumed instantly immobilized and further attenuation

proceeds exclusively through solvent volatilization (i.e., e).  This theory encompasses sol sys-

tems because gelation (crudely) matches Meyerhofer’s boundary conditions, i.e., the sharp

rise in viscosity (i.e., ) quickly arrests lateral flow and subsequent mass transport

occurs via evaporation.  Equations 2.20 and 2.21, for example, have been successfully corre-

lated to actual, physical film thicknesses obtained from nonvolatile polymers in solutia [143].

One difficulty, however, in applying Equation 2.20 to the spin-coating of polymeric sols

arises from competing mechanisms which emerge during evaporation:  capillary stresses and

crosslinking are both induced by solvent loss.  The former compacts the growing skeletal

structure, shrinking the overall body, but the latter stiffens it, enhancing its ability to with-

stand deformation.  These counterbalancing effects make predictions of final film thicknesses

particularly challenging.  The effectiveness of either mechanism depends on the relative rates

of evaporation and condensation, the result of which, influences oxo-polymer morphology

[150].52  If solvent removal proceeds faster than crosslinking, considerable skeletal collapse

occurs before condensation reactions can strengthen the framework.  The gel structure is then

comprised of stacked, interpenetrating linear or marginally-branched oxo-polymers.  This

characteristic produces a dense preform of low porosity.  Conversely, when polymerization

dominates, the compliance of the skeleton is sufficient to resist the onset of capillary pres-

sures.  That is, heavily-crosslinked clusters or globules aggregate and form connected, but

weakly-interpenetrating species, that entrap higher open volumes.  A comparison of coated

and bulk xerogels (see Section 2.3.5) then reveals a similar dependence of porosity on oxo-

polymer morphology.

Such an observation is notable because evaporation during spinning rapidly increases

the concentration.  In contrast, sols for monolithic bodies approach the gel point under condi-

tions of invariant concentration.  But coated xerogels exhibit lower porosities than their bulk

counterparts.  This distinction stems from the ballistic nature of film-thinning:  evaporation

causes the planar liquid-vapor interface to impinge on the substrate (i.e., along a direction

normal to the surface).  The resulting compression of solvated, but still reacting, oxo-poly-

mers therefore establishes a more compact gel structure.  Interpenetration and packing effi-

52The following description presumes an initial sol of dilute, weakly-interacting oxo-polymers (i.e., partially
hydrolyzed according to the criteria developed in Section 2.3.4).  Structural evolution during spin-coating then
begins with linear or marginally-branched oligomers.
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ciency are enhanced relative to bulk gels.  So for equivalent oxo-polymer morphologies, a

pathway of intense concentration will generate preforms of higher density.  Thus, to deposit

a xerogel film of minimal porosity, evaporation should be strongly accentuated.  Factors

which affect evaporation include the spinning rate (i.e., ω), ambient atmosphere, solvent

chemistry, solvent vapor pressure, and temperature.53

In addition to compression, radial shear and in-plane tensile stresses also play a promi-

nent role, respectively, during the spin-off and evaporation stages.  For example, BRINKER, et

al. [150] reported the shear-induced radial alignment of linear polysilicate structures upon

spinning.  The ability of viscous drag forces to influence the radial motion of oxo-polymers

decreases with increasing molecular weight.  So species of higher mass may separate from

those of lower mass as spin-off progresses.  For multi-elemental sols, this potential behavior

raises a note of caution:  oxo-polymer products should be chemically uniform (i.e., no prefer-

ential hydrolysis) otherwise phase separation can produce compositional gradients.

Arrival at the gel point, however, shifts the stress mode from radial shear to in-plane ten-

sion.  As already discussed, evaporation activates film shrinkage (i.e., negative strain) via

capillary pressure.  But because of adhesion to the substrate, strain development in a desic-

cating gel is actively opposed.  The resulting in-plane tension sometimes induces the devel-

opment of striations, spoke-like ridges of thicker film extending out from a substrate’s center.

Recent investigations into this phenomenon by BIRNIE, et al. [147–148] underscore the impor-

tance of controlling solvent volatility to ensure stable and uniform surface tensions:  by elim-

inating differential evaporation, the formation of such defects can be avoided.

A simple consideration of equilibrium mechanics shows that in-plane tensile stresses can

be approximated by the capillary pressure [68].  In bulk preforms, stresses of this magnitude

(e.g., ) would crack or shatter a xerogel body.54  Yet films thinner than ~ 0.5

µm never fracture regardless of the drying rate — a remarkable characteristic!  Above ~ 1 µm,

though, crack-free coatings are virtually unattainable.  The origin of both these metrics

remains poorly understood.  But the upper bound has led to a practical guideline commonly

referred to as the “micron rule”.  To achieve crack-free thicknesses greater than ~ 1 µm then,

53The ambient atmosphere surrounding a liquid film can be deliberately pre-saturated with solvent vapor to
suppress the evaporation rate.

54Evaporation from a desiccating gel establishes a stress gradient that deforms the exterior surface greater than
the interior body.  The corresponding differential strain often induces fracture.
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multiple depositions (i.e., spin, dry, and pyrolyze) are clearly required.55  Further discussion

of crack formation and propagation in sol-gel coatings, however, lies beyond the scope of this

dissertation.  Instead, the reader is directed towards the excellent review (and subsequent

investigation) of such phenomena by MIKALSEN [149].

2.4 ALKOXIDE PRECURSOR SYNTHESIS

The utility of alkoxide precursors in sol-gel processing stems from their ability to:  (1)

produce a diverse range of condensed, synthetic structures and (2) confer control over these

morphologies through selection of the alkyl group and hydrolysis ratio.  Such advantages are

largely absent from aqueous systems because the constituent inorganic salts react almost uni-

versally to form dense hydrous oxide precipitates or particulate gels [68, 89].56  In contrast,

the weak hydrolysis of alkoxide precursors in organic solvents commonly forms metastable,

polymeric sols.  As emphasized in Section 2.3.5, xerogels derived from the latter exhibit finer

porosities and densify at reduced temperatures than those based on the former.  Thus, poly-

meric systems play a crucial role in the low-temperature integration of complex oxide films onto non-

refractory substrates.  This section, therefore, details the synthetic approach needed to produce

homometallic, homoleptic alkoxides for the polymeric sol-gel processing of manganite per-

ovskites.

An opening discussion highlights the limitations of conventional surrogate precursors,

and in particular, carboxylates and β-diketonates.  Publications in the literature and private

attempts by the author will conclusively demonstrate the unsuitability of such surrogates for

low-temperature CSD methods.  After establishing the basis for an all-alkoxide approach, the

(known) physical characteristics of manganese(II) alkoxides are presented with an emphasis

on overcoming the challenges affiliated with:  (1) their extreme air sensitivity and (2) their

tendency to form stable, infinite polymers.  Accordingly, the molecular engineering of solu-

ble, reactive alkoxide structures is then described from the perspective of the silylamido

55Pyrolysis should be conducted between coating iterations to minimize the risk of fracture.  Thicker xerogel
films generate larger quantities of gaseous decomposition products and contain longer diffusion paths.
Together, these characteristics may combine to congest exit pathways, and therefore, produce regions of high,
localized pressure.  If substantial, the resulting stress concentration will dissipate by forming and propagating
cracks.  Thinner xerogel films are less susceptible to this behavior.

56In aqueous systems, dissolution, in and of itself, implies the coordination of a metal center by aqua ligands.
Hydrolysis (i.e., the generation of hydroxo or oxo ligands via proton loss) then proceeds quite fast.  Table 2.4
on page 55 lists typical end-products.
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ligand, an exceedingly flexible and potent synthon.  Adaptation of the corresponding syn-

thetic procedures to each relevant element (i.e., Mn, La, Pb, and Group IIA) concludes the

section.

2.4.1 SURROGATE PRECURSORS

For doped-lanthanide manganites, the general unavailability of Group VIIB alkoxides

has, up to this point, forced the adaptation of manganese salts (i.e., nitrates, carboxylates, and

β-diketonates) as surrogate precursors.  The precedence for such an approach was estab-

lished by BUDD, DEY, and PAYNE [1, 2] who employed lead(II) acetate during the sol-gel pro-

cessing of PbTiO3 and PbZrxTi1-xO3 thin films.  Their procedure exploited the polyfunctional

nature of 2-methoxyethanol (i.e., ethereal and alcoholic groups) to react with and dissolve

otherwise insoluble carboxylates:   was converted into the alkoxo-

acylate, Pb(OCH2CH2OCH3)(OOCCH3), upon reflux and distillation [151].  Further investi-

gations have yielded many similar alkoxy-based heteroleptic intermediates containing car-

boxyl or β-diketone ligands [152, 153].  The incorporation of nitrates in sol-gel processes,

however, is eschewed because the  anion during reflux tends to displace the hydroxyl

group from an alcohol (i.e., the solvent) forming unstable RC—ONO2 bonds.  This functional

structure comprises the explosive basis for nitroglycerin [154].  For example, preliminary

attempts by the author to prepare 2-methoxyethanol-based sols using manganese(II) nitrate

hydrate garnered the following observation:  after spin-coating, pyrolysis at 300 °C generated

faint plumes of smoke above the substrate.  Not surprisingly, chemical analysis of the surface

by XPS revealed none of the “deposited” metals.

The first CSD method for manganite perovskite thin films was developed by BAE and

WANG [155] who reported the formation of La0.67Ca0.33MnO3 on lattice-matched, refractory

LaAlO3(100) and MgO(100) substrates.  By processing at 80 °C for 24 hours, lanthanum, cal-

cium, and manganese acetate were dissolved, with an unspecified ratio of water, in 2-meth-

oxyethanol.  But the inclusion of water prior to heating suggests an effort to improve

solubility; all three acetates are normally insoluble in 2-methoxyethanol (i.e., under ambient

conditions), but their dissolution occurs readily in water.  In addition, the opportunity for

templated epitaxial growth proved inadequate to overcome high processing temperatures

(i.e., 950 °C) and special atmospheres (i.e., flowing oxygen).  These observations are reminis-

Pb OOCCH3( )2 3H2O⋅

NO3
–
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cent of characteristics exhibited by the acetate-based, aqueous process of HASENKOX, et al.

[101, 102].  Without further (clarifying) investigations, they suggest a synthetic pathway of

simple complexation followed by metal-organic decomposition; the lack of demonstrated

hydrolysis and condensation products therefore raises questions about the “successful sol-

gel growth” claimed by Bae and Wang.

A proper refinement of the approach pioneered by Budd, et al. was undertaken in a col-

laborative endeavor by the author [156, 157].  Three principles governed the transfer of this

technique from titanate to manganite perovskites:  (1) alkoxides were preferentially selected

over carboxylates when available, (2) each precursor was dissolved separately in 2-methoxy-

ethanol, forming individual homometallic solutions, and (3) stoichiometric mixing and reflux

preceded hydrolysis.  Accordingly, two compositions, La0.67Ca0.33MnO3 and La0.67Pb0.33MnO3,

were derived from lanthanum 2-methoxyethoxide, calcium 2-methoxyethoxide, lead(II) ace-

tate, and manganese(II) acetate.  Figure 2.16 shows scanning electron micrographs of the cor-

responding microstructures formed on LaAlO3(100).  The faceted, columnar islands clearly

reflect the influence of substrate lattice-matching.  But despite the benefit of templated

growth, firing temperatures in excess of 800 °C were still required.  So the progressive reduc-

tion of carboxylate content (i.e., to manganese(II) acetate at minimum) failed to confer a pro-

cessing regime compatible with silicon-based microelectronics.  Comparison with the CSD

method of Bae and Wang does, however, indicate a lowering of crystallization temperature.

This trend favors the increased utilization of alkoxide precursors, and in particular, an all-

alkoxide approach.

Similar behavior was also demonstrated by BECK, et al. [158] during a comparative inves-

tigation into the sol-gel processing of BaTiO3.  The replacement of barium 2-propoxide by its

corresponding acetate salt resulted in substantial carbonate contamination upon pyrolysis,

requiring higher temperatures (i.e., ) for phase-pure material.57  In contrast, mass

spectrometry detected no organic evolution above 700 °C for xerogels derived solely from

alkoxides; crystallization of BaTiO3 was reported to occur between 500–600 °C with all for-

eign phases absent by 1000 °C.  Beck, et al. reported that carbonate formation involved the

segregation of BaCO3, leaving Ti-rich regions in the previously homogenous system.  Higher

57In all cases, titanium 2-propoxide served as the Ti source.  Reactions were carried out in either 2-propanol
(alkoxide-only) or glacial acetic acid and 2-propanol (acetate-alkoxide).  Glacial acetic acid is required to dis-
solve the otherwise insoluble barium acetate.
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FIGURE 2.16 Manganite perovskite thin films grown on lattice-matched
LaAlO3(100).  The xerogel coatings were fired in air at 850 °C for one hour
[156].
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temperatures were therefore required to decompose the refractory carbonate and re-inte-

grate, via reaction, the oxidized product back into the host matrix.  This observation has sig-

nificant implications for the sol-gel processing of doped-lanthanide manganites:  the thermal

decomposition of carboxylates and β-diketonates proceeds almost exclusively through oxycarbonate or

carbonate intermediates [103, 159].  For example, La(OOCCH3)3 converts, upon heating, to

La2O2CO3, achieving the full oxide only above 910 °C [160]; similarly, Ca(OOCCH3)2 trans-

forms into CaCO3 with CaO first appearing after the temperature exceeds 800 °C [161].58

The tendency of carboxyl and β-diketone ligands to decompose into thermally-stable

oxycarbonate and carbonate species stems from the bidentate nature of their underlying

functional groups:  unlike alkoxy ligands, carboxyl or β-diketone groups bond through two

oxygen atoms, and thus, more effectively saturate the coordination sphere of an electrophilic

metal.59  This activity matches the coordination mode of the corresponding anionic decom-

position product, .  Equally important, by imparting higher coordination numbers (i.e.,

N), the configurational energy of a metal decreases, enhancing its resistance to nucleophilic

attack (i.e., hydrolysis).  Such behavior has been exploited in heteroleptic acetate and pen-

tane-2,4-dionate derivatives of titanium 2-proproxide and titanium 1-butoxide to avoid pre-

cipitation [163, 164].  Partial charge considerations indicate that carboxylate-alkoxides or β-

diketonate-alkoxides experience preferential hydrolysis of their more labile unidentate

alkoxy bonds [165].  The growth of oxo-polymer or particulate morphologies then progresses

with carboxyl or β-diketone ligands maintaining an exterior presence on the condensing

structure [166].  Therefore, the survival of these bidentate ligands, even under aggressive

hydrolytic conditions, brings the undesirable prospect of carbonate formation during decom-

position, and hence, the potential for high processing temperatures.

This possibility becomes particularly acute in heterometallic species where carboxyl or

β-diketone ligands can join differing metal centers through a bridging mechanism.  Such

58Carbonates of other relevant Group IIA metals (i.e., Sr and Ba), exhibit even higher thermal stabilities due to
larger cation radii.  For example, the decomposition temperatures of phase-pure CaCO3, SrCO3 and BaCO3 are,
respectively, 840 °C, 1100 °C, and 1300 °C [162].

59The functional unit of the β-diketone ligand stems from its open OC—C—CO ring.  Alkyl groups, R1 and R3,
bond (respectively) to the outer carbon atoms but the central carbon exhibits both R2 and H.  The generic for-
mula is given by R1COCHR2COR3.  Pentane-2,4-dione (i.e., acetylacetone), the most common moiety, occurs
when R1 = R3 = CH3 and R2 = H.  In a fashion similar to carboxylates, the hybridization of p orbitals along the
OC—C—CO ring creates a delocalized electron cloud that imparts ionic character to the ligand.  An organic
salt is formed upon coordination with a metal.  A comprehensive review of β-diketonate chemistry can be
found in the reference text by MEHROTRA, et al. [159].
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coordination often replaces bidentate chelation in mixed-metal systems:  HUBERT-PFALZGRAF

[167] examined various heterometallic alkoxide-acetate crystal structures and found only

bridging modes; infrared measurements on xerogel end-products (i.e., powders) confirmed

the retention of heterometallic, bridging coordination after hydrolysis.  This observation, in

light of the results of Beck, et al. with BaTiO3, offers a plausible explanation for the high for-

mation temperatures (i.e., ) encountered so far in the sol-gel processing of La1-

xMxMnO3 materials:  the utilization of surrogate, acetate precursors activates a bridging

mechanism between metals of low-temperature (i.e., Pb or Mn) and those of refractory (i.e.,

La or Group IIA) oxycarbonate or carbonate phases.60  Thermal energy during pyrolysis then

is quite sufficient to enable the decomposition product, , to transfer full coordination

into the more stable bond (i.e., La or Group IIA).  So preliminary results using metal acetates

suggest that, due to similar functionality with , carboxylate or β-diketonate precursors

are poorly suited for the sol-gel processing of doped-lanthanide manganites.  Thus, the need

for lower temperatures (i.e., ) clearly justifies the development of an all-alkoxide precursor

system (i.e., unidentate), the principal objective of this dissertation.

2.4.2 CHALLENGES OF MANGANESE(II) ALKOXIDES

As mentioned previously in Section 2.3.2, Group VIIB alkoxides represent the least-char-

acterized members of the transition metal series.  With regard to sol-gel processing, their uti-

lization remains virtually unknown.  An extensive survey of the literature, performed by the

author according to guidelines outlined in MAIZELL [169], yielded only 11 articles containing

information on manganese(II) alkoxides (e.g., see references [170–180]).  Unfortunately, the

poor understanding reflected by this paucity of data extends directly into the publications

themselves:  many articles unwittingly report on the products of oxidation and not the actual

alkoxides, rendering any conclusions (therein) highly suspect [170–172, 175, 180].  Such arti-

cles are easily identified by their descriptions of “brown”, “dark brown”, or “black” material

(i.e., crystals, powders, or solutions).  Yet manganese(II) alkoxides, when isolated in pure

form, exhibit either colorless, pink, lavender, or yellow hues [176].  The observed darkening

of color, caused by exposure to molecular oxygen, indicates a transition in valence from

60Pb(OOCCH3)2 and Mn(OOCCH3)2 convert, respectively, to PbO and MnO at ~ 360 °C and ~ 350 °C [160, 168].
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Mn2+ to Mn3+.  A brown, dark-brown, or black appearance is unusual for d5 high-spin sys-

tems (i.e., Mn2+) but characteristic for Mn3+.  Accordingly, the only manganese(III) alkoxides

reported to date, the 2,2’-biphenoxides, were synthesized directly in solution (i.e., not by aer-

obic oxidation), crystallizing as “dark brown” or “black” solids [181].

The reaction of manganese(II) alkoxides with oxygen occurs via an insertion mechanism,

establishing a coordinately-saturated manganese(III) oxoalkoxide, [MnOx/2(OR)2]n.61  For

example, derivatives of secondary alcohols undergo oxidation through unstable, green-col-

ored intermediates, suggesting the brief emergence of a seminal  complex

[176].  Susceptibility to ligation by O2, however, is not alleviated by heterometallic oligomer-

ization (i.e., Equation 2.13):  MEHROTRA, et al. [180] synthesized various mixed-metal (i.e.,

) alkoxides, which due to improper precautions, oxidized

in situ immediately following metathesis (see Section 2.4.3).  Manganese(III) oxoalkoxides

and their heterometallic counterparts are unsuitable for sol-gel processing because Mn3+,

when coordinated by oxo and/or oxygen-functionalized ligands, displays exceptional resis-

tance to hydrolysis.  In addition, continued aerobic exposure of initially-oxidized products

allows the growth of inert, dense particulates.62  This latter complication is difficult to control

due to the extreme oxygen sensitivity of alkoxy-coordinated Mn2+.  Even minor contamina-

tion can induce precipitation from solution.  Fortunately, manipulation under purified argon

gas enables the routine synthesis and handling of manganese(II) alkoxides — provided all

solvents are scrupulously degassed beforehand.  Such procedures (and affiliated equipment)

comprise the subject matter of Chapter 3.

ADAMS, et al. [173, 174] achieved the first successful isolation of a manganese(II) alkox-

ide, reporting the magnetic moment and diffuse reflectance spectrum of the pale pink meth-

oxide, [Mn(OCH3)2]∞.  But a meticulous investigation into manganese(II) alkoxide chemistry

was not conducted until 1979 when HORVATH, et al. [176], in pioneering research, systemati-

cally synthesized and characterized 22 homoleptic moieties.  Their examination revealed that

61Preliminary results with aliphatic manganese(II) alkoxides indicate tentative range of x = 0.5–0.75 [176].
62These particulates can only be dissolved in concentrated mineral acids (i.e., aqueous HCl, HNO3, H2SO4, etc.).

Their negligible reactivity stems from the conversion [MnOx/2(OR)2]n into [MnO(OR)]n when excess oxygen is
present [176].  For example, commercial Mn(OCH3)2 purchased by the author arrived inadequately packaged,
and hence, as an insoluble brown powder.  Elemental analysis indicated half of the required hydrocarbon con-
tent.  A comparison of the measured values with their theoretical weight percents (i.e., Mn, C, and H, respec-
tively) gave 44.08, 10.38, and 3.21 versus 46.95, 20.53, and 5.17, respectively.

[Mn(OR)2]n yO2⋅

M1 Mn2+,=  M2 Al, Zr, and Nb=
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[Mn(OR)2]n species demonstrate solubility only if R contains appreciable steric bulk, and in

particular, tertiary branching.63  Large aliphatic chains or modified phenyl groups (i.e., R)

were needed to inhibit molecular association, and hence, polymerization.  The oligomeriza-

tion of lower carbon derivatives (i.e., R = C5 and below) was shown to proceed via long-range

cooperative bridging, yielding bonds of notable strength.  For example, decomposition of

these high molecular-weight compounds (under argon) required temperatures in excess of

300 °C; melting or sublimation was not observed [176].  Clearly though, insolubility and poor

reactivity render such polymers unsuitable for sol-gel processing.  Thus, current research

into [Mn(OR)2]n chemistry has emphasized the utilization of “designer” ligands with high

steric bulk to stabilize monomeric or discrete oligomeric structures [177–179].

An intuitive explanation for the oxygen sensitivity and polymerization of manganese(II)

alkoxides can be developed by considering two interrelated aspects of manganese oxide

chemistry [182].  First, Mn2+ represents the lowest oxidation state for manganese in a purely

oxo-ligand environment:  the complete binary oxide series, MnO, Mn2O3, MnO2, and Mn2O7,

corresponds to a progressive increase in valence, respectively, from Mn2+ to Mn3+, Mn4+,

and Mn7+.  Second, MnO crystallizes in the rock-salt structure (i.e., NaCl) which contains

MnO6 site symmetry (i.e., Oh).  Thus, the driving force for coordinate expansion in manga-

nese(II) alkoxides is exceptionally large because .  By comparison, the Group IVB

alkoxides exemplified in Sections 2.3.2 and 2.3.3 exhibit only .  So low-coordination

[Mn(OR)2]n structures remain highly susceptible to nucleophilic attack by oxygen-functional-

ized ligands.  Indeed, ADAMS, et al. [173, 174] and HORVATH, et al. [176] confirmed that poly-

meric manganese(II) alkoxides, [Mn(OR)2]∞, manifest Oh stereochemistry, matching the oxo-

coordination of MnO via alkoxy bridging.  Unfortunately, no stereochemical information

exists for manganese(III) oxoalkoxides.  Any discussion then beyond simple considerations

of oxidation in [MnOx/2(OR)2]n would therefore be speculative.

As a final comment, the special handling requirements of manganese(II) alkoxides might

be construed as inconvenient enough, relative to other surrogate precursors, to inhibit their

general adaptation within sol-gel processing (i.e., powders, fibers, aerogels, monoliths, etc.).

Such a conclusion, however, would be premature.  To illustrate this point, anhydrous man-

63Pentane, benzene, tetrahydrofuran, pyridine, and acetonitrile were investigated as representative organic sol-
vents (i.e., alkanes, arenes, ethers, aromatic heterocycles, and nitriles, respectively).

N z– 4=

N z– 2=
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ganese(II) acetate was refluxed in 2-methoxyethanol at 135 °C (under argon) for 12–16

hours.64  Dissolution proceeded slowly but eventually yielded a pink, transparent solution

(see Figure 2.17).  Any exposure to oxygen, however, induced the immediate precipitation of

brown material (not shown).  This behavior strongly suggests the synthesis of an unidenti-

fied alkoxo-acylate, perhaps Mn(OCH2CH2OCH3)(OOCCH3).65  Oxidation was also noted in

the acetate-based, multi-elemental sols developed for La0.67Ca0.33MnO3 and La0.67Pb0.33MnO3

(i.e., the collaborative endeavor of [156, 157]).  Both systems darkened after one week, pro-

ducing brown sediment shortly thereafter.66  So clearly, conversion of manganese(II) surro-

gates (i.e., carboxylates and β-diketonate) into soluble derivatives concomitantly confers

oxygen sensitivity.  Thus, the handling precautions remain the same, regardless of whether the ini-

tial precursor is an alkoxide or its surrogate!

2.4.3 THE SILYLAMIDE SYNTHESIS ROUTE

The syntheses of late transition metal or lanthanide alkoxides rely almost entirely on

metathetic reactions (i.e., ligand exchange) [76–78].  Traditionally, anhydrous halide salts and

Group IA alkoxides are employed, the latter selected according to the desired OR group:

(2.22)

Here, M refers to the transition metal or lanthanide; , the alkali metal (usually Na); and

X, the halide (commonly Cl).  The parent alcohol (i.e., ROH) provides the reaction medium

64The anhydrous precursor was prepared from Aldrich 22,977-6, manganese(II) acetate tetrahydrate, 99.99%, by
heating the corresponding pink crystals in a flask under vacuum.  A four-step procedure was utilized to pre-
vent the rapid release of water vapor which otherwise would condense on the flask interior and dissolve the
dehydrating solid:  (1) heat at 50 °C for 12 hours, (2) heat at 100 °C for 12 hours, (3) grind under argon, and (4)
reheat at 100 °C for 12 hours.  Elemental analysis confirmed the still-pink, extremely-brittle powder to be com-
pletely devoid of water.  This process is essential to destabilize the octahedral coordination of manganese in
the tetrahydrate [183].  Progressive removal of aqua ligands causes the crystal structure to collapse, leaving an
incomplete coordination sphere susceptible to solvation (i.e., coordination of the metal by solvent molecules).

65In manganese(II) acetate, anionic carboxyl ligands coordinate Mn2+ centers exclusively through bridging
modes [183].  Highly-polar, protic solvents such as water can easily disrupt this long-range coordination via
repeated hydrolysis (i.e., nucleophilic attack, proton transfer, and liberation of acetic acid).  Weaker protic sol-
vents (i.e., 2-methoxyethanol), however, require the heat of reflux to activate proton transfer.  Formation of an
alkoxy bond, terminal in nature, then disjoins the Mn2+ centers.  Continued reaction breaks up the solid.

66The glassware pictured in Figure 2.17 was not available during the author’s collaboration with Dr. Duk-Young
Jung.  At the time, less reliable Subaseal stoppers were employed, which after prolonged contact with 2-meth-
oxyethanol vapors, cracked and allowed contamination by oxygen.

MXn yMIAOR+         M OR( )yXn y– yMIAX+→
ROH

MIA
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FIGURE 2.17 Dissolution of Mn(OOCCH3)2 in 2-methoxyethanol.  A pink,
transparent solution results after extended reflux under inert gas.  Oxidation
occurs immediately upon exposure to air, darkening the solution and preci-
pitating brown sediment.
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but mixtures with arene (i.e., benzene, toluene, etc.) or ethereal solvents (i.e., tetrahydrofu-

ran) are often utilized to improve yield and purity.  Before metathesis, however, the anhy-

drous halide salt must first be refluxed to form a coordinated adduct, typically 

[184–186].  This solvation procedure comprises a critical enabling step for subsequent ligand

exchange.  Unfortunately, the synthetic intermediates of Equation 2.22 are prone to side-reac-

tions which incorporate halide and  impurities into the final product.  For example, a 1:3

stoichiometric reaction of YCl3 with NaOC(CH3)3 in tetrahydrofuran does not generate

Y[OC(CH3)3]3, but rather, the solvent-adducted Y3[OC(CH3)3]8Cl [187].  Both halide and 

contamination results from the high Lewis acidity of M(OR)n, a characteristic which enables

chemical interactions with more basic  or  species [119].  Increasing the

steric bulk of OR improves the chances for such reactions as partially-substituted intermedi-

ates gain enhanced screening of their smaller halide ligands.

Heteroleptic and/or heterometallic impurities present acute challenges for the synthesis

of metal alkoxides because soluble derivatives usually arise only with higher alkyl homo-

logues.67  Fortunately, modern research into the chemistry of metal alkoxides has provided a

potent modification of the simple metathetic pathway offered by Equation 2.22 [77, 78]:

(2.23)

(2.24)

By integrating the novel silylamido ligand, , this elegant solution bifurcates the

previous synthetic pathway into two distinct steps (i.e., Equations 2.23 and 2.24).  Metathesis

now occurs via an amido (as opposed to an alkoxy) ligand and nucleophilic substitution with

67Manganese(II) alkoxides provide an excellent case in point.  The preparation of polymeric [Mn(OCH3)2]∞ by
ADAMS, et al. [173, 174] used MnCl2 and LiOCH3, exploiting the partial solubility of LiCl in methanol.
Repeated washings with pure solvent then removed the entrapped salt.  Lithium chloride, however, is not sol-
uble in other, less-polar alcohols.  Furthermore, to avoid heterometallic contamination, lithium alkoxides are
usually eschewed in favor of sodium or potassium analogues.  The larger cationic size of these latter Group IA
atoms enhances coordination by chlorine and inhibits incorporation into the otherwise homometallic alkoxide
product.  Unfortunately, separation becomes virtually impossible if the manganese(II) alkoxide is polymeric
(i.e., insoluble).  Attempts by the author to synthesize the 2-propoxide derivative, {Mn[OCH(CH3)2]2}∞, from
MnCl2 and NaOCH(CH3)2 in 2-propanol yielded a fine, white powder (i.e., NaCl) interspersed within the
expected pink, amorphous product.  Extraction efforts proved futile.  HORVATH, et al. [176] reported that the
adaptation of Equation 2.22 to the synthesis of soluble manganese(II) alkoxides (i.e., with large hydrocarbon
groups) significantly diminished yields and often included contaminating side-products.

MXn xROH⋅

MIA

MIA

M OR( )yXn y– MIAOR

MXn yMIAN Si CH3( )3[ ]2+         M N Si CH3( )3[ ]2{ }nXn y– yMIAX+→
THF

M N Si CH3( )3[ ]2{ }n nROH+         M OR( )n nHN Si CH3( )3[ ]2+→
Toluene

N Si CH3( )3[ ]2
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a pre-selected alcohol generates the desired metal alkoxide.  The sheer efficacy of the silyla-

mide route in engineering new inorganic precursors is summarized by Figure 2.18 which

highlights a specific adaptation to lanthanide chemistry [188].  As in alkoxy-based metathe-

sis, solvation of the halide prior to reaction plays a crucial role in enabling high yields.  The

silylamido metal-nitrogen bond, however, contains an obvious sensitivity to cleavage by pro-

ton transfer.  So non-protic coordinating solvents, commonly ethers, provide the dissolution

medium.

In general, ethereal solvents can be viewed as organic analogues of water where carbon-

based groups replace protons in the molecule (i.e.,  versus HOH).  But the absence of

polar Oδ-—Hδ+ bonds significantly reduces the dipole moment of ethers relative to alcohols

(i.e., ) or water (i.e., ).  To circumvent this deficiency, any selec-

tion of ethereal solvent must emphasize high Cδ+—Oδ-—Cδ+ polar covalencies and minimize

steric bulk.  Both criteria are readily satisfied by tetrahydrofuran (THF), the nearly universal

choice for silylamide syntheses.  Organic groups in its molecular structure form a compact

heterocyclic ring (i.e., ), enhancing exposure of its electron-rich oxy-

gen donor.  This configuration imparts aggressive coordinating ability, enabling THF to sol-

vate anhydrous  salts and assist in ligand exchange.

The susceptibility of metal silylamides to nucleophilic substitution arises from:  (1) low

metal coordinations, (2) π-bonding interactions at the Si—N bond, and (3) the weak Lewis

R1OR2

R1 or R2 H= R1 and R2 H=

R1 and R2 CH2CH2=

MXn

Ln—N[Si(CH3)3]2

Ln—C≡CR
Ln—Cp
Ln—SnR3

Ln—NR2
Ln—PR2
Ln—OR
Ln—SR
Ln—SeR
Ln—TeR
Ln—Cl

+    HL +    HN[Si(CH3)3]2

FIGURE 2.18 Silylamido metathesis as represented through lanthanide
chemistry.  The abbreviation, Cp, refers to η5-cyclopentadienyl .  (Adapted
from [188].  Copyright 1999 Springer-Verlag.)
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basicity of the leaving group, .  In a manner analogous to alkoxides, silyla-

mides display polarization of their Mδ+—Nδ- bonds, the result of high nitrogen electronega-

tivity [191].  Accordingly, intermolecular back-donation of lone-pair electrons from nitrogen

can induce oligomerization (i.e., discrete or infinite), a common observation for metal amides

based on small alkyl groups (i.e., ).  But steric considerations of the bis(trime-

thylsilyl)amine parent (i.e., 1,1,1,3,3,3-hexamethyldisilazane) clearly underscore a derivative

ligand with significant bulk, as shown in Figure 2.19.  This feature, when incorporated into

an amide structure, forces the metal into an unusually low coordination.  A dramatic exam-

ple of this phenomenon was uncovered by BRADLEY, et al. [190] in the crystal structure of

Mn{N[Si(CH3)3]2}2 (see Figure 2.20).  Note that a 3-fold coordination for manganese is rare!

Such open, unsaturated environments render silylamide metal centers highly susceptible to

nucleophilic attack, even by protic reagents with significant steric bulk.  Furthermore,

numerous methyl groups confer excellent solubility in common organic solvents, most nota-

HN Si CH3( )3[ ]2

M NR1R2( )z[ ]n

FIGURE 2.19 The molecular structure of 1,1,1,3,3,3-hexamethyldisila-
zane.  Cleavage of the amine bond (i.e. N—H) yields the silylamido
ligand.  Bond lengths and angles have been adapted from the electron
diffraction results of [189].

Si

N

C

H
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Mn

N

Si

C (Methyl)

C2
FIGURE 2.20 The crystal structure of Mn{N[Si(CH3)3]2}2.  For clarity, the methyl
groups are depicted by carbon atoms only.  (Adapted from [190].  Copyright 1978
Verlag Chemie.)
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bly alkanes.  As a result, silylamides can be easily and conveniently separated from 

by-products.  For example, metal halide salts are solvated by ethers but remain inert to

hydrocarbon media.  Thus, the replacement of THF with an alkane solvent (i.e., pentane,

cyclohexane, etc.) affords a rapid, salt-free extraction.  Equally important, the low nuclearity

of silylamides imparts melting and/or volatility without decomposition at readily-accessible

temperatures (i.e., ).  Subsequent reduced-pressure distillation or sublimation

then produces  material of excellent purity, often 99+% after a single iter-

ation, higher if repeated.

