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ABSTRACT 

 

This study demonstrates the use of engineered vesicles to reduce perchlorate. 

Specifically, cell-free extracts containing perchlorate reductase and chlorite dismutase 

enzymes were encapsulated in a triblock copolymer vesicle functionalized with the outer 

membrane porin OmpF. The porin allows for perchlorate transport into the vesicles, inside 

which the encapsulated enzymes transform perchlorate to chloride. Perchlorate reduction was 

quantified using a methyl viologen colorimetric technique. The vesicle solutions had 

perchlorate-reducing activities ranging from 35-45 units per liter. This work shows that 

vesicles can provide a mechanism to utilize environmentally-relevant biological enzymes. 

When incorporated into a vesicle, the enzymes could be used outside of environmental 

conditions where they would normally be expressed by natural bacteria. 
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INTRODUCTION 

  

Many environmental contaminants can be transformed to innocuous compounds by 

biological enzymes. These contaminants are often poor substrates for growth; to remove 

them cells require that a narrow range of environmental conditions be maintained. 

Maintaining appropriate conditions represents a significant amount of engineering effort for 

many biological treatment systems [1]. For example, engineered systems that utilize biomass 

for the treatment of perchlorate must add excess electron donor to reduce preferred electron 

acceptors such as nitrate and oxygen before perchlorate is reduced [2]. To remove biological 

oxygen demand (BOD), activated sludge treatment requires pumping of large amounts of 

oxygen to maintain aerobic conditions. Activated sludge also creates large amounts of excess 

biomass which requires disposal through incineration, land application, or landfilling [3,4]. 

To remove more recalcitrant compounds than BOD, some have suggested that genetic 

modifications could be used to create new metabolic pathways to remove these compounds. 

These techniques could also be used to expand the range of conditions in which cells can 

grow [5,6]. However, current regulations generally do not allow the release of genetically 

modified bacteria into the environment, as the modified genetic material could be spread in 

an uncontrolled manner by bacterial cells [7]. Due to their versatility, biological cells have 

applications to many environmental engineering systems. Nevertheless, they have 

disadvantages that make them less than ideal in certain cases. 

Cells provide cheap, versatile and abundant sources of catalysts to increase the rate of 

reaction of a plethora of reactions. However, the goals of an engineer and the goals of the cell 

are quite different. Whereas the engineer’s goal is to catalyze a reaction, the cell’s goal is to 

replicate itself and pass on its genes. While most of the time both parties can be satisfied, 

they do conflict in some systems, as illustrated above. One solution to these problems is to 

create a simplified version of the cell that performs only one task of interest, regardless of the 

ambient conditions. For an engineer, the ideal biological cell would be a catalyst that 

regenerates itself and does not foul, something like the packet of enzymes shown in Figure 1. 

Enzymes could be encapsulated in some sort of shell and a transmembrane pore would allow 

transport into and out of the vesicle. Several methods have been proposed to create these 

simplified cells, or as they will be known in this work, engineered vesicles. These vesicles 

can still utilize the potency of biomolecules, but as the system is much more defined from an 

engineering perspective than a biological cell, vesicles can obviate many of the shortcomings 

of strictly biological systems. 
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Many studies have used vesicles formed from lipid membranes (liposomes) to 

investigate how this kind of system could be tailored for different functionalities. However, 

lipids are subject to oxidation over time and liposomes have a limited number of applications 

after 30 or more years of research [11,12]. Unlike lipid membranes, vesicles created from 

polymer-based membranes are stable for long periods of time and are resistant to oxidation, 

making them more suitable for engineering applications [13]. Vesicles constructed from 

biomimetic triblock copolymers have been used to create hybrid abiotic-biotic systems with 

several applications [13,14,10]. Triblock copolymer membranes mimic the structure of lipid 

membranes with hydrophobic groups in the interior of the polymer and exterior hydrophilic 

groups [15]. This lipid bilayer-like structure allows for the functional insertion of membrane 

proteins, as demonstrated with several proteins [16,17]. These membranes are generally 

thicker than their lipid counterparts: a polymer membrane is approximately 10 nm whereas a 

lipid membrane is generally 5 nm. Despite this significant increase in thickness, membrane 

proteins have been shown to functionally insert in the polymer. It is theorized that the 

polymer surrounding the membrane protein compresses to match the size of the protein [18]. 

The polymer generally forms vesicle-like structures with diameters ranging from 50 to 500 

nm [9]. Methacrylate end groups can be incorporated into the triblock structure, and can be 

polymerized under UV light to give additional stability to the vesicles [15]. Applying these 

polymer vesicles to environmental applications is the focus of this work. 

This work explores the advantages of engineered vesicles as compared to traditional 

biological treatment. Specifically, my work attempts to create engineered vesicles with 

encapsulated perchlorate-reducing enzymes and incorporated membrane proteins that allow 

perchlorate transport. To understand how engineered vesicles might be advantageous when 

treating perchlorate, one must first understand issues surrounding current perchlorate 

treatment, bacterial perchlorate enzymes/metabolism and the design of this proposed 

engineered vesicle. These issues are addressed in each of the subsequent sections.  

