
Formalization and Correctness
of the PALS Architectural Pattern
for Distributed Real-Time Systems

José Meseguer1 and Peter Csaba Ölveczky2

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Many Distributed Real-Time Systems (DRTS), such as in-
tegrated modular avionics systems and distributed control systems in
motor vehicles, are made up of a collection of components communi-
cating asynchronously among themselves and with their environment
that must change their state and respond to environment inputs within
hard real-time bounds. Such systems are often safety-critical and need
to be certified; but their certification is currently very hard due to their
distributed nature. The Physically Asynchronous Logically Synchronous
(PALS) architectural pattern can greatly reduce the design and verifica-
tion complexities of achieving virtual synchrony in a DTRS. This work
presents a formal specification of PALS as a formal model transforma-
tion that maps a synchronous design, together with a set of performance
bounds of the underlying infrastructure, to a formal DRTS specification
that is semantically equivalent to the synchronous design. This semantic
equivalence is proved, showing that the formal verification of temporal
logic properties of the DRTS can be reduced to their verification on the
much simpler synchronous design. An avionics system case study is used
to illustrate the usefulness of PALS for formal verification purposes.

1 Introduction

Many Distributed Real-Time Systems (DRTS), such as integrated modular avion-
ics systems and distributed control systems in motor vehicles, are made up of a
collection of components communicating asynchronously among themselves and
with their environment that must change their state and respond to environment
inputs within hard real-time bounds. Because of physical and fault tolerance re-
quirements, such systems are asynchronous, with each component having its own
local clock. Yet, overall system behavior must ensure virtual synchrony, in the
sense that each cycle of interaction of each system component with the envi-
ronment and with the other components should result in a proper state change
and proper outputs being produced at each component within hard real-time
bounds. That is, the system, although asynchronous, must behave as if it were
synchronous, not in some fictional logical time, but in actual physical time.

The design, verification, and implementation of such systems is a challeng-
ing and error-prone task for several reasons. The main danger is for a DRTS of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4825559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

this nature to enter an inconsistent state due to race conditions, network delays,
and clock skews in the asynchronous communication between components that
can easily fool one component into mistakenly acting on inputs from the wrong
cycle, or sending its outputs to other components at the wrong time; that is,
the intrinsically asynchronous nature of the system makes it hard to ensure its
virtual synchrony. Furthermore, since such a system is often safety-critical, its
must undergo a stringent certification process that requires full coverage of the
verification of its design and the validation of its implementation. Such a certi-
fication effort can be very demanding and time consuming because: (i) the state
space explosion caused by the system’s concurrency can easily make it unfeasible
to apply automatic model checking techniques to verify that its design satisfies
the required safety properties; and (ii) proper testing of an implementation is
particularly challenging, due to the serious difficulty of testing many different
interleaving that might reveal unforeseen errors and the insidious no fault found
problem, where an error observed only once may be extremely hard to reproduce
and therefore to diagnose by subsequent testing.

A useful way to meet engineering challenges such as the one described above
is to amortize the use of formal methods not on an individual design, but on a
generic family of system designs by means of a formal architectural pattern, that
is, a generic formal specification of an engineering solution to a generic design
problem that: (i) is shown to be correct by construction; (ii) comes with strong
formal guarantees; and (iii) greatly reduces system complexity, making system
verification and correct system implementation orders of magnitude simpler than
if the pattern were not used. In this paper we present a formal specification and
a proof of correctness for one such pattern, namely the Physically Asynchronous
Logically Synchronous3 (PALS) architectural pattern, which we have developed
in collaboration with colleagues at Rockwell-Collins and UIUC (see [20, 2, 31]).
This pattern provides a generic engineering solution to the problem of designing
a DRTS that must be virtually synchronous in spite of its asynchronous nature.

1.1 The PALS Formal Model in a Nutshell

The key idea of PALS is to drastically reduce the effort of designing, verifying,
and implementing a DRTS of this kind by reducing its design and verification
to that of its much simpler synchronous version. This is achieved by assuming
that the DRTS can rely on an underlying Asynchronous Bounded Delay (ABD)
Network infrastructure, so that a bound can be given for the delay of any message
transmission from any process to any other process.4 Similary, it is assumed that
the clock skew between the different local clocks of the DRTS is bounded. The
3 An alternative acronym would be PAVS, for Physically Asynchronous Virtually Syn-

chronous pattern, to emphasize that the pattern guarantees synchronous behavior
not in some fictional logical time but in actual physical time; however we will stick
with the PALS acronym as used in [20, 2, 31].

4 See [6, 33] for the ABD theoretical model, and [28] for a detailed discussion of several
commercial network architectures used in avionics and automotive systems that
support the ABD model.



3

PALS pattern can then be formalized as a model transformation which sends a
synchronous system design to its correct-by-construction asynchronous design.
Specifically, PALS is a formal model transformation of the form:

(E , Γ ) !→ A(E , Γ )

where:

1. E is a synchronous system, which is formally defined as a synchronous en-
semble of state machines connected together by a wiring diagram.

2. Γ specifies the following performance bounds: (i) the clock skew of the local
asynchronous clocks for each state machine is strictly smaller than ε; (ii) the
minimum and maximum duration times 0 ≤ αmin ≤ αmax for any machine
to consume inputs, make a transition, and produce outputs; and (iii) the
minimum and maximum message transmission delays 0 ≤ µmin ≤ µmax for
communication between any to processes in the ABD network,

and where A(E , Γ ) then denotes the corresponding asynchronous design guar-
anteed to behave like E in a virtually synchronous way under the assumption
that the performance bounds Γ are met by the underlying infrastructure. As we
further discuss below, a key advantage of PALS for formal verification purposes
is that the, typically unfeasible, verification of formal requirements for A(E , Γ )
can be reduced to the much simpler verification of such requirements for E .

Main Contributions. This work complements other research on PALS such
as [20, 2, 31] by providing both a formal specification of the PALS architecture
and a detailed proof of its correctness that justifies why a formal verification of
the synchronous design also verifies its PALS asynchronous version. Specifically,
it presents the following contributions:

1. A formal model in rewriting logic [18] of the PALS transformation, expressed
in the Real-Time Maude formal specification language [23], including precise
requirements about the allowable synchronous designs to which PALS can
be applied and about the real-time bounds assumed for the network and
clock synchronization infrastructures.

2. A precise derivation of the PALS period based on the formal model, as well
as a proof of its optimality, showing that it is shortest possible under the
given assumptions about the asynchronous implementation, message format,
and network and clock synchronization infrastructures.

3. A bisimulation theorem, showing that the original synchronous design and
the so-called stable states of the corresponding PALS asynchronous design
constitute bisimilar systems, and two further generalizations of such a theo-
rem.

4. A mathematical justification of a method that reduces the formal verification
of temporal logic safety and liveness properties of an asynchronous PALS
design —typically unfeasible due to state space explosion— to the model
checking verification of its much simpler synchronous counterpart.

5. An avionics case study illustrating the usefulness of the PALS patern for
formal verification purposes.



4

The rest of this paper is organized as follows. In Section 2 we summarize
the basic ideas about rewriting logic and Real-Time Maude needed to define
our formal model of PALS. In Section 3 we give a formal definition of the syn-
chronous models that are legal input designs for the PALS transformation, in-
cluding precise formal definitions of typed machines, synchronous ensembles, and
synchronous composition. In Section 4 we define in detail the assumptions about
clock drift, network delays, and machine execution times that, together with the
given synchronous ensemble, are the inputs to the PALS transformation. We
then give a precise time-line analysis of the period that must be chosen, based
on these parameters, for the PALS asynchronous system to achieve logical syn-
chrony. Based on this analysis, we then give in Section 5 a formal specification
in Real-Time Maude (parametric on the input ensemble E and the performance
bounds Γ ) of the resulting PALS-transformed asynchronous system, and collect
in Section 6 some facts about the consequences of the extra generality gained
by allowing local clock functions that are only piecewise continuous instead of
just continuous. In Section 7 we state and prove the main bisimulation result,
connecting the states of the synchronous system with the so-called stable states
of its PALS-transformed asynchronous counterpart; some key lemmas for this
theorem are collected in Appendix A. We also give in Section 7 two theorems
that make explicit the temporal logic properties that would have to be verified
in the asynchronous model A(E , Γ ) but are reduced to the much simpler verifi-
cation of corresponding properties in the much simpler E . A detailed proof of the
optimality, under appropriate assumptions, of the PALS period used to achieve
logical synchrony is given in Section 8. Related work is discussed in Section 10,
and some final conclusions are drawn in Section 11.

Acknowledgments. This work is part of a broader collaboration with Steve
Miller and Darren Cofer at Rockwell-Collins and with Lui Sha, Abdullah Al-
Nayeem, and Mu Sun at UIUC on the PALS architecture. The PALS ideas have
been developed in close interaction with all these people, who have provided very
useful comments on earlier versions of this work. We thank particularly Lui Sha
and Mu Sun for their very careful and insightful comments on an earlier version
of this paper that has led to substantial improvements. We also thank Camilo
Rocha for his kind help with some of the figures. We gratefully acknowledge
funding for this research from the Rockwell-Collins corporation. Partial support
has also been provided by the National Science Foundation under Grants IIS 07-
20482 and CNS 08-34709, by the Boeing Company under Grant C8088-557395,
and by the Research Council of Norway.

2 Real-Time Maude

A Real-Time Maude [23] timed module specifies a real-time rewrite theory of the
form (Σ, E, IR,TR), where:
– (Σ, E) is a membership equational logic [8] theory with Σ a signature5 and E

a set of confluent and terminating conditional equations. (Σ, E) specifies the
5 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols



5

system’s states as an algebraic data type, and must contain a specification
of a sort Time modeling the (discrete or dense) time domain.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
rl [l] : t => t′, where l is a label. Such a rule specifies a one-step tran-
sition from an instance of term t to the corresponding instance of term t′.
The rules are applied modulo the equations E.6

– TR is a set of tick (rewrite) rules, written with syntax
rl [l] : {t} => {t′} in time τ .
that model time elapse. {_} is a built-in constructor of sort GlobalSystem,
and τ is a term of sort Time that denotes the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {t} using the equations in the specification.

The Real-Time Maude syntax is fairly intuitive. For example, a function
symbol f in Σ is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn

are the sorts of its arguments, and s is its (value) sort. Equations are written
with syntax eq t = t′, and ceq t = t′ if cond for conditional equations. The
mathematical variables in such statements are declared with the keywords var
and vars. We refer to [8] for more details on the syntax of Real-Time Maude.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
of sort Object, where O, of sort Oid, is the object’s identifier, and where val1
to valn are the current values of the attributes att1 to attn. In a concurrent
object-oriented system, the state is a term of sort Configuration, and has the
structure of a multiset made up of objects and messages. Multiset union for
configurations is denoted by a juxtaposition operator (empty syntax) that is
declared associative and commutative, so that rewriting is multiset rewriting
supported directly in Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>
< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a parametrized family of transitions (one for each substitution instance)
in which a message m, with parameters O and w, is read and consumed by an
object O of class C. The transitions have the effect of altering the attribute a1
of the object O and of sending a new message m’(O’) with delay x (see [23]).
“Irrelevant” attributes (such as a3, and the right-hand side occurrence of a2)
need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.
6 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.



6

Formal Analysis. A Real-Time Maude specification is executable, and the tool
offers a variety of formal analysis methods. The rewrite command simulates one
fair behavior of the system up to a certain duration. It is written with syntax
(trew t in time <= τ .), where t is the initial state and τ is a term of sort
Time. The search command uses a breadth-first strategy to analyze all possible
behaviors of the system, by checking whether a state matching a pattern and
satisfying a condition can be reached from the initial state. The command which
searches for n states satisfying the pattern search criterion has syntax

(utsearch [n] t =>* pattern such that cond .)

Real-Time Maude also extends Maude’s linear temporal logic model checker
to check whether each behavior, possibly up to a certain time bound, satisfies a
temporal logic formula. State propositions, possibly parametrized, can be predi-
cates characterizing properties of the state and/or properties of the global time
of the system. They are operators of sort Prop, and their semantics is defined
by (possibly conditional) equations of the form {statePattern} |= prop = b,
for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for initial state t and temporal logic formula formula .

3 Formal Definition of the Synchronous Model

This section formally defines the synchronous model of computation as a col-
lection of nondeterministic typed machines and an environment, and a set of
connections that connect output ports of the machines and the environment to
input ports.

3.1 Typed Machines

A typed machine is a component in the synchronous model.

Definition 1. A (nondeterministic) typed machine is a 4-tuple

M = (Di, S,Do, δM )

where

– Di, called the input set, is a nonempty set of the form Di = Di1 × · · ·×Din ,
for n ≥ 1, where Di1 , . . . , Din are called the input data types.

– S is a nonempty set, called the set of states.



7

– Do, called the output set, is a nonempty set of the form Do = Do1×· · ·×Dom ,
for m ≥ 1, where Do1 , . . . , Dom are called the output data types.

– δM , called the input-output-transition (i-o-t) relation, is a total relation

δM ⊆ (Di × S)× (S ×Do).

That is, for any input di and state s, there exist at least one state s′ and
output do such that ((di, s), (s′,do)) ∈ δM .

We call M finite iff Di, S, and Do are all finite sets, and call M deterministic
if the transition relation δM is a function.

That is, such a machine has n input ports and m output ports; an input to
port k should be an element of the set Dik , and an output from port j should
be an element of the set Doj . Pictorially, we represent a typed machine as a box
with typed input and output wires as shown in Fig. 1.

M

1 : Di1

.....

n : Din

1 : Do1 m : Dom

.....

Fig. 1. Graphical representation of a machine.

3.2 Synchronous Ensembles of Typed Machines

Typed machines can be “wired together” into arbitrary sequential and parallel
compositions by means of a “wiring diagram,” as the one shown in Fig. 2, where
the types are left implicit, but where it is assumed that the type in an output
wire must match any types in the input wires connected with it:

Definition 2. A (typed) machine ensemble is a 4-tuple

E = (J ∪ {e}, {Mj}j∈J , E, src)

where



8

M1

M3

M2

Fig. 2. A machine ensemble.

– J is a nonempty finite set, called the set of indices, and e is an element,
called the environment index, with e )∈ J .

– {Mj}j∈J is a J-indexed family of typed machines.
– E, called a typed environment, is an ordered pair of sets

E = (De
i , D

e
o)

where De
i , called the environment’s input set (inputs to the environment),

is a nonempty set of the form

De
i = De

i1 × · · ·×De
ine

, for ne ≥ 1

and De
o, called the environment’s output set (outputs from the environment),

is a nonempty set of the form

De
o = De

o1
× · · ·×De

ome
, for me ≥ 1

– src is a function that assigns to each input port (j, n) (the input port number
n of machine j) the corresponding output port (or “source” for that input)
src(j, n). Formally, we define the set of input ports and output ports, respec-
tively, as follows:
• InE = {(j, n) ∈ (J ∪ {e})× N | 1 ≤ n ≤ nj}
• OutE = {(j, n) ∈ (J ∪ {e})× N | 1 ≤ n ≤ mj}

Then src is a surjective function

src : InE → OutE

assigning to each input port the output port to which it is connected, and such
that “the types match”. That is, if we denote by Dj

ik
the set of data allowed



9

as input in the kth input port of machine Mj (resp. kth input port of the
environment if j = e), and same with output ports, then if src(j, q) = (k, l)
we should have Dk

ol
⊆ Dj

iq
.

In addition, we require that there are no self-loops from the environment to
itself; that is, for (e, q) ∈ InE , if src(e, q) = (k, p), then k ∈ J .

As its name suggests, a synchronous ensemble E has a lock-step synchronous
semantics, in the sense that the state-and-output transitions of all the machines
are performed simultaneously, and whenever a machine has a feedback wire to
itself and/or to any other machine, then the corresponding output becomes an
input for any such machine at the next instant. As explained below, what this
means mathematically is that any ensemble E is semantically equivalent to a sin-
gle state machine, called the synchronous composition of all the machines in the
ensemble E . This has enormous practical importance for formal verification pur-
poses, since the composed state machine is much simpler than an asynchronous
system realizing such a design in a distributed way. In particular, model check-
ing a single state machine is much more efficient and feasible than verifying a
system of asynchronously interacting machines, which can easily become unfea-
sible due to the combinatorial explosion caused by the system’s asynchronous
concurrency.

Example 1. In the machine ensemble in Fig. 2,
– J = {1, 2, 3}
– {Mj}J is the mapping 1 !→ M1, 2 !→ M2, 3 !→ M3.
– ne = 3 (the number of inputs to the environment) and me = 2 (number of

outputs from the environment).
– With an ordering of ports from left to right, the wiring function src is:

• (1, 1) !→ (3, 1)
• (1, 2) !→ (e, 1)
• (2, 1) !→ (3, 3)
• (2, 2) !→ (e, 2)
• (3, 1) !→ (1, 1)
• (3, 2) !→ (e, 1)
• (e, 1) !→ (3, 1)
• (e, 2) !→ (3, 2)
• (e, 3) !→ (2, 1)

Intuitively, we can enclose the typed machines M1, M2, and M3 in the box
with thin lines, hiding the internal details of how the machine ensemble is de-
composed. The single machine resulting in this way from the composition of
machines M1, M2, and M3 is called the synchronous composition of M1, M2,
and M3, according to the given wiring diagram, and can itself be seen as a typed
machine. The general definition is as follows.

Definition 3. Given a synchronous machine ensemble E = (J∪{e}, {Mj}j∈J , E, src),
its synchronous composition is the typed machine

ME = (DE
i , SE , DE

o , δE)

where



10

– DE
i = De

o (the input set of the composed machine is the output set of the
environment)

– DE
o = De

i (the output set is the input set of the environment)
– SE = (Πj∈JSj)× (Πj∈JDj

OF ), where if Dj
o = Dj

o1
× · · ·×Dj

omj
is the output

set of Mj, then Dj
OF is the set Dj

OF = Dj
OF1

× · · · × Dj
OFmj

, where, for

1 ≤ m ≤ mj, Dj
OFm

= Dj
om

if (j,m) = src(l, q) for some l ∈ J , and
Dj

OFm
= 1 otherwise, with 1 = {∗} a one point set. Intuitively, Dj

OF stores
the “feedback outputs” of machine Mj. We then have an obvious “ feedback
output” function

foutj : Dj
o → Dj

OF

where for 1 ≤ m ≤ mj, we have πm(foutj(d1, . . . , dmj )) = dm if (j,m) =
src(l, q) for some l ∈ J , and πm(foutj(d1, . . . , dmj )) = ∗ otherwise, with
πm the m-th projection from the Cartesian product Dj

OF . Similarly, for each
k ∈ J we have an obvious input function

ink : De
o ×Πj∈JDj

OF → Dk
i

where for 1 ≤ n ≤ nk, with src(k, n) = (l, q), we have πn(ink(d, {dj}j∈J)) =
if l = e then πq(d) else πq(dl) fi, where πq denotes the q-th projection from
the corresponding Cartesian product.

– The i-o-t relation for ME is the relation

δE ⊆ (DE
i × SE) × (SE ×DE

o )

where for each (d, ({sj}j∈J , {dj}j∈J)) ∈ DE
i × SE , we define

((d, ({sj}j∈J , {dj}j∈J)), (({s′j}j∈J , {d′
j}),d

′)) ∈ δE

iff, for each l ∈ J , there exists (s′l,d
′′
l ) such that ((inl(d, {dj}j∈J), sl), (s′l,d

′′
l )) ∈

δMl , and where d′
l = foutl(d′′

l ) and the output to the environment d′ is de-
fined for each 1 ≤ n ≤ ne with src(e, n) = (j′, r) by πn(d′) = πr(d′′

j′).
Note that δE is a total relation, since each δMl is a total relation; therefore,
some desired (s′l,d

′′
l ) always exists. Furthermore, if each machine Mi is a

deterministic typed machine, then ME is also a deterministic typed machine.

Note that the above notion of synchronous composition of a machine ensem-
ble supports a hierarchical design methodology, in which entire sub-ensembles
can be “closed off” and regarded from the outside as a single machine, which
can then be synchronously composed at a higher level with other such machines,
which may themselves also be synchronous compositions of other sub-ensembles.

3.3 Environment Constraints

In our model of the behaviors of a system, we assume a nondeterministic envi-
ronment where there could be some constraints on the values generated by this



11

environment. In this work, we assume that the environment constraint can be
defined as a predicate

ce : De
o → Bool

so that ce(de
1, . . . , d

e
ome

) is true if and only if the environment can generate output
(de

1, . . . , d
e
ome

). We also assume that the constraint ce is satisfiable.
If desired, the environment could be regarded as another nondeterministic

machine with a single state, ∗, or even with a set of states Se, and would then
have the form E = (De

i , S
e, De

o, δE). The particular case of a constraint ce then
corresponds to the case where Se = {∗} and ((di, ∗), (∗,do)) ∈ δE iff ce(do) =
true. By viewing E as another machine, a synchronous composition would then
have no explicit external environment and would then yield a “closed” system.
We prefer to make the environment explicit in our model, since this is useful
both for design purposes and for hierarchical composition.

3.4 The Transition System and the Kripke Structure Associated to
a Machine Ensemble

To each machine ensemble that operates in an environment with a given envi-
ronment constraint, we can associate a transition system defining the behaviors
of the system.

Definition 4. Given a machine ensemble E = (J ∪ {e}, {Mj}j∈J , E, src) with
environment constraint ce, the corresponding transition system is defined as a
pair Ece = (SE ×DE

i , −→Ece
), where the transition relation −→Ece

is defined by

(s, i) −→Ece
(s′, i′)

iff a machine ensemble in state s and with input i from the environment has a
transition to state s′, and the environment can generate output i′ in the next
step:

(s, i) −→Ece
(s′, i′) ⇐⇒ ∃o ((i, s), (s′,o)) ∈ δE ∧ ce(i′).

The set Paths(Ece)(s,i) is the set of all infinite sequences (s, i) −→Ece
(s′, i′) −→Ece

(s′′, i′′) −→Ece
· · · of transition steps starting in state (s, i).

Let E be a typed machine ensemble with environment constraint ce, AP a
set of atomic propositions, and L : SE ×DE

i → P(AP ) a labeling function that
assigns to each state (s, i) ∈ SE × DE

i the set L(s, i) of atomic propositions
that hold in (s, i). Then (Ece , L) = (SE ×DE

i , −→Ece
, L) is the Kripke structure

associated to (E , ce, L).

4 Overview of the PALS Asynchronous Model

This section gives a high-level overview of the asynchronous PALS transfor-
mation of a synchronous machine ensemble. Section 4.1 makes explicit some
assumptions about clock drift and computation and communication times, and
defines some constant values. Section 4.2 gives a high-level overview of the asyn-
chronous system, and Section 4.3 focuses on the time line.



12

4.1 Some System Assumptions

Time Domain. The type of time (discrete or dense) is a parameter of the
model. It could be N, or Q≥0, or R≥0, for example. (If it is N, we can scale up
things so that one “logical time step” can correspond to many basic steps.) For
simplicity and fullest generality, in what follows we will assume that all is done
in R≥0.

Clock Drift and Clock Synchronization. A basic assumption is that a clock
synchronization algorithm is executing “in the background” and guarantees a
certain bound on the imprecision of the local clocks. We assume that this is
achieved by an external clock synchronization mechanism; that is, the difference
between the time of a local clock and “real” global time is assumed to be always
strictly less than a given bound ε.

To reason about clock drift in a general way, we assume a local clock function
cj for each machine Mj that assigns to each global instant r the local clock value
cj(r):

Definition 5. A function c : R≥0 → R≥0 is called an ε-drift local clock function
if and only if the following conditions are satisfied:

1. c is monotonic w.r.t. the ≤ relation and piecewise continuous,
2. ∀x ∈ R≥0, |c(x)− x| < ε, and
3. ∀x ∈ R≥0, inf{t | c(t) ≥ x} ∈{ t | c(t) ≥ x}.

The assumption of monotonicity is very good to have, particularly to have
a clear idea of when and where to tick the global clock. Synchronization can be
achieved while preserving monotonicity. The idea is the same as when one has
an expensive clock that typically does not allow to be wound backwards. How do
you adjust such a clock to the precise time? Well, if the clock is too fast, then
you can just “stop” your clock and wait until “real” time has caught up with
your clock time. If the clock is slow, then you quickly adjust it forward to the
“real” time. This is an isolated discontinuity which happens only from time to
time. Furthermore, the third condition above ensures that the time at which a
discontinuity of a local clock function c occurs is well-defined. Alternatively, one
can achieve the effect of the ε-drift local clock function c to always be continuous
by increasing the “ticking rate” of the local clock by a small factor whenever
the clock is detected to be slow, and likewise decreasing its “ticking rate” by
a small factor whenever it is detected to be fast. Continuity is preferable for
applications where control of physical parameters is involved; but our results,
although having a slightly simpler formulation for the continuous case, do not
require continuity, but only piecewise continuity of the local clocks satisfying
(1)–(3) above.