The potency of the silylamido ligand arises from the exceptional strength of its Si—N

bonds, the greatest of the Group IVA elements (i.e., C < Si > Ge > Sn > Pb) [191].  The sily-

lamine parent (i.e., ), for example, is inert to water and aqueous alkali metals,

even during boiling; acid catalysts are required activate hydrolysis [192, 193].  This reduction

in lability arises from the orbital overlap of full nitrogen 2p and vacant silicon 3d manifolds:

a  π-interaction via the nitrogen lone pair electrons enables back-donation to silicon.

The resulting delocalization contracts the bond length and stabilizes a planar geometry (i.e.,

maximizes steric bulk) [189].  So nucleophilic substitution (i.e., Equation 2.24) occurs at the

desired M—N site and not its Si—N counterpart.

In contrast, purely organic moieties (i.e., ) exhibit pyramidal configurations that

approximate sp3 hybridization.  The lack of  interactions leaves exposed electron den-

sity on the nitrogen which allows oligomerization or decomposition by β-hydrogen elimina-

tion (i.e., conversion to ).68  For example, Pb{N[Si(CH3)3]2}2 was first reported in

1977 but an organonitrogen complement has never been isolated [191].  The Si—N π-bonding

interaction within this silylamide is believed to:  (1) impart steric hinderance and (2) stabilize

the weak Pb—N bond (i.e., ~ 20–30 kcal/mol).  The former shields the labile Pb—N site,

impeding decomposition kinetics, and the latter inhibits charge redistribution.

In addition, the  π-interaction, by trapping electron density within the Si—N bond,

confer weak Lewis basicity.  Thus, the silylamido ligand, in combination with its high steric

bulk, serves as an effective leaving group:   is not observed to form adducts.

Furthermore,  exists as a liquid under ambient conditions.  So the nucleo-

68Large, sterically-bulky alkyl groups, however, can force planar restructuring although π-bonding remains
absent.  For a discussion of β-hydrogen elimination, see page 469 of [191].

MIAX

T 150 °C<

M N Si CH3( )3[ ]2{ }z

HN Si CH3( )3[ ]2

p d→

NR1R2

p d→

R1N=CH2

p d→

HN Si CH3( )3[ ]2

HN Si CH3( )3[ ]2
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philic substitution represented by Equation 2.24 is particularly convenient:  a simple “solvent

strip” (i.e., reduced-pressure with no heating) suffices to leave the virgin metal alkoxide.  No

subsequent separation is required.  So the ultimate purity of the title product rests solely on that of

the starting reactants and not the reaction process.  For this reason, the silylamide synthesis route

carries a significant advantage over its alkoxy counterpart.69  Further elaboration on metal

silylamide chemistry, however, will not be presented here.  Instead, the reader is directed to

the review by LAPPERT and HARRIS [194], and in particular, the comprehensive reference text

by LAPPERT, et al. [191].

2.4.4 MANGANESE(II) ALKOXIDES

The first synthesis of bis[bis(trimethylsilyl)]amido manganese(II) was reported in 1964

by BÜRGER and WANNAGAT [195] during their pioneering research into the silylamido chemis-

try of late transition metals.  Subsequent refinement by HORVATH, et al. [196], however, has

provided the accepted literature preparation and assumes reaction under inert gas: 

(2.25)

Horvath, et al. determined that yields for  depend critically on the sol-

vation of .  For example, the anhydrous chloride forms  upon reflux in

THF but the same procedure in weaker-coordinating diethyl ether (DEE) gives the lesser

adduct, .  This simple difference corresponds to a reduction in yield from

85–93% to 15–20%, respectively.  Proper preparation of , however, starts with

the dehydration of , conducted in vacuo by heating.70  Alternative approaches

produce lower solvates (i.e.,  where ), and hence, dimin-

ish yields (see references in [196]).

To initiate reaction,  is first dissolved in THF and then cannulated into

the chloride suspension.  Reflux of the combined system for 5–6 hours generates a transpar-

69Late transition metal or lanthanide alkoxides, if synthesized via alkoxy metathesis, depend on recrystallization
for purification.  Recrystallization, however, is slow and tedious (i.e., days or weeks) compared to distillation
or sublimation (i.e., hours).

70Depopulation of aqua ligands from the metal center desaturates the coordination sphere.  Because the temper-
atures employed (i.e., 55 °C, 135 °C, and 210 °C) do not allow for the effective reorganization of the perturbed
lattice, the altered MnCl2 material exhibits an enhanced reactivity towards solvent coordination.

MnCl2 2LiN Si CH3( )3[ ]2+             Mn N Si CH3( )3[ ]2{ }2 2LiCl+→
Reflux in THF

Mn N Si CH3( )3[ ]2{ }2

MnCl2 MnCl2 2THF⋅

MnCl2 0.5DEE⋅

MnCl2 2THF⋅

MnCl2 4H2O⋅

MnCl2 xTHF⋅ x 0.5, 1.0, and 1.5=

LiN Si CH3( )3[ ]2
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ent orange solution from which LiCl precipitates.  This extended reflux ensures that metathe-

sis reaches completion.  For instance, Horvath, et al. successfully isolated the partially-

substituted intermediate, , and verified that disproportionation occurs

above 50 °C according to:71

(2.26)

This process plays an indispensable role in preventing the incorporation of 

into its manganese derivative:  a slight excess of  reagent guarantees the consumption

of all initial .

Separation of  from LiCl (and leftover ) begins by replacing

THF with cyclohexane.  The extract is filtered through a very-fine, sintered-glass frit.  Hor-

vath, et al. reported that the resulting orange-red crude, distilled at 75–95 °C under vacuum

(i.e., 10-3 torr), generated an initial yellow forerun (i.e., ~ 3–5% by weight) followed by a rose-

colored fraction.  The former was shown to be , and the latter,

.  Their ratio, however, could not be controlled.  Elimination of

all THF content could be accomplished by melting the purified product at 120 °C under a

flow of argon for approximately one hour (i.e., thermolysis).

The oxygen sensitivity of  is quite extraordinary and cannot be

overstated:  while manganese(II) alkoxide, upon aerobic exposure, darkens over the course

of a few seconds, the silylamide analogue turns black instantly.  Long-term storage, even in a

glove box, must be in sealed, leak-proof containers.  The ability of manganese silylamide to

scavenge residual oxygen and moisture from the surrounding atmosphere easily exceeds the

performance of virtually all glove-box purifiers.

Once synthesized, however, manganese silylamide reacts spontaneously with alcohol in

an inert organic solvent thereby generating the title product: 

(2.27)

71The boiling point of THF under ambient conditions is 66 °C.

MnCl N Si CH3( )3[ ]2{ }

2MnCl N Si CH3( )3[ ]2{ }            Mn N Si CH3( )3[ ]2{ }2 MnCl2+→
Reflux in THF

LiN Si CH3( )3[ ]2

MnCl2

LiN Si CH3( )3[ ]2

Mn N Si CH3( )3[ ]2{ }2 MnCl2

Mn N Si CH3( )3[ ]2{ }2 2THF⋅

Mn N Si CH3( )3[ ]2{ }2 THF⋅

Mn N Si CH3( )3[ ]2{ }2

Mn N Si CH3( )3[ ]2{ }2 2ROH+                   Mn OR( )2 2HN Si CH3( )3[ ]2+→
Reflux in Pentane
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Equation 2.27 presumes a slight excess (i.e., 1–3% by weight) of starting alcohol and produces

virtually quantitative yields.  The precedence for this method was established by HORVATH,

et al. [176] during their investigations of manganese(II) alkoxide chemistry.  Depending on

the alkoxy ligand, though, different recovery methods are required to ensure an adduct-free,

stoichiometric material.  The procedure adapted for this dissertation (i.e., for a precipitate)

required the drying of isolated solid under vacuum at temperatures between 60–80 °C for

approximately 1–3 hours.  Methods for other compositions (i.e., different morphologies) can

be found in [176].

2.4.5 LANTHANUM ALKOXIDES

The generic silylamide route for the lanthanides was pioneered by BRADLEY, et al. [197,

198] during the early 1970s and provided a synthetic foundation for many other lanthanide

metallorganic compounds (see ANWANDER [199, 200]).  The original preparation (see below)

(2.28)

resulted in moderate yields (~ 60–70%), which upon refinement, yielded a more efficient pro-

cess [199, 201, 202].72  Three modifications in particular are noteworthy.  First, reflux should

be conducted after addition of the alkali-metal silylamide.  This step was ignored by Bradley,

et al., who instead, relied on room-temperature reaction kinetics.  Second, 

or  must be substituted for the lithium analogue.  Failure to observe this

requirement guarantees notable  contamination.  For example, Bradley, et al.

reported an intermediate purification step where the extract was “recrystallized three times

from pentane”.  Lastly, the solid residue left after solvent removal, but before extraction, must

be thermolyzed at 150 °C under flowing argon.  This last precaution liberates any remaining,

coordinated THF and activates a disproportionation mechanism similar to Equation 2.26.

Accordingly, the slight excess of anhydrous chloride salt ensures the complete consumption

of alkali-metal silylamide.  When observed together, these three refinements raise the yield

72Equation 2.28 presumes reaction under inert atmosphere.

LnCl3 3LiN Si CH3( )3[ ]2+       Ln N Si CH3( )3[ ]2{ }3 3LiCl+→
THF

NaN Si CH3( )3[ ]2

KN Si CH3( )3[ ]2

LiN Si CH3( )3[ ]2
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above 90% for all elements within the lanthanide series.  Sublimation at 70–100 °C in vacuo

(i.e., 10-3 torr) then comprises a final purification step.73

Conversion to the alkoxide follows a procedure similar to that of manganese.  Substitu-

tion kinetics, however, encounter greater steric hinderance in the (early) lanthanides because

of trivalency.  For this reason, the reaction pathway is assisted by replacing the alkane sol-

vent with an electron-accessible, but non-coordinating arene such as toluene:

(2.29)

After reflux, the solvent is removed and the residue dried at 60–80 °C under vacuum.  With a

slight excess of starting alcohol (i.e., 1–3% by weight), the yields are quantitative.

2.4.6 LEAD(II) ALKOXIDES

LAPPERT, et al. [204–207] originally investigated the synthesis and physical properties of

the Group IVB silylamides (i.e., the later Ge, Sn, and Pb members).  The specific procedure

for lead very much follows that established for manganese:74

(2.30)

(2.31)

Three differences, however, make this reaction notably more convenient.  First, reflux of the

anhydrous chloride salt has little effect, if any, on yield.  Second, the addition of lithium sily-

lamide to the chloride suspension must be conducted at room temperature (or below).  Due

to the weak Pb—N bond, Pb{N[Si(CH3)3]2}2 rapidly decomposes when heated under condi-

tions of atmospheric pressure, producing very-fine, dark-grey particles (i.e., metallic lead).

So the work-up represented by Equation 2.30 avoids any heating procedure until reduced-

73For the individual lanthanides, see [198] for exact temperatures.  Lanthanum silylamide, for example, sublimes
under vacuum between ~ 100–102 °C.  Note that the melting point of lithium silylamide (i.e., 71–72 °C at 10-2

torr) prevents sublimation from being used as a separation technique [203].
74The procedure provided here was developed by the author from descriptions of Sn{N[Si(CH3)3]2}2 syntheses.

Original literature preparation(s) utilized DEE as the solvent and a 0 °C reaction temperature.  But no deletari-
ous effects were observed by relying on THF and 20–25 °C (i.e., room temperature).

Ln N Si CH3( )3[ ]2{ }3 3ROH+                     Ln OR( )3 3HN Si CH3( )3[ ]2+→
Reflux in Toluene

PbCl2 2LiN Si CH3( )3[ ]2+         Pb N Si CH3( )3[ ]2{ }2 2LiCl+→
THF

Pb N Si CH3( )3[ ]2{ }2 2ROH+         Pb OR( )2 2HN Si CH3( )3[ ]2+→
Pentane
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pressure distillation.  Finally, the distillation step must be conducted below ~ 30 torr and uti-

lize a heated glass column [208].  This latter adaptation minimizes the thermal energy

required to drive distillate out of the main flask.  Such a precaution is essential to avoid the

undesirable decomposition of Pb{N[Si(CH3)3]2}2.  Unlike the preparation of manganese sily-

lamide, however, reduced-pressure distillation of the Group IVB members, however, leaves

pure, adduct-free material (i.e., thermolysis not needed).  The title product, lead(II) silyla-

mide, is a bright-yellow, opaque solid at room temperature.  But grinding (i.e., heat from

compression and shear) or the presence of solvent vapors can readily liquify the compound.

Conversion to the alkoxide follows the same method as described in Section 2.4.4.  Yields

are quantitative.  Interestingly, only the silylamide synthesis route has been demonstrated to

produce a homoleptic alkoxide precursor [209].  For example, attempts to prepare either the

2-propoxide or 2-methyl-2-propoxide (i.e., tert-butoxide) via electrolysis or alkoxy-based

metathesis creates, instead, oxoalkoxide intermediates [210, 211].

2.4.7 GROUP IIA ALKOXIDES

Traditional methods for preparing Group IIA alkoxides rely on the direct reaction of a

requisite alkali earth and its corresponding alcohol:

(2.32)

To prevent the formation of oxoalkoxide derivatives though, the solvent media should either

be an alkane or arene but not the parent alcohol.  Large excesses of the latter are believed to

catalyze side-reactions similar in nature to Equation 2.15 [212].  The pathway of Equation

2.32 is usually vigorous and exothermic owing to the highly electropositive nature of .

Thus, the addition of alcohol should be slow.  Reaction kinetics, however, decrease with

higher atomic mass (i.e., of the Group IIA members) and/or steric bulk (i.e., of the alcohol).

So reflux may be required to increase the reaction rate to a practical level.

Oxo-formation can be avoided by utilizing a modified silylamide route.  This method

also enables the synthesis of bulky derivatives not accessible to Equation 2.32.  A transmeta-

lation scheme, devised originally by BRADLEY, et al. [213] using mercuric silylamide, employs

an alkali earth and the less-toxic tin(II) silylamide [214–216]:

MIIA 2ROH+         MIIA OR( )2 H2+→
Toluene

→

MIIA
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(2.33)

(2.34)

The basis for this reaction stems from the inherently weak —N bond, which for Equa-

tion 2.33 corresponds to  (see Section 2.4.3).  But to obtain an adduct-free prod-

uct, the (conventional) ether must be replaced by a non-coordinating arene, typically toluene.

Attempts to liberate complexing molecules via thermolysis activate a decomposition process

in addition to adduct volatization [215].

Again, all reactions (i.e., Equations 2.32, 2.33, and 2.34) presume handling under an inert

gas.  Note that this environment, the solvent media, and alcohol must be rigorously purified

of molecular oxygen to prevent conversion into oxoalkoxide intermediates.  For this disserta-

tion, however, the modified silylamide route was not used; the reaction of Equation 2.32

proved sufficient to provide a soluble, homoleptic Group IIA alkoxide precursor.  Hence, the

brief discussion provided here (i.e., of the modified silylamide route) is mainly for consis-

tency and completeness.  Further details can be found in the aforementioned literature (see

specifically [191, 213–216]). 

2.5 SUMMARY AND RESEARCH OBJECTIVES

From the perspective of materials chemistry, doped-lanthanide manganites offer fertile

research opportunities due to:  (1) the lack of adequate CSD techniques, particularly with

regard to the sol-gel processing of thin films and (2) the poor chemical characterization and

availability of manganese(II) alkoxides.  The principal challenge confronted by this disserta-

tion then revolves around the development of a suitable alkoxy-based, solvent-precursor sys-

tem, and in particular, the synthesis of a soluble, highly-reactive manganese(II) alkoxide.

Characteristics desired from such a system must include low-temperature densification and

crystallization, both prerequisites for compatibility with silicon-based microelectronics.  Cur-

rent investigations into the alkoxy-based, sol-gel processing of La1-xMxMnO3 (i.e., M = Ca

and Sr) by POHL, et al. [217, 218] have started to explore this nascent area but have empha-

sized xerogel powders.  Equally important, the underlying manganese(II) precursor was an

oxoalkoxide, the decomposition by-product of an attempted, homoleptic alkoxide [219].75  So

MIIA Sn N Si CH3( )3[ ]2{ }2+         MIIA N Si CH3( )3[ ]2{ }2 2Sn+→
Toluene

MIIA N Si CH3( )3[ ]2{ }2 2ROH+         MIIA OR( )2 2HN Si CH3( )3[ ]2+→
Pentane

MIVB

MIVB Sn2+=
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an alkoxy-based sol system incorporating true alkoxide precursors and designed specifically for thin-

film deposition would represent a new and important contribution to the solution processing of man-

ganite perovskites.

When selecting alkoxide precursors, however, compounds with minimal carbon content

are highly preferable.  As highlighted in Section 2.4.2, manganese(II) alkoxides exhibit solu-

bility only if their alkoxy ligands contain bulky, branched alkyls (i.e., R = C18 and above).76

But HORVATH, et al. [176] reported that “alkoxides of tert-butylalcohol and phenol appear to

have an aggregation state between the polymeric and crystalline species” — an observation

duly noted by the author.  This intermediate state emerges from a transitional morphology

where steric interference from alkoxy ligands just begins to perturb the long-range coordi-

nate polymerization.  A small polyfunctional molecule then, such as 2-methoxyethanol, can

coordinate via insertion, possibly disrupting the aggregation (i.e., solvate the metal center).

Indeed, as will be shown in Section 3.5.1, the 2-methyl-2-propoxo derivative (i.e., tert-butox-

ide) is highly soluble in 2-methoxyethanol!  The author wishes to point out that conclusions

from HORVATH, et al. [176] would suggest quite the contrary:  2-methyl-2-propoxo manga-

nese(II) was insoluble in virtually all solvents tested (i.e., alkanes, arenes, ethers, and nitriles)

although weak solubility was detected in pyridine.  Note that the 2-methyl-2-propoxo ligand

incorporates low-carbon content (i.e., R = C4), a property conducive to reduced carbon diox-

ide emissions during pyrolysis.

 Therefore, to develop an alkoxy-based sol-gel process for manganite perovskites, this

dissertation utilizes two representative stoichiometries, both chosen from compositional

series with room-temperature magnetoresistance (i.e., M = Sr, Ba, and Pb):  La0.67Ba0.33MnO3

and La0.67Pb0.33MnO3.  The divalent dopants in each correspond to distinct periodic groups

with unique chemical properties.  But the barium analogue is the most refractory element in

the Group IIA column.  Thus, because of similar chemical activity, a low-temperature sol-gel

method developed for barium would readily extend to other, less-refractory members (i.e.,

Ca or Sr).  A review of alkoxide literature indicates that the 2-methyl-2-propoxo ligand also

75The research presented in this dissertation focuses exclusively on thin films and represents an independent
contribution.  For example, the synthesis procedure employed by Pohl, et al. follows an alkoxy and not a silyla-
mido metathesis.  The resulting manganese(II) alkoxide was reported to be unstable, decomposing rapidly into
an oxoalkoxide [219].  Such behavior is absent in the precursor-solvent system developed by the author (see
Section 4.2).

76See also the theoretical considerations presented in Section 2.3.2.
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confers solubility to the La, Group IIA, and Pb derivatives [209, 220–222].  Accordingly, a

homoleptic system based on 2-methyl-2-propoxide precursors in 2-methoxyethanol com-

prises the prepatory goal for this research.  Like their manganese(II) counterparts, these

alkoxide precursors also exhibit oxygen sensitivity, although to a much lesser extent [210,

211, 220, 223].  To handle the demands of ultra-high purity inert-gas processing and the

diverse range of aggressive chemical environments (i.e., during synthesis), the author

designed a greaseless Schlenkware system (see Appendices C and D).  But the actual air-sen-

sitive manipulations (and affiliated observations) form the subject matter of Chapter 3.
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CHAPTER 3

EXPERIMENTAL METHODOLOGY

3.1 OVERVIEW

Because of their exceptional reactivity with moisture and oxygen, the syntheses of alkox-

ides and their solutions are achieved under inert atmosphere using air-sensitive techniques.

Furthermore, all requisite solvents must be scrupulously purified, anhydrous, and sparged

of any atmospheric gases.  This chapter describes the specific procedures followed for such

syntheses, presents the optimizations developed for spin-coating, and discusses the charac-

terization techniques used to investigate thin-film properties (i.e., microstructure and trans-

port behavior).  Familiarity with the fundamentals of synthetic chemical methodology,

however, is presumed and will not be elaborated on here.  For additional details, the reader

is directed to the standard texts (e.g., HARWOOD, et al. [1]), and in particular, the classic refer-

ence by SHRIVER and DREZDZON [2]; information on general laboratory care and maintenance

can be found in the excellent practical guide by COYNE [3].

But due to the diverse aggressive environments produced during chemical processing,

conventional greased ground-glass connectors were eschewed in favor of grease-free, fluo-

roelastomeric compression seals.1  Accordingly, all glassware used in this dissertation incor-

porated the Ace-Thred® connector system developed by Ace-Glass, Inc.2  The operating

principle for this design is simple but effective (see Figure 3.1):  at the base of every Ace-

Thred® plug or bushing is a circumferential groove, in which, sits an O-ring.  When screwed

against the mating glass socket, force from the groove compresses the O-ring onto a beveled

side-wall, creating a seal.  Thus, by selecting an appropriate threaded PTFE plug or bushing,

leak-proof joints between a variety of components can be achieved.

Individual component lists, pictures, and schematics for all reaction apparatus (includ-

ing the Schlenk manifold system designed by the author) are given in Appendices C and D.

1 Prolonged reflux in strong coordinating solvents undermines grease integrity, and hence, the joint seal.  Substi-
tution of inert, fluoroelastomeric O-rings between the mating surfaces eliminates this problem.

2 The Ace-Thred® glass connector system was determined to be incompatible with comparable systems from
other manufacturers.
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Ace-Thred® Plug Ace-Thred® Bushing
FIGURE 3.1 The Ace-Thred® universal glass joint system.  Leak-proof seals
are formed by compressing fluoroelastomeric O-rings against beveled glass
seats via PTFE plugs or bushings.
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In addition, the chemical syntheses illustrated in this chapter rely on complex, modular

assemblies.  For brevity, the corresponding subcomponents are not listed here.  Instead, all

functional reaction assemblies have been cataloged into comprehensive tables provided in

Appendix E.

3.2 PREPARATIONS FOR SYNTHESIS

Before use, all glassware, PTFE components (i.e., bushings, plugs, stir bars, etc.), and O-

rings (i.e., FETFE® or Aegis®), were soaked in a sulfuric acid bath which was augmented by a

proprietary, non-toxic oxidizing agent (i.e., NoChromix® from GODAX Laboratories).  After

two days, the items were removed, rinsed with deionized water (i.e., ), and

transferred to a deionized water bath for an additional two-day soak.  Copious rinsing with

fresh deionized water followed removal from this second bath.   For drying, the items were

stored in an autoclave operating at 130 °C.  Complete dessication of all surfaces was ensured

by allowing a residence of no shorter than 6 hours.  The items, still hot, were then moved

directly from the oven into the transfer chamber of a glove box and immediately placed under

vacuum.3  After cooling in vacuo, the reaction appartus could be assembled inside the inert

environment of the glove box.  Reaction apparatus prepared in this manner were free from

deletarious moisture and oxgyen (i.e., physisorbed on the surface).

Solvents were purchased from commercial sources pre-purified (i.e., 99+%), anhydrous,

and packaged under inert atmosphere.  Unfortunately, these conditions proved inadequate

to ensure liquid free of dissolved molecular oxygen.  Thus, all solvents, including the water used

for hydrolysis, required de-oxygenation.  Removal of trace quantities of oxygen was accom-

plished by passing a stream of fine argon bubbles (i.e., sparging) through the refluxing sol-

vent for a minimum of 12 hours (see Figure 3.2).  Upon completion, the flask was fully-

stoppered and stored in the glove box until needed.  The specific solvents used for this dis-

seration were:  (1) Aldrich 40,175-7, tetrahydrofuran, 99.9%, anhydrous, inhibitor free, (2)

Aldrich 23,670-5, pentane, 99+%, anhydrous, (3) Aldrich 24,451-1, toluene, 99.8%, anhydrous,

(4) Alfa Aesar 41857, tert-butyl alcohol, anhydrous, 99.9%, and (5) Aldrich 28,446-7, 2-meth-

oxyethanol, anhydrous, 99.8%.  Deionized water was prepared using a Barnstead NAN-

3 To ensure no trapped pockets of air reached the glove box, all items were maintained in a fully-disassembled
state.  Items essential to a synthesis, but not required for assembly, were left inside the autoclave until needed.

ρ 18 MΩ-cm≅
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FIGURE 3.2 De-oxygenation by sparging with argon gas.  A dispersion tube
delivers fine bubbles of argon to a solvent under reflux.  Pentane (left) and tet-
rahydrofuran (right) are shown in this picture.
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Opure water system and utilized only when .  All solvents henceforth

will be cited by their generic names, the sources/descriptions here being presumed.

As indicated by Sections 2.4.4 and 2.4.6, the synthesis of manganese(II) and lead(II) silyl-

amide depends on a common, starting reactant:  .  Thus, a substantial quan-

tity of lithium silylamide is required for the preparation of these derivatives in sufficient

amounts.  This reagent was synthesized in large batches (i.e., in advance) according to the

accepted literature procedures [4].  Due to the routine nature of this synthesis, further elabo-

ration will not be given.4  The preparation of , however, requires the han-

dling of n-butyl lithium, a precursor notorious for pyrophoric behavior upon exposure to air.

Guidelines for the safe manipulation of n-butyl lithium can be found in the classic reference

by WAKEFIELD [5].

3.3 ALKOXIDE SYNTHESES

This section presents the syntheses of precursors required for the alkoxy-based sol-gel

processing of doped-lanthanum manganites.  For a discussion of the general approach (i.e.,

the silylamide synthesis route), refer back to Section 2.4.3.  All compounds were stored as

solid powders in an argon glove box in sealed, leak-proof containers.  Figure 3.3 depicts sam-

ples of the individual precursors as packed under ultra-high purity argon.  Before use, all

compositions were verified by chemical analysis in the Microanalytical Laboratory of the

School of Chemical Sciences.  Carbon, hydrogen, and nitrogen contents were measured using

combustion analysis and the metal content via inductively coupled plasma (ICP) spectrome-

try.  Elemental weight percentages, purity, and yields are summarized in Table 3.1.  For com-

pleteness, the results of lithium silylamide have been included.  In the desciptions which follow,

the handling and reaction of chemical reagents are presumed to be conducted under argon, either in a

glove box (i.e., weighing, grinding, etc.) or within Schlenkware (i.e., reflux, filtration, etc.).

3.3.1 2-METHYL-2-PROPOXO MANGANESE(II)
This subsection details the specific procedure for synthesizing 2-methyl-2-propoxo man-

ganese(II); familiarity with Sections 2.4.2 through 2.4.4 is presumed.  To a flat-bottom 500-

4 But an equipment list is provided in Table E.2.

ρ 18.0= 0.1 MΩ-cm±

LiN Si CH3( )3[ ]2

LiN Si CH3( )3[ ]2
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Mn{N[Si(CH3)3]2}2

Pb{N[Si(CH3)3]2}2

Mn[OC(CH3)3]2

Pb[OC(CH3)3]2

Ba[OC(CH3)3]2
FIGURE 3.3 Powders of silylamide and alkoxide precursors.  Arrows cor-
relate the silylamide with its alkoxide derivative.
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mL, 3-neck flask was added 43.613 g of (0.2606 mol) of lithium silylamide.  Dissolution was

induced by adding 179.45 g (202 mL) of THF, generating a golden-yellow solution.  Sepa-

rately, 16.414 g (0.1304 mol) of Alfa Aesar 42844, manganese(II) chloride, ultra dry, 99.99%

(metals basis) was added to a glass reflux assembly containing a 1000-mL, 3-neck, round-bot-

tom flask.  Addition of 186.27 g (210 mL) of THF caused the opaque, pink powder to whiten.

Reflux for 3 hours at 70 °C left a white suspension of notably higher viscosity which exhib-

ited a faint, pink hue.  This process is depicted in Figure 3.4.  Combining the silylamide solu-

tion with the chloride suspension (see Figure 3.5) caused the immediate dissolution of the

fine, suspended particles, creating a transparent orange solution.  Lithium chloride was not

observed to precipitate, even after the reflux (i.e., conducted overnight for ~ 12 hours).  Strip-

ping the THF via reduced pressure, however, induced LiCl precipitation via concentration

(see Figure 3.6).5  Complete removal of THF was followed by the addition of 125.13 g (200

mL) pentane.  A mild boil (~ 40 °C) and aggressive stirring enhanced the extraction.  Upon

cooling, a reddish-orange crude was observed to segregate, forming an immiscible layer.

Gentle warming, though, restored homogeneity.  Thus, filtration (i.e., through a 4–8 µm

porosity frit) was carried out with a warm solution to ensure the smooth transfer of homoge-

neous liquid.

After filtration, the pentane was stripped and the flask attached to a distillation appara-

tus with a heated column (see Figure 3.7).  A glass wool plug was inserted into the glass stem

of the exit valve.  This procedure was necessary to protect the vacuum manifold from silyla-

mide vapors.  The apparatus was placed under vacuum first and then slowly heated to 110 °C.6

Residual organic volatiles (i.e., THF and pentane) were driven out during ramp-up, after

which, the vacuum stabilized (i.e., ~ 2 x 10-2 torr).  At the moment silylamide liquid appeared

on the lowest glass fingers of the distillation column, the receiving flask was submerged in

liquid nitrogen.  Reduced-pressure distillation was allowed to proceed until a 3–5 mL pool of

rose-colored liquid remained in the main flask.

Next, the collected distillate was thermolyzed.  Again, a glass wool plug was placed into

the glass stem of the exit valve.  Argon flow was increased so that the rate of bubbles through

the in-line bubbler just barely maintained a distinct, separated spherical geometry.  Heating

5 A stainless-steel, gas-flow metering valve was placed after the exit valve to control the internal vacuum.
6 A ~ 100 °C surface temperature  was maintained on the sidewalls of the distillation column, as monitored by an

exterior thermocouple.
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FIGURE 3.4 Preparation of lithium silylamide and anhydrous manganese(II)
chloride.  The top row corresponds to a simple dissolution, the bottom row, a
solvent reflux.
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FIGURE 3.5 The reaction of manganese(II) chloride with lithium silylamide
in THF.  After mixing and reflux, a transparent orange solution remains.
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FIGURE 3.6 Separation of the manganese(II) silylamide crude from lithium
chloride.  THF is removed (top right) and replaced with pentane (top left).
To prevent immiscibility (bottom left), the main flask is gently warmed dur-
ing filtration, producing a uniform solution.
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FIGURE 3.7 Thermolysis of purified manganese(II) silylamide.  After  elim-
ination of residual THF, dissolution in pentane allows transfer to a container
suitable for solids removal.  A solvent strip then leaves the crystalline, flesh-
colored product.
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the flask to 125 °C under aggressive stirring caused clear droplets to condense on the glass

wool (i.e., THF).  A pinkish vapor clouded the interior of the flask, depositing dark-brown

residue at the exit valve.  But the interior manganese(II) silylamide remained unoxidized.  To facil-

itate solids removal, transfer to a large reaction kettle was required.  So after cooling and

solidification, 68.44 g (109 mL) of pentane was cannulated into the flask, dissolving the puri-

fied manganese(II) silylamide.  This solution was transferred into the cylindrical flask and

the pentane stripped.  A gentle heating (i.e., ~ 40 °C) under vacuum ensured the complete

removal of pentane.  Then, the reaction kettle was moved into the glove box where the solid

was ground in a mortar and pestle, placed in a leak-proof jar, and stored until needed.

To synthesize 2-methyl-2-propoxide manganese(II), 63.871 g (0.1700 mol) of manga-

nese(II) silylamide was weighed into a reaction kettle containing a large stir bar with a raised,

octagonal ring (see Figure 3.8).7  To this solid, 177.80 g (284 mL) of pentane was added, pro-

ducing a flesh-colored, transparent solution.  The addition of 26.45 g (0.3568 mol) of 2-

methyl-2-propanol caused the immediate precipitation of lavender-white “streamers”, which

upon agitation, broke up and left a very-thick, pink suspension.  The solvent, along with any

remaining 2-methyl-2-propanol, was stripped via reduced-pressure and strong stirring.  To

prevent excessive gurgling and splashing, the system was exposed to vacuum very gently.

Once the majority of liquid was removed, the reaction flask was heated (~ 60 °C) until the

vacuum level stabilized.  The container was then quickly back-flushed with argon gas.8  The

resulting pinkish material was especially brittle and easily ground in a mortar and pestle.

Precautions had to be taken to prevent the generation of fine dust in the glove box.  Again,

storage occurred in leak-proof containers.

3.3.2 2-PROPOXO LANTHANUM

Attempts to synthesize lanthanum silylamide resulted in exceptional frustration for the

author.  The modern method presented in Section 2.4.5 represents recent advances and is not

referenced by the standard (i.e., older) literature.  Furthermore, the synthetic difficulties

experienced by the author were ultimately traced to an incompatible source of anhydrous

7 The precipitation of 2-methyl-2-propoxo manganese(II) creates a suspension with high viscosity.  A large stir
bar is required to maintain agitation throughout the mixture.

8 Vacuum enhances the diffusion of trace amounts of oxygen past the dry, compression seals.
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FIGURE 3.8 Conversion to 2-methyl-2-propoxo manganese(II).  The  addi-
tion of 2-methyl-2-propanol induces the spontaneous precipitation of laven-
der-white solid.  Solvent removal followed by gentle heating under vacuum
leaves the adduct-free, title product (heating mantle not shown).
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lanthanum chloride, as documented in Appendix F.  Unfortunately, much time was lost dur-

ing this discovery process.  So the author purchased Alfa Aesar 14616, lanthanum(III) iso-

proxide, La 40% from a commercial source.  As anticipated, unacceptable levels of chlorine

contamination were confirmed by the Microanalytical Laboratory (i.e., 1.213% by weight).

Interestingly, dissolution of this product in 2-methoxyethanol yielded a small quantity of fine

white precipitate, presumably LaCl3.  By filtering the supernatant (i.e., a transparent, pale-

yellow solution) and removing the 2-methoxyethanol, an off-white powder was isolated.

Upon analysis, no chlorine was found.

Structural investigations have shown the synthesis of 2-propoxo lanthanum to actually

produce the adducted oxoalkoxide,  [7].  For the off-

white solid, measurements of metal content (i.e., La) yielded 40.91% and 40.05% by weight

using, respectively, ICP and thermal analysis.9  The corresponding carbon and hydrogen val-

ues were 32.39% and 6.31%, respectively.  Together, these three weight percents are in good

agreement with the oxoalkoxide adduct,  (i.e.,

theoretical weight percents of 39.80%, 34.07%, 6.87%, respectively).  The 40.91% value was

adopted as a reference standard for lanthanum content.