Perchlorate Toxicity, Regulation and Current Treatment Technologies 

Perchlorate is an environmental contaminant arising from the historical disposal of 

munitions and rocket fuel into the environment, before it was understood that this compound 

had human health effects. It is a thermodynamically strong oxidant, with many uses in the 

aerospace and defense industries. However, at ambient temperatures and pressures, 

perchlorate is very stable in aqueous solution and is almost kinetically unreactive. Perchlorate 

affects iodide uptake by the thyroid gland and can subsequently affect hormone 

production—especially in sensitive subpopulations. There has been significant debate as to 
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the levels at which health effects arise. There is a general consensus that infants and the fetus 

of a pregnant woman are the most sensitive subpopulations for thyroid toxicity, but no 

studies have directly measured the toxic effects of perchlorate on those populations [19].  

As a result of this lack of data, proxies must be used and assumptions made to 

determine an appropriate drinking water standard. To protect sensitive subpopulations, the 

EPA in 2002 suggested that perchlorate should be treated to below 1 µg/L in drinking water, 

based on a rat model [20]. Other studies have reported that concentrations as high as 180 and 

220 µg/L in drinking water would be required to have an effect on iodide uptake in adult 

humans, and no effect on hormone production is observed until even higher concentrations of 

perchlorate are reached [21]. In 2005 the National Academy of Science used the data in [21] 

and an uncertainty factor of 10 (to account for sensitive subpopulations) when proposing an 

equivalent drinking water standard of 24.5 µg/L [22,19]. Many states have also proposed 

limits for perchlorate in drinking water, varying from 1-18 ppb [19]. The wide variety of 

proposed drinking water standards is a reflection of the wide variety of methodologies used 

to support them. At present, no national standard exists [19]. Nevertheless, perchlorate is 

detectable in the drinking water of 16 million Americans [23] and may constitute a 

significant health concern [24,25]. 

Over 15.9 million kg of perchlorate have been released into the environment due to 

rocket and missile use [26]. Before 1997, it was difficult to detect the environmental fate of 

these 15.9 million kg, as perchlorate could not be reliably detected below 400 ug/L. In 1997, 

a new analytical method became available with a detection limit of 4 ug/L, and perchlorate 

contamination was quickly determined to be widespread. Subsequently, the EPA published a 

draft risk assessment concerning perchlorate. In 2002 the EPA released a revised risk 

assessment for public comment and peer review, and in 2003 the EPA, Department of 

Defense, NASA and Department of Energy asked the National Academy of Science (NAS) to 

review the draft risk assessment after disagreement about the proposed reference dose. In 

January 2005, an NAS report concluded that existing studies did not support a link between 

perchlorate exposure and developmental effects and proposed raising the perchlorate 

reference dose and drinking water standard from 1 ug/l to 24.5 ug/L [19]. The EPA adopted 

the National Academy of Science’s proposed reference dose in January 2005 [22], but in 

October 2008 made a preliminary decision not to establish a national drinking water standard. 

The EPA stated that regulating perchlorate would not provide a “a meaningful opportunity 

for health risk reduction for persons served by public water systems [27].” At the same time, 

the agency proposed a interim health advisory value of 15 ug/L [27]. After the transition from 
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the Bush Administration to the Obama Administration, the EPA asked the NAS to reevaluate 

the interim health advisory value. As the agency is reconsidering its previous positions, a 

national drinking water standard may be possible in the future [28,29]. If a national standard 

were enacted, demand for perchlorate treatment technologies would increase greatly. 

However, many water treatment utilities are treating perchlorate voluntarily due to perceived 

health effects and public demand. As health concerns grow, even in the absence of a national 

standard, demand for perchlorate treatment technologies may increase.  

Viable abotic and biotic technologies exist for perchlorate treatment to meet proposed 

limits, but all have shortcomings that would hinder their widespread implementation. 

Example abotic systems include: ion exchange [30], reverse osmosis [31], electrodiaylsis 

removal (EDR) [32], and granular activated carbon (GAC) [33]. These abiotic technologies 

utilize adsorption or diffusion-limited filtration to remove perchlorate from bulk solution. 

These technologies concentrate perchlorate, but do not remove it from the environment. This 

creates a brine solution with elevated salinity and perchlorate levels. This brine must be 

further treated either chemically or biologically. Biotic processes require an exogenous 

electron donor to reduce perchlorate to chloride and oxygen. However, microbes will utilize 

oxygen and nitrate as electron acceptors before perchlorate is utilized and thus biotic 

processes must remove alternative electron acceptors before perchlorate is utilized [2].  

