
Troubleshooting interactive complexity bugs in
wireless sensor networks using data mining
techniques

Mohammad Maifi Hasan Khan,Hieu Khac Le,Hossein Ahmadi,

Tarek F. Abdelzaher

and

Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign

This article presents a tool for uncovering bugs due to interactive complexity in networked sensing

applications. Such bugs are not localized to one component that is faulty, but rather result from

complex and unexpected interactions between multiple often individually non-faulty components.
Moreover, the manifestations of these bugs are often not repeatable, making them particularly hard

to find, as the particular sequence of events that invokes the bug may not be easy to reconstruct.

Because of the distributed nature of failure scenarios, our tool looks for sequences of events
that may be responsible for faulty behavior, as opposed to localized bugs such as a bad pointer

in a module. We identified several challenges in applying discriminative sequence mining for

root cause analysis when the system fails to perform as expected and presented our solutions
to those challenges. We also presented two alternatives schemes, namely, two stage mining and

the progressive discriminative sequence mining to address the scalability challenge. An extensible
framework is developed where a front-end collects runtime data logs of the system being debugged

and an offline back-end uses frequent discriminative pattern mining to uncover likely causes of

failure. We provided three case studies where we applied our tool successfully to troubleshoot the
cause of the problem. We uncovered a kernel-level race condition bug in the LiteOS operating

system and a protocol design bug in the directed diffusion protocol. We also presented a case

study of debugging a multichannel MAC protocol that was found to exhibit corner cases of poor
performance (worse than single channel MAC). The tool helped uncover event sequences that

lead to a highly degraded mode of operation. Fixing the problem significantly improved the

performance of the protocol. Finally, we provided a detailed analysis of tool overhead in terms of
memory requirements and impact on the running application.

Key Words: Protocol debugging, Distributed automated debugging, Wireless sensor networks

1. INTRODUCTION

DustMiner [Khan et al. 2008b] is a diagnostic tool that leverages an extensible
framework for uncovering root causes of failures and performance anomalies in
wireless sensor network applications in an automated way. This paper presents
the design and implementation of Dustminer along with three case studies of real
life failure diagnosis scenarios. The goal of this work is to further contribute to
automating the process of debugging, instead of relying only on manual efforts,
and hence reduce the development time and effort significantly.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4825565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Developing wireless sensor network applications still remains a significant challenge
and a time consuming task. To make the development of wireless sensor network
applications easier, much of the previous work focused on programming abstrac-
tions [Madden et al. 2005; Cheong et al. 2003; Luo et al. 2006; Levis and Culler
2002; Gay et al. 2003]. Most wireless sensor network application developers would
agree, however, to the fact that most of the development time is spent on debugging
and troubleshooting the current code, which greatly reduces productivity.
Early debugging and troubleshooting support revolved around testbeds [Ertin et al.
2006; Werner-Allen et al. 2005], simulation [Levis et al. 2003; Wen et al. 2007; Wen
and Wolski] and emulation environments [Polley et al. 2004; Girod et al. 2004].
Source level debugging tools [Yang et al. 2007; Whitehouse et al. 2006] have greatly
contributed to the convenience of the troubleshooting process. They make it eas-
ier to zoom in on sources of errors by offering more visibility into run-time state.
Unfortunately wireless sensor network applications often fail not because of a sin-
gle node coding error but as a result of improper interaction between components.
Such interaction may be due to some protocol design flaw (e.g., missed corner cases
that the protocol does not handle correctly) or unexpected artifacts of component
integration. Interaction errors are often non-reproducible since repeating the exper-
iment might not lead to the same corner-case again. Hence, in contrast to previous
debugging tools, in this paper, we focus on finding (generally non-deterministically
occurring) bugs that arise from interactions among seemingly individually sound
components.
The main approach of Dustminer is to log many different types of events in the
sensor network and then analyze the logs in an automated fashion to extract the
sequences of events that lead to failure. These sequences shed light on what caused
the bug to manifest making it easier to understand and fix the root cause of the
problem.
Our work extends a somewhat sparse chain of prior attempts at diagnostic debug-
ging in sensor networks. Sympathy [Ramanathan et al. 2005] is one of the earliest
tools in the wireless sensor networks domain that addresses the issue of diagnosing
failures in deployed systems in an automated fashion. Specifically, it infers the
identities of failed nodes or links based on reduced throughput at the base station.
SNTS [Khan et al. 2007] provides a more general diagnostic tool that extracts con-
ditions on current network state that are correlated with failure, in hopes that they
may include the root cause. A diagnostic simulator (an extension to TOSSIM) is
described in one of our earlier work [Khan et al. 2008a]. Being a simulator exten-
sion, it is not intended to troubleshoot deployed systems. It is based on frequent
pattern mining (to find event patterns that occur frequently when the bugs mani-
fest). Unfortunately, the cause of a problem is often an infrequent pattern; a single
“bad” chain of events that leads to many problems.
Our prior work [Khan et al. 2008b] identified several limitations in the Apriori algo-
rithm and addressed those limitations. More specifically, our prior work addressed
limitations such as preventing generation of false patterns using dynamic search
window, elimination of redundant subsequences and presented two stage mining for
scalability enhancements. In our prior work, we extended the diagnostic capability
by implementing the two stage mining [Khan et al. 2008b], an automated discrim-

3

inative sequence analysis technique that relies on two separate stages to find root
causes of the problems or performance anomalies in sensor networks; the first stage
identifies frequent patterns correlated to failure. The second stage focuses on those
patterns, correlating them with (infrequent) events that may have caused them,
hence uncovering the true root cause of the problem. We apply this technique to
identify the sequences of events that cause manifestations of interaction bugs. In
turn, identifying these sequences helps the developer to understand the nature of
the bug.

In this work, we extended our prior work [Khan et al. 2008b] as follows.

—Firstly, our prior approach does not consider the time differences between con-
secutive events as a feature while mining for discriminative sequences of events.
This may cause the algorithm to fail to identify certain patterns that require to
look at not only event types but also the timing of the events. We extended our
algorithm so that it considers not only temporal order but also timing information
while mining for discriminative patterns.

—Secondly, although our prior work can easily identify pair wise causality rela-
tionship (e.g., one message sent is followed by one acknowledgement), it fails to
identify causality relationship when this is not true. For example, in many file
systems it is often common practice to buffer data before actually writing to disk
to minimize the number of disk accesses and to save energy [Yang et al. 2004]. In
a correctly functioning system, it can be expected that multiple buffering oper-
ations will be followed by a single disk write operation. In such cases, our prior
algorithm would fail to identify cases when the file system fails due to a missing
disk write operation. We extended our prior work to handle such scenarios and
explained further details in section 4.4.

—Finally, to address the scalability issue, we presented another alternative scheme,
the progressive discriminative sequence mining (which is different than the earlier
two stage mining) and is elaborated in section 5.2. To enhance the scalability,
we exploited the idea of discriminative sequence mining explored in the data
mining literature [Cheng et al. 2008; Cheng et al. 2007]. Earlier work in data
mining [Cheng et al. 2007] showed that the upper bound for information gain of
an event (i.e., the potential discriminative power of en event) increases monoton-
ically with the support of that event. This implies that the events with lower
support has less discriminative power in general. DDPMine algorithm [Cheng
et al. 2008] showed how the upper bound estimation [Cheng et al. 2007] can
be exploited during the frequent item set mining process for effective classifica-
tion. Our presented progressive discriminative sequence mining algorithm takes
a similar approach as DDPMine where it iteratively searches for discriminative
patterns while looking for longer patterns at each stage. But the mechanism is
different.

The DDPMine algorithm [Cheng et al. 2008] differs from our work in several ways.
Firstly, they proposed an algorithm for item set mining which is a simpler prob-
lem than subsequence mining where the relative ordering of the events is critical.
Secondly, in DDPMine [Cheng et al. 2008], the goal is to identify a set of item sets

4

that can collectively classify all the training instances. Intuitively, this approach
searches for a combination of features that collectively can classify the input space.
In contrary, our goal is to identify discriminative sequences of events (often more
than one) where each discriminative sequence individually can distinguish between
successful and failed executions.

Our tool is based on a front-end that collects data from the run-time system and
a back-end that analyzes it. Both are plug-and-play modules that can be chosen
from multiple alternatives. We identify the architectural requirements of building
such an extensible framework and present a modular software architecture that
addresses these requirements.

We provide three case studies of real life debugging using the new tool. The first
case study shows how our tool isolates a kernel-level bug in the radio communication
stack in the LiteOS [Cao et al. 2008] operating system for sensor networks that offers
a UNIX-like remote file system abstraction. The second case study shows how the
tool is used to debug a performance problem in a multichannel Media Access Control
(MAC) protocol [Le et al. 2008]. For both case studies we used MicaZ motes as
target hardware. In the third case study, we applied our tool to diagnose a protocol
design bug [Khan et al. 2008a] in the directed diffusion protocol [Inatanagonwiwat
et al. 2000].

It is important to stress what our tool is not. We specialize in uncovering problems
that result from component interactions. Specifically, the proposed tool is not in-
tended to look for local errors (e.g., code errors that occur and manifest themselves
on one node). Examples of the later type of errors include infinite loops, derefer-
encing invalid pointers, or running out of memory. Current debugging tools are, for
the most part, well-equipped to help find such errors. An integrated development
environment can use previous tools for that purpose.

The rest of the paper is organized as follows. In Section 2, we describe recent
work on debugging sensor network applications. In Section 3, we describe the main
idea of our tool. Section 4 elaborates several challenges that need to be addressed
before we can apply discriminative frequent pattern mining for debugging along
with our proposed solutions. Section 5 proposes two alternative methods, the two
stage mining and the progressive discriminative sequence mining for scalability en-
hancements. Applicability of these two alternatives depends on the specific bug
characteristics. Section 6 describes the system architecture of Dustminer. Sec-
tion 7 describes the implementation details of the data collection front-end and
data analysis back-end that are used in this paper along with their system over-
head. To show the effectiveness of our tool and compare different algorithms, in
Section 8, we provided three case studies. In the first, we uncover a kernel-level
bug in LiteOS. In the second, we use our tool to identify a protocol design bug
in a multichannel MAC protocol [Le et al. 2008]. When the bug was fixed, the
throughput of the system improved by nearly 50%. In the third, we applied our
tool to diagnose a protocol design bug [Khan et al. 2008a] in the directed diffusion
protocol [Inatanagonwiwat et al. 2000]. Section 9 concludes the paper.