3.3.3 2-METHYL-2-PROPOXO LEAD(II)
This subsection details the specific procedure for synthesizing 2-methyl-2-propoxo

lead(II); familiarity with Sections 2.4.3 and 2.4.6 is presumed.  To a round-bottom 500-mL, 3-

neck flask was added 31.690 g (0.1894 mol) of lithium silylamide.  Dissolution was induced

by adding 137.13 g (154 mL) of THF, generating a golden-yellow solution.  Separately, 26.343

g (0.09472 mol) of Alfa Aesar 42841, lead(II) chloride, ultra dry, anhydrous, 99.999% (metals

basis) was added to another 500-mL, 3-neck, round-bottom flask.  Subsequent exposure to

135.24 g (152 mL) of THF (i.e., a suspension), however, caused no discernable change unlike

with anhydrous MnCl2.  Cannulation of the silylamide solution into the chloride suspension

produced an immediate reaction, yielding a solution which changed hue from bright yellow

to brownish-yellow as the addition proceded (see Figure 3.9).  At no point during this process

was either system refluxed (i.e., separate or combined).  Instead, the solution was allowed to stir at

9 Thermogravimetric analysis measured the mass loss upon conversion to anhydrous La2O3.  This measurement
was conducted separately by the author.  For the procedure, see discussion in Section 3.5.2.

La5O OCH CH3( )2[ ]13 nHOCH CH3( )2⋅

La5O OCH CH3( )2[ ]13 3.5HOCH2CH2OCH3⋅
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FIGURE 3.9 The reaction of lead(II) chloride with lithium silylamide in
THF.  The solution progresses in color from brilliant yellow to yellow-brown
(top).  Caution, however, must be exercised during the solvent strip because
lead(II) silylamide is volatile in the presence of solvent vapors.
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room temperature for approximately 4 hours.  No lithium chloride was observed to precipi-

tate, presumably due to a sufficient quantity of THF in the flask.  Because of the volatility of

lead(II) silylamide, all solvent strips were conducted very slowly, particularly with coordinat-

ing agents such as THF.  Accordingly, the distillation apparatus included a Vigreux column

in addition to the (expected) stainless-steel, gas-flow metering valve.  The internal fingers of

the column provide a condensing surface for the lower vapor-pressure silylamide, a charac-

teristic which prevents excessive loss of the compound to the receiving flask.  Trace amounts

of lead(II) silylamide, however, were observed to reach the interior sidewall of the cold fin-

ger.  No discernable reduction in yield, though, was measured.

The removal of THF (i.e., without any heat) was followed by a pentane “wash” which pro-

ceeded via cannulation from the top of the Vigreux column, along the interior sides, and

finally down into the main flask (see Figure 3.10).  The flask was then removed from the dis-

tillation apparatus and the supernatant liquid filtered through a gas frit (i.e., 4–8 µm poros-

ity).  The resulting transparent orange solution was observed by the author to deposit an

extremely faint grey film on the interior flask wall when stored.10  So room temperature, in

combination with the weak argon over-pressure (i.e., 3–5 psig for standard Schlenk proce-

dures), was sufficient to activate decomposition (i.e., formation of metallic lead).11  The pen-

tane was subsequently stripped, leaving a dark orange crude.

 Next, the attached cold-finger was swapped for a reaction kettle with an extension

adapter (i.e., the Vigreux column remained).12  Distillation proceeded in a manner analogous

to that of manganese(II) counterpart but with the following exception.  Because of the volatil-

ity of lead(II) silylamide, the receiving flask was submerged in liquid nitrogen immediately

after the initial pressure spike (i.e., due to escaping organic volatiles).  The temperature of the

main flask and column side walls were held at ~ 90 °C.  The thermochromic nature of lead(II)

silylamide is obvious in Figure 3.10.  As a heated liquid, this compound is orange, but as a

crystalline solid, bright yellow.  When only a 3–5 mL pool remained in the main flask, the

distillation was halted.  The reaction kettle was transferred to the glove box where the solid

was ground in a mortar and pestle.   Storage occurred in a leak-proof jar.

10The flask was fully-stopped (i.e., completely sealed) and moved into the glove box.
11This process does not occur with the isolated solid.
12Clean glassware, however, was used for each solvent strip.  So the apparatus used to remove THF (at first) was

not saved for the pentane strip despite being comprised of the same components.
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FIGURE 3.10 The separation and purification of lead(II) silylamide.  Pentane
is added from the top to wash volatilized product on the Vigreux column back
into the main flask.  Filtration (top right), solvent removal (not shown), and
reduced-pressure distillation (bottom left) leave the purified material.
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To synthesize 2-methyl-2-propoxo lead(II), 13.202 g (0.02501 mol) of lead(II) silylamide

was weighted and placed into a reaction kettle.  Dissolution was induced by adding 116.71 g

(186 mL) of pentane (see Figure 3.11).  To initiate the reaction, 4.65 g (0.06273 mol) of 2-

methyl-2-propanol was cannulated into the cylindrical flask.  The reaction proceeded sponta-

neously, with the color changing from tangerine-orange to faint-yellow within 3 minutes.

The solution was left stirring at room temperature for approximately 1 hour.  Removal of the

pentane left a slightly off-white solid.  The reaction kettle was then moved to the glove box

where the material was ground in a mortar and pestle, and stored in a leak-proof jar.

3.3.4 2-METHYL-2-PROPOXO BARIUM

This subsection details the specific procedure for synthesizing 2-methyl-2-propoxo bar-

ium; familiarity with Section 2.4.7 is presumed. To a reaction kettle was added 11.55 g

(0.08411 mol) of Aldrich 44,188-0, barium, distilled, dendritic pieces, 99.9%.  Cannulation of

96.55 g (112 mL) of toluene into the cylindrical flask was followed by the addition of 50.09 g

(0.6758 mol) of 2-methyl-2-propanol (see Figure 3.12).13  The evolution of hydrogen gas

required an incubation period of approximately 5 minutes, and afterwards, proceeded very

slowly.  A white hazy precipitate formed around the granules which dissolved upon dis-

persal by stirring.  The system was heated to 50–60 °C to increase the reaction rate, consum-

ing all the barium in approximately 3 hours.14  The toluene was then stripped from the

resulting yellow, transparent solution.  An off-white solid was obtained, which upon further

exposure to vacuum (i.e., at room temperature), left the adduct-free title product.

3.4 SOLUTION AND SOL SYNTHESIS

This section details the synthesis of La-Ba-Mn (2:1:3) or La-Pb-Mn (2:1:3) “stock” solu-

tions and their partial hydrolysis into “spinnable” sols.  Figure 3.13 offers a concise flow dia-

gram of the corresponding procedure developed by the author.  Dissolution of the requisite

alkoxides in 2-methoxyethanol was carried out at room temperature with stirring only (i.e.,

13A 2 molar equivalent excess of 2-methyl-2-propanol was used to ensure the formation of the highly-soluble
adduct (i.e., ) [6].

14The temperature was maintained below the boiling point of 2-methyl-2-propanol (i.e., 83 °C) to prevent its vol-
atilization out of the toluene.

Ba OC CH( )3[ ]2 2HOC CH( )3⋅
135



FIGURE 3.11 Conversion to 2-methyl-2-propoxo lead(II).  The addition of
2-methyl-2-propanol produces a transparent, faint-yellow solution.  Solvent
removal followed by gentle heating under vacuum leaves the adduct-free,
title product (heating mantle not shown).
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FIGURE 3.12 Synthesis of 2-methyl-2-propoxo barium.  The addition of 2-
methyl-2-propanol induces the slow evolution of hydrogen gas.  To increase
the reaction to practical rate, gentle heating is applied.  A transparent, yellow
solution remains.
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50.00 mmol
of Mn[OC(CH3)]2

6.667 mmol of
La5O[OCH(CH3)2]13 · 
3.5 HO(CH2)2OCH3

16.67 mmol
of Ba[OC(CH3)]2

16.67 mmol
of Pb[OC(CH3)]2

Flat-bottom 500 mL 
3-neck flask

(Or)

0.25 M “stock” 
solution

Stir for 20 – 30 minutes.
Age for 2 days.

193.0 g (200 mL) of
2-methoxyethanol

0.20 M Sol
(h = 0.25)

Remove small aliquots
as needed.

Mixture containing 
9.334 mg of H2O

per 1.000 g of
2-methoxyethanol

Stir for 20 – 30 minutes.*
Age for 7 days.

* Add 0.2223 g of mixture per 1.000 g of 0.25 M La-Ba-Mn “stock” solution.
Add 0.2211 g of mixture per 1.000 g of 0.25 M La-Pb-Mn “stock” solution.
FIGURE 3.13 Synthesis of alkoxy-based solutions and sols.  Note the slightly
different masses extracted from the hydrolytic mixture for the La-Ba-Mn (2:1:3)
and La- Pb-Mn (2:1:3) “stock” solutions.  Molarities are referenced to [Mn].
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no reflux).  Transparent, orange solutions resulted within 20–30 minutes (see Figure 3.14).

The 2-methyl-2-propoxo manganese(II) precursor, however, solvated in under 2 minutes (see further

discussion in Section 3.5.1)!  The absence of dark-brown hue from either sol system indicates proper

synthetic technique.  Three principal investigations comprise the focus of this section:  (1) bulk

powder preparation, (2) gelation behavior, and (3) hydrolytic optimization for spin-coating.

Bulk xerogels were decomposed into oxide powders to verify compositional stoichiometry

and perovskite phase formation.   The hydrolysis ratio was varied according to h = 0.25, 0.75,

1.25 in order to observe subsequent effects on gelation, if induced.  A specific procedure for

spin-coating and pyrolysis was designed for dense, defect-free coatings (see Figure 3.19).

This process relied on post-coating hydrolysis via humidified air to ensure sufficient organic

removal prior to heat treatment.

3.4.1 BULK POWDER PREPARATION

In the glove box, approximately 3 mL was withdrawn (separately) from the La-Ba-Mn

(2:1:3) and La-Pb-Mn (2:1:3) “stock” solutions and placed into individual 15-mL platinum

crucibles.  The solvent was removed by heating at 100 °C for 1 hour in air, after which, a

brownish-black residue remained.  Both materials were (separately) removed from the cruci-

bles, ground and pressed into small pellets, placed in clean crucibles, and heated at 10 °C/

minute in a horizontal tube furnance to 500 °C.  This temperature was held for 12 hours; cool-

ing occurred at 10 °C/minute (i.e., to room temperature).

For the barium analogue, a greyish-black hue emerged as a result of the initial heat treat-

ment.  The pellet was ground, re-pressed, and returned to the 15-mL platinum crucible.  The

La-Ba-Mn composition was fired at 1100 °C and again at 1350 °C (i.e., for 12 hours, with a 10

°C/minute ramp rate, etc.); grinding and re-pelletization occurred in between.  The final

appearance was also greyish-black.

Firing at 500 °C left the lead-bearing pellet with a black hue.  Due to the volatility of lead

oxide, however, special precautions were observed during subsequent, higher-temperature

heat treatments:  the La-Pb-Mn composition, after being ground and re-pressed, was placed

under 2 cm of loose, sacrificial La0.67Pb0.33MnO3 powder (i.e., in the 15-mL platinum cruci-

ble).  The material was then fired at 800 °C and again at 950 °C (i.e., for 12 hours, with a 10

°C/minute ramp rate, etc.); grinding and re-pelletization occurred in between.  Fresh sacrifi-
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FIGURE 3.14 La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3) solutions and sols.  Note
the transparent, orange color of the stock solutions.  The absence of any dark-
brown hue indicates the preservation of the manganese(II) (i.e., no oxidation).
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cial powder was used for each heat treatment and gently compacted using a stainless-steel

spatula.  The final appearance was also black.

Both powders were characterized by X-ray diffraction and SQUID magnetometry (see

Figures 3.15 and 3.16).  Note the sharp diffraction peaks and the absence of secondary phases.

Such an observation could not be made for powders prepared (equivalently) using aqueous

solutions of acetate salts.  Further “grind and fire” steps were required to remove small con-

taminating peaks corresponding to oxycarbonate phases.  So as discussed in Section 2.3.3, the

synthesis of heterometallic oxo-polymers (i.e., the activation of hydrolysis and condensation)

is superior to simple dissolution and complexation.

The (cubic) perovskite lattice constants of a = 3.904 Å and 3.890 Å for, respectively,

La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 are in good agreement with those published in the lit-

erature.15  So for example, JU, et al. [8] reported that bulk, polycrystalline La0.67Ba0.33MnO3

exhibited a cubic lattice parameter of a = 3.897 Å.  The orthorhombic lattice constants mea-

sured by YANG, et al. [9] for single-crystal La0.64Pb0.36MnO3 (i.e., a = 5.474 Å, b = 5.510 Å, and c

= 7.763 Å) correspond to a pseudocubic value of .  Furthermore, the ferromagnetic

Curie points (i.e., TC = 340 K and 350 K, respectively) correlate well with those reported for

the M = Ba and Pb compositions near x = 0.33 (refer back to Table 2.2).  Combined, both observa-

tions confirm that the “stock” solutions are of correct stoichiometry, and when processed using con-

ventional mixed-oxide temperatures, provide phase-pure, perovskite material.

3.4.2 GELATION BEHAVIOR

To determine a suitable hydrolysis ratio, 30-mL aliquots were extracted from the “stock”

solutions, to which were added appropriate quantities of water pre-dissolved in 2-methoxy-

ethanol.16  The resulting 0.20 M sols corresponded to h = 0.25, 0.75, 1.25.17   Note that subse-

quent aging occurred within sealed 50-mL Wheaton serum bottles, and hence, reflected a

closed system (i.e., no concentration by evaporation).  Precipitation or sedimentation into

phase-segregated layers was never observed.  All systems retained a uniform, transparent

hue until densification of the gel mass within solution.

15Both diffraction patterns were checked against the “ideal” (i.e., cubic) perovksite, SrTiO3, with a lattice con-
stant of a = 3.905 Å (see JCPDS PDF 35-0734 from the International Centre for Diffraction Data).

16To ensure precision, all measurements were taken via mass.
17Specific masses for h = 0.25 are given in Figure 3.13.

aP 3.88 Å≅
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FIGURE 3.15 Characterization of alkoxy-derived La0.67Ba0.33MnO3
powder.  Both X-ray diffraction (A) and magnetization (B) data confirm
phase-pure manganite perovskite material.
142



20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

 

 

In
te

ns
ity

 (C
ou

nt
s)

2-Theta (Degrees)

(1
10

)

(1
00

) (1
11

)

(2
00

)

(2
10

)

(2
11

)

(2
20

)

(3
00

)

(3
10

)

(3
11

)

(2
22

)

a = 3.890 Å  (Cubic)

0 50 100 150 200 250 300 350 400
0.0

0.4

0.8

1.2

1.6

2.0

T
C
 = 350 K

H = 25 Oe

 

 

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Temperature (K)

B

A

FIGURE 3.16 Characterization of alkoxy-derived La0.67Pb0.33MnO3
powder.  Both X-ray diffraction (A) and magnetization (B) data confirm
phase-pure manganite perovskite material.
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For the La-Ba-Mn (2:1:3) sol with h = 1.25, partial hydrolysis induced turbidity within

two weeks, producing a viscous fluid after one month; gelation occurred at an undetermined

point one year after synthesis.  In contrast, the La-Pb-Mn (2:1:3) sol (i.e., h = 1.25) became vis-

cous after only 2 weeks, reaching the gel point within a month.  This latter system eventually

formed an opaque white “plug” (i.e., gel mass).  The expulsion of clear liquid, presumably

pure 2-methoxyethanol, formed an immiscible top layer (i.e., syneresis).  A comparison of the

two compositions suggests the lead-bearing system is the more hydrolytically-sensistive of

the two (but see discussion on next page).  The rapid onset of gelation affliated with h = 1.25,

however, makes this hydrolysis ratio unsuitable for spin-coating.

The next lowest ratio (i.e.,  h = 0.75) was observed to delay gelation and provide a suit-

able “spinning” viscosity for approximately 1–2 months.  A transparent orange (i.e., La-Ba-

Mn) or pinkish-orange (i.e., La-Pb-Mn) color persisted throughout this period.  But after-

wards, the viscosity of these sols became unstable to spinning, preventing proper wetting of

the substrate during coating:  V-shaped, radial “wakes” left bare regions on the substrate sur-

face.18  Longer aging periods generated turbid fluids.  Gelation, however, was not observed

within 1 year although the sols became extremely viscous.  Similar to the h = 1.25 sols, the La-

Pb-Mn (2:1:3) system aged faster than its barium counterpart.

In order to improve the “shelf life” of synthesized sols, a partial hydrolysis of h = 0.25

was selected.  Accordingly, both compositions exhibited no deletarious changes in viscosity

for 4–5 months, retaining the fluidity of the host solvent.  Spinnability during this time was

excellent.  For this reason, all sols used in this dissertation rely on a partial hydrolysis of h = 0.25, and

based on the aforementioned observations, a compatability limit of h < 1 was established for spin-coat-

ing.  This guideline is in good agreement with the empirical regimes discussed in Section

2.3.4 for coating processes.

The influence of hydrolysis on oxygen sensitivity was also investigated.  Figure 3.17 pre-

sents gels prepared with three different environments.  The first row (A) corresponds to

“stock” solutions (i.e., h = 0) allowed to hydrolyze directly in air.  Aliquots were extracted

under argon in the glove box, which upon exposure to atmosphere, resulted in the immedi-

ate precipitation of fine, brown material at the air-liquid interface.  These particles darkened

18During spinning, solvent evaporation induces gelation at arbitrary points on the surface.  Fluid motion is
arrested, impeding radial flow.  Sols with high viscosities often correspond to systems close to the gel point.
This state, if unstable, is unsuitable for spin-coating (see Section 2.3.4).
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La-Ba-Mn (2:1:3) Gel La-Pb-Mn (2:1:3) Gel

B

A

C

FIGURE 3.17 The gelation of 0.2 M La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3)
sols.  The environments included air (A), fully-humidified argon (B), and a
current of flowing argon (C).  Note that the pictures of (A) and (B) corre-
spond to atmosphere while (C) was sealed under argon (stagnant).
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with time, coarsening and slowly sinking into the solution.  Within 2–3 minutes, the entire

system transformed from a transclucent orange (i.e., La-Ba-Mn) or pinkish-orange (i.e., La-

Pb-Mn) liquid into an opaque, brownish-black suspension.  Hydrolysis occurred concomi-

tantly (albeit slower), congealing the solution so that within 10–15 minutes, the body exhib-

ited a gel-like appearance.  Within 1 hour, shrinkage began and cracks emerged.

The second row (B) reflects hydrolysis conducted in a moisture-saturated argon environ-

ment.  Aliquots of 0.20 M sol (i.e., h = 0.25) were extracted in the glove box, placed into dishes

with stilts, and sealed in a gelation chamber (see Figure D.29).  Deionized water was added to

the chamber, forming a pool, above which, sat the exposed dish (i.e., on stilts).  The systems

were left overnight to gel (~ 12 hours).  The La-Pb-Mn (2:1:3) sol formed a clear, orange body

whereas the La-Ba-Mn (2:1:3) counterpart shrank into a smaller, semi-translucent disk (i.e.,

syneresis).19  This observation is the opposite of that found in the closed systems where h

remained fixed.  The author wishes to point out that, when this experiment was repeated

using the unhydrolyzed “stock” solutions, white fractal “blooms” grew at the gas-liquid

interface.  This behavior corresponds to preferential hydrolysis and phase segregation.  Thus,

partial hydrolysis in solutia (i.e., h = 0.25) remains crucial for the development of homgeneous gels, a

conclusion underscored by Section 2.3.4.

But this fractal geometry provides prima facie evidence for a polymeric, and not a partic-

ulate, sol system.  As stated in Section 2.3.5, such morphology plays a critical role in low-tem-

perature densification, an important goal of this dissertation.  Equally important, the picture

depicted by Figure 3.17 was taken in air, yet the translucent orange color remains!20  Thus, the

activation of hydrolysis (and condensation) before exposure to air confers resistance to oxidation.

With a rapid concentration process such as spin-coating, gelation for partially-hydrolyzed

sols may be induced before oxidized precipitation, by-passing the growth of brown, insolu-

ble particles.  As will be shown in Section 3.4.3, this conjecture was proven.

The last row (C) depicts the gelation products of solvent evaporation.  Aliquots of 0.20 M

sol (i.e., h = 0.25) were extracted in the glove box, placed into dishes with stilts, and sealed in

a gelation chamber.  The chamber was then connected to the inert-gas manifold and a strong

current of ultra-high purity argon flowed overhead.  Over a 2 day period, the transparent

19The La-Ba-Mn (2:1:3) sol, however, did start as a transparent, orange gelled mass like La-Pb-Mn (2:1:3).
20After 15–20 minutes in air, however, a slight darkening was noticed.
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sols congealed via concentration into semi-translucent, orange-brown (i.e., La-Ba-Mn) and

lavender (i.e., La-Pb-Mn) gels.  The resulting sticky mass was immediately collected in the

glove box for thermal analysis.  This latter experiment was carried out to crudely approximate

the rapid evaporation which occurs during spin-coating (see Section 2.3.6).  As will be dem-

onstrated in Section 4.3, the thermal decomposition of this material was notably different

from xerogels prepared in air and moisture-saturated argon.

3.4.3 SPIN-COATING AND HEAT TREAMENT

For spin-coating, aliquots of 0.20 M, h = 0.25 sol were drawn in a glove box from serum

bottles via 3-mL, pre-sterilized, latex-free Becton-Dickinson syringes with Luer-lock tips.  To

avoid excessive coring of the serum bottle septa, 20-gauge, 1½” disposable needles (i.e., Pre-

cision Glide™ from Becton-Dickinson) were employed.  Between the syringe and needle

resided a Whatman 0.45 µm PTFE filter body (see Figure 3.18).  This latter component

ensured the delivery of fluid free from particulate contaminates.  To protect the sol from aer-

obic reaction, a #7 vacuum cap, a 11 mm silicone septa, and a #7 bushing were assembled

into a “sheath” inside the glove box (see Appendix D).  The syringe needle was then inserted

into the sheath and transported outside the glove box.  During application, fluid was ejected

from the syringe at a uniform rate.  The first three drops of any deposition were always discarded

with the fourth and subsequent drops placed immediately (i.e., no pause) onto the substrate.

The syringe was then returned to its sheath.  This practice enabled the delivery of fresh,

unoxidized sol to the substrate.

Before spin-coating, substrates underwent a cleaning procedure which consisted of:  (1)

ultrasonication in methanol for 10 minutes, (2) ultrasonication in acetone for 10 minutes, and

(3) ultrasonication in water for 10 minutes.21  Between each iteration, substrates were blown

dry with filtered, compressed air.  The substrates were then moved to a 300 °C hot plate and

baked for 5 minutes to volatilize any residual organics.  When first mounted into the spin-

coater, a substrate was covered by the host solvent (i.e., 2-methoxyethanol) and spun at 3000

rpm for 30 seconds.  This procedure was repeated twice, after which, began the deposition.

La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3) sols, when delivered to the substrate surface, nucle-

21These organic solvents were purchased anhydrous and with 99.9% purity.
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A

FIGURE 3.18 Spin-coating of 0.2 M La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3)
sols with h = 0.25.  A filtered syringe (A), sheathed betweened uses, deposited
fluid onto the substrate.  Spin-coating (B) occurred in air at 3000 rpm for 30
seconds.
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ated fine, brown particles at the air-liquid interface (i.e., within 2–3 seconds after exposure to

air).  But angular acceleration, if initiated immediately, swept this surface layer off the sub-

strate leaving a gel coating.  Inspection under an optical microscope indicated a clear, defect-free

film with no inclusions of particulate matter.  Thus, the radial ejection of fluid and subsequent

(rapid) solvent evaporation induced gelation before the onset of precipitation.22

Two silicon substrates were used in this dissertation:  (1) p-type, boron-doped Si(100)

from Komatsu Electronics, Ltd. and (2) thermally-oxidized (i.e., 5000 Å), p-type, boron-

doped Si(100) from Silicon Quest, Intl.  The surface of the latter was sputtered with a 300 Å

titanium buffer layer followed immediately by a 1700 Å platinum layer.23  The as-deposited

platinized film exhibited an out-of-plane (111)-orientation but contained no preferred in-

plane orientation (i.e., “fiber” texture).  Spin-coating was carried out on either:  (1) circular

wafers, provided the diameter was not greater than 3” or (2) 1 cm x 1 cm squares.  Film thick-

nesses were not dependent on substrate type.  The square substrates were prepared by scor-

ing centimeter-spaced, orthogonal lines onto the backside of a circular wafer with a diamond

scribe.  The wafer was then fractured, individual pieces cleaned, and the polished side

inspected for defects.24

A flow chart for the sol-gel processing of manganite thin-films is given in Figure 3.19.

Spin-coating was initiated by flooding the substrate with sol.  For the 1 cm x 1 cm squares,

the entire surface was wetted.  Whole wafers, however, required a more efficient approach.

These larger substrates were rotated at a constant ~ 200 rpm.  Fluid delivery from the syringe

started at the center, moving radially outward to the edge.  The angular velocity was then

immediately increased to 3000 rpm.

The first hot-plate treatment of 100 °C was necessary to enhance the diffusion of 2-meth-

oxyethanol out of the compacted (but porous) gel.  Higher temperatures were observed to

generate pin-holes and surface defects in the coating.25  The second hot-plate treatment at

300 °C initiated organic pyrolysis, densifying the xerogel.  A final stage at 450 °C was used to

complete the pyrolytic transformation and ensure a defect-free film before proceeding to

22The film, however, does oxidize but only after the establishment of a gelled (i.e., condensed) morphology.
Thus, precipitation of oxidized particles is avoided.  As stated in Section 3.4.2, partial hydrolysis aids this trans-
formation by conferring resistance to oxidation.

23The author wishes to acknowledge Dr. Ryan Ong’s selfless preparation of these substrates.
24To facilitate analysis, coated circular wafers were also diced into 1 cm x 1 cm squares after heat treatment.
25The boiling point of 2-methoxyethanol is 124–125 °C.
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Spin-coat at 3000 rpm 
for 30 seconds.

Hot-plate treatment 
at 100 °C for 1 

minute.

Hot-plate treatment 
at 300 °C for 1 

minute.

Hot-plate treatment 
at 450 °C for 3 

minutes.

Repeat twice
(3 layers total)

Fire at T ≥ 600 °C for
1 hour, 10 °C/minute 

ramp rate.

Spin at ~ 200 rpm in 
current of humidified 

air (> 75%) for 5 
minutes.
FIGURE 3.19 Flow chart for the thin-film deposition process.  Spinning in
a current of humidified air served as a critical step to form defect-free man-
ganite films.  The final 1-hour heat treatment is for crystallization.
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crystallization.  Notable color changes, however, accompanied each thermal stage and pro-

vided a visual observation of the densification process (see Table 3.2).  Interestingly, the film

color remained unchanged if further processing occurred between 550–600 °C (i.e., before

crystallization).  This behavior suggests that the amorphous films produced by the 450 °C

heat treatment contained no porosity and were mostly-free of organic content.

One step in particular played a critical role in the formation of dense, defect-free films:

the slow spinning (i.e., ~ 200 rpm) of a coated substrate under a stream of humidified air (i.e.,

> 75%).26  Forced convention then hastened the evaporation of solvent entrapped within the

gel pores, enabling penetration of aerobic moisture into the oxopolymer network.  The result-

ing hydrolysis (and condensation) induced substantial organic removal, increasing the oxide

content of the gel.  In essence, this procedure counterbalanced the low partial hydrolysis (i.e.,

h = 0.25) used to delay gelation and preserve spinnable viscosities (see Section 2.3.6).  The

effects on film microstructure were quite dramatic as pictured in Figure 3.20.  Specimens

without this post-coating hydrolysis exhibited extensive porosity and phase separation (see

Figure 3.20A), appearing hazy to the naked eye.  In contrast, the exposure to humidified air

always produced transparent, dense, defect-free coatings upon pyrolysis (see Figure 3.20B).

The 450 °C hot-plate treatment then served as a useful checkpoint:  films clear to the naked

eye after this stage represented defect-free, amorphous coatings ready for crystallization.

Thus, because of the limitations imposed by spinnability (i.e., h < 1), post-coating hydrolysis comprises

an essential step for the alkoxy-based, sol-gel processing of manganite thin films.

To underscore this conclusion further, consider the adaptation by FORS, et al. [10] of the

sol-gel process developed by POHL, et al. [11, 12] for bulk xerogels (see Section 2.5).  The lat-

ter’s lack of partial hydrolysis (i.e., h = 0) was duplicated in the coating method:  hydrolysis

occurred solely from the reaction of atmospheric moisture with the deposited gel.  Fors, et al.

reported that the “porous, percolation-like structure of the sol-gel film”, formed after pro-

cessing at 800 °C on LaAlO3, could “be explained by the removal of carbonate groups”.  In

other words, by failing to properly exploit the hydrolysis and condensation mechanisms crucial to sol-

gel processing, excessive organic content remained in the coated xerogel, producing defects upon

pyrolysis.27  As will be shown Sections 4.8 and 4.9, the dense, amorphous coatings prepared

26The lid on the spin-coater was closed to ensured that the flow of humidified air passed directly over the coated
surface.
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FIGURE 3.20 Representative optical micrographs of a pyrolyzed sol coat-
ing.  This particular film corresponds to La-Ba-Mn (2:1:3) on Si(100) fired at
450 °C (i.e., amorphous).  When inadequately hydrolyzed, a hazy appearance
results, the product of extensive defects and phase separation (A).  Proper
hydrolysis, however, generates dense, transparent, and defect-free films.
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according to the procedures of Figure 3.19 all crystallized into defect-free manganite perovs-

kite thin-films.

3.5 CHARACTERIZATION

This section presents the characterization methods used to investigate alkoxide solution

chemistry, bulk-gel decomposition, and thin-film properties.  Individual thin-film specimens

remained exclusive to one of three groups of instrumental analyses:  Group (1) consisted of

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical microscopy, and

atomic force microscopy (AFM); Group (2), SQUID magnetometry and scanning electron

microscopy (SEM); and Group (3), magnetotransport.28  In addition, 16 reference specimens

were prepared according to the spin-coating process developed in Section 3.4.3.  These speci-

mens correspond to two doped-lanthanum manganite compositions (i.e., La0.67Ba0.33MnO3 or

La0.67Pb0.33MnO3), four firing temperatures (i.e., 600, 650, 700, or 750 °C), and two substrate

surfaces, (i.e., Si(100) or platinized-Si(100)).  Thus, with regard to the three groups of instru-

mental analyses, 48 reference specimens were required in all.

3.5.1 FOURIER TRANSFORM INFRARED SPECTROSCOPY

Infrared spectroscopy was employed to investigate the interaction of 2-methoxyethanol

with 2-methyl-2-propoxo manganese(II).  In an argon glove box, 4.024 g of 

was transferred into a flat-bottom 500-mL, 3-neck flask.  Cannulation was then used to

deliver 96.25 g of 2-methoxyethanol into the flask.  The dissolution of 2-methyl-2-propoxo

manganese(II) was extremely rapid, finishing within 1–2 minutes and before the majority of 2-

methoxyethanol had been added.  This observation validates the approach proposed by the author

in Section 2.5, fulfilling a principal goal of this dissertation, namely, to design a reactive and highly-

soluble manganese-based precursor (see Figure 3.21).  In contrast, 4.216 g of 

required 10–15 minutes to dissolve in 96.01 g of 2-methoxyethanol and only after the full ali-

27Fors, et al. eliminated these defects by post-annealing at 1000 °C in air.  Such corrective measures are entirely
incompatible with silicon-based substrates and could only be accomplished because the underlying LaAlO3 is
lattice-matched and refractory.

28These divisions reflect the destructiveness of their constituent characterization techniques.  For example, prep-
aration for magnetotransport requires substrate breakage, electrode deposition, attachment of electrical leads,
and so forth.  Such modified specimens are unusable with other analytical methods.

Mn OC CH3( )3[ ]2

La OCH CH3( )2[ ]2
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FIGURE 3.21 A 0.20 M solution of 2-methyl-2-propoxo manganese(II) in 2-
methoxyethanol.  Dissolution occurred on contact at room temperature.  The
pinkish color corresponds to a manganese(II) oxidation state (i.e., not brown).
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quot had been transferred.  This latter alkoxide is an accepted, conventional precursor for the

sol-gel processing of lanthanum-containing ceramic oxides [7].

Infrared adsorption spectra of the alkoxide solutions were obtained via a Nicolet Magna-

IR 550 with:  (1) a DTGS detector and (2) a continuous dry, high-purity nitrogen purge (i.e., of

the sample chamber).  A response from 4000–400 cm-1 was measured using 512 scans, a reso-

lution of 4 cm-1, a gain of 2.0, a mirror velocity of 0.6329 cm/s, Happ-Genzel apodization,

and Mertz phase correction.  To eliminate background interference, a scan of each sample cell

was taken when empty (i.e., argon-filled).  This reference was subtracted from actual spectra

in situ by the Nicolet OMNIC control software (Version 5.2).

To prepare a sample, one or two drops of the requisite solution was placed between two

25 x 4 mm KBr disks, which in turn, were separated by a 0.015 mm PTFE spacer.  These com-

ponents were carefully positioned within an Spectra-Tech Presslok demountable cell holder.

Due to aerobic sensitivity, both sample placement and cell holder assembly occurred within

an argon glove box.  The fully-assembled fixture was then placed into a leak-proof, screw-top

jar for removal from the glove box and subsequent transport to the interferometer.  After

mounting the cell holder within the Nicolet Magna-IR 550, 10–15 minutes were allowed to

elapse, ensuring adequate purging of CO2 gas and moisture from around the sample cell.

Measurements taken within 30 minutes of aerobic exposure indicated no contamination of

the contained liquid (i.e., as otherwise would be indicated by brown discoloration of oxi-

dized ).

3.5.2 THERMAL ANALYSIS

Thermogravimetric (TGA) and differential thermal (DTA) analysis was used to charac-

terize the decomposition of La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3) gels into manganite per-

ovksite powders from 25–1000 °C.  Accordingly, two instruments recorded data from this

conversion process:  (1) a TA Instruments Hi-Res TGA 2950 and (2) a TA Instruments DTA

1600.  All samples were heat-treated at 10 °C/minute in air with a flow rate of 20 scfm.  Alu-

mina powder (i.e., Al2O3) was used as the inert reference material inside the TA Instruments

DTA 1600.

The gel samples hydrolyzed in air and moisture-saturated argon, however, were first

placed in a drying oven at 110 °C for 2 hours to produce a xerogel.  Shrinkage was quite dra-

Mn OC CH3( )3[ ]2
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matic, leaving very-small, hard, and brittle pieces (i.e., at least 1/20 their original volume).

Equally important, the dessication process was observed to rapidly accelerate oxidization of

gels synthesized in the moisture-saturated argon environment.  The semi-translucent (i.e.,

La-Ba-Mn) or translucent (i.e., La-Pb-Mn) orange bodies transformed into opaque, black

shards upon heating.  On the other hand, gels created through solvent evaporation were han-

dled in the glove box and transferred to the appropriate instrument only when needed.  The

initial gel weight was measured (under argon) using either platinum foil (TGA) or an alu-

mina cup (DTA).  After sealing in a screw-top, glass vial, the specimen was transported out-

side the glove box and immediately loaded into the sample chamber.  The residence time in

air before the start of analysis was less than 1 minute.