Execution Times. The shortest, respectively longest, time required for pro-
cessing input, executing a transition, and generating output is supposed to be,
respectively, αmin and αmax. Therefore, if a given execution of a machine Mj

takes time αj , then αmin ≤ αj ≤ αmax.



13

Network Delays. The point-to-point message transmission time is assumed to
always be greater than or equal to a minimum value µmin ≥ 0, and smaller than
or equal to some maximum time value µmax ≥ µmin.

The constants Γ = (ε, αmin, αmax, µmin, µmax) make up the performance
parameters of the PALS transformation.

4.2 The Asynchronous System with Clock Drifts: Overview

Given an ensemble E and performance parameters Γ , the asynchronous system
A(E , Γ ) is made up of a J-indexed family of objects and an environment, with
each object behaving like an “asynchronous typed machine” whose inputs and
outputs are received and sent by asynchronous message passing. The system is
supposed to execute in rounds according to “ticks” of a “logical clock.” Let T
denote the time between such “ticks of the logical clock” (or the period of the
logical clock). We often write ti for the time of the ith tick of the logical clock;
i.e., ti = i · T .

Each object j is equipped with two timers:

roundTimer is a timer that should expire at the tick of each logical clock; that
is, at the end of each period.

outputBackoffTimer is a backoff timer used to ensure that output from a ma-
chine is not sent into the network too early.

The actions of each object j can be summarized as follows:

– When roundTimer expires, input from the input buffer is read, a transition is
executed, and the generated output is put in the output buffer. In addition,
this timer is reset to the value T (denoting the period of the “logical clock”).

– When the outputBackoffTimer timer expires, the messages in the output
buffer are sent, provided that they have been generated. If the execution of
the transition generating the outgoing messages is not yet finished when the
timer expires, then the messages are sent when the execution of the transition
is finished. This timer is started and set to dlyout = 2 · ε monus µmin, where
monus is defined by x monus y = max(0, x− y), each time the roundTimer
expires.

4.3 Time-line Analysis

The “time-line analysis” for object j in A(E , Γ ) is therefore as follows:

1. At each local logical clock tick (that is, when the local clock cj shows ti), the
object gets the messages from the input buffer, executes a transition, and
puts the output messages in the output buffer. This starts somewhere in the
global time interval (ti − ε, ti + ε] for round i. This process may end at any
global time in the interval (ti − ε + αmin, ti + ε + αmax].



14

2. Since the messages cannot be sent into the network before the backoff timer
expires, and before the messages are “ready,” the messages from the output
buffers are therefore sent into the network at a global time that is strictly
greater than max(ti + ε− µmin, (ti − ε) + αmin) and is less than or equal to
max(ti + 3 · ε− µmin, (ti + ε) + αmax).

3. At any global time in the time interval (max(ti + ε, (ti − ε) + αmin +
µmin), max(ti + 3 · ε − µmin, (ti + ε) + αmax) + µmax], a message could
arrive at an object, at which time it is entered into the object’s input buffer.

4. When the local clock shows ti+1, the object starts all over from the first
point above.

Fig. 3. PALS timeline.

An overview of this timeline is depicted in Fig. 3. It is worth remarking that
some of the time intervals are right-closed. For example, the “local clock tick” in
item (1) above could happen at any time in the global time interval (ti−ε, ti +ε]
instead of the right-open interval (ti − ε, ti + ε) that might seem more intuitive,



15

given that the clock synchronization should ensure a difference that is strictly
smaller than ε between the local clock time and global time. However, the “local
tick” could happen at time ti + ε as well: At all global times ti + ε−∆ for small
∆ > 0, the local clock shows ti − ∆/2, and at global time ti + ε the local
clock jumps to, say ti + ε. This scenario satisfies the assumptions on the clock
synchronization, yet the “local logical tick” happens at time ti + ε. Section 6
gives further explanations on this issue.

Constraints. For this to work, we must ensure that messages generated for
round i+1 should be received sometime in the global time interval (ti+ε, ti+1−ε],
which is (ti+ε, ti+T−ε]. Therefore, the message arrival interval (max(ti+ε, (ti−
ε) + αmin + µmin), max(ti + 3 · ε − µmin, (ti + ε) + αmax) + µmax] must be a
subset of (ti + ε, ti + T − ε]. This implies that we must have

1. ti + ε ≤ (max(ti + ε, (ti − ε) + αmin + µmin), and
2. max(ti + 3 · ε− µmin, (ti + ε) + αmax) + µmax ≤ ti + T − ε.

(1) holds trivially. (2) implies that

T ≥ µmax + 2 · ε + max(2 · ε− µmin, αmax).

Note finally that, although this paper presents the “optimal” PALS trans-
formation, all correctness results hold as long as the backoff timer is always
initialized to a value b ≥ 2 · ε monus µmin and the PALS period T ≥ µmax + 2 ·
ε + max(b, αmax), which both hold in the avionics case study in Section 9.

5 PALS Formal Model in Real-Time Maude

This section presents the formal specification of the asynchronous PALS system
A(E , Γ ) associated to a synchronous machine ensemble E with environment con-
straint ce, under the assumptions in Section 4.1, as a rewrite theory in Real-Time
Maude. In particular, Sections 5.1 to 5.5 formally specify A(E , Γ ) as a rewrite
theory in Real-Time Maude, and Section 5.6 defines the initial states.

5.1 Some Sorts

We start by discussing some sorts used in this specification.

Local States. The state component of machine j has sort Sj . For convenience,
we add a supersort State of all such states:

sort State . --- supersort of local states
subsorts S1 ... S|J| < State .



16

It may take some time to compute the next local state of a machine. During
this transition computation time, the local state has the value [s, t], where s is
the next state, and t is the time remaining until the execution of the transition
is finished. Such a term [s, t] is called a delayed state, where the sort DlyState
is defined as follows:

sort DlyState .
subsort State < DlyState .

op [_,_] : State Time -> DlyState [ctor right id: 0] .

Note that the fact that 0 has been defined as a right identity mens that [s,0]= s.
Likewise, during the execution of a transition generating the messages for the

next round, these messages are not yet ready to be sent, and hence the output
buffer has the value [msgs, t], which we call a delayed configuration:

sort DlyConfiguration .
subsort Configuration < DlyConfiguration .

op [_,_] : Configuration Time -> DlyConfiguration [ctor] .

The sort Configuration denotes multisets of objects and messages, formed with
an “empty syntax” multiset union operator “__” (juxtaposition) which is de-
clared to be associative (assoc) and commutative (comm) and have identity none
(id: none).

We also introduce a supersort Data of the sorts D1 . . .Dn of the data in the
wires:

sort Data .
subsorts D1 ... Dn < Data .

Each object is also assumed to know its local wiring diagram; that is, which
objects and ports are connected to its output ports in the synchronous system.
This knowledge is stored in a data structure called a local wiring, where the sort
LocalWiring is defined as follows:

sort LocalWiring .

op _-->_._ : Nat Oid Nat -> LocalWiring [ctor] .
op noWiring : -> LocalWiring [ctor] .
op _;_ : LocalWiring LocalWiring -> LocalWiring

[ctor assoc comm id: noWiring] .

Here, a connection p --> j. p′ says that the output port p of the current object
is connected to the input port p′ of object j. A local wiring is then a set of such
single connections formed with the associative-commutative union operator _;_
with identity the empty set constant noWiring.



17

5.2 The Class Declarations

Each machine Mj is translated into an object instance of a subclass C[j] of the
class Machine declared as follows:

class Machine | state : DlyState,
inBuffer : MsgConfiguration,
outBuffer : DlyConfiguration,
roundTimer : Time,
outputBackoffTimer : TimeInf,
clock : Time,
localWiring : LocalWiring .

class C1 .
...
class Ck .

subclass C1 ... Ck < Machine .

Note that several typed machines, say, Mj1 , . . . ,Mjr , can all be of the same
type, and can therefore all belong to the same subclass, i.e., C[j1] = · · · =
C[jr]. The state attribute denotes the local state of the machine. The inBuffer
attribute is the buffer of incoming messages. outBuffer is the output message
buffer. The timers roundTimer and outputBackoffTimer have been explained
in Section 4.2. The clock attribute shows the value of the local clock of the
object. Finally, the localWiring attribute assigns to each output port number
the set of input ports to which this port is connected. However, notice that here
a connection is only a reference for asynchronous message passing, and not a
real “wired” connection as in the synchronous model.

We assume that the environment also has input and output buffers, and that
it satisfies the same timing requirement as all the other objects. The environment
is therefore modeled as an object instance of a class Env that is declared as a
subclass of Machine:

class Env .

subclass Env < Machine .

Since we do not explicitly represent the internal “state” of the environment,
the state attribute for the environment is given the constant default value *:

op * : -> State [ctor] .

Note that treating the environment as another “wrapped” machine is crucial
for PALS, since in a real application the actual timing of inputs from the envi-
ronment may be quite unpredictable. Therefore, it is crucial for the environment
inputs to be buffered and synchronized by the object wrapping it in the exact
same way as all other machines are thus synchronized by their wrapper objects.



18

5.3 Messages

Messages have the general form

to j from j′ (p, d)

where j, j′ ∈ J ∪ {e}, 1 ≤ p ≤ nj , and d ∈ Dj
ip

. Therefore, p is the input port of
the intended recipient j, where data d from j′ is to be received.

We also use the dly operator on messages to model the delay of such messages
when they are in transit through the network, as explained in [23].

5.4 The Instantaneous Rewrite Rules

The following actions of the system are modeled by corresponding instantaneous
rewrite rules:

1. Receive an incoming message and put it into the inBuffer.
2. When the roundTimer expires, the inBuffer is emptied, a transition is ap-

plied, and the output is put into the outBuffer. Note that, since performing
a transition takes time, as already mentioned this is manifested by the fact
that the results of the tansition are “delayed”.

3. When the outputBackoffTimer expires, if the generated output is ready to
be sent, then the contents in the output buffer are sent into the network,
with appropriate message delays.

4. Otherwise, as soon as the generated output is ready to be sent after the
outputBackoffTimer has expired (i.e., the outputBackoffTimer has the
infinity value INF, as in the rule outputMsg2 below), then the generated
output is sent into the network.

Receive a Message. A message is received by an object and is inserted into
its inBuffer:

vars j j′ : Oid .
var B : MsgConfiguration . --- multiset of messages
var p : Nat .
var d : Data .

rl [receiveMsg] :
(to j from j′ (p, d))
< j : Machine | inBuffer : B >

=>
< j : Machine | inBuffer : B (to j from j′ (p, d)) > .

Note that the rule can also be applied when the machine is in a “delayed” state;
that is, the wrapper can buffer messages while the internal machine is executing
a transition.



19

Reading Input and Executing a Transition. When roundTimer expires,
the messages B in the inBuffer are read, and a transition is taken. Since dif-
ferent classes will have different transitions, executing transitions is modeled by
a family of rewrite rules, one for each class C[j]. Notice that the resulting state
and messages are delayed by a value αmin ≤ X-DLY ≤ αmax. In addition, the
roundTimer must be reset to expire at the same time in the next round; i.e., it
must be reset to the round time T , adjusted for possible clock jumps as explained
in Section 6. Likewise, the outputBackoffTimer must be set to 2 · ε− µmin:

vars X-DLY LT : Time .
vars S NEXT-STATE : State .
var W : LocalWiring .
var dj1 : Dj

o1
.

...
var djmj

: Dj
omj

.

crl [applyTrans] :
< j : C[j] | inBuffer : B, roundTimer : 0, state : S,

localWiring : W, clock : LT >
=>
< j : C[j] | inBuffer : none,

state : [NEXT-STATE, X-DLY],
roundTimer : T - adjust(LT, T, 0),
outputBackoffTimer :

(2 · ε monus µmin) monus adjust(LT,T, 0),
outBuffer : [makeMsg(j, W, (dj1 , . . . , djmj

)), X-DLY] >
if X-DLY >= αmin and X-DLY <= αmax

/\ ((vect[j](B), S), (NEXT-STATE, (dj1 , . . . , djmj
))) ∈ δMj .

Here, given a complete set B of messages of the form

(to j from j′1(1, d1)) ... (to j from j′nj
(nj , dnj)) (†)

the function vect[j](B) maps B to the vector of inputs (d1, . . . , dnj ). makeMsg is
the obvious (but a bit tedious to spell out in detail) function that looks at the
local wiring diagram W, takes the vector of output data from j, and produces the
set of messages for the machines and environment getting inputs from that wire.
For example, for the system in Fig. 2, makeMsg(3, src, (d1, d2, d3)) produces the
message configuration

(to 1 from 3 (1, d1))
(to e from 3 (1, d1))
(to e from 3 (2, d2))
(to 2 from 3 (3, d3))

Expiration of the outputBackoffTimer. When the outputBackoffTimer ex-
pires, and the messages are already generated (that is, the output buffer matches



20

MSG MSGS), the messages in the output buffer are sent into the network one by
one, each message with its own nondeterministic delay (NTW-DLY). The timer is
turned off (i.e., set to the infinity value INF) after the last message has been
sent:

var MSGS : Configuration .
var MSG : Msg .
var NTW-DLY : Time .

crl [outputMsg1] :
< j : Machine | outBuffer : MSG MSGS, outputBackoffTimer : 0 >
=>
< j : Machine | outBuffer : MSGS,

outputBackoffTimer :
if MSGS == none then INF else 0 fi >

dly(MSG, NTW-DLY)
if µmin <= NTW-DLY and NTW-DLY <= µmax .

If the execution of the transition and the generation of the outgoing messages
is not finished when the outputBackoffTimer expires (that is, the output buffer
has the form [msgs, t] for t > 0), the timer is just turned off:

var NZT : NzTime .

rl [turnOffOutTimer] :
< j : Machine | outBuffer : [MSGS, NZT], outputBackoffTimer : 0 >

=>
< j : Machine | outputBackoffTimer : INF > .

End of a Transition with Possible Immediate Output. When the exe-
cution of a transition and the generation of outgoing messages is finished, the
“delay” of the generated messages in the output buffer is 0. If, in addition,
the outputBackoffTimer has expired (is INF), then the messages in the output
buffer are immediately sent into the network one by one, each message with its
own delay (rule outPutMsg2); otherwise the outgoing messages are kept in the
output buffer, but the delay wrappers on the generated messages disappear (rule
transitionFinished):

crl [outputMsg2] :
< j : Machine | outBuffer : [MSG MSGS, 0],

outputBackoffTimer : INF >
=>
< j : Machine | outBuffer :

if MSGS == none then none else [MSGS, 0] fi >
dly(MSG, NTW-DLY)
if µmin <= NTW-DLY and NTW-DLY <= µmax .



21

var TI : TimeInf .

rl [transitionFinished] :
< j : Machine | outBuffer : [MSGS, 0], outputBackoffTimer : T >

=>
< j : Machine | outBuffer : MSGS > .

Environment Behavior. Since the environment class Env is a subclass of
Machine, the environment inherits the rules for receiving and sending messages.
The “machine” rules for reading the input buffer and executing a transition
are replaced by one rule that consumes the messages in the input buffer, and
generates the output nondeterministically, but ensuring that the environment
constraint ce is satisfied:

var D1 : De
o1

.
...
var DME : De

ome
.

crl [consumeInputAndGenerateOutput] :
< e : Env | inBuffer : B, roundTimer : 0, clock : LT, wiring : W >
=>
< e : Env | inBuffer : none,

roundTimer : T - adjust(LT, T, 0),
outputBackoffTimer :

(2 · ε monus µmin) monus adjust(LT,T, 0),
outBuffer : [makeMsg(e,W,(D1, ..., DME)), X-DLY] >

if ce(D1, ..., DME) /\ X-DLY >= αmin and X-DLY <= αmax .

5.5 Time Behavior

This section describes the time behavior of the asynchronous system.

State and Tick Rule. The global state of the system has the form {C; t}, where
C is the configuration consisting of the objects and messages in the asynchronous
system, and t is the global time.

The tick rule, advancing the global time in the system, is the following slight
modification of the “usual” tick rule for object-oriented systems [23]:

var C : Configuration .
vars T T’ : Time .

crl [tick] :
{C ; T} => {delta(C, T, T’) ; T + T’} in time T’

if T’ <= mte(C, T) .



22

Here, delta is the function that defines how the passage of time affects the state,
and mte is the function that defines the smallest time until a timer becomes zero.
These functions are declared in the expected way:

op delta : Configuration Time Time -> Configuration [frozen (1)] .
op mte : Configuration Time -> TimeInf [frozen (1)] .

These functions distribute over the objects and messages in the state in the
expected way, and must be defined for individual objects and messages.

We first define delta: how does time elapse affect the timers? If from time t,
time advances by ∆, then the local clock has advanced from cj(t) to cj(t + ∆),
that is, by cj(t + ∆)− cj(t), where cj(t) is assumed to be the value T4 given in
the clock attribute:

vars t ∆ T1 T2 T3 T4 T5 : Time .

eq delta(< j : Machine | roundTimer : T1, outputBackoffTimer : TI,
state : [S, T3], clock : T4,
outBuffer : [MSGS, T3] >, t, ∆) =

< j : Machine | roundTimer : T1 monus (cj(t + ∆) - T4),
outputBackoffTimer : TI monus (cj(t + ∆) - T4),
state : [S, T3 monus ∆],
clock : cj(t + ∆),
outBuffer : [MSGS, T3 monus ∆] > .

eq delta(< j : Machine | roundTimer : T1, outputBackoffTimer : TI,
clock : T2,
outBuffer : MSGS >, t, ∆) =

< j : Machine | roundTimer : T1 monus (cj(t + ∆) - T2),
outputBackoffTimer : TI monus (cj(t + ∆) - T2),
clock : cj(t + ∆) > .

As for mte, it will be the smallest of the mte’s of objects and messages in the
configuration, where the mte of an object is just defined as the smallest time until
one of the two timers become zero, or until the delay on the outgoing messages
in the output buffer reaches 0. This is not a constructive definition, but this
just reflects the fact that we do not model the underlying clock synchronization
“constructively.” The assumption of monotonicity of the local clock functions is
crucial to make this definition of mte well defined.

Finally, defining delta and mte on messages is trivial:

eq delta(dly(MSG, T1), T2, T) = dly(MSG, T1 monus T) .
eq mte(dly(MSG, T1), T2) = T1 .

5.6 Initial States

We define the initial states of the system to start at time t0, defined by t0 = T−ε.
We do not start at time 0 since:



23

– local clocks could be less than the global clock;
– transitions are only taken (and hence output produced) when input is avail-

able.

At global times (i · T ) + t0, for all i ∈ N, the state components are undelayed
and consistent, and all the input buffers are full.

What are the “initial” values of the object attributes at time t0?

– The clock attribute of each object is cj(T − ε), and we have 0 ≤ T − 2ε <
cj(T − ε) < T .

– The outputBackoffTimer should be turned off at this time, as all outgoing
messages have been sent.

– The roundTimer, which is supposed to expire at each (local) time i·T should
be initialized to T − cj(t0), where it follows from the above clock values in
the initial state that 0 < T − cj(t0) < 2ε.

– The state attribute should be an initial state of the expected sort.
– The inBuffers are full of messages.
– The outBuffers should be empty.
– There are no messages in transit in the network.
– The local wiring is constant and maps the ports to the input wires as illus-

trated below.
– The initial input (de

o1
, . . . , de

ome
) from the environment should satisfy the

environment constraint ce.

In addition, the input buffers should be consistent w.r.t. the src function. That
is, if src(j, l) = src(j′, l′) = (j′′, l′′), then the data value d in the message (to j
from j′′ (l,d)) in the inBuffer of object j must equal the data value d′ in the
message (to j′ from j′′ (l′,d′)) in the inBuffer of object j′.

For example, an initial state corresponding to the synchronous machine in
Fig. 2 could be the following:

{< 1 : C1 | clock : c1(t0), roundTimer : T − c1(t0),
outputBackoffTimer : INF,
inBuffer : (to 1 from 3 (1, d3

o1
))

(to 1 from e (2, de
o1
)),

outBuffer : none, state : s1,
localWiring : 1 --> 3.1 >

< 2 : C2 | clock : c2(t0), roundTimer : T − c2(t0),
outputBackoffTimer : INF,
inBuffer : (to 2 from 3 (1, d3

o3))
(to 2 from e (2, de

o2
)),

outBuffer : none, state : s2,
localWiring : 1 --> e.3 >

< 3 : C3 | clock : c3(t0), roundTimer : T − c3(t0),
outputBackoffTimer : INF,
inBuffer : (to 3 from 1 (1, d1

o1
))

(to 3 from e (2, de
o1
)),



24

outBuffer : none, state : s3,
localWiring : 1 --> 1.1 ; 1 --> e.1 ;

2 --> e.2 ; 3 --> 2.1 >
< e : Env | clock : ce(t0), roundTimer : T − ce(t0),

outputBackoffTimer : INF,
inBuffer : (to e from 3 (1, d3

o1
))

(to e from 3 (2, d3
o2
))

(to e from 2 (3, d2
o1
)),

outBuffer : none,
localWiring : 1 --> 1.2 ; 1 --> 3.2 ; 2 --> 2.2 >

;
t0 }

for values s1, d1
o1

, . . . of appropriate sorts.

6 Consequences of Clock Synchronization

The following, perhaps slightly surprising, facts are two consequences of having
local clock functions that are only piecewise continuous. They do not apply when
the clock functions are continuous.

Fact 1. Although the clock synchronization ensures that the difference between
any local clock and the global time is always strictly less than ε, it may happen
that a timer that is set to expire at (local) time t expires exactly ε time “units”
later; that is, the timer could expire at global time t + ε.

Proof. We can have a clock c(t) obeying |c(t) − t| < ε and such that it has
a discontinuity at global time 11 but gets arbitrarily close to the value 10 for
t < 11, i.e., lim

t<11, t→11
c(t) = 10. Instead at time 11, the clock jumps to a value

10 < c(11) < 12.

The above fact has a practical consequence in that timer-driven events that
are supposed to happen at (“local”) time T may happen at any global time in
the interval (T − ε, T + ε] (instead of in the right-open interval (T − ε, T + ε)).

Note that if all clocks are continuous, this behavior is impossible so that a
timer set to expire at local time t must indeed expire within the global time
interval (t− ε, t + ε).

Fact 2. In the presence of only piecewise continuous clocks with maximum drift
strictly less than ε, a periodic timer of period p which is reset when the local
timer expires can drift from the ideal time strictly beyond ε.

Proof. It is sufficient to show a concrete example. Let ε = 1, p = 10, and c(0) = 0.
As shown by Fact 1, we can have lim

t<11, t→11
c(t) = 10 but c(11) = 11.9. Then the

timer is reset to 10, and we can have c(21.9) = 22.8. Therefore, the second time
the timer is set, namely at time 21.9, the time has drifted 1.9 time units from
the ideal timer. Note that, by repeating this type of behavior, it is possible for
the timer to drift an arbitrary distance from the ideal timer.



25

This second fact implies that we must set the timers not to the round time T ,
but must adjust the new timer value to account for the possible “clock jump”.
Fortunately, in our asynchronous model, this “offset” can be computed without
knowing anything except the local clock value, the length of the period, and the
“starting time” of the first period:

Fact 3. It is possible to keep a timer with a local clock c(t) set to expire at
times k · p + τ (with 2ε ≤ p) with a drift less than or equal to ε from the ideal
timer by resetting it each time it expires, say at time c(t), to the new value
p− adjust(c(t), p, τ), where adjust(c(t), p, τ) = c(t)− ((1(c(t)− τ)/p2 ∗ p) + τ).

Therefore, given the current local time t, the round time T , and the start
time of the timer in the first round (τ), the value which should be subtracted
from the new timer value is adjust(t, T, τ).

This need to explicitly incorporate into the model the adjustment for clock
resets when the timers expire is not due to peculiarities with our way of modeling
clock synchronization, but must be done for the system whenever we have a clock
synchronization algorithm that can adjust the clocks in “jumps”. Of course, if
the clock functions are not only monotonic but also continuous (and not just
piecewise continuous), this adjustment is not needed, because no such “jumps”
can occur.

7 Correctness of the PALS Transformation

Given a typed machine ensemble E with associated environment constraint ce,
and values αmin, αmax, µmin, µmax, T, ε, and a vector c of ε-drift clock functions,
we have defined in Section 5 its asynchronous PALS transformation
A(Ece , αmin, αmax, µmin, µmax, T, ε, c) as an object-oriented Real-Time Maude
model. This section establishes a precise relationship between the synchronous
composition ME of the ensemble E defined in Section 3 and the asynchronous
model A(Ece , αmin, αmax, µmin, µmax, T, ε, c).

Notation. When the various parameters of the PALS transformation are im-
plicit, we sometimes write A(E) for A(Ece , αmin, αmax, µmin, µmax, T, ε, c).

Each synchronous transition step in the synchronous composition ME cor-
responds to multiple rewrite steps in A(E). The key idea is to define “bigger”
transition steps that consist of multiple rewrite steps in A(E), so that each of
these bigger transitions corresponds to a single transition step in ME .

