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Design of a Real-Time Switch with Bounded Delays
Kyungtae Kang and Lui Sha

Abstract

Most network switches are designed for best-effort transmission of Internet traffic. Relevant studies have focused on maximizing
throughput and minimizing delay in an average sense, but this is not suitable for hard real-time applications, in which guaranteeing
delay bound is critical. We propose a real-time switch design, based on a crossbar switching fabric, which combines clearance-
time-optimal switching with clock-based scheduling, and we show that any feasible traffic is guaranteed to be switched in two clock
periods. The concept of one-shot traffic allows delay to be bounded without a requirement for traffic periodicity, at the cost of a
fixed delay of one clock period. The proposed switch uses real-time virtual machine tasks to serve traffic, which simplifies analysis
and provides isolation from other system operations. Simulations show that our real-time switch achieves a larger schedulability
region and a bounded lower end-to-end delay with a shorter clearance time than iSLIP, which is one of the most widely used
crossbar switch schedulers.

Index Terms

Real-time switch, bounded delay, schedulability, clock-driven scheduling.

I. INTRODUCTION

By seamlessly integrating sensing, networking and computation with the control of physical devices and processes, cyber-
physical systems (CPS) are expected to transform the way in which we interact with and manipulate the physical world. CPS
will have a far-reaching impact on science and engineering, and are critical to a wide range of applications such as transportation
systems and healthcare. One basic enabler of CPS is pervasive wireless networking, which provides the coordinating foundation
for sensing, computing, and control [1], [2]. CPS wireless networks support mission-critical, real-time, closed-loop sensing
and control, and represent a significant advance on existing wireless or wireless sensor networks. A critical aspect of CPS is
controllable, predictable messaging, and so real-time networking plays a key role in control, communication, and computation.

Real-time networks rely on efficient real-time switches. Although there have been extensive studies of network switches,
they have typically focused on improving average throughput and delay, rather than on the provision of the guaranteed delay
bound that is critical to real-time applications. This is the problem that we address.

Our design of real-time switch has a bounded delay under any feasible traffic, and this guarantees a bound on the resulting
end-to-end delay in a packet-switched network. The adoption of an optimal clearance-time policy, which offers arbitrarily low
computational complexity, and clock-driven scheduling guarantees that any feasible traffic is switched in two clock periods.
This is accomplished by introducing the concept of one-shot traffic, in which the traffic arriving during each clock period is
buffered and then scheduled to be switched in the next clock period by a clearance-time-optimal scheduler. Thus clearance-
time-optimality is achieved at the price of an additional delay of one clock period.

This switch design provides a building-block for obtaining guaranteed end-to-end delay bounds and for enabling hierarchical
scheduling policies [3]–[6]. Additionally, our switch has a large schedulablity region, a high throughput, and a low bounded
delay, which are shown through extensive simulations.

As we already said, there has been a lot of work on the design of network switches [7]–[11], but most of these studies have
focused on reducing the average delay, rather than on real-time applications. Nevertheless, real-time switches have recently
received more attention [12], [13]. In particular, Qixin et al. [13] created an efficient real-time switch for deterministic and
periodic real-time traffic, by making minimal modifications to iSLIP, which is a popular scheduling mechanism for crossbar [14]
switches. Our work differs significantly in that we introduce no assumption about the periodicity of traffic, but we do provide
a delay guarantee for any feasible traffic. However, our focus is not on the development of switching theory, but on using it
to design an efficient real-time packet switch.

The remainder of this paper is organized as follows: In Section II, we introduce the concept of a crossbar switch and the
iSLIP crossbar switch scheduler. In Section III, we present a real-time switching algorithm, based on clock-driven scheduling,
which can guarantee a bounded delay for any feasible traffic. We perform a numerical study on this algorithm in Section IV,
and then assess its schedulability and delay performance. We review related work on switch design in Section V. Finally, we
present our conclusions and suggest some future research avenues in Section VI.
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Fig. 1. N ×N crossbar switch fabric.