3.5.3 X-RAY PHOTOELECTRON SPECTROSCOPY

A Kratos AXIS ULTRA was used to investigate the chemical homogeneity of thin-film

specimens.29  This instrument contained an aluminum X-ray source which was filtered by a

monochromator to produce a characteristic Kα energy of 14.866 keV and a resolution better

than 3 eV.  A 0.7 mm x 0.3 mm rectangular area was selected for the beam profile.  The pene-

tration depth was approximately 1 µm although scattering within the sample reduced the

actual analyzed depth to 10–20 nm.  Analysis was carried out on a 1 cm x 1 cm specimen

using two orthogonal axes which partitioned the film into quadrants; their origin lay directly

at the specimen center.  A photoelectron spectrum was taken at this origin and also along  1

mm axial increments (i.e., ± 1, ± 2, and ± 3 mm).  The outermost border (i.e., ± 4 mm) was

ignored due to the possibility of spin-coating edge defects.

Refinement and interpetation of the corresponding data required the processing of 512

individual spectra.  Elemental peaks in the film spectra were compared against the published

standards of MOULDER, et al. [13].  Labeled, representative spectra are given by Figures 3.22

and 3.23.30  Software provided with the Kratos AXIS ULTRA enabled the determination of

atomic concentration percents as corrected for elemental variations in cross-section.  Thus,

the ratios of calculated mass concentrations indicated the relative La:Ba:Mn or La:Pb:Mn sto-

29The author wishes to acknowledge the assistance of Dr. Rick Haasch who operated the instrument and carried
out the actual measurements (i.e., on behalf of the author).

30The very small carbon peak at ~ 280 eV in Figures 3.22 and 3.23 is from volatile organics in chamber of the Kra-
tox AXIS ULTRA and not the film specimens themselves.
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ichiometries.  Further attempts, however, to authenticate [Mn4+] proved futile.  Peak widths

of the manganese 2p3/2 binding-energy lines were sharp and contained no shoulders (i.e., no

separation into discernable Mn3+ and Mn4+ sub-peaks).31

3.5.4 OPTICAL MICROSCOPY

To verify that the films, after crystallization, were dense, uniform, and defect-free, opti-

cal images were taken in reflectance mode by a Panasonic GP-KR222 digital camera con-

nected to an Olympus BH-2 microscope.  All images were from representative specimens,

and hence, do not reflect “best-case” results.  Analysis with cross-polarized filters, however,

yielded no new discernable features, whether before or after crystallization.

3.5.5 SQUID MAGNETOMETRY

The onset of ferromagnetism was measured using a Quantum Design Magnetic Property

Measurement System (MPMS).  Small, rectangular samples were cut from the larger 1 cm x 1

cm specimens and their edge lengths measured via a micrometer (i.e., ± 10–15%).  These sam-

ples were placed (separately) into gelatin capsules along with an appropriate quantity of cot-

ton (i.e., to prevent sample motion).  An individual capsule was then centrally-mounted into

a (common) straw and held snug with plastic plugs above and below.  The straw was subse-

quently inserted into the MPMS and calibrated to precisely locate the sample position.

To initiate measurement, the samples were first heated to 400 K (i.e., above the Curie

point) to ensure a paramagnetic state.  A 25 Oe field was then applied and the temperature

decreased at 10 °C/minute to 5 K.  Absolute magnetization (i.e., in units of emu) was

recorded at intervals of  2 °C in high-resolution (i.e., oscillating) mode.  The diamagnetic

component of the bare Si(100) and platinized-Si(100) substrates was also measured in order

to verify the integrity of the ferromagnetic data.  Ferromagnetic signals (i.e., from the films)

were found to be 7–8 orders of magnitude higher than their diamagnetic counterparts (i.e.,

from the underlying substrate).  Thus, the diamagnetic component of the substrate was

ignored (i.e., not subtracted from the paramagnetic or ferromagnetic signal).

31Also, the reference binding energies of Mn3+ in Mn2O3 (i.e., 641.2–641.7 eV) and Mn4+ in MnO2 (i.e., 641.2–
642.4 eV) overlap almost completely [13].
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Magnetization data was converted to emu/cm3 using film thickness values obtained via

the scanning electron microscope (see Section 3.5.7).  The author wishes to stress that, because of

possible errors in the measured film dimensions (i.e., ± 10–15% per edge length), the graphs presented

in Section 4.6 should be used for relative comparisons only.  The Curie points, however, are not

dependent on sample dimensions and are therefore accurate.  Furthermore, due to the weak-

field condition (i.e., H = 25 Oe), extrapolation of the magnetization to 0 K does not provide

the saturated value (i.e., MS).  Proper determination of this metric requires very strong fields

(i.e., H > 1 T) to ensure alignment of all manganese 3d electron spins.  A strong-field mea-

surement was not attempted because errors in the sample dimensions would produce unreli-

able MS values. 

3.5.6 X-RAY DIFFRACTION

Powder X-ray diffraction patterns were obtained on a Rigaku D-Max, Cu X-ray source at

45 kV and 20 mA (i.e.,  Å and  Å), for 2θ values ranging from 20–

90°.  Soller slits filtered the beam at the X-ray source and in combination with a curved

graphite monochromator at the detector.  Ten individual scans were summed in “2-Theta/

Theta-Reflection” mode to form a single pattern.  The following three instrument settings

were used:  (1) a 10°/minute scan speed, (2) a 0.020° step interval, and (3) a “counts/second”

detection state.  To prepare samples, small portions (i.e., ~ 0.5–1.0 g) of oxide powder were

placed onto a glass slide.  A couple of drops of Aldrich 22,747-1, amyl acetate, 99% were

added to the powder, enabling a uniform dispersion of the material on the slide (i.e., agitated

with a clean, stainless-steel razor blade).  Rapid volatilization of the amyl acetate left a solid

mass, randomly-oriented, adhering to the glass slide.  The slide was then mounted onto an

aluminum plate with a central, rectangular hole (i.e., dimensions appropriate for the Rigaku

D-Max sample chamber).

Because of possible (small) alignment errors, the exact same powder was transferred onto a

Si(100) single crystal substrate (i.e., same preparative procedure described above).  This sub-

strate was then mounted onto the sample holder of a Philips X’pert 2 diffractometer (see next

paragraph) and precisely aligned (i.e., 2θ, ψ, and ω) using the (400) peak of silicon as a refer-

ence (i.e., ).  The largest diffraction peak of the manganite perovskite powder

(i.e., corresponding to the {110} planes) was located and the 2θ value of its centroid recorded.

Kα1 1.5406= Kα2 1.5444=

2θ 69.1290°=
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This value corrected the first (full) pattern taken on the Rigaku D-Max.  Analysis of the pow-

der patterns was carried out using JADE software (Version 6.5.23 from Materials Data, Inc.),

which during processing, corrected peak broadening caused by extraneous  radiation.

Results obtained in this way were in excellent agreement with values reported in the litera-

ture.

X-ray diffraction patterns for thin film specimens were obtained on a Philips X’pert 2, Cu

X-ray source at 45 KV and 40 mA (i.e.,  Å and  Å), for 2θ values

ranging from 20–90°.  The instrument was programmed to run in glancing-incidence mode

with ω fixed at 1.5°.32  The cross-slit collimator of the X-ray source was adjusted to a 1 mm

horizontal and 4 mm vertical gap.  A nickel plate, parallel plate collimator, and flat graphite

monochromator filtered the diffracted beam before reaching the detector.  The x, y, and z

coordinates of a central spot on each individual thin-film specimen was precisely determined

before measurement.  In addition, each specimen was also aligned (i.e., 2θ, ψ, and ω) using

the (400) reference peak (i.e., ) of the underlying Si(100) substrate.  Absolute

intensities (i.e., counts) were collected in continuous scan mode using these settings:  (1) a

point-parallel plate configuration, (2) a 0.0400° step size, and (3) a 0.0200°/second scan

speed.  As with the powder diffraction patterns, analysis of thin film data was carried out

using JADE software.  But if a pattern contained less than three perovskite-phase reflections,

no calculation of the lattice parameter was attempted.

3.5.7 SCANNING ELECTRON MICROSCOPY

Electron photomicrographs of film cross-sections were obtained using a Hitachi S-4700

scanning electron microscope (SEM).  Samples were prepared by scoring the backside of the

substrate with a diamond scribe and breaking.  For platinized-Si(100), the substrate was sub-

merged for 2–3 minutes in liquid nitrogen (i.e., after scoring) to ensure brittle fracture.  Oth-

erwise, the 1700 Å platinum and 300 Å titanium layers would deform plastically, making any

determination of film thickness virtually impossible.  To prevent surface charging, a conduc-

tive Au:Pd layer was sputtered onto the film before insertion into the sample chamber.  A

Sloan Dektak3 stylus surface profilometer was used to confirm thicknesses measured by the

32This value corresponds to a penetration depth of ~ 300 nm.

Kα2

Kα1 1.5406= Kα2 1.5444=

2θ 69.1290°=
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SEM.  Comparable values were obtained within experimental uncertainties (i.e., less than ± 5

nm) for a representative sample.  Thus, all film thicknesses reported in this dissertation were

obtained from cross-sectional SEM photomicrographs.

3.5.8 ATOMIC FORCE MICROSCOPY

The surface topography of thin-film specimens was measured using a Digital Instru-

ments Dimension 3100 AFM in tapping mode.  A tapping mode etched silicon probe (TESP)

was mounted and calibrated according to procedures specified by the manufacturer [14].

Scans were taken within a 1 µm x 1 µm area, at a 1.969 Hz rate, and with 512 samples per line.

To remove artifacts from the resulting images, Nanoscope III software (Version 5.12r2) from

Digital Instruments was used to apply zeroth- and first-order polynomial filters to the topo-

graphical data.  Root-mean-square (rms) surface roughness was calculated using WSxM soft-

ware (Version 3.0) from Nanotec, Electrónica, S. L.

3.5.9 MAGNETOTRANSPORT

Magnetotransport properties were investigated using a Quantum Design Physical Prop-

erty Measurement System (PPMS) with a DC resistivity puck (i.e., electrical bridge).  Before

measurement, however, all specimens were checked with a multimeter.  Two probes of the

multimeter were spaced ~ 1 mm apart, gently touched to the film, and the resistance mea-

sured.  If an insulating phase predominated (i.e., little or no crystallization of manganite per-

ovskite), the resistance could not be determined (i.e., greater than 50 MΩ).  Such films were

outside the measurement capability of the PPMS, and thus, not analyzed.

For attachment to the electrical bridge, specimens were sectioned into three identically-

sized, rectangular pieces (i.e., via “score and fracture”).  The central portion was selected for

analysis.  Four equally-spaced leads were mounted onto the film surface using Ted Pella

16032, colloidal silver paste.

Specifically, the following procedure was used:  a fine, rounded, stainless-steel tip was

dipped into the colloidal paste and then carefully touched to the film surface.  This process

left a ~ 1 mm diameter, hemispherical meniscus which dried into a circular pad.  After curing

(i.e., ~ 30 minutes), the end of a 0.001” diameter gold wire was placed onto the pad and a
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small drop of paste applied to the top.  This process was repeated three times to form individ-

ual leads spaced in-line and ~ 1 mm apart (i.e., four total).  The remaining gold-wire ends

were then soldered directly to corresponding pads on the DC resistivity puck.

To initiate measurement, the bridge was inserted into the PPMS and the integrity of the

electrical connections confirmed.  DC resistivity was obtained via a four-point geometry and

50 µA of current.  The system was heated in zero-field to 400 K and cooled at 4 K/minute to

30 K.  The resistivity was determined at 4 K intervals but only after the temperature equili-

brated.  After a full 400 K to 30 K cycle, the specimen was re-heated to 400 K, a magnetic field

of H = 1 T applied, and the temperature cooled.  In this way, magnetotransport was mea-

sured via 1 T increments from 0–5 T.  Weak field measurements utilized the same 50.000 µA

current but the temperature was fixed at TIM (i.e., as determined from the zero-field magne-

totransport curve).  The magnetic field was then cycled in a loop according to:  (1) 0 Oe to

+500 Oe, (2) +500 Oe to –500 Oe, and (3) –500 Oe to 0 Oe.33

Much to the chagrin of the author, magnetotransport signals from films deposited on

platinized-Si(100) corresponded to the temperature-dependent resistivity of platinum alone:

small oxide film thicknesses (i.e., 90–100 nm) enabled substantial leakage to the higher-con-

ducting platinum metal (i.e., the “path of least resistance”).34  To alleviate this problem,

thicker films were prepared (i.e., 9 coatings).  But even with this modification, magnetoresis-

tive behavior could only be measured by switching from in-plane (i.e., longitudinal), four-point to

through-plane (i.e., transverse), two-point geometry.  This latter configuration exploited the plati-

num layer as a bottom electrode.  Despite extensive efforts, weak-field measurements proved

inconsistent, and hence, were not pursued.  Further discussion is deferred to Section 4.10.

To prepare specimens for two-point analysis, a central 5 mm x 5 mm square was left on

the substrate by etching off the film borders with dilute hydrochloric acid.35  Scotch Magic™

Tape 810 from 3M was found to serve as an excellent patterning mask, producing sharp step-

edges with no damage from lift-off.  To remove undesired material, a cotton swab was moist-

ened with the dilute acid solution and gently rubbed on the film surface.  After etching, the

substrate was rinsed with deionized water and cleaned according to procedures detailed in

33Stablizing a persisent current in the superconducting coils requires 3–5 minutes.  Thus, the rate of increase (or
decrease) of the magnetic field is discontinuous and slow.

34Note that doped-lanthanide manganites exhibit resistivities typical of “dirty” metals (see Section 2.2.2).
35One part Fisher Scientific A144-212, Hydrochloric acid was dissolved into four parts deionized water.
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Section 3.4.3.  Inspection using an optical microscope ensured no residual adhesive remained

on the specimen.  A thin top electrode of silver paste was applied with the masking aid of the

Scotch Magic™ Tape.  The corresponding dimensions were just less than the 5 mm x 5 mm

oxide film geometry.  This precaution prevented contact with the platinum layer, and hence,

shorting.  Two leads were then attached as described for the four-point measurement.

3.6 CONCLUSION

From the experimental data presented here, three critical milestones were achieved that

enable the alkoxy-based, sol-gel processing of manganite thin films.  First, the isolation of 2-

methyl-2-propoxo manganese(II), 2-methyl-2-propoxo lead(II), and 2-methyl-2-propoxo bar-

ium, all as true alkoxides and not oxoalkoxide derivatives, provides the basis for an all-alkoxide

approach.  Second, the synthesis of orange and pinkish-orange solutions demonstrates the

preparation of unoxidized systems free from brown colloidal or particulate inclusions.  And

lastly, the development of proper hydrolytic procedures ensures the decomposition of xero-

gel coatings into transparent, dense, and defect-free films before crystallization.  This latter

accomplishment stems from the deliberately-designed (i.e., h = 0.25) polymeric nature of the

0.2 M La-Ba-Mn and La-Pb-Mn sols (see Section 2.3.5).  The resulting amorphous films then

readily crystallize into manganite perovskite between 600–650 °C, the subsequent investiga-

tion of which, comprises the subject matter of Chapter 4.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 OVERVIEW

In order to develop an alkoxy based, sol-gel processing method for manganite-perovs-

kite thin films, the completion of three objectives was required:  (1) the development of a

chemical-solution system using all alkoxide precursors, and in particular, the synthesis of a

highly soluble and reactive manganese(II) alkoxide, (2) the demonstration of low-tempera-

ture densification and crystallization behavior, and (3) the measurement of characteristic

magnetoresistive properties under standard (i.e., H = 0–5 T) and weak-field (i.e., H < 500 Oe)

conditions.  This chapter presents conclusive evidence for the successful accomplishment of

all these objectives.  Solution chemistry, xerogel decomposition, and thin-film microstructure

are investigated with an emphasis on correlating the resultant magnetic and electrical prop-

erties with perovskite phase evolution.

4.2 ALKOXIDE SOLVATION

As stated in Section 2.5, HORVATH, et al. [1] reported that 2-methyl-2-propoxo manga-

nese(II) failed to dissolve in alkane, ethereal, alcoholic, and nitrile media — a sizable collec-

tion of fundamental organic solvents!  Yet in Section 3.5.1, the author clearly demonstrates

the solubility of this alkoxide in 2-methoxyethanol.  Accordingly, fourier transform infrared

(FTIR) spectroscopy was used to determine the solute-solvent interactions which lead to sol-

vation.  First, an infrared absorbance spectra of the pure solvent was obtained (see Figure 4.1)

and all functional groups identified (see Table 4.1) [2].  This reference pattern was then com-

pared against the requisite alkoxide solutions and the differences noted.

Of particular importance are perturbations in the bending modes of the highly-polar Oδ-

—Hδ+ group.  Solvate coordination to the electrophilic metal center of alkoxides proceeds via

nucleophilic addition, leaving an adduct upon crystallization (see Section 2.3.2).  In solutia,

such interactions remain due to weak Mδ+—Oδ- interactions analogous to hydrogen bonding

in water.  To illustrate this point, Figure 4.2 provides the infrared spectra of 2-propoxo lan-
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thanum and 2-methyl-2-propoxo manganese(II) in 2-methoxyethanol.1  In the former, split-

ting of the broad 3400–2900 cm-1 absorbance band (i.e., the Oδ-—Hδ+ scissors bending mode),

is reminiscent of the  species characterized by

chemical analysis in Section 3.3.2.  Not surprisingly, the C—C—O symmetric stretch mode at

891 cm-1 is also heavily split.  The ether group (i.e., C—O—C) both experiences a splitting of

its symmetric (i.e., 835 cm-1) and asymmetric (i.e., 1124 cm-1) stretching modes.  But the

larger perturbation of the Oδ-—Hδ+ vibration mode implicates an Mδ+ ← Oδ-—Hδ+ interac-

tion as the principal dissolution mechanism.

In similar fashion, inspection of the spectrum corresponding to solvated 2-methyl-2-pro-

poxo manganese(II) reveals a clear perturbation of the Oδ-—Hδ+ scissors bending mode.  But

the magnitude of this splitting is diminished compared to 2-propoxo lanthanum.  Very weak

splitting is also found in the peaks attributed to C—C—O and C—O—C symmetric stretch-

ing modes.  Together, these observations indicate a predominance of alcoholic over ethereal

interactions.  Furthermore, the absence of both a C—C—C stretch mode (i.e., 914 cm-1) and a

split CH3 umbrella mode (i.e., 1379 cm-1 and 1366 cm-1 in 1:2 relative intensity) eliminates the

possibility of free 2-methyl-2-propanol in solution [2].  Thus, the dissolution of 2-methyl-2-pro-

poxo manganese(II) is thought to occur via coordination (i.e., nucleophilic addition) and not through

reaction (i.e., nucleophilic substitution).  Attempts to crystallize a solid-state adduct (i.e., with

subsquent characterization), however, were not undertakened by the author.  Instead, such

an investigation is recommended as future research (see Chapter 6).  The weak Oδ-—Hδ+ per-

turbation, however, suggests a smaller alcoholate composition (i.e., less than n = 3.5 value

found with ).

As discussed in Section 2.3.4, the presence of multiple alkoxides in solution often enables

Lewis acid-base reactions, forming new, heterometallic species.  Indeed, the infrared absor-

bance spectra of the 0.25 M La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3) “stock” solutions reveals

no perturbations of either the alcoholic or ethereal vibration modes (see Figure 4.3).  Hence,

the lack of detectable solvent interactions implies the creation of highly-soluble, heterometal-

lic alkoxides with saturated coordination spheres.  In the region below 800 cm-1, small peaks

emerge which are consistent with M—O stretching modes.  For example, ADAMS, et al. [3]

1 As discussed in Section 3.3.2, 2-propoxo lanthanum is, in fact, an oxoalkoxide compound.  For convenience
though, the “2-propoxo“ designation will be continued throughout this section.

La5O OCH CH3( )2[ ]13 3.5HOCH2CH2OCH3⋅

La5O OCH CH3( )2[ ]13 3.5HOCH2CH2OCH3⋅
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reported that transition-metal (i.e., Cr, Mn, Fe, Co, Ni, and Cu) methoxides exhibited infrared

M—O asymmetric and symmetric stretching modes between 600–300 cm-1.  Unfortunately,

due to the complexity of multi-component solutions, elemental identification of these modes

was not possible.

4.3 THERMAL ANALYSIS

In order to develop the heat treatment process described by Section 3.4.3, investigation

of La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3) xerogel decomposition was conducted using ther-

mogravimetric (TGA) and differential thermal (DTA) analyses (see Figures 4.4 and 4.5).  But

because the samples prepared by solvent evaporation (i.e., a dry, argon current) were not

fully-desiccated, a discussion of their decompositional behavior will be presented last.  These

latter samples start as gels, and hence, are distinguished as such.

For all xerogels, the 25–200 °C range corresponds to a region of thermally-driven hydrol-

ysis and condensation; mass loss stems from liberated water, 2-methoxyethanol, 2-methyl-2-

propanol, and volatilized organics (i.e., solvent molecules, leaving groups, and decomposi-

tional by-products).  But at 180–230 °C, a shoulder develops in the TGA curves which marks

the onset of pyrolysis.  Accordingly, a very sharp exotherm emerges within this temperature

range (see DTA plots).  A comparison of the hydrolysis environments clearly shows that gelation

under moisture-rich atmospheres shifts the onset of decomposition to lower temperatures.  For exam-

ple, the exothermic peak of the La-Ba-Mn (2:1:3) xerogels decreases from 238 °C to 214 °C to

200 °C for samples hydrolyzed, respectively, in lower-humidity air, higher-humidity air, and

moisture-saturated argon.2  Equivalent temperatures for La-Pb-Mn (2:1:3) are 222 °C, 194 °C,

and 191 °C, respectively.

The 240–550 °C temperature range involves the decomposition of carbonate, oxycarbon-

ate, and/or hydroxycarbonate compositions which slowly generate CO2 gas and H2O vapor.

For La-Ba-Mn (2:1:3), mass loss approaches a plateau at ~ 460 °C (i.e., lower-humidity air)

and ~ 540 °C (i.e., higher-humidity air), indicating the formation of a thermally-stable oxycar-

bonate phase (see Section 2.3.5).  Similar profiles develop in the La-Pb-Mn (2:1:3) system.

2 “Lower humidity” corresponds to less than 30%; “higher humidity”, greater than 65%.  As discussed above,
this difference affects decomposition behavior, underscoring the need for partial (i.e., controlled) hydrolysis.
An alkoxy-based, sol-gel process would otherwise be susceptible to fluctuations in aerobic moisture.
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FIGURE 4.4 Decomposition behavior of La-Ba-Mn polymeric gels during
pyrolysis.  Thermogravimetric (A) and differential thermal (B) plots are shown.
The elemental ratio of the metals is, respectively, 2:1:3.
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FIGURE 4.5 Decomposition behavior of La-Pb-Mn polymeric gels during
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Such thermal behavior compares well with that of alkoxy-derived La-Ca-Mn (2:1:3) and La-

Sr-Mn (3:1:4) sol-gel powders synthesized by POHL, et al. [4, 5].  In contrast, xerogels pre-

pared in moisture-saturated argon, however, lose mass continuously until ~ 650 °C (i.e., La-

Ba-Mn) and ~ 600 °C (i.e., La-Pb-Mn) at which a small shoulder appears.

In each system, the shoulders which appear above ~ 550 °C correlate directly to small

endothermic peaks (see DTA plots).  These characteristics reflect the elimination of remain-

ing carbonate groups and the emergence of manganite-perovksite phase.3  Thermal analysis

would then suggest a “best-case” crystallization temperature of ~ 650 °C and ~ 600 °C for,

respectively, La-Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3).  Such values are in good agreement with

the ferromagnetic onset and X-ray diffraction patterns of thin films crystallized on plati-

nized-Si(100) (see Table 4.2).4  Furthermore, xerogels prepared using moisture-saturated

argon exhibit earlier carbonate decomposition and sharper decomposition shoulders.  Thus,

the results of thermal analysis support the utilization of post-coating hydrolysis (see Section 3.4.3) for

manganite films:  improved hydrolysis, by increasing oxide content, lowers the perovskite crystalliza-

tion temperature, a critical goal of this dissertation.

Thermal analysis of the partially-dessicated gels (i.e., concentrated under a dry, current of

argon) reveals a large initial drop in mass below 300 °C (i.e., 40–45%).  Clearly, the removal of

pore-entrapped solvent accounts for much of the loss below ~ 200 °C but further by-products

of hydrolysis and condensation are also liberated.  Unfortunately, the author lacked access to

a mass spectrometer (i.e., a combined TGA-MS system).  Species identification, therefore,

was not possible and is recommended as future research (see Chapter 6).  The DTA curves

indicate two large, distinct exotherms at ~ 300 °C and ~ 450 °C.  Such decompositional behav-

ior is notably different from that exhibited by the xerogels.  Hence, caution must be excercised

when adapting the results of bulk xerogels to spin-coated films.  Final carbonate removal and crys-

tallization, however, does proceed at similar temperatures.

4.4 CHEMICAL HOMOGENEITY

Although the bulk, polycrystalline pellets, characterized in Section 3.4.1, confirmed a

proper solution stoichiometry, the chemical homogeneity of coated specimens was analyzed

3 POHL, et al. [4, 5] reported the decomposition of La1-xMxMnO3(CO3)y compounds above 600 °C where y < 1.
4 For thermogravimetric analysis, both xerogel and gel samples were loaded into pans lined with platinum foil.
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via XPS to ensure a uniform elemental distribution within the films (i.e., La-Ba-Mn and La-

Pb-Mn of 2:1:3).  Figures 4.6 through 4.9 indicate that, within experimental uncertainty (i.e., ±

0.025), all films exhibit the 2:1:3 stoichiometry regardless of substrate-type, heat-treatment tempera-

ture, or composition.  Furthermore, the XPS spectra indicate no contamination from elements

corresponding to the underlying substrate or residual carbonate groups (refer to Figures 3.22

and 3.23).5  Thus, firing at 600 °C (or higher) forms a dense amorphous oxide film that readily crys-

tallizes upon further heat treatment (see Section 4.7).

Interestingly, in the La0.67Pb0.33MnO3 coatings, the lead content was not observed to

decrease as the firing temperature increased from 600 °C to 750 °C; the Pb:Mn ratio stayed

constant at 0.33 ± 0.025 with no temperature-dependent skew.  This finding is unusual given

the well-known volatilization of PbO from titanate and zirconate perovskites at similar tem-

peratures.  For example, TANI and PAYNE [6] pioneered the use of a lead oxide cover-coat to

inhibit lead loss during the heat treatment of sol-gel PbTiO3, PbZrxTi1-xO3, and lanthanum-

modified PbZrxTi1-xO3 films.  No cover-coat, however, was incorporated for the sol-gel pro-

cessing of  La0.67Pb0.33MnO3 films presented in this dissertation.  Subsequent investigation of

surface topology (see Section 4.9), however, suggests the activation of thermal etching via

PbO volatilization from the surface of the grain.

4.5 OPTICAL MICROSCOPY

To provide a quick, straight-forward verification of film quality, optical micrographs

were taken of the specimens in reflectance mode.  Figures 4.10 and 4.11 indicate transparent,

smooth, dense, and crack-free films.  Thus, partial hydrolysis, in combination with exposure to

humidified air (i.e., post-spinning), successfully diminished organic content within the

coated xerogel so that upon pyrolysis, no porosity or phase separation developed (i.e., refer

back to Figure 3.20).  Within each temperature sequence, however, a slight change in hue

occurred, which to the naked eye, corresponded to the emergence of blue coloring.  The onset

temperatures are given as follows:  (1) 700 °C for La-Ba-Mn on Si(100), (2) 650 °C for La-Ba-

Mn on platinized-Si(100), (3) 650 °C for La-Pb-Mn on Si(100), and (4) 650 °C for La-Pb-Mn on

platinized-Si(100).  These observations are in good agreement with the onset of crystalliza-

5 A film-substrate reaction layer, however, was present for all films deposited on Si(100) (see discussion in Sec-
tion 4.7).
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FIGURE 4.10 Optical micrographs of crystallized La0.67Ba0.33MnO3 films.  
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FIGURE 4.11 Optical micrographs of crystallized La0.67Pb0.33MnO3 films.  
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tion determined from magnetization behavior and X-ray diffraction patterns (see Table 4.2).

For example, the speckled appearance of the 650 °C La-Pb-Mn specimen on Si(100) in Figure

4.11 stems from the nucleation of perovskite-structured oxide (i.e., blue) within the amor-

phous matrix (i.e., grey).  Hence, the change in hue correlates to a decrease in film thickness

that results from crystallization of the perovskite phase (see Section 4.9).

4.6 MAGNETIZATION

A more appropriate technique, however, for determining the presence of perovskite

phase is SQUID magnetometry.  Both La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 are ferromag-

nets, and as such, display Curie points upon cooling from the paramagnetic state.  The excep-

tional sensitivity of the SQUID superconducting coil to changes in magnetic field strength

(i.e., as small as 10-15 T) then allows for the detection of manganite perovskite, even if iso-

lated within the amorphous oxide matrix.  Furthermore, as discussed in Sections 2.2.2 and

2.2.3, the paramagnetic-to-ferromagnetic transition is essential for a corresponding insulator-

to-metal transition.  Thus, characterization of ferromagnetic behavior provides an indirect

confirmation of magnetoresistance.

Evidence for ferromagnetism is conclusively provided by Figures 4.12 through 4.14.  In

general, films on Si(100) substrates exhibit slightly higher Curie temperatures whereas those

on platinized-Si(100) produce stronger magnetic moments.  Both compositions, however,

exhibit Curie points only when heat-treated at temperatures of 650 °C or higher, regardless of

substrate.6  Processing at 600 °C remains insufficient to induce crystallization.  But further

comparision reveals that films containing La0.67Pb0.33MnO3 offer both notably stronger mag-

netic moments and higher Curie temperatures than their La0.67Ba0.33MnO3 counterparts.  In

addition, the ferromagnetic onset is sharper and better resembles that of the bulk, polycrys-

talline pellet (refer back to Figure 3.16).  For example, the highest TC for La0.67Ba0.33MnO3 is

254 K, but for La0.67Pb0.33MnO3, 326 K; bulk, polycrystalline values are, respectively, 340 K

and 350 K (see Figures 3.15 and 3.16).

Such observations are consistent with the refractory nature of barium-containing oxides:

as stated in Section 2.3, 1500 °C is necessary for the preparation of La0.67Ba0.33MnO3 by con-

6 Note the weak signal of the La0.67Ba0.33MnO3 film on Si(100) (i.e., fired at 650 °C) in Figure 4.13.
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FIGURE 4.12 Magnetic behavior of La0.67Ba0.33MnO3 films.  The surfaces of
Si(100) substrates (A) exhibit slightly higher Curie temperatures (i.e., TC) but
the platinized-Si(100) substrates (B) produce stronger magnetic moments.
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vential mixed-oxide methods but only 950 °C is required for La0.67Pb0.33MnO3.  Yet the emer-

gence of ferromagnetism clearly reflects the development of perovskite structure within the amorphous

oxide matrix at 650 °C!  Subsequent improvements in the magnitude of the magnetic moment

(i.e., with heat-treatment temperature) result from the optimization of [Mn3+]/[Mn4+]

induced by stronger oxidation (see Section 2.2.4).  To stay within the thermal compatibility

range for silicon, however, investigation beyond 750 °C was not attempted; typical heat treat-

ments for refractory substrates such as LaAlO3 or SrTiO3 start at 800 °C.

4.7 X-RAY DIFFRACTION

The direct measurement of thin-film crystallinity was obtained using glancing-incidence

X-ray scattering (i.e., ω = 1.5°).  The corresponding patterns are given in Figures 4.15 through

4.18.  Three general comments must be made before discussing the results.  First, all films

deposited on Si(100) exhibited unidentified peaks at 2θ = ~ 54° and ~ 56°, the former sharp

and the latter broad.   These peaks are attributed to a reaction layer between the doped-lan-

thanum manganite and silicon; no equivalent peak could be found for films deposited on

platinized-Si(100).  Second, an additional anamolous peak sometimes appeared at 2θ = ~

26.2°.  A review of the published crystallographic data indicated that polycrystalline β-SiO2

exhibits its highest-intensity diffraction peak at 2θ = 26.243°.7  No other compositions corre-

sponding to permutations of La, Ba, Pb, Mn, Si, and O provided a reasonable match.  Thus, β-

SiO2 is offered as a logical but suggested phase, perhaps crystallizing to reduce interfacial

strain.  Direct confirmation, however, was not attempted, but instead, is offered as a recom-

mendation for future work (see Chapter 6).  Lastly, the platinized-Si(100) specimens often fail

to demonstrate the expected Pt(111) peak (i.e., 2θ = 39.763°).8  This characteristic, if absent,

most likely stems from the shallow X-ray incidence angle combined with:  (1) a (111)-perovs-

kite diffraction condition at 2θ = ~ 39.9° and (2) the strong scattering cross-sections of La, Ba,

and Pb.9

Data presented by Figures 4.15 through 4.18 are in good agreement (see Table 4.2) with

the reference patterns obtained from the bulk, polycrystalline pellets (see Figures 3.15 and

7 See JCPDS PDF 47-1144 from the International Centre for Diffraction Data.
8 See JCPDS PDF 04-0802 from the International Centre for Diffraction Data.
9 Standard θ-2θ (i.e., ω = θ) scans from the same film specimens, however, do show the dominant Pt(111) peak.

Unfortunately, the signal is so strong that the (111) peak from the perovskite film becomes obscured.
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THIN-FILM
SPECIMEN

SUBSTRATE TYPE LATTICE PARAMETERa

(Å)

a For the cubic unit cell.  Reference values from bulk, polycrystalline pellets are, respectively, 3.904 Å and
3.890 Å for La0.67Ba0.33MnO3 and  La0.67Pb0.33MnO3.

TC
(K)

TIM
(K)

La0.67Ba0.33MnO3

600 °C Si(100) –b

b The onset of crystallization was observed but less than three diffraction peaks were available.