Definition 6. A state {C;t} in A(E) is called stable iff

– all input buffers in C are full,
– all output buffers are empty (none), and
– there are no messages “in transit” in C.

All other states in A(E) are called unstable.



26

Intuitively, a stable state corresponds to a state (s, i) in ME , and a sequence
of rewrite steps between two stable states, reachable from some initial state,
corresponds to a transition in ME . However, due to time ticks, there could be
a rewrite sequence from one stable state to another (very similar) stable state
that does not correspond to a transition in ME .

7.1 The Transition System of Stable Configurations

Definition 7. A behavior in A(E) is a sequence

{C0 ; t0} −→ {C1 ; t1} −→ {C2 ; t2} −→ · · ·

of one-step rewrites in A(E), where {C0 ; t0} is an initial state of the form
described in Section 5.6.

Definition 8. For {Ci ; ti} a state in A(E) reachable from some initial state, a
path in A(E) is an infinite or nonextensible finite sequence

{Ci ; ti} −→ {Ci+1 ; ti+1} −→ {Ci+2 ; ti+2} −→ · · ·

of one-step rewrites in A(E). Furthermore, the above path is called time-diverging
if and only if for each time value t ∈ R≥0, there exists a q ∈ N such that tq ≥ t.
We denote by Paths(A(E)){C;t} the set of paths in A(E) starting in {C ; t}, and
denote by TDPaths(A(E)){C;t} the set of time-diverging paths.

The following theorem, whose proof is given in Appendix A, shows that it is
impossible to reach a deadlock state in A(E), and that Zeno behaviors are not
forced by the specification of A(E) due to some design error, but are instead
always avoidable.

Theorem 1. Let {C0; t0} be an initial stable state in A(E). Then, any finite
rewrite sequence

{C0; t0} −→ {C1; t1} −→ {C2; t2} −→ · · · −→ {Cn; tn}

in A(E) can be extended into a time-diverging path in TDPaths(A(E)){C0;t0}.

Definition 9. Let Stable(A(E)) denote both the set of states and the transition
system whose states are the stable states of A(E), and where “big step” stable
transitions, denoted

{C ; t} −→st {C ′ ; t′}

are defined as follows: {C; t} −→st {C ′; t′} iff there exists a behavior of A(E)
of the form

{C0 ; t0} −→ {C1 ; t1} −→ · · · −→ {Cn ; tn} −→ {Cn+1 ; tn+1} −→ · · ·

and numbers k, k′ with k < k′ such that

– C = Ck and C ′ = Ck′ are stable configurations, t = tk and t′ = tk′ , and



27

– {Ck ; tk} −→ {Ck+1 ; tk+1} −→ · · · −→ {Ck′ ; tk′} is a subsequence of
rewrites in such a behavior such that
• the sequence contains at least one application of an instantaneous rewrite

rule, and
• if Cj is not a stable state, for k < j < k′, then there is no j < l < k′

such that Cl is a stable state.
These two conditions imply that for some k < j < k′, for all k ≤ i < j,
all states {Ci; ti} are stable; and for all j ≤ l < k′ all states {Cl; tl} are
unstable.

The following theorem, proved in Appendix A, shows that stable states and
stable transitions provide a high-level “big step” view of any time-diverging
behaviors in A(E).

Theorem 2. Let E be a synchronous machine ensemble, and let {Ci; ti} be a
stable state reachable from an initial state according to the definition of initial
states in Section 5.6. Then, any time-diverging path

π : {Ci; ti} −→ {Ci+1; ti+1} −→ {Ci+2; ti+2} −→ · · ·

in TDPaths(A(E)){Ci;ti} can be composed into an infinite sequence

{Ci; ti} −→st {Ci+k1 ; ti+k1} −→st {Ci+k2 ; ti+k2} −→st · · ·

of stable transitions.
That is, there is a strictly monotonic function γπ : N → N with γπ(0) = 0

such that for each j ≥ 0, the rewrite sequence π(γπ(j)) −→ π(γπ(j) + 1) −→
· · · −→ π(γπ(j + 1)) corresponds to a stable transition π(γπ(j)) −→st π(γπ(j +
1)).

7.2 Relating the Synchronous and the Asynchronous Models

In this section we prove that Stable(A(E)) and Ece are bisimilar by first relating
stable states to states in the synchronous ensemble composition, and then by
showing that each synchronous transition has a corresponding stable transition,
and vice versa. This bisimilarity is then lifted to the level of Kripke structures to
show that Stable(A(E)) and Ece satisfy the same temporal logic properties. We
further expand this important result to prove similar equivalences for satisfaction
of temporal logic properties in two increasingly more general systems: (i) one
where “stuttering” tick transitions between stable states are also allowed; and
(ii) the entire asynchronous system A(E).

The relation between a stable state and the corresponding state in the syn-
chronous composition is fairly obvious:

Definition 10. Let

sync : Stable(A(E)) → SE ×DE
i

be a function that maps each stable state of the asynchronous model to the cor-
responding state of the synchronous system as follows:



28

– The local state of each object j, given in the object’s state attribute, deter-
mines the local state in Mj. This is well defined, since in a stable state, the
state attribute does not have a “delayed” value.

– The messages in the input buffers determine the state of the environment
input and feedback wires using the functions foutj , j ∈ J defined in Defini-
tion 3 of Section 3.

More precisely, sync({C; t}) is defined to be the tuple

(((s1, . . . , sj), ((d1
o1

, . . . , d1
om1

), . . . , (dj
o1

, . . . , dj
omj

))), (de
o1

, . . . , de
ome

))

where:

– the state attribute of the object i has the value si in C,
– di

k (for i )= e) equals ∗ iff for all “connections” of the form k --> o.p (for
the given k) in the localWiring attribute of object i in C, the object o is
the identifier of the environment object of class Env, and

– otherwise, di
k, for i ∈ J ∪ {e}, equals the value d in a message

to l from i (p, d)

in the inBuffer of object l in C for some l, p for which the localWiring
attribute of object i contains a connection k -->l .p.

The requirement that the messages in the inBuffers in the initial states are
“wiring consistent” (see Section 5.6) ensures that sync is well-defined for all
reachable stable states.

Example 2. Let t0 be the initial state given in Section 5.6. Then sync(t0) is the
machine ensemble in Fig. 2, where the internal state of machine Mi is si, where
the value in the feedback wire from M1 to M3 is d1

o1
, and so on. That is, sync(to)

is the tuple
(((s1, s2, s3), (d1

o1
, ∗, (d3

o1
, ∗, d3

o3
))), (de

o1
, de

o2
)).

Theorem 3. The function sync defines a bisimulation between the transition
systems Stable(A(E)) and Ece = (SE ×DE

i ,−→E).

Proof. We need to prove:

1. If (s, i) −→E (s′, i′), then, for each stable state c such that sync(c) = (s, i),
there must exist a transition c −→st c′ of stable states c, c′ such that
sync(c′) = (s′, i′).

2. If c −→st c′, then it must be the case that sync(c) −→E sync(c′).

These two properties are proved in Appendix A as, respectively, Lemmas 9 and
8. !

The above bisimulation has a very important consequence at the level of
temporal logic properties. Suppose a transition system (A,→), and a set AP of
atomic propositions that are meant to describe basic properties of some states



29

in A. We can describe when p ∈ AP holds in state a ∈ A, written a |= p,
by the defining equivalence a |= p ⇔ p ∈ L(a), where L : A −→ P(AP ) is
a labeling function specifying which atomic propositions hold in which states.
The triple (A,→, L) is called a Kripke structure. Given a Kripke structure and
a state a chosen as the desired initial state, and given a temporal logic formula
ϕ with atomic propositions in AP , the semantics of temporal logic then defines
the satisfaction relation (A,→, L), a |= ϕ, settling whether ϕ holds in (A,→, L)
from the initial state a. We refer the reader to [7] for a detailed description of
the syntax and semantics of the temporal logic CTL∗ which includes the logics
CTL and LTL as special cases. In essence, a CTL∗ formula is built up from
atomic propositions in AP by the Boolean connectives ∨ and ¬, the “next” and
“until” temporal operators7 © and U , and the universal path quantifier ∀. If the
number of states reachable from an initial state a is finite, then the satisfaction
relation (A,→, L), a |= ϕ can be computed by a CTL∗ model checking algo-
rithm (see again [7]). In our case, the satisfaction of atomic propositions AP in
an ensemble E can be specified by a labeling function L : SE ×DE

i −→ P(AP ),
giving rise to a Kripke structure (Ece , L) as already explained in Section 3.4.
Likewise, we can define “the same” atomic predicates on the corresponding sta-
ble states of Stable(A(E)) just by using as our labeling the composed function
sync;L : Stable(A(E)) −→ P(AP ). In this way, we obtain the two closely-
related Kripke structures (Ece , L) and (Stable(A(E)), sync;L). The importance
of Theorem 3 for formal verification purposes is that it has as an immediate
corollary the following result, reducing the verification of CTL∗(AP ) properties
in (Stable(A(E)), sync;L) to the much simpler verification of such properties on
(Ece , L).

Theorem 4. For any formula φ ∈ CTL∗(AP ) and for any stable initial config-
uration {C0; t0} of the form described in Section 5.6, we have

(Stable(A(E)), (sync;L)), {C0 ; t0} |= φ
6

(Ece , L), sync({C0 ; t0}) |= φ.

Proof. The function sync defines not only a bisimulation between transition sys-
tems, but also one between the Kripke structures (Stable(A(E)), sync;L) and
(Ece , L), since if sync({C ; t}) = s, then {C ; t} and s satisfy the same atomic
propositions in their respective Kripke structures, since (sync;L)({C ; t}) =
L(sync({C ; t})) = L(s). It is well-known that bisimilar structures satisfy the
same CTL∗ formulas (see, e.g., [7]). !

We now extend the above theorem on preservation of temporal logic proper-
ties to increasingly more general settings in two steps: (i) we first allow “stut-
tering” between stable states by application of “tick” rules; and (ii) we then
consider the fully general extension to the asynchronous system A(E).

7 Other temporal operators such as ", !, ", R, and so on, can be defined in terms of
these and the Boolean connectives; likewise, ∃ can be defined in terms of ∀.



30

The first extension is based on considering the Kripke structure

(Stable(A(E)),−→st ∪ −→tick, (sync;L))

where, given two stable states c and c′, there is a transition c −→tick c′ iff there is
a one-step tick rewrite c −→ c′ in A(E). We can now relate the Kripke structures
(Ece , L) and (Stable(A(E)),−→st ∪ −→tick, (sync;L)) by a so-called stuttering
bisimulation [7, 4]. There is, however, a slight technical point to iron out: due to
the presence of dense time, it is possible to consider “Zeno behaviors” in which
we have an infinite sequence of “tick” transitions c0 −→tick c1 −→tick c2 . . .
whose ticking intervals converge to 0. Such behaviors are nonsensical and should
be ruled out by requiring that the behaviors of (Stable(A(E)),−→st ∪ −→tick

, (sync;L)) on which we evaluate our temporal logic formulas are time diverging.
In this way, a stable state can only stutter with ticks for a finite number of steps
before a stable transition step is taken. Of course, since now the notions of a
step in our synchronous system and in our extended model of stable states do
not agree due to stuttering, the “next” operator © should be ruled out from
formulas; that is, we should consider formulas in the fragment CTL∗ \{©}(AP ),
where the © operator is excluded.

Theorem 5. For any formula φ ∈ CTL∗ \{©}(AP ) and for any stable initial
configuration {C0; t0} of the form described in Section 5.6, we have

(Stable(A(E)),−→st ∪ −→tick, (sync;L)), {C0 ; t0} |= φ
6

(Ece , L), sync({C0 ; t0}) |= φ.

where the semantics of CTL∗ \ {©}(AP ) in (Stable(A(E)),−→st ∪ −→tick

, (sync;L)) is restricted to time diverging paths as explained in [22].

Proof. The function sync defines a stuttering bisimulation between the Kripke
structures (Stable(A(E)),−→st ∪ −→tick, (sync;L)) and (Ece , L). Specifically,
we “match” a time-divergent computation in (Stable(A(E)),−→st ∪ −→tick

, (sync;L)) with one in (Ece , L) by grouping together all stable states connected
by tick steps cn−→tick cn+1, which all correspond to the single state sync(cn) =
sync(cn+1) in the synchronous model (and hence L(sync(cn)) = L(sync(cn+1))).
Since the time-divergent behaviors of (Stable(A(E)),−→st ∪ −→tick, (sync;L))
are just like the ordinary behaviors of (Stable(A(E)),−→st, (sync;L)), except
for the possible insertion of a finite number of “tick” stuttering steps before each
stable transition, it is straightforward to adapt the bisimulation proof of Theorem
3 to show that for each time-divergent behavior of (Stable(A(E)),−→st ∪ −→tick

, (sync;L)) we have a matching behavior of (SE ×DE
i ,−→E , L) and conversely.

That is, that sync is a stuttering bisimulation as claimed. One can then use the
well-known result (see, e.g., [4, 17, 19]) ensuring that satisfaction of formulas in
CTL∗ \{©}(AP ) is invariant under stuttering bisimulations. !

In light of Theorem 2, the Kripke structure (Stable(A(E)),−→st ∪ −→tick

, (sync;L)) provides the following high-level view of any time-diverging behavior



31

in A(E), where in Fig. 7.2 below stable transitions are marked by (curved) thicker
arrows =⇒, and all the transitions filling the gaps between stable states are tick
transitions. Note that there is a fair degree of choice on when to take a stable
transition. Theorem 2 considered the case in which there are no “ticking gaps,”
but a finite number of ticks between stable states can be interleaved without any
problems.

Fig. 4. The top sequence represents a path in A(E), where the black circles represent
stable states, and the thick arrows represent stable transitions. The bottom sequence
shows the corresponding in Ece . The vertical lines denote the sync function, mapping
stable states in the asynchronous system to states in the synchronous system.

We are now ready to state and prove the fullest semantic equivalence be-
tween satisfaction of temporal logic properties in Ece and in A(E). The practical
importance of this semantic equivalence resides in the fact that, due to the great
amount of concurrency in A(E), the increase in the number of states when pass-
ing from Ece to A(E) is typically exponential, which easily makes the model
checking of A(E) unfeasible, whereas model checking the much simpler model
Ece may in fact be feasible. Of course, A(E) has many “unstable” states that
do not correspond to any states in Ece . Therefore, a temporal logic property
ϕ ∈ CTL∗(AP ) of Ece , when evaluated in A(E) has somehow to be restricted to
the stable states in order to be meaningful. This is accomplished by a related
formula ϕstable as explained below. The Kripke structure associated to A(E) is
denoted (A(E), L′) = (TA(E)GlobalSystem ,−→1

A(E), L
′), where TA(E)GlobalSystem is the set

of E-equivalence classes of ground terms of sort GlobalSystem for E the equa-
tions of the theory A(E), −→1

A(E) is the one-step rewrite relation between such
equivalence classes, and L′ is a labeling function satisfying the requirements ex-
plained in the theorem below, whose proof is given in Appendix A. This theorem
states that any CTL∗ property ϕ about the Kripke structure (Ece , L) associated
to the ensemble E has a semantically equivalent property ϕstable at the level
of the Kripke structure (A(E), L′) associated to the asynchronous system A(E).
Of course, because of stuttering, ϕstable does not contain the next operator ©;
however, ϕ can make use of the next operator, giving us full freedom to express



32

and verify CTL∗ properties at the level of the synchronous system specified by
E .

Theorem 6. Given a formula ϕ ∈ CTL∗(AP ), and assuming that a new state
predicate stable )∈ AP characterizing stable states has been defined, then there
is a formula ϕstable ∈ CTL∗ \ {©}(AP ∪ {stable}) (qualifying ϕ such that it is
restricted to stable states) defined recursively as follows:

astable = a, for a ∈ AP
(¬ϕ)stable = ¬ (ϕstable)

(ϕ1 ∧ ϕ2)stable = ϕ1stable ∧ ϕ2stable

(ϕ1 U ϕ2)stable = (stable → ϕ1stable ) U (stable ∧ ϕ2stable )
(©ϕ)stable = stable U (¬stable ∧ (¬stable U (stable ∧ ϕstable)))
(∀ ϕ)stable = ∀ ϕstable

such that for each stable state s in A(E) reachable from initial states defined in
Section 5.6, we have

(A(E), L′), s |= ϕstable ⇐⇒ (Ece , L), sync(s) |= ϕ,

where CTL∗\{©}(AP∪{stable}) formulas are interpreted in (A(E), L′) under the
time-diverging path semantics, and where L′ : TA(E)GlobalSystem

→ P(AP ∪{stable})
is a labeling function satisfying L′(s) = L(sync(s))∪ {stable} when s is a stable
state, and stable )∈ L′(s) otherwise.

8 Optimality Results

This section shows that the period T = 2ε+µmax +max(αmax, 2ε−µmin) is the
smallest possible for PALS.

Proposition 1. Assume that each object reads its input buffer at its local time
t0, and at that time starts performing a transition and generating new messages.
To ensure that all such generated messages are read by all other objects at or
before their local times t0 + T , we must have

T ≥ 2ε + µmax + αmax.

Proof. Assume for a proof by contradiction that T is strictly smaller than 2ε +
µmax + αmax. Then, T = 2ε + µmax + αmax −∆ for some ∆ > 0. Furthermore,
let k be a number k ≥ 3 such that ∆ < k · ε.

Now, assume two objects with local clocks c1 and c2 such that c1(t0+ε−∆
k ) =

t0 and c2(t0 +T −ε+ ∆
k ) = t0 +T . That is, at global time t0 +ε− ∆

k , the object 1
generates messages that should arrive no later than at global time t0 +T −ε+ ∆

k ,
when object 2 reads messages for the next round. However, it is easy to see that,
in the worst case (longest execution time and network delay), the messages from
object 1 arrive at global time t0+ε−∆

k +µmax+αmax, which is strictly later than
global time t0 + T − ε + ∆

k = t0 + ε + µmax + αmax − (k−1)∆
k , since (k−1) ∆

k > ∆
k

for k ≥ 3, so that object 2 misses the messages sent from object 1. !



33

Proposition 1 proves optimality of T when αmax ≥ 2ε − µmin. For the con-
verse, and highly unlikely, case where 2ε− µmin > αmax, it is harder to claim a
“general” optimality result. PALS uses a backoff timer to avoid that messages
arrive too early. One could imagine variations of PALS where there were no such
backoff timers are used, but where messages are instead equipped with, e.g., se-
quence numbers denoting the round in which they were generated. In such cases,
a backoff timer would not be needed, and T ≥ 2ε + µmax + αmax might suffice
as a smallest period.

However, if we want to ensure that each message arrives in the right round
by using backoff timers, then the backoff timers must be set to at least 2ε−µmin:

Proposition 2. To ensure that a message generated in round i (i.e., at local
time i ·T ) does not arrive too early (i.e., is read by another object at that object’s
local time i ·T ), the message must not be sent before local time i ·T +2ε−µmin.

Proof. Assume that object 1 sends a message to object 2 before local time i ·T +
2ε− µmin. That is, it sends the messages at its local time i · T + 2ε− µmin −∆
for some ∆ > 0. Again, we let k ≥ 3 be some number such that ∆ <k · ε.

Furthermore, suppose that c1(i · T + 2ε − ε + ∆
k − µmin − ∆) = i · T +

2ε − µmin − ∆. That is, the messages from object 1 are sent at global time
i · T + 2ε− ε + ∆

k − µmin −∆. With the smallest possible network delay, these
messages may arrive at global time i ·T +ε− (k−1)∆

k , whereas it could be the case
that c2(i · T + ε− ∆

k ) = i · T , and, therefore, object 2 would read the messages
from object 1 one round too early. !

The optimality of the period follows immediately:

Proposition 3. If each message for round i + 1 is sent no earlier than at local
time i · T + 2ε− µmin, then we must have

T ≥ 4ε + µmax − µmin

to ensure that each object has received these messages at its local time i ·T + T .

Proof. Assume for a counterexample that T = 4ε + µmax − µmin −∆ for ∆ > 0
with ∆ <k · ε for some k ≥ 3.

Let us assume two objects with local clocks c1 and c2, where c1(i · T + 2ε−
µmin +(ε− ∆

k )) = i ·T +2ε−µmin. That is, object 1 does not send its messages
for round i + 1 earlier than at global time i · T + 2ε − µmin + (ε − ∆

k ). In the
worst case, these messages arrive at global time i · T + 3ε − µmin + µmax − ∆

k .
However, it could well be the case that c2(i ·T + T − ε + ∆

k ) = i ·T + T . That is,
the messages arriving at time i · T + 3ε−µmin + µmax− ∆

k arrive later than the
global time i · T + T − ε + ∆

k = i · T + 3ε + µmax − µmin − (k−1)∆
k when object 2

reads its messages for round i + 1. !



34

9 An Avionics Case Study

To illustrate the benefits of PALS for model checking, we have defined in Maude
and Real-Time Maude, respectively, a synchronous version and a simplified asyn-
chronous PALS version of an active standby avionics system for deciding which
of two computer systems is active in an aircraft. The active standby system
is in essence a synchronous design, but must be realized as an asynchronous
distributed system for fault tolerance reasons. Our models are based on an
AADL [30] model for active standby developed by Abdullah Al-Nayeem at UIUC
of a similar active standby specification developed by Steve Miller and Darren
Cofer at Rockwell-Collins. The active standby system is extensively discussed
in [20].

As explained in Section 9.1, the active standby system consists of three com-
ponents. We have defined in Maude the synchronous composition of these three
components, and have defined in Real-Time Maude a much simplified PALS-
based asynchronous model of the active standby system. The simplifications in
the PALS-based model include: (i) perfect and perfectly synchronized clocks, (ii)
discrete time, (iii) the execution time of a transition and the minimum network
delay are both 0, and (iv) the maximum network delay is a parameter of the
system. As explained in Section 9.2, the synchronous model has 185 reachable
states and model checks in less than a quarter of a second, whereas even the
much simplified asynchronous model, with maximum messaging delay zero, has
more than 3 million reachable states and takes more than half an hour to model
check. If the messaging delay can be either 0 or 1, then the simple asynchronous
system has a huge number of reachable states exceeding the memory capacity
(8 GB RAM) of the server machine on which we performed the model checking
experiments.

Since the active standby model is quite small, and even a very simple asyn-
chronous version of it cannot be model checked, this example illustrates the prac-
tical impossibility of directly model checking DES systems, except in extremely
simplified cases. The great advantage of PALS and of Theorem 6 is that they
provide an indirect method for formally verifying DES systems of the general
style described in this paper by model checking their synchronous designs.

9.1 The Active Standby System

The active standby system is a simplified example of a fault-tolerant avionics
system. In integrated modular avionics (IMA), a cabinet is a chassis with a power
supply, internal bus, and general purpose computing, I/O, and memory cards.
Aircraft applications are implemented using the resources in the cabinets. There
are always two or more cabinets that are physically separated on the aircraft so
that physical damage (e.g., an explosion) does not take out the computer system.
The active standby system considers the case of two cabinets and focuses on the
logic for deciding which side is active. While one side is active, the other side
remains passive. The two sides receive inputs through communication channels.
Each side could fail, but it is assumed that both sides cannot fail at the same



35

time. A failed side can recover after failure. In case one side fails, the non-failed
side should be the active side. In addition, the pilot can toggle the active status of
these sides. Each side is dependent on other system components. In this example,
the full functionality of each side is dependent on these two sides’ perception of
the availability of these system components. Only a fully functional/available
side should be active, while the other side is alive but not fully functional.

Fig. 5. The architecture of the active standby system.

As already mentioned, our models of active standby are based on a model, de-
fined using the avionics standard AADL [30], developed by Abdullah Al-Nayeem.
The architecture of the system is shown in Figure 5. The system consists of three
components: Side1, Side2, and Environment. Side1 and Side2 encapsulate the be-
haviors of the two sides. The Environment component can be considered as an ab-
stract representation of other non-specified components that interact with Side1
and Side2. The design of the Active Standby system is globally synchronous; i.e.,
Side1, Side2, and Environment all have the same period and dispatch at the same
time. Each time Environment dispatches, it sends 5 Boolean values, one through
each of its out ports shown in Figure 5. These values are nondeterministically
generated, with the following constraints:
1. two sides cannot fail at the same time, and
2. a failed side cannot be fully available.

Therefore, in each round, the environment can nondeterministically generate any
one of 16 different 5-tuples of Boolean values. It is also worth remarking that the
connections between the two sides are “delayed” connections; a message sent in
one round is read by the other side in the next round.

Important properties that the Active Standby system should satisfy include:

R1: Both sides should agree on which side is active (provided neither side has
failed, the availability of a side has not changed, and the pilot has not made
a manual selection).



36

R2: A side that is not fully available should not be the active side if the other
side is fully available (again, provided neither side has failed, the availability
of a side has not changed, and the pilot has not made a manual selection).