II. CROSSBAR SWITCHES AND iSLIP

A. Crossbar switches

The underlying hardware fabric that we adopt is N ×N crossbar, as shown in Fig. 1. At every time-slot, each input port
picks up a packet from one of its queues and sends it to its destined output port over a data bus, which is one of the horizontal
lines in Fig. 1. The data bus from each input intersects with that of each output, shown as a vertical lines segment in Fig. 1.
The switch fabric makes and breaks the connections between inputs and outputs during runtime, following the switching logic.
Connections must not be made at two or more crossing-points in the same column, or the corresponding packets will collide
at the same output. Similarly, if connections are made at two or more crossing-points in the same row, one or more packets
will be delivered as unexpected duplicates at the wrong output port. Consequently, crossbar connections are limited to a set of
N ! permutation matrices, where a permutation matrix is defined as an N ×N matrix containing 0s and 1s, with a maximum
of a single 1 in each row and column. To facilitate the design of the switching logic, we will assume that the size of a packet
is fixed, and that transmission of a packet takes one time-slot.

We will now analyze the logic of this type of switch in more detail. Let the input queue (i, j) hold the packets traveling
from input i to output j. In addition, let Aij(t) denote the number of packets arriving at queue (i, j) at time-slot t, and let
Qij(t) denote the number of packets in the queue (i, j) during the same time-slot. Then the switching decision variable Sij(t)
at time-slot t can be defined as follows:

Sij(t) =
{

1, if crossing-point (i, j) is turned on at t;
0, otherwise.

Note that the switching matrix [Sij ] must correspond to one of the N ! permutation matrices because of the crossbar constraint
described above. The number of packets in queue (i, j) at time-slot the next t+1 is then determined by the following equation:

Qij(t + 1) = max{Qij(t)− Sij(t), 0}+ Aij(t). (1)

The maximum operation on the right-hand side of this equation is present to cover the case in which Qij(t) = 0 and Sij = 1.
Informally, we can say that the purpose of a real-time switching algorithm is to select a switching matrix [Sij ] at every time-slot,
so as to satisfy the timing constraint.

Now we will look into the stability region of a crossbar switch. We can define the rate of arrival of packets at queue (i, j)
as follows:

λij := lim
t→∞

1
t

t∑
τ=0

Aij(τ).

It is well known [14] that the stability region of a switch can be expressed as the set of rate matrices that satisfy the following
2N inequalities:

N∑

j=1

λij ≤ 1, i = 1, . . . , N, (2)
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and
N∑

i=1

λij ≤ 1, j = 1, . . . , N. (3)

A consequence of this formulation is that every queue in the switch algorithm is certain to remain of finite length, so long
as the arrival rates remain in the stable region. If these inequalities do not hold for any i or j, the corresponding queue is
equally certain to grow without limit. It is not a simple task to develop a switching algorithm that is efficient, able to serve
any periodic or non-periodic traffic, and sure to stay in the stability region. Switching algorithms that can handle any traffic
within the stability region are called throughput-optimal.

We will now introduce a graph-theoretic approach to the design of switching algorithms, by transforming the problem of
packet switching with a crossbar fabric into a search for matches in bipartite graphs as follows: At each time slot, let G denote
a bipartite graph connecting the input ports to the output ports. Each port in the switch is considered as a node in G. (Thus
port and node will be used interchangeably). There will be an edge connecting input port i and output port j in G if there are
packets waiting at input port i that are destined for output port j. A switching algorithm finds a matching M in G, possibly
based on the current state of the queues, and that matching corresponds to the selection of a switching matrix [Sij ] in (1), and
determines which packets from the input ports will be switched at the current time-slot.

We will use Qi to denote the total number of packets waiting at the input port i; and Qj denotes the total number of packets
(at all the inputs) destined for output port j. Thus Qi =

∑N
j=1 Qij and Qj =

∑N
i=1 Qij . These queue lengths Qi and Qj will

be used as weights, applied to the corresponding nodes in the bipartite graph G.

B. iSLIP crossbar switch scheduler

iSLIP [9] is a popular scheduling mechanism for virtual-output queue crossbar switches, which has now been extended in
several directions, with variations such as weighted iSLIP and prioritized iSLIP. Commercial iSLIP switches are typically based
on a combination of ideas from several of these variations. According to McKeown [9], iSLIP can achieve 100% throughput
for uniform traffic, meaning that every output reaches maximum capacity. In this situation, a complete matching in the bipartite
graph between the inputs and outputs defined by the crossbar fabric is found at every time-slot. If the traffic is not uniform,
McKeown’s results suggest that iSLIP adapts to a fair scheduling policy which never discriminates against any input queue.