The most commonly used process for ex situ perchlorate removal is ion exchange. Ion 

exchange is a physical-chemical process in which ions on a solid surface are exchanged for 

ions of similar size and charge. In the case of perchlorate, chloride is often exchanged for 

perchlorate using specialized media. Ion exchange media has a limited capacity and must be 

regenerated when exhausted. This is achieved using a backwash solution with high salt 

concentrations, which replaces the perchlorate with another anion. This creates a salty 

solution highly enriched in perchlorate. Membrane technologies are another common method 

of treating perchlorate. Electrodialysis reversal uses electric current to drive perchlorate and 

its accompanying cation across selective membranes and into a brine solution. Reverse 

osmosis uses high osmotic pressures to drive water across a semipermeable membrane, 

creating a permeate solution mostly free of perchlorate, and a brine solution enriched in 

perchlorate and other electrolytes that were present in the source water. All of the brine 

solutions created by these processes require further treatment [34]. 

Ex situ treatment using a bioreactor places perchlorate-laden water in contact with 

microbes capable of degrading perchlorate to chloride. The reduction of perchlorate to 

chloride requires the addition of electron donor, usually in the form of acetic acid, ethanol, 
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methanol or hydrogen. Other nutrients such as ammonia or phosphorous may be added if the 

source water alone cannot support the growth of organisms. Common bioreactor 

configurations are fluidized-bed reactors and fixed-bed reactors. In both configurations, 

microbes grow on some kind of media: either sand, granular activated carbon, or plastic 

media. Fluidized beds pump water through at a high enough rate to suspend the media, 

whereas a fixed-bed utilizes static media. Fluidized beds can provide greater surface area for 

microbes and thus a smaller reactor volume, but this requires higher pumping rates. If 

alternative electron acceptors like nitrate or oxygen are present, the microbes will 

preferentially utilize those and not degrade perchlorate. Thus, control of the influent nitrate 

and dissolved oxygen concentrations is vital for successfully operation of 

perchlorate-reducing bioreactors. To prevent clogging of the reactor from microbial growth, 

backwashing at high flow rates is used to remove excess biomass. This prevents flow 

channeling, short-circuiting and high headloss across the reactor [34]. 

An interesting union of these technologies exists in the BIOBROxTM (Biodestruction 

of Blended Residual Oxidants) process. In this process, drinking water from a contaminated 

source is treated with ion exchange, electrodialysis reversal, or reverse osmosis and the brine 

is then treated with a bioreactor. However, the source of electron donor for the brine is 

municipal wastewater. Instead of using an expensive consumable like acetic acid for an 

electron donor, a waste product is utilized and treated. Additionally, enough wastewater is 

blended to reduce the salinity of the brine to a level that non-halophilic bacteria can tolerate. 

The process has been implemented at full-scale in a 3.75 million gallon per day facility and is 

operated by Magna Water District in Magna, Utah. The effluent from this process can then be 

safely discharged to the sewer or put into a reuse system [35]. 

Bacterial Perchlorate Metabolism 

Two principle enzymes have been implicated in the reduction of perchlorate to 

chloride: perchlorate reductase and chlorite dismutase. Perchlorate reductase (Pcr) catalyzes 

the reduction of perchlorate to chlorate and from chlorate to chlorite as illustrated in Figure 2. 

Both of these reactions require an external source of reducing power, usually in the form of 

an exogenous electron donor [25]. Pcr is a 420 kDa protein believed to be a trimer of 

heterodimers (a3b3) containing iron, molybdenum and selenium [36]. The Pcr protein is found 

in the periplasm of perchlorate-reducing bacteria, but it is a soluble protein [25]. Chlorite 

dismutase (Cld) then catalyzes the dismutation of chlorite into chloride and O2 (Figure 2). As 

this is a dismutation reaction, no external electron donor is required in this step. Cld is a 

heme-containing 120 kDa protein and is the only known enzymatic process which catalyzes 
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is described in more detail below. The membrane is a biomimetic ABA triblock copolymer 

with hydrophobic interior groups and hydrophilic exterior groups, which can support inserted 

membrane proteins such as OmpF. In this work, the perchlorate-reducing enzymes were 

supplied in a cell-free extract and encapsulated in the interior of the vesicle. The reducing 

power for these reactions was provided by methyl viologen. 

OmpF has been used in previous encapsulation studies to transport ions across a 

triblock copolymer membrane [9,14]. This protein is a homotrimer of 37 kDa subunits 

proteins, and each protein subunit contains a 600 dalton pore that allows small solutes in and 

out of the membrane via passive transport/diffusion. The pore has a slight cation specificity, 

but anions such as perchlorate can be transported through the pore [44]. OmpF was chosen as 

it has been used before in similar studies and is large enough to allow the passage of the 

materials of interest. Enzymes targeted to a specific compound (perchlorate in this case) can 

be encapsulated inside a vesicle and coupled to transport proteins (such as OmpF) that allow 

the influx of that compound and the efflux of break-down products. This system thus 

represents a novel means of utilizing environmentally-relevant enzymes, protecting them in a 

polymer shell and coupling them to transport processes. Unlike a cell, this system does not 

adapt to a preferred substrate and so will reduce perchlorate whenever the reaction is 

thermodynamically favorable. 
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Utilizing NIS has not been attempted in this work due to the difficulty of purifying 

eukaryotic membrane proteins and incorporating them into a polymer membrane. In addition 

to the difficult task of purifying and incorporating NIS, a source of reducing power must be 

provided for the encapsulated perchlorate-reducing enzymes to function. Unlike the 

OmpF-based vesicles, which used methyl viologen as a source of reducing power, NIS-based 

vesicles will not be permeable to methyl viologen. The incorporation of an additional protein 

into the membrane or encapsulation of a system for generating reducing power may be 

necessary to allow for electrons/reducing power to be shuttled inside the vesicle. 