5

2. RELATED WORK

Most of the troubleshooting support for sensor networks (i) favors reproducible er-
rors, and (ii) is generally geared towards finding local bugs such as an incorrectly
written line of code, an erroneous pointer reference, or an infinite loop. Existing
tools revolve around testing, measurements, or stepping through instruction exe-
cution. Marionette [Whitehouse et al. 2006] and Clairvoyant [Yang et al. 2007] are
examples of source debugging systems that allow the programmer to interact with
the sensor network using breakpoints, watches, and line-by-line tracing. Source
level debugger is more suitable to identify programming errors which is contained
in a single node. It is difficult to find distributed bugs using source level debug-
ger due to the fact that source level debugging interferes heavily with the normal
operation of the code and may prevent the excitation of distributed bugs in the
first place. It also involves manual checking of system states which is not scalable.
SNMS [Tolle and Culler 2005] presents a sensor network measurement service that
collects performance statistics such as packet loss and radio energy consumption.
Testing-based systems include laboratory testbeds such as Motelab [Werner-Allen
et al. 2005], Kansei [Ertin et al. 2006], Emstar [Girod et al. 2004] etc. These systems
are good at exposing manifestations of errors, but leave it to the programmer’s skill
to guess the cause of the problem.
Simulation and emulation based systems include TOSSIM [Levis et al. 2003], DiS-
enS [Wen et al. 2007], S2DB [Wen and Wolski], Atemu [Polley et al. 2004] etc.
Atemu provides XATDB which is a GUI based debugger that provides interface
to debug code at line level. S2DB is a simulation based debugger that provides
debugging abstractions at different levels such as the node level and network level.
It provides the concept of parallel debugging where a developer can set breakpoints
across multiple devices to access internal system state. This remains a manual pro-
cess, and it is very hard to debug a large system manually for design bugs. Moreover
the simulated environment prevents the system from exciting bugs which arise due
to peculiar characteristics of real hardware, and deployment scenarios such as clock
skew, radio irregularities, and sensing failures, to name a few.
For offline parameter tuning and performance analysis, record and replay is a
popular technique which is implemented by Envirolog [Luo et al. 2006] for sensor
network applications. Envirolog stores module outputs (e.g., outputs of sensing
modules) locally and replays them to reproduce the original execution. It is good
at testing performance of high-level protocols subjected to a given recorded set of
environmental conditions. While this can also help with debugging such protocols,
no automated diagnosis support is offered.
In another work [Szewczyk et al. 2004], the authors pointed out that sensor data,
such as humidity and temperature, may be used to predict network and node fail-
ures, although they do not propose an automated technique for correlating failures
with sensor data. In contrast, we are focused on automating the troubleshooting
of general protocol bugs which may not necessarily be revealed by analyzing sensor
measurements.
PDA [Romer and Ma 2009] presents a passive assertion checking approach where
the user can use several predefined commands to upload or store values of interest
(e.g., variables). They described several approaches for collecting traces such as

6

packet sniffing network, logging, wired testbed etc. The assertions can be specified
over distributed node states using a declarative language. Although this approach
can identify the assertion violations but may not reveal the cause of the violation.
FIND [Guo et al. 2009] describes a novel approach for faulty node detection in
wireless sensor network. The algorithm used in FIND is based on the assumption
that the monitored event fades in intensity with increasing distance from the source
(e.g., sound, temperature). Based on this assumption, FIND tries to predict the
most likely node sequence for an observed event and compares it with the reported
node sequences to identify the faulty node (if any). Find attacks a different prob-
lem than ours. The goal is to identify the faulty node rather than the cause of the
failure. The concept of declarative trace points [Cao et al. 2008] is proposed for effi-
cient collection of runtime logs. But it does not automate the process of debugging.
From that perspective, data collection using declarative tracepoint [Cao et al. 2008]
can be thought of as a data collection front end. PAD is a passive troubleshooting
framework for root cause analysis [Liu et al. 2008]. It uses a probabilistic inference
model for determining dependencies among multiple network elements. It generates
the network topology based on partial information collected from different nodes
using a packet marking scheme. It diagnoses problems in real time and categorizes
faults in several categories such as physical damage, software crashes, network con-
gestion, environmental interference and application flaws. But it is not geared to
troubleshoot arbitrary protocol bugs.

Sympathy [Ramanathan et al. 2005] presents an early step towards sensor network
self-diagnosis. It specializes in attributing reduced communication throughput at a
base-station to the failure of a node or link in the sensor network. Another example
of automated diagnostic tools is SNTS [Khan et al. 2007] which analyzes passively
logged radio communication messages using a classification algorithm [Frank and
Witten 1998] to identify states correlated with the occurrence of bugs. The diagnos-
tic capability of SNTS [Khan et al. 2007] is constrained by its inability to identify
event sequences that precipitate an interaction-related bug. The tool also does not
offer an interface to the debugged system that allows logging internal events. The
diagnostic simulation effort [Khan et al. 2008a] presented automated diagnosis of
the problem by analyzing simulation output. Dustminer [Khan et al. 2008b] ex-
tended the diagnostic capability by implementing an actual system (as opposed
to using simulation) and presenting a better log analysis algorithm that is able to
uncover infrequent sequences that lead to failures. The idea of symbolic sequence
mining [Khan et al. 2009] tried to address the challenge of sequence mining based
on absolute values. This work [Khan et al. 2009] identified that mining for patterns
based on absolute attribute values may not be able to identify certain bugs where
the system fails because of a hidden relationship such as hop distance, neighbor-
hood etc. Moreover, they showed that symbolizing patterns increases the support
count and hence improves the chance of subtle patterns to be ranked higher.

Discriminative pattern mining received a lot of attention from the researcher in the
data mining community. Earlier work in data mining [Cheng et al. 2007] showed
that the upper bound for information gain of an event (i.e., the potential discrimi-
native power of en event) increases monotonically with the support of that event.
This implies that the events with lower support has less discriminative power in

7

general. DDPMine algorithm [Cheng et al. 2008] showed how the upper bound
estimation [Cheng et al. 2007] can be exploited during the frequent item set mining
process for effective classification. One of the more recent work is NDPMine [Kim
et al. 2010] that formulates the discriminative pattern mining problem as an opti-
mization problem. NDPMine maps the given datasets to a high-dimensional space
and learn the hyperplane that can correctly classify the input space. Intuitively,
both DDPMine and NDPMine search for a combination of features that collec-
tively can classify the input space. In contrary, our goal is to identify discrimina-
tive sequences of events(often more than one) where each discriminative sequence
individually can distinguish between successful and failed executions.

Machine learning techniques have previously been applied to failure diagnosis
in other systems [Bodk et al. 2005; Aguilera et al. 2003; Liu et al. 2005]. One
prior effort tried to localize bug [Liu et al. 2006] by leveraging difference in the
distribution between buggy and non-buggy execution. Software behavior graph
analysis [Liu et al. 2005] were also used to identify the cause of the problem. Much
of these efforts attempted to identify the cause of the problem at the code level
(i.e., the responsible line or function in the code).
Formal methods [Volgyesi et al. 2005; Hanna et al. 2008; Ballarini and Miller 2006;
Olveczky and Thorvaldsen 2006] offer a different alternative based on verifying
component correctness or, conversely, identifying which properties are violated.
The approach is challenging to apply to large systems due to the high degree of
concurrency and non-determinism in complex wireless sensor networks, which leads
to an exponential state space explosion. Unreliable wireless communication and
sensing pose additional challenges. Moreover, even a verified system can suffer
poor performance due to a design flaw. Our tool automatically answers questions
that help to identify the cause of the failure that manifests during run time.

3. DUSTMINER OVERVIEW

Most previous debugging approaches for sensor networks are geared at finding lo-
calized errors in code (with preference to those that are reproducible). In contrast,
we focus on non-deterministically occurring errors that arise because of unexpected
or adverse distributed interactions between multiple seemingly individually-correct
components. The non-localized, hard-to-reproduce nature of such errors makes
them especially hard to find.
Dustminer is based on the idea that, in a distributed wireless sensor network, nodes
interact with each other in a manner defined by their distributed protocols to per-
form cooperative tasks. Unexpected sequences of events, subtle interactions be-
tween modules, or unintended design flaws in protocols may occasionally lead to an
undesirable or invalid state, causing the system to fail or exhibit poor performance.
Hence, in principle, if we log different types of events in the network, we may be able
to capture the unexpected sequence that leads to failure (along with thousands of
other sequences of events). The challenge for the diagnostic tool is to automatically
identify this culprit sequence. Our approach exploits both (i) non-determinism and
(ii) interactive complexity to improve ability to diagnose distributed interaction
bugs. This point is elaborated below:

8

—Exploiting non-reproducible behavior: We adapt data mining approaches that use
examples of both “good” and “bad” system behavior to be able to classify the
conditions correlated with good and bad. In particular, note that conditions
that cause a problem to occur are correlated (by causality) with the resulting
bad behavior. Root causes of non-reproducible bugs are thus inherently suited
for discovery using such data mining approaches; the lack of reproducibility it-
self and the inherent system non-determinism improve the odds of occurrence
of sufficiently diverse behavior examples to train the troubleshooting system to
understand the relevant correlations and identify causes of problems.

—Exploiting interactive complexity: Interactive complexity describes a system where
scale and complexity cause components to interact in unexpected ways. A fail-
ure that occurs due to such unexpected interactions is typically hard to “blame”
on any single component. This fundamentally changes the objective of a trou-
bleshooting tool from aiding in stepping through code (which is more suitable for
finding a localized error in some line, such as an incorrect pointer reference), to
aiding with diagnosing a sequence of events (component interactions) that leads
to a failure state.

At a high level, our tool first uses a data collection front-end to collect runtime
events for post-mortem analysis. Once the log of runtime events is available, the
tool separates the collected sequence of events into two piles - a “good” pile, which
contains the parts of the log when the system performs as expected, and a “bad”
pile, which contains the parts of the log when the system fails or exhibits poor
performance. This data separation phase is done based on a predicate that defines
“good” versus “bad” behavior, provided by the application developer. For example
the predicate, applied offline to logged data, might state that a sequence of more
than 10 consecutive lost messages between a sender and receiver is bad behavior
(hence return “bad” in this case). To increase diagnostic accuracy, experiments can
be run multiple times before data analysis.
A discriminative frequent pattern mining algorithm then looks for patterns (se-
quences of events) that exist with very different frequencies in the two piles. These
patterns are called discriminative. Later, such patterns are analyzed for correla-
tions with preceding events in the logs, if any, that occur less frequently. Hence,
it is possible to catch anomalies that cause problems as well as common roots of
multiple error manifestations.
A well-known algorithm for finding frequent patterns in data is the Apriori algo-
rithm [Agrawal and Srikant 1994]. This algorithm was used in previous work on
sensor network debugging [Khan et al. 2008a] to address a problem similar to ours
where Apriori algorithm is used to determine the event sequences that lead to prob-
lems in sensor networks. We show that the approach has serious limitations and
extend this algorithm to suite purposes of sensor network debugging. The original
Apriori algorithm, used in the aforementioned work, is an iterative algorithm that
proceeds as follows. At the first iteration, it counts the number of occurrences
(called support) of each distinct event in the data set (i.e., in the “good” or “bad”
pile). Next, it discards all events that are infrequent (their support is less than
some parameter minSup). The remaining events are frequent patterns of length 1.
Assume the set of frequent patterns of length 1 is S1. At the next iteration, the

9

algorithm generates all the candidate patterns of length 2 which is S1 × S1. Here
‘×’ represents the Cartesian product. It then computes the frequency of occurrence
of each pattern in S1×S1 and discards those with support less than minSup again.
The remaining patterns are the frequent patterns of length 2. Let us call them set
S2. Similarly, the algorithm will generate all the candidate patterns of length 3
which is S2 × S1 and discard infrequent patterns (with support less than minSup)
to generate S3 and so on. It continues this process until it cannot generate any
more frequent patterns.
We show in this paper, how the previous work is extended for purposes of diagno-
sis. The problems with the algorithm and our proposed solutions are described in
section 4 and section 5.

4. ADAPTATION OF SEQUENCE MINING FOR DEBUGGING

Performing discriminative frequent pattern mining based on frequent patterns gen-
erated by the Apriori algorithm poses several challenges that need to be addressed
before we can apply discriminative frequent pattern mining for debugging. For the
purposes of the discussion below, let as define an event to be the basic element in
the log that is analyzed for failure diagnosis. The structure of an event in our log
is as follows:
< NodeId, EventType, attribute1, attribute2, ...attributen, T imestamp >

NodeId is used to identify the node that records the event. EventType is used to
identify the event type (e.g., message dropped, flash write finished, etc). Based on
the event type, it is possible to interpret the rest of the record (the list of attributes).
The set of distinct EventTypes is often called the alphabet in an analogy with
strings. In other words, if events were letters in an alphabet, we are looking for
strings that cause errors to occur. These strings represent event sequences (ordered
lists of events). The generated log can be thought of as a single sequence of logged
events. For example, S1 =(< a >, < b >, < b >, < c >, < d >, < b >, < b >, < a >, < c >) is
an event sequence. Elements < a >, < b >, ..., are events. A discriminative pattern
between two data sets is a subsequence of (not necessarily contiguous) events that
occurs with a different count in the two sets. The larger the difference, the better the
discrimination. With the above terminology in mind, we present how the algorithm
is tailored to apply to debugging.