Although iSLIP is simple to implement and uses the switch hardware efficiently, it does not provide any guarantee of
real-time performance; and the determination of usefully tight delay bounds for iSLIP remain an open problem [12]. The best
delay bound currently available is still very pessimistic [12]: for example, if every input to an N×N iSLIP switch has periodic
real-time traffic going to every output, the known single-hop delay bound δiSLIP for packets from input Ii to output Oj is

δiSLIP = N2
∑

k

Ci,j,k, (4)

where Ci,j,k is the transmission time for each packet of the kth real-time flow from Ii to Oj . See how badly this works for
some likely numbers: if N is 32, Ci,j,k is the same for all links and flows, and there are 100 real-time flows going from Ii

to Oj , then the single-hop delay bound is a factor of 102400 greater than the packet transmission time.

III. DESIGN OF A REAL-TIME SWITCH

The key issue in the design of a real-time packet switch is to bound the buffering delay while also handling the contention.
This can be accomplished so long as the switching delay can be bounded. The buffering delay can be further reduced if the
network operates in a synchronous manner.

In this section, we design a real-time switching algorithm that can guarantee a bounded delay with any feasible traffic.
We will use the widely-adopted virtual-output queue architecture; but note that we do not require traffic to be periodic, an
assumption often made in previous work [13]. We will begin by introducing the concept of clock-driven scheduling [15] as a
virtual-machine task [3]–[6], [15]–[17].

A. Clock-driven scheduling as a virtual-machine task

A widely used approach to the scheduling of real-time virtual-machine tasks (VM-tasks) is clock-driven scheduling [15].
Suppose a VM-task (L,C) is served C times during each clock period of L time-slots. Let f ij

k denote the kth real-time flow
from input port Ii to output port Oj , where k = 1, 2, . . . ,Kij , and Kij is the number of flows from Ii to Oj . Additionally,
we will associate the f ij

k with a VM-task (L,Cijk), which is written in this way because f ij
k has Cijk packets to be served.

Using clock-driven scheduling, the delay to f ij
k will be bounded as long as the switching algorithm can guarantee a worst-case

bound on the time required to forward all the Cijk packets of the flow f ij
k .
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Let Cij denote the total number of packets to be forwarded from Ii to Oj , so that Cij =
∑Kij

k=1 Cijk. The sets of VM-tasks
{(L,Cijk)}, i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . ,Kij must meet the stability condition expressed by (2) and (3); in addition
we quote the feasibility condition from [13] for the real-time traffic during each clock period of L time-slots, as follows:

N∑

j=1

Cij ≤ L, i = 1, 2, . . . , N. (5)

N∑

i=1

Cij ≤ L, j = 1, 2, . . . , N. (6)

We do not consider infeasible traffic which does not meet these conditions, and is naturally unschedulable. However it is
possible to extend our framework, to a limited extent, to traffic that is infeasible, as long as it satisfies the stability condition
in (2) and (3).

In summary, our real-time switch serves each traffic flow as a VM-task, and each VM-task is served by a slot-by-slot
switching algorithm that minimizes the clearance time for any feasible traffic: we will explain this in the next section. Note
that our method of clock-driven scheduling naturally makes the network operate in a synchronous manner, which is critical in
reducing the amount of buffering required by a switch.

B. Clearance-time-optimal switching policies

In order to design a switching algorithm with a limited delay, we need a clearance-time-optimal switching policy. Suppose
that the number of packets in every queue in the system is initially Qij(0), and there are no further arrivals; then we have one-
shot traffic and the clearance time is the time required to serve every packet in the system. A switching policy that minimizes
the clearance time is called a clearance-time-optimal policy. In this study, we will express the clearance time as the number
of time-slots required to clear all the packets in the system. The clearance time can easily be determined as a multiple of the
slot duration.

As we explained in the previous section, the crossbar constraints mean that no more than one packet can be switched at any
port. Consequently, an obvious lower bound on the clearance time Tclear is the maximum number of packets waiting at any
input port:

Tclear ≥ max


max

i

N∑

j=1

Qij(0), max
j

N∑

i=1

Qij(0)


 . (7)

It is apparent that this bound is tight, and that the minimum clearance time T ∗clear is equal to the right-hand side of this equation.
To design a switching algorithm that can achieve this minimum clearance time T ∗clear, we first introduce a critical-port policy,

as follows: Given a bipartite graph G, node i is critical if its weight, which is the length of its queue, is no smaller than that
of any other node; and a critical-port matching M matches every critical port. Consequently, a critical-port scheduling policy
must generate a critical matching for every time-slot. It can be shown that a critical-port policy is also clearance-time-optimal,
as follows:

Proposition 1 A switching policy is clearance-time-optimal if and only if it is a critical-port policy.