Results of this Study 

My results show that polymer vesicles with encapsulated perchlorate-reducing 

enzymes and membrane-incorporated OmpF can reduce perchlorate. Using these engineered 

vesicles, perchlorate will be reduced at enzymatic rates whenever conditions are 

thermodynamically favorable, rather than being subject to the protein expression patterns of 

the cell.   

These vesicles circumvent many of the shortcomings of biological treatment, while 

retaining its advantage of completely reducing perchlorate to chloride at enzymatic rates. 

This approach could also be applied to other enzymes and other contaminants. Conceivably 

any process for which biological treatment is difficult could be distilled into an engineered 

vesicle approach. The relevant enzymes could be purified, placed inside a vesicle with 

membrane proteins and then used to treat recalcitrant compounds. At first, these vesicles will 

have a limited number of high-value applications, as the recombinant enzymes, proteins and 

polymer are difficult to produce, whereas many kinds of cells are simple to grow and 

incorporate into engineered systems. Although this approach would be used in high value 

applications initially, it could become much more widespread as the components become 

easier to produce. 
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MATERIALS AND METHODS 

 

Chemicals and Reagents: The ABA3 was a symmetric poly-(2-methyloxazoline)- 

block-poly-(dimethylsiloxane)-block-poly-(2-methyloxazoline) (PMOXA15-PDMS110- 

PMOXA15) block copolymer and was a generous gift of the Meier lab at the University of 

Basel, Switzerland. This polymer was used for all vesicle studies. A description of the 

synthesis of a similar polymer is described in reference [47]. All other chemicals used were 

of reagent grade.  

Strains and Growth Media: Strain BAA-33 Azospira oryzae and Dechloromonas 

agitata 700666 were obtained from ATCC (ATCC, Manassas, VA). Azospira oryzae was 

grown in mineral media as described [39]. Dechloromonas agitata was grown in mineral 

media as described [48]. Actively growing cultures of both strains were used to create 30% 

glycerol stocks which were stored at -80˚C. 

Growth Curves of Azospira oryzae and Dechloromonas agitata: Azospira oryzae 

and Dechloromonas agitata were grown as described before [39,48]. The strains were 

maintained as glycerol stocks, streaked to nutrient agar and grown at 35˚C for 2 – 3 days. 10 

mL starter cultures were prepared from streak plate colonies and incubated at 35˚C on a 

shaker at 100 rpm. After the starter cultures reached an optical density (at 600 nm) of 0.3, 

growth cultures (10 mL) were inoculated in triplicate with 1 mL of the starter culture for 

growth curves and incubated at 35˚C on a shaker at 100 rpm. Samples were taken from each 

triplicate culture for later chlorate or perchlorate analysis and optical density measurements 

were taken at 600 nm over time. 

Preparation of Cell-Free Extract Containing Perchlorate-Reducing Enzymes: 

Cell extract containing perchlorate reducing enzymes was obtained as described before [49]. 

Azospira oryzae was maintained as a 30 % glycerol stock, streaked to nutrient agar and 

grown at 30˚C for 2 – 3 days. 100 mL starter cultures in mineral media [39] were prepared 

from Azospira streak plates. Upon reaching an optical density (at 600 nm) of ~ 0.6 cultures 

were transferred to 5 L mineral media. After reaching an optical density (at 600 nm) of ~ 0.6, 

the 5 L cultures were pelleted, resuspended in 10 mL 50 mM potassium phosphate buffer (pH 

6.0), and broken using a sonic dismembrator (Fisher Scientific, Waltham, MA). Three five 

minute lysis cycles (3 sec on 2 sec off) were used to break the cells. The lysate was 

subsequently centrifuged at 5,000 x g for 15 min. The resulting supernatant was then 

centrifuged at 140,000 x g for one hour using a Beckman preparative ultracentrifuge 
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(Beckman-Coulter, Fullerton, CA) to obtain a red supernatant enriched in perchlorate 

reductase and chlorite dismutase.  