– –
650 °C Si(100) 3.900 125 –
700 °C Si(100) 3.898 246 115
750 °C Si(100) 3.876 254 144

600 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) – – –
650 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.908 168 –
700 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.905 226 120
750 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.902 250 264

La0.67Pb0.33MnO3

600 °C Si(100) –b – –
650 °C Si(100) 3.887 300 –
700 °C Si(100) 3.884 311 236
750 °C Si(100) 3.876 326 228

600 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) – – –
650 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.890 297 262
700 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.889 307 252
750 °C Pt(111) ⁄ Ti ⁄ SiO2 ⁄⁄ Si(100) 3.885 320 254
TABLE 4.2 Comparison of lattice parameters, TC, and TIM for manganite thin
films.  Note the excellent correlation between the onset of crystallization and
magnetization.
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3.16).  Virtually all diffraction peaks are present by 750 °C, and with the exception of the

Si(100) reaction layer, no intermediate (crystalline) phases occur during the transformation

from amorphous oxide to doped-lanthanum manganite.  As evidenced by the films crystallized

on platinized-Si(100), the alkoxy-based sol-gel process developed in this dissertation is capable of a

direct pathway to the requisite perovskite phase.  Furthermore, the onset of crystallization occurs

below 650 °C on Si(100) and near 600 °C on platinized-Si(100) — a remarkable improvement over

temperatures from competing CSD methods (i.e., > 800 °C) using lattice-matched substrates (see Sec-

tion 2.4.1)!  Equally important, the lead-doped composition crystallizes earlier than its bar-

ium counterpart, as evident by slightly-stronger and more numerous diffraction peaks at

lower firing temperatures.

In addition, the cubic lattice parameters of films crystallized at 650 °C are virtually iden-

tical to the values obtained from the bulk, polycrystalline reference pellets (see Table 4.2).

Thus, specimens prepared via the alkoxy-based, sol-gel process of Chapter 3 exhibit stoichiometric oxy-

gen content without the need for further heat treatment.  Such a feature is not typical for compara-

ble films grown via pulsed-laser deposition (PLD), even when using lattice-matched

substrates.  This vacuum-based process typically produces oxygen-deficient films which

require high-temperature post-annealing (i.e., > 900 °C) [7, 8].  A slight decrease in the lattice

parameter, however, occurs in the sol-gel films with increasing heat-treatment temperature.

The small magnitude of this change, concomitant with notable improvements in the ferro-

magnetic moment (see Figures 4.12 through 4.14), suggests the continued oxidation of Mn3+

into Mn4+ according to [Mn3+]/[Mn4+] → 0.33 (see Section 2.2.4).10  Changes in film stress

(i.e., from the underlying substrate) also effect the lattice parameters and therefore cannot not

be eliminated from consideration, particularly for films deposited on Si(100).

4.8 FILM THICKNESSES

Film thicknesses were obtained from cross-sectional images using a scanning electron

microscope (SEM).  An inspection of Figures 4.19 through 4.22 clearly indicates the amor-

phous nature of the coatings fired at 600 °C.  No cracking or porosity, however, is exhibited by any

specimen regardless of heat-treatment temperature, composition, or substrate-type.  This observation

10As discussed in Section 2.2.1, increases in [Mn4+] relieve the non-cubic distortion caused by Mn3+, a Jahn-
Teller ion, and therefore enable the unit cell parameters to decrease.
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t = 85 nm t = 94 nm
FIGURE 4.19 Cross-sectional images of La0.67Ba0.33MnO3 films deposited on
Si(100).  Film thicknesses are given above the upper right of each image.
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t = 103 nm
FIGURE 4.20 Cross-sectional images of La0.67Ba0.33MnO3 films deposited on
platinized-Si(100).  Film thicknesses are given above the upper right of each
image.
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600 °C 650 °C

700 °C 750 °C

t = 105 nm

t = 75 nmt = 113 nm

t = 102 nm
FIGURE 4.21 Cross-sectional images of La0.67Pb0.33MnO3 films deposited on
Si(100).  Film thicknesses are given above the upper right of each image.
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600 °C 650 °C

700 °C 750 °C

t = 75 nm

t = 90 nm t = 80 nm

t = 88 nm
FIGURE 4.22 Cross-sectional images of La0.67Pb0.33MnO3 films deposited on
platinized-Si(100).  Film thicknesses are given above the upper right of each
image.
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is in excellent agreement with the optical micrographs presented in Section 4.5.  For either

composition, crystalline features first appear at 700 °C for films deposited on Si(100) and 650

°C on platinized-Si(100).  The most detailed example of grain structure, though, can be seen

in the La0.67Pb0.33MnO3 films prepared at 700 °C and 750 °C on Si(100).    Consideration of the

three spin-coating iterations (refer to Figure 3.19) implies that each deposited layer from the

0.20 M La-Ba-Mn or La-Pb-Mn sols corresponds to ~ 30–40 nm of final oxide film thickness.

In general, film thicknesses decrease upon crystallization from amorphous oxide into

doped-lanthanum manganite.  The continued growth of silicon oxide and/or the reaction

layer for films crystallized on Si(100), however, precludes further elaboration for this sub-

strate type.  Thicknesses measured for La0.67Ba0.33MnO3 on platinized-Si(100), though, do

indicate a gradual decrease from 600 °C to 750 °C.  A similar trend was not observed for

La0.67Pb0.33MnO3, but instead, thicknesses seemed to fluctuate around ~ 85 nm.  The less-

refractory nature of La0.67Pb0.33MnO3 may allow for a more dense amorphous phase by 600

°C (i.e., lower free volume); oxo-coordinated lead is a well-known glass network former in

noncrystalline solids [9].  So any corresponding changes in specific volume upon crystalliza-

tion may be small and not easily captured by cross-sectional images.

4.9 SURFACE TOPOLOGY

 The surface topology of the manganite films is illustrated in Figures 4.23 through 4.26,

providing direct visualization of surface roughness and grain size.  Typical roughness values

(i.e., root-mean-sqaure) fall in the range from 1.2–2.3 nm.  For La0.67Pb0.33MnO3 crystallized

on platinized-Si(100), however, heat-treatment above 700 °C increases this metric to ~ 7.3 nm.

Grain diameters for La0.67Ba0.33MnO3 start at 15–20 nm for a heat-treatment temperature of

650 °C, increasing to 20–25 nm by 750 °C.  Similar values are obtained for La0.67Pb0.33MnO3 on

Si(100).  Grain sizes for lead-doped films on platinized-Si(100), though, begin larger at 30–35

nm for 650 °C and increase to 45–50 nm by 750 °C.

A progressive comparison of La0.67Pb0.33MnO3 specimens fired at 650 °C, 700 °C, and 750

°C on platinized-Si(100) indicates an obvious roughening of microstructure with a slightly-

diminished connectivity by 750 °C.  Such behavior is reminiscent of thermal etching due to

PbO volatilization at the grain surface (and subsequent mobility within the boundaries).  Ref-

erencing back to the cross-sectional SEM images (see Figures 4.21 and 4.21), however, con-
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FIGURE 4.23 Surface profile of La0.67Ba0.33MnO3 films fired on Si(100).  The
scale length is constant for each image.  Surface roughness values are given
in the upper-right corner of each profile.
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FIGURE 4.24 Surface profile of La0.67Ba0.33MnO3 films fired on platinized-
Si(100).  The scale length is constant for each image.  Surface roughness values
are given in the upper-right corner of each profile.
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FIGURE 4.25 Surface profile of La0.67Pb0.33MnO3 films fired on Si(100).  The
scale length is constant for each image.  Surface roughness values are given
in the upper-right corner of each profile.
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FIGURE 4.26 Surface profile of La0.67Pb0.33MnO3 films fired on platinized-
Si(100).  Note the increased scale length for the 700 °C and 750 °C samples.
Surface roughness values are given in the upper right corner of each profile.
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firms the dense, non-porous nature of the films.  Closer inspection of the La0.67Pb0.33MnO3

cross-sections, and in particular, a relative comparison of films crystallized on Si(100) and

platinized-Si(100), reveals the following:  the microstructure on the former appears more

spherical and grainy whereas the latter seems to emerge from the underlying Pt(111) layer.

Thus, the roughening trend observed for La0.67Pb0.33MnO3 on platinized-Si(100) may also

include thermally-activated substrate-templating.11  Such a conclusion would be consistent

with the low crystallization onset (i.e., 600 °C from Figure 4.18) and excellent TC evolution

(see Table 4.2).  Note also the reduction of granular definition for La0.67Pb0.33MnO3 grown on

Si(100) at 750 °C (see Figure 4.25).  This behavior suggests the onset of intergrain necking,

perhaps activated due to poor registry with the substrate after crystallization.

A fine grain size (i.e., < 50 nm) persists for virtually all specimens with the best grain def-

inition corresponding to heat treatments at 700 °C and 750 °C.  This characteristic suggests the

rapid nucleation of perovskite phase from the amorphous oxide matrix with little grain growth.  As

will be shown in Section 4.10, such an extensive grain boundary network dramatically influ-

ences the resistivity exhibited by the films.  One possible explanation for this microstructure

is the contribution of strain energy to the free energy change during nucleation.12  For exam-

ple, SENGUPTA [10] examined the stress evolution of PbTiO3 thin films (i.e., ~ 90 nm) depos-

ited on platinized-Si(100) via sol-gel processing.  Thermal expansion mismatch (i.e., strain)

produced substantial tensile stresses of ~ 150 MPa upon heating the xerogel coating to 500

°C; only near the onset of crystallization did the magnitude diminish significantly.  Such

stresses can shift nucleation to lower temperatures, or alternatively, raise the nucleation rate

at given temperature.  Investigation of interfacial strain effects, however, was not possible in

the time frame allotted for this dissertation.  Due to possible influences on microstructural

development and electrical properties, the examination of stress evolution is therefore rec-

ommended as future research (see Chapter 6).

4.10 MAGNETOTRANSPORT

The magnetotransport behavior of doped-lanthanide manganite films was investigated

11Note that the cubic lattice parameter of the platinum layer is 3.923 Å, close to the 3.890 Å value measured for
the bulk (i.e., unclamped), polycrystalline La0.67Pb0.33MnO3 pellet. 

12Further discussion on the kinetics of nucleation and growth for amorphous materials can be found in the refer-
ence text by VARSHNEYA [9].
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using two different magnetic-field conditions:  (1) a standard 0–5 T range with 1 T increments

and (2) a single weak-field cycle between ± 500 Oe.  In agreement with both the magnetization

(see Section 4.6) and X-ray diffraction data (see Section 4.7), only films prepared at 700 °C and

750 °C on Si(100) and 650 °C, 700 °C, and 750 °C on platinized-Si(100) demonstrated magne-

toresistive behavior; a ferromagnetic moment and crystallinity (i.e., at least five major diffrac-

tion peaks) were required for magnetoresistance.  Thus, the conclusive presence of manganite-

perovskite phase was essential to ensure magnetotransport in the thin-film specimens.

Electrical measurements for films crystallized on platinized-Si(100), however, proved to

be quite challenging.  In-plane leakage through the underlying platinum layer was notable,

completely obscuring the signal of the manganite film.13  To mitigate this problem, new spec-

imens were prepared with an increased final oxide thickness of 270–280 nm (i.e., 9 spin-coat-

ing iterations).  Furthermore, the contact geometry was changed from a four-point in-plane

to a two-point through-plane configuration.  This modification represented a compromise

but allowed for the observation of magnetoresistive behavior under standard 0–5 T condi-

tions.14  Unfortunately, weak-field measurements were erratic and unreliable.  Further inves-

tigation was therefore not undertaken.

Regardless of composition or substrate-type, all films exhibited resistivities significantly

higher than the intrinsic, single-crystal values (i.e., 106–108 Ω-cm versus 10-3–10-1 Ω-cm).

Furthermore, a comparison of TIM values given in this section with Curie temperatures

obtained from Section 4.6 (see Table 4.2) shows that TIM < TC.  These two characteristics  are

associated with the extremely fine-grain structure comprising the manganite-perovskite

films.  The crystallographic mismatch of grain boundaries is expected to weaken the ferro-

magnetic interaction within an otherwise continuous perovskite structure.  So by increasing

the concentration of such impediments, metallic conduction becomes hindered, lowering the

temperature needed for the insulator-to-metal transition.  The Curie point, however, remains

mostly unaffected.  Such behavior was also reported by MAHENDIRAN, et al. [11] in bulk, poly-

crystalline La0.7Sr0.3MnO3:  a reduction in grain size from 3.5 µm to 250 nm corresponded to

an increase in resistivity from 3.6 mΩ-cm to 0.48 kΩ-cm and a drop in TIM from 375 K to 170

13Note that the resistivity of platinum is 1.06 x 10-5 Ω-cm, a couple orders of magnitude lower than the best val-
ues for doped-lanthanide manganites.

14A 4-point geometry is superior to its 2-point counterpart because the former avoids the influence of contact
resistance.  Not surprisingly, concomitant with 2-point geometry were unexplainable artifacts in the magne-
totransport curves of La0.67Pb0.33MnO3.  
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K; TC decreased slightly from 395 K to 388 K.  Similar trends have been observed in polycrys-

talline La0.5Pb0.5MnO3 [12].  Due to the thin nature of the films prepared for this dissertation,

however, the possibility of residual stress and the influence of reaction layers (if present) can-

not be excluded.

The magnetotransport curves presented in this section are organized as follows:  (1) the

0–5 T high-field behavior is given in Figures 4.27 through 4.32 and (2) the ± 500 Oe weak-field

response in Figures 4.33 and 4.34.  Within each of these two groups, the barium-doped com-

position is provided first.  So Figures 4.27–4.30 and 4.33 correspond to La0.67Pb0.33MnO3 and

Figures 4.30–4.32 and 4.34 to La0.67Pb0.33MnO3.  Accordingly, the high-field magnetotransport

of La0.67Ba0.33MnO3 will now be discussed.

A comparison of La0.67Ba0.33MnO3 films crystallized on Si(100) shows that increasing the

heat-treatment temperature from 700 °C and 750 °C generates the following three results:  (1)

metallic conductivity below TIM improves (i.e., the curve develops symmetry), (2) resistivity

decreases by an order of magnitude, and (3) TIM increases from 115 K to 144 K.  These obser-

vations are consistent with enhanced grain size (i.e., see Figure 4.23) and an increased ferro-

magnetic moment (i.e., Figure 4.12).  The development of insulator-metal behavior, however,

is more obvious for platinized-Si(100) specimens than for Si(100).  For example, the specimen

heat-treated at 650 °C (see Figure 4.29) exhibits only insulator properties, behavior in agree-

ment with a weak ferromagnetic moment and broad onset (see Figure 4.12B).  By 700 °C

though, an insulator-metal transition clearly emerges, which by 750 °C, becomes fully sym-

metric.  Similar to films crystallized on Si(100), higher heat-treatment temperatures lower the

magnitude of resistivity and increase TIM (i.e., from 120 K to 264 K).  The TIM value for 750 °C,

however, is much greater for platinized-Si(100), suggesting enhanced [Mn4+] content.

In contrast, for La0.67Pb0.33MnO3 films on Si(100), the magnetotransport curves are highly

symmetrical, but unlike the barium analogue, increasing the heat-treatment temperature:  (1)

raises the resistivity by an order of magnitude and (2) decreases TIM slightly from 236 K from

228 K.  This behavior may stem from a reduction in grain connectivity from 700 °C to 750 °C

caused by roughening (see Figure 4.25).  Increases in resistivity may also result from the

intergrain accumulation of fine amounts of volatilized PbO.  So despite a high ferromagnetic

onset (i.e., TC = 311 K and 326 K, respectively), microstructural changes may counteract con-

comitant improvements in magnetoresistive response.  A similar trend can be found in the
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FIGURE 4.27 Magnetotransport of a La0.67Ba0.33MnO3 thin film on Si(100)
fired at 700 °C.  Resistivity (A) and the CMR (B) as a function of temperature
and applied field.  The TIM value refers to zero field.
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FIGURE 4.28 Magnetotransport of a La0.67Ba0.33MnO3 thin film on Si(100)
fired at 750 °C.  Resistivity (A) and the CMR (B) as a function of temperature
and applied field.  The TIM value refers to zero field.
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FIGURE 4.29 Magnetotransport of La0.67Ba0.33MnO3 thin films on platinized-
Si(100) (continued on page 210).  The insulator-metal transition emerges as the
firing temperature increases from 650 °C (A) to 700 °C (B).  The TIM value refers
to zero field.
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FIGURE 4.29 Magnetotransport of La0.67Ba0.33MnO3 thin films on platinized-
Si(100) (continued from page 209).  Complete development occurs upon firing at
750 °C (C) as evidenced by distinct metallic and semiconducting regions.  The
TIM value refers to zero field.
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FIGURE 4.30 Magnetotransport of a La0.67Pb0.33MnO3 thin film on Si(100)
fired at 700 °C.  Resistivity (A) and the CMR (B) as a function of temperature
and applied field.  The TIM value refers to zero field.
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FIGURE 4.31 Magnetotransport of a La0.67Pb0.33MnO3 thin film on Si(100)
fired at 750 °C.  Resistivity (A) and the CMR (B) as a function of temperature
and applied field.  The TIM value refers to zero field.
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FIGURE 4.32 Magnetotransport of La0.67Pb0.33MnO3 thin films on
platinized-Si(100) (continued on page 214).  The insulator-metal transition
sharpens from 650 °C (A) to 700 °C (B).  The TIM values refer to zero field.
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FIGURE 4.32 Magnetotransport of La0.67Pb0.33MnO3 thin films on
platinized-Si(100) (continued from page 214).  Firing at 750 °C (C) produces
no advantage over the lower processing temperatures.  The TIM value
refers to zero field.
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magnetotransport of the platinized-Si(100) specimens (see Figure 4.32).  The TIM values

decrease from 262 K to 252 K and 254 K upon increasing heat treatment from, respectively,

650 °C to 700 °C and 750 °C.  The relative stability of TIM past 650 °C, however, suggests a

fully-formed manganite phase whose electrical properties are now dominated mainly by

microstructure (i.e., fine-grain effects).  Resistivity magnitudes increase with heat-treatment

temperature, strongly suggesting PbO volitilization at the grain surface.  Again, TIM values

are much higher for platinized-Si(100) than Si(100), suggesting an enhanced [Mn4+] concen-

tration.

A comparison of La0.67Pb0.33MnO3 films crystallized on Si(100) with those on platinized-

Si(100) indicates:  (1) a reduced symmetry for magnetotransport behavior and (2) an initially

positive magnetoresistive response at 1 T.  These anomalies, particularly the latter, are unex-

pected given the excellent properties observed with Si(100).  Yet results obtained from other

techniques (i.e., SQUID magnetometry, GIXS, etc.) attest to the high quality of the manganite

perovskite films, regardless of substrate.  So the author believes such anomalies to stem from

the inadequacy of the 2-point geometry:  the influence of contact resistance remains high pos-

sibility.  Unfortunately, a definitive root cause was not isolated despite intense efforts by the

author.

Weak-field measurements (i.e., for Si(100) substrates only) are provided in Figures 4.33

and 4.34.  Like the high-field measurements, resistivities from barium-doped films decrease

with increasing heat-treatment temperatures; the converse is found true for La0.67Pb0.33MnO3.

All films demonstrate a slight bias towards negative magnetic fields (i.e., ~ 60–80 Oe), due

perhaps to an interfacial stress caused by either the Si(100) substrate and/or intermediary

reaction layers.  The poor insulator-to-metal transition of the La0.67Ba0.33MnO3 thin film fired

at 700 °C is apparent by its jittery and discontinous weak-field data:  the resistivity was

almost too high for the electrical bridge to measure.  The 750 °C specimen, however, provides

a symmetric, butterfly loop.  Past , changes in resistivity become linear (i.e.,

 = –13 Ω-cm/Oe), producing a response highly-desired for sensor applications.  By com-

parison, the lead-doped composition at 700 °C exhibits a wider linear range which starts at

 (i.e.,  = –0.04 Ω-cm/Oe).  The loop does not close completely, being

slightly skewed.  Heat treatment at 750 °C though, confers a symmetric (and closed) loop

with linear tails either side (i.e.,  = –0.44 Ω-cm/Oe).

H 300 Oe=

∆ρ ∆H⁄( )T

H 200 Oe> ∆ρ ∆H⁄( )T

∆ρ ∆H⁄( )T
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FIGURE 4.33 Weak field magnetotransport of La0.67Ba0.33MnO3 thin films
on Si(100).  The temperature during measurement was T = TIM.
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FIGURE 4.34 Weak field magnetotransport of La0.67Pb0.33MnO3 thin films
on Si(100).  The temperature during measurement was T = TIM.
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4.11 SUMMARY

The development of an alkoxy-based, sol-gel processing method for manganite perovs-

kites required the synthesis of a highly-soluble, reactive manganese(II) alkoxide.  The infra-

red spectra of 2-methyl-2-propoxo manganese(II) in 2-methoxyethanol clearly demonstrated

a precursor solvated predominately through interactions with the polar Oδ-—Hδ+ group of

its host solvent.  The subsequent preparation of “stock” solutions, free from any products of

oxidation, then provided a starting point for conversion into a spinnable sol.  The establish-

ment of a polymeric system through mild, partial hydrolysis (i.e., h = 0.25) and aging enabled

the preparation of dense, pore-free amorphous films by 450 °C (see Section 3.4.3).  Therefore,

the design of an all-alkoxide, sol-gel process for doped-lanthanide manganites was successful accom-

plishing the first objective of this dissertation.

Strong hydrolysis via post-spinning exposure to humidified air was shown, by thermal

analysis, to be a critical step towards the low-temperature crystallization (i.e., < 650 °C) of

manganite-perovskite films.  Optical and electron micrographs indicated dense, smooth, and

defect-free films with no porosity despite the absence of lattice-matched templating.  Chemi-

cal homogeneity across the film specimens was excellent with no deviation from the desired

2:1:3 stoichiometry.  A comparision of the data from thermal analysis, magnetization, and X-

ray diffraction yielded a self-consistent conclusion:  xerogel coatings prepared from partially-

hydrolyzed 0.20 M La-Ba-Mn and La-Pb-Mn sols crystallize below 650 °C into oxide films

with perovskite structure.  Thus, compatibility with silicon-based substrates was achieved through

low-temperature densification and crystallization, the second objective of this dissertation.

Crystallization proceeded via rapid nucleation, leaving a microstructure of fine-grain

material (i.e., < 50 nm).  Such small grains were believed to increase the resistivity (i.e., > 106

Ω-cm) and lower the insulator-metal transition temperature.  Evidence of PbO volitilization

in La0.67Pb0.33MnO3 films, however, and subsequent accumulation within the grain bound-

aries also remained strong.  These influences were undesirable because the dopants (and con-

centrations) were specifically choosen for their room-temperature properties.  Optimal

magnetoresistive behavior, however, was best demonstrated by  La0.67Pb0.33MnO3 films crys-

tallized at 700 °C and 750 °C on Si(100).  The corresponding magnetotransport curves were

highly symmetrical with distinct maxima.  By comparison, films of La0.67Ba0.33MnO3 required

platinized-Si(100) substrates and a heat-treatment temperature of 750 °C for optimal magne-
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totransport.  Hence, magnetoresistive properties were demonstrated for manganite perovksite films

on silicon-based substrates, completing the third and final objective of this dissertation.

The use of platinized-Si(100) provided an excellent surface for crystallization but a chal-

lenging substrate for property measurement.  The very-low resistivity of platinum offered a

readily-accessible leakage path for electron flow, preventing conventional 4-point (i.e., in-

plane) measurements.  Difficulties encountered with the alternate 2-point geometry suggest

that platinum may be a poor substrate choice unless corrective measures can be imple-

mented.
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CHAPTER 5

STATEMENT OF CONCLUSIONS

5.1 INTRODUCTION

As originally discussed in Chapter 1, intense current interest in the colossal magnetore-

sistance of doped-lanthanide manganites reflects attempts to:  (1) advance the scientific

understanding of magnetotransport phenomena and (2) exploit such behavior for integration

into hybrid, silicon-based microelectronics, particularly for sensor applications.  The state-

ment of objectives developed for this dissertation thus revolved around the development of a

robust, low-temperature sol-gel process for the preparation of general Ln1-xMxMnO3 perovs-

kite compositions.  The successful demonstration of thin-film deposition and crystallization

on Si(100) and platinized-Si(100) substrates, shown extensively throughout Chapter 4, there-

fore represents a new and significant contribution to the field.   Such an achievement is note-

worthy in light of:  (1) the almost exclusive reliance, in the literature, on vapor-phase

techniques and (2) the failure of other reported chemical-solution methods to offer competi-

tive alternatives.  Accordingly, this chapter provides the main conclusions for this disserta-

tion as derived from the observations of Chapters 3 and 4.

5.2 CONCLUSIONS

Specific topics and their relation to the research objectives originally outlined in Chapter

1 are summarized below.  Five topics are presented in total with brief closing comments from

the author given at the end.

(1) Mn[OC(CH3)3]2 and 2-methoxyethanol produced an effective precursor-solvent system.

As discussed in Section 2.4, the virtual absence of manganese(II) alkoxides

from sol-gel processing stems from the insolubility of preferred, low carbon

content derivatives.  Deliberate selection of the 2-methyl-2-propoxo ligand

conferred an aggregation state between polymeric and crystalline coordina-

tion, which upon exposure to the polyfunctional groups of 2-methoxyetha-
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nol, enabled immediate dissolution of the solid.  Infrared transmission

spectroscopy revealed perturbations in the Oδ-—Hδ+ bending modes of 2-

methoxyethanol which implicate an Mn2+ ← Oδ-—Hδ+ interaction as the

principal solvation mechanism.  Thus, the high solubility of 2-methyl-2-pro-

poxo manganese(II) fulfills a critical need for a hydrolytically-active alkox-

ide precursor in the sol-gel processing of manganese-containing oxides.

(2) Establishment of an all-alkoxide sol system enabled crystallization below 650 °C.

In Section 4.3, the thermal analysis of xerogels indicated crystallization of the

manganite perovskite phase at ~ 650 °C and ~ 600 °C for, respectively, La-

Ba-Mn (2:1:3) and La-Pb-Mn (2:1:3).  This behavior was in good agreement

with subsequent onsets measured by GIXS diffraction in La0.67Ba0.33MnO3

and La0.67Pb0.33MnO3 thin films grown on Si(100) and platinized-Si(100).  In

fact, perovksite structure on the latter substrate was detected at 600 °C!  The

emergence of stoichiometric manganite perovksite below 650 °C attests to

the efficacy of alkoxy ligands in activating hydrolysis and condensation, a

critical process for the synthesis of oxo-polymer structure.  By comparison,

chemical-solution methods derived from surrogate precursors, such as car-

boxylate or β-diketonates, require temperatures above 850 °C for phase-

pure, stoichiometric manganite material.

(3) Post-spinning hydrolysis was essential for transparent, dense, and defect-free films.

In Section 3.4.2, a partial hydrolysis of h = 0.25 was selected to ensure a poly-

meric system and maximize spinning longevity.  Mild hydrolysis ratios (i.e.,

h < 1.0), however, could not liberate sufficient organic content to prevent the

rapid evolution of carbon dioxide during pyrolysis.  Such behavior, when

left uncorrected, produced phase separation and porosity in the resulting

amorphous film.  Unfortunately, stronger partial hydrolysis (i.e., h > 1.0)

quickly induced gelation, rendering the sol unusable for coating processes.

Thus, the inclusion of post-spinning hydrolysis via humidified-air proved

essential to increase the oxide content of the deposited gel layer.  This two-

stage procedure then ensured proper hydrolysis, yielding transparent,
222



dense, and defect-free films.  As indicated by optical and scanning electron

micrographs, these characteristics were retained through crystallization.  

(4) Magnetotransport properties of La0.67Pb0.33MnO3 emerged before La0.67Ba0.33MnO3.

A straight-forward comparison, by heat-treatment temperature, of 0–5 T

high-field behavior clearly indicates that the lead-doped lanthanum manga-

nite exhibited characteristic magnetotransport curves ~ 50–100 °C lower

than the barium analogue (see Figures 4.27 through 4.32).  Results from both

GIXS diffraction and SQUID magnetometry reveal the earlier crystallization

of La0.67Pb0.33MnO3 with a more rapid approach of [Mn4+] to an optimal con-

centration (i.e., ~ 33%).  These observations carry important ramifications for

the integration of manganite perovskites into silicon-based microelectronics:

of the three dopants which confer room-temperature magnetoresistance (i.e.,

M = Sr, Ba, and Pb), the constraints of thermally-compatibility favor lead.

(5) Platinized-Si(100) offers the best surface for crystallization and grain growth.

In Table 4.2, a review of the cubic lattice parameters, Curie points (TC), and

insulator-metal transitions (TIM) clearly demonstrates that Pt(111) offers a

superior surface for low-temperature crystallization and [Mn4+] optimiza-

tion.  Furthermore, AFM measurements reveal larger grain sizes for plati-

nized-Si(100) than for Si(100), suggesting an improvement in growth kinetics

on the former substrate.  Such observations are not totally unexpected given

the small difference in cubic lattice constant between platinum (i.e., 3.923 Å)

and the manganite compositions of this dissertation (i.e., ~ 3.90 Å).  The

well-known catalytic properties of this noble metal also enhance organic

decomposition.  Unfortunately, the higher-conductivity of platinum enables

leakage paths with interfere with the measurement of magnetoresistance.

Thus, the author recommends the prior deposition of a very thin (< 50 nm)

polycrystalline seed layer of the insulating SrTiO3 (see the last topic of Chap-

ter 6 for further discussion).

As a closing comment, the author wishes to point out that investigations into weak-field

response indicated good transport behavior despite the unoptimized nature of the heat-treat-
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ment process.  For example, when comparing the 14Å-Fe(001)/8Å-Cr(001) superstructure of

Chapter 1 with the La0.67Pb0.33MnO3 film crystallized at 750 °C on Si(100) in Chapter 4, sensi-

tivities of, respectively, –1 x 10-9 Ω-cm/Oe and –0.44 Ω-cm/Oe are obtained.  This result

vastly favors the manganite!  Unfortunately, transport measurements of the latter were taken

at T = 226 K (i.e., at TIM), a temperature unsuitable for practical applications.  Optimization of

the insulator-metal temperature would therefore be an important priority for any commer-

cial adaptation of the alkoxy, based sol-gel process developed in this dissertation.  Property

optimizations, however, comprise one of the main themes for future experimental research

and will be presented in Chapter 6.
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CHAPTER 6

RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 INTRODUCTION

The development of sol-gel processing for doped-lanthanum manganites, as detailed in

Chapter 3, depended critically on the optimization of hydrolysis parameters to yield dense,

transparent, and defect-free amorphous films by 450 °C.  This low-temperature densification

resulted specifically from an all-alkoxide solution chemistry devoid of traditional surrogate

precursors such as carboxylates or β-diketonates.  In particular, the careful design of precur-

sor-solvent interactions enabled the rapid dissolution of a low carbon-content and reactive

manganese(II) alkoxide, Mn[OC(CH3)3)]2.  This accomplishment presents an important new

advance in sol-gel processing because, as extensively discussed in Chapter 2, the use of man-

ganese(II) alkoxides for solution chemical deposition remains virtually unknown.

The hydrolytic reduction of organic content also minimized the presence of residual car-

bonate or oxycarbonate species such that heat-treatments above 600 °C readily induced crys-

tallization of the perovskite phase.  As presented by Chapter 4, the emergence of manganite

perovskite structure was intimately linked to the simultaneous onset of ferromagnetism and

magnetoresistive behavior, both fundamental requisites for the successful achievement of all

research objectives originally outlined in Chapter 1.  More importantly, the preparation of

crystalline La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 occurred not on refractory, lattice-matched

LaAlO3(100) or SrTiO3(100) templates, but rather on commercially-relevant, silicon-based

substrates.  Surfaces of that latter offer poorer epitaxial registry with perovskite manganite

phases.  Thus, crystallization below 650 °C on such surfaces represents a significant contribu-

tion to the field.  In contrast, methods based on vapor-phase deposition require processing

temperatures above 800 °C, even with lattice-matched templates.

The research documented in this dissertation, however, focused principally on the suc-

cessful development of an alkoxy-based, sol-gel process for the low-temperature densifica-

tion and crystallization of magnetoresistive manganite thin films, as summarized in Chapter

5.  Results obtained through this investigation clearly reveal opportunities for further
225



research, specifically regarding the continued optimization of the deposition process, film

microstructure, and corresponding electrical properties.  Accordingly, this chapter provides

recommendations by the author for future experimental work.

6.2 RECOMMENDATIONS

For clarity, the recommendations provided below have been organized into short, con-

cise descriptions and are headed by italicized titles.  Seven topics are presented in total with

the related recommendations stated in the underlying text.

(1) Investigation of Mn[OC(CH3)3]2 structure

In Section 4.2, the dissolution of Mn[OC(CH3)3]2 was demonstrated to result

from the coordinating activity of 2-methoxyethanol through its polar Oδ-—

Hδ+ group.  This behavior stands in contrast to other coordinating organic

solvents (i.e., alcohols, ethers, nitriles, heterocycles, etc.) which failed to dis-

rupt the polymeric aggregation of 2-methyl-2-propoxide manganese(II) (see

Section 2.4.4).  Furthermore, this composition was isolated as a stable, true

alkoxide.  The other soluble alkoxide reported for manganite sol-gel process-

ing, a 2-methoxyethoxide prepared by POHL, et al. [1], was reported to spon-

taneously decompose into an oxoalkoxide in situ during synthesis.  Thus,

further chemical investigation of Mn[OC(CH3)3]2 would be of great interest.

The author recommends the crystallization of the solid-state adduct (if possi-

ble) with a subsequent characterization of its structure.  With this reference

information, a better understanding of the solution structure and solvent

interactions could be obtained via nuclear magnetic resonance spectroscopy.

(2) Optimization of hydrolysis

The viscoelastic behavior of 0.2 M La-Ba-Mn and La-Pb-Mn sols discussed in

Section 3.4.2 clearly indicates a high-sensistivity to hydrolytic water:  hydrol-

ysis ratios greater than h = 1.0 induced rapid gelation.  A greater tolerance to

water would enhance sol longetivity and perhaps reduce the extent of post-

spinning hydrolysis required to ensure dense, transparent, defect-free coat-

ings.  As described in Section 2.3.3, the activation of alkoxy-bridging by non-
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polar, non-protic media improves resistance to hydrolysis when compared

with polar, protic solvents such as alcohols.  So the author recommends the

re-formulation of “stock” solution synthesis with toluene instead of 2-meth-

oxyethanol.  A short reflux would induce solvation via the heterometallic

reaction of Equation 2.13.   Furthermore, the author noticed that during heat-

treatment at 100 °C rapidly evaporating drops of water next to a specimen

produced dense, defect-free amorphous coatings — but without slow spin-

ning under humdified air!  Thus, the author recommends dessication in

strongly-humidified and heated air devoid of carbon dioxide.  Variables for

investigation would include substrate temperature (i.e., not necessarily 100

°C), air temperature, humidity level, and flow-rate.

(3) Investigation of intermediary pyrolytic compositions

The thermal analysis given in Section 4.3 clearly indicated the formation of

oxycarbonate phases upon pyrolysis.  Determination of intermediary com-

positions, however, would be greatly enhanced by mass spectrometry (TGA-

MS) and infrared transmission microscopy (FTIR).  The former could iden-

tify (and monitor) volatilized organic species and the latter detect carbonate

stretching modes (with spatial resolution) in the amorphous and crystalliz-

ing thin films.  Such investigations would play an important role in isolating

decomposition temperatures for intermediate hydroxycarbonate and oxy-

carbonate phases.   Furthermore, the effects of subsequent process optimiza-

tions would be more-thoroughly characterized, and hence better

understood.  For example, the author recommends pyrolysis in purified,

flowing oxygen (i.e., no carbon dioxide) to further reduce crystallization

temperatures.  Conversion into a carbonate-free amorphous oxide film could

be directly compared with samples prepared in air.