R3: The pilot can always change the active side (except if a side is failed or the
availability of a side has changed).

R4: If a side is failed the other side should become active.
R5: The active side should not change unless the availability of a side changes,

the failed status of a side changes, or manual selection is selected by the
pilot.

9.2 Synchronous and Asynchronous Models of Active Standby in
Maude

To illustrate the usefulness of the PALS methodology, we have modeled both
the synchronous and a simplified PALS-based asynchronous version of the active
standby system in, respectively, Maude and Real-Time Maude. In this section
we just give a brief overview of these executable models; they are explained in
more detail in Appendix B, where the entire executable models are also given.

The Synchronous Model. We have defined the synchronous system in a object-
oriented style, where the two sides and the environment are modeled as objects;
furthermore, each output port is modeled by an object that contains the value
sent from the source. The transition relation of each side is a function.

The synchronous model has only one rewrite rule:

subsort EnvOutput < EnvOutputs .
op _;_ : EnvOutputs EnvOutputs -> EnvOutputs [ctor assoc comm] .

var ENVOUTPUT : EnvOutput . var RESTOUTPUT : EnvOutputs .
var : Configuration .

crl [step] :
{SYSTEM} => {genOutput(performTrans(envoutput(ENVOUTPUT, SYSTEM)))}
if ENVOUTPUT ; RESTOUTPUT := possibleEnvOutputs .

The constant possibleEnvOutputs denotes the set of all 16 possible environment
outputs, and is modeled as a set with an associative and commutative set union
operator _;_. The variable ENVOUTPUT can therefore match any one of these 16
environment outputs. The operator {_} encloses the entire state. Therefore, in
each round, this rule first generates the environment output nondeterministically,
these environment values are then entered into the appropriate output ports
(envoutput), and the transition function is applied to each side object (and all
output ports) (performTrans) by just applying the transition function to each
single side object, and, finally, the outputs from the side objects are entered into
the corresponding output ports (genOutput; this must obviously be done after
the transitions have been performed). The above functions are all declared to be
partial functions of sort Configuration to ensure that they are indeed applied
in the above stated order.



37

The Asynchronous Model. As already mentioned, we have modeled in Real-Time
Maude a much simplified PALS-based distributed asynchronous version of the
active standby system. We have made the following simplifying assumptions:

– The time domain is discrete.
– The clocks all advance at the same rate and are perfectly synchronized.
– The time to perform a transition, including reading from the input buffer

and writing to the output buffer, is zero.
– The minimum message delay is zero, and the maximum messaging delay is

a parameter constant maxMsgDelay.

The behavior of the asynchronous system can then be summarized as follows:

– The length of each PALS period is maxMsgDelay + 2.
– When a new round starts, an object reads the incoming messages from its

input buffer, performs the transition, thereby changing its internal state and
generating output messages, which are placed in the object’s output buffer.

– One time unit after the start of the PALS period, each object sends its
output messages from the output buffer into the network in one step.

– When an object receives a message, the message is stored in the object’s
input buffer.

In our model, we define “PALS wrappers” as object instances of the following
class:

class PalsWrapper | roundTimer : Time, inputBuffer : Configuration,
outputBuffer : Configuration,
outputBackoffTimer : TimeInf, machine : Object .

The machine attribute denotes the object modeling the actual component, and
the other attributes are as in Section 4.

The rewrite rules in this model are straightforward. The following rule reads
an incoming message and puts it into the input buffer:8

rl [readMsg] :
dly(msg D from port P of O’ to O), T)
< O : PalsWrapper | inputBuffer : MSGS >
=>
< O : PalsWrapper | inputBuffer : MSGS (msg D from port P of O’ to O) > .

When the round timer expires, messages are read from the input buffer, the
transition is performed and output is put into output buffer, and the output
timer is set to 1:

crl [executeTransitionSide1] :
< side1 : PalsWrapper | roundTimer : 0,

inputBuffer : MSGS,

8 The second argument of the dly operator shows the maximum remaining delay of
the message.



38

machine :
(< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1,
nexts1as : data(0) >) >

=>
< side1 : PalsWrapper | roundTimer : palsRound,

inputBuffer : none,
machine :
(< side1 : Side1 | state : L2, prevS2AS : N2,

prevManualSwitch : B2,
nexts1as : data(0) >),

outputBuffer :
dly(msg D2 from port s1AS of side1 to side2,

maxMsgDelay),
outputBackoffTimer : 1 >

if < side1 : Side1 | state : L2, prevS2AS : N2, prevManualSwitch : B2,
nexts1as : D2 >

C:Configuration
:= performTrans(< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1,
nexts1as : data(0) >

changeForm(MSGS)) .

The function performTrans is the transition function for the components de-
fined for the synchronous model (and hence changeForm is needed to transform
messages into machine inputs in corresponding “wires”). The rule for side2 is
entirely similar. The rule for the environment is also straightforward:

crl [envRound] :
< e : PalsWrapper | roundTimer : 0 >
=>
< e : PalsWrapper |

roundTimer : palsRound,
outputBuffer :

(dly(msg data(B1) from port s1F of e to side1, maxMsgDelay)
dly(msg data(B2) from port s2F of e to side2, maxMsgDelay)
dly(msg data(B3) from port mS of e to side1, maxMsgDelay)
dly(msg data(B3) from port mS of e to side2, maxMsgDelay)
dly(msg data(B4) from port s1FA of e to side1, maxMsgDelay)
dly(msg data(B4) from port s1FA of e to side2, maxMsgDelay)
dly(msg data(B5) from port s2FA of e to side1, maxMsgDelay)
dly(msg data(B5) from port s2FA of e to side2, maxMsgDelay)),

outputTimer : 1 >
if env(B1, B2, B3, B4, B5) ; ENVOUTPUTS := possibleEnvOutputs .

In the following rule, the messages in the output buffer are sent into the
network in one step:

rl [send] :
< O : PalsWrapper | outputTimer : 0, outputBuffer : MSGS >



39

=>
< O : PalsWrapper | outputTimer : INF, outputBuffer : none > MSGS .

Finally, the tick rule advances time by one time unit in each tick step:

crl [tick] : {CONF} => {delta(CONF, 1)} in time 1 if 1 <= mte(CONF) .

9.3 Comparing the Performance of Model Checking the
Synchronous and Asynchronous Models

We have compared the number of reachable states in our two models, as well
as the execution times times for model checking analysis. We have chosen an
invariant to compare the model checking performance in the synchronous and
asynchronous models. Model checking an invariant requires exhaustive search
of all reachable states and is therefore not subject to peculiarities in the search
strategy that can make the model checking performance of other LTL properties
in two different models less predictable, so that performance comparisons become
less reliable. The invariant we analyze is that when a side is failed, it will only
transmit the value 0.

In the synchronous model, the number of states reachable from the initial
state is 185, and both reachability analysis and LTL model checking take less
than a second on a 1.86 GHz server with 8 GB RAM.

We model check the invariant on the asynchronous model first with no mes-
saging delay. With instantaneous message transmission, we could model check
the system in 33 minutes, and Maude shows that there are then 3,047,832 reach-
able states. If we restrict the environment to 12 instead of 16 possible differ-
ent outputs (by not allowing side 1 to fail), then Maude shows that there are
1,041,376 reachable states, and it takes about 190 seconds to search the entire
state space. If we further restrict the environment so that no side can fail, then
we get 243,360 reachable states that can be analyzed in 30 seconds.

We have also analyzed the asynchronous model for maximal messaging delay
1. That is, each message may take either zero or one time units to arrive. In this
case, exhaustive state space exploration was aborted by the operating system
after two hours, most likely due to the execution using up too much memory.
Restricting to 12 environment possibilities showed that 1,496,032 states were
reachable from the given initial state. The analysis took 420 seconds of cpu time.
With only eight different environment possibilities, the numbers were 349,856
reachable states and 52 seconds.

These numbers are summarized in the following table (where the command
executed is the search command that searches for a state violating the invariant
described above):

Model Max.msg.dly 8 env. possibilities 12 env. poss. 16 env. poss.
# states ex.time # states ex.time # states ex.time

Synchr. n/a 47 0.04 sec. 107 0.1 sec. 185 0.2 sec.
Asynchr. 0 243,360 30 sec. 1,041,376 190 sec. 3,047,832 2000 sec.
Asynchr. 1 349,856 52 sec. 1,496,032 420 sec. aborted



40

To conclude, whereas the synchronous version can be model checked in less
than one second, only the simplest possible distributed asynchronous version can
be feasibly model checked.

It is worth remarking that the system is not particularly large: 10 messages
are sent in each round; the number of internal states of each machine is bounded
by 6 · 3 · 2 = 36; the data in the messages are either Boolean values or a natural
number between 0 and 2; time is discrete; executions and message transmissions
are instantaneous (when maxMsgDelay is 0; otherwise message delays are either 0
or 1); and there are no clock skews. Furthermore, there is nothing special about
our model that causes the state space explosion; indeed, the multiple messages
generated by an object are all generated in one step, and are also sent into the
network in one step. The main factor contributing to the state space explosion
is the great number of interleavings caused by the intrinsic concurrency of the
asynchronous system, since there are of course 10! different orders in which mes-
sages in one round can be received. Although in some cases this combinatorial
explosion can be partially tamed by model checking techniques such as partial
order reduction and (for systems exhibiting a good degree of symmetry) sym-
metry reduction (see, e.g., [7]), the great advantage of PALS and of Theorem 6
is that they offer the possibility of avoiding such an explosion altogether, by re-
ducing the (generally unfeasible) model checking of asynchronous DES systems
of the style described in this work to that of their much simpler synchronous
designs.

9.4 Model Checking the Requirements R1–R5

This section gives a brief summary of our model checking analyses of the syn-
chronous model w.r.t. the requirements R1–R5. Theorem 6 then gives the cor-
responding property that is then indirectly analyzed in the asynchrnous model.

A detailed discussion of the model checking analyses, including the formal
definition of the state predicates in the folrmulas below, can be found in Ap-
pendix B.

Requirement R1: Both sides should agree on which side is active (provided
neither side has failed, the availability of a side has not changed, and the pilot
has not made a manual selection).

By “side i being active” we assume that what is meant is that that side i
sends its number to the other side through its sideiactiveSide port; this value
is given in the nextias attribute of the sidei object. The parameterized atomic
proposition side_active can therefore be defined as follows:

op side_active : Nat -> Prop [ctor] .
eq {CONF < side1 : Side1 | nexts1as : data(N) >} |= side 1 active = (N == 1) .
eq {CONF < side2 : Side2 | nexts2as : data(N) >} |= side 2 active = (N == 2) .

We can then define what it means that both sides agree on which side is active:



41

op agreeOnActiveSide : -> Prop [ctor] .
eq {CONF

< side1 : Side1 | nexts1as : data(N1) >
< side2 : Side2 | nexts2as : data(N2) >} |= agreeOnActiveSide

= N1 == N2 and N1 =/= 0 .

Likewise, we can define state predicates side 1 availChanged (the full avail-
ability of side 1 has just changed), side 2 availChanged, changeInAvailability
(the full availability at least one of the sides has just changed), manSelectPressed
(the pilot has just toggled the manual switch), and side i failed. We can com-
bine these state predicates into formulas stating, respectively, that neither side
has failed and that there is no change in the assumptions:9

ops neitherSideFailed noChangeAssumption : -> Formula .

eq neitherSideFailed = (~ side 1 failed) /\ (~ side 2 failed) .
eq noChangeAssumption
= ~ changeInAvailability /\ ~ manSelectPressed /\ neitherSideFailed .

We are now ready to define formally Requirement R1. However, as explained
above, it is the passive side that monitors the manual selection and fully available
values from the environment. When the passive (or standby) side realizes that the
active side should change, it notifies the currently active side. This notification
will arrive in the next iteration, so there is a round in which each side thinks
that it is active. The best we can hope for is that they agree either in this round
or in the next; furthermore, if one side fails in the next round, then we may still
not have an agreement, so the following is the best we can hope for:

op R1 : -> Formula .
eq R1 = [] (noChangeAssumption

-> (agreeOnActiveSide
\/ O (neitherSideFailed -> agreeOnActiveSide))) .

Indeed, model checking this property returns true (in about 0.8 seconds), so
the property holds:

Maude> (red modelCheck(init, R1) .)
rewrites: 102954 in 829ms cpu (837ms real) (124097 rewrites/second)

result Bool : true

Requirement R2: A side that is not fully available should not be the active
side if the other side is fully available (again, provided neither side has failed,
the availability of a side has not changed, and the pilot has not made a manual
selection).
9 Remember that ~ denotes negation of Maude’s LTL formulas.



42

This property obviously does not hold as stated; the standby side monitors
full availability, and hence the change of active side might be delayed by one
round. Therefore the fomula R2a is the best we can hope for side 1 :

op R2a : -> Formula .
eq R2a
= [] ((noChangeAssumption /\ side 1 fullyAvailable /\ ~ side 2 fullyAvailable)

-> (~ side 2 active \/ O (noChangeAssumption -> ~ side 2 active))) .

Model checking shows (again in 0.8 seconds) that R2a holds in our model:

Maude> (red modelCheck(init, R2a) .)
rewrites: 101703 in 812ms cpu (814ms real) (125160 rewrites/second)

result Bool : true

We have model checked similar formulas for side 2, but the property does
not hold. The counterexamples provided by Maude’s model checker allowed us
to analyze the failures of the property for side 2 (see Appendix B); it may take
as much as four steps to reach the desired state after side 1 is no longer fully
available. Therefore, the best we can hope for side 2 is:

op R2b : -> Formula .
eq R2b
= [] ((noChangeAssumption /\ side 2 fullyAvailable /\ ~ side 1 fullyAvailable)

-> (~ side 1 active \/
O (noChangeAssumption -> (~ side 1 active \/

O (noChangeAssumption -> (~ side 1 active \/
O (noChangeAssumption -> (~ side 1 active \/

O (noChangeAssumption -> ~ side 1 active))))))))) .

Model checking this property returns true (in 0.8 seconds). The reason for
the difference in sides seems to be due to the fact that the sides are asymmetric
in their failure recovery. After a failure, there is bias towards side 1 being the
active side.

Requirement R3: The pilot can always change the active side (except if a
side is failed or the availability of a side has changed).

It is unclear what is meant by “The pilot can always change the active side.”
It is obvious that the pilot can always request the switch; however, the request
may be ignored, because it contradicts the requirement that if one side is fully
available and the other one is not, then the fully available side should be the
active side.

Given that it is easy to see that the environment always can generate a
manual selection request, we interpret requirement R3 as follows:

If both sides agree on the active side, both sides are fully available,
and then the manual selection is activated (and there is still no lack of
availability), then the active side should change either immediately, or, at
latest, in the next round (unless there are failures or lack of availability).



43

This interpretation can be formalized as the following LTL formula R3a:

op R3a : -> Formula .
eq R3a =

[] ((side 1 fullyAvailable /\ side 2 fullyAvailable /\ agreeOnActiveSide)
->
( (side 1 active

-> O ((manSelectPressed
/\ side 1 fullyAvailable /\ side 2 fullyAvailable)
-> (side 2 active

\/ O (noChangeAssumption -> side 2 active))))
/\ (side 2 active

-> O ((manSelectPressed
/\ side 1 fullyAvailable /\ side 2 fullyAvailable)
-> (side 1 active

\/ O (noChangeAssumption -> side 1 active)))))) .

Model checking this formula returns a counterexample, in which both sides con-
tinue to agree that side 1 is the active side, even though there are no failures
when the pilot presses the button. (Adding more next-state disjunctions does
not help.) Briefly stated, the source of the problem is the following:

– In most circumstances, if the system gets a manual selection request, this
request will be “recorded,” and the following consecutive manual selection
requests will be ignored.

– When some component is not fully available, the system cannot always obey
the pilot’s desire to switch the active side. However, even if the system cannot
grant the manual switch request, it remembers that the manual switch was
requested.

The path provided by Real-Time Maude’s model checker as a counterexample
to the validity of the above LTL property shows that the pilot makes a manual
switch request when a side is not fully available (and hence the switch of active
sides does not take place). In the next round, all components are OK, and the
pilot again requests a switch of active sides. But, this last request is ignored,
since the system registered that the pilot pressed the manual selection in the
previous round. All following consecutive manual requests will also be ignored.

It seems that the following property R3g is the strongest one that holds
(except in the initialization phase) in our specification. The property says that
if the two sides are fully available and do not receive a manual switch request
for two consecutive rounds, and stay fully available and receive a manual switch
request in the third round, then the active side will switch instantaneously :

op R3g : -> Formula .
eq R3g = [] ( (~ manSelectPressed /\ agreeOnActiveSide

/\ side 1 fullyAvailable /\ side 2 fullyAvailable
/\ (O noChangeAssumption))

-> ( (side 1 active
-> O O ( (manSelectPressed /\ side 1 fullyAvailable



44

/\ side 2 fullyAvailable)
-> (side 2 active)))

/\ (side 2 active
-> O O ( (manSelectPressed /\ side 1 fullyAvailable

/\ side 2 fullyAvailable)
-> (side 1 active))))) .

This property does hold in the initialization phase, so we start the model
checking of the above property in the second state:

Maude> (red modelCheck(init, O R3g) .)
rewrites: 102216 in 834ms cpu (840ms real) (122521 rewrites/second)

result Bool : true

Requirement R4: If a side is failed the other side should become active.
As seen in Fig. 6, only the failed side gets the signal about its failure. A failed

side signals the failure to the other side by sending a ’0’ value to the other side.
Since this communication has a one-step delay, the best we can hope for is that
the other side becomes active in the next state:

op R4 : -> Formula .
eq R4 = [] (((side 1 failed /\ ~ side 2 failed)

-> O (~ side 2 failed -> side 2 active))
/\ ((side 2 failed /\ ~ side 1 failed)

-> O (~ side 1 failed -> side 1 active))) .

This property holds in our model:

Maude> (red modelCheck(init, R4) .)
rewrites: 101597 in 825ms cpu (831ms real) (123055 rewrites/second)

result Bool : true

Requirement R5: The active side should not change unless the availability of
a side changes, the failed status of a side changes, or manual selection is selected
by the pilot.

For active side 1, this property can be defined as follows. If side 1 is active,
then it stays active forever, or until something changes:

op R5side1 : -> Formula .
eq R5side1
= [] (((side 1 active /\ side 1 fullyAvailable /\ ~ manSelectPressed)

-> (side 1 active W (~ side 1 fullyAvailable \/ manSelectPressed)))
/\ ((side 1 active /\ ~ side 1 fullyAvailable /\ ~ side 2 fullyAvailable

/\ ~ manSelectPressed /\ ~ side 1 failed)
-> (side 1 active W

(side 1 fullyAvailable \/ side 2 fullyAvailable
\/ manSelectPressed \/ side 1 failed)))) .



45

This formula also model checks successfully:

Maude> (red modelCheck(init, R5side1) .)
rewrites: 101702 in 828ms cpu (831ms real) (122803 rewrites/second)

result Bool : true

Side 2 is trickier, since if side 2 is active, it might also be inactivated when
side 1 wakes up from failure, without full availability changing, or sides failing.
We must therefore weaken the property for side 2, to exclude states where side 2
sends ’2’ only because it is some error recovery state, and consider the property
only for when side 2 is in state side2Active:

op s2InStateSide2Active : -> Prop [ctor] .
eq {CONF < side2 : Side2 | state : side2Active >} |= s2InStateSide2Active
= true .

op R5side2X : -> Formula .
eq R5side2X
= [] (((s2InStateSide2Active /\ side 2 fullyAvailable

/\ ~ manSelectPressed /\ ~ side 1 failed)
-> (s2InStateSide2Active W

(~ side 2 fullyAvailable \/ manSelectPressed \/ side 1 failed)))
/\ ((s2InStateSide2Active /\ ~ side 2 fullyAvailable

/\ ~ side 1 fullyAvailable /\ ~ manSelectPressed
/\ ~ side 2 failed /\ ~ side 1 failed)
-> (s2InStateSide2Active W

(side 2 fullyAvailable \/ side 1 fullyAvailable
\/ manSelectPressed \/ side 2 failed \/ side 1 failed)))

/\ ((side 2 active /\ ~ manSelectPressed /\ ~ side 2 failed
/\ side 1 failed)
-> (side 2 active W

(manSelectPressed \/ side 2 failed \/ ~ side 1 failed)))) .

This property also model checks successfully in less than a second

Maude> (red modelCheck(init, R5side2X) .)
rewrites: 102073 in 837ms cpu (845ms real) (121841 rewrites/second)

10 Related Work

We first explain how this work is related to other work on PALS involving our
colleagues at Rockwell-Collins and at UIUC [20, 2, 31]. The PALS transformation
itself and its optimal period, as well as the active standby example, are also
presented in [20, 2, 31]. The main new contributions of the work presented here
are the formal specification of PALS as a real-time rewrite theory parameterized
by the input synchronous ensemble and the performance bounds, the proof of
correctness of such a formal model, and the mathematical justification of the



46

method by which the verification of temporal logic properties of the DRTS thus
obtained can be reduced to the verification of such properties on the typically
much simpler synchronous model. We refer to [20, 2, 31] for additional discussion
on PALS and its engineering applications.

Generally speaking, distributed computation models are classified into: (i)
synchronous models, which operate in a lock-step fashion; and (ii) asynchronous
ones, where there is no a priory bound on message delays. Our notion of an
ensemble is an automata-theoretic version of a synchronous model quite similar
to other models such as, for example, the notion of a synchronous system in
[32], and the synchronous model of Mealy machines in [34], but with some dif-
ferences. For example, ensembles allow non-deterministic machines, whereas the
Mealy model in [34] assumes deterministic ones; and ensembles make explicit
the notion of an external environment, which is important for embedded system
applications, whereas in the model in [32] an environment would typically be
abstracted as another synchronous process.

The PALS pattern can then be understood as part of a broader body of work
on so-called synchronizers, which allow synchronous systems to be simulated by
asynchronous ones. Very general synchronizers such as those in [3] place no a pri-
ori bounds in message delays, so that physical time in the original synchronous
system is simulated by logical time10 in its asynchronous counterpart. More re-
cent work has developed synchronizers for the Asynchronous Bounded Delay
(ABD) Network model [6, 33], in which a bound can be given for the delay of
any message transmission from any process to any other process. PALS can then
be understood as a synchronizer that also assumes the ABD model (plus clock
synchronization) as its infrastructure and furthermore provides real-time guar-
antees needed for embedded systems applications. The main differences between
the synchronizers in [6, 33] and PALS can be summarized as follows:

1. The work on PALS is motivated by the fact that clock synchronization is
routinely used in distributed embedded systems. PALS therefore assumes
that a clock synchronization algorithm with a skew bound ε is running in
the underlying infrastructure. Instead, the synchronizers in [6, 33, 32] provide
a clock synchronization algorithm as part of the synchronizer itself.

2. As a consequence of (1), in systems using the synchronizers in [6, 33], the
nodes are not closely synchronized in physical time, so that, at the same
global physical time, one node could be in its nth round while another node
is in its kth round, for any n, k ∈ N. There may therefore be no global
physical time at which all nodes are in the same round. The fact that a
state s in the synchronous system may not have a corresponding “stable”
state s′ in the asynchronous execution makes it impossible to relate the
temporal logic properties of the synchronous system and its asynchronous
counterpart in physical time, as we have done for PALS, although it would
still be possible to relate them with a notion of logical time à la Lamport.
This lack of “physical time synchronization” is of course unsatisfactory for

10 That is, an assignment of logical clocks to processes in the style of [15], whose values
need not reflect physical time.



47

safety-critical and performance-critical distributed embedded systems, such
as avionics systems and motor vehicles, that have to satisfy hard real-time
requirements. In contrast, in PALS, at any moment in (global) physical time,
each node is either in round i or in round i + 1, and in each round there are
“stable” states in which all components are in the same round.

3. There is also a period optimality result in [33] which has a similar counterpart
in the PALS’s optimal period. However, as explained in (2), the meaning of
those results is different, with optimality in PALS ensuring synchrony in
physical time while this cannot be ensured by the synchronizer in [33].

The work by Tripakis et al. [34] provides formal models of synchrony and
asynchrony which can be related to those of PALS. As pointed out above, their
synchronous model is one of interconnected deterministic Mealy machines. As
in the case of PALS, the work in [34] also deals with the problem of mapping
a synchronous architecture consisting of a synchronous interconnection of state
machines to an asynchronous architecture. In their case, this is a loosely timed
triggered architecture, where processes communicate asynchronously and have
local clocks that can advance at different rates and where no clock synchroniza-
tion is assumed. This mapping is achieved through an intermediate translation
into a Kahn-like dataflow network with bounded buffers. The main result in [34]
is the preservation of streams and therefore the correctness of the asynchronous
architecture’s implementation of the original synchronous system. In some sense
their result shows the robustness of their mapping, since correctness is achieved
in spite of unpredictable communication delays and possibly different clock rates
in the different processes. The main differences with this work, and with the
PALS idea more generally, is that, due to the quite minimal assumptions made
on their asynchronous dataflow model, it does not seem possible to give hard
real time bounds for the behavior of the asynchronous system realization; and it
seems also problematic to deal with the freshness of environment data coming
from sensors that must be responded to within specific time bounds. Because our
concern is with systems, such as avionics ones, whose distributed implementation
must satisfy hard real-time constraints just as stringent as those of the original
synchronous systems they implement, the model in [34], while very useful and
flexible for correctness purposes, does not seem to fully meet the real-time needs
of such systems.