Proof For any clearance-time-optimal policy, at any time-slot s < T ∗clear, the inequality Qi(s) ≤ T ∗clear − s holds at every port
i. If it did not, the crossbar constraint would mean that the corresponding port could not be cleared by T ∗clear. Similarly, it
is apparent that any ports at which the initial length of the queue Qi(0) was T ∗clear will now have a queue of length Qi(s)
which equals T ∗clear− s. Consequently, it can be concluded that each of the critical ports for which t = s has a queue of length
T ∗clear − s. If any critical ports are not served during time-slot s, then these ports cannot be cleared by T ∗clear. Hence, every
clearance-time-optimal policy is a critical-port policy. Now, suppose we have a critical-port policy. Then, since all the ports
with the highest weight, meaning the longest queues, at any time-slot are critical ports, those ports will be served and the
lengths of their queues will decrease by one. Hence, a critical-port policy must also be a clearance-time-optimal policy.

Remark By adopting a critical-port policy, we can guarantee a minimal clearance time for one-shot traffic. In the next section,
we will present a design framework that can guarantee a bounded delay for any feasible traffic.

An illustrative example of a critical-port switching algorithm is shown in Fig. 2. In this figure the number next to each input
port Ii and output port Oj denotes their current weights Qi and Qj respectively. While the meaning of Qi is obvious, we
must explain that Qj denotes the total number of packets at any input port destined for output port Oj . In addition, the jth
sub-queue (numbered from the top) at each input port Ii is the current number of packets Qij destined for output port Oj .
Thus it should be apparent that each Qj is the sum of the lengths Qij of the sub-queues at each input port i. For example,
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Fig. 2. Illustration of critical-port switching with a 4× 4 switch fabric.

Algorithm 1 Clock-based switching algorithm
1: for each clock period do
2: Switch the packets that arrived in the previous clock period using Algorithm 2
3: end for

the weight applied to output port O1 is QO1 = Q11 +Q21 +Q31 +Q41 = 1+2+2+0 = 5. In the state of the queues shown
in Fig. 2, input port I1 has a larger weight than any other input or output port, making I1 the unique critical port. Hence, a
critical-port switching algorithm must now serve I1 with highest priority.

C. Design of a real-time switch with clock-driven scheduling

We can now use the concept of clearance time and the critical-port policies described in the previous section to design
a switching algorithm that can guarantee a bounded delay for the feasible traffic defined in (5) and (6). Our particular goal
is to produce a switch design framework that can achieve this bound by combining clearance-time-optimal scheduling with
the VM-task architecture and the critical-port policy introduced in the previous section, in the following manner: The traffic
arriving during each clock period is buffered and served in the next clock period. This achieves one-shot traffic, which is the
basic requirement for clearance-time-optimal scheduling: clearance-time-optimality then guarantees that any feasible traffic is
served in two clock periods. In effect, we accept an additional delay of one clock period, to ensure a deterministic delay bound
of 2L. This policy can be formalized as follows:

Property 1 (Clock-based switching) Using the clock-based switching policy of Algorithm 1, any feasible traffic that satisfies
(5) and (6) is guaranteed to be switched in two clock periods.

Note that the clock period of L time-slots is much shorter than the delay constraint of a typical real-time application. We
will explore this issue by means of a numerical example in Section IV.

Among many possible realizations of critical-port policies, we adopt lazy heaviest-port first (LHPF) matching, which we
will now explain: First, the threshold th of a matching M is defined as the lowest integral weight for which M matches all
the ports. For example, a perfect matching that switches every port with packets in its queue has th = 1. An LHPF matching
has the lowest threshold of all possible matchings. Algorithm 2 is an implementation of LHPF matching.

The LHPF class of policies has optimal throughput [11], which means that the length of the queue at every switch is
guaranteed to remain finite for any traffic that satisfies the stability condition of (2) and (3), even if that traffic does not satisfy
the feasibility condition of (5) and (6). This extends the schedulablity region of the proposed switching algorithm, and this
will be clarified in the numerical study in the next section.

It is necessary to explain several graph-theoretic notions that are incorporated in Algorithm 2. For a given bipartite graph, the
length of a path is defined as the number of edges in that graph. For a given matching M and any node i not matched by M ,
an augmenting path from node i to an unmatched node is an odd-length path P whose every other edge is in M . An absorbing
path from node i is any path P containing an even number of edges, whose every other edge is in M , and whose other end-point
has a weight larger than that of node i. For any given matching M and path P , we have M ⊕P =: M − (M ∩P )+(M c∩P ).