(4) Investigation of substrate-film and grain-boundary interfaces.

In Section 4.7, GIXS revealed two anamolous features, both emerging at 600

°C:  (1) an unidentified reaction layer for films crystallized on Si(100) and (2)

the possible formation of β-SiO2 (i.e., on either substrate).  High-resolution,

cross-sectional TEM could probe the film-substrate interface and thereby
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reveal local structure and chemical composition.  Equally important, the XPS

analysis given in Section 4.4 was obtained from multiple 0.3 mm x 0.7 mm

rectangular areas sampled from the film surface.  Such dimensions clearly

cannot resolve non-stoichiometric phases (e.g., PbO) residing within the

grain boundaries or verify intra-grain chemical homogeneity.  Yet both char-

acteristics influence electrical conduction, and hence, magnetoresistive

response.  Accordingly, the author recommends the investigation of local

grain microstructure via Z-contrast STEM (or phase-contrast TEM) imaging.

(5) Dependence of [Mn4+] on heat-treatment temperature

Correlation of the mixed Mn3+/Mn4+ valence state with magnetic ordering

and magnetotransport in manganite perovskites was extensively developed

in Sections 2.2.2 and 2.2.3.  Doping levels between 0.2 < x < 0.4 yield optimal

magnetoresistive properties through a critical influence on [Mn4+].  The vari-

ation of [Mn4+] with heat-treatment temperature thus remains an important

metric for characterization.  As discussed in Section 3.5.5 though, measure-

ment uncertainties in thin-film dimensions prevented the accurate determi-

nation of 0 K saturated moments from high-field magnetization curves.  Any

subsequent analysis using the method in Appendix A then would only pro-

duce unreliable values for [Mn4+].  DUPONT, et al. [2], however, have success-

fully used electron spin resonance (ESR) with La0.67Ca0.33MnO3 thin films to

quantify [Mn4+] content.  The author therefore recommends the adaptation

of ESR to examine [Mn4+] dependence on firing temperature for the sol-gel

processing of La0.67Ba0.33MnO3 and La0.67Pb0.33MnO3 coatings.

(6) Film thickness and thermal processing effects on stress evolution

In Section 4.9, the influence of interfacial strain on the kinetics of nucleation

and grain growth was suggested as a contributing factor to the formation of

fine-grain (< 50 nm) microstructures in the manganite films.  Furthermore,

residual stresses in a crystalline film would assuredly affect Mn—O—Mn

bond parameters, critical characteristics governing TC and TIM as discussed

in Section 2.2.2.  Accordingly, the author recommends an investigation of

stress evolution upon heating amorphous La-Ba-Mn and La-Pb-Mn coatings
228



to crystallization.  Corresponding changes in film stress during cooling (i.e.,

due to thermal expansion mismatch) would provide the residual values.  By

comparing against equivalently-processed, polycrystalline (i.e., unclamped)

bulk pellets, the role of interfacial strain would be emphasized.  Possible mit-

igating effects from increased film thickness should also be examined, par-

ticularly with regard to improving magnetotransport properties.

(7) Effects of grain size modifications on magnetotransport behavior.

Correlation of the AFM images presented in Section 4.9 with magnetotrans-

port curves from Section 4.10 suggests that the high resistivities (> 106 Ω-cm)

exhibited by the manganite films resulted from fine-grains (< 50 nm) with an

extensive grain-boundary network.  Furthermore, the metal-insulator transi-

tion, TIM, was shifted below the Curie point, TC, preventing an optimal mag-

netoresistive response at room temperature.  Such microstructures stem

from the rapid onset of nucleation before grain growth.  By refining the sol-

gel process to suppress nucleation, increases in grain size can be achieved,

possibly improving magnetotransport properties.  Modification of alkoxide

species, particularly through chelating organic additives (e.g., acid ana-

logues of carboxylate or β-diketonates), has been well-known to influence

microstructure [3].  Thus, the author recommends the investigation of solu-

tion-chemical alterations on grain size.  Perhaps the most direct method to

activate kinetics for grain-growth, though, relies on rapid heating to the

desired crystallization temperature.  For example, HAGBERG, et al. [4]

reported that alkoxy-derived LiNbO3 sol-gel films produced larger grain

sizes upon direct insertion into a pre-heated furnace (i.e., as opposed to a 10

°C/minute ramp rate).  Crystallization of an initial (barrier) coating (i.e., a

seed layer) has also been demonstrated to increase grain sizes for subse-

quent, spin-coated layers [5].  The author therefore also recommends the

adaptation of these processing methods to examine their influence on grain

size, and hence, magnetotransport behavior.
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APPENDIX A

MAGNETIC CHARACTERIZATION

For a doped-lanthanide manganite in the ferromagnetic state, the theoretical saturated

magnetization can be calculated by considering the spin-only magnetic moments of individ-

ual Mn3+ and Mn4+ ions.1  Ignoring any potential nonstoichiometry (i.e., defect states), an

ideal formula unit, , implies that [Mn3+] = 

and [Mn4+] = x where  and .  So the net magnetic moment

(per formula unit) then reduces to a weighted average, , of the individual ionic magnetic

moments,  and 

(A.1)

where  is the Bohr magneton, 9.2740154 x 10–24  (or alternatively, ).  Extending

to the saturated magnetization (per unit mass) yields,

(A.2)

where NA is Avogadro’s number, 6.0221367 x 1023  and Mr, the molecular weight of the

doped-lanthanide manganite composition in .  Equation A.2 generates values whose

units are given in , but empirical measurements of MS are often reported in units of

.  To reconcile this difference, note the conversion .  There-

fore

(A.3)

where Equation A.3 now gives MS in terms of .

1 Mn3+ and Mn4+ are randomly distributed when Ln1-xMxMnO3 ranges between .  This derivation,
therefore, does not presume coupled magnetic sublattices (i.e., ferrimagnetic ordering).
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APPENDIX B

MANGANESE SITE SYMMETRY

The structural symmetries of Mn3+O6 and Mn4+O6 octahedra play a crucial role in gov-

erning the electron transport of doped-lanthanide manganites.  Mobility of the  electrons,

for example, arises specifically from the splitting of manganese 3d energy levels induced by

6-fold oxygen-anion coordination.  Accordingly, this appendix builds on the discussion of

double exchange originally introduced in Section 2.2.3, moving to a derivation of the manga-

nese octahedral point group, and concluding with crystal field effects on the 3d atomic orbit-

als.  The  and  lattice orbitals are linked, along with a descent in octahedral symmetry,

to structural transitions, and in particular, the Jahn-Teller distortion.  This connection pro-

vides a starting basis for electron-phonon interactions (i.e., polarons) not accounted for by

Zener’s double exchange model.

A description of the double exchange model proceeds from the consideration of reso-

nance valence bonds between manganese 3d and oxygen 2p electrons:  electrons hop from

Mn3+ ( , , S = 2) to Mn4+ ( , , S = 3/2) through the oxygen so that the Mn3+ and

Mn4+ charges change places [1].  The resonance hybrid between these two valence states is

illustrated as follows:

(B.1)

In order for electron transfer to occur, the  anion must simultaneously transfer its electron

to the Mn4+ as the Mn3+ transfers its electron to the .  The corresponding exchange

energy, E, is given explicitly by the integral

(B.2)

where H is the Hamiltonian of the system; E0, the energy associated with the initial states 

and ; and the integral extends over the coordinates and spins of all electrons.  The integral

is non-vanishing only if the spins of the two manganese d shells are parallel.  Now a station-

eg

t2g eg

d3 t2g
3 eg

1 d4 t2g
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ψ1: Mn3+ O2- Mn4+        ↔ ψ2: Mn4+ O2- Mn3+
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ary state is represented neither by  or , but rather, by a linear combination of the two

(i.e.,  and ).  Depending upon the sign of the integral, double

exchange raises the energy associated with , lowers the energy associated with , or vice

versa.  Thus, the energy of one of these two stationary states (either  or ) is lowered by

double exchange which takes place when the 3d spins are parallel.  So regardless of the sign

of the exchange integral, the energy of the system will be lowered by a parallel alignment of

spins.  The onset of ferromagnetism below TC, therefore, favors electron exchange, thereby

lowering resistivity and enabling a switch to metallic conduction.  The paramagnetic state

above TC, however, contains no magnetic ordering so double exchange does not influence

transport in the semiconducting state.

Itinerant electron behavior in doped-lanthanide manganites results from the mobility of

electrons occupying the  orbitals.  A better understanding of this phenomenon can be

achieved by expanding the concept of manganese site symmetry introduced in Section 2.2.2.

Manganese cations in the perovskite structure are enclosed within an octahedral oxygen

“cage”, experiencing an electric field reflective of that symmetry.  Site symmetry can there-

fore provide a basis linking the  and  orbital sets to their energy level splitting.  The

application of point group symmetry to coordinated metal ions in a crystalline lattice was

first explored by BETHE [2] which laid the foundation for crystal field theory (CFT).  Consider-

ation of CFT with regard to manganese cations then starts with the identification of all sym-

metry elements for an ideal octahedral point group, Oh.

Figure B.1 illustrates the seven distinct elements ( , , , , ,  and ), all of

which, intersect the manganese site at the center point of the perovskite unit cell.  Operation

of any of these symmetry elements on the octahedron results in equivalence; the final state

remains indistinguishable from that of the initial.  An explanation of the Schönflies notation

representing the symmetry elements will clarify this statement.  For example, the integer n in

, a proper rotation, indicates the angle for which equivalence is maintained (i.e., 360°/n):

a 90° rotation about any  axis would leave the octahedron undifferentiated.  Definitions

for the remaining elements are then straight-forward.  Reflection or mirror planes are given

by σ, which in turn, is broken into two classes, horizontal ( ) and dihedral ( ).  The hori-

zontal reflection plane, , occurs perpendicular to the principal (i.e., highest-order) axis of

rotation.  So three  planes correspond to each of the three orthogonal  axes.  In contrast,

ψ1 ψ2

ψ+ ψ1 ψ2+= ψ- ψ1 ψ2–=

ψ+ ψ-

ψ+ ψ-

eg

t2g eg

C2 C3 C4 S4 S6 σh σd
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σh σd

σh
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C2

C3

C4

S4

S6

σh σd
FIGURE B.1 Site symmetry of manganese octahedra in a cubic perovskite
unit cell.  The inversion element (i), present in the manganese position at the
site center, has been omitted for clarity.
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the dihedral reflection planes, , contain a principal axis of rotation.  So each  axis repre-

sents the intersection of two  planes, both perpendicular to a  plane.  The symbol, ,

designates an improper rotation, a compound operation wherein a 360°/n rotation is succes-

sively followed by reflection through a plane perpendicular to that axis.  Two symmetry ele-

ments, however, are not shown in Figure B.1:  (1) the identity element (E) has been assumed

and (2) the inversion element (i), which shifts (x, y, z) into (-x, -y, -z), resides at (i.e., inside) the

manganese site.  In total, nine symmetry elements comprise the Oh point group.

Associated with the symmetry elements of a point group are the corresponding opera-

tions, a result of applying the element itself.  For instance, the element  will generate the

operations , , , and .  The superscript denotes the number of times the symmetry

element has been applied.  So  results after three successive 90° rotations about a fourfold

axis.  Some operations are equivalent to lower symmetry ones and are therefore not unique:

, , , , , and .  The unique symmetry

operations generated from a common element together comprise a class.  For example, the

two  and  operations associated with each of the four  axes comprise an eight-mem-

ber  class.  Classes associated with a point of symmetry, in turn, form a unique group,

hence the term “point group”.  Table B.1 gives the 10 classes resulting from 48 operations in

the Oh point group.  Although 10 classes are indicated for Oh, only 9 symmetry elements, in

σd C4

σd σh Sn
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C4
1 C4

2 C4
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4

C4
3
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n E= C4
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4 C3
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Oh E 8C3 6C2 6C4 3C2
a

a Represents  and .

i 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 – 1 – 1 1 1 – 1 1 1 – 1
Eg 2 – 1 0 0 2 2 0 – 1 2 0 (2z2 - x2 - y2, x2 - y2)
T1g 3 0 – 1 1 1 3 1 0 – 1 – 1 (Rx, Ry, Rz)
T2g 3 0 1 – 1 – 1 3 1 0 – 1 – 1 (xz, yz, xy)
A1u 1 1 1 1 1 – 1 – 1 – 1 – 1 – 1
A2u 1 1 – 1 – 1 1 – 1 1 – 1 – 1 1
Eu 2 – 1 0 0 2 – 2 0 1 – 2 0
T1u 3 0 – 1 1 – 1 – 3 – 1 0 1 1 (x, y, z)
T2u 3 0 1 – 1 – 1 – 3 1 0 1 – 1

C4
2 S4

2

TABLE B.1 Character table of the octahedral Oh point group.
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fact, generate them.  This discrepancy can be reconciled by noting that .  Yet

the  axis resulting from operations of either the  and  elements is not equivalent to

the other  elements.  A glance at Figure B.1 shows three  operations inter-

secting octahedron vertices whereas the remaining six  operations cross through the equa-

torial edges.  So an additional  class must be present in the character table of Oh.

The first column in Table B.1 lists the Mulliken symbols for the irreducible representa-

tions of Oh, which match the number of symmetry classes.  Any basis consistent with ideal

octahedral symmetry can be broken down into a representation of these symbols.  To do so, a

member of each symmetry class operates on the basis yielding a character representation.   So

for example, an s orbital situated at the center of the perovskite cell would have a character

representation: 1 1 1 1 1 1 1 1 1 1; each symmetry operation leaves the s orbital unchanged,

indicated in all cases by unity.  Comparison with Table B.1 links the A1g Mulliken symbol to

the s orbital.  The atomic s orbital is therefore said to transform as A1g in Oh, or alternatively,

belong to the A1g symmetry species in Oh.  The last column of Table B.1 provides the binary

direct products which correspond to the different symmetry species.  Clearly, x2 + y2 + z2 can

be associated with the spherically symmetric s orbital.  Such information also allows for the

convenient assignment of manganese 3d orbitals.  From Table B.1 then: (1) , , and 

transform together as T2g in Oh and (2)  and  transform together as Eg in Oh.1  The

grouping of binary direct products, indicated by parentheses, reflects the degeneracy of the

related symmetry species.  Integer values under the identity element, E, indicate this degen-

eracy.  So according to Table B.1, any E or T symmetry species is always doubly or triply

degenerate, respectively.  Therefore, in an octahedral site, the manganese 3d orbitals will

form doubly degenerate Eg and triply degenerate T2g sets.  Further properties of point

groups, their character tables, and applications to site symmetry are given in the reference

texts [3–5] and will not presented here.

In an MnO6 coordination environment, manganese cations experience directional elec-

tric fields from six equidistant  anions.  The Oh point group symmetry of the field splits

the quintuply degenerate group of atomic 3d orbitals into triply degenerate  and doubly

degenerate  sets.2  To determine the relative energy splitting of the symmetry-adapted

1 The notation 2z2 - x2 - y2 is equivalent to z2.
2 Orbitals resulting from crystalline site symmetry employ lowercase Mulliken notation.
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sets, the following comparison is useful:  an isolated manganese cation (i.e., atomic) belongs

to the infinite-order, rotation-inversion point group R3 which contains all possible operations

resulting from symmetry elements intersecting at a common point.  This maximum symme-

try ensures that the five atomic 3d orbitals are degenerate.  If the manganese cation experi-

enced a spherically symmetric field equivalent to six  anion charges (i.e., consistent with

the R3 point group), the energy of all five 3d orbitals would increase together and remain

degenerate.  The descent in symmetry, though, from R3 to Oh switches the configuration so

that the six charges form an octahedron whose vertices (for convenience) lie on the axes of a

Cartesian coordinate system.  The directional crystalline field splits the fivefold degeneracy,

raising the doubly degenerate  set but lowering the triply degenerate .  The higher rela-

tive energy of  stems from greater Coulombic repulsions; as shown in Figure B.2, lobes

from the  and  orbitals comprising the  set reside on the Cartesian axes, pointing

directly at the  anions.  Lobes from , however, point in between and experience a lower

electric field than under R3 site symmetry.  From CFT, the magnitude of this split is repre-

sented by .  Because an equivalent field is maintained, no net change in energy

occurs during the descent from R3 to Oh point group symmetry.  Relative to the hypothetical

spherical field then, the energy of the two  orbitals increases by  and that of

the three  orbitals decreases by .  Figure B.3 illustrates the effects of site sym-

metry on orbital energy for manganese cations in a crystalline field.

Population of the  and  energy levels follows the Pauli exclusion principle and

Hund’s rule of maximum multiplicity.  Accordingly, all orbitals in a degenerate energy level

will:  (1) be singly occupied before pairing begins and (2) maximize full spin alignment.  Elec-

trons fill the lower  energy level first, proceeding then to the  level.  So for an octahedral

coordination, Mn3+ and Mn4+ cations display, respectively,  and  electronic configu-

rations with all spins in parallel.  The d4 electronic configuration of Mn3+, however, can

result in either a high spin (i.e., ) or low spin (i.e., ) state.  The actual equilibrium

state depends on the energy cost (gain) associated with pairing two electrons of opposite spin

in the  orbital versus promoting one to the  orbital.3  In doped-lanthanide manganites of

3 In general, determination of the equilibrium spin state results from comparing the relative magnitudes of ∆,
the crystal field splitting, and P, the mean pairing energy.  If , then the low spin state occurs and vice
versa for the high spin state.  The magnetic interactions of double exchange, however, prevent such a naive
description from being extended to doped-lanthanide manganites.
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FIGURE B.2 Manganese atomic 3d orbitals grouped according to octahedral
site symmetry.  Wavefunction amplitudes are distinguished by color (positive
for blue, negative for orange).
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FIGURE B.3 Site symmetry effects on the energy levels of manganese 3d
electrons.  Stretching of the MnO6 octahedron along its apical axis results in a
transition from Oh to D4h.
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the compositional range , the possibility of the low spin state is excluded by

empirical determinations of MS (i.e., when ferromagnetic) and the Curie-Weiss constant (i.e.,

when paramagnetic) [6].  Regardless of the overall magnetic state (of the material), the man-

ganese cations exhibit the maximum individual spin.

As already discussed in Section 2.2.1, octahedral Mn3+ represents a Jahn-Teller ion,

which through distortions of its coordination environment, can lower its energy.  Indeed,

measurements of the Mn—O bond distances in orthorhombic LaMnO3 (i.e., predominately

Mn3+O6 octahedra) by BOGUSH, et al. [7] indicate a preferential stretch along the apical axis.

Such a tetragonal distortion corresponds to the loss of  and  symmetry elements as well

as a reduction of equatorial  into .  This descent in site symmetry, from Oh to its sub-

group D4h, causes a split of the  and  energy levels as indicated in Figure B.3.  Correla-

tion of the Oh character table with that of D4h specifies the nature of this transition: (1) two

singly degenerate A1g and B1g symmetry species replace the doubly degenerate Eg, and (2) a

singly degenerate B2g and doubly degenerate Eg symmetry species replace the triply degener-

ate T2g species.4  Accordingly,  transforms as A1g in D4h,  as B1g,  as B2g, and the

pair  and  as Eg.  Because of substantial electron density along z, the tetragonal elonga-

tion lowers the energy of the , , and  orbitals (i.e., the  and  sets); the shift of

 anions away from the manganese site center decreases the Coulombic repulsions.  The

overall configurational energy, however, is preserved by assuming a matching contraction in

the xy plane.  This counter-balancing distortion increases the electric field experienced by the

 and  orbitals (i.e., the  and  sets); their energies rise with decreasing 

anion distance.

The splitting of energy levels in D4h occurs with respect to centers set by the  and 

levels in Oh (i.e., no net change in configurational energy).  So  and  shift, respectively,

 and  from the  level of Oh;  and  shift, respectively,  and 

from the  level of Oh.  Both  and  are small compared to the crystal field splitting, ,

but the magnitude of  exceeds that of  since  and  point directly at the 

anions.  Note that the equatorial contraction equally affects the energies of the  and

 orbitals.  Both  and  rise in parallel with a separation of  resulting in

4 For D4h character table, the reader is referred to the reference texts [3–5].  Relationships between point groups
and their lower symmetry subgroups are highlighted by correlation diagrams, derived from comparing the
character representations of common symmetry classes.
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.  A comparison then of the energy levels given by Figure B.3 illustrates the

tendency of Mn3+O6 to form static Jahn-Teller distortions:  the  electronic configura-

tion of D4h is lower in energy than the  of Oh.  For Mn4+O6, no energy benefit results

from descending in symmetry to D4h as the  configuration would remain energetically

equivalent to .  Clearly the occupancy of the split levels, based on the availability of elec-

trons to fill them, can reduce system energy.  Such qualitative reasoning, derived from CFT,

correlates well with structural observations in doped-lanthanide manganites:  raising [Mn4+]

shifts the perovskite lattice geometry towards cubic symmetry, the structure observed for

optimal magnetoresistive behavior.

The interaction between Mn3+ and Mn4+ cations, described by Zener’s double exchange

theory, is contingent on electronic configuration, a product of site symmetry.  The increasing

presence of Mn4+O6 octahedra mitigates the distortion affiliated with Mn3+O6, decreasing the

energy gap between  orbitals on both sites (i.e., the  splitting between the  and

 levels diminishes so ).  Because occupation of the  orbital distinguishes the

 state from the  state, acceptor-doping with Mn4+O6 then depletes the  band of the

solid, creating readily-accessible conduction states.5  The combined process serves to delocal-

ize the  electrons through a common influence on the  orbitals, a result crucial to the

spin-dependent transport mechanism of double exchange.  Among the symmetry-adapted

 and  sets, electrons in the  levels are localized due to poor hybridization with the

oxygen 2p orbitals.  In contrast, the  and  orbitals of the  set point directly into

the 2p orbitals of oxygen, overlapping extensively.  A strong Hund’s interaction between

itinerant  and localized  electrons generates parallel on-site spin-alignment.  So mag-

netic coupling between localized  spins on neighboring Mn3+O6 and Mn4+O6 octahedra is

mediated via mobile  electrons.

Subsequent consideration of Zener’s theory of double exchange by ANDERSON and HASE-

GAWA [9] resulted in the refinement , where b is the transfer integral associ-

ated with the resonance hybrid of Equation B.1 and θ is the angle between parallel  core

spins of neighboring manganese ions.  The effective transfer integral then, , is greatest

when absolute ferromagnetic alignment occurs (i.e., ).  Any relative spin canting drops

5 Doping in lanthanide manganites shifts the energy of the narrow  band such that the Fermi level comes to
rest inside, dividing the band into filled and empty states [8].
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the magnitude of , lowering the probability of  transfer.  This theoretical prediction is

confirmed, as already discussed in Section 2.2.1, through effects of the actual Mn—O—Mn

bond angle:  deviations from 180° correspond to increased resistivities and lower Curie tem-

peratures.  So the structural impact of Mn4+O6 extends beyond the electronic enhancements

presented above; stabilization of an undistorted, cubic symmetry strengthens magnetic inter-

actions between manganese ions resulting in stronger double exchange.

DE GENNES [10] demonstrated that while all the  carriers participate in double

exchange, only a small fraction of them become involved in the conduction process.  For

example, X-ray photoelectron spectroscopy (XPS) and ultraviolet photoemission spectros-

copy (UPS) of polycrystalline La1-xSrxMnO3 indicate a reduced intensity of states at the Fermi

level, even in the metallic region (i.e., ) [11].  So the energy gap associated with

semiconducting La1-εMn1-εO3 (i.e., minor [Mn4+] content) must survive to some extent even if

Sr acceptor-doping introduces holes.  As a consequence of the interplay between spin order

and the small number of mobile charge carriers, the resistivity of doped-lanthanide mangan-

ites is readily affected by perturbations of the spin lattice.  Near TC, in the vicinity of the PI to

FM transition, TIM, an intermediate spin-disorder state develops, scattering conduction elec-

trons and creating a notable and sharp peak in the resistivity.  An applied magnetic field,

however, can suppress this spin disorder, causing parallel alignment of the spin lattice,

which in turn, enables (or reinforces) the double exchange mechanism.  The corresponding

suppression of resistivity is therefore proportional to the strength of the magnetic field, form-

ing a basis for CMR in doped-lanthanide manganites.

While double exchange highlights the role played by magnetic coupling in spin-depen-

dent transport, the theory and subsequent refinements ignore the possibility electron cou-

pling to lattice vibrations (i.e., polarons).  For example, the transport of  electrons in an

acceptor-doped Ln1-xMxMnO3 composition (i.e., ) correlates to the mobility of

Mn4+O6 holes in a larger Mn3+O6 matrix.  Yet the motion of  electrons can become damp-

ened if the  state stabilizes a Jahn-Teller distortion (i.e., the Mn3+O6 octahedra descend

in site symmetry to lower configurational energy).  So movement of Mn4+O6 holes would

require Mn—O bond length changes to Mn3+O6 octahedra along their pathway.  Such a trav-

eling deformation field represents a wavestate capable of interacting with lattice phonons.

MILLIS, et al. [12] examined the consequences of double exchange theory in detail:  pre-

dictions for resistivity are higher by several orders of magnitude than those observed empir-
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ically.  A strong electron-phonon coupling, resulting from the susceptibility of Mn3+O6

octahedra to form Jahn-Teller distortions, could account for the discrepancy.  Specifically, the

localization of  electrons by slowly fluctuating (i.e., dynamic) Jahn-Teller distortions

diminishes substantially at the ferromagnetic onset.  In this region, the conduction mecha-

nism switches from thermally-activated hopping to spin-mediated transport.  Measurements

then of average oxygen root-mean-square displacements near TC should indicate anomalous

behavior.  Neutron powder diffraction of La0.65Ca0.35MnO3 by DAI, et al. [13] confirmed small

discontinuities in Mn-O bond lengths at the Curie point, providing the first experimental evi-

dence for polaron effects in doped-lanthanide manganites.

In spite of its short-comings though, double exchange still remains at the core of trans-

port theory in manganese perovskites.  The focus of current research, however, has advanced

to expand Zener’s basic considerations of spin-coupling to include complex interactions

resulting from structural transitions, orbital degrees of freedom, charge ordering, and elec-

tron-phonon coupling (i.e., polarons) [14].
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APPENDIX C

SCHLENK MANIFOLD SYSTEM

Precursors and solutia employed in alkoxy-based sol-gel processing of manganite thin

films require strictly anaerobic conditions.  Techniques for manipulating such materials were

pioneered by Wilhelm Schlenk, resulting in the development of specialized glassware whose

internal atmospheres can be evacuated and then flushed with inert gas via an integrated

valve [1].  Exposure to vacuum or inert gas, however, is regulated through a glass apparatus

comprised of three integral parts: (1) a multi-ported, double-banked manifold, (2) a cryo-

genic trap connected to a vacuum pump, and (3) an inert-gas delivery system with purifica-

tion.  This appendix describes the design, assembly, and operation of a Schlenk manifold

system capable of supplying argon gas with contamination levels less than 20 parts per bil-

lion (oxygen and moisture) and a vacuum below 10-4 torr.  The complete unit is pictured

below (Figure C.1), secured to an aluminum-bar scaffold within a safety hood.  Detailed pic-

tures (including schematics) of all individual components are provided at the end of this

appendix along with an accompanying bill-of-materials.

FIGURE C.1 Fully-assembled Schlenk manifold system.  
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The glassware comprising this manifold relies exclusively on the Ace-Thred® connector

system developed by Ace Glass, Inc.  Accordingly, all compression seals utilize FETFE® O-

rings, a component standard to the Ace-Thred® joint.  Substitution of more chemically resis-

tant Aegis® O-rings, however, occurred at both ends of the tubing segments due their close

proximity to aggressive solvents and vapors.  Before assembly, individual glass pieces were

cleaned and baked according to procedures outlined in Chapter 3, Section 3.2.  Seal longevity

was enhanced by thoroughly, but very lightly, coating FETFE® O-rings with Apiezon N high-

vacuum grease.  Such treatment, though, is both unnecessary and inconvenient for fre-

quently disassembled joints: O-rings incorporated in the collector flasks and tubing connec-

tors, therefore, remained grease-free.

Design of this Schlenk manifold focused on a flexible arrangement that allows the

approach of vacuum or inert-gas sources from either side (see Figure C.6).  In addition, hori-

zontal symmetry permits the banks, top or bottom, to contain vacuum or argon gas depend-

ing on user preference.1  Associated with each of the five ports is a pair of greaseless, high-

vacuum, tetrafluoroethylene (TFE) valves, one emerging from each of the two banks (see Fig-

ure C.9).  Their vertical alignment enables the valve state, be it open or shut, to remain clearly

visible.  The greaseless nature of the TFE stem avoids progressive seal deterioration, a prob-

lem common to manifolds constructed from all-glass, but greased, stopcocks.2  The port

itself, centrally located in the valve assembly, is deliberately recessed, thereby protected from

accidental “knocks”.  To allow evacuation of the inert-gas bank (i.e., in case of vapor contam-

ination), a crossover valve was integrated into the bank structure  at the rightmost-side.

Threaded glass connectors (female) terminate both the bank and port ends.  For all syn-

theses in this dissertation, the manifold operated with an inert-gas (argon) delivery system

coupled to the bottom bank at the left side.  The cryogenic trap assembly, on the other hand,

attached to the top bank at the right.3  Mating the argon delivery system to its glass bank

required a special Swagelok-adapted, Ace-Thred® fitting (see page 256 for details).  But a

standard Ace-Thred® bushing sufficed for the cryogenic trap assembly.  Slight misalign-

ments between the manifold and trap assembly, however, proved inevitable despite consid-

1 A lone, central top-port serves as a connection for the vacuum gauge.  The expected bottom counterpart was
deemed unnecessary by the author.  So the pictured apparatus presumes a vacuum bank at the top.

2 Repeated “purge and evacuate” cycles expose stopcocks to solvent vapors during cycling, which in turn, pene-
trate and dissolve the grease.

3 The remaining bank ends were left unused and plugged with the appropriate Ace-Thred® fittings.
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erable efforts to the contrary.  So a unique intermediate glass piece with central stainless steel

bellows was designed (see Figure C.12).  The flexibility of the bellows was able to accommo-

date misalignment while preserving parallelism.  Without this parallelism, compression seals

within the Ace-Thred® joints were inadequate, allowing measurable leakage.  The S-shape of

the piece resulted from an adaptation to the unavoidably short manifold-to-trap distance

within the safety hood.

Connection of the Schlenk manifold to reaction glassware occurred through clear, flexi-

ble, 33”-long vacuum tubing as depicted above (Figure C.2).  Transparent tubing provided a

simple, but highly-effective means to monitor condensation of solvent vapors in the interior.

Run-off of contaminated liquid back into the reaction vessel would assuredly ruin any on-

going synthesis.  To establish a connection, one end of the tubing segment is attached to the

manifold port, the other to either: (1) a threaded glass port on the reaction apparatus, or (2) a

syringe needle through a standard Luer lock joint.  To maximize the manifold’s capability,

five tubing segments were fabricated with port-to-port ends and two with port-to-Luer ends.

Experience demonstrated that gas-tight seals could easily be achieved when disposable, plas-

tic syringe needles were tightly twisted onto the male Luer adapter.  The same observation

could not be made for all-metal syringe needles, which required Apiezon N high-vacuum

A

B

FIGURE C.2 Transparent, flexible vacuum tubing for the Schlenk manifold
system .  The terminal end varies depending on whether a connection is made
to another threaded glass port (A) or a syringe needle via Luer lock (B).
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grease.  Because of this inconvenience, only disposable, plastic syringe needles were used for

syntheses in this dissertation.

Attaching vacuum tubing to threaded glass ports requires a cylindrical tubing connec-

tor, as illustrated in Figure C.3.  But performance of the standard “Ace-Safe” tubing connec-

tor proved unsatisfactory: the geometry of the O-ring seat failed to provide a gas-tight seal.

So an improved tubing connector was designed using corrosion-resistant stainless steel 316L

(see Figure C.11).  In addition, Ace-Thred® fittings of nylon were selected for these new tub-

ing connectors due to greater rigidity.4  The ribbed ends of the tubing connectors, inserted

into the tube interior, formed a friction seal.  To ensure a gas-tight fit though, two nylon band

clamps were wrapped at each end around the tubing exterior, spaced approximately one

centimeter apart along the ribbed end.  (Note that the short, ribbed ends of the Luer adapters

cannot accommodate two band clamps.  The use of one clamp, however, was not observed to

detrimentally affect the overall seal.)  Whenever not in use, a tubing segment was discon-

nected from its manifold port, which in turn, was stoppered with an Ace-Thred® plug.  This

practice prevented two undesirable situations: (1) dangling ends from smashing into the

counter top, and (2) dust accumulation in the TFE valve seat.  As already stated, the Aegis®

O-rings situated in the tubing connectors remained grease-free.  If coated, the close proximity

of the O-rings to aggressive solvents and vapors would create a contamination hazard for on-

going syntheses.  Luer-lock joints were also assembled without grease since the disposable,

plastic syringe tips, when twisted snugly, formed a leak-free seal.

4 The standard Ace-Thred® fitting material for this Schlenk manifold system is polytetrafluoroethylene (PTFE),
selected because of its excellent chemical resistance.  Unfortunately, PTFE exhibits creep behavior so frequent
assembly and disassembly of tubing compression seals results in rapid degradation of joint performance.
FIGURE C.3 Exploded view of tubing connector joint.  
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Design of the vacuum system centered around a modular cryogenic trap assembly and a

standard rotary-vane mechanical pump.  The presence of cryogenic traps improves the ulti-

mate vacuum achievable in the system by condensing and freezing residual gas molecules.

Figure C.4 compares the vacuum level attained when the traps are inactive (A) versus that

when active (B).5  An active cryogenic trap provides two benefits: (1) the mechanical pump is

protected from aggressive solvent vapors that corrode interior seals and attack the lubricat-

ing oil, and (2) the system itself is shielded from volatile material, dissolved in the oil, that

might return upstream.  To ensure effective evacuation and flush cycles, measurement of the

vacuum should occur dynamically, otherwise inadequate seals in the reaction glassware may

go unnoticed.  To this end, the vacuum bank (top) incorporates a Hastings Instruments

model 2002 vacuum gauge, attached through a central, threaded glass port.6  A special Ace-

Thred® adapter with an internal ⅛” national pipe thread (NPT) through-hole serves as the

metal-to-glass coupler, providing an air-tight seal.7

The modular design of the cryogenic trap assembly (see Figure C.14) allows establish-

ment of an in-line, multi-trap configuration.  For the purposes of this dissertation, the

Schlenk manifold system operated with two trap assemblies; the presence of the second trap

relieved potential overflows from the first, protecting the otherwise vulnerable mechanical

pump.  Correct orientation of the assembly, however, requires that the female threaded con-

5 The digital readout does not display values below 5.0 x 10-4 torr even though the vacuum is still improving.
The ultimate vacuum level, with cryogenic traps in operation, is suspected to be below 1 x 10-4 torr. 