PALS is also closely related, with some important differences, to time-trig-
gered systems in the sense of J. Rushby [27]. More specifically, our PALS model
gives a detailed formal specification of the middleware to achieve a somewhat
different notion of a time-triggered system, for which we prove correctness and
time optimality results. In contrast, Rushby’s model (as corrected by L. Pike
for some minor inconsistencies [24, 25]) is more abstract, and does not specify a
detailed middleware. Indeed, Theorem 1 in [27] (similar to our Theorem 3) says
that states of the synchronous system are identical to what we call stable states
of the asynchronous system.

One important difference between the work of Rushby (and Pike) and ours
on PALS comes from the somewhat different definitions of the respective syn-



48

chronous models, which have significant repercussions in the behaviors of the
corresponding asynchronous models. In the synchronous model of [27, 25], in-
spired by Lynch’s synchronous model [16], each round has two phases: in the first
phase, processors send messages based (only) on their current state (this phase is
formalized by a function msgp : statesp × out nbrsp → msgs, for each processor
p, in [27]); in the second phase, each node reads the incoming messages and up-
dates its state accordingly (formalized by a function transp : statesp× inputsp →
statesp in [27]). In contrast, our synchronous model only has one “phase” in each
round: read incoming messages and update the state and generate new messages
(formalized by the relation δM ⊆ ((Di×S)× (S×Do)). This seemingly innocu-
ous difference carries over to the asynchronous timed models. In [27, 25], after
reading incoming messages, the system executes the transition, and only after
this execution phase is finished (and hence the new state is computed), are the
new messages created, which are then sent into the network after an additional
“backoff” delay corresponding to our dlyout value. In PALS, the transition ex-
ecution time is “included” in the backoff delay in sending the newly generated
messages into the network. For example, if the execution time α is greater than
dlyout , there is no (additional) backoff delay until the messages are sent into the
network. Therefore, the smallest possible period of the asynchronous system of
Rushby and Pike is typically significantly larger than the optimal PALS period.

Another important difference between [27, 25] and our work is that, to the
best of our knowledge, our work is the first to systematically study the equiva-
lence of temporal logic properties between the synchronous system and the en-
tire asynchronous one, including non-stable states. In particular, we show that
if the synchronous system is finite-state, verification of properties in the (typ-
ically infinite-state) real-time asynchronous system can be achieved by finite-
state model checking of the synchronous one. This does not seem possible in
Rushby’s formalization as given, since it includes a round counter that makes
the synchronous system itself infinite-state. Furthermore, Rushby’s synchronous
systems are deterministic—that is, are given by output and transition functions
msgp and transp—whereas we deal with systems that can be nondeterministic
both because of faults and because of inputs from an external environment. In
fact, it is the nondeterminism allowed in our synchronous model that makes
adding a round counter to indirectly express nondeterministic behaviors unnec-
essary.

Yet another body of related work is centered around the Globally Syn-
chronous Locally Asynchronous (GALS) Architecture, e.g., [10, 11, 26]. The kinds
of systems envisioned by the GALS approach are broader and more general than
those that can be naturally modeled with PALS, in the sense that GALS systems
may be widely distributed and it may not be possible to enforce or assume that
all message communication delays are bounded, although such delays may be
bounded within a synchronous subdomain. For example, [10] consider in detail
the formal verification of a GALS case study: a ground-plane communication sys-
tem where the ground and the plane can exchange files using a TFTP protocol
that executes asynchronously over unreliable UDP channels. Their model of this



49

system encapsulates synchronous subdomains as automata transition functions
within different processes of the LOTOS process calculus. Within the GALS
framework, several research efforts, including [11, 26], have studied the problem
of correctly simulating a synchronous model as an asynchronous GALS model.
In some sense, their solutions have some similarities with the approach in [34].
For example, the work in [26] uses a concurrent transition system formalism to
define both synchronous and asynchronous compositions of synchronous systems
linked by FIFO channels, and studies conditions under which a synchronous sys-
tem can thus be correctly simulated as an asynchronous GALS system. Likewise,
the work in [11] uses FIFO channels to connect several synchronous hardware
circuits into a GALS system that correctly simulates the lockstep synchronous
behavior of the bigger circuit obtained by composing the subcircuits. The main
difference between these approaches and the PALS pattern is that no hard real-
time guarantees can be given for such GALS implementations.

The ABD Network model used by the synchronizers in [6, 33] and by PALS
is a very useful abstraction. However, this abstraction places stringent demands
on an actual network design that must guarantee such bounded time delivery of
messages in the physical world under some stringent model of possible failures.
Furthermore, such a network must ensure that clock skew is always bounded
even in the presence of the failures assumed by the model. Therefore, an ac-
tual implementation of the ABD model must of necessity deal with issues such
as: (i) fault tolerance and consistency of message transmission, by replicating
network components and by providing appropriate middleware; and (ii) fault-
tolerant clock synchronization. These real-time and fault-tolerance requirements
have stimulated the development of various network architectures such as, e.g.,
[5, 14, 1, 12, 21, 9]. In general, such network architectures are classified as either
time-triggered, in which all activities are triggered by clock pulses, and event-
triggered, where events in the environment or in the processors can trigger system
activities [14]. We refer to the excellent survey by J. Rushby [28] for a detailed
discussion of several of these network architectures, specifically [14, 12, 21, 9],
some of which are realized in commercial products used in actual airplane or
automotive systems, and have in some cases become standards, such as the AR-
INC standard based on [12]. The good news from the PALS point of view is that
the ABD network assumptions made by PALS can indeed be met by real net-
work systems under stringent fault models. Another piece of good news is that,
as surveyed by J. Rushby in [29], some of these network architectures, including
advanced versions of [14], have been partially formally verified, further increasing
the confidence on their correct realization of the ABD network abstraction.

11 Conclusions and Future Work

This work has presented a formal specification of the PALS architectural pattern
for obtaining correct-by-construction distributed real-time systems from their
synchronous designs under given performance assumptions on the underlying
infrastructure. Using the PALS formal model we have given proofs of correctness



50

of PALS, and of optimality of the PALS period; and we have based on such
proofs a method to verify temporal logic properties of the DTRS so obtained
by verifying such properties on its much simpler synchronous design. We have
also illustrated this method’s usefulness by means of an avionics case study. We
believe that PALS, as a formalized architectural pattern that greatly reduces
system complexity, can substantially increase system quality and can greatly
reduce the cost of design, verification, and implementation of distributed real-
time systems; and also the cost of certifying highly critical systems of this kind.

Several future developments would be highly desirable. First, both the syn-
chronous composition of a machine ensemble and the PALS transformation it-
self should be automated within Maude and Real-Time Maude as parameterized
specification transformations. A first prototype of a parameterized specification
transformation in Maude for the synchronous composition of a machine ensemble
is reported in [13], but this should be made more flexible to support, for exam-
ple, object-based ensemble specifications. Second, since the formal executable
specifications of the wrappers used to build PALS as a collection of wrapped
abstract machines communicating through message passing are executable, they
can be used as a basis on which correct-by-construction PALS implementations
could be developed by code generation from synchronous implementations. Such
code generation schemes should be formally verified, based on a rewriting logic
semantics of the programming language of the target code.

References

1. T. F. Abdelzaher, A. Shaikh, F. Jahanian, and K. G. Shin. Rtcast: lightweight
multicast for real-time process groups. In IEEE Real Time Technology and Appli-
cations Symposium, pages 250–259. IEEE Computer Society, 1996.

2. A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, and D. D. Cofer. A formal
architecture pattern for real-time distributed systems. In Proc. IEEE Real Time
Systems Symposium. IEEE, 2009. To appear.

3. B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

4. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science, 59:115–
131, 1988.

5. B. Chen, S. Kamat, and W. Zhao. Fault-tolerant real-time communication in fddi-
based networks. In IEEE Real-Time Systems Symposium, pages 141–151, 1995.

6. C.-T. Chou, I. Cidon, I.S. Gopal, and S. Zaks. Synchronizing asinchronous bounded
delay networks. IEEE Trans. Commun., 38(2):144–147, 1990.

7. E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, and C. Tal-

cott. All About Maude - A High-Performance Logical Framework, volume 4350 of
Lecture Notes in Computer Science. Springer, 2007.

9. J. Berwanger et al. FlexRay–the communication system for advanced automotive
control systems. In SAE 2001 World Congress, pages 2001–01–0676. Society of
Automotive Engineers, 2001.



51

10. H. Garavel and D. Thivolle. Verification of gals systems by combining synchronous
languages and process calculi. In 16th International SPIN Workshop, volume 5578
of Lecture Notes in Computer Science, pages 241–260. Springer, 2009.

11. A. Girault and C. Ménier. Automatic production of globally asynchronous locally
synchronous systems. In Embedded Software, Second International Conference,
EMSOFT, volume 2491 of Lecture Notes in Computer Science, pages 266–281.
Springer, 2002.

12. K. Hoyme and K. Driscoll. SAFEbusTM . In 11th AIAA/IEEE Digital Avionics
Systems Conference, pages 68–73, 1992.

13. M. Katelman and J. Meseguer. Using the PALS architecture to verify a distributed
topology control protocol for wireless multi-hop networks in the presence of node
failures. To appear in Proc. RTRTS 2010.

14. H. Kopetz and G. Grünsteidl. Ttp - a protocol for fault-tolerant real-time systems.
IEEE Computer, 27(1):14–23, 1994.

15. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

16. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
17. P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University

of Texas at Austin, 2001.
18. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-

retical Computer Science, 96:73–155, 1992.
19. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Algebraic simulations. J. Log.

Algebr. Program., 79(2):103–143, 2010.
20. S.P. Miller, D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem. Implementing logical

synchrony in integrated modular avionics. In Proc. 28th Digital Avionics Systems
Conference. IEEE, 2009.

21. P.S. Miner. Analysis of the SPIDER fault-tolerant protocols. In LFM 2000: Fifth
NASA Langley Formal Methods Workshop, 2000.

22. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. Electronic Notes in Theoretical Computer Science, 176(4):5–27, 2007.

23. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

24. L. Pike. A note on inconsistent axioms in Rushby’s ”Systematic formal verifi-
cation for fault-tolerant time-triggered algorithms’. IEEE Trans. Software Eng.,
32(5):347–348, 2006.

25. L. Pike. Modeling time-triggered protocols and verifying their real-time schedules.
In FMCAD, pages 231–238. IEEE Computer Society, 2007.

26. D. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous imple-
mentation of modular synchronous specifications. Fundam. Inform., 78(1):131–159,
2007.

27. J. Rushby. Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Trans. Software Eng., 25(5):651–660, 1999.

28. J. M. Rushby. Bus architectures for safety-critical embedded systems. In Embedded
Software, First International Workshop, EMSOFT, volume 2211 of Lecture Notes
in Computer Science, pages 306–323. Springer, 2001.

29. J. M. Rushby. An overview of formal verification for the time-triggered architecture.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th International
Symposium, FTRTFT 2002, volume 2469 of Lecture Notes in Computer Science,
pages 83–106. Springer, 2002.

30. SEA. Architecture Analysis & Design Language (AADL). AS5506, Version 1.0,
SAE Aerospace, November 2004.



52

31. L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. C. Ölveczky. PALS: Physically
asynchronous logically synchronous systems. Technical report, University of Illinois
at Urbana-Champaign, 2009. Available at http://hdl.handle.net/2142/11897.

32. G. Tel. Introduction to Distributed Algorithms. Cambridge U.P., 1994.
33. G. Tel, E. Korach, and S. Zaks. Synchronizing ABD networks. IEEE Trans.

Networking, 2(1):66–69, 1994.
34. S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli, P. Caspi, and

M. DiNatale. Implementing synchronous models on loosely time triggered archi-
tectures. IEEE Trans. on Computers, 1, 2008.

A Proofs of Lemmas and Theorems

This appendix presents some lemmas used to prove some key theorems, as well
as proofs of those theorems whose proofs have been omitted from the body of
the paper.

Lemma 1. Let a timer in an object have value q at time t0. Then, the timer
expires at some global time in the interval (q + c(t0)− ε, q + c(t0) + ε] for c the
local ε-drift clock function of the object.

Proof. Some helpful lemmas, such as that the effect of two applications of the
function delta equals one delta application for the sum of the time advances,
etc., are proved below.

At global time t, the timer has the value q monus (c(t)− c(t0)) if everything
is done using one application of the delta function, which we will argue below
in Lemma 2 can be assumed. The timer will expire the first time that the above
value reaches 0. This happens at the first global time t1 when c(t1)− c(t0) ≥ q,
which is the same as c(t1) ≥ q + c(t0). This may happen at time t1 either when

1. c(t1) = q + c(t0), or when
2. c(t1) > q + c(t0) and there is no t′ < t1 such that the timer expires at time

t′.

Let us consider case (1) first. By definition of drift functions, t1 is in the
global time interval (c(t1) − ε, c(t1) + ε), which in case (1) equals the interval
(q + c(t0)− ε, q + c(t0) + ε), which is inside the interval in the theorem.

Let us now consider case (2). Now, c(t1) > q + c(t0), and hence we have
c(t1)− ε > q + c(t0)− ε. In addition, due to the assumption of ε-drift functions,
we have t1 > c(t1) − ε. Together, these last inequalities give t1 > c(t1) − ε >
q + c(t0) − ε, which proves the lower bound in the interval in the theorem.
Furthermore, t1 cannot be greater than q+c(t0)+ε, because at time q+c(t0)+ε,
the clock must be at least q + c(t0) and the timer would expire then. This proves
the upper bound. !

In the above proof, we reasoned about the expiration of a timer given that
the tick rule and the delta function are only applied once. We notice that the
timer value is only changed by either the tick rule, or when the timer expires.
The following shows that we can contract multiple tick steps into one for the
sake of reasoning about timers:



53

Lemma 2. For any object in state o, we have

delta(delta(o, t0, ∆), t0 + ∆, ∆′) = delta(o, t0, ∆ + ∆′)

for any time values t0, ∆,∆′.

Proof. The proof of this lemma follows directly from the equations defining the
semantics of the delta function in Section 5.5. Mathematically, this just follows
from the general fact that those equations imply that delta is in essence an
action of the additive monoid of time (R≥0,+, 0) over the configurations of
objects and messages. The details are left to the reader. !

Lemma 3. The roundTimer for each object expires somewhere in the global
time interval (i · T − ε, i · T + ε] for all i ∈ N, from any initial state of the form
assumed in Section 5.6.

Proof. In the initial state, the value of roundTimer for object j is T − cj(T − ε),
and the local clock is cj(T − ε). It follows directly from Lemma 1 that the timer
expires somewhere in the global time interval (T−ε, T +ε]. In addition, it follows
trivially that the local clock is greater than or equal to T .

Assume that at the time when the roundTimer first expires, the local clock
is T +∆ for some 2ε >∆ ≥ 0 (where ∆ will be strictly greater than 0 only if the
timer expired in a “clock jump”). In the rules applyTrans, the roundTimer is
reset to T −((T +∆)−1T+∆

T 2 ·T ), which equals T −∆, since T is greater than 2ε
according to our constraints. The sum of the local clock and the newly set timer
is therefore 2 · T , and the timer will therefore expire the next time sometime in
the global time interval (2T − ε, 2T + ε] according to Lemma 1. This reasoning
can be replicated for any round i. !

Lemma 4. The outputBackoffTimer of each object in states reachable from
the initial states of the given form expires somewhere in the global time interval
((i · T ) + (2ε monus µmin)− ε, (i · T ) + (2ε monus µmin) + ε] for each i ∈ N with
i ≥ 1.

Proof. In the initial state, the outputBackoffTimers are turned off. This timer
is set in the rule applyTrans and, for the environment, rule consumeInputAnd-
GenerateOutput, when the roundTimer expires. As shown in the proof of Lemma
3, the local clock is T + ∆ the first time this happens (for ∆ as described in
the above proof of Lemma 3). In these rules, the outputBackoffTimer is set
to (2ε monus µmin) monus ∆. We need to consider three cases: (1) 2ε ≤ µmin,
(2) 2ε > µmin and (2ε − µmin) < ∆, and (3) 2ε > µmin and (2ε − µmin) ≥ ∆.
In case (1), the outputBackoffTimer expires when it is set, which according to
Lemma 3 takes place in the global time interval (i·T−ε, i·T +ε], which equals the
time interval in Lemma 4 when 2ε ≤ µmin. In case (2), the outputBackoffTimer
is also set to 0, but the desired time interval in Lemma 4 is now ((i · T ) + (2ε−
µmin)− ε, (i ·T )+ (2ε−µmin)+ ε]. According to Lemma 1, the timer can expire
no earlier than at time T +∆−ε, which is later than or equal to the lower bound
T + (2ε − µmin) − ε in Lemma 4, since case (2) assumes (2ε − µmin) < ∆. The



54

upper bound T +(2ε−µmin)+ε follows from Lemma 3, since the timer expires at
latest at time T + ε, and we have assumed that in case (2) that (2ε−µmin) > 0.
Finally, for case (3), the local clock of the object under consideration is T + ∆,
and the outputBackoffTimer is set to (2ε − µmin) − ∆ ≥ 0. It then follows
from Lemma 1 that this local outputBackoffTimer expires for the first time
somewhere in the global time interval (T +(2ε−µmin)− ε, T +(2ε−µmin)+ ε].
Again, this reasoning can be replicated for any round i. !

Remark. The above lemmas should be read as safety and not as liveness
guarantees. That is, if time advances at all that far, then the timers expire in
the given intervals.

Lemma 5. Messages are sent from the output buffers in the global time interval
(iT − ε + max(2ε − µmin, αmin), iT + ε + max(2ε − µmin, αmax)] during round
each round i ≥ 1.

Proof. Messages are only generated into the output buffers when the roundTimers
expire. Then, the outputBackoffTimers are set, and expire within the time in-
tervals given in Lemma 4. At the same time (that is, when the roundTimer
expires), the execution delay is set to somewhere between αmin and αmax. Mes-
sages are only sent when the output backoff timer has expired and when the
execution delay has elapsed. Furthermore, we see that the backoff timer is only
turned off when it has expired (that is, when it has value 0). From Lemma 4, the
backoff timer expires strictly later than global time iT − ε + (2ε monus µmin);
furthermore, since the roundTimer expires strictly later than global time iT − ε,
the execution delay ends strictly later than at global time iT − ε + αmin, to-
gether giving the lower bound in the lemma, since max(2ε monus µmin, αmax) =
max(2ε− µmin, αmax) since αmax ≥ 0.

As for the upper bound, the roundTimer expires at latest at time iT + ε, and
hence the messages are ready to be sent at latest at global time iT + ε + αmax.
Likewise, the latest time the backoff expires is at time iT + ε+(2ε monus µmin),
together giving the upper bound. !

Lemma 6. The messages sent into the configuration in round i will be received
at times within the global time interval (i · T + ε, (i + 1) · T − ε].

Proof. As seen in Lemma 5, each message is sent out in round i somewhere in
the global time interval (iT −ε+max(2ε−µmin), iT +ε+max(2ε−µmin, αmax)],
and is given a delay between µmin and µmax. We see that the remaining delay
of a message decreases by the same amount that global time advances, and
that mte(m) = 0 for an undelayed message (which by the identity attribute
of the message delay operator is the same as a message with delay 0) implies
that the message must be received when its delay reaches 0 “for the first time.”
Therefore, each of these messages is created in the interval (iT − ε + max(2ε −
µmin, αmin), iT + ε + max(2ε − µmin, αmax)] and is received at some time in
the global interval (iT − ε + max(2ε − µmin, αmin) + µmin, iT + ε + max(2ε −
µmin, αmax) + µmax].

To prove the lemma, we must therefore show



55

1. (i · T ) + ε ≤ iT − ε + max(2ε− µmin, αmin) + µmin and
2. iT + ε + max(2ε− µmin, αmax) + µmax ≤ ((i + 1) · T )− ε.

Requirement (1) follows by arithmetic. The upper time limit requirement (2)
reduces to proving ε+max(2ε−µmin, αmax)+µmax ≤ T − ε, which follows from
the global requirement that T ≥ µmax + 2ε + max(2ε− µmin, αmax). !

These theorems, together with a trivial inspection of the rules and the well-
known timed behavior, together prove the time line described in Section 4.3:

Lemma 7. For all time diverging paths from the given initial states in A(E),
the behaviors have the following time line for all i ∈ N:

– at times in the global time interval (iT − ε, iT + ε] the roundTimers ex-
pire, all input buffers are read, and transitions corresponding to transitions
in the synchronous system are applied. The resulting states and output mes-
sages (stored in the output buffers) are undelayed no later than at global
time iT + ε + α, and the backoff timer expires at latest at time iT + ε +
(2ε monus µmin), ensuring that all these messages are sent to the global con-
figuration in the global time interval (iT − ε + max(2ε − µmin, αmin), iT +
ε+max(2ε−µmin, αmax)]; furthermore, also the messages generated nonde-
terministically by the environment are sent into the global configuration in
this interval;

– these messages are received at times within the global time interval (i · T +
ε, (i + 1) · T − ε], ensuring that all messages are received and stored in the
respective input buffers before or at global time (i + 1) · T − ε;

– a new round therefore begins at times in the global time interval ((i + 1) ·
T − ε, (i+1) ·T + ε]: the roundTimers expire, all input buffers are read, and
the transitions corresponding to those in the synchronous system are applied,
and so on.

The above lemma defines the behaviors from the given initial states, and are
crucial in the proof of the following:

Lemma 8. Let {C ; t} −→st {C ′ ; t′} be a transition in Stable(A(E)) for a
machine ensemble E. Then there is a transition (s, i) −→E (s′, i′) such that
sync({C ; t}) = (s, i) and sync({C ′ ; t′}) = (s′, i′).

Proof. (Sketch) Since {C; t} is the source of a stable transition, it is reachable
from an initial state in A(E); therefore, its local clocks and timers have appro-
priate values. Furthermore, since C is a stable configuration, all its input buffers
are full, all the output buffers are empty, and there are no (delayed or unde-
layed) messages in C outside of these buffers. In addition, the backoff timers are
turned off. It is easy to see by inspecting the rules that only the tick rule, the
rule applyTrans, or the rule consumeInputAndGenerateOutput can be applied.
Repeated applications of the tick rule leave us in stable states, until eventu-
ally the roundTimers start expiring. At these times, the rules applyTrans and
consumeInputAndGenerateOutput generate new messages and delayed states,



56

and by the above time line, all these messages will reach the input buffers before
the roundTimers expire, hence we have reached a new stable state C ′ when all
input buffers are full, but before transitions for the “next” round are applied.
The fact that the transitions are total relations ensure that the applyTrans rules
can always be applied when the roundTimers expire and the input buffers are
full; likewise, since the environment constraint is assumed to be satisfiable, the
rule consumeInputAndGenerateOutput is enabled when the timer expires.

The above reasoning shows that from a stable state {C ; t} we can always
reach another stable state {C ′ ; t′} by a transition {C ; t} −→st {C ′ ; t′}.

Assume that sync({C; t}) = ((s, (d1, . . . ,d|J|)), e). It is easy to see, and is
argued above, that in the rewrite path from a stable state to the next, each object
must have executed rule applyTrans exactly once, and that the environment
object has executed the rule consumeInputAndGenerateOutput exactly once.
Furthermore, when applyTrans is applied, the messages in the object’s input
buffer are the same as in C.

Consider an application of the rule applyTrans for object l. Now,
inl(e, (d1, . . . ,d|J|)) equals vecl(Bl) for the input buffer Bl of object l in C. Let
s′l be the new state and let d′′

l be the generated output in applyTrans. That is,

((inl(e, (d1, . . . ,d|J|)), sl), (s′l,d
′′
l )) ∈ δMl .

Likewise, let the environment generate the new messages e′. In the rewrite
path to the stable state C ′, these messages arrive at their respective input
buffers. It is then follows from the definition of sync that sync({C ′; t′}) =
((s′, (d′

1, . . . ,d′
|J|)), e

′), where d′
i = fouti(d′′

i ).
Now, we must show that each such stable transition {C ; t} −→st {C ′ ; t′}

corresponds to a transition sync({C ; t}) −→E sync({C ′ ; t′}) in E . Then, we
must prove that

((s, (d1, . . . ,d|J|)), e) −→E ((s′, (d′
1, . . . ,d′

|J|)), e
′).

That is,

1. there exists an output o to the environment such that
((e, (s, (d1, . . . ,d|J|))), ((s′, (d′

1, . . . ,d′
|J|)),o)) ∈ δE , and

2. ce(e′).