Expression and Purification of OmpF: Porin proteins were obtained by 

overexpressing and purifying the Escherichia coli outer membrane protein, OmpF from the 

strain BL21(DE3) omp8 [50]. Protein purification was performed as described [14] and 

briefly summarized here. Cultures were inoculated 1:200 from overnight cultures into 1 L 

Luria-Bertani broth and grown to an optical density (at 600 nm) of ~ 0.6. Cultures were then 

induced with IPTG at 0.4 mM for 6 hours. Cells were then pelleted (10,000 x g, 10 min). 

Cells were resuspended in 20 mM Tris-Cl pH 8.0, 2 % SDS and broken using a sonic 

dismembrator (Fisher Scientific, Waltham, MA). Three five minute lysis cycles (3 sec on 2 

sec off) were used to break the cells. The OmpF-containing peptidoglycan layer was pelleted 

by centrifugation (60 min, 40,000 x g). The resulting small black pellet was resuspeneded in 

prextraction buffer (0.125 % octyl-POE, 20 mM phosphate buffer, pH 7.4) and centrifuged to 

remove the membrane fraction (140,000 x g, 40 min). The membrane fraction was 

resuspeneded in extraction buffer (3 % octyl-POE, 20 mM phosphate buffer, pH 7.4) to 

solubilize the OmpF. The remaining membrane fraction was removed by centrifugation 

(140,000 x g, 40 min). OmpF purity was verified using SDS-PAGE. A detailed protocol for 

this procedure can be found in Appendix A. 

Preparation of ABA Vesicles, OmpF Incorporation and Cell-Free Extract 

Incorporation: Block copolymer vesicles were prepared by using the film rehydration 

method. Twelve milligrams of polymer was first dissolved in chloroform (2 ml), and the 

chloroform was evaporated slowly in a rotary vacuum evaporator at room temperature using 

a vacuum of 100 mbar. This formed an even film on the inside of round-bottomed flasks. This 

film was then further dried under a high vacuum (5 mbar) for at least 4 h. 1.5 mL of cell 

extract was then added to the film with alternating vigorous vortexing and periodic sonication 

(of duration 30 s) for several minutes. This mixture was then left stirring for at least 8 h. The 

resulting suspension was extruded once through a 1-um track-etched filter (Nucleopore, 

Whatman), followed by extrusion ten times through a 0.4 or 0.6-um track-etched filter 

(Nucleopore, Whatman) to obtain monodispersed unilamellar vesicles. To incorporate OmpF 

into ABA3 vesicles, varying amounts of an OmpF stock solution (in 20 mM phosphate 

buffer, 3% octyl-POE, pH 7.4) were added during the formation of the polymer vesicles. The 

resulting protein-containing vesicles were purified chromatographically by using a column 

packed with Sepharose 2B (Sigma, St. Louis, MO) or Sephacryl 500-HR (GE Healthcare, 

Waukesha, WI) to remove nonincorporated protein and trace detergent [14]. To quantify any 
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contaminating protein outside the vesicles, the BCA protein assay was used. A more detailed 

protocol for this procedure can be found in Appendix A. 

OmpF Transport Experiments: Two batches of vesicles hydrated in HEPES buffer 

with 2.5 mM carboxyfluorescein were made for OmpF transport experiments. One film was 

hydrated in the presence of OmpF at a 1:200 molar ratio of protein to polymer and one film 

was hydrated in HEPES alone with carboxyfluorescein. These vesicles were extruded and 

size excluded using standard methods as above. A fluorescence plate reader was used to 

measure the fluorescence at an excitation wavelength of 494 nm and an emission wavelength 

of 519 nm of both sets of vesicles in triplicate.  

Perchlorate-Reducing Enzyme Activity Assays: Perchlorate-reducing activity was 

assayed using methyl viologen, as described before [49]. Activity levels were measured by 

monitoring the oxidation of reduced methyl viologen (MV) at 578 nm in anaerobic cuvettes 

(Helma, Müllheim, Germany). The assay mixture (50 mM Tris, pH 7.5, 0.5 mM MV) was 

combined with vesicles and prereduced by a small amount of dithonite (0.2 M). The reaction 

was then started by the addition of 20 uL of perchlorate (.1 M). A more detailed protocol for 

this procedure can be found in Appendix A. 

Analytical Techniques for Chlorate, Perchlorate and Protein Concentrations: 

Chlorate Measurements Using Ion Chromatography: Chlorate concentrations 

were measured using ion chromatography using an Ion Pac AS-18 Hydroxide-Selective 

Anion Exchange column from Dionex on a Dionex ICS-2000 system (Dionex, Sunnyvale, 

CA) using 65 mM KOH eluent and a 1.2 mL/min eluent flow rate. Information on this 

method can be found in reference [51]. 

Perchlorate Measurements Using HPLC MS: Perchlorate concentrations were 

measured using high performance liquid chromatography in tandem with mass spectrometry. 

A Waters IC-Pak Anion HR (4.6 x 75 mm) column preceded by a Waters IC-PAK Anion 

guard column (Waters, Milford, MA) was used to prepare samples for injection onto the mass 

spectrometer. The eluent was 50 % 100 mM ammoium formate and 50% acetonitrile at a 

flow rate of 0.5 mL/min on an anionc column. Perchlorate was detected at an m/z ratio of 

99.5 on the mass spectrometer. Additional details about the method can be found in reference 

[52].  