4.1 Challenge-I: Preventing False Frequent Patterns

The Apriori algorithm generates all possible combinations of frequent subsequences
of the original sequence. As a result, it generates subsequences combining events
that are “too far” apart to be causally correlated with high probability and thus
reduces the chance of finding the “culprit sequence” that actually caused the failure.
This strategy could negatively impact the ability to identify discriminative patterns
in two ways; (i) it could lead to the generation of discriminative patterns that are
not causally related, and (ii) it could eliminate discriminative patterns by generating
false patterns. Consider the following example.
Suppose we have the following two sequences:

S1 = (< a >, < b >, < c >, < d >, < a >, < b >, < c >, < d >)

S2 = (< a >, < b >, < c >, < d >, < a >, < c >, < b >, < d >

10

Suppose the system fails when < a > is followed by < c > before < b >. As this
condition is violated in sequence S2, ideally, we would like our algorithm to be able
to detect (< a >, < c >, < b >) as a discriminative pattern that distinguishes these
two sequences.
Now, if we apply the Apriori technique, it will generate (< a >, < c >, < b >) as an
equally likely pattern for both S1, and S2. As in both S1 and S2, it will combine the
first occurrence of < a > and the first occurrence of < c > with the second occurrence
of < b >. So it will get canceled out at the differential analysis phase.
To address this issue, the key observation here is that the first occurrence of < a >

should not be allowed to combine with the second occurrence of < b > as there
is another event < a > after the first occurrence of < a > but before the second
occurrence of < b > and the second occurrence of < b > is correlated with second
occurrence of < a > with higher probability.
To prevent such erroneous combinations, we use a dynamic search window scheme
where the first item of any candidate sequence is used to determine the search
window. In this case, for any pattern starting with < a >, the search window is
[1, 4] and [5, 8] in S1 and S2. With this search window, the algorithm will search
for pattern (< a >, < c >, < b >) in window [1, 4] and [5, 8] and will fail to find it in
S1 but will find it in sequence S2 only. As a result, the algorithm will be able to
report pattern (< a >, < c >, < b >) as a discriminative pattern.
This dynamic search window scheme also speeds up the search significantly. In this
scheme, the original pattern (of size 8 events) was reduced to windows of size 4
making the search for patterns in those windows more efficient.

4.2 Challenge-II: Suppressing Redundant Subsequences

At the frequent pattern generation stage, if two patterns, Si and Sj , have support
≥ minSup, the Apriori algorithm keeps both sequences as frequent patterns even if
one is a subsequence of the other and both have equal support. This makes perfect
sense in data mining but not in debugging. For example, when mining the “good”
data set, the above strategy assumes that any subset of a “good” pattern is also
a good pattern. In real-life, this is not true. Forgetting a step in a multi-step
procedure may well cause failure. Hence, subsequences of good sequences are not
necessarily good. Keeping these subsequences as examples of “good” behavior leads
to a major problem at the differential analysis stage when discriminative patterns
are generated since they may incorrectly cancel out similar subsequences found
frequent in the other (i.e., “bad” behavior) data pile. For example, consider two
sequences below:

S1 = (< a >, < b >, < c >, < d >, < a >, < b >, < c >, < d >)

S2 = (< a >, < b >, < c >, < d >, < a >, < b >, < d >, < c >)

Suppose, for correct operation of the protocol, event < a > has to be followed
by event < c > before event < d > can happen. In sequence S2 this condition is
violated. Ideally, we would like our algorithm to report the following sequence S3

as the “culprit” sequence:
S3 = (< a >, < b >, < d >)

However, if we apply Apriori algorithm, it will fail to catch this sequence. This is
because it will generate S3 as a frequent pattern both for S1 and S2 with support
2 and will get canceled out at the differential analysis phase. As expected, S3 will

11

never show up as a “discriminative pattern”. Note that with the dynamic search
window scheme alone, we cannot prevent this.
To illustrate, suppose a successful message transmission involves the following se-
quence of events:

(< enableRadio >, < messageSent >, < ackReceived >, < disableRadio >)

Now although sequence:
(< enableRadio >, < messageSent >, < disableRadio >)

is a subsequence of the original “good” sequence, it does not represent a successful
scenario as it disables radio before receiving the “ACK” message.
To solve this problem, we need an extra step (which we call sequenceCompression)
before we perform differential analysis to identify discriminative patterns. At this
step, we remove the sequence Si if it is a subsequence of Sj with the same support1.
This will remove all the redundant subsequences from the frequent pattern list.
Subsequences with a (sufficiently) different support, will be retained and will show
up after discriminative pattern mining.
In the above example, pattern (< a >, < b >, < c >, < d >) has support 2 in S1 and
support 1 in S2. Pattern (< a >, < b >, < d >) has support 2 in both S1 and S2.
Fortunately, at the sequenceCompression step, pattern (< a >, < b >, < d >) will be
removed from the frequent pattern list generated for S1 because it is a subsequence
of a larger frequent pattern of the same support. It will therefore remain only
on the frequent pattern list generated for S2 and will show up as a discriminative
pattern.

4.3 Challenge-III: Capturing the Timing Effect

Although all the events in the log are temporally ordered, sequence mining algo-
rithm does not consider the time difference between consecutive events as a feature
while mining for discriminative sequences of events. This may cause the algorithm
to fail to identify certain patterns that involve the timing relations. For example,
due to hardware limitations, sampling the sensors “too” frequently may cause the
sensor reading to become faulty due to capacitance effect. Assume that the temper-
ature sensing operation is represented by the symbol S. Say, for the sensor reading
to be correct, the timing difference between two consecutive sampling must be at
least 2 ms. A correctly functioning system would generate sequence of events that
would look like as follows:
Sgood = (< S(1) >, < S(3) >, < S(5) >)

Values in the parentheses record the timestamp in millisecond since the system
starts (e.g., S(3) means event S happened at 3 milliseconds after the system reboot).
Note that this timing information in parentheses is used to serialize the log but not
used in the sequence mining algorithm as absolute timestamp is not relevant for
debugging.

Now, a failed operation might generate sequence of events that may look like as
follows:
Sbad = (< S(1) >, < S(3) >, < S(4) >)

To the sequence mining algorithm, both of the sequences are identical (both are
(< S >, < S >,< S >)). But they are different if the timing information is taken

1This mechanism can be extended to remove subsequences of a similar but not identical support.

12

into account. In the failed case, the third sample was taken just after 1 ms of the
second sample and is responsible for the corrupted reading. To address this issue,
we incorporated the timing information by introducing fake event ’t’ in the log
which represents a single clock tick. Using this transformation, the good log would
be as follows:
Sgood = (< S >, < t >, < t >, < S >, < t >, < t >, < S >)

Whereas the bad log would be as follows:
Sbad = (< S >, < t >, < t >, < S >, < t >, < S >)

Now, with this input transformation, our algorithm would be able to identify that
(< S >,< t >, < S >) is a discriminative pattern that occurs only in the bad log.

4.4 Challenge-IV: Identifying the Accumulative Effect

Pair wise causality relationship (e.g., one message sent is followed by one acknowl-
edgement) is fairly common in the program execution. But there are cases when
this is not true. For example, in many file systems it is often common practice
to buffer data before actually writing to disk to minimize disk access and to save
energy [Yang et al. 2004]. In a correctly functioning system it can be expected that
multiple buffer operations will be followed by a single disk write operation. Assume
that the data buffering and buffer flush operations are represented by symbols B
and F respectively. A normal operation would generate sequence of events that
may looks like as follows:
Sgood = (< B >, < B >, < F >, < B >, < F >, < B >, < B >, < B >, < F >)

Now, a failed opeartion might generate sequence of events as follows:
Sbad = (< B >, < B >, < F >, < B >, < F >, < B >, < B >, < F >, < B >)

Note that in Sbad, the last buffer operation(< B >) is not followed by a flush
operation(< F >). Unfortunately, sequence mining algorithm would identify the
pattern (< B >,< F >) as a common pattern in both good and bad logs. It
would also identify < B > as a common event with support 6 in both cases. As
< B > has a different support than (< B >, < F >) in both good and bad logs,
our subsequence elimination rule would fail to eliminate < B > in either of the logs
and eventually would cancel out in the discriminative analysis.
We observed that a very minor modification to our previously proposed definition
of dynamic search window can solve this shortcoming. According to our earlier
definition, any subsequence that starts with < F > can combine with any other
events that happened before the next occurrence of < F >. We changed the
definition to include the next occurrence of < F > in the search window. With the
new search window, the algorithm can easily identify that (< F >,< B >, < F >)
is a common pattern in both good and bad logs whereas (< F >,< B >) occurred
only in bad log. Note that (< F >, < B >) will be generated in good log as well
but will be eliminated as it is a subsequence of (< F >, < B >,< F >) with same
support(i.e., support 2). But in the bad log, (< F >,< B >,< F >) has support
2 and (< F >,< B >) has support 3. Hence (< F >,< B >) will be retained and
will be reported as a discriminative pattern which clearly indicates that in one case
< B > is not followed by < F >. Without this extension, this pattern can not be
identified.

13

4.5 Other Challenges

Several other changes need to be made to standard data mining techniques. For
example, the amount of logged events and the corresponding frequency of patterns
can be different from run to run depending on factors such as length of execution
and system load. A higher sampling rate at sensors, for example, may generate
more messages and cause more events to be logged. Many logged event patterns in
this case will appear to be more frequent. This is problematic when it is desired
to compare the frequency of patterns found in “good” and “bad” data piles for
purposes of identifying those correlated with bad behavior. To address this issue,
we need to normalize the frequency count of events in the log. In the case of single
events (i.e., patterns of length 1), we use the ratio of occurrence of the event instead
of absolute counts. In other words, the support of any particular event, < e > in
the event log is divided by the total number of events logged, yielding in essence
the probability of finding that event in the log, P (e). For patterns of length more
than 1, we extend the scheme to compute the probability of the pattern given
recursively by P (e1).P (e2|e1).P (e3|e1.e2), The individual terms above are easy
to compute. For example, P (e2|e1) is obtained by dividing the support of the
pattern (< e1 >,< e2 >) by the total support of patterns starting with < e1 >.
Finally, there are issues with handling event parameters. Logged events may have
parameters (e.g., identity of the receiver for a message transmission event). Since
event parameter lists may be different, calling each variation a different event will
cause a combinatorial explosion of the alphabet. For example, an event with 10
parameters, each of 10 possible values will generate a space of 1010 possible com-
binations. To address the problem, continuous or fine-grained parameters need to
be discretized into a smaller number of ranges. Multi-parameter events need to be
converted into sequences of single-parameter events each listing one parameter at a
time. Hence, the exponential explosion is reduced to linear growth in the alphabet,
proportional to the number of discrete categories a single parameter can take and
the average number of parameters per event. Techniques for dealing with event
parameter lists were introduced in our earlier work [Khan et al. 2008a] and are not
discussed further in this paper.