The second requirement is immediate, as the rule consumeInputAndGenerateOutput
only generates input from the environment that satisfies ce.

The first requirement follows directly from the definition of δE , where o is
given in the obvious way by oi = (d′′l )k if src(e, i) = (l, k). !

Lemma 9. Let ((s, (d1, . . . ,d|J|)), e) −→E ((s′, (d′
1, . . . ,d′

|J|)), e′) be a tran-
sition in ME for a machine ensemble E. Then, for all reachable {C ; t} such that
sync({C ; t}) = ((s, (d1, . . . ,d|J|)), e), there exists a {C ′ ; t′} such that
sync({C ′ ; t′}) = ((s′, (d′

1, . . . ,d′
|J|)), e′) and {C ; t} −→st {C ′ ; t′}.



57

Proof. (Sketch) The new environment output e′ can be generated by the en-
vironment object as long as it as valid output. For any stable state C whose
feedback wire states and internal states define (s, (d1, . . . ,d|J|)), the time-line
reasoning then implies that these messages will all be read in the correct time
interval, and the next feedback states will be generated. The remaining details
are left to the reader. !

Finally, we below restate Theorems 1, 2, and 6, and present their respective
proofs.

Theorem 1. Let {C0; t0} be an initial stable state in A(E). Then, any finite
rewrite sequence

{C0; t0} −→ {C1; t1} −→ {C2; t2} −→ · · · −→ {Cn; tn}

in A(E) can be extended into a time-diverging path in TDPaths(A(E)){C0;t0}.

Proof. The tick rules applies to all configurations and can advance time as much
as allowed by the function mte. The function mte is defined to be the smallest
time until some timer expires or a message becomes ripe. Lemmas 3 and 4 state
that the timers always expire somewhere in the respective global time intervals
(i ·T − ε, i ·T + ε] and ((i ·T )+(2ε monus µmin)− ε, (i ·T )+(2ε monus µmin)+ ε]
for each i ∈ N with i ≥ 1. Since T > 0, timers cannot force Zeno behaviors if
they are reset whenever they expire.

Consider the expiration of a roundTimer. The appropriate rule applyTrans
applies to such an object if (i) its local state is not delayed, (ii) the input buffer is
full, and (iii) there is a transition in the corresponding synchronous machine from
the current state and input. Condition (iii) follows from (i), (ii), and the fact that
the transition relation for each synchronous machine is a total relation. Condition
(i) is also fairly trivial, since the delay on the state component is always set to
a value less than or equal to αmax, and is only set in the applyTrans rules. By
the equation for delta, the state delay is reduced according to the elapsed time,
and when the delay is 0, then we get an undelayed state, since the state delay
operator is declared to have right identity 0. Since the roundTimer expires at
times (i·T−ε, i·T +ε], then the state component will be “undelayed” at latest at
time i·T+ε+αmax, which is before the next time interval ((i+1)·T−ε, (i+1)·T+ε]
(because T ≥ 2ε + αmax) when the applyTrans rule can be applied in the
next round. We must finally show (ii), that the input buffers are full whenever
the timers expire. This can be proved by mutual induction, also taking the
application of the sending rules into account. More informally, in the initial
state, the input buffers are full, and messages do not disappear from the input
buffer, except when rule applyTrans is applied. Then all the output messages
are generated, and, as argued below, will be sent out into the configuration in
due time. By Lemma 7, messages generated in round i will be received after the
roundTimer for the round has expired, and are hence saved until the roundTimer
expires for the next round, at which time the input buffers are therefore full.



58

The rules applyTrans do not apply to environment objects; instead, the rule
consumeInputAndGenerateOutput is always applicable when the environment
object’s roundTimer expires.

Now, consider another possible source for deadlock: the “timer” on the out-
going messages. This causes no problems, since when it becomes zero, then this
timer is removed in rule transitionFinished if the backoff timer is still turned
on, and in (multiple applications of) rule outputMsg2 when the backoff timer is
turned off.

A third possible source for a time block is the output backoff timer. Again,
such a timer does not cause any problems, since it is turned off in (repeated
applications of) rule outputMsg1 if the output messages have been generated,
and in rule turnOffOutTimer if the output is still delayed.

Finally, time advance is blocked when a ripe message is in the outermost level
of the configuration; that is, traveling between two nodes. As already explained,
this causes no problems, since the rule receiveMsg is always applicable when
there is a message in the system. !

Theorem 2. Let E be a synchronous machine ensemble, and let {Ci; ti} be a
stable state reachable from an initial state according to the definition of initial
states in Section 5.6. Then, any time-diverging path

π : {Ci; ti} −→ {Ci+1; ti+1} −→ {Ci+2; ti+2} −→ · · ·

in TDPaths(A(E)){Ci;ti} can be composed into an infinite sequence

{Ci; ti} −→st {Ci+k1 ; ti+k1} −→st {Ci+k2 ; ti+k2} −→st · · ·

of stable transitions.
That is, there is a strictly monotonic function γπ : N → N with γπ(0) = 0

such that for each j ≥ 0, the rewrite sequence π(γπ(j)) −→ π(γπ(j) + 1) −→
· · · −→ π(γπ(j + 1)) corresponds to a stable transition π(γπ(j)) −→st π(γπ(j +
1)).

Proof. The theorem follows directly from Lemma 7, since “all messages are re-
ceived and stored in the respective input buffer,” in addition to the fact that
messages were sent from the output buffer earlier in the period (the first item
in Lemma 7), characterizes the stable states. The function γπ is then defined as
follows:

– γπ(0) = 0,
– γπ(1) = k, for the k in the path π of the above form such that {Ci; ti} −→st

{Ci+k; ti+k} is a stable transition, and
– for all j ≥ 1, γπ(j + 1) = γπ(1) + γπγπ(1)(j).

Theorem 6. Given a formula ϕ ∈ CTL∗(AP ), and assuming that a new state
predicate stable )∈ AP characterizing stable states has been defined, then there



59

is a formula ϕstable ∈ CTL∗ \ {©}(AP ∪ {stable}) (qualifying ϕ such that it is
restricted to stable states) defined recursively as follows:

astable = a, for a ∈ AP
(¬ϕ)stable = ¬ (ϕstable)

(ϕ1 ∧ ϕ2)stable = ϕ1stable ∧ ϕ2stable

(ϕ1 U ϕ2)stable = (stable → ϕ1stable ) U (stable ∧ ϕ2stable )
(©ϕ)stable = stable U (¬stable ∧ (¬stable U (stable ∧ ϕstable)))
(∀ ϕ)stable = ∀ ϕstable

such that for each stable state s in A(E) reachable from initial states defined in
Section 5.6, we have

(A(E), L′), s |= ϕstable ⇐⇒ (Ece , L), sync(s) |= ϕ,

where CTL∗\{©}(AP∪{stable}) formulas are interpreted in (A(E), L′) under the
time-diverging path semantics, and where L′ : TA(E)GlobalSystem

→ P(AP ∪{stable})
is a labeling function satisfying L′(s) = L(sync(s))∪ {stable} when s is a stable
state, and stable )∈ L′(s) otherwise.

Proof. We prove simultaneously that for all reachable stable states s ∈ TA(E)GlobalSystem
and for all time-diverging paths π ∈ TDPaths(A(E))s,

(A(E), L′), s |= ϕstable ⇐⇒ (Ece , L), sync(s) |= ϕ

holds for all state formulas ϕ and

(A(E), L′), π |= ϕstable ⇐⇒ (Ece , L), sync(π) |= ϕ

holds for all path formulas ϕ, by induction on the structure of ϕ, where the
projection functions sync : TDPaths(A(E))s → Paths(Ece)sync(s) relating in-
finite paths in A(E) and Ece are defined in the obvious way, by sync(π)(i) =
sync(π(γπ(i))) for γπ the function in Theorem 2. The fact that we only consider
time-diverging paths (remember from Theorem 1 that any finite computation in
A(E), starting in a suitable initial state, can be extended into an infinite time-
diverging path) ensures that an infinite path in TDPaths(A(E))s indeed maps
to an infinite path in Paths(Ece)sync(s).

Notation: In this proof, we write s |= φ for (A(E), L′), s |= φ and sync(s) |=
ϕ for (Ece , L), sync(s) |= ϕ when the context is obvious. Likewise, we write π |= φ
for (A(E), L′), π |= φ and sync(π) |= ϕ for (Ece , L), sync(π) |= ϕ.

We first prove the equivalence for all stable states:

– ϕ = a for a ∈ AP : We must prove s |= a ⇐⇒ sync(s) |= a, which is
immediate, since s is stable, and therefore a ∈ L′(s) ⇐⇒ a ∈ L(sync(s)).

– ϕ = ¬ϕ′: Must prove s |= ¬ϕ′ ⇐⇒ sync(s) |= ¬ϕ′. The induction hypothe-
sis gives s |= ϕ′stable ⇐⇒ sync(s) |= ϕ′, from which the desired conclusion
follows since

s |= ¬ϕ′stable ⇐⇒ s )|= ϕ′stable
I.H.⇐⇒ sync(s) )|= ϕ′ ⇐⇒ sync(s) |= ¬ϕ′.



60

– ϕ = ϕ1 ∧ ϕ2: Follows directly from the induction hypotheses (for both ϕ1

and ϕ2) and the definition of the satisfaction relation.
– ϕ = ∀ϕ′: We must prove that s |= ∀ϕ′stable ⇐⇒ sync(s) |= ∀ϕ′. That is, we

must prove that π |= ϕ′stable holds for all π ∈ TDPaths(A(E))s if and only
if ρ |= ϕ for all paths ρ ∈ Paths(Ece)sync(s). From the induction hypoth-
esis, we can assume that, for all π ∈ TDPaths(A(E))s, π |= ϕ′stable if and
only if sync(π) |= ϕ′. The desired conclusion follows if sync is a surjective
function from TDPaths(A(E))s to Paths(Ece)sync(s), since then all paths
in Paths(Ece)sync(s) are of the form sync(π) for some π ∈ TDPaths(A(E))s.
That sync is indeed a surjective function from TDPaths(A(E))s to Paths(Ece)sync(s)

for a reachable stable states s follows from Theorem 3, and from the fact
that each stable transition is a sequence of rewrite steps.

We now prove the equivalence for all paths from stable states:

– ϕ = ¬ϕ′: We must prove π |= ¬ϕ′stable ⇐⇒ sync(π) |= ¬ϕ′, given the
induction hypothesis π |= ϕ′stable ⇐⇒ sync(π) |= ϕ′. The desired conclusion
follows trivially:

π |= ¬ϕ′stable ⇐⇒ π )|= ϕ′stable
I.H.⇐⇒ sync(π) )|= ϕ′ ⇐⇒ sync(π) |= ¬ϕ′.

– ϕ = ϕ′ ∧ ϕ′′: Equally straight-forward.
– ϕ = ϕ′ U ϕ′′: We must prove that π |= (stable → ϕ′stable) U (stable ∧ ϕ′′stable)

if and only if sync(π) |= ϕ′ U ϕ′′. As induction hypotheses we can assume
π′ |= ϕ′stable if and only if sync(π′) |= ϕ′ (and likewise for ϕ′′) for all paths
π′ starting in a reachable stable state.
An important consequence of the induction hypotheses is that if π(k) and
π(k′) are neighboring stable states in π; that is, if there is no unstable state
between π(k′) and π(k) in π, then πk |= ϕ′stable ⇐⇒ πk′ |= ϕ′stable (and the
same for ϕ′′stable). This is because the paths sync(πk) and sync(πk′

) are the
same (this is immediate), and both start in reachable stable states π(k) and
π(k′). We therefore have

πk′
|= ϕ′stable

I.H.⇐⇒ sync(πk′
) |= ϕ′ ⇐⇒ sync(πk) |= ϕ′

I.H.⇐⇒ πk |= ϕ′stable .

Assume that π |= (stable → ϕ′stable) U (stable ∧ ϕ′′stable) holds. Then there
is a smallest k such that πk |= (stable ∧ ϕ′′stable) holds, and for i < k, πi |=
(stable → ϕ′stable). Since stable only holds for stable states, the assumption
that k is smallest, together with the above property for neighboring stable
states, mean that either k = 0, or π(k − 1) is unstable. Furthermore, there
is a j such that γπ(j) = k, and hence sync(πk) = (sync(π))j . Since π(k)
is a stable state, πk is a path starting in a reachable stable state, and it
therefore follows from the induction hypothesis that πk |= ϕ′′stable if and
only if (sync(π))j |= ϕ′′. Hence (sync(π))j satisfies ϕ′′. Furthermore, since
we assume that π |= (stable → ϕ′stable) U (stable ∧ ϕ′′stable), we have πi |=
(stable → ϕ′stable) for each 0 ≤ i < k. In particular, let 0 = i0 < · · · < im < k
be the indices such that γπ(il) = l. We then have πγπ(il) |= (stable →



61

ϕ′stable) for each il. All these π(γπ(il)) states are stable states, and hence
we have πγπ(il) |= ϕ′stable for each il. By the induction hypothesis, it follows
that sync(πil) |= ϕ′ for each of these il. Since by definition (sync(π))l =
sync(πγπ(l)), we have (sync(π))l |= ϕ′ for 0 ≤ l < j, and therefore, we have
that sync(π) |= ϕ′ U ϕ′′.
Conversely, let us prove that sync(π) |= ϕ′ U ϕ′′ implies π |= (stable →
ϕ′stable) U (stable ∧ ϕ′′stable). Therefore, there is a k such that (sync(π))k

satisfies ϕ′′, and for all j < k, (sync(π))j satisfies ϕ′. Then, π(γπ(k)) is
stable and satisfies ϕ′′stable by the induction hypothesis; therefore πγπ(k) |=
stable∧ϕ′′stable . Furthermore, all π0, πγπ(1), . . . ,πγπ(k−1) satisfy ϕ′stable by the
induction hypothesis, and therefore the implication stable → ϕ′stable . For all
the other paths πl for l < γπ(k); if they start in an unstable state, (stable →
ϕ′stable) obviously holds; otherwise, if they start in a “non-γπ” stable state, it
follows from the above facts about paths starting in neighboring stable states
that they satisfy the same property as the other stable states surrounding
them, including the “corresponding” γπ-state. Therefore, all the “non-γπ”-
starting paths πk′

, for k′ < γπ(k), starting from a stable state satisfy ϕ′stable .
Hence, we have that π |= (stable → ϕ′stable) U (stable ∧ ϕ′′stable).

– ϕ = © ϕ′: We must prove that π |= stable U (¬stable ∧ (¬stable U (stable ∧
ϕ′stable))) if and only if sync(π) |= © ϕ′, assuming the induction hypotheses
that π′ |= ϕ′stable if and only if sync(π′) |= ϕ′ for all paths π′ starting in a
reachable stable state.
We first prove the property

sync(πγπ(1)) = (sync(π))1

by proving that for all i ≥ 0,

sync(πγπ(1))(i) = (sync(π))1(i).

The left-hand side sync(πγπ(1))(i) equals sync(πγπ(1)(γπγπ(1)(i))) (by the def-
inition of sync on paths), which equals sync(π(γπ(1) + γπγπ(1)(i))) by the
property πj(k) = π(j + k) of paths, which again equals sync(π(γπ(i + 1)))
by the definition of γπ in the proof of Theorem 2. The right-hand side
(sync(π))1(i) equals sync(π)(i + 1) by properties of paths, which equals
the desired sync(π(γπ(i + 1))) by the definition of sync.
For the main property, that π |= stable U (¬stable ∧ (¬stable U (stable ∧
ϕ′stable))) if and only if sync(π) |= © ϕ′, consider the path π. Since it starts
in a stable state, stable holds initially. By Theorem 2 and the definition of
stable transitions, π(0) is followed by zero or more stable states, which are
then followed by one or more unstable states (where ¬stable holds), which are
again followed by the stable state π(γπ(1)). Therefore, π |= stableU (¬stable∧
(¬stable U (stable∧ϕ′stable))) if and only if πγπ(1) |= ϕ′stable . By the induction
hypotheses, since π(γπ(1)) is a reachable stable state, πγπ(1) |= ϕ′stable if
and only if sync(πγπ(1)) |= ϕ′. We have proved above that sync(πγπ(1)) =
(sync(π))1. Therefore, π |= stable U (¬stable ∧ (¬stable U (stable ∧ϕ′stable)))
if and only if sync(πγπ(1)) |= ϕ′ if and only if (sync(π))1 |= ϕ′, which by the
definition of the next operator holds if and only if sync(π) |= ©ϕ′.



62

– ϕ = ∀ ϕ′: We must show that π |= ∀ ϕ′stable ⇐⇒ sync(π) |= ∀ ϕ′. By
the definition of the satisfaction relation for CTL∗, this amounts to proving
π(0) |= ∀ϕ′stable ⇐⇒ sync(π)(0) |= ∀ϕ′. Since sync(π)(0) = sync(π(γπ(0))),
and γπ(0) always equals 0, this amounts to proving π(0) |= ∀ ϕ′stable ⇐⇒
sync(π(0)) |= ∀ ϕ′, which was already done in the above inductive proof of
state formulas, since π(0) is a reachable stable state. !

B The Formal Models and Verification of the Active
Standby System

This appendix presents both the synchronous and the asynchronous formal
model of the active standby example discussed in Section 9, as well as our verifi-
cation of the satisfaction of (a proper formalization of) requirements R1–R5 by
the synchronous model. In particular, Section B.1 introduces the active standby
system in more depth than in Section 9. Sections B.2 and B.4 explain and present
the entire executable specifications of, respectively, the Maude model of the syn-
chronous version and the Real-Time Maude model of the asynchronous version of
the active standby example discussed in Section 9. These models are also avail-
able at http://www.ifi.uio.no/RealTimeMaude/PALS/. Finally, Section B.6
reports on our verification of requirements R1–R5 for the active standby sys-
tem.

B.1 The Active Standby System

This section recapitulates the active standby system described in [20]. As men-
tioned in Section 9, in the active standby system we have two physically separate
computation platforms, located on each side of the aircraft. At any time, the
computer in one side should be the active computer guiding the aircraft, and
the computer on the opposite side should be in standby mode. The logic on each
side decides which side is active, and is driven by its own clock and therefore
executes asynchronously with respect to the other side. A simple synchronous
model assumes that all components and channels are driven by the same clock,
and that there is a one-step transmission delay between the two sides.

Figure 6 shows an overview of the architecture of the system. Each side is able
to sense the status of a number of separate aircraft systems and can decide which
sides are fully available. Furthermore, each side can fail at any time, which can
be reliably detected. The pilot also has available a “manual selection” switch to
change the currently active side. We assume that there is an environment that
provide these data through ports, as shown in Fig. 6. Furthermore, each side
sends in each round a signal to the other side, with value either 1 (side 1 is
active), 2 (side 2 is active), or 0 (the side has failed).

We will not go here into the details of the logic of the active standby system,
and refer to the formal model in Section B.3 for details. However, to understand
our model checking effort and its results, we outline some aspects of the system:



63

Fig. 6. The architecture of the active standby system.

1. An active side should focus most of its efforts on guiding the aircraft and not
on deciding the active side; therefore, the non-active (standby) side monitors
the fully available data and the pilot’s manual selection switch, and is hence
responsible for changing sides.

2. A failed side should obviously not be the active side.
3. If one side is fully available and the other side is not, then the fully available

side should be the active side.
4. There is bias towards selecting side 1 as the active side after failures.

For example, if side 1 is the active side, and side 2 is fully available while the
active side 1 suddenly becomes not fully available, then this is detected by the
standby side 2. Side 2 then becomes the active side and sends ’2’ to the active
side 1. When side 1 reads the ’2’, it realizes that side 2 has become active. Since
there a one-step communication delay between the sides, we will encounter states
in which each side claims to be the active side. If the non-active side is in some
failure recovery mode, it may take even longer time before the active side is
changed.

The environment generates its values nondeterministically in each round,
with the following obvious constraints:

– Both sides cannot fail at the same time.
– If a side is failed it is not fully available.

Therefore, the environment has 16 different choices for the Boolean 5-tuple it
generates in each round.

In [20], the authors list the following important properties that the active
standby system should satisfy include:

R1: Both sides should agree on which side is active (provided neither side has
failed, the availability of a side has not changed, and the pilot has not made
a manual selection).



64

R2: A side that is not fully available should not be the active side if the other
side is fully available (again, provided neither side has failed, the availability
of a side has not changed, and the pilot has not made a manual selection).

R3: The pilot can always change the active side (except if a side is failed or the
availability of a side has changed).

R4: If a side is failed the other side should become active.
R5: The active side should not change unless the availability of a side changes,

the failed status of a side changes, or manual selection is selected by the
pilot.

B.2 Formal Model of the Synchronous Version of Active Standby

We model the active standby system in an object-oriented way, where the two
sides and the environment are modeled by objects.

Side 1 is modeled as an object of the following class:

class Side1 | state : Location, prevS2AS : Nat, prevManualSwitch : Bool,
nexts1as : Data .

sort Location . --- local states
ops initState side1Failed side2Failed side1Wait side2Wait side1Active

side2Active : -> Location [ctor] .

The first three attributes correspond to the state variables of side 1 in the AADL
specification; state denotes the local “state” of the object, prevS2AS denotes the
previous value received from the side2ActiveSide connection from side 2, and
prevManualSwitch is true iff the pilot did a manual selection in the previous
round. The attribute nexts1as denotes the next value that the side 1 object
should send to side 2 along its side1ActiveSide connection; that is, the value
of side1ActiveSide to be sent at the end of an iteration. This next value is
set when a transition is executed, but at that time the actual link cannot be set
to that new value, to ensure that side 2 reads the previous value in its current
round when side 2 performs the transition.

The definition of the class for the side 2 object is similar:

class Side2 | state : Location, prevS1AS : Nat, prevManualSwitch : Bool,
nexts2as : Data .

The environment object does not have any attributes:

class Environment .

The communication links are modeled as simple objects characterized by the
output port of the sender and the current value it holds; this value has the form
data(n), for n ∈ {0, 1, 2}, or data(b), for b a Boolean value:



65

op ‘[port_from_has‘value_‘] : Oid Oid Data -> Object [ctor] .

sort Data . --- Data in wires/channels
op data : Bool -> Data [ctor] .
op data : Nat -> Data [ctor] .

ops side1 side2 e : -> Oid [ctor] . --- component names
ops s1F s2F mS s1FA s2FA s1AS s2AS : -> Oid [ctor] . --- port names

The function performTrans defines the transition function for each side. It
takes the entire configuration as argument, and changes the internal state of the
objects modeling the sides, but leaves the port objects unchanged:

op performTrans : Configuration ~> Configuration .

For example, the following equation defines the transition function for side 1
when side 1 is in local state side1Failed. In this case, the value sent from the
environment in this iteration through its side1Failed port (abbreviated to s1F
in our model) is false, the value sent at the end of the previous iteration from
side 2 through its side2ActiveSide port (abbreviated to s2AS) is I =/= 0, and
the value sent by the environment through its manualSelection (mS) port is
any Boolean value B1. The values of the inputs from the remaining two ports
do not matter in this case. The transition takes the side 1 object to its local
state side1Wait, sets its prevManualSwitch attribute to the received value B1,
and sets its prevS2AS attribute to the received s2AS value I. At the end of the
round, side 1 should send the value 111, through its side1ActiveSide (s1AS)
port. As already mentioned, the function performTrans does not set the output
value explicitly, but only sets its internal attribute nexts1as to 1. The function
performTrans is then applied recursively to the rest of configuration, to execute
the transition for the side 2 object as well, if that has not already been done.

vars CONF REST : Configuration .

ceq performTrans(< side1 : Side1 | state : side1Failed >
[port s1F from e has value data(false)]
[port s2AS from side2 has value data(I)]
[port mS from e has value data(B1)]
REST)

=
< side1 : Side1 | state : side1Wait, prevManualSwitch : B1,

prevS2AS : I, nexts1as : data(1) >
performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]
[port mS from e has value data(B1)]
REST)

if I =/= 0 .

11 This is one of the few places where the sides are asymmetric; after a failure recovery,
side 1 will be established as the active side.



66

The following equation models the standby side monitoring the system and
deciding that the active side must change, either because the pilot pressed the
manual selection switch to change active sides, or because the current active side
is not fully available while the standby side is fully available. The following equa-
tion models the transition taken when the side 2 object is in state side1Active.
In this case, side 2 should become active. This is achieved by side 2 going to
state side2Active and sending a ’2’ message to side 1:

ceq performTrans(< side2 : Side2 | state : side1Active , prevS1AS : I2,
prevManualSwitch : B2 >

[port s2F from e has value data(false)]
[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
[port s2FA from e has value data(true )]
[port s1FA from e has value data(B3)]
REST)

=
< side2 : Side2 | state : side2Active , prevManualSwitch : B1,

prevS1AS : I, nexts2as : data(2) >
performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
[port s2FA from e has value data(true)]
[port s1FA from e has value data(B3)]
REST)

if (I =/= 0) and (((not B2) and B1) or (not B3)) .