Protein Measurements: Protein concentrations were measured using the BCA kit 

(Pierce, Rockford, IL). 

Construction of pSPOmpF and Expression: The ompF gene was PCR amplified 

from Escherichia coli strain ME9062 using the primers OmpF1 and OmpR1 (Table 2). Both 
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primers were constructed using a segment of the ompF sequence with an NdeI site 

engineered into the upstream primer and the XhoI site engineered into the downstream 

primer with 3 base pairs at the end to allow for restriction digestion. The pET 28b(+) vector 

and the resulting ompF were double digested with NdeI and XhoI. A 3:1 molar ratio of insert 

to vector was used to insert the amplicon into the vector, which was then transformed into 

XL-10 for plasmid maintenance. The plasmid was sequenced and shown to be free of errors 

(data not shown). Protein expression was achieved by transforming the resultant vector into 

BL21 (DE3) and inducing with 1 mM IPTG. 

Construction of pSPNIS and Expression: The rNIS plasmid was a gift from the 

Carrasco group. The rNIS plasmid contains the sequence of the sodium iodide symporter 

from Rattus norvegicus. NIS was PCR amplified from this template. Similar to ompF, 

primers were designed to add NdeI and XhoI sites to NIS for insertion into pET 28b(+) 

(Table 2). The plasmid and amplicon were double digested with NdeI and XhoI. Ligation was 

performed with a 3:1 molar ratio of insert to vector, which was then transformed into XL-10 

for plasmid maintenance. The plasmid was sequenced and shown to be free of errors. Protein 

expression was achieved by transforming the resultant vector into BL21 (DE3). Cultures 

were inoculated 1:200-1:1000 from overnight cultures into Luria-Bertani broth and grown to 

an optical density (at 600 nm) of ~ 0.6. Cultures were then induced with IPTG at 1 mM. Cells 

were then pelleted at various time points (10,000 x g, 10 min). 

Histidine-Tagged Western Blot: Standard techniques were used for running SDS 

PAGE gels [53]. Western blots were performed by transferring from a SDS PAGE gel to 

either a nitrocellulose or PVDF membrane overnight at 17V at 4°C. Membranes were 

blocked for 1 hour in 30 mL of Tris-Buffered Saline Tween-20 (TBST) with 1.5% dry milk. 

Membranes were then incubated at a ratio of 1:4000 Anti His6+-Perxoidase (2) (Roche, Basel, 

Switzerland) to TBST with 0.5% dry milk solution for 1.5 hour. Membranes were 

subsequently washed three times for 5 minutes each with TBST. Membranes were developed 

with BCIP/NBT substrate (Promega, Madison, WI) for 1-5 minutes. 

Protease Experiments for Cell-Extract and Vesicles: Cell extract was digested with 

proteinase K by adding proteinase at 2% of total protein to cell extract and incubating 

overnight at 37°C. Perchlorate-reducing activity was measured before and after digestion. 

Vesicles were digested with proteinase K by adding 5% (v:v) 20 mg/mL proteinase K 

solution (Roche). Vesicles were then incubated for 4 hours at room temperature and size 

excluded. 
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Transmission Electron Microscopy: These measurements were conducted on 

vesicle samples by using a Philips 400 microscope (Philips). The samples were prepared by 

dilution up to 1,000 times and then stained with 2% uranyl acetate on plasma-treated copper 

grids.  
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Table 1 – Strains and Plasmids Used 

Strains: Description: Reference: 

Escherichia coli:   

Omp8 OmpF overexpression strain, AmpR [50] 

ME9062 ompF PCR template  [54] [55] 

XL10 Ultracompetent cells Stratagene 

BL21 (DE3) pET system overexpression Strain Stratagene 

BL21 (DE3) pSPOmpF OmpF overexpression strain, KanR This study 

BL21 (DE3) pSPNIS NIS overexpression strain, KanR This study 

Other bacteria:   

Dechloromonas agitata strain 

CKB 

Perchlorate reducing bacterium [48] 

Azospira oryzae strain PS Perchlorate reducing bacterium [39] 

   

Plasmids:   

pET 28 b(+) Protein overexpression plasmid, KanR Novagen 

pSPOmpF His-tagged OmpF overexpression 

plasmid, KanR 

This Study 

pSPNIS His-tagged NIS overexpression 

plasmid, KanR 

This Study 

 

  



17 

Table 2 – Primers Used in this Study 

Name: Purpose: Sequence: 

OmpF1 OmpF Sequencing Primer 5' - CTACCTATCGTAACTCCAACTTCT - 3' 

OmpR1 OmpF Sequencing Primer 5' - CCAAAGCCTTCGTATTCG - 3' 

NISF1 NIS Sequencing Primer 5' - TCATCCTGAACCAAGTGACC - 3' 