5. SCALABILITY ENHANCEMENTS

5.1 Two Stage Mining

In debugging, sometimes less frequent patterns could be more indicative of the cause
of failure than the most frequent patterns. A single mistake can cause a damaging
sequence of events. For example, a single node reboot event can cause a large
number of message losses. In such cases, if frequent patterns are generated that
are commonly found in failure cases, the most frequent patterns may not include
the real cause of the problem. For example, in case of node reboot, manifestation
of the bug (message loss event) will be reported as the most frequent pattern and
the real cause of the problem (the node reboot event) may be overlooked.
Fortunately, in the case of sensor network debugging, a solution may be inspired by
the nature of the problem domain. The fundamental issue to observe is that much
computation in sensor networks is recurrent . Code repeatedly visits the same states
(perhaps not strictly periodically), repeating the same actions over time. Hence, a

14

single problem, such as a node reboot or a race condition that pollutes a data struc-
ture, often results in multiple manifestations of the same unusual symptom (like
multiple subsequent message losses or multiple subsequent false alarms). Catching
these recurrent symptoms by an algorithm such as Apriori is much easier due to
their larger frequency. With such symptoms identified, the search space can be
narrowed and it becomes easier to correlate them with other less frequent preced-
ing event occurrences. To address this challenge, we developed a two stage pattern
mining scheme.
At the first stage, the Apriori algorithm generates the usual frequent discriminative
patterns that have support larger than minSup. For the first stage, minSup is set
larger than 1. It is expected that the patterns involving manifestations of bugs will
survive at the end of this stage but infrequent events like a node reboot will be
dropped due to their low support.
At the second stage, at first, the algorithm splits the log into fixed width segments
(default width is 50 events in our implementation). Next, the algorithm counts the
number of discriminative frequent patterns found in each segment and ranks each
segment of the log based on the count (the higher the number of discriminative
patterns in a segment, the higher the rank). If discriminative patterns occurred
consecutively in multiple segments, those segments are merged into a larger seg-
ment. Next, the algorithm generates frequent patterns with minSup reduced to 1
on the K highest-ranked segments separately (default K is 5 in our implementa-
tion) and extracts the patterns that are common in these regions. Note that the
initial value of K is set conservatively. The optimum value of K depends on the
application. If with the initial value of K, the tool failed to catch the real cause,
the value of K is increased iteratively. In this scheme, we have a higher chance
of reporting single events such as race conditions that cause multiple problematic
symptoms. Observe that the algorithm is applied on data that is the total logs from
several experimental runs. The race condition may have occurred once at different
points of some of these runs.
This scheme has a significant impact on the performance of the frequent pattern
mining algorithm. Scalability is one of the biggest challenges in applying discrim-
inative frequent pattern analysis to debugging. For example, if the total number
of logged events is of the order of thousands (more than 40000 in one of our later
examples), it is computationally impossible to generate frequent patterns of non-
trivial length for this whole sequence. Using two stage mining, we can dramatically
reduce the search space and make it feasible to mine for longer frequent patterns
which are more indicative of the cause of failure than shorter sequences.

5.2 Progressive Discriminative Sequence Mining

Scalability is one of the biggest challenges in using sequence mining for analyz-
ing logs to identify the latent patterns that are potentially correlated to failure.
Although two stage mining addresses the scalability issue to some extent, the algo-
rithm still suffers from the following problems. Firstly, due to exponential number
of combinations, the number of candidate patterns grows very quickly. This expo-
nential growth rate of the size of the candidate patterns is dependent on the size
of the base patterns that is used to generate the candidate set rather than the size
of the log. Secondly, the number of patterns returned is typically in the order of

15

several thousands. Although the “culprit” patterns are expected to be at the top
of the list, this number of final patterns is still daunting.
Our prior algorithm [Khan et al. 2008b] generates all the frequent patterns of length
up to “n” that are common across all the bad logs and common across all the
good logs before performing the discriminative analysis to identify the “culprit”
sequences of events. In this approach, the algorithm generates a lot of patterns
that are eventually going to be dropped at the last stage.
Inspired by the work presented in DDPMine [Cheng et al. 2008], we developed the
progressive discriminative analysis which tries to prune patterns as early as pos-
sible without risking the possibility of dropping the “culprit” sequence. Instead
of performing discriminative analysis at the last stage, we perform discriminative
analysis at each stage k after generating frequent patterns of length k. Our ap-
proach has several differences with the work presented in DDPMine [Cheng et al.
2008]. Firstly, DDPMine is for frequent unordered item set mining. In contrast,
our algorithm is for ordered sequence mining. Secondly, our pruning strategy for
early elimination of candidate patterns is different than DDPMine. DDPMine ex-
ploited the idea that the information gain upper bound is lower for less frequent
items/events to prune items. Using this approach is not suitable for debugging.
We took a different approach as explained below.
Suppose, we have I number of good files and J number of bad files. Now, assume
that GPk is the set of good patterns of length k and each pattern gi in GPk has
support θgi where θgi/|I| > δ. If δ =0.8, the above condition implies that each
pattern in set GPk occurred in at least 80% of the good files. Similarly, assume
that BPk is the set of bad patterns of length k and each pattern bi in BPk has
support θbi where θbi/|J | > δ. If δ =0.8, the above condition implies that each
pattern in set BPk occurred in at least 80% of the bad files.
Now, before generating patterns of length (k+1) we do the following. We calculate
three sets of patterns. FinalGPk=FindDiscriminative(GPk,BPk), FinalBPk=
FindDiscriminative(BPk,GPk), CommonPk=FindCommon(GPk, BPk). Here the
function FindDiscriminative and function FindCommon are defined in Table I.
At the next step, we use the patterns in set CommonPk to generate patterns of
length (k+1). We stop using patterns in set FinalGPk and FinalBPk to generate
longer patterns. Because any pattern in FinalGPk is already discriminative and
by making them longer is not going to make them any more discriminative. Rather
it can decrease their potential for being discriminative.
This scheme has the following three advantages. Firstly, As we prune at each stage,
it reduces the size of the candidate patterns that needs to be checked substantially
and speed up the overall process by huge factor. Secondly, it reduces the size
of the final patterns returned as the discriminative patterns. In one example it
returned just five patterns instead of thousands. Thirdly, in this scheme the user
can now decide to stop the analysis as soon as the set of discriminative good and bad
patterns become nonempty. Earlier we have to specify the parameter “n” which is
the maximum length of the pattern that the user wishes to generate. The optimum
value of “n” can be hard to guess apriori. If it is “too short” or “too long”, the
algorithm may fail to identify the “culprit” pattern. The algorithm is presented in
Table I. We evaluated progressive discriminative sequence mining in section 8.

16

Algorithm: Progressive Discriminative Sequence Mining
Input: Set of Good Logs (GL), Set of Bad Logs(BL)
Output: Set of discriminative sequences of events
1. Scommon=ε, SG=ε,SB=ε,K=1

2. while(SG == ε or SB == ε)
2.1 Sgood=GenerateFrequentSubSequences(GL,K,Scommon)

2.2 Sbad=GenerateFrequentSubSequences(BL,K,Scommon)

2.3 If (SG == ε) SG = SG U FindDiscriminative(Sgood, Sbad)
2.4 If (SB == ε) SB=SB U FindDiscriminative(Sbad, Sgood)

2.5 Scommon=FindCommon(SG,SB)

2.6 k=k+1

Function: FindDiscriminative
Input: Set of Frequent SubSequences(A),Set of Frequent SubSequences(B)
Return: Set of discriminative SubSequences that distinguishes A from B
Assumption: Each sequence pi in A or B has two supports, supiinF ile and supiacrossF ile .
supiinF ile

records the average number of occurrence of pi within a file.

supiacrossF ile
records the probability of occurrence of pi in a file.

1. Sdiscriminative=ε
2. for each sequence pi in A

2.1 for each sequence qj in B

2.1.1 if(pi == qj) then
if(supiacrossF ile

/supjacrossF ile
<θ) then Sdiscriminative=Sdiscriminative U pi

else if(supiinF ile
/supjinF ile

<δ) then Sdiscriminative=Sdiscriminative U pi

3. Return Sdiscriminative

Function: GenerateFrequentSubSequences
Input: Set of Logs(L),sequenceLength(K), baseSet(Scommon)
Return: Set of frequent SubSequences of length K
1. Use the Apriori algorithm to generate frequent subsequences of length K using baseSet
2. Return frequent subsequences of length K generated at step 1

Table I. Progressive Discriminative Sequence Mining

6. DUSTMINER ARCHITECTURE

We realize that the types of debugging algorithms needed are different for differ-
ent applications, and are going to evolve over time with the evolution of hardware
and software platforms. Hence, we aim to develop a modular tool architecture
that facilitates evolution and reuse. Keeping that in mind, we developed a soft-
ware architecture that provides the necessary functionality and flexibility for future
development. The goal of our architecture is to facilitate easy use and experimen-
tation with different debugging techniques and foster future development. As there
are numerous different types of hardware, programming abstractions, and operat-
ing systems in use for wireless sensor networks, the architecture must be able to
accommodate different combinations of hardware and software. Different ways of
data collection should not affect the way the data analysis layer works. Similarly
we realize that for different types of bugs, we may need different types of techniques
to identify the bug and we want to provide a flexible framework to experiment with
different data analysis algorithms. Based on the above requirements, we designed
a layered, modular architecture as shown in Figure 1. We separate the whole sys-
tem into three subsystems; (i) a data collection front-end, (ii) data preprocessing
middleware and (iii) a data analysis back-end.

17

Application Specific
“Bad” Behavior

Data Labeling Function

Labeled Data File

Parsed Data File

Front-End
Designer

Front-End Specific
Raw Data Storage

Format
Front-End Specific

Data Cleaning Algorithm

Data Parsing AlgorithmApplication Specific
Header File Describing

Event Format

Front-End –I:
Passive Listener

Front-End –III:
Diagnostic Simulation

Front-End –II:
Runtime Logging

Recorded Log

Data Analysis Tool -I:
WEKA

Data Analysis Tool-II:
Discriminative Frequent

Sequence Miner

Data Analysis Tool-III:
Graphical Visualizer

Set of Data Collection Front-End

Data Analysis Tool
Specific Data Converter

Set of Data Analysis
Back-End

Application
Developer

Data Preprocessing Middleware

Fig. 1. Debugging framework

6.1 Data Collection Front-End

The role of data collection front-end is to provide the debug information (i.e., log
files) that can be analyzed for diagnosing failures. The source of this debug log
is irrelevant to the data analysis subsystem. As shown in Figure 1, the developer
may choose to analyze the recorded radio communication messages obtained using
a passive listening tool, or the execution traces obtained from simulation runs, or
the run-time sequences of events obtained by logging on actual application motes
and so on. With this separation of concerns, the front-end developer could design
and implement the data collection subsystem more efficiently and independently.
The data collection front-end developer merely needs to provide the format of the
recorded data. These data are used by the data preprocessing middleware to parse
the raw recorded byte streams.

6.2 Data Preprocessing Middleware

This middleware that sits between the data collection front-end and the data analy-
sis back-end provides the necessary functionality to change or modify one subsystem
without affecting the other. The interface between the data collection front-end and
the data analysis back-end is further divided into the following layers:

—Data cleaning layer: This layer is front-end specific. Each supported front-end
will have one instance of it. The layer is the interface between the particular data
collection front-end and the data preprocessing middleware. It ensures that the
recorded events are compliant with format requirements.

18

—Data parsing layer: This layer is provided by our framework and is responsible
for extracting meaningful records from the recorded raw byte stream. To parse
the recorded byte stream, this layer requires a header file describing the recorded
message format. This information is provided by the application developer (i.e.,
the user of the data collection front-end).

—Data labeling layer: To be able to identify the probable causes of failure, the data
analysis subsystem needs samples of logged events representing both “good” and
“bad” behavior. As “good” or “bad” behavior semantics are an application
specific criterion, the application developer needs to implement a predicate (a
small module) whose interface is already provided by us in the framework. The
predicate, presented with an ordered event log, decides whether behavior is good
or bad.