6 This gauge can read pressure (i.e., vacuum) in the range from 103 to 10-4 torr.
7 Threads on the vacuum gauge base (⅛” NPT male) were lightly-coated with Apiezon N high-vacuum grease.
FIGURE C.4 Measurement of manifold vacuum.  Cryogenic traps at ambi-
ent temperature (A) and submerged in liquid nitrogen (B).5

A B
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nector (left side in Figure C.14) serve as the inlet.  Reversal risks reduced throughput and

eventual clogging [2].  To assemble the trap, the mouth of the collection flask should be slid

upward along glass collar and secured by twisting tight the associated Ace-Thred® bushing.8

Proper positioning of the collection flask leaves the central glass tube approximately 1–1½”

above the flask interior.  A collection flask in the trap assembly can, if full, be isolated by clos-

ing both lower valves, removing that cryogenic segment from the vacuum path.  As a result,

the collection flask is free for replacement with a clean, dry unit.  In addition, opening the top

bypass valve enables the continued operation of the vacuum bank, despite the partitioning

off of the collection flask.9  In theory, both flasks can be replaced simultaneously.  In practice,

however, such a procedure was only attempted if the vacuum bank itself could be isolated

(i.e., was not in service).  Removal of both cryogenic segments from the vacuum path (while

in service) guarantees that contaminating vapors will reach the pump oil, a highly-undesir-

able situation.

In order to generate the required vacuum levels, a 1402 Welch Duoseal® rotary-vane

mechanical pump was connected to the cryogenic trap assembly via an L-shaped glass

adapter (see Figure C.16) and standard heavy-wall, gum-rubber tubing (1½” outside diame-

ter, ¾” inside diameter).  Its fast pumping capacity (160 L/min) provided quick evacuation

and flush cycles, an important convenience for any synthesis involving air-sensitive manipu-

lations.  While elastic, the gum-rubber tubing proved difficult to slide over either glass

adapter or pump inlet due to excessive friction.  Application of Apiezon N high-vacuum

grease to both ends of the tubing interior alleviated this problem; a pair of stainless steel

band clamps (four total) ensured a gas-tight seal.  The actual physical connection between the

glass adapter and pump inlet occurred through a hole in the countertop of the safety hood.

Exhaust from the mechanical pump was also routed back through this hole to ensure proper

ventilation; gas streams leaving reaction glassware during evacuation often contain toxic

chemical vapors, a health hazard for the user.

To enhance longevity, the mechanical pump was left running continuously.  But routine

maintenance included changing the pump oil when the equilibrium vacuum level (without

8 If the compression seal is not tight, the collection flasks will slide up the collar as the pump evacuates the inte-
rior.  To prevent this behavior, the O-rings and glass surfaces must be dry and grease-free.  Also, the Ace-Thred®

bushings, while tight, should not be over-torqued.  Otherwise, the glass may shatter during assembly.
9 During normal operation all overhead bypass valves remain closed.  
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cryogenic trap operation) deteriorated to 1 x 10-2 torr.  Such a reduction in pump perfor-

mance indicated unacceptable levels of dissolved solvent molecules out-gassing from the oil.

Disconnecting the mechanical pump for maintenance first required that the vacuum system

reach atmospheric pressure.  This task was easily accomplished by turning off the pump and

temporarily opening the crossover valve on the manifold, allowing the vacuum system to

flood with argon.10  The mechanical pump could then be isolated (and subsequently

removed) by closing the last lower valve of the cryogenic trap assembly.

Replacement of the pump oil occurred through a two-step process: (1) draining the used,

warm oil into an appropriately-sized pan,11 and (2) introducing fresh oil through the exhaust

port of the pump via a small funnel.  When necessary, a full-face respirator was worn during

draining to prevent exposure to detrimental vapors.  To ensure that contaminants were

flushed out of the system, the overall process was repeated.12  HyVac® vacuum pump oil, an

ultra-low vapor pressure paraffin oil, proved to be a satisfactory lubricant.  All of the used oil

was collected and stored in large polypropylene jerry cans, disposed of later according to

local environmental health and safety regulations.  After oil replacement, the pump was left

running for at least 12 hours, allowing the mechanical system to equilibrate thermally.  Dur-

ing this time frame, the vacuum level improves noticeably and eventually stabilizes.

Proper operation of the cryogenic trap assembly requires complete evacuation of the vac-

uum system by the mechanical pump before submerging the collection flasks in liquid nitrogen.  For

example, nitrogen gas liquefies at 77.37 K and freezes at 64.32 K.  But oxygen and argon gas

liquefy at 90.21 K and 87.48 K, respectively, and freeze at 55.09 K and 83.98 K.  So failure to

pre-evacuate the vacuum system risks condensing oxygen or solidifying argon within the

collection flasks.  Any subsequent vaporization upon warming would then pressurize the

entire assembly, creating an explosion hazard.  The contents of the collection flasks can safely

be monitored, however, because of a vertical sequence of viewports along the dewar walls.

During operation, these dewars are filled with liquid nitrogen to within 1” of the top, insu-

lated by TFE caps (see Figure C.17).  The transparency of liquid nitrogen allows a clear view

of any condensed material in the collection flasks, alerting the user to potential danger.

10The cryogenic traps must not be submerged in liquid nitrogen during this procedure.  The crossover valve
should be closed when the Hastings Instruments model 2002 vacuum gauge reaches 760 torr, and not more.

11The lower viscosity of warm oil enables a more effective and complete drainage.
12The mechanical pump was allowed to operate for 15–20 minutes after the first addition.  The resulting agita-

tion aided the dissolution and removal of any remaining used oil.
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The removal and replacement of a full collection flask starts with a simple two-step pro-

cess: (1) isolation of that cryogenic segment followed by (2) withdrawal of the liquid nitrogen

bath.  After a short period (i.e., usually 2–3 minutes), the contents of flask will melt and vola-

tilize, partially pressurizing the isolated chamber.  This internal pressure, however, remains

insufficient to balance external atmospheric pressure, making removal of the flask difficult.

To alleviate this situation, argon from the inert-gas bank can be bled into the warming collec-

tion flask until the pressure differential is minimal.  But before doing so, any reaction appara-

tus connected to either the vacuum or inert-gas bank must be isolated by closing all appropriate

manifold valves.13  Only then should the mechanical pump (still running) be disengaged

from the vacuum system by closing the last valve in the vacuum pathway.14  Accordingly,

any active cryogenic segment, if present, is withdrawn from service by closing both lower

valves, and if necessary for continuity, opening the top bypass valve.  Failure to follow this

precaution results in an argon bleed stream that condenses and solidifies in the cryogenic

segment.  Finally, by temporarily opening the crossover valve on the manifold, argon gas can

pressurize the target collection flask, enabling its removal.

A clean, dry glass piece should serve as the replacement collection flask.  And if neces-

sary, the remaining FETFE® O-ring should be exchanged with fresh one if overly deformed.

(FETFE® and Aegis® O-rings suffering from deformation or reduced elasticity can easily be

regenerated by baking in a drying oven at 110 °C for approximately 10 minutes.)  After

replacement, the mechanical pump is re-engaged with the system, but the isolated cryogenic

traps should remain partitioned off until the vacuum level stabilizes.  The full pathway can

then be returned to service by opening all lower valves and closing the top bypass valves.

Finally, the new collection flask is submerged in liquid nitrogen by raising its corresponding

dewar.  The entire process, while cumbersome in description, can be completed quite effi-

ciently in practice.15

13Flooding the vacuum system with argon creates a brief, but sharp, pressure drop in the inert-gas bank.  This
decrease in pressure can suck fluids and particulate matter from any connected reaction apparatus directly into
the manifold, requiring disassembly and extensive cleaning.

14Because of the potential for contaminating leaks, evacuated reaction apparatus should be flooded with argon
when isolated from the vacuum bank.  Of course, the state or contents of the glassware must be compatible
with an inert-gas overpressure.

15The author acknowledges a minor oversight in the design of the cryogenic trap assembly.  The need to pres-
surize the collection flask could be avoided entirely by the presence of a high-vacuum venting valve on the
“bulb” of the assembly.  The author recommends the Chemglass CG-590 Inlet Valve, Chem-Cap®, High Vac-
uum, pointing towards the user but angled upward at 45°.
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Lastly, good operating procedures dictate that the cryogenic trap assembly, when

removed from service for long periods (i.e., more than a week), be stored under a slight posi-

tive argon pressure.  If the mechanical pump is simply turned off, atmospheric gases will dif-

fuse past the O-ring compression seals, driven by the negative pressure differential.  Of

particular concern is water vapor which chemisorbs onto the interior borosilicate surface.

Subsequent evacuation will require some time to restore previous vacuum levels, during

which, water molecules slowly but continuously leave the glass surface.  To properly shut

down the vacuum system then, power to the pump should be turned off and the crossover

valve on the manifold opened.16  Argon flow from the inert-gas bank will pressurize vacuum

system reaching two important levels: (1) at 760 torr, the last valve in the vacuum pathway

should be closed to isolate the mechanical pump from the vacuum system, and (2) at approx-

imately 850 torr, the crossover valve should be closed.  For safety purposes, pressure in the

cryogenic assembly should not exceed 850 torr.

The extreme oxygen and moisture sensitivity of manganese(II) silylamide (and subse-

quent alkoxides) governed the design of this inert gas delivery system.  Nitrogen, the most

common “inert” source for Schlenk manifold systems, brings two unfortunate disadvan-

tages: (1) many elemental metals react with nitrogen at room temperature, forming stable,

protective nitride scales and (2) the density of nitrogen, closely matching that of air, provides

a poor diffusive barrier to gaseous contaminants such oxygen and water vapor.  In contrast,

the chemically-inert nature of argon provides a true non-reactive atmosphere.  Its heavier-

than-air density allows argon to blanket reaction flask contents should the glassware be

momentarily opened.  This behavior offers a critical advantage for air-sensitive manipula-

tions.  All synthetic procedures detailed in Chapter 3 rely extensively on the removal and

exchange of components secured in reaction vessel necks.  During the process, an inevitable

exposure to air occurs, negated by the presence of outward-flowing argon.17

Commercial cylinders of argon gas are readily available in ultra-high purity grade at an

economical cost.18  But to guarantee contamination levels compatible with the synthesis of

16Once again, the cryogenic traps must not be submerged in liquid nitrogen during this procedure.
17The reaction apparatus remains continuously under a slight positive argon pressure, maintained by its connec-

tion to the inert-gas bank.  This precaution ensures only outward flows thereby preventing contamination
caused by possible inward-directed air currents.

18The total sum of N2, O2, CO, CO2, and hydrocarbon contamination (CH4 and H2O) for ultra high purity argon
numbers less than 10 parts per million.
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manganese(II) silylamide (and corresponding alkoxides), a Matheson model 6427 oxygen

and moisture trap was incorporated into the delivery pathway.  Its one-piece aluminum can-

ister houses a highly-active, alumina-supported copper oxide catalyst that ensures contami-

nation below 20 parts per billion — provided the combined pressure and flow rate remains

below 100 psig and 56.6 slpm.19  An insertion point for the unit, along with a schematic of the

entire inert gas delivery system, is given in Figure C.5 (all numbers correspond to compo-

nents listed sequentially in the bill-of-materials).  To preserve the integrity of the catalyst, the

metal plugs at both ends were removed and two instrument ball valves attached via port

connectors, all inside an argon glove box.20  Then, with the valves closed, the entire assembly

could be returned to atmosphere without saturating (and ruining) the catalytic bed.

Control of inert gas pressure within the delivery system requires a regulator that can: (1)

preserve ultra-high purity streams during operation, (2) keep the outlet pressure isolated

from a continuously dropping inlet pressure, and (3) adjust and maintain low 3–5 psig pres-

sures.  To meet these needs, a Concoa 212 series regulator with, respectively, stainless steel

diaphragms, dual-stage construction, and 0–30 psi output served as the pressure control unit.

In addition, a Swagelok® QF series quick-connect coupling was mated, on one side, to the

regulator’s exhaust port, and on the other, to an instrument ball valve.  This configuration

enabled the convenient exchange of argon cylinders while preventing upstream contamina-

tion of the delivery line (see discussion later).  To monitor the argon stream during operation,

an Omega FMA 1600 series digital mass flow meter with temperature and pressure compen-

sation was placed in the delivery line before the oxygen and moisture trap.  Its presence

served two purposes: (1) to ensure the gas flow rate never exceeded the limits of the catalytic

bed and (2) to monitor the seals of connected and pressurized reaction apparatus.21

Leak-free tube joints for the inert gas delivery line relied exclusively on fittings from the

Swagelok Company.  These components depend on a ferrule-based, metal-to-metal compres-

sion seal (i.e., the Swagelok® system), the underlying principle of which is discussed in pro-

19During service, the inert-gas bank operates at a pressure of 3–5 psig.  Exhausting directly to atmosphere never
results in a flow rate greater than 3 slpm.

20The port alignment given in Figure C.5 for these valves must be maintained during assembly.
21The importance of this second capability should not be ignored.  Often, during the exchange of reaction neck

contents, an O-ring will fail to seat properly, creating a leak point invisible to the eye.  When pressurized, a
small, but steady, positive  mass flow appears on the meter.  If otherwise unnoticed, any subsequent evacua-
tion would draw air into the apparatus, contaminating the contents.
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FIGURE C.5 Schematic of the argon delivery system.  Numbers given on
the diagram correspond to components listed sequentially in the bill-of-
materials.  Thick black lines (long) represent lengths of copper tubing.
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motional literature and will not be presented here.  However, assembly meticulously

followed guidelines given therein with each individual joint being verified by a gap inspec-

tion gauge.  All metal-to-metal seals, whether Swagelok® or NPT, remained grease-free.

Male threads in the NPT joints, though, were wrapped three times with ½” wide, 0.003” thick

PTFE tape before insertion.22  This additional step aids the final seal so long as: (1) the first

two starting threads at the tip are skipped and (2) the wrap direction spirals toward the base.

Standard ¼” diameter oxygen-free, high-conductivity (OFHC) copper tubing with 0.065”

thick walls comprised the delivery line, connecting the argon source to the inert gas bank.  As

stated on page 246, a special Swagelok-adapted fitting served to couple the L-shaped, male

brass NPT connector to the female glass Ace-Thred® socket on the inert gas bank.  This fitting

comes fabricated from PTFE, containing interior, precisely-machined female NPT threading.

Because of the resulting metal-to-PTFE seal, inclusion of PTFE tape along the threads is unef-

fective.  Instead, the male brass connector was lightly coated with Apiezon N high-vacuum

grease to ensure leak-free performance.

The entire configuration illustrated in Figure C.5 could be safely assembled in air pro-

vided the instrument ball valves protecting the oxygen and moisture trap remained closed.23

To purge the delivery system after assembly, the first 3-port valve (i.e., attached to the QF

series quick-connect coupling) was turned such that flow would be directed into the delivery

line.  The second 3-port valve (i.e., guarding the entry point to the oxygen and moisture trap)

was turned such that flow would exit to atmosphere.  Opening the main valve on the argon

cylinder flooded the line, displacing air out of the system.  At this point the regulator was

adjusted for 3–5 psig of operating pressure and the flow allowed to continue for approxi-

mately 30 seconds.  With argon still exiting to atmosphere, the second 3-port valve was then

turned to direct flow into the oxygen and moisture trap, pressurizing the canister.  As a last

step, the crossover valve on the manifold was opened, allowing the mechanical pump to

evacuate the inert-gas bank and all space back to the 2-port valve (still closed).24  When the

vacuum stabilized, the crossover valve was closed and the 2-port valve opened, flooding the

bank with argon.

22The CGA-580 connector on the Concoa 212 series regulator also used PTFE tape to ensure a leak-free seal.
23Again, the port alignment given in Figure C.5 for all valves must be maintained during assembly.
24The vacuum system is presumed to be operational although setup of the cryogenic traps is not necessary.
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The quality of seals in the inert gas delivery system was verified using the following pro-

cedure: (1) the valve on the argon cylinder was closed and (2) the crossover valve on the

manifold was opened, evacuating the entire line back to the tank valve.  The resulting vac-

uum level matched that of the isolated vacuum system itself (i.e., 2.4 x 10-3 torr with new

pump oil).  Shutting the crossover valve and then opening the cylinder valve repressurized

the delivery system, returning the line and inert gas bank back to service.  This procedure

was routinely employed to remove solvent vapor contamination from the inert gas bank.25

The procedure to exchange argon cylinders is equally straight-forward:  the valve on the

tank should be closed and the first 3-port valve turned so that space within the Concoa 212

series regulator and QF series quick-connect coupling vents to atmosphere.   The argon cylin-

der (with the regulator still attached) can then be removed from the delivery line.  To avoid

bursting the seal, the QF series quick-connect coupling should never be separated while under pres-

sure.  After transferring the regulator to the new argon cylinder, the quick-connect coupling

is rejoined, bringing the replacement into service.  Opening the tank valve then flushes the

regulator-coupling space with argon, displacing air from that segment.  When approximately

30 seconds have elapsed, the 3-port valve should be turned while still purging so the flow is

redirected back into the delivery line.  The regulator is then adjusted (if necessary) to ensure

the original low-pressure setting still remains.

When use of the inert gas delivery system is not required for long periods (i.e., more

than a week), the cylinder valve should be closed and the regulator partially depressurized

by momentarily opening the first 3-port valve to atmosphere.26  This practice lowers the risk

of diaphragm failure due to fatigue and prolongs the lifetime of the regulator.  In addition,

the instrument ball valves attached to the oxygen and moisture trap should be closed.  Diffu-

sive leaks past the many elastomeric and TFE compression seals in the manifold can be prob-

lematic over extended periods of time.  Also, unforeseen or undesired circumstances (i.e.,

tampering, negligence, forgetting the system state, etc.) may result in contamination of the

delivery line or inert gas bank.  But if the catalytic bed was isolated, the delivery system can

25In addition to inert gases, the Matheson model 6427 trap can purify gas streams of many organics including
alkanes, alkenes, aliphatic hydrocarbons, low boiling aromatics, carbon dioxide, and carbon monoxide.  The
catalytic bed will therefore not be deactivated by vapors from solvents used for this dissertation.

26The cylinder pressure gauge should indicate the lowest possible value (i.e., the needle rests on its support).
But the regulator-coupling space should maintain at the 3–5 psig pressure of the delivery system.
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be quickly returned to service by flushing with argon and evacuating.27  Otherwise, the oxy-

gen and moisture trap may require replacement, a tedious and expensive task.

As a final note, delivery lines for Schlenk manifold systems often contain a mercury (or

liquid) bubbler that serves as an emergency one-way pressure relief valve [3].  Typical place-

ment occurs immediately before the inert gas bank.  Due to space restrictions in the safety

hood though, the configuration of this inert gas delivery system employed an alternative

arrangement: an in-line bubbler (see Figure D.2 in Appendix D) was always included with

any reaction apparatus.  This bubbler contained two pathways:  (1) a direct route that

allowed argon to reach its destination unabated and (2) a bypass that vented overpressures

to atmosphere.  A greaseless, high-vacuum TFE metering valve controlled the exhaust rate,

and if necessary, could be closed to permit the tubing segment or reaction vessel to be evacu-

ated.28  Because of toxicity, the use of mercury was eschewed.  Instead, 3 mL of 200 centi-

poise silicon oil was injected into the bubbler reservoir via syringe.  Further details on the in-

line bubbler can be found in the discussion and figures of Chapter 3.

[1] Tidwell, T. T. Wilhelm Schlenk: The Man Behind the Flask. Angewandte Chemie Interna-
tional Edition 2001, 40 (2), 331–337; see also references therein.

[2] Coyne, G. S. The Laboratory Companion: A Practical Guide to Materials, Equipment, and
Technique; John Wiley and Sons: New York, 1997; p. 391–393.

[3] Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.;
John Wiley and Sons: New York, 1986; p. 9–11.

27The author always flushed and evacuated the delivery system before synthesis to eliminate possible contami-
nation, regardless of the time from service.

28Closing the metering valve prevents fluid from being drawn out of the reservoir past the check valve.
258



FI
G

U
RE

 C
.6

M
ul

ti-
po

rt
ed

, d
ou

bl
e-

ba
nk

 m
an

ifo
ld

.  
259



260
FI
G

U
RE

 C
.7

Sc
he

m
at

ic
 o

f m
ul

ti-
po

rt
ed

, d
ou

bl
e-

ba
nk

 m
an

ifo
ld

 (f
ro

nt
). 

 



FI
G

U
RE

 C
.8

Sc
he

m
at

ic
 o

f m
ul

ti-
po

rt
ed

, d
ou

bl
e-

ba
nk

 m
an

ifo
ld

 (c
ro

ss
 s

ec
tio

n)
.  
261



FIGURE C.9 Front and angled view of manifold valve assembly.  
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FIGURE C.14 Modular cryogenic trap assembly (shown with
collector flask).  
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FIGURE C.18 Adapter for vacuum hose connection to pump.  
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Glassware
Chemglass, Inc. CG-702-05L KIMAX Medium Wall Borosilicate Tubing

O. D.: 1”, 25.4 ± 0.4 mm
Wall Thickness: 2.4 ± 0.3 mm
Length: 4’

2

Ace Glass, Inc. 7644-18 Connectors, Threaded, Ace-Thred, Glass
Size: 18 mm
O. D. Tube: 25 mm
Wall Thickness: 2.4 ± 0.3 mm
O. D. Tube (Thread): 29 mm

1

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

11

Chemglass, Inc. CG-706-03L KIMAX Special Wall Borosilicate Tubing
O. D.: 9.0 ± 0.3 mm
Wall Thickness: 1.5 ± 0.2 mm
Length: 4’

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

6

Bushings and Plugs
Ace Glass, Inc. 5846-49 Plug (Includes FETFE O-Ring)

Material: PTFE
For Size: 18 mm
O-Ring: -113

2

TABLE C.1 Bill-of-materials for multi-ported, double-bank manifold (continued
on page 274).
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Bushings and Plugs (Continued)
Ace Glass, Inc. 7506-29 Bushing (Includes FETFE O-Ring)

Material: PTFE
For Size: 18 mm
I. D.: 17 mm
O-Ring: -112

1

Ace Glass, Inc. 5844-969 Adapter, Swagelok (Includes FTFE O-Ring)
Material: PTFE
For Size: 18 mm
¼” NPT Thread Size
O-Ring: -113

1

Ace Glass, Inc. 5846-44 Plug (Includes FETFE O-Ring)
Material: PTFE
For Size: 7 mm
O-Ring: -009

5

Ace Glass, Inc. 5844-58 Adapter, Swagelok (Includes FTFE O-Ring)
Material: PTFE
For Size: 7 mm
¼” NPT Thread Size
O-Ring: -009

1

Vacuum Tubing and Connectors
Sigma-Aldrich Z25,592-0 Nalgene 180 Vacuum Tubing

I. D.: ¼”
O. D.: ⅝”
Wall Thickness: 3/16”
Length: 10’

2

(Machine Shop) (See Figure C.11) 316L Stainless Steel Connector (No O-Ring)
For Size: 7 mm
For I. D. Tubing: ¼”
O-Ring Size: -009

12

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE C.1 Bill-of-materials for multi-ported, double-bank manifold
(continued from page 273).
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Vacuum Tubing and Connectors (Continued)
Sigma-Aldrich Z10,116-8 PERFEKTUM Syring Fittings

Connector Type: Male Luer Lock to Tube
Material: Chrome-plated Brass
For I. D. Tubing: ¼”

2

Ace Glass, Inc. 5029-10 Bushing (Includes FETFE O-Ring)
Material: Nylon
For Size: 7 mm
I. D.: 7.5 mm
O-Ring: -008

12

Sigma-Aldrich Z22,420-0 Nylon Tubing Clamps
Diameter Range: 17/32–19/32”
Quantity: 50 per Package

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -009

12

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE C.1 Bill-of-materials for multi-ported, double-bank manifold
(continued from page 274).
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Glassware
Swagelok G321-16-GXG-3 Flexible Glass-Ended Tubing

Glass O. D.: 25 mm
Glass Length: 3.00”
Nominal Produced Flexible Length: 3”
Flexible Length Compressed: 2.50”
Flexible Length Extended: 4.50”
Cuff Length (Metal): 1.00”
Cuff O. D. (Metal): 1”

1

Chemglass, Inc. CG-702-03L KIMAX Medium Wall Borosilicate Tubing
O. D.: ⅝”, 15.9 ± 0.3 mm
Wall Thickness: 1.6 ± 0.2 mm
Length: 4’

1

TABLE C.2 Bill-of-materials for flexible glass-ended connector.
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Glassware (Includes Material for Two Assemblies)
Chemglass, Inc. UI-0107-314H CG-506 Valve, Glass Portion Only, 3-Way

(Includes two CGB-601-12 Plugs)
0–12 mm Bore
Barrel O. D.: 22 mm
Barrel Wall Thickness: 2.5 mm
Side Arm O. D.: ⅝”, 15.9 ± 0.3 mm
Side Arm Thickness: 1.6 ± 0.2 mm

2

Chemglass, Inc. CGB-601-12 1-Piece High Vacuum Chem-Cap Plug
0–12 mm Bore

2

Chemglass, Inc. CG-504-03 Valve, Glass Portion Only, 180°
0–12 mm Bore
Barrel O. D.: 22 mm
Barrel Wall Thickness: 2.5 mm
Side Arm O. D.: ⅝”, 15.9 ± 0.3 mm
Side Arm Thickness: 1.6 ± 0.2 mm

2

Ace Glass, Inc. 7644-18 Connectors, Threaded, Ace-Thred, Glass
Size: 18 mm
O. D. Tube: 25 mm
Wall Thickness: 2.4 ± 0.3 mm
O. D. Tube (Thread): 29 mm

2

Chemglass, Inc. CG-700-27L KIMAX Standard Wall Borosilicate Tubing
O. D.: 41.0 ± 0.9 mm
Wall Thickness: 2.0 ± 0.2 mm
Length: 4’

1

Chemglass, Inc. CG-702-05L KIMAX Medium Wall Borosilicate Tubing
O. D.: 1”, 25.4 ± 0.4 mm
Wall Thickness: 2.4 ± 0.3 mm
Length: 4’

1

TABLE C.3 Bill-of-materials for modular cryogenic trap assembly (continued
on page 278).
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Glassware (Includes Material for Two Assemblies, Continued)
Chemglass, Inc. CG-702-03L KIMAX Medium Wall Borosilicate Tubing

O. D.: ⅝”, 15.9 ± 0.3 mm
Wall Thickness: 1.6 ± 0.2 mm
Length: 4’

1

Bushings and Plugs
Ace Glass, Inc. 7506-29 Bushing (Includes FETFE O-Ring)

Material: PTFE
For Size: 18 mm
I. D.: 17 mm
O-Ring: -112

2

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE C.3 Bill-of-materials for modular cryogenic trap assembly
(continued from page 277).
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Glassware (Includes Material for Two)
Ace Glass, Inc. 7644-20 Connectors, Threaded, Ace-Thred, Glass

Size: 25 mm
O. D. Tube: 32 mm
Wall Thickness: 2.4 ± 0.3 mm
O. D. Tube (Thread): 41 mm

2

Chemglass, Inc. CG-700-27L KIMAX Standard Wall Borosilicate Tubing
O. D.: 41.0 ± 0.9 mm
Wall Thickness: 2.0 ± 0.2 mm
Length: 4’

1

Ace Glass, Inc. 7506-29 Bushing (Includes FETFE O-Ring)
Material: PTFE
For Size: 25 mm
I. D.: 17 mm
O-Ring: -220

2

Liquid-Nitrogen Dewars
(Machine Shop) (See Figure C.17) Insulating Caps for Dewars

Material: PTFE
1

H. S. Martin, Inc. 611795-2230 Strip-Silvered Dewar Flask (Full Length Base
with Viewing Ports)

Style 22
I. D.: 68 mm
Depth: 300 mm

1

TABLE C.4 Bill-of-materials for collection flasks.
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Glassware
Ace Glass, Inc. 7644-18 Connectors, Threaded, Ace-Thred, Glass

Size: 18 mm
O. D. Tube: 25 mm
Wall Thickness: 2.4 ± 0.3 mm
O. D. Tube (Thread): 29 mm

1

Chemglass, Inc. CG-702-05L KIMAX Medium Wall Borosilicate Tubing
O. D.: 1”, 25.4 ± 0.4 mm
Wall Thickness: 2.4 ± 0.3 mm
Length: 4’

1

Chemglass, Inc. CG-702-04L KIMAX Medium Wall Borosilicate Tubing
O. D.: ¾”, 19.0 ± 0.3 mm
Wall Thickness: 1.6 ± 0.2 mm
Length: 4’

1

Bushings and Plugs
Ace Glass, Inc. 7506-29 Bushing (Includes FETFE O-Ring)

Material: PTFE
For Size: 18 mm
I. D.: 17 mm
O-Ring: -112

1

TABLE C.5 Bill-of-materials for vacuum hose adapter.
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Components
Concoa 212 1301-01-580 212 Series Dual Stage Regulator

Delivery Pressure: 0–15 psi
Inlet Gauge Range: 0–4000 psi
Outlet Fittings: ¼” NPT Female
Assembly/Gauge Type: Standard Assembly,

psi and kPa Gauges
Inlet Connection: CGA-580

1

Swagelok B-QF4-B-4PM QF Series Full Flow Quick Connect
Coupling - Body

Material: Plated Brass
Connector: ¼” NPT Male
O-Ring: Buna with Silicone-Based Lubricant

1

Swagelok B-QF4-S-4PM QF Series Full Flow Quick Connect
Coupling - Stem

Material: Plated Brass
Connector: ¼” NPT Male

1

Swagelok B-43XF4 40 Series Instrument Ball Valve
Material: Brass
Ports: 3
Connector: ¼” NPT Female (All Ports)

1

Swagelok B-400-1-4 Male Connector (Tapered Thread)
Material: Brass
Connector: ¼” NPT Female, ¼” Swagelok

3

Omega Engi-
neering, Inc.

FMA-1609 FMA 1600 Series Mass Flow Meter
Connector: ¼” NPT Female

1

TABLE C.6 Bill-of-materials for inert gas delivery system (continued
on page 282).
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Components (Continued)
Swagelok B-43XS4 40 Series Instrument Ball Valve

Material: Brass
Ports: 3
Connector: ¼” Swagelok Fitting (All Ports)

1

Swagelok B-401-PC Port Connector
Material: Brass
Connector: For ¼” Swagelok Fittings

2

Matheson
Tri-Gas, Inc.

6427-4S Model 6427 Series Oxygen and Moisture
Trap

Connector: ¼” Swagelok Fitting (All Ports)

1

Swagelok B-4P4T P4T Series Plug Valve
Material: Brass
Connector: ¼” Swagelok Fitting (All Ports)

1

Swagelok B-400-2-4 Male Elbow
Material: Brass
Connector: ¼” NPT Female, ¼” Swagelok

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE C.6 Bill-of-materials for inert gas delivery system (continued from
page 281).
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APPENDIX D

REACTION APPARATUS

The synthesis and subsequent purification of silylamide and alkoxide precursors require

sealable reaction apparatus capable of providing leak-free enclosures, whether under vac-

uum (up to 10-4 torr) or inert gas (argon).  As discussed in Appendix C, such apparatus, com-

monly referred to as Schlenkware, incorporates an integrated valve that enables evacuation

and flush procedures when connected to a Schlenk manifold system.  This appendix pro-

vides the pictures, schematics, and bill-of-materials for all reaction apparatus and supporting

equipment utilized in Chapter 3.  Accordingly, each Schlenkware component depicted herein

contains a single greaseless, high-vacuum, tetrafluoroethylene (TFE) valve.  In addition, the

joints of all reaction apparatus rely exclusively on the Ace-Thred® connector system.  The

threaded glass port of each Schlenk valve, for example, matches the threaded glass ports on

the manifold, thereby providing a universal connection for vacuum tubing.1  Unlike the

Schlenk manifold system, however, compression seals in the reaction apparatus employ only

grease-free Aegis® O-rings due to direct interaction with aggressive solvents and vapors.

Information provided in this appendix is organized sequentially into three general

(unlabeled) sections:  (1) the pictures and associated schematics of the reaction apparatus, (2)

the bill-of-materials for the aforementioned glassware, and (3) the bill-of-materials for mis-

cellaneous equipment and supplies.  In cases where geometry proved too complex for a two-

dimensional schematic, a picture alone serves as the reference.  So for example, Figure D.1

provides the photograph for a custom reaction-vessel head.  But the matching base, obtained

readily from the manufacturer as a standard component, is found only in the bill-of-materi-

als.  When not given explicitly by a schematic, all Schlenkware valves follow dimensions

given in Figure D.9 for the inlet valve; the taper and its extension, of course, should be

ignored.  Particular care must taken during the fusion of Ace-Thred® connectors to glass bodies:  the

1 In contrast, conventional hose joints employ a tapered, ribbed stem which utilizes friction for a leak-free con-
nection.  The force for attachment or removal can sometime exceed (unknowingly) the strength the glass com-
ponent.  Fracturing the glassware could cut the user, expose the user to toxic chemicals, or if the contained
chemical is pyrophoric (i.e., like n-butyl lithium), create an explosion hazard.
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length extending below the circumferential O-ring seat should be at least 15 mm, preferably 20 mm.

Otherwise during fabrication, heat from the torch can soften and deform the glass O-ring

seat.  Such a dimensional change, virtually invisible to the eye, results in uneven points-of-

contact whose non-uniform pressure creates leak points.2  Strict adherence to this guideline

must be observed when constructing reaction vessels and flasks.  Shorter lengths of 10 mm,

however, can be accommodated if the working space allows precise placement of the flame (e.

g., the inlet valve in Figure D.9).

The syntheses presented in Chapter 3 often presume the connection of a bubbler to the

main reaction apparatus.  This link was routinely achieved using 19”-long vacuum tubing

segments assembled in a manner similar to that shown Figures C.2 and C.3 (see discussion in

Appendix C).  Again, the standard “Ace-Safe” tubing connector was eschewed in favor of an

improved stainless steel tubing connector (see Figure C.11).  In order to ensure a chemically-

resistant, non-contaminating gas-tight joint, only grease-free Aegis® O-rings were employed

for the compression seals.

Standard “Ace-Safe” tubing connectors, however, do perform satisfactorily for less criti-

cal applications such as in joints enabling the circulation of cooling water.  Incorporation of

these connectors in tubing segments follows the pattern of Figure C.3 although only a single

nylon band clamp is required at each end.  The tubing segments (51” long) operate in pairs,

one each for transport to and from the reaction apparatus.  A silicone O-ring, included by

Ace Glass, Inc. with the “Ace-Safe” tubing connector, suffices for the compression seal.

One problem, however, arises when attempting to attach this connector to standard lab-

oratory water sources:  faucets in fume hoods typically terminate in tapered, ribbed stems.