NISF2 NIS Sequencing Primer 5' - AGCTGTGACTGTGGAAGACC - 3' 

NISF3 NIS Sequencing Primer 5' - CCAAAGGAAGACACTGCCAC - 3'  

NISR1 NIS Sequencing Primer 5' - TTGGTCACAGCAGGGATGTC - 3' 

NISR2 NIS Sequencing Primer 5' - CGTAGATGAATGAGAGCCC - 3' 

NISR3 NIS Sequencing Primer 5' - CCTTCATACCACCCACGGT - 3' 

T7 pro  Sequencing  5' - TAATACGACTCACTATAG - 3' 

T7 term  Sequencing  5' - GCTAGTTATTGCTCAGCGG - 3'  

NIS 

Amp 1 

NIS amplification primer 5’- CATATGGAGGGTGCGGA - 3’ 

NIS 

Amp 2 

NIS amplification primer 5’ - CTCGAGGTTGGTCTCCACA - 3’ 
 

OmpF 

Amp 1 

OmpF amplification 

primer* 

5' - CAGCATATGATGAAGCGCAATATTCTG - 

3' 

OmpF 

Amp 2 

OmpF amplification 

primer* 

5' - TATCTCGAGGAACTGGTAAACGATACC - 

3' 

*See Appendix B for more detail on the development of these primers 
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RESULTS AND DISCUSSION 

Production of Perchlorate Reducing Cell-Free Extracts: 

Perchlorate reductase and chlorite dismutase are not commercially available. Several 

expression systems have been used to attempt to express perchlorate reductase from 

recombinant sources, but without success [43]. Chlorite dismutase has been overexpressed 

recombinantly, purified and shown to be active [37]. We are currently attempting to replicate 

this and obtain high concentrations of chlorite dismutase. In the meantime, cell-free extracts 

from perchlorate-reducing bacteria (PRB) were used as the source of these two proteins. 

Cell-free extracts have been shown to have high levels of perchlorate-reducing activity [49]. 

The perchlorate-reducing bacterium Azospira oryzae was grown as described in the 

materials and methods. Initially, the media in reference [39] was prepared as described in 

reference [49]. However, the resazurin used in [49] as a redox indicator seemed to hinder the 

growth of the organisms and it was difficult to get the strain to grow well and consistently. A 

comparison of growth in media with and without resazurin is shown in Figure 4. After many 

failed attempts, resazurin (included in reference [49], but not in reference [39]) was omitted 

from the media and the strain began to grow much better. Cultures were then inoculated in 

triplicate and optical density (at 600 nm) and perchlorate concentrations were measured over 

several days. Results are shown in Figure 5 b). As the cells grew, the perchlorate in the media 

was consumed, indicating that the cells were utilizing perchlorate. After a lag phase, the 

cultures grew to a maximum optical density measurement of approximately 0.65 Au and then 

exited log phase. The exit from the logarithmic phase seemed to correspond with the 

exhaustion of perchlorate, as measured by HPLC MS. DAPI stained images of the A.oryzae 

pure culture are also shown in Figure 5 a). 
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Typical raw data results for a methyl viologen activity assay are shown in Figure 6. The 

baseline was recorded for 100 seconds and then perchlorate was injected into the cuvette to 

start the reaction (in Figure 6 note the sudden drop in absorbance around 100 seconds as the 

cuvette is removed to inject the perchlorate). The absorbance in the cuvette is then measured 

over time.  

The slope of the decline can be used to calculate the activity per Equation 1 [56]. One 

unit is defined here as: 1 µmol MV+ oxidized / min (note: reference [49] defines 1 U as 2 

µmol MV+ oxidized / min). Activities of these extracts were quite variable, ranging from 4 

U/mL to 40 U/mL. The variability of the extract activities may have been due to differences 

in preparation method: slight differences in the initial oxygen concentrations in the media, the 

timing of pelleting in the growth curve, or freezing of the cells prior to making cell extract. 

The activity measured previously was 3.45 U/mL [49], which is slightly lower than the 

activities measured here. This is due to the greater dilution of extracts used in their 

preparation method. Overall, the extract activities and preparation methods reproduced in my 

work were similar to the work in [49]; these extracts were used for further encapsulation 

studies. 

  



Figure 6

recorde

monitor

 

 

Equatio

mixture

13.1 [57

13.1 L/(

 

dismuta

anaerob

the med

 

6 – Typical 

ed, perchlora

red by the d

on 1 – Activ

e, ε = microm

7] or 9.7 [49

(mMol*cm)

 

To explore 

ase the perc

bically. The 

dia for A. or

Perchlorate

ate is injecte

decline in ab

ࢉࢇ

vity of Extra

molar absor

9] L/(mMol

) was used a

the use of a

hlorate redu

 published m

ryzae uses p

e-Reducing

ed into the 

bsorbance o

	࢚࢟࢏࢜࢏࢚ࢉ ൬
ࢁ
ࡸ

acts AU/min

rptivity (lite

l*cm)) SV =

as the absor

another stra

ucing bacter

media for D

perchlorate 

21 

Activity A

sample and

over time. 