—Data conversion layer: This layer provides the interface between the data pre-
processing middleware and the data analysis subsystem. One instance of this
layer exists for each different analysis back-end. This layer is responsible for con-
verting the labeled data into appropriate format for the data analysis algorithm.
The interface of this data conversion layer is provided by the framework. As
different data analysis algorithms and techniques can be used for analysis, each
may have different input format requirements. This layer provides the necessary
functionality to accommodate supported data analysis techniques.

6.3 Data Analysis Back-End

At present, we implement the data analysis algorithm and its modifications pre-
sented earlier in Section 4 and Section 5. It is responsible for identifying the causes
of failures. The approach is extensible. As newer analysis algorithms are developed
that catch more or different types of bugs, they can be easily incorporated into the
tool as alternative back-ends. Such algorithms can be applied in parallel to analyze
the same set of logs to find different problems with them.

7. DUSTMINER IMPLEMENTATION

In this section, we describe the implementation of the data collection front-end and
the data analysis back-end that are used for failure diagnosis in this paper. We
used three different data collection front-ends for three different case studies. The
front-end used for the first case study was a built-in logging support functionality
provided by the LiteOS operating system for MicaZ motes. For the second case
study, the front-end is implemented by us and used for real time logging of user
defined events on flash memory in MicaZ motes. For the last case study, we used
the logging support provided by TOSSIM [Levis et al. 2003] for logging different
runtime events in simulation. At the data analysis back-end, we used discriminative
frequent pattern analysis for failure diagnosis. We describe the implementation of
each of these next.

7.1 The Front-End: Acquiring System State

We used two different data collection front-ends to collect data: (i) event logging
system implemented for MicaZ platform in TinyOS 2.0 and (ii) kernel event logger
for MicaZ platform provided by LiteOS. The format of the event logged by the

19

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20
Event Interval(ms)

Su
cc

es
 R

at
e

(%
)

Two Buffers of 16 Bytes Each
Two Buffers of 32 Bytes Each
Two Buffers of 64 Bytes Each
Two Buffers of 128 Bytes Each
Two Buffers of 256 Bytes Each
One Buffer of 32 Bytes
One Buffer of 64 Bytes
One Buffer of 128 Bytes
One Buffer of 256 Bytes
One Buffer of 512 Bytes

Fig. 2. Impact of buffer size and event rate on logging performance

two subsystems are completely different. We were able to use our framework to
easily integrate the two different front-ends and use the same back-end to analyze
the cause of failures, which shows modularity. We briefly describe each of these
front-ends below.

7.1.1 Data Collection Front-End for TinyOS.
The event logger for MicaZ hardware is implemented using the TinyOS 2.0 Block-
Read and BlockWrite interfaces to perform read and write operations respectively
on flash. BlockRead and BlockWrite interfaces allow accessing the flash memory
at a larger granularity which minimizes the recording time to flash.
To minimize the number of flash accesses we used a global buffer to accumulate
events temporarily before writing to flash. Two identical buffers (buffer A and
B) are used alternately to minimize the interference between event buffering and
writing to flash. When buffer A gets filled up, buffer B is used for temporary
buffering and buffer A is written to flash and vice versa. In Figure 2 we show
the effect of buffer size on logging performance for single buffer and double buffer
respectively. Using two buffers increases the logging performance substantially. As
shown in figure, for event rate of 1000 events/second, using one buffer of 512 bytes
has a success ratio (measured as the ratio of successfully logged events to the total
number of generated events) of only 60% whereas using two buffers of 256 bytes
each (512 bytes in total) can give almost 100% success ratio. For a rate of 200
events/second, two buffers of 32 bytes each is enough for 100% success ratio.
The sizes of these buffers are configurable as different applications need different
amounts of runtime memory. It is to be noted that if the system crashes while some
data are still in the RAM buffer, those events will be lost. The flash space layout
is given in Figure 3.
A separate MicaZ mote (LogManager) is used to communicate with the logging
subsystem to start and stop logging. Until the logging subsystem receives the
“StartLogging” command, it will not log anything and after receiving “StopLog-
ging” command it will flush the remaining data that is in the buffer to flash and stop
logging. This gives the user the flexibility to start and stop logging whenever they
want. It also lets the user to run their application without enabling logging, when
needed, to avoid the runtime overhead of logging functionality without recompiling
the code.

20

Meta Data
Record 1 Record 2

Record 3

Flash_Head_Index

Flash_Tail_Index

Record Length
EventId

Data

Flash Space
Reserved

for Application

Flash Space
Reserved

for Logging

Fig. 3. Flash space layout

We realize that occasional event reordering can occur due to preemption, interrupts,
or task scheduling delays. An occasional invalid log entry is not a problem. An
occasional incorrect logging sequence is fine too as long as the same occasional
wrong sequence does not occur consistently. This is because common sequences do
not have to occur every time, but only often enough to be noticed. Hence, they
can be occasionally mis-logged without affecting the diagnostic accuracy.

Time Synchronization:
We need to timestamp the recorded events so that events recorded on different nodes
can be serialized later during offline analysis. To avoid the overhead of running a
time synchronization protocol on the application mote, we used an offline time
synchronization scheme. A separate node (TimeManager) is used to broadcast its
local clock periodically. The event logging component will receive the message and
log it in flash with a local timestamp. From this information we can calculate
the clock skew on different nodes in reference to TimeManager node, adjust the
timestamp of the logged events and serialize the logs. We realize that the serialized
log may not be exact but it is good enough for pattern mining.

System Overhead:
The event logging support requires 14670 bytes of program memory (this includes
the code size for BlockRead and BlockWrite interface provided by TinyOS 2.0) and
830 bytes of data memory when 400 bytes are used for buffering (two buffers of 200
bytes each) data before writing to flash. User can choose to use less buffer space
if the expected event rate is low. To instrument code, the program size increase is
minimal. To log an event with no attributes, it needs a single line of code. To log
an event with n attributes, it takes n + 1 lines of code, n lines are to initialize the
record and 1 line to call the log() function.

API for Logging in TinyOS:
The only part of the data collection front-end that is exposed to the user is the
interface for logging user defined events. Our design goal was to have an easy-to-use
interface and efficient implementation to reduce the runtime overhead as much as
possible. One critical issue with distributed logging was to timestamp the recorded
events so that events on different nodes can be serialized later during offline analysis.
To make event logging functionality simpler, we defined the interface to the logging

21

component as follows:

log(EventId,(void *)buffer,unit8_t size)

log(EventId, (void∗)buffer, unit8 tsize) is the key interface between application
developers and the logging subsystem. To log an event, the user has to call the
log() function with appropriate parameters. For example, if the user wants to log
the event that a radio message was sent and also wants to log the receiverId along
with the event, he/she needs to define the appropriate record structure in a header
file (this file will also be used to parse the data) with these fields, initialize the
record with appropriate values and call the log function with that record as the
parameter. This simple function call will log the event. The rest is taken care of by
the logging system underneath. The logging system will pad the timestamp with
the recorded event and log as a single event. Note that NodeId is not recorded
during logging. This information is added when data is uploaded to PC for offline
analysis.

7.1.2 Data Collection Front-End for LiteOS.
LiteOS [Cao et al. 2008] provides the required functionality to log kernel events on
MicaZ platforms. Specifically, the kernel logs events including system calls, radio
activities, context switches and so on. An event log entry is a single 8-bit code
without attributes. We used an experimental set up of a debugging testbed with
all motes connected to a PC via serial interfaces. In pre-deployment testing on our
indoor testbed, logs can thus be transmitted in real-time through a programming
board via serial communication with a base-station. When a system call is invoked
or a radio packet is received on a node, the corresponding code for that specific
event is transmitted through the serial port to the base station (PC). The base
station collects event codes from the serial port and records it in a globally ordered
file.

Logging in LiteOS:
The logging support provided by LiteOS lets user to log different system calls.
Several C macros are defined in the kernel source code. There is a specific macro
for each system call that enables the logging for that specific call. The user has to
call the specific Macro for that system call to enable logging that particular system
call. The resulting log contains only the unique id of the system call that is sent to
the serial port if that system call is invoked during the execution. This is done by
calling a function “addTrace(systemCallId)” in each invocation of the system call
if the corresponding macro value is set. The user requires to recompile the kernel
to enable logging.

7.2 The Data Analysis Back-End

At the back-end, we implement the data preprocessing and discriminative frequent
pattern mining algorithm. To integrate the data collection front-end with the data
preprocessing middleware, we provide a simple text file interface that describes the
storage format of the raw byte streams collected for each of the front-ends. This file
is used to parse the recorded events. Once the data is parsed, the user can either
manually label the data files as “good” or “bad”, or the user can supply different
predicates as a Java function that can be used to annotate data automatically. The

22

rest of the system is a collection of data analysis algorithms such as discriminative
frequent pattern mining, or any other tool such as Weka [Weka]. Our algorithm
automatically generates discriminative patterns and report it to the user.

8. EVALUATION

To test the effectiveness of the tool, we applied our tool to troubleshoot three real
life applications. The first was a kernel level bug in the LiteOS operating system.
The second was to debug a multichannel Media Access Control(MAC) protocol [Le
et al. 2008] implemented in TinyOS 2.0 for MicaZ platform with only one half-
duplex radio interface. In the third, we applied our tool to diagnose a protocol
design bug [Khan et al. 2008a] in the directed diffusion protocol [Inatanagonwiwat
et al. 2000].
We analyzed the logs using the following algorithms depending on the applicabil-
ity: (i) the Apriori sequence mining algorithm [Agrawal and Srikant 1994] used
in our earlier work [Khan et al. 2008a] that does not incorporate the extensions
described in section 4(we call this the “Basic Apriori Algorithm”), (ii) sequence
mining algorithm that incorporates the extensions described in section 4(we call
this the “Extended Apriori Algorithm”),(iii) sequence mining algorithm that in-
corporates the extensions described in section 4 and applies the two stage mining
technique described in section 5.1(we call this the “Extended Apriori Algorithm
with Two Stage Mining”), (iv) sequence mining algorithm that incorporates the
extensions described in section 4 and progressive discriminative analysis described
in section 5.2(we call this the “Extended Apriori Algorithm with Progressive Dis-
criminative Analysis”).

8.1 Case Study - I: LiteOS Bug

In this case study, we troubleshoot a simple data collection application where several
sensors monitor light and report it to a sink node. The communication is performed
in a single-hop environment. In this scenario, sensors transmit packets to the
receiver, and the receiver records received packets and sends an “ACK” back. The
sending rate that sensors use is variable and depends on the variations in their
readings. After receiving each message, depending on its sequence number, the
receiver decides to record the value or not. If the sequence number is older than
the last sequence number it has received, the packet is dropped.
This application is implemented using MicaZ motes on the LiteOS operating system
and is tested on an experimental testbed. Each of the nodes is connected to a
desktop computer via an MIB520 programming board and a serial cable. The PC
acts as the base station. In this experiment, there was one receiver (the base node)
and a set of 5 senders (monitoring sensors). This experiment illustrates a typical
experimental debugging set up. Prior to deployment, programmers would typically
test the protocol on target hardware in the lab. This is how such a test might
proceed.