The following equation then models active side 1 receiving a ’2’ from side 2
and changing state to side2Active:

ceq performTrans(< side1 : Side1 | state : side1Active , prevS2AS : I >
[port s1F from e has value data(false)]
[port s2AS from side2 has value data(2) ]
[port mS from e has value data(B1)]
REST)

=
< side1 : Side1 | state : side2Active , prevManualSwitch : B1,

prevS2AS : 2, nexts1as : data(2) >
performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(2)]
[port mS from e has value data(B1)]
REST)

if I =/= 2 .

Our definition of the transition function follows the definition of the tran-
sitions in the AADL model that was the starting point for our modeling and
analysis effort. The 19 equations of the same style that define the transitions for
side 1 are given in Section B.3; and so are the very similar 19 equations defining
the transitions for side 2.



67

Finally, after the transition function has already been applied to both ob-
jects, the transition function becomes the identity function on the remaining
configuration:

eq performTrans(CONF) = CONF [owise] .

We enclose the global state with an operator {_}:

op ‘{_‘} : Configuration -> GlobalState [ctor] .

Our model of the synchronous system has only one rule, which models an
iteration (or a synchronous step) of the composed system:

var ENVOUTPUT : EnvOutput . var RESTOUTPUT : EnvOutputs .
var SYSTEM : Configuration .

crl [step] :
{SYSTEM} => {genOutput(performTrans(envoutput(ENVOUTPUT, SYSTEM)))}
if ENVOUTPUT ; RESTOUTPUT := possibleEnvOutputs .

In the matching condition, the variable ENVOUTPUT is assigned nondetermin-
istically to any of the 16 possible 5-tuple of Boolean values that the environment
can send (see below); the envoutput function inserts these values into the ap-
propriate output ports objects; performTrans then performs the transitions in
the two sides as explained above; and, finally, genOutput puts the output from
the two sides (stored in the attributes nexts1as and nexts2as) into the appro-
priate port objects. The use of variables of sort Configuration in all equations
defining these functions, in combination with the fact that these functions are
declared to be partial functions on the sort Configuration, ensures that the
various functions are applied in the order described above.

We define a sort Envoutput of 5-tuples of Boolean values, and a sort of
Envoutputs of sets of such 5-tuples as follows:

sorts EnvOutput EnvOutputs .
op env : Bool Bool Bool Bool Bool -> EnvOutput [ctor] .
--- usage: env(s1F, s2F, ms, s1FA, s2FA)

subsort EnvOutput < EnvOutputs .
op _;_ : EnvOutputs EnvOutputs -> EnvOutputs [ctor assoc comm] .

The constant possibleEnvOutputs denoting the set of 5-tuples that the
environment can generate in each iteration is defined as follows. Since at most
one side can fail at any time, and that the first parameter of env states whether
side 1 has failed, and the second whether side 2 has failed, at most one of the
first two Booleans can be true. Furthermore, if one side has failed, then that
side cannot be fully available. Therefore, we have the following set of possible
environment outputs:



68

eq possibleEnvOutputs =
--- side 1 fails:
env(true, false, true, false, true) ;
env(true, false, false, false, true) ;
env(true, false, true, false, false) ;
env(true, false, false, false, false) ;
--- side 2 fails:
env(false, true, true, true, false) ;
env(false, true, false, true, false) ;
env(false, true, true, false, false) ;
env(false, true, false, false, false) ;
--- no side fails:
env(false, false, true, true, true) ;
env(false, false, true, true, false) ;
env(false, false, true, false, true) ;
env(false, false, true, false, false) ;
env(false, false, false, true, true) ;
env(false, false, false, true, false) ;
env(false, false, false, false, true) ;
env(false, false, false, false, false) .

The final two functions, inserting values from, respectively, the environment
and the two sides into the appropriate port objects, are straight-forward:

vars D1 D2 D3 D4 D5 : Data . vars B1 B2 B3 B4 B5 : Bool .

op genOutput : Configuration ~> Configuration .
op envoutput : EnvOutput Configuration ~> Configuration .

eq envoutput(env(B1, B2, B3, B4, B5),
[port s1F from e has value D1] [port s2F from e has value D2]
[port mS from e has value D3] [port s1FA from e has value D4]
[port s2FA from e has value D5] REST)

=
[port s1F from e has value data(B1)]
[port s2F from e has value data(B2)]
[port mS from e has value data(B3)]
[port s1FA from e has value data(B4)]
[port s2FA from e has value data(B5)] REST .

eq genOutput(< side1 : Side1 | nexts1as : D1 >
[port s1AS from side1 has value D2]
< side2 : Side2 | nexts2as : D3 >
[port s2AS from side2 has value D4]
CONF)

=
< side1 : Side1 | > [port s1AS from side1 has value D1]
< side2 : Side2 | > [port s2AS from side2 has value D3]
CONF .

Finally, the following equation defines an initial state init:



69

op init : -> GlobalState .
eq init =

{< side1 : Side1 | state : initState, prevManualSwitch : false,
prevS2AS : 1, nexts1as : data(1) >

[port s1AS from side1 has value data(1)]
< side2 : Side2 | state : initState, prevManualSwitch : false,

prevS1AS : 1, nexts2as : data(1) >
[port s2AS from side2 has value data(1)]
< e : Environment | none >
[port s1F from e has value data(false)]
[port s2F from e has value data(false)]
[port mS from e has value data(false)]
[port s1FA from e has value data(true)]
[port s2FA from e has value data(true)]} .

B.3 The Executable Model of the Synchronous System

The entire specification is given as follows:

(omod COMMON-ACTIVE-STANDBY is

protecting NAT .

vars CONF REST : Configuration .

vars B1 B2 B3 B4 B5 B6 : Bool .

vars I I2 : Nat .

*** We first treat the output from the environment, which outputs 5 Booleans

*** through the ports s1F, s2F, mS, s1FA, s2FA,

--- satisfying [not s1F and s2F and not s2FA] *** side 2 may fail

--- or [not s2F and s1F and not s1FA] *** side 1 may fail

--- or [not s1F and not s2F] *** no side fails

--- Possible environment output:

sort EnvOutput .

op env : Bool Bool Bool Bool Bool -> EnvOutput [ctor] .

--- usage: env(s1F, s2F, ms, s1FA, s2FA)

sort EnvOutputs .

subsort EnvOutput < EnvOutputs .

op _;_ : EnvOutputs EnvOutputs -> EnvOutputs [ctor assoc comm] .

--- All possible outputs from the environment:

op possibleEnvOutputs : -> EnvOutputs .

eq possibleEnvOutputs =

--- side 1 fails:

env(true, false, true, false, true) ;

env(true, false, false, false, true) ;

env(true, false, true, false, false) ;

env(true, false, false, false, false) ;

--- side 2 fails:

env(false, true, true, true, false) ;

env(false, true, false, true, false) ;

env(false, true, true, false, false) ;



70

env(false, true, false, false, false) ;

--- no side fails:

env(false, false, true, true, true) ;

env(false, false, true, true, false) ;

env(false, false, true, false, true) ;

env(false, false, true, false, false) ;

env(false, false, false, true, true) ;

env(false, false, false, true, false) ;

env(false, false, false, false, true) ;

env(false, false, false, false, false) .

--- Wires/channels are characterized by output source and port names:

op ‘[port_from_has‘value_‘] : Oid Oid Data -> Object [ctor] .

sort Data . --- Data in wires/channels

op data : Bool -> Data [ctor] .

op data : Nat -> Data [ctor] .

ops side1 side2 e : -> Oid [ctor] . --- component names

ops s1F s2F mS s1FA s2FA s1AS s2AS : -> Oid [ctor] . --- port names

*** Defining (deterministic) transitions:

op performTrans : Configuration ~> Configuration .

*** Object for the environment:

class Environment . --- empty class

*** Object for Side 1:

class Side1 | state : Location, prevS2AS : Nat, prevManualSwitch : Bool,

nexts1as : Data . *** next output produced by the machine

sort Location . --- local states

ops initState side1Failed side2Failed side1Wait side2Wait

side1Active side2Active : -> Location [ctor] .

*** The transitions of machine Side 1:

--- initState:

eq performTrans(< side1 : Side1 | state : initState >

[port s1F from e has value data(true)]

REST)

=

< side1 : Side1 | state : side1Failed, prevS2AS : 0, prevManualSwitch : false,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)] REST) .

eq performTrans(< side1 : Side1 | state : initState >

[port s1F from e has value data(false)]

REST)

=

< side1 : Side1 | state : side2Failed, prevS2AS : 0, prevManualSwitch : false,

nexts1as : data(1) >



71

performTrans([port s1F from e has value data(false)] REST) .

--- state side1Failed:

eq performTrans(< side1 : Side1 | state : side1Failed >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side2Failed, prevManualSwitch : B1, prevS2AS : 0,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side1 : Side1 | state : side1Failed >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Wait, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side1 : Side1 | state : side1Failed >

[port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side2Failed:

eq performTrans(< side1 : Side1 | state : side2Failed >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | prevManualSwitch : B1, prevS2AS : 0,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]



72

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side1 : Side1 | state : side2Failed >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Wait, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side1 : Side1 | state : side2Failed >

[port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Failed, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side1Wait:

ceq performTrans(< side1 : Side1 | state : side1Wait >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Active, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side1 : Side1 | state : side1Wait >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side2Failed, prevManualSwitch : B1, prevS2AS : 0,

nexts1as : data(1) >



73

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST) .

eq performTrans(< side1 : Side1 | state : side1Wait >

[port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Failed, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side1Active:

ceq performTrans(< side1 : Side1 | state : side1Active, prevS2AS : I >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(2)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side2Active, prevManualSwitch : B1, prevS2AS : 2,

nexts1as : data(2) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(2)]

[port mS from e has value data(B1)]

REST)

if I =/= 2 .

eq performTrans(< side1 : Side1 | state : side1Active >

[port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Failed, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) .

eq performTrans(< side1 : Side1 | state : side1Active >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side2Failed, prevManualSwitch : B1, prevS2AS : 0,

nexts1as : data(1) >



74

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side1 : Side1 | state : side1Active, prevS2AS : I2 >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Active, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) if (I2 == 2 or I =/= 2) and I =/= 0 .

--- state side2Active:

ceq performTrans(< side1 : Side1 | state : side2Active, prevS2AS : I2,

prevManualSwitch : B2 >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(true)]

[port s2FA from e has value data(B3)]

REST)

=

< side1 : Side1 | state : side1Active, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(true)]

[port s2FA from e has value data(B3)]

REST) if (((not B2) and B1) or (not B3)) and I =/= 0 .

eq performTrans(< side1 : Side1 | state : side2Active >

[port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side1 : Side1 | state : side1Failed, prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(0) >

performTrans([port s1F from e has value data(true)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

REST) .

eq performTrans(< side1 : Side1 | state : side2Active >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]



75

REST)

=

< side1 : Side1 | state : side2Failed, prevManualSwitch : B1, prevS2AS : 0,

nexts1as : data(1) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side1 : Side1 | state : side2Active, prevS2AS : I2,

prevManualSwitch : B2 >

[port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(B4)]

[port s2FA from e has value data(B3)]

REST)

=

< side1 : Side1 | prevManualSwitch : B1, prevS2AS : I,

nexts1as : data(2) >

performTrans([port s1F from e has value data(false)]

[port s2AS from side2 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(B4)]

[port s2FA from e has value data(B3)]

REST) if ((not B4) or (B3 and (B2 or not B1))) and I =/= 0 .

*** Side 2:

class Side2 | state : Location, prevS1AS : Nat, prevManualSwitch : Bool,

nexts2as : Data . *** next output to be generated by side2

*** The transitions of Side 2:

--- initState:

eq performTrans(< side2 : Side2 | state : initState >

[port s2F from e has value data(true)]

REST)

=

< side2 : Side2 | state : side2Failed, prevS1AS : 0, prevManualSwitch : false,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)] REST) .

eq performTrans(< side2 : Side2 | state : initState >

[port s2F from e has value data(false)]

REST)

=

< side2 : Side2 | state : side1Failed, prevS1AS : 0, prevManualSwitch : false,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)] REST) .

--- state side2Failed:

eq performTrans(< side2 : Side2 | state : side2Failed >



76

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Failed, prevManualSwitch : B1, prevS1AS : 0,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side2 : Side2 | state : side2Failed >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Wait, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(1) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side2 : Side2 | state : side2Failed >

[port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side1Failed:

eq performTrans(< side2 : Side2 | state : side1Failed >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | prevManualSwitch : B1, prevS1AS : 0,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST) .



77

ceq performTrans(< side2 : Side2 | state : side1Failed >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Wait, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(1) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side2 : Side2 | state : side1Failed >

[port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Failed, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side2Wait:

ceq performTrans(< side2 : Side2 | state : side2Wait >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Active, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(1) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

if I =/= 0 .

eq performTrans(< side2 : Side2 | state : side2Wait >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Failed, prevManualSwitch : B1, prevS1AS : 0,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST) .



78

eq performTrans(< side2 : Side2 | state : side2Wait >

[port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Failed, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) .

--- state side1Active:

eq performTrans(< side2 : Side2 | state : side1Active, prevS1AS : I >

[port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Failed, prevManualSwitch : B1,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side2 : Side2 | state : side1Active, prevS1AS : I2,

prevManualSwitch : B2 >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

[port s2FA from e has value data(true)]

[port s1FA from e has value data(B3)]

REST)

=

< side2 : Side2 | state : side2Active, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

[port s2FA from e has value data(true)]

[port s1FA from e has value data(B3)]

REST)

if (I =/= 0) and (((not B2) and B1) or (not B3)) .

eq performTrans(< side2 : Side2 | state : side1Active >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Failed, prevManualSwitch : B1, prevS1AS : 0,



79

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side2 : Side2 | state : side1Active, prevS1AS : I2,

prevManualSwitch : B2 >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(B4)]

[port s2FA from e has value data(B3)]

REST)

=

< side2 : Side2 | prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(1) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

[port s1FA from e has value data(B4)]

[port s2FA from e has value data(B3)]

REST) if I =/= 0 and ((not B3) or (B4 and (B2 or (not B1)))) .

--- state side2Active:

ceq performTrans(< side2 : Side2 | state : side2Active, prevS1AS : I2 >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | prevManualSwitch : B1, prevS1AS : 2,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) if I =/= 0 and (I2 == 1 or I =/= 1) .

eq performTrans(< side2 : Side2 | state : side2Active >

[port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side2Failed, prevManualSwitch : B1, prevS1AS : I,

nexts2as : data(0) >

performTrans([port s2F from e has value data(true)]

[port s1AS from side1 has value data(I)]

[port mS from e has value data(B1)]

REST) .

eq performTrans(< side2 : Side2 | state : side2Active >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]



80

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Failed, prevManualSwitch : B1, prevS1AS : 0,

nexts2as : data(2) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(0)]

[port mS from e has value data(B1)]

REST) .

ceq performTrans(< side2 : Side2 | state : side2Active, prevS1AS : I2 >

[port s2F from e has value data(false)]

[port s1AS from side1 has value data(1)]

[port mS from e has value data(B1)]

REST)

=

< side2 : Side2 | state : side1Active, prevManualSwitch : B1, prevS1AS : 1,

nexts2as : data(1) >

performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(1)]

[port mS from e has value data(B1)]

REST) if I2 =/= 1 .

*** Finally, only the env object and the wires should be inside the scope of

*** performTrans:

eq performTrans(CONF) = CONF [owise] .

endom)

*** Defining synchronous executions:

(omod SYNCHRONOUS-ACTIVE-STANDBY is

including COMMON-ACTIVE-STANDBY .

var ENVOUTPUT : EnvOutput .

var RESTOUTPUT : EnvOutputs .

vars SYSTEM CONF REST : Configuration .

vars D1 D2 D3 D4 D5 : Data .

vars B1 B2 B3 B4 B5 : Bool .

--- Enclose the global state:

sort GlobalState .

op ‘{_‘} : Configuration -> GlobalState [ctor] .

--- The synchronous step function should be the following:

crl [step] :

{SYSTEM} => {genOutput(performTrans(envoutput(ENVOUTPUT, SYSTEM)))}

if ENVOUTPUT ; RESTOUTPUT := possibleEnvOutputs .

*** Defining a function that writes the output to the wires for the next round,

*** and one function that takes an output from the environment and inserts

*** them into the appropriate wires.

op genOutput : Configuration ~> Configuration .

op envoutput : EnvOutput Configuration ~> Configuration .



81

eq envoutput(env(B1, B2, B3, B4, B5),

[port s1F from e has value D1]

[port s2F from e has value D2]

[port mS from e has value D3]

[port s1FA from e has value D4]

[port s2FA from e has value D5]

REST)

=

[port s1F from e has value data(B1)]

[port s2F from e has value data(B2)]

[port mS from e has value data(B3)]

[port s1FA from e has value data(B4)]

[port s2FA from e has value data(B5)]

REST .

eq genOutput(< side1 : Side1 | nexts1as : D1 >

[port s1AS from side1 has value D2]

< side2 : Side2 | nexts2as : D3 >

[port s2AS from side2 has value D4]

CONF)

=

< side1 : Side1 | >

[port s1AS from side1 has value D1]

< side2 : Side2 | >

[port s2AS from side2 has value D3]

CONF .

*** Initial state, everything works well and side 1 is the starter:

op init : -> GlobalState .

eq init =

{< side1 : Side1 | state : initState, prevManualSwitch : false, prevS2AS : 1,

nexts1as : data(1) >

[port s1AS from side1 has value data(1)]

< side2 : Side2 | state : initState, prevManualSwitch : false, prevS1AS : 1,

nexts2as : data(1) >

[port s2AS from side2 has value data(1)]

< e : Environment | none >

[port s1F from e has value data(false)]

[port s2F from e has value data(false)]

[port mS from e has value data(false)]

[port s1FA from e has value data(true, true)]

[port s2FA from e has value data(true, true)]} .

endom)

B.4 The Asynchronous Model of Active Standby

As already mentioned, our Real-Time Maude model of the asynchronous version
of the active standby system is just an adaptation of the PALS transformation
of the synchronous version to the simpler setting in which:

– the minimum message delay and the execution time of a transition are both
zero,



82

– the time domain is discrete,
– there is no clock skew,
– and where aspects such as the wiring diagram is not explicitly represented.

In addition, all messages from a given object in a given round are sent to the
network in one step.

We define a “PALS wrappers” as object instances of the following class:

class PalsWrapper | roundTimer : Time, inputBuffer : Configuration,
outputBuffer : Configuration,
outputBackoffTimer : TimeInf, machine : Object .

The machine attribute denotes the object modeling the component in our spec-
ification of the synchronous model, and the other attributes are as in Section 4.

In the asynchronous system, messages have the form msg data from port
portId of senderObject to receiverObject. To model nondeterministic messaging
delays, such messages are enclosed by a “wrapper” dly, so that dly(msg, t1,t2)
denotes the message msg that has remaining minimum delay t1 and remaining
maximum delay t212:

ops minMsgDelay maxMsgDelay : -> Time .
op palsRound : -> Time . eq palsRound = maxMsgDelay + 2 .
--- one round of the system for minimum msg delay 0 and discrete time
op msg_from‘port_of_to_ : Data Oid Oid Oid -> Msg [ctor] .
op dly : Msg Time Time -> Msg .

The rewrite rules in this model are immediate. The following rule reads an
incoming message and puts it into the input buffer:

rl [readMsg] :
dly(msg D from port P of O’ to O), 0, T)
< O : PalsWrapper | inputBuffer : MSGS >

=>
< O : PalsWrapper | inputBuffer : MSGS (msg D from port P of O’ to O) > .

When the round timer expires, messages are read from the input buffer, the
transition is performed and output is put into output buffer, and the output
timer is set to 1:

crl [executeTransitionSide1] :
< side1 : PalsWrapper | roundTimer : 0,

inputBuffer : MSGS,
machine :
(< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1,
nexts1as : data(0) >) >

=>

12 As mentioned, in the experiments reported in this paper, the minimum delay is
always zero.



83

< side1 : PalsWrapper | roundTimer : palsRound,
inputBuffer : none,
machine :
(< side1 : Side1 | state : L2, prevS2AS : N2,

prevManualSwitch : B2,
nexts1as : data(0) >),

outputBuffer :
dly(msg D2 from port s1AS of side1 to side2,

0, maxMsgDelay),
outputBackoffTimer : 1 >

if < side1 : Side1 | state : L2, prevS2AS : N2, prevManualSwitch : B2,
nexts1as : D2 >

C:Configuration
:= performTrans(< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1,
nexts1as : data(0) >

changeForm(MSGS)) .

The function performTrans is the transition function for the components de-
fined for the synchronous model (and hence changeForm is needed to transform
messages into “wires”). The rule for side2 is entirely similar. The rule for the
environment is also immediate:

crl [envRound] :
< e : PalsWrapper | roundTimer : 0 >
=>
< e : PalsWrapper |

roundTimer : palsRound,
outputBuffer :
(dly(msg data(B1) from port s1F of e to side1, maxMsgDelay)
dly(msg data(B2) from port s2F of e to side2, maxMsgDelay)
dly(msg data(B3) from port mS of e to side1, maxMsgDelay)
dly(msg data(B3) from port mS of e to side2, maxMsgDelay)
dly(msg data(B4) from port s1FA of e to side1, maxMsgDelay)
dly(msg data(B4) from port s1FA of e to side2, maxMsgDelay)
dly(msg data(B5) from port s2FA of e to side1, maxMsgDelay)
dly(msg data(B5) from port s2FA of e to side2, maxMsgDelay)),

outputTimer : 1 >
if env(B1, B2, B3, B4, B5) ; ENVOUTPUTS := possibleEnvOutputs .

In the following rule, the messages in the output buffer are sent into the
network in one step:

rl [send] :
< O : PalsWrapper | outputTimer : 0, outputBuffer : MSGS >

=>
< O : PalsWrapper | outputTimer : INF, outputBuffer : none > MSGS .

Finally, the tick rule advances time by one time unit in each tick step:

crl [tick] : {CONF} => {timeEffect(CONF, 1)} in time 1 if 1 <= mte(CONF) .



84

The function timeEffect defines the effect of time elapse on a configuration by
decreasing the timer and message delay values according to the elapsed time,
and the function mte gives the least time until the next timer expires or until
some message must be delivered:

vars NECF1 NECF2 : NEConfiguration . vars T T1 T2 : Time .
var TI : TimeInf .

op timeEffect : Configuration Time -> Configuration [frozen (1)] .
eq timeEffect(NECF1 NECF2, T) = timeEffect(NECF1, T) timeEffect(NECF2, T) .
eq timeEffect(none, T) = none .

eq timeEffect(< O : PalsWrapper | palsTimer : T1, outputTimer : TI >, T)
= < O : PalsWrapper | palsTimer : T1 monus T, outputTimer : TI monus T > .
eq timeEffect(dly(MSG, T1, T2), T) = dly(MSG, T1 monus T, T2 monus T) .

op mte : Configuration -> TimeInf [frozen (1)] .
eq mte(NECF1 NECF2) = min(mte(NECF1), mte(NECF2)) .
eq mte(none) = INF .

eq mte(< O : PalsWrapper | palsTimer : T, outputTimer : TI >) = min(T, TI) .
eq mte(dly(MSG, T1, T2)) = T2 .

Finally, the initial state is a state where the input buffers are full, and the
round timer is zero:

op init : -> GlobalSystem .
eq init =

{< side1 : PalsWrapper |
palsTimer : 0,
inputBuffer :
((msg data(false) from port s1F of e to side1)
(msg data(true) from port s1FA of e to side1)
(msg data(false) from port mS of e to side1)
(msg data(true) from port s2FA of e to side1)
(msg data(0) from port s2AS of side2 to side1)),

machine :
(< side1 : Side1 | state : initState, prevManualSwitch : false,

prevS2AS : 0, nexts1as : data(0) >),
outputBuffer : none, outputTimer : INF >

< side2 : PalsWrapper |
palsTimer : 0,
inputBuffer :
((msg data(false) from port s2F of e to side2)
(msg data(true) from port s1FA of e to side2)
(msg data(false) from port mS of e to side2)
(msg data(true) from port s2FA of e to side2)
(msg data(0) from port s1AS of side1 to side2)),

machine :
(< side2 : Side2 | state : initState, prevManualSwitch : false,



85

prevS1AS : 1, nexts2as : data(1) >),
outputBuffer : none, outputTimer : INF >

< e : PalsWrapper | palsTimer : 0, inputBuffer : none,
machine : (< e : Environment | none >),
outputBuffer : none, outputTimer : INF >} .