To overcome the compatibility difference, additional 5”-long tubing segments were secured

directly onto the faucets via a nylon band clamp.  Special glass adapters were inserted into

the remaining end (also secured with a single nylon band clamp).3  The adapters provide a

union joint:  one end terminates in a tapered, ribbed stem (i.e., inserted into the tube interior),

the other, a threaded port (i.e., accepts the “Ace-Safe” assembly).  The 51”-long tubing seg-

ments could then be quickly connected (or disconnected) to the port, and hence, the faucet.

2 Asymmetrical pressure along a deformed seat can also unscrew (slowly) a PTFE plug, completely undoing the
gas-tight seal.

3 This glass adapter was fabricated by the simple fusion of a Chemglass, Inc. CG-300-21 Glassblower Hose Con-
nector to an Ace-Glass, Inc., 5027-05, Threaded Ace-Thred® Glass Connector.
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FIGURE D.1 Front and top view of reaction vessel head.  
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FIGURE D.2 In-line bubbler with metering valve.  
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FIGURE D.3 Graduated addition funnel.  
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FIGURE D.4 Reflux condenser.  
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FIGURE D.5 Vigreux distillation column.  
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FIGURE D.6 Dewar condenser.  
290



FIGURE D.7 Gas-flow metering valve.  
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FIGURE D.8 Inlet valve.  
292
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FIGURE D.10 Distillation adapter, 75°.  
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FIGURE D.12 Vacuum Caps.  
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FIGURE D.13 Schematic of vacuum caps.  
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FIGURE D.14 Centrifuge tube.  
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FIGURE D.15 Schematic of centrifuge tube.  
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FIGURE D.16 Extension adapter.  
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FIGURE D.18 Gas dispersion tube.  
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FIGURE D.19 Schematic of gas dispersion tube.  
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FIGURE D.20 Glass filter cannula.  
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FIGURE D.22 Flat-bottom 500-mL, 3-neck flask.  
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FIGURE D.23 Round-bottom 500-mL, 3-neck flask.  
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FIGURE D.24 Round-bottom 1000-mL, 3-neck flask.  
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FIGURE D.25 Front and top view of round-bottom 1000-mL, 4-neck flask.  
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FIGURE D.26 Sublimation head.  
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FIGURE D.27 Schematic of sublimation head (cross-section of jar).  
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FIGURE D.28 Schematic of sublimation head (port and valve assembly).  
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FIGURE D.29 Gelation chamber with stackable dishes.  
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FIGURE D.30 Schematic of gelation chamber with stackable dishes.  
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Reaction Vessel
Ace Glass, Inc. D112029 Modified 6433-35 Head, Pressure Reaction,

with Ace-Threds
1

Ace Glass, Inc. 6423-10 Flask, Pressure Reaction, Plain (Includes
CAPFE O-Ring)

Flange Size: 100 mm (4”)
Capacity: 1000 mL
Depth: 180 mm
O-Ring: -348

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

3

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

2

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Ace Glass, Inc. 6517-25 Clamp, “Quick Release”
Flange Size: 100 mm (4”)

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -348

1

TABLE D.1 Bill-of-materials for reaction apparatus (continued on page 316).
315



In-line Bubbler with Metering Valve
Chemglass, Inc. UI-0107-310H Modified CG-4536-01 Bubbler, Pressure

Release (Based on CG-562-01 Valve,
Chem-Cap, High Vacuum, Metering,
1-Arm)

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Graduated Addition Funnel
Chemglass, Inc. UI-0212-091MS Modified CG-1714-02 Funnel, Addition

Graduated, Threaded Valve, 125 mL
1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Reflux Condenser
Chemglass, Inc. UI-0212-092MS Modified CG-1213-01 Condenser, Reflux

200 mm Jacket Length
1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

3

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 315).
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Vigreux Distillation Column
Chemglass, Inc. UI-0211-151JS Modified CG-1231-16 Distilling Column,

Vigreux, 150 mm Jacket Length
1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

Dewar Condenser
Chemglass, Inc. UI-0211-151JS Modified CG-1209-A-26 Condenser, Dewar

Type, 200 mm Inside Depth, 40 mm I. D.
1

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

Gas-Flow Metering Valve
Swagelok SS-2MG2-TFMH M Series Metering Valve, Straight

Stainless Steel
⅛” NPT Male Ends
Teflon™ Stem Packing
Vernier Handle

1

Ace Glass, Inc. 5844-58 Adapter, Swagelok (Includes FTFE O-Ring)
Material: PTFE
For Size: 7 mm
⅛” NPT Thread Size
O-Ring: -009

2

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 316).
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Gas-Flow Metering Valve (Continued)
Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass

Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

4

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -009

2

Inlet Valve
Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm

0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

Chemglass, Inc. CG-700-06L KIMAX Standard Wall Borosilicate Tubing
O. D.: 7.0 ± 0.3 mm
Wall Thickness: 1.0 ± 0.1 mm
Length: 4’

1

Distillation Adapter, 75°
Chemglass, Inc. CG-700-12L KIMAX Standard Wall Borosilicate Tubing

O. D.: 13.0 ± 0.3 mm
Wall Thickness: 1.2 ± 0.1 mm
Length: 4’

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 317).
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Vacuum Caps
Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass

Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

Centrifuge Tube
Chemglass, Inc. CG-700-24L KIMAX Standard Wall Borosilicate Tubing

O. D.: 32.0 ± 0.7 mm
Wall Thickness: 1.8 ± 0.2 mm
Length: 4’

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

Extension Adapter
Chemglass, Inc. CG-700-12L KIMAX Standard Wall Borosilicate Tubing

O. D.: 13.0 ± 0.3 mm
Wall Thickness: 1.2 ± 0.1 mm
Length: 4’

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 318).
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Extension Adapter (Continued)
Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass

Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

Gas Dispersion Tube
Chemglass, Inc. CG-708-04L KIMAX Borosilicate Capillary Tubing

O. D.: 7.0 ± 0.4 mm
Bore: 2.75 ± 0.20 mm
Length: 4’

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

Ace Glass, Inc. 9435-25 Tube, Gas Dispersion
Porosity: E
O. D. Tube: 7 mm

1

Glass Filter Cannula
Chemglass, Inc. CG-708-04L KIMAX Borosilicate Capillary Tubing

O. D.: 7.0 ± 0.4 mm
Bore: 2.75 ± 0.20 mm
Length: 4’

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 319).
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Glass Filter Cannula (Continued)
Ace Glass, Inc. 9435-25 Tube, Gas Dispersion

Porosity: E
O. D. Tube: 7 mm

1

Ace Glass, Inc. 5029-35 Bushing (Includes FETFE O-Ring)
Material: PTFE
For Size: 7 mm
I. D.: 7.5 mm
O-Ring: -008

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -008

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -005

1

Flat-Bottom 500-mL 3-Neck Flask
Chemglass, Inc. CG-619-04 Glass-Blowers Flask Blank, Flat Bottom

Size: 500 mL
1

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 320).
321



Round-Bottom 500-mL 3-Neck Flask
Chemglass, Inc. CG-618-09 Glass-Blowers Flask Blank, Round Bottom

Size: 500 mL
1

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

Round-Bottom 1000-mL 3-Neck Flask
Chemglass, Inc. CG-618-10 Glass-Blowers Flask Blank, Round Bottom

Size: 1000 mL
1

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 321).
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Round-Bottom 1000-mL 3-Neck Flask (Continued)
Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass

Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

Round-Bottom 1000-mL 4-Neck Flask
Chemglass, Inc. CG-618-10 Glass-Blowers Flask Blank, Round Bottom

Size: 1000 mL
1

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

3

Ace Glass, Inc. 7644-15 Connectors, Threaded, Ace-Thred, Glass
Size: 15 mm
O. D. Tube: 23 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 26 mm

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 322).
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TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 323).
Sublimation Chamber
Ace Glass, Inc. D115311 Pressure Reaction Flange, 4” I. D.

Flange Surface: Fire-Polished (Not Ground)
O-Ring Groove Depth: 0.040 ± 0.015/0.010”
O-Ring Drove Diameter: For Size -348
Length (Shank): 6–7”
O. D. Shank: 110 mm
Wall Thickness: 7 mm

1

Chemglass, Inc. CG-700-35L KIMAX Standard Wall Borosilicate Tubing
O. D.: 70.0 ± 1.2 mm
Wall Thickness: 2.4 ± 0.3 mm
Length: 4’

1

Chemglass, Inc. CGB-601-02 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–8 mm Bore
Barrel O. D.: ¾”, 19.0 ± 0.3 mm
Barrel Wall Thickness: 1.6 ± 0.2 mm
Side Arm O. D.: 13.0 ± 0.3 mm
Side Arm Wall Thickness: 1.2 ± 0.1 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

2

Ace Glass, Inc. 6423-10 Flask, Pressure Reaction, Plain (Includes
CAPFE O-Ring)

Flange Size: 100 mm (4”)
Capacity: 1000 mL
Depth: 180 mm
O-Ring: -348

1

Ace Glass, Inc. 6517-25 Clamp, “Quick Release”
Flange Size: 100 mm (4”)

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -348

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
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TABLE D.1 Bill-of-materials for reaction apparatus (continued from page 324).
Gelation Chamber with Stackable Dishes
Ace Glass, Inc. 7644-25 Connectors, Threaded, Ace-Thred, Glass

Size: 50 mm
O. D. Tube: 57 mm
Wall Thickness: 3.2 ± 0.3 mm
O. D. Tube (Thread): 71 mm

1

Ace Glass, Inc. 5027-05 Connectors, Threaded, Ace-Thred, Glass
Size: 7 mm
O. D. Tube: 12.5 mm
Wall Thickness: 1.6 ± 0.2 mm
O. D. Tube (Thread): 18 mm

5

Chemglass, Inc. CGB-601-01 Valve, 1-Piece Plug, Chem-Cap, 1-Arm
0–4 mm Bore
Barrel O. D.: ½”, 12.7 ± 0.3 mm
Barrel Wall Thickness:  1.6 ± 0.2 mm
Side Arm O. D.: 9.0 ± 0.3 mm
Side Arm Wall Thickness: 1.5 ± 0.2 mm

1

Chemglass, Inc. CG-700-29L KIMAX Standard Wall Borosilicate Tubing
O. D.: 48.0 ± 1.0 mm
Wall Thickness: 2.0 ± 0.2 mm
Length: 4’

1

Chemglass, Inc. CG-710-03L KIMAX Borosilicate Rod
O. D.: 4.0 ± 0.4 mm
Length: 4’

1

Ace Glass, Inc. 5846-52 Plug (Includes FETFE O-Ring)
Material: PTFE
For Size: 50 mm
O-Ring: -225

1

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
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MANUFACTURER ITEM NUMBER DESCRIPTION QTY.

Bushings and Plugs
Ace Glass, Inc. 5846-44 Plug (Includes FETFE O-Ring)

Material: PTFE
For Size: 7 mm
O-Ring: -009

a

Ace Glass, Inc. 5029-35 Bushing (Includes FETFE O-Ring)
Material: PTFE
For Size: 7 mm
I. D.: 7.5 mm
O-Ring: -008

a

Ace Glass, Inc. 5846-48 Plug (Includes FETFE O-Ring)
Material: PTFE
For Size: 15 mm
O-Ring: -110

a

Ace Glass, Inc. 7506-27 Bushing (Includes FETFE O-Ring)
Material: PTFE
For Size: 15 mm
I. D.: 14 mm
O-Ring: -110

a

O-Rings
Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -008

b

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -009

b

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -110

b

TABLE D.2 Bill-of-materials for miscellaneous reaction equipment
(continued on page 327).
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Septa and Cannula
Ace Glass, Inc. 12904-06 Silicone Septum

O. D.: 11 mm
Thickness: 3 mm
Quantity: 12 per Package

c

Sigma-Aldrich Z10,109-5 Double-Tipped Needle
Material: Stainless Steel 304
Length: 24”
Gauge: 20

15

Vacuum Tubing and Connectors
Sigma-Aldrich Z25,592-0 Nalgene 180 Vacuum Tubing

I. D.: ¼”
O. D.: ⅝”
Wall Thickness: 3/16”
Length: 10’

1

(Machine Shop) (See Figure C.11) 316L Stainless Steel Connector (No O-Ring)
For Size: 7 mm
For I. D. Tubing: ¼”
O-Ring Size: -009

8

Ace Glass, Inc. 5029-10 Bushing (Includes FETFE O-Ring)
Material: Nylon
For Size: 7 mm
I. D.: 7.5 mm
O-Ring: -008

8

Sigma-Aldrich Z22,420-0 Nylon Tubing Clamps
Diameter Range: 17/32–19/32”
Quantity: 50 per Package

1

Marco Rubber
and Plastic

(Not Applicable) Aegis White SC1011 O-Ring
Size: -009

8

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.2 Bill-of-materials for miscellaneous reaction equipment
(continued from page 326).
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Water Tubing and Connectors
Sigma-Aldrich Z25,592-0 Nalgene 180 Vacuum Tubing

I. D.: ¼”
O. D.: ⅝”
Wall Thickness: 3/16”
Length: 10’

2

Ace Glass, Inc. 5853-06 “Ace-Safe” Connector, Tubing (Includes
Nylon Bushing and Silicone O-Ring)

Material: Glass-Filled PTFE
For Size: 7 mm
For I. D. Tubing: ¼”
Connector I. D.: ⅛”
O-Ring Size: -009

8

Sigma-Aldrich Z22,420-0 Nylon Tubing Clamps
Diameter Range: 17/32–19/32”
Quantity: 50 per Package

1

Magnetic Stirring
Ace Glass, Inc. 13655-29 Stirrer Magnets, Raised Ring, PTFE,

Octagonal
Length: 1”
Diameter: ⅜”

a

Ace Glass, Inc. 13655-33 Stirrer Magnets, Raised Ring, PTFE,
Octagonal

Length: 1½”
Diameter: ⅜”

a

Fisher Scientific,
Intl.

14-511-64 Fisherbrand Magnetic Octagonal Bar
Length: 1”
Diameter: 5/16”

a

Ace Glass, Inc. 13556-501 Stirrer, Homogenizer Drive and Controller 2
Ace Glass, Inc. 8081-30 Flexible Shaft (36”), Complete Kit 2

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.2 Bill-of-materials for miscellaneous reaction equipment
(continued from page 327).
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Magnetic Stirring (Continued)
Chemglass, Inc. CG-2011-20 Stirrer, Magnetic 2

Thermometers
Fisher Scientific,
Intl.

15-041-4D Fisherbrand Red-Spirit Thermometer,
General Purpose Laboratory

Range: –20 to 150 °C
Sub-Division: 1 °C
Immersion: Partial (76 mm)
Length: 305

a

Fisher Scientific,
Intl.

15-077-14 Fisherbrand Traceable Total Range Digital
Thermometer

Range: –73 to 300 °C
Accuracy: ±3 °C from –73 to –1 °C, ±2 °C

from 0 to 150 °C, ±3 °C from 151 to 300 °C
Thermocouple Probe: Beaded Type-K

1

Cooling
Chemglass, Inc. CG-1592-03 Flask, Dewar, Low Form, Cylindrical

Capacity: 850 mL (Fits 500-mL Flasks)
Depth: 75 mm
Diameter: 130 mm

2

Heating
Glas-Col 104A-PL120 PowerTrol

Electrical Rating: 10 A at 120 V (1200 W)
4

Chemglass, Inc. UI-0108-221D Modified CG-10009-12 Mantle, Cylindrical 
Vessel, Bottom Drain Opening

2

Chemglass, Inc. CG-10000-07 Mantle, Hemispherical, Glas-Col
Capacity: 500 mL (Fits 500-mL Flasks)

2

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
TABLE D.2 Bill-of-materials for miscellaneous reaction equipment
(continued from page 328).
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TABLE D.2 Bill-of-materials for miscellaneous reaction equipment
(continued from page 329).
Heating (Continued)
Glas-Col 100A O1063 Mantle, Spherical

Capacity: 500 mL (Fits 500-mL Flasks)
2

Chemglass, Inc. CG-10000-08 Mantle, Hemispherical, Glas-Col
Capacity: 1000 mL (Fits 1000-mL Flasks)

2

Glas-Col 100A O1083 Mantle, Spherical
Capacity: 1000 mL (Fits 1000-mL Flasks)

2

Glas-Col 103B CC3 400 °C Cal-Cord Heating Cord
Length: 3’

2

Glas-Col 103B CC4 400 °C Cal-Cord Heating Cord
Length: 4’

2

Chemglass, Inc. CG-10010-04 Mantle, Extension Support, Glas-Col
Capacity: 500-mL Hemispherical Mantle

2

Chemglass, Inc. CG-10010-05 Mantle, Extension Support, Glas-Col
Capacity: 1000-mL Hemispherical Mantle

2

a Purchased as needed to supplement reaction apparatus.
b Purchased in one-to-one correspondence with matching bushings and plugs.
c Consumable item purchased routinely.

MANUFACTURER ITEM NUMBER DESCRIPTION QTY.
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APPENDIX E

EQUIPMENT LISTS FOR SYNTHESES

In order to complete the silylamide and alkoxide syntheses presented in this disserta-

tion, the Schlenkware described in Appendix D must be chemically cleaned, baked dry, and

then assembled in an argon glove box.  The resulting apparatus formed by these modular

components represent functional units specialized for different stages of the reaction.  This

appendix provides detailed component lists, segmented by synthesis stage, that correlate to

the various pictures given in Chapter 3.  Certain equipment items (i.e., heating mantles, stir-

ring shafts, etc.) are not included since any preparative effort required for their use is trivial.

While not explicitly stated in the tables that follow, each synthesis presumes the availability

(and attachment) of an in-line bubbler to vent any excess pressure inside the apparatus.



ITEM QTY.

Reflux of Solvent
Round-Bottom 1000-mL 4-Neck Flask 1
Ace-Thred Bushing, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Reflux Condenser 1
Thermometer, Red-Spirit 1
Ace-Thred Bushing, 7 mm, PTFE 2
Aegis O-Ring, Size: -008 1
Silicone Septa 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 2
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 2
Ace-Thred Plug, 15 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -110 (Leave in Drying Oven Until Needed) 1

Sparging with Argon
Gas Dispersion Tube (Leave Assembled in Drying Oven Until Needed) 1
Ace-Thred Plug, 7 mm, PTFE (Leave Assembled in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave Assembled in Drying Oven Until Needed) 1
Ace-Thred Bushing, 7 mm, PTFE (Leave Assembled in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -008 (Leave Assembled in Drying Oven Until Needed) 1
Vacuum Cap, 15 mm (Leave Assembled in Drying Oven Until Needed) 1
TABLE E.1 Equipment list for solvent purification.
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ITEM QTY.

Weighing/Transfer Flask for 1,1,1,3,3,3-Hexamethyldisilazane
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Reaction of 1,1,1,3,3,3-Hexamethyldisilazane with n-Butyl Lithium
Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1½” Magnetic Raised-Ring Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE (Place in Drying Oven After Removal) 2
Aegis O-Ring, Size: -110 (Place in Drying Oven After Removal) 2
Ace-Thred Bushing, 7 mm, PTFE 2
Silicone Septa 2
Thermometer, Red-Spirit 1
Ace-Thred Bushing, 7 mm, PTFE 1
Aegis O-Ring, Size: -008 1
Reflux Condenser 1
Graduated Addition Funnel, 125 mL 1
Ace-Thred Bushing, 15 mm, PTFE 2
Aegis O-Ring, Size: -110 2
Vacuum Cap, 15 mm 2
Ace-Thred Plug, 7 mm, PTFE 2
Aegis O-Ring, Size: -009 2

Removal of Solvent under Reduced Pressure
Round-Bottom 1000-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Dewar Condenser 1
TABLE E.2 Equipment list for lithium silylamide synthesis (continued
on page 334). 
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TABLE E.2 Equipment list for lithium silylamide synthesis (continued
from page 333).
Removal of Solvent under Reduced Pressure (Continued)
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Distillation Adapter, 75° 1
Vacuum Cap, 15 mm 1

Spare Items
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 2
Silicone Septa (Leave in Drying Oven Until Needed) 4

ITEM QTY.
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ITEM QTY.

Weighing/Transfer Flask for Pentane
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Weighing/Transfer Flask for Tetrahydrofuran
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2

Dissolution of LiN[Si(CH3)]2

Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2
1” Magnetic Octagonal Stir Bar, PTFE 1

Reflux and Reaction of MnCl2 in Tetrahydrofuran
Round-Bottom 1000-mL 4-Neck Flask 1
Reflux Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Thermometer, Red-Spirit 1
Ace-Thred Bushing, 7 mm, PTFE 2
Aegis O-Ring, Size: -008 1
Silicone Septa 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 2
TABLE E.3 Equipment list for manganese(II) silylamide synthesis (continued on
page 336).
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Reflux and Reaction of MnCl2 in Tetrahrydofuran (Continued)
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 2
Silicone Septa (Leave in Drying Oven Until Needed) 1
Ace-Thred Plug, 15 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -110 (Leave in Drying Oven Until Needed) 1

Removal of Solvent under Reduced Pressure
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Dewar Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Distillation Adapter, 75° 1
Vacuum Cap, 15 mm 1
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Silicone Septa (Leave in Drying Oven Until Needed) 1

Filtration of LiCl
Round-Bottom 1000-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Glass Filter Cannula 1
Aegis O-Ring, Size: -005 1
Ace-Thred Bushing, 7 mm, PTFE 3
Aegis O-Ring, Size: -008 3
Vacuum Cap, 7 mm 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1

Distillation and Thermolysis of Mn{N[Si(CH3)]2}2 · xC4H8O
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 2

ITEM QTY.
TABLE E.3 Equipment list for manganese(II) silylamide synthesis
(continued from page 335).
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Distillation and Thermolysis of Mn{N[Si(CH3)]2}2 · xC4H8O (Continued)

Aegis O-Ring, Size: -009 2
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Extension Adapter 1
Vigreux Distillation Column 1
Vacuum Cap, 15 mm 1
Ace-Thred Plug, 15 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -110 (Leave in Drying Oven Until Needed) 1
Inlet Valve (Leave Assembled in Argon Glove Box Until Needed) 1
Ace-Thred Bushing, 7 mm, PTFE, (Leave Assembled in Argon Glove Box Until

Needed)
1

Aegis O-Ring, Size: -008 (Leave Assembled in Argon Glove Box Until Needed) 1
Vacuum Cap, 7 mm (Leave Assembled in Argon Glove Box Until Needed) 1

Crystallization of Purified Mn{N[Si(CH3)]2}2

Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE 2
Aegis O-Ring, Size: -110 2
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1
Ace-Thred Plug, 7 mm, PTFE, (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009, (Leave in Drying Oven Until Needed) 1

Spare Items
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 3
Silicone Septa (Leave in Drying Oven Until Needed) 6

ITEM QTY.
TABLE E.3 Equipment list for manganese(II) silylamide synthesis
(continued from page 336).
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ITEM QTY.

Weighing/Transfer Flask for Pentane
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2

Weighing/Transfer Flask for Tetrahydrofuran
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2

Dissolution of LiN[Si(CH3)]2

Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2
1” Magnetic Octagonal Stir Bar, PTFE 1

Reaction of PbCl2 in Tetrahydrofuran
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1
TABLE E.4 Equipment list for lead(II) silylamide synthesis (contin-
ued on page 339).
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Removal of Solvent under Reduced Pressure
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Dewar Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Vigreux Column 1
Ace-Thred Bushing, 7 mm, PTFE (Leave One in Drying Oven Until Needed) 2
Silicone Septa (Leave two in Drying Oven Until Needed) 3
Vacuum Cap, 15 mm 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1

Filtration of LiCl
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Glass Filter Cannula 1
Aegis O-Ring, Size: -005 1
Ace-Thred Bushing, 7 mm, PTFE 3
Aegis O-Ring, Size: -008 3
Vacuum Cap, 7 mm 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1

Reduced Pressure Distillation of Pb{N[Si(CH3)]2}2

Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE 2

ITEM QTY.
TABLE E.4 Equipment list for lead(II) silylamide synthesis (continued
from page 338).
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Reduced Pressure Distillation of Pb{N[Si(CH3)]2}2 (Continued)
Aegis O-Ring, Size: -110 2
Ace-Thred Plug, 7 mm, PTFE 2
Aegis O-Ring, Size: -009 2
Extension Adapter 1
Ace-Thred Bushing, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1

Removal of Pentane after Cleaning of Reaction Flask Interior
Distillation Adapter, 75° 1
Ace-Thred Bushing, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Vacuum Cap, 15 mm 1

Spare Items
Ace-Thred Plug, 15 mm, PTFE (Leave in Drying Oven Until Needed) 2
Aegis O-Ring, Size: -110 (Leave in Drying Oven Until Needed) 2
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 3
Silicone Septa (Leave in Drying Oven Until Needed) 6

ITEM QTY.
TABLE E.4 Equipment list for lead(II) silylamide synthesis (continued
from page 339).
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ITEM QTY.

Weighing/Transfer Flask for Pentane
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Weighing/Transfer Flask for 2-Methyl-2-Propanol
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Reaction of Dissolved Silylamide with Alcohol
Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1½” Magnetic Raised-Ring Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE 2
Aegis O-Ring, Size: -110 2
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1

Removal of Solvent under Reduced Pressure
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
TABLE E.5 Equipment list for conversion of silylamide to alkoxide (continued
on page 342).
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Removal of Solvent under Reduced Pressure (Continued)
Dewar Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Distillation Adapter, 75° 1
Vacuum Cap, 15 mm 1

Spare Items
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 3
Silicone Septa (Leave in Drying Oven Until Needed) 6

ITEM QTY.
TABLE E.5 Equipment list for conversion of silylamide to alkoxide (continued
from page 341).
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ITEM QTY.

Weighing/Transfer Flask for Benzene
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Weighing/Transfer Flask for 2-Methyl-2-Propanol
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2

Reaction of Barium Granules with Alcohol
Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1½” Magnetic Raised-Ring Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE 2
Aegis O-Ring, Size: -110 2
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1

Removal of Solvent under Reduced Pressure
Round-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
TABLE E.6 Equipment list for synthesis of 2-methyl-2-propoxo barium (con-
tinued on page 344).
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Removal of Solvent under Reduced Pressure (Continued)
Dewar Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Distillation Adapter, 75° 1
Vacuum Cap, 15 mm 1

Spare Items
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 3
Silicone Septa (Leave in Drying Oven Until Needed) 6

ITEM QTY.
TABLE E.6 Equipment list for synthesis of 2-methyl-2-propoxo barium
(continued from page 343).
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APPENDIX F

SYNTHESIS OF LANTHANUM SILYLAMIDE

The author’s first attempts to synthesize lanthanum silylamide were adapted from BRA-

DLEY, et al. [1], and thus, relied on  as the starting reagent.  But despite pro-

longed reflux (i.e., both before and after exposure of the suspended chloride to lithium

silylamide) no meaningful lanthanum content was detected in the resulting white sublimate.

On the contrary, chemical analysis indicated good agreement with theoretical values for

.  Furthermore, subsequent efforts to synthesize 2-methyl-2-propoxo lantha-

num by alkoxy metathesis (i.e., see EVANS, et al. [2]) left only the reagent compounds and not

the expected products.  Clearly, the suspended  was behaving as inert matter, a result

of poor solvent coordination (i.e., from THF in both cases).  The author ultimately traced this

problem to the morphology provided by the commercial source:  the corresponding small,

spherical (i.e., 2–3 mm diameter) pellets were very dense, and even after extensive grinding,

failed to confer adequate surface area for solvation.

A proper methodology dictates the dehydration of  (i.e., heating in flowing

HCl gas).  This process would transform the chloride into a highly-susceptible, broken crys-

talline state (see Section 2.4.4).  Unfortunately, due to time constraints, the author was unable

incorporate such a remedy.  This appendix presents a typical synthesis using (instead) potas-

sium silylamide (i.e., as recommended by ANWANDER [2]).  The full optimizations discussed

in Section 2.4.5, however, were discovered much later and therefore were not included.  All

preparative procedures and air-sensitive techniques for this reaction follow the guidelines

given by Chapter 3.  An equipment list for the optimized synthesis method concludes this

appendix but presumes a suitable commercial (or readily-available)  source.

To a round-bottom 1000-mL, 3-necked flask was added 39.567 g (0.1613 mol) of Alfa

Aesar 35702, lanthanum(III) chloride, ultra dry, 99.9% (REO), packed under argon.  This

reagent, however, came from the manufacturer as spherical pellets and therefore required

grinding into a fine powder.  A milky, white suspension was created by adding 158.75 g (179

mL) of THF via cannulation (see Figure F.1).1  Separately, 96.40 g (0.4832 mol) of Aldrich

32,467-1, potassium bis(trimethylsilyl)amide, 95% was dissolved via the addition of 371.62 g

LiN Si CH3( )3[ ]2

LiN Si CH3( )3[ ]2

LaCl3

LaCl3 7H2O⋅

LaCl3
345



(418 mL) of THF.  The silylamide solution was transferred into the chloride suspension and

stirred at room temperature overnight (i.e., ~ 12 hours).2  The ethereal solvent was then

stripped under reduced pressure to leave a light-tan solid.3

To enable separation, this residue was exposed to 306.54 g (490 mL) of pentane (see Fig-

ure F.2).  Aggressive stirring with gentle heating activated the extraction process.  Aliquots of

the resulting mostly-clear, golden solution were transferred into centrifuge tubes, which in

turn, were loaded into a Damon/IEC Division HN-SII centrifuge and spun at 1000 rpm for

10–15 minutes.  The resulting supernatant was cannulated into a cylindrical reaction kettle.

After stripping the pentane, the kettle was moved into a glove box and the dried, off-white

solid ground in a mortar and pestle, creating a fine powder.

This powder was subsequently placed into a sublimation chamber (see Figure F.2).  A

glass wool plug was inserted within the glass stem of the exit valve to prevent contamination

of the vacuum manifold.  The apparatus was placed under vacuum first and then slowly heated

to 100 °C.  Residual organic volatiles (i.e., THF and pentane) were driven out during ramp-

up, after which, the vacuum stabilized (i.e., ~ 1 x 10-1 torr).  Dry-ice pellets and 2-propanol

were added to the cold finger between 80–90 °C causing the internal pressure to drop (i.e., ~

1 x 10-2 torr).  Above 95 °C, faint transparent crystallites could be seen forming on the internal

base of the cold finger.  Their volume, however, was barely discernable and could not be eas-

ily photographed.  As already mentioned in the introduction, such a negligible yield

stemmed from the use of  reagent with an unsuitable starting morphology.

[1] Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Low Co-ordination Numbers in Lanthanide and
Actinide Compounds.  Part I.  The Preparation and Characterization of Tris{bis(trimeth-
ylsilyl)-amido}lanthanides. Journal of the Chemical Society, Dalton Transactions 1973, (10),
1021–1023.

[2] Evans, W. J.; Sollberger, M. S.; Hanusa, T. P. Synthesis and Structure of the Polymetallic
Yttrium Alkoxide Complex Y3(µ3-OCMe3)(µ3-Cl)(µ-OCMe3)(OCMe3)4(THF)2 and Rela-
ted Complexes:  Ln3(µ3-OR)(µ3-X)(µ-OR)3 Building Blocks in Yttrium and Lanthanide
Alkoxide Chemistry. Journal of the American Chemical Society 1988, 110 (6), 1841–1850.

[3] Anwander, R. Lanthanide Amides. Topics in Current Chemistry 1996, 179, 33–112.

1 Ideally, reflux should be conducted at this point to enhance the coordination of THF to the suspended chloride.
2 In the refined method, the combined system must be refluxed for 4–6 hours.
3 For the optimized method, thermolysis at 150 °C must be conducted immediately thereafter.

LaCl3
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FIGURE F.1 The synthesis of lanthanum silylamide.  The top row depicts the
addition of THF to anhydrous lanthanum chloride (left) and potassium silyla-
mide (right).  Cannulation (bottom row) of the silylamide solution into the chlo-
ride suspension (left) is eventually followed by solvent removal (right).
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FIGURE F.2 Separation of lanthanum silylamide from potassium chlo-
ride.  The cannulation of pentane (left) onto the residue allows extraction
via centrifuge (right).  Transfer of the resulting supernatant into a container
suitable for solids removal allows the necessary solvent strip (bottom row).
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FIGURE F.3 Sublimation of lanthanum silylamide.  The interior cold finger
is filled with a 2-propanol/dry ice bath.  A glass wool plug resides within the
side valve stem, shielding the vacuum manifold from contaminants.
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TABLE F.1 Equipment list for lanthanum silylamide synthesis (continued
on page 351).
ITEM QTY.

Weighing/Transfer Flask for Pentane
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1

Weighing/Transfer Flask for Tetrahydrofuran
Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2

Dissolution of KN[Si(CH3)]2

Flat-Bottom 500-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa (Leave One in Drying Oven Until Needed) 2
1” Magnetic Octagonal Stir Bar, PTFE 1

Reaction of LaCl3 in Tetrahydrofuran
Round-Bottom 1000-mL 3-Neck Flask 1
Ace-Thred Plug, 15 mm, PTFE 1
Aegis O-Ring, Size: -110 1
Ace-Thred Bushing, 7 mm, PTFE 1
Silicone Septa 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009 (Leave in Drying Oven Until Needed) 1
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TABLE F.1 Equipment list for lanthanum silylamide synthesis (continued
from page 350).
Removal of Solvent under Reduced Pressure
Round-Bottom 1000-mL 3-Neck Flask 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Dewar Condenser 1
Ace-Thred Bushing, 15 mm, PTFE 3
Aegis O-Ring, Size: -110 3
Distillation Adapter, 75° 1
Vacuum Cap, 15 mm 1
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 1
Silicone Septa (Leave in Drying Oven Until Needed) 1

Thermolysis of Li-La Silylamide-Chloride Residue
Inlet Valve 1
Ace-Thred Bushing, 7 mm, PTFE 1
Aegis O-Ring, Size: -008 1
Vacuum Cap, 7 mm 1

Removal of LiCl by Centrifuge
Centrifuge Tube 10
Ace-Thred Bushing, 7 mm, PTFE 10
Silicone Septa (Leave in Drying Oven Until Needed) 10

Collection of Dissolved La{N[Si(CH3)]2}3

Reaction Vessel Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
1” Magnetic Octagonal Stir Bar, PTFE 1
Ace-Thred Plug, 15 mm, PTFE 2
Aegis O-Ring, Size: -110 2
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1
Ace-Thred Bushing, 7 mm, PTFE 1

ITEM QTY.
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TABLE F.1 Equipment list for lanthanum silylamide synthesis (continued
from page 351).
Silicone Septa (Leave One in Drying Oven Until Needed) 2
Ace-Thred Plug, 7 mm, PTFE, (Leave in Drying Oven Until Needed) 1
Aegis O-Ring, Size: -009, (Leave in Drying Oven Until Needed) 1

Sublimation of La{N[Si(CH3)]2}3

Sublimation Head 1
Reaction Vessel Flask, 1000-mL 1
Aegis O-Ring, Size: -348 1
“Quick Release” Clamp 1
Ace-Thred Plug, 7 mm, PTFE 1
Aegis O-Ring, Size: -009 1

Spare Items
Ace-Thred Bushing, 7 mm, PTFE (Leave in Drying Oven Until Needed) 3
Silicone Septa (Leave in Drying Oven Until Needed) 6

ITEM QTY.
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