8.1.1 Failure Scenario.
When this simple application was stress tested, some of the nodes would crash
occasionally and non-deterministically. Each time different nodes would crash and
at different times. Perplexed by the situation, the developer (a first-year graduate

23

RecordedEvents AttributeList

Context Switch To User Thread Null

Get Current Thread Index Null

Get Current Radio Info Address Null

Get Current Radio Handle Address Null

Post Thread Task Null

Get Serial Mutex Null

Get Current Serial Info Address Null

Get Serial Send Function Null

Disable Radio State Null

Packet Received Null

Packet Sent Null

Y ield To System Thread Null

Get Current Thread Address Null

Get Radio Mutex Null

Get Radio Send Function Null

Mutex Unlock Function Null

Get Current Radio Handle Null

Table II. Logged events for diagnosing LiteOS application bug

student with no prior experience with sensor networks) decided to log different
types of events using LiteOS support and use our debugging tool. These were
mostly kernel-level events along with a few application-level events. The built-in
logging functionality provided by LiteOS was used to log the events. A subset of
the different types of logged events are listed in Table II.
Before presenting the results obtained by our algorithms, we will briefly describe
the way a received packet is handled in the LiteOS and the real cause of the prob-
lem. In the application, receiver always registers for receiving packets, then waits
until a packet arrives. At that time, the kernel switches back to the user thread
with appropriate packet information. The packet is then processed in the ap-
plication. However, at very high data rates, another packet can come when the
processing of the previous packet has not yet been done. In that case, LiteOS
kernel overwrites the radio receive buffer with new information even if the user
is still using the old packet data to process the previous packet. Indeed, for
correct operation, < Packet Received > event always has to be preceded by
< Get Current Radio Handle > event. Otherwise it crashes the system. Over-
writing a receive buffer for some reason is a very typical bug in sensor networks.
After running the experiment, “good” logs were collected from the nodes that did
not crash during the experiment and “bad” logs were collected from nodes that
crashed at some point in time. We subsequently analyzed the logs as follows.

8.1.2 Basic Apriori Algorithm.
We implemented the Apriori algorithm used in [Khan et al. 2008a] without incor-
porating the extensions described in section 4 and applied it to generate frequent
patterns and perform differential analysis to extract discriminative patterns. For
this case study, when we applied the Apriori algorithm to the “good” log and the
“bad” log, the list of discriminative patterns missed the < Packet Received >
event completely and failed to identify the fact that the problem was correlated
with the timing of packet reception. Moreover, when we applied the Apriori al-

24

< Packet Received >, < Packet Sent >, < Get Current Radio Handle >

< Packet Received >, < Get Current Radio Handle Address >, < Get Current Radio Handle >

Packet Received >, < Mutex Unlock Function >, < Get Current Radio Handle >

< Packet Received >, < Disabale Radio State >, < Get Current Radio Handle >

< Packet Received >, < Post Thread Task >, < Get Current Radio Handle >

Table III. Discriminative frequent patterns found only in “good” log for LiteOS bug

< Context Switch to User Thread >, < Get Current Thread Address >, < Get Serial Send Function >

< Packet Received >, < Context Switch to User Thread >, < Get Serial Send Function >

< Packet Received >, < Post Thread Task >, < Get Serial Send Function >

< Packet Received >, < Get Current Thread Index >, < Get Serial Send Function >

< Packet Received >, < Get Current Thread Address >, < Get Serial Send Function >

Table IV. Discriminative frequent patterns found only in “bad” log for LiteOS bug

gorithm to multiple instances of “good” logs and “bad” logs together, the list of
discriminative patterns returned was empty. All the frequent patterns generated
by Apriori algorithm were canceled at the differential phase. This result highlights
the weakness of the Apriori algorithm when applied for debugging and emphasize
the necessity of our extensions as described in section 4.

8.1.3 Extedned Apriori Algorithm.
After applying our discriminative frequent pattern mining algorithm that incor-
porates the extensions described in section 4 to the logs, we provided two sets of
patterns to the developer, one set includes the highest ranked discriminative pat-
terns that are found only in “good” logs as shown in Table III, and the other set
includes the highest ranked discriminative patterns that are found only in “bad”
logs as shown in Table IV.
Based on the discriminative frequent pattern, it is clear that in “good” pile, <
Packet Received > event is highly correlated with the < Get Current Radio Handle >
event. On the other hand, in the “bad” pile, though < Packet Received > event
is present, the other event is missing. In the “bad” pile, < Packet Received > is
highly correlated with < Get serial Send Function > event. From these obser-
vations, it is clear that proceeding with a < Get serial Send Function > when
< Get Current Radio Handle > is missing is the most likely cause of failure.

8.1.4 Extended Apriori Algorithm with Two Stage Mining.
As two stage mining is more suitable for bugs that have frequent manifestations
such as high number of message losses, we did not apply the two stage mining for
this case study as the manifestation of the problem (system crash) was infrequent
in this case study. Two stage mining is applied for the case study presented in
section 8.2 where the manifestation (message loss) of the bug is frequent.

8.1.5 Extended Apriori Algorithm with Progressive Discriminative Analysis.
To evaluate the performance improvement due to applying the progressive discrim-
inative sequence mining scheme, we applied the progressive discriminative sequence
mining algorithm on the same set of logs. It comes up with twenty six sequences
of events as “culprit” sequences of events along with following one:

< Get Current Radio Handle >, < Packet Received >, < Packet Received >

25

Algorithm Used Runtime Comments

Basic Apriori N/A Need the extensions
presented in Section 4

Extended Apriori 248 sec

Extended Apriori with N/A Effect of the problem
Two Stage Mining is infrequent.

Requires manual parameter tuning.

Extended Apriori with 127 sec

Progressive Discriminative Analysis

Table V. Comparison of different schemes for LiteOs bug

This sequence explains the bug in one step. From this sequence it is obvious that if
two consecutive messages are received following a single < Get Current Radio Handle >
event, the system crashes. Indeed, < Get Current Radio Handle > event repre-
sents the required handle registration process and it must precede a message receive
event.
One thing to note is that our earlier algorithm dropped it due to a particular setting
of a threshold parameter that was used to measure the discriminative power of a
particular sequence. As earlier we only used the support of a sequence within a
file, due to a normalization factor this crucial sequence was dropped mistakenly.
Missing this pattern in [Khan et al. 2008b] highlights the difficulty of parameter
tuning that can affect the accuracy of the algorithm. Although with parameter
tuning it is possible to capture this sequence, in many cases it is hard to guess the
right values apriori.
One of the main contributions of progressive discriminative mining is the enhance-
ment in the scalability. To mine for the discriminative patterns, it took 127 seconds
with progressive mining where as the earlier algorithm took 248 seconds which is
an improvement of almost 95%.

We compare the effectiveness and performance of different schemes in Table V.

8.2 Case Study - II: Multichannel MAC Protocol

In this case study we debug a multichannel MAC protocol [Le et al. 2008]. The
objective of the protocol used in our study is to assign a home channel to each
node in the network dynamically in such a way that the throughput is maxi-
mized. The design of the protocol exploits the fact that in most wireless sensor
networks, the communication rate among different nodes is not uniform (e.g., in
a data aggregation network). Hence, the problem was formulated in such a way
that nodes communicating frequently are clustered together and assigned the same
home channel whereas nodes that communicate less frequently are clustered into
different channels. This minimizes overhead of channel switching when nodes need
to communicate.
During experimentation with the protocol, it was noticed that when data rates be-
tween different internally closely-communicating clusters is low, the multi-channel
protocol outperforms a single channel MAC protocol comfortably as it should. How-
ever, when the data rate between clusters was increased, while the throughput near
the base station still outperformed a single channel MAC significantly, nodes fur-
ther from the base station were performing worse than in the single channel MAC.

26

This should not have happened in a well-designed protocol as the multichannel
MAC protocol should utilize the communication spectrum better than a single
channel MAC. The author of the protocol initially concluded that the performance
degradation was due to the overhead associated with communication across clus-
ters assigned to different channels. Such communication entails frequent channel
switching as the sender node, according to the protocol, must switch the frequency
of the receiver before transmission, then return to its home channel. This incurs
overhead that increases with the transmission rate across clusters. We decided to
verify this conjecture.
As a stress test of our tool, we instrumented the protocol to log events related
to the MAC layer (such as message transmission and reception as well as channel
switching) and used our tool to determine the discriminative patterns generated
from different runs with different message rates, some of which performing better
than others. For better understanding of the failure scenario detected, we briefly
describe the operation of the multichannel MAC protocol below.

8.2.1 Multichannel MAC Protocol Overview.
In the multichannel MAC protocol, each node initially starts at channel 0 as its
home channel. To communicate with others, every node maintains a data struc-
ture called “neighbor table” that stores the neighbor home channel for each of its
neighboring nodes. Channels are organized as a ladder, numbered from lowest (0)
to highest (12). When a node decides to change its home channel, it sends out a
“Bye” message in its current home channel which includes its new home channel
number. Receiving a “Bye” message, each other node updates its neighbor table to
reflect the new home channel number for the sender of the “Bye” message. After
changing its home channel, a node sends out a “Hello” message in the new home
channel which includes its nodeID. All neighboring nodes on that channel add this
node as a new neighbor and update their neighbor tables accordingly.
To increase robustness to message loss, the protocol also includes a mechanism for
discovering the home channel of a neighbor when its current entry in the neighbor
table becomes stale. When a node sends a message to a receiver on that receiver’s
home channel (as listed in the neighbor table) but does not receive an “ACK’
after ’n’ (n is set to 5) tries, it assumes that the destination node is not on its
home channel. The reason may be that the destination node has changed its home
channel permanently but the notification was lost. Instead of wasting more time on
retransmissions on the same channel, the sender starts scanning all channels, asking
if the receiver is there. The purpose is to find the receiver’s new home channel and
update the neighbor table accordingly. The destination node will eventually hear
this data message and reply when it is on its home channel.
Since the above mechanism is expensive, as an optimization, overhearing is used to
reduce staleness of the neighbor table. Namely, a node updates the home channel
of a neighbor in its neighbor table when the node overhears an acknowledgement
(“ACK”) from that neighbor sent on that channel. Since the “ACK”s are used as a
mechanism to infer home channel information, whenever a node switches channels
temporarily (e.g., to send to a different node on the home channel of the latter),
it delays sending out “ACK” messages until it comes back to its home channel in
order to prevent incorrect updates of neighbor tables by recipients of such ACKs.

27

RecordedEvents AttributeList

Ack Received Null

Home Channel Changed oldChannel, newChannel

TimeSyncMsg referenceT ime, localT ime

Channel Update Msg Sent homeChannel

Data Msg Sent On Same Channel destId, homeChannel

Data Msg Sent On Different Channel destId, homeChannel, destChannel

Channel Update Msg Received homeChannel, neighborId, neighborChannel

Retry Transmission oldChannelTried, nextChannelToTry

No Ack Received Null

Table VI. Logged events for diagnosing multichannel MAC protocol

Finally, to estimate channel conditions, each node periodically broadcasts a “chan-
nelUpdate” message which contains the information about successfully received and
sent messages during the last measurement period (where the period is set at com-
pile time). Based on that information, each node calculates the channel quality
(i.e., probability of successfully accessing the medium), and uses that measure to
probabilistically decide whether to change its home channel or not. Nodes that
sink a lot of traffic (e.g., aggregation hubs or cluster heads) switch first. Others
that communicate heavily with them follow. This typically results into a natural
separation of node clusters into different frequencies so they do not interfere.

8.2.2 Performance Problem.
This protocol was executed on 16 MicaZ motes implementing an aggregation tree
where several aggregation cluster-heads filter data received from their children,
significantly reducing the amount forwarded, then send that reduced data to a base-
station. When the data rate across clusters was low, the protocol outperformed the
single channel MAC. However, when the data rate among clusters was increased,
the performance of the protocol deteriorated significantly, performing worse than
a single channel MAC in some cases. The developer of the protocol assumed that
this was due to the overhead associated with the channel change mechanism which
is incurred when communication happens among different clusters heavily. Much
debugging effort was spent on that direction with no result. To diagnose the cause
of the performance problem, we logged different types of MAC events as listed in
Table VI.
The question posed to our tool was “Why is the performance bad at higher data
rate?”. To answer this question, we first executed the protocol at low data rates
(when the performance is better than single channel MAC) to collect logs repre-
senting “good” behavior. We then again executed the protocol with a high data
rate (when the performance is worse than single channel MAC) to collect logs rep-
resenting “bad” behavior. We subsequently analyzed the logs as follows.