B.5 The Executable Model of the Asynchronous System

The entire formal specification of the asynchronous version of the active standby
system is given as follows:

(tomod ASYNCHRONOUS-ACTIVE-STANDBY is

including COMMON-ACTIVE-STANDBY .

protecting NAT-TIME-DOMAIN-WITH-INF .

vars B1 B2 B3 B4 B5 : Bool .

var D D1 D2 : Data .

vars P O O’ : Oid .

vars T T’ T1 T2 : Time .

var TI : TimeInf .

vars MSGS REST CONF : Configuration .

vars NECF1 NECF2 : NEConfiguration .

vars L1 L2 : Location .

vars N1 N2 : Nat .

var ENVOUTPUTS : EnvOutputs .

var MSG : Msg .

class PalsWrapper | palsTimer : Time, --- expires each PALS round

inputBuffer : Configuration, --- input buffer

outputBuffer : Configuration,

outputTimer : TimeInf,

machine : Object . --- inner machine

ops minMsgDelay maxMsgDelay : -> Time .

op palsRound : -> Time . eq palsRound = maxMsgDelay + 2 .

*** 1 for outtimer + maxDelay + 1 for margin

--- Messages have the following form:

op msg_from‘port_of_to_ : Data Oid Oid Oid -> Msg [ctor] .

--- Message delay wrapper:

op dly : Msg Time Time -> Msg .

--- dly(msg, minRemainingDelay, maxRemainingDelay)

--- The name of the wrapper is the same as of the inner machine.

--- Rule for reading messages.

rl [readMsg] :

dly(msg D from port P of O’ to O, 0, T)

< O : PalsWrapper | inputBuffer : MSGS >

=>



86

< O : PalsWrapper | inputBuffer : MSGS (msg D from port P of O’ to O) > .

--- Rule for sending out messages, already equipped with delays.

--- Notice that we send out ALL messages in one step.

rl [send] :

< O : PalsWrapper | outputTimer : 0, outputBuffer : MSGS >

=>

< O : PalsWrapper | outputTimer : INF, outputBuffer : none > MSGS .

--- Timer expires. Execute transition; change the messages in the input buffer

--- to the right form.

crl [executeTransitionSide1] :

< side1 : PalsWrapper |

palsTimer : 0,

inputBuffer : MSGS,

machine : (< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1, nexts1as : data(0) >) >

=>

< side1 : PalsWrapper |

palsTimer : palsRound,

inputBuffer : none,

machine : (< side1 : Side1 | state : L2, prevS2AS : N2, prevManualSwitch : B2,

nexts1as : data(0) >),

outputBuffer : dly(msg D2 from port s1AS of side1 to side2, minMsgDelay, maxMsgDelay),

outputTimer : 1 >

if < side1 : Side1 | state : L2, prevS2AS : N2, prevManualSwitch : B2, nexts1as : D2 >

C:Configuration

:= performTrans(< side1 : Side1 | state : L1, prevS2AS : N1,

prevManualSwitch : B1, nexts1as : data(0) >

changeForm(MSGS)) .

crl [executeTransitionSide2] :

< side2 : PalsWrapper | palsTimer : 0,

inputBuffer : MSGS,

machine : (< side2 : Side2 | state : L1, prevS1AS : N1,

prevManualSwitch : B1,

nexts2as : data(0) >) >

=>

< side2 : PalsWrapper | palsTimer : palsRound,

inputBuffer : none,

machine : (< side2 : Side2 | state : L2, prevS1AS : N2,

prevManualSwitch : B2,

nexts2as : data(0) >),

outputBuffer : dly(msg D2 from port s2AS of side2 to side1,

minMsgDelay, maxMsgDelay),

outputTimer : 1 >

if < side2 : Side2 | state : L2, prevS1AS : N2, prevManualSwitch : B2, nexts2as : D2 >

C:Configuration

:= performTrans(< side2 : Side2 | state : L1, prevS1AS : N1, prevManualSwitch : B1,

nexts2as : data(0) >

changeForm(MSGS)) .

op changeForm : Configuration ~> Configuration .



87

eq changeForm((msg D from port P of O to O’) REST) =

[port P from O has value D]

changeForm(REST) .

eq changeForm(none) = none .

*** Environment:

crl [envRound] :

< e : PalsWrapper | palsTimer : 0 >

=>

< e : PalsWrapper |

palsTimer : palsRound,

outputBuffer :

(dly(msg data(B1) from port s1F of e to side1, minMsgDelay, maxMsgDelay)

dly(msg data(B2) from port s2F of e to side2, minMsgDelay, maxMsgDelay)

dly(msg data(B3) from port mS of e to side1, minMsgDelay, maxMsgDelay)

dly(msg data(B3) from port mS of e to side2, minMsgDelay, maxMsgDelay)

dly(msg data(B4) from port s1FA of e to side1, minMsgDelay, maxMsgDelay)

dly(msg data(B4) from port s1FA of e to side2, minMsgDelay, maxMsgDelay)

dly(msg data(B5) from port s2FA of e to side1, minMsgDelay, maxMsgDelay)

dly(msg data(B5) from port s2FA of e to side2, minMsgDelay, maxMsgDelay)),

outputTimer : 1 >

if env(B1, B2, B3, B4, B5) ; ENVOUTPUTS := possibleEnvOutputs .

*** Time advance; deterministic for simplicity.

crl [tick] : CONF => timeEffect(CONF, 1) in time 1 if 1 <= mte(CONF) .

op timeEffect : Configuration Time -> Configuration [frozen (1)] .

eq timeEffect(NECF1 NECF2, T) = timeEffect(NECF1, T) timeEffect(NECF2, T) .

eq timeEffect(none, T) = none .

eq timeEffect(< O : PalsWrapper | palsTimer : T1, outputTimer : TI >, T)

= < O : PalsWrapper | palsTimer : T1 monus T, outputTimer : TI monus T > .

eq timeEffect(dly(MSG, T1, T2), T) = dly(MSG, T1 monus T, T2 monus T) .

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(NECF1 NECF2) = min(mte(NECF1), mte(NECF2)) .

eq mte(none) = INF .

eq mte(< O : PalsWrapper | palsTimer : T, outputTimer : TI >) = min(T, TI) .

eq mte(dly(MSG, T1, T2)) = T2 .

op init : -> GlobalSystem .

eq init =

{< side1 : PalsWrapper | palsTimer : 0,

inputBuffer :

((msg data(false) from port s1F of e to side1)

(msg data(true) from port s1FA of e to side1)

(msg data(false) from port mS of e to side1)

(msg data(true) from port s2FA of e to side1)

(msg data(1) from port s2AS of side2 to side1)),

machine :

(< side1 : Side1 | state : initState,

prevManualSwitch : false,



88

prevS2AS : 1, nexts1as : data(1) >),

outputBuffer : none,

outputTimer : INF >

< side2 : PalsWrapper | palsTimer : 0,

inputBuffer :

((msg data(false) from port s2F of e to side2)

(msg data(true) from port s1FA of e to side2)

(msg data(false) from port mS of e to side2)

(msg data(true) from port s2FA of e to side2)

(msg data(0) from port s1AS of side1 to side2)),

machine :

(< side2 : Side2 | state : initState,

prevManualSwitch : false,

prevS1AS : 0,

nexts2as : data(0) >),

outputBuffer : none,

outputTimer : INF >

< e : PalsWrapper | palsTimer : 0, inputBuffer : none,

machine : (< e : Environment | none >),

outputBuffer : none, outputTimer : INF >} .

*** The ’next1as’ attributes are never changed and hence do not add to state space!

eq minMsgDelay = 0 .

eq maxMsgDelay = 1 .

endtom)

B.6 Model Checking R1–R5 for the Synchronous Model

This section explains explains our model checking analysis of the synchronous
model w.r.t. the requirements R1–R5.

Since most of these requirements contain the clause “the availability of a side
has not changed,” we have, for convenience, modified our synchronous model
slightly, so that the ports s1FA (side 1 fully available) and s2FA (side 2 fully
available) carry both the current value sent, and also the previous value sent.
(In the asynchronous version, the same effect can be achieved with each side
object remembering the last such value received.) This minor modification is
not really necessary, since the fact that availability has not changed can be
expressed by the LTL formula

(side1FullyAvail <-> O side1FullyAvailable) /\
(side2FullyAvail <-> O side2FullyAvailable)

but then we would need to add more next operators to the entire temporal logic
formulas.

The function envoutput inserting the environment output into the appro-
priate output ports is thus modified to:

eq envoutput(env(B1, B2, B3, B4, B5),
[port s1F from e has value D1]
[port s2F from e has value D2]



89

[port mS from e has value D3]
[port s1FA from e has value data(B6, B7)]
[port s2FA from e has value data(B8, B9)]
REST)

=
[port s1F from e has value data(B1)]
[port s2F from e has value data(B2)]
[port mS from e has value data(B3)]
[port s1FA from e has value data(B4,B6)]
[port s2FA from e has value data(B5,B8)]
REST .

However, the search commands that were used to find the number of reach-
able states in a model and execution times for reachability analyses were per-
formed in the original systems.

Requirement R1. Recall Requirement R1:

Both sides should agree on which side is active (provided neither side
has failed, the availability of a side has not changed, and the pilot has
not made a manual selection).

By “side N being active” we assume that what is meant is that that side
N sends its number to the other side through its sideNactiveSide port (as
opposed to being in location sideNActive). The parameterized atomic propo-
sition side_active can therefore be defined as follows:

op side_active : Nat -> Prop [ctor] .
eq {CONF < side1 : Side1 | nexts1as : data(N) >} |= side 1 active = (N == 1) .
eq {CONF < side2 : Side2 | nexts2as : data(N) >} |= side 2 active = (N == 2) .

We can then define what it means that both sides agree on which side is active:

op agreeOnActiveSide : -> Prop [ctor] .
eq {CONF

< side1 : Side1 | nexts1as : data(N1) >
< side2 : Side2 | nexts2as : data(N2) >} |= agreeOnActiveSide

= N1 == N2 and N1 =/= 0 .

Since the ports sNFA now contain both the previous and the current value
sent, the proposition defining whether or not full availability has changed is given
as follows:

op side_availChanged : Nat -> Prop [ctor] .
eq {CONF [port s1FA from e has value data(B, B2)]} |= side 1 availChanged
= (B =/= B2) .

eq {CONF [port s2FA from e has value data(B, B2)]} |= side 2 availChanged
= (B =/= B2) .

op changeInAvailability : -> Formula .
eq changeInAvailability = side 1 availChanged \/ side 2 availChanged .



90

State predicates stating whether a manual selection has taken place and
whether a given side has failed are defined by considering the output from the
environment:13

op manSelectPressed : -> Prop [ctor] .
eq {CONF [port mS from e has value data(B)]} |= manSelectPressed = B .

op side_failed : Nat -> Prop [ctor] .
eq {CONF [port s1F from e has value data(B)]} |= side 1 failed = B .
eq {CONF [port s2F from e has value data(B)]} |= side 2 failed = B .

op neitherSideFailed : -> Formula .
eq neitherSideFailed = (~ side 1 failed) /\ (~ side 2 failed) .

We combine these into a formula for the assumptions of R1:

op noChangeAssumption : -> Formula .
eq noChangeAssumption
= ~ changeInAvailability /\ ~ manSelectPressed /\ neitherSideFailed .

We are now ready to define formally Requirement R1. However, as explained
above, in “stable” situations where each side is in local state sidejActive for
the same j, it is the passive side that monitors the manual selection and fully
available values from the environment. When the passive (or standby) side real-
izes that the active side should change, it sends its own value to the active side.
This value will arrive in the next iteration, so there is a round in which both
sides are active. The best we can hope for is that they agree either in this round
or in the next; furthermore, if one side fails in the next round, then we may still
not have an agreement, so the following is the best we can hope for:

op R1 : -> Formula .
eq R1 = [] (noChangeAssumption

-> (agreeOnActiveSide
\/ O (neitherSideFailed -> agreeOnActiveSide))) .

Indeed, model checking this property returns true (in about 0.8 seconds), so
the property holds:

Maude> (red modelCheck(init, R1) .)
rewrites: 102954 in 829ms cpu (837ms real) (124097 rewrites/second)

result Bool : true

Requirement R2. Remember that Requirement R2 says:

13 Remember that ~ denotes negation of Maude’s LTL formulas.



91

A side that is not fully available should not be the active side if the
other side is fully available (again, provided neither side has failed, the
availability of a side has not changed, and the pilot has not made a
manual selection).

This property obviously does not hold as stated; we have explained that the
passive side monitors full availability, and hence the change of active side might
be delayed by one round. Therefore the fomula R2a is the best we can hope for
side 1 :

op side_fullyAvailable : Nat -> Prop [ctor] .
eq {CONF [port s1FA from e has value data(B, B2)]} |= side 1 fullyAvailable = B .
eq {CONF [port s2FA from e has value data(B, B2)]} |= side 2 fullyAvailable = B .

op R2a : -> Formula .
eq R2a
= [] ((noChangeAssumption /\ side 1 fullyAvailable /\ ~ side 2 fullyAvailable)

-> (~ side 2 active \/ O (noChangeAssumption -> ~ side 2 active))) .

Model checking shows (again in 0.8 seconds) that R2a holds in our model:

Maude> (red modelCheck(init, R2a) .)
rewrites: 101703 in 812ms cpu (814ms real) (125160 rewrites/second)

result Bool : true

We have model checked similar formulas for side 2, but the property does
not hold. The counterexamples provided by Maude’s model checker allowed us
to analyze the failures of the property for side 2; it may take as much as four
steps to reach the desired state after side 1 is no longer fully available:

1. Start with sides 1 and 2 in their local states side1Wait and side1Failed,
respectively. (Throughout this behavior, the new and old value of s1FA are
false and both values of s2FA are true, there is no manual selection and
no failures.) In this state, side 1 sends a ’1’ indicating it is active. Further-
more, since side 2 is in state side1Failed (side 1 has just recovered from
failure, but that information has not yet reached side 2), and not in state
side1Active, side 2 does not monitor the fully available values.

2. In the next state (with the same output from the environment), side 1 goes
to state side1Active, whereas side 2, having received the value ’1’ from side
1, goes to state side2Wait.

3. In the next state, side 2 finally goes from state side2Wait to state side1Active.
4. In the following state, side 2, now in state side1Active and therefore mon-

itoring the full availability of both sides, realizes that a side change is nec-
essary, and sends the value ’2’ to side 1.

5. Finally, in the next state, the ’2’ sent by side 2 in the previous step is read
by side 1, which prompty changes state from side1Active to side2Active
and sends the number ’2’ as output.



92

Hence, the best we can hope for side 1 becoming not fully available is that side
1 becomes inactive in four steps or less. This leads to the following requirement
R2b for side 2 :

op R2b : -> Formula .
eq R2b
= [] ((noChangeAssumption /\ side 2 fullyAvailable /\ ~ side 1 fullyAvailable)

-> (~ side 1 active \/
O (noChangeAssumption -> (~ side 1 active \/

O (noChangeAssumption -> (~ side 1 active \/
O (noChangeAssumption -> (~ side 1 active \/

O (noChangeAssumption -> ~ side 1 active))))))))) .

Model checking this property returns true (in 0.8 seconds). The reason for
the difference in sides is probably due to the fact that the sides are asymmetric
in their failure recovery. After a failure, there is bias towards side 1 being the
active side. We therefore could end up in the states (side1Wait, side1Failed)
after failure of side 1 whereas we may not end up in the symmetric state after
side 2 is repaired.

Requirement R3. Requirement R3 states the following:

The pilot can always change the active side (except if a side is failed or
the availability of a side has changed).

This is a problematic requirement. First of all, it is unclear what is meant by
“The pilot can always change the active side.” It is obvious that the pilot can
always press the switch; it is equally obvious that there are many states in which
such a request is just ignored, because it contradicts the requirement that if one
component is fully available and the other one is not, then the fully available
side should be the active side.

In addition, the property cannot be expressed as an LTL requirement, since
the pilot never has to change the active side. (However, if we can formalize “pilot
changes active side,” then the property can be expressed as a CTL property
∀!(∃" “pilot changes active side”).)

Given that it is trivial to see that the environment always can generate a
manual selection event, we interpret requirement R3 as follows:

If both sides agree on the active side, both sides are fully available (and
therefore there are no failures), and then the manual selection is activated
(and there is still no lack of availability), then the active side should
change either immediately, or, at latest, in the next round (unless there
is lack of availability).

This interpretation can be formalized as the following LTL formula R3a:

op R3a : -> Formula .
eq R3a = [] ((side 1 fullyAvailable



93

/\ side 2 fullyAvailable /\ agreeOnActiveSide)
-> ( (side 1 active

-> O ((manSelectPressed /\ side 1 fullyAvailable
/\ side 2 fullyAvailable)
-> (side 2 active

\/ O (noChangeAssumption -> side 2 active))))
/\ (side 2 active

-> O ((manSelectPressed /\ side 1 fullyAvailable
/\ side 2 fullyAvailable)
-> (side 1 active

\/ O (noChangeAssumption -> side 1 active)))))) .

However, model checking this formula returns a counterexample, in which both
sides continue to agree that side 1 is the active side, even though there are no
failures when the pilot presses the button. (Adding more next-state disjunctions
will not help.) Briefly stated, the source of the problem is the following:

– In most circumstances, if the system gets a manual selection request, this
request will be “rcorded,” and the following consecutive manual selection
requests will be ignored.

– When some component is not fully available, the system cannot take always
obey the pilot’s desire to switch the active side. However, even if the sys-
tem cannot treat the manual selection event, it remembers in the attribute
prevManualSwitch that the manual switch was requested.

The path provided by Real-Time Maude’s model checker as a counterexample
to the validity of the above LTL property shows that the pilot makes a manual
switch request when a side is not fully available (and hence the switch of active
sides is not effectuated). In the next round, all components are OK, and the
pilot again requests a switch of active sides. But, this last request is ignored
since the system registered that the pilot pressed the manual selection in the
previous round. All following consecutive manual requests will also be ignored.

In more detail, assume that both sides are in local state side1Active. In this
case, side 2 should observe the availability of the sides and the manual selections,
and should initiate a change of active sides if such a change should be performed.
Now, assume that side 2 becomes not fully available at the same time when the
pilot requests the manual switch. Consider the definition of the transition for
this case:

ceq performTrans(< side2 : Side2 | state : side1Active, prevS1AS : I2,
prevManualSwitch : B2 >

[port s2F from e has value data(false)]
[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
[port s1FA from e has value data(B4)]
[port s2FA from e has value data(B3)]
REST)

=
< side2 : Side2 | prevManualSwitch : B1, prevS1AS : I,



94

nexts2as : data(1) >
performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
[port s1FA from e has value data(B4)]
[port s2FA from e has value data(B3)]
REST)

if I =/= 0 and ((not B3) or (B4 and (B2 or (not B1)))) .

The pilot has requested a manual switch (i.e., B1 is true), hence prevManualSwitch
is set to true, and side 2 is not fully available (hence B3 has value false, and
the condition holds, since I equals 1). Therefore, in essence nothing changes,
which is correct, since the system should not switch to side 2 when side 2 is not
fully available. However, in the next round, all sides are fully available, and the
pilot again wants to manually switch the active side. The above equation again
applies, but this time because prevManualSwitch (B2) now equals true. And,
of course, this equation does not change the active side.

Since the problem above was that a manual switch request happened when a
component is not fully available, we have weakened the above LTL property by
adding a conjunct ~ manSelectPressed to the main premise, so that the manual
switch request in a non-error state should not directly follow a manual switch
request in a non-perfect state. However, model checking this weaker property also
returned a counterexample, from which we could extract the following problem:
Side 1 is active according to both sides, but side 2 is in local state side2Wait,
as it has just recovered from a failure of side 2. However, there are no failures in
the state (allowing side 2 to recover to state side2Wait). Also in the next state,
every component is fully available, and the manual selection is pressed. Side 2
continues its recovery according to the equation

ceq performTrans(< side2 : Side2 | state : side2Wait >
[port s2F from e has value data(false)]
[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
REST)

=
< side2 : Side2 | state : side1Active, prevManualSwitch : B1,

prevS1AS : I, nexts2as : data(1) >
performTrans([port s2F from e has value data(false)]

[port s1AS from side1 has value data(I)]
[port mS from e has value data(B1)]
REST)

if I =/= 0 .

This does what it is supposed to do: side 2 does not fail, and when it gets the
’1’ from side 1, it goes to state side1Active. However, it also records the fact
that a manual selection request was received, but it does not act on it, leading
to the problems described in the previous counterexample.



95

We have model checked several variants of Requirement 3, and it seems that
the following property R3g is the strongest one that holds – except in the initial-
ization phase – in our specification. The property says that if the two sides are
fully available and do not receive a manual switch request for two consecutive
rounds, and stay faultless and receive a manual switch request in the third round,
then the active side will switch instantaneously. (Note, however, that since we
have defined the state predicate side 1 active to hold iff side 1 sends a ’1’
signal to side 2 (and vice versa for side 2 active), the previously active side
will only be aware of the switch in the following round.)

op R3g : -> Formula .
eq R3g = [] ( (~ manSelectPressed /\ agreeOnActiveSide

/\ side 1 fullyAvailable /\ side 2 fullyAvailable
/\ (O noChangeAssumption))

-> ( (side 1 active
-> O O ( (manSelectPressed /\ side 1 fullyAvailable

/\ side 2 fullyAvailable)
-> (side 2 active)))

/\ (side 2 active
-> O O ( (manSelectPressed /\ side 1 fullyAvailable

/\ side 2 fullyAvailable)
-> (side 1 active))))) .

Earlier model checking revealed that this propoerty does hold in the initial-
ization phase, so we start the model checking of the above property in the second
state:

Maude> (red modelCheck(init, O R3g) .)
rewrites: 102216 in 834ms cpu (840ms real) (122521 rewrites/second)

result Bool : true

Requirement R4. Requirement R4 states:

If a side is failed the other side should become active.

As seen in Fig. 6, only the failed side gets the signal about its failure. A failed
side signals the failure to the other side by sending a ’0’ value to the other side.
Since this communication has a one-step delay, the best we can hope for is that
the other side becomes active in the next state:

op R4 : -> Formula .
eq R4 = [] (((side 1 failed /\ ~ side 2 failed)

-> O (~ side 2 failed -> side 2 active))
/\ ((side 2 failed /\ ~ side 1 failed)

-> O (~ side 1 failed -> side 1 active))) .

This property holds in our model:



96

Maude> (red modelCheck(init, R4) .)
rewrites: 101597 in 825ms cpu (831ms real) (123055 rewrites/second)

result Bool : true

Requirement R5. Requirement R5 states:

The active side should not change unless the availability of a side changes,
the failed status of a side changes, or manual selection is selected by the
pilot.

For active side 1, this property can be defined as follows. If side 1 is active,
then it stays active forever, or until something changes:

op R5side1 : -> Formula .
eq R5side1
= [] (((side 1 active /\ side 1 fullyAvailable /\ ~ manSelectPressed)

-> (side 1 active W (~ side 1 fullyAvailable \/ manSelectPressed)))
/\ ((side 1 active /\ ~ side 1 fullyAvailable /\ ~ side 2 fullyAvailable

/\ ~ manSelectPressed /\ ~ side 1 failed)
-> (side 1 active W

(side 1 fullyAvailable \/ side 2 fullyAvailable
\/ manSelectPressed \/ side 1 failed)))) .

We have here ignored cases where either the property does not hold (such as
when side 2 is fully available whereas side 1 is not) or cases that cannot happen
(side 1 and side 2 both failed). This formula also model checks successfully:

Maude> (red modelCheck(init, R5side1) .)
rewrites: 101702 in 828ms cpu (831ms real) (122803 rewrites/second)

result Bool : true

Side 2 is trickier, since if side 2 is active, it might also be inactivated when
side 1 wakes up from failure, without full availability changing, or sides failing.
We must therefore weaken the property for side 2, to exclude states where side 2
sends ’ 2’ only because it is some error recovery state, and consider the property
only for when side 2 is in state side2Active:

op s2InStateSide2Active : -> Prop [ctor] .
eq {CONF < side2 : Side2 | state : side2Active >} |= s2InStateSide2Active
= true .

op R5side2X : -> Formula .
eq R5side2X
= [] (((s2InStateSide2Active /\ side 2 fullyAvailable

/\ ~ manSelectPressed /\ ~ side 1 failed)
-> (s2InStateSide2Active W

(~ side 2 fullyAvailable \/ manSelectPressed \/ side 1 failed)))



97

/\ ((s2InStateSide2Active /\ ~ side 2 fullyAvailable
/\ ~ side 1 fullyAvailable /\ ~ manSelectPressed
/\ ~ side 2 failed /\ ~ side 1 failed)
-> (s2InStateSide2Active W

(side 2 fullyAvailable \/ side 1 fullyAvailable
\/ manSelectPressed \/ side 2 failed \/ side 1 failed)))

/\ ((side 2 active /\ ~ manSelectPressed /\ ~ side 2 failed
/\ side 1 failed)
-> (side 2 active W

(manSelectPressed \/ side 2 failed \/ ~ side 1 failed)))) .

This property also model checks successfully in less than a second

Maude> (red modelCheck(init, R5side2X) .)
rewrites: 102073 in 837ms cpu (845ms real) (121841 rewrites/second)

result Bool : true