It has been shown [20] that the members of LHPF class of policies have a time complexity of less than O(N2.5), compared
to O(N3) [21] for MWM [21], [22]. The class of LHPF matching algorithms contains policies which are simple to implement,
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Algorithm 2 Lazy Heaviest-Port-First (LHPF) policy
1: INPUT: Any initial matching M0

2: OUTPUT: LHPF matching M∗

3: // Initialization
4: l ← 1
5: // Iteration
6: loop
7: if Ml−1 matches all nodes then
8: M∗ ← Ml−1

9: BREAK
10: end if
11: Pick any of the highest unmatched nodes i in Ml−1

12: Find an augmented or absorbing path P from i
13: if P exists then
14: M∗ ← Ml−1 ⊕ P
15: l ← l + 1
16: else
17: M∗ ← Ml−1

18: BREAK
19: end if
20: end loop

making them suitable for a low-complexity delay-efficient scheduler with theoretical guarantees on the throughput. Additionally,
these policies are clearance-time-optimal because any critical-port policy is clearance-time-optimal as proved in Proposition 1.

IV. PERFORMANCE EVALUATION

We will now compare the performance of the proposed switching scheme with that of the iSLIP algorithm, which we believe
to be the most popular scheme at present, and one that is implemented in many commercial products to improve hardware
utilization.

A. Schedulability

First, we compare the schedulability of iSLIP and our scheme. In the simulations, the clock period P is fixed to 1 ms, the
capacity of each port is 1, 10, or 100 Gb/s, the number of input ports N is 4, 8, or 16, and the packet size is 10 kb. The
curves in Fig. 3 show average results for 1000 simulation runs.

Demand utilization is the ratio between the average traffic at a port and the port capacity. Schedulablity depends on the
distribution of traffic across the input ports, and is less than unity due to the cross-bar constraint explained in Section II:
contention among ports stops every packet at an input port from being switched in a given time-slot. Fig. 3 shows how the
schedulability drops as the demand utilization increases; eventually the traffic cannot be scheduled at all. In these simulations
packets, corresponding in quantity to the demand utilization, were generated and assigned to an input port at random. Note
that infeasible traffic is likely to be generated more often as the demand utilization increases, and the schedulability of the
switch decreases accordingly.

Fig. 3 also indicates that our approach has better schedulability than iSLIP in all cases, although the difference becomes
smaller as the number of input ports increases. This is of minor importance because our primary application scenario is an
embedded system, in which the number of input ports is usually small. A more significant way in which our switch design is
an improvement on iSLIP is that it guarantees all feasible traffic will be switched in two clock periods, as we have shown. As
a result, within the range of demand utilization for which all the traffic arriving at the switch is expected to be feasible, our
switching algorithm bounds the delay incurred at the switch. For example, we can infer from Fig. 3 that if the clock period is
1 ms and the demand utilization is less than 0.3, all the traffic arriving at the switch is expected to be pass through in 2 ms
regardless of the port capacity of the switch and the number of ports.

B. Clearance time

We now compare the clearance time of the proposed scheme to that of the iSLIP scheme using the one-shot traffic model
described in Section III-B, while focusing on the port capacity of 1 Gb/s. Fig. 4 shows the clearance time of each scheme
against demand utilization. Again we have averaged 1000 simulation runs.

Fig. 4 shows that the clearance time increases as the number of input ports increases, because more contentions occur,
as we would expect. We can also see that the clearance time increases almost linearly with the demand utilization for both
schemes, but the gradient is steeper with iSLIP, which means that our switch algorithm provides better performance in terms
of switching delay.
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Fig. 3. Schedulability of iSLIP and the proposed scheme with port capacities of 1, 10, and 100 Gb/s: (a) and (b) 4 input ports; (c) and (d) 8 input ports;
and (e) and (f) 16 input ports.
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Fig. 4. Comparison between the clearance time of iSLIP and the proposed scheme when the number of input ports N is 4, 8, and 16 and the port capacity
is 1 Gb/s.