8.2.3 Basic Apriori Algorithm.
Using the basic Apriori algorithm , to generate frequent patterns of length 2 for
40000 events in the “good” log, it took 1683.02 seconds (28 minutes) and to fin-
ish the whole computation including differential analysis it took 4323 seconds (72
minutes). We tried to generate frequent patterns of length 3 with the approach
in [Khan et al. 2008a] but terminated the process after one day of computation

28

< No Ack Received >, < Retry Transmission >

< Retry Transmission >, < No Ack Received >

< Data Msg Sent On Same Channel : homechannel : 0 >,

< No Ack Received >,
< Retry Transmission >,

< Retry Transmission : nextchanneltotry : 1 >,

< Retry Transmission >,
< Retry Transmission : oldchanneltried : 1 >,

< No Ack Received >

< Data Msg Sent On Same Channel : homechannel : 0 >,

< No Ack Received >,
< Retry Transmission >,

< Retry Transmission : nextchanneltotry : 1 >,

< Retry Transmission : nextchanneltotry : 2 >

< Data Msg Sent On Same Channel : homechannel : 0 >,

< No Ack Received >,
< Retry Transmission >,

< Retry Transmission : nextchanneltotry : 1 >,
< Retry Transmission : oldchanneltried : 2 >,

< Retry Transmission : nextchanneltotry : 3 >,
< No Ack Received >,

< Retry Transmission : oldchanneltried : 3 >

Table VII. Discriminative frequent patterns for multichannel MAC protocol

that remained in progress. We used a machine of 2.53 GHz speed and 512 MB
RAM. This highlights the scalability problem.

8.2.4 Extended Apriori Algorithm with Two Stage Mining.
With our two-stage mining scheme, it took 5.547 seconds to finish the first stage
and finishing the whole computation including differential analysis took 332.924
seconds (6 minutes). After performing discriminative pattern analysis, the list of
top 5 discriminative patterns that were produced by our tool is shown in Table VII.
The sequences indicate that, in all cases, there seems to be a problem with not
receiving acknowledgements. Lack of acknowledgements causes a channel scanning
pattern to unfold. This is shown as the < Retry Transmission > event on differ-
ent channels, as a result of not receiving acknowledgements. Hence, the problem
does not lie in the frequent overhead of senders changing their channel to that of
their receiver in order to send a message across clusters. The problem lied in the
frequent lack of response (an ACK) from a receiver. At the first stage of frequent
pattern mining < No Ack Received > is identified as the most frequent event. At
the second stage, the algorithm searched for frequent patterns in top K (e.g., top
5) segments of the logs where < No Ack Received > event occurred with high-
est frequency. The second stage of the log analysis (correlating frequent events to
preceding ones) then uncovered that the lack of an ACK from the receiver is pre-
ceded by a temporary channel change. This gave away the bug. As we described
earlier, whenever a node changes its channel temporarily, it disables “ACK”s until
it comes back to its home channel. In a high intercluster communication scenario,
disabling the “ACK” is a bad decision for a node that spends a significant amount
of time communicating with other clusters on channels other than its own home
channel. As a side effect, nodes which are trying to communicate with it fail to

29

Algorithm Used Runtime Comments

Basic Apriori N/A Too Slow

Extended Apriori N/A Too Slow

Extended Apriori with 333 sec Effect of the problem
Two Stage Mining (msg loss)is frequent

Extended Apriori with 14 sec
Progressive Discriminative Analysis

Table VIII. Comparison of different schemes for multichannel MAC Protocol bug

receive an “ACK” for a long time and start scanning channels frequently looking for
the missing receiver. Another interesting aspect of the problem that was discovered
is the cascading effect of the problem. When we look at generated discriminative
patterns across multiple nodes, we found that the scanning patterns revealed in
the logs shown in fact cascades. Channel scanning at the destination node often
triggers channel scanning at the sender node and this interesting cascaded effect
was also captured by our tool.

8.2.5 Extended Apriori Algorithm with Progressive Discriminative Analysis.
Progressive discriminative mining returned in 14 seconds and returned the 59 single
events as highly correlated to poor performance. The top events were the followings:
< No Ack Received >, < Retry Transmission >, < Data Msg Sent On Different Channel >,

< Retry Transmission : oldchanneltried : 0 >, < Retry Transmission : nextchanneltotry : 1 >,

< Retry Transmission : oldchanneltried : 1 >, < Retry Transmission : nextchanneltotry : 2 >,

< Retry Transmission : oldchanneltried : 2 >, < Retry Transmission : nextchanneltotry : 3 >,

< Retry Transmission : oldchanneltried : 3 >, < Retry Transmission : nextchanneltotry : 4 >,

< Retry Transmission : oldchanneltried : 4 >, < Retry Transmission : nextchanneltotry : 5 >,

< Retry Transmission : oldchanneltried : 5 >, Retry Transmission : nextchanneltotry : 6 >,

< Retry Transmission : oldchanneltried : 6 >, < Retry Transmission : nextchanneltotry : 7 >,

< Retry Transmission : oldchanneltried : 7 >, < Retry Transmission : nextchanneltotry : 8 >,

< Retry Transmission : oldchanneltried : 8 >, < Retry Transmission : nextchanneltotry : 9 >,

< Retry Transmission : oldchanneltried : 9 >, < Retry Transmission : nextchanneltotry : 10 >,

< Retry Transmission : oldchanneltried : 10 >, < Retry Transmission : nextchanneltotry : 11 >

Althogh these were all single events, in this case study it would have been adequate
to provide the necessary insights to the real problem. The designer of the protocol
can readily understand the channel scanning phenomenon that was happening at
high intercluster data rate.

We compare the effectiveness and performance of different schemes in Table VIII.

8.3 Case Study -III : Directed Diffusion Protocol Bug

We have reported this bug in our earlier work [Khan et al. 2007; Khan et al. 2009].
Directed diffusion [Inatanagonwiwat et al. 2000] is a widely popular data centric
communication protocol in wireless sensor network. For completeness, we briefly
describe the design of the protocol below. In directed diffusion, any node that is
interested in a particular type of data (e.g., detected vehicle in a particular region
in a surveillance network) would first need to broadcast its “interest” in the net-
work. This interest message includes the type of the data, geographic coordinates

30

of interest and the duration of the interest. Any node receiving the interest mes-
sage would store that in its cache memory. Later when any node receives a data, it
checks its interest cache to verify whether it is on the path and whether it is sup-
posed to forward that data message to the designated path or not. If the interest
cache has no matching entry, it would drop the data silently assuming that it is
not in the data forwarding path. The problem is if a node gets rebooted for some
reason, it erases the interest cache completely and would result in a broken path if
there is a single path from the source node to the sink node and the rebooted node
is on that critical path. Due to this design flaw, there would be a large number
of consecutive message losses following a reboot. To evaluate the scalability, we
collected three good logs (when no node was rebooted) and three bad logs (when a
node was rebooted).

8.3.1 Basic Apriori Algorithm.
We applied the basic Apriori algorithm used in our earlier work [Khan et al. 2008a]
on six logs (three good logs and three bad logs). We configured the algorithm to
generate frequent patterns of length up-to 3. The algorithm failed to finish after
six hours of computation.

8.3.2 Extended Apriori Algorithm with Two Stage Mining.
Next, we applied the extended Apriori algorithm used in our prior work [Khan et al.
2008b] with two stage mining and configured the algorithm to generate frequent
patterns of length up-to 3. The algorithm finished in about 2.5 hours. Unfortu-
nately, it returned several thousands of patterns. Moreover, although the algorithm
was able to identify the “Reboot” event as correlated to failure, it was ranked at the
very end of the list due to low support and increased the chance of being overlooked
by the developer as unimportant pattern.

8.3.3 Extended Apriori Algorithm with Progressive Discriminative Analysis.
In comparison, progressive discriminative sequence mining finished in about 5 sec-
onds and it returned only seven individual events as correlated to failure. Four of
these seven events are listed below:
< BOOT EV ENT : (NodeId : X) >,
< interestCacheEmpty : (NodeId : X) >,
< dataCacheEmpty : (NodeId : X) >, and
< msgDropped : (ReasonToDrop : dataWithNoMatchingInterest >.
The reason for such drastic improvement is that the progressive mining strategy
reduced the search space significantly by applying the discriminative analysis at
each stage. Another important characteristic is that it reduced the number of final
patterns returned from several thousands to only a few which enhances the usability
of the tool significantly.

We compare the effectiveness and performance of different schemes in Table IX.

8.4 Debugging Overhead

To test the impact of logging on application behavior, we ran the multichannel MAC
protocol with logging enabled and without logging enabled with both moderate data
rate and high data rate. The network was set as a data aggregation network.
For moderate data rate experiment, the source nodes (node that only sends mes-

31

Algorithm Used Runtime Comments

Basic Apriori N/A Too Slow

Extended Apriori N/A Too Slow

Extended Apriori with 2.5 hr Failed to rank the Reboot

Two Stage Mining event at the top

Extended Apriori with 5 sec

Progressive Discriminative Analysis

Table IX. Comparison of different schemes for Directed diffusion protocol bug

sages) were set to transmit data at a rate of 10 messages/sec, the intermediate
nodes were set to transmit data at a rate of 2 messages/sec and one node was act-
ing as the base station (which only receives messages). We tested this on a 8 nodes
network with 5 source nodes, 2 intermediate nodes and one base station. Over
multiple runs, after we take the average to get a reliable estimate, average number
of successfully transmitted messages was increased by 9.57% and average number
of successfully received messages was increased by 2.32%. The most likely reason
for this minor improvement is writing to flash was creating a randomization effect
which probably helped to reduce interference at the MAC layer.
At high data rate, source nodes were set to transmit data at a rate of 100 mes-
sages/sec and intermediate nodes were set to transmit data at a rate of 20 mes-
sages/sec. Over multiple runs, after we take the average to get a reliable estimate,
average number of successfully transmitted messages was reduced by 1.09% and
average number of successfully received messages was dropped by 1.62%. The most
likely reason is the overhead of writing to flash kicked in at a such high data rate
and eventually reduced the advantage experienced at a low data rate.
The performance improvement of the multichannel MAC protocol reported in this
paper is obtained by running the protocol at the high data rate to prevent over
estimation.
We realize that this effect on application may change the behavior of the origi-
nal application slightly, but that effect seems to be negligible from our experience
and did not affect the diagnostic capability of the discriminative pattern mining
algorithm which is inherently robust against minor statistical variance.
As multichannel MAC protocol did not use flash memory to store any data, we
were able to use the whole flash for logging events. To test the relation between
quality of generated discriminative patterns and the logging space used, we used
100KB, 200KB and 400KB of flash space in three different experiments. The gener-
ated discriminative patterns were similar. We realize that different application has
different amount of flash space requirements and the amount of logging space may
affect the diagnostic capability. To help in severe space constraints, we provide the
radio interface so users can choose to log at different times instead of logging con-
tinuously. User can also choose to log events at different resolutions (e.g., instead
of logging every message transmitted, log only every 50th message transmitted).
For LiteOS case study, we did not use flash space at all as the events were trans-
mitted to basestation (PC) directly using serial connection and eliminate the flash
space overhead completely which makes our tool easily usable for testbeds which
often provides serial connections.

32

8.5 Discussion

From the above evaluation we can draw the following conclusions. Firstly, the
changes as described in section 4 that were made to the apriori sequence mining
algorithm to adapt it for debugging is critical for effective diagnosis. Secondly,
progressive discriminative analysis is extremely fast. Although, in some cases it may
return single events as correlated to failure, these events can be used as the clues
to begin with and can be further explored if the user of the tool desires. Thirdly,
progressive mining has an automatic way of identifying when to stop the mining
process. For example, in the LiteOS bug case study, it stopped after generating
patterns of length 3 when the set of discriminative patterns became non empty and
in case of the MAC protocol bug it stopped right after mining patterns of length
1. Earlier we had to guess and set the pattern length conservatively which often
wastes a lot of time for mining longer patterns and returns too many patterns.
Fourthly, the two stage mining is not suitable in cases where the manifestation of
the problem is not frequent(e.g., the bug found in the LiteOS operating system has
infrequent manifestation and cause, a single reordering of events followed by system
crash).

9. CONCLUSION

In this paper, we presented a sensor network troubleshooting tool that helps the
developer diagnose root causes of errors. The tool is geared towards finding inter-
action bugs. Very successful examples of debugging tools that hunt for localized
errors in code have been produced in previous literature. The point of departure
in this paper lies in focusing on errors that are not localized (such as a bad pointer
or an incorrect assignment statement) but rather arise because of adverse interac-
tions among multiple components each of which appears to be correctly designed.
The cascading channel-scanning example that occurred due to disabling acknowl-
edgements in the MAC Protocol illustrates the subtlety of interaction problems
in sensor networks. With increased distribution and resource constraints, the in-
teractive complexity of sensor networks applications will remain high, motivating
tools such as the one we described. Future development of Dustminer will focus on
scalability and user interface to reduce the time and effort needed to understand
and use the new tool.

Acknowledgment
This work was supported in part by NSF grants DNS 05-54759,CNS 06-26342, CNS
06-13665. Any opinions and findings are those of the authors and not necessarily
those of the funding agencies.

REFERENCES

http://www.cs.waikato.ac.nz/ml/weka/.

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceedings
of the Twentieth International Conference on Very Large Data Bases (VLDB’94). 487–499.

Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and Muthitacharoen, A. 2003.
Performance debugging for distributed systems of black boxes. In Proceedings of the nineteenth

33

ACM symposium on Operating systems principles (SOSP’03). 74–89. Bolton Landing, NY,

USA.

Ballarini, P. and Miller, A. 2006. Model checking medium access control for sensor networks.

In Proceedings of the 2nd International Symposium On Leveraging Applications of Formal

Methods, Verification and Validation (ISOLA’06). Paphos, Cyprus, 255–262.

Bodk, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Patel, K., Tolle, G., Hui,

J., Fox, A., Jordan, M. I., and Patterson, D. 2005. Combining visualization and statistical

analysis to improve operator confidence and efficiency for failure detection and localization. In
Proceedings of the 2nd International Conference on Autonomic Computing(ICAC’05).

Cao, Q., Abdelzaher, T., Stankovic, J., and He, T. 2008. The liteos operating system: Towards

unix-like abstractions for wireless sensor networks. In Proceedings of the Seventh International
Conference on Information Processing in Sensor Networks (IPSN’08).

Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., and Luo, L. 2008. Declarative

tracepoints: A programmable and application independent debugging system for wireless sensor
networks. In Proceedings of the 6th ACM Conference on Embedded Networked Sensor Systems

(SenSys). Raleigh, NC, USA.

Cheng, H., Yan, X., Han, J., and Hsu, C. 2007. Discriminative frequent pattern analysis for
effective classification. In In Proceedings of ICDE. 716–725.

Cheng, H., Yan, X., Han, J., and Yu, P. S. 2008. Direct discriminative pattern mining for

effective classification. In Proc. of Int. Conf. on Data Engineering (ICDE’08).

Cheong, E., Liebman, J., Liu, J., and Zhao, F. 2003. Tinygals: a programming model for event-
driven embedded systems. In Proceedings of the 2003 ACM symposium on Applied computing

(SAC’03). 698–704. Melbourne, Florida.

Ertin, E., Arora, A., Ramnath, R., and Nesterenko, M. 2006. Kansei: A testbed for sensing
at scale. In Proceedings of the 4th Symposium on Information Processing in Sensor Networks

(IPSN/SPOTS track).

Frank, E. and Witten, I. H. 1998. Generating accurate rule sets without global optimization.
In Proceedings of the Fifteenth International Conference on Machine Learning (ICML’98).

144–151.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler, D. 2003. The nesc
language: A holistic approach to networked embedded systems. In Proceedings of Programming

Language Design and Implementation (PLDI’03). 1–11.

Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., and Estrin, D. 2004.
Emstar: a software environment for developing and deploying wireless sensor networks. In

Proceedings of the annual conference on USENIX Annual Technical Conference (ATEC’04).

Boston, MA, 24–24.

Guo, S., Zhong, Z., and He, T. 2009. Find: faulty node detection for wireless sensor networks.

In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems. Berkeley,

California, USA, 253–266.

Hanna, Y., Rajan, H., and Zhang, W. 2008. Slede: Lightweight specification and formal verifi-
cation of sensor networks protocols. In Proceedings of the First ACM Conference on Wireless

Network Security (WiSec). Alexandria, VA.

Inatanagonwiwat, C., Govindan, R., and Estrin, D. 2000. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In Mobicom. Boston, MA, USA.

Khan, M. M. H., Abdelzaher, T., and Gupta, K. K. 2008a. Towards diagnostic simulation

in sensor networks. In Proceedings of International Conference on Distributed Computing in
Sensor Systems (DCOSS). Greece.

Khan, M. M. H., Abdelzaher, T., Han, J., and Ahmadi, H. 2009. Finding symbolic bug patterns
in sensor networks. In Proceedings of International Conference on Distributed Computing in
Sensor Systems (DCOSS). California, USA.

Khan, M. M. H., Le, H. K., Ahmadi, H., Abdelzaher, T. F., and Han, J. 2008b. Dustminer:

troubleshooting interactive complexity bugs in sensor networks. In SenSys ’08: Proceedings of
the 6th ACM conference on Embedded network sensor systems. ACM, New York, NY, USA,

99–112.

34

Khan, M. M. H., Luo, L., Huang, C., and Abdelzaher, T. 2007. Snts: Sensor network trou-

bleshooting suite. In Proceedings of International Conference on Distributed Computing in
Sensor Systems (DCOSS). Santa Fe, New Mexico, USA.

Kim, H. S., Kim, S., Weninger, T., Han, J., and Abdelzaher, T. 2010. Ndpmine: Efficiently

mining discriminative numerical features for pattern-based classification. In Proceedings of 2010
European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECMLPKDD’10). Barcelona, Spain.

Le, H. K., Henriksson, D., and Abdelzaher, T. 2008. A practical multi-channel medium access
control protocol for wireless sensor networks. In Proceedings of International Conference on

Information Processing in Sensor Networks (IPSN’08). St. Louis, Missouri.

Levis, P. and Culler, D. 2002. Mate: a tiny virtual machine for sensor networks. In Proceedings
of the 10th international conference on Architectural support for programming languages and

operating systems. San Jose, California.

Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. Tossim: accurate and scalable simulation
of entire tinyos applications. In Proceedings of the 1st international conference on Embedded

networked sensor systems (SenSys’03). Los Angeles, California, USA, 126–137.

Liu, C., Fei, L., Yan, X., Han, J., and Midkiff, S. P. 2006. Statistical debugging: A hypothesis
testing-based approach. IEEE Transactions on Software Engineering 32, 831–848.

Liu, C., Yan, X., Fei, L., Han, J., and Midkiff, S. P. 2005. Sober: statistical model-based

bug localization. In Proceedings of the 13th ACM SIGSOFT international symposium on

Foundations of software engineering (FSE-13). Lisbon, Portugal.

Liu, K., Li, M., Liu, Y., Li, M., Guo, Z., and Hong, F. 2008. Pad: Passive diagnosis for wireless

sensor networks. In Proceedings of the 6th ACM Conference on Embedded Networked Sensor

Systems (SenSys). Raleigh, NC, USA.

Luo, L., Abdelzaher, T. F., He, T., and Stankovic, J. A. 2006. Envirosuite: An environmen-

tally immersive programming framework for sensor networks. ACM Transactions on Embedded

Computing Systems 5, 3, 543–576.

Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T., and Stankovic, J. 2006. Achieving Re-

peatability of Asynchronous Events in Wireless Sensor Networks with EnviroLog. In Proceedings

of the 25th IEEE International Conference on Computer Communications (INFOCOM’06).
1–14.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2005. Tinydb: an ac-

quisitional query processing system for sensor networks. ACM Transactions on Database Sys-
tems 30, 1, 122–173.

Olveczky, P. and Thorvaldsen, S. 2006. Formal modeling and analysis of wireless sensor

network algorithms in real-time maude. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS). Rhodes Island, Greece.

Polley, J., Blazakis, D., McGee, J., Rusk, D., and Baras, J. S. 2004. Atemu: A fine-grained

sensor network simulator. In Proceedings of the First International Conference on Sensor and
Ad Hoc Communications and Networks (SECON’04). Santa Clara, CA, 145–152.

Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., and Estrin, D. 2005. Sym-

pathy for the sensor network debugger. In Proceedings of the 3rd international conference on
Embedded networked sensor systems (SenSys’05). 255–267.

Romer, K. and Ma, J. 2009. Pda: Passive distributed assertions for sensor networks. In Pro-
ceedings of the 2009 International Conference on Information Processing in Sensor Networks.
337–348.

Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D. 2004. Lessons from a sen-

sor network expedition. In Proceedings of the First European Workshop on Sensor Networks

(EWSN).

Tolle, G. and Culler, D. 2005. Design of an application-cooperative management system for

wireless sensor networks. In Proceedings of the Second European Workshop on Wireless Sensor
Networks (EWSN’05). Istanbul, Turkey, 121–132.

Volgyesi, P., Maroti, M., Dora, S., Osses, E., and Ledeczi, A. 2005. Software composition

and verification for sensor networks. Science of Computer Programming 56, 1-2, 191–210.

35

Wen, Y. and Wolski, R. s2db: A novel simulation-based debugger for sensor network applica-

tions. UCSB 2006. 2006-01.

Wen, Y., Wolski, R., and Moore, G. 2007. Disens: scalable distributed sensor network simu-
lation. In Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of

parallel programming (PPoPP’07). 24–34. San Jose, California, USA.

Werner-Allen, G., Swieskowski, P., and Welsh, M. 2005. Motelab: A wireless sensor network
testbed. In Proceedings of the Fourth International Conference on Information Processing in

Sensor Networks (IPSN’05), Special Track on Platform Tools and Design Methods for Network

Embedded Sensors (SPOTS). 483–488.

Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta, P., and
Culler, D. 2006. Marionette: Using rpc for interactive development and debugging of wireless

embedded networks. In Proceedings of the Fifth International Conference on Information

Processing in Sensor Networks: Special Track on Sensor Platform, Tools, and Design Methods
for Network Embedded Systems (IPSN/SPOTS). Nashville, TN, 416–423.

Yang, J., Soffa, M. L., Selavo, L., and Whitehouse, K. 2007. Clairvoyant: a comprehensive

source-level debugger for wireless sensor networks. In Proceedings of the 5th international
conference on Embedded networked sensor systems (SenSys’07). 189–203.

Yang, J., Twohey, P., Engler, D., and Musuvathi, M. 2004. Using model checking to find

serious file system errors. In OSDI’04: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation. USENIX Association, Berkeley, CA, USA, 19–
19.