C. End-to-end switching delay

Let δSW,i be the switching delay introduced by a switch i. Since the propagation delays between switches are negligible,
the end-to-end delay δE2E using the proposed switches for any feasible traffic can be bounded as follows:

δE2E =
H∑

i=1

δSW,i ≤ 2HP, (8)

where H is the hop count (a number of switches each packet traverse), and P is the clock period. This holds because any
feasible traffic satisfying (5) and (6) is guaranteed to be switched in two clock periods.

Assuming the clock period is 1 ms and the maximum hop count is 15, any feasible traffic is guaranteed to be switched in 2
ms at each crossing-point in the switch, and the resulting end-to-end delay is also guaranteed to be less than 30 ms. This is not
affected by the number of ports or their capacity. This period is significantly less than the end-to-end delay of 50ms allowable
in typical industrial real-time control and automation applications, such as sensing and actuation [18] or video monitoring [19].
Conversely, even the bound on the single-hop delay in an iSLIP switch, obtained from (4), may frequently exceed 100ms in
a similar situation.

V. RELATED WORK

There has been extensive research on the design of network switches [7], [9]–[11], but most of it has been focused on
the development of efficient switching algorithms, within a graph-theoretic framework, in order to realize a stability region
suitable for general traffic. In pursuit of this goal, an asymptotic logarithmic delay bound can be derived from the stability
condition [10]. A more recent switching policy [11] has been shown to be clearance-time-optimal as well as throughput-optimal
(and this policy is incorporated into our framework). However, very few of these studies have explicitly considered real-time
applications.

Network infrastructures for real-time communication have typically met hard constraints on delay by prioritization within
switches. Internet switches usually have 4 to 8 priority levels, but this is insufficient to provide hard real-time guarantees.
Switches for real-time systems are typically of a very different design from the commercially-available routers used for
Internet traffic. Nevertheless, the full or partial reuse of hardware is a strong driver in terms of purchasing and maintenance
costs.

Research on network infrastructure for real-time applications has usually focused on specific, small-scale network archi-
tectures. For example, prioritized bus and ring networks have been used in small real-time systems [23], [24], but they are
not designed for high-speed network backbones, such as those of WANs. Rexford et al. [8] proposed a router for real-time
communication, but this was designed to support deadline-based scheduling, which requires significantly different hardware;
nor is this router designed for the backbones of high-speed networks. The same remark applies to the real-time Ethernet switch
proposed by Venkatramani et al. [25].

Considerable effort has been devoted to analyzing the performance of high-speed switches and routers, and obtaining delay
bounds [26], [27]. The scheduling of crossbar switches can be reduced to the search for a matching in a graph, and fast
matching algorithms have been developed [28]. These are based on stochastic models of traffic patterns, and the asymptotic
performance bounds that they provide are not sufficient for industrial systems that require greater predictability.
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There have been some recent studies on the design of real-time switches [12], [13]. In particular, an efficient switch design
for real-time applications has been proposed by Qixin et al. [13], who provide a mechanism for guaranteeing the allocation of a
certain number of communication slots to a task over a fixed time interval, under the assumption of deterministic and periodic
real-time traffic. Realizing this mechanism involves only minimal modifications, or even simplifications, of the iSLIP scheme.
This work provided us with some inspiration but our approach is significantly different because we are able to guarantee a
delay bound for any feasible traffic, including non-periodic traffic. Another difference worth mentioning is that in our design,
all flows from the same input port to the same output port share one queue; while the design in [13] carries out less scalable
per-flow queueing.

VI. CONCLUSION AND PROSPECTS

We have proposed a design framework for a real-time switch which is based on the concept of clock-driven scheduling.
Our switch serves traffic using real-time virtual-machine tasks, which simplifies analysis, provides isolation from other system
operations, and facilitate further hierarchical scheduling and flow aggregation. The flows in most industrial real-time networks
rarely change, so a switch only needs to be configured initially to suit a particular real-time schedule, and a polynomial-time
algorithm can then be used

Our real-time switch has several features that distinguish it from previous proposals: First, it can provide a guaranteed delay
for any feasible traffic whether it is periodic or not. Second, we explicitly consider realistic system parameters, so as to facilitate
practical hardware-software co-design. Our simulations confirm that our design gives a schedulablity and clearance time that
compare favorably with the iSLIP crossbar scheduler, which is already widely implemented in commercial products.

There are several avenues for future research. In particular, we believe that our framework for switch algorithm design might
be extended to the general problem of a switching network with numerous sensing and monitoring devices, of the sort seen
in avionics systems. The pursuit of this goal could usefully draw on a number of recent research contributions to networking
research.
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