ࢁ
ࡸ
൰ ൌ

ࢁ࡭
࢔࢏࢓ ൈ

ઽ ൈ ܊

n = slope fr

ers per milim

= Sample V

rptivity in m

ain as a sour

rium Dechlo

D. agitata us

[39]. As per

ssay. After 

d the reducti

ൈ ࢂࢀ

ൈ ܄܁
ൈ ૚૙

om UV data

moles x cen

Volume, b = 

my calculati

rce of perch

oromonas a

sed chlorate

rchlorate re

a baseline o

on of perch

૙૙ 

a, TV = Tot

ntimeters, fo

path length

ons. 

hlorate reduc

agitata was 

e as a substr

ductase is r

of 100 secon

hlorate can b

tal volume o

or methyl vi

h (in centim

ctase and ch

cultivated 

rate [48], wh

required to r

 

nds is 

be 

of assay 

iologen 

meters). 

hlorite 

hereas 

reduce 



both pe

growth 

of the c

using ch

culture 

source f

Figure 7

increase

was usi

 

membra

peptiod

in SDS.

differen

exposed

(SDS-in

pellet ca

peptido

Omp8 [

only ma

be well 

rchlorate an

curve for th

culture incre

hlorate and 

was tried bu

for perchlor

7 – Dechlor

ed in numbe

ng chlorate 

Purificatio

The next co

ane porins a

doglycan lay

. Outer mem

nce in solub

d to SDS to 

nsoluble) ca

an then be s

oglycan can 

[50], had the

ajor protein 

Some diffic

lysed befor

nd chlorate,

he organism

eased, the ch

not oxygen

ut was unsu

rate reducta

romonas ag

er, the conc

as its termn

on of OmpF

omponent o

are associate

yer is SDS-i

mbrane pori

bility is utiliz

solubilize m

an be pellete

solubilized u

be pelleted 

e genes for 

that could b

culty was en

re the additi

 it will be e

m is shown i

hlorate leve

n as their ele

uccessful, an

ase and chlo

gitata Growt

centration of

nial electron

F: 

of the system

ed with the 

insoluble, w

ins are assoc

zed to enric

most of the 

ed away fro

using the de

away from

its outer me

be solubiliz

ncountered 

ion of SDS.

22 

expressed in

in Figure 7. 

els decreased

ectron accep

nd thus only

orite dismuta

th Curve. S

f chlorate de

n acceptor.

m to be puri

pepitdoglyc

whereas the 

ciated with 

ch for porins

cellular pro

om the rema

etergent Oc

m the now so

embrane po

zed from the

when attem

. In my expe

n the presenc

As with A. 

d, indicating

ptor. Growi

y the A. ory

ase. 

imilar to th

ecreased. T

fied was the

can layer in

majority of

the peptido

s. In the pro

otein, and th

aining cellul

ctyl-POE an

olubilized pr

orins (beside

e peptidogly

mpting to pu

erience, son

ce of either 

oryzae, as t

g that the ce

ng larger vo

yzae cells we

e A. oryzae

his indicate

e OmpF por

n the cell wa

f cellular pro

oglycan laye

ocedure, bro

hen the pept

lar protein. 

nd the remai

rotein [14]. 

es ompF) de

ycan layer w

urify OmpF,

nication wor

compound

the optical d

ells were gr

olumes of th

ere used as 

, as the cell

ed that D. ag

re. Outer 

all. The 

oteins are so

er and this 

oken cells a

tidoglycan l

The porins 

ining 

The strain 

eleted, and t

was OmpF. 

, as the cells

rked better 

. A 

density 

rowing 

his 

a 

s 

gitata 

oluble 

re 

layer 

in the 

I used, 

thus the 

s must 

than a 

 



French 

importa

yielded 

8. After

of the O

as a trim

minutes

will run

trimer/m

purified

 

Figure 8

2nd and 

fraction

centrifu

trimer. W

kDa. Th

press for th

ant. After th

good amou

r induction, 

OmpF prote

mer when un

s, the trimer

n at approxim

monomer be

d fraction. 

 

 

8 – Purifica

4th purifica

ns are the su

ugations of t

When heate

his electroph

 

his purpose. 

hese issues w

unts of prote

a large ban

in. Purified 

nheated [44

r form of the

mately 38 k

ehavior help

ation of Omp

ation fraction

upernatants 

the procedu

ed in breaks

horetic beha

Additional

were resolve

ein. A gel fr

nd around 38

OmpF is st

4], as can be

e protein br

kDa, as does

ps to confirm

pF. All sam

n lanes wer

from the fir

ure. As Omp

s down into 

avior confir

23 

ly, the use o

ed, the puri

rom a repre

8 kDa deve

table as a tr

e seen on th

reaks down 

s the induct

m that Omp

mples beside

re heated at 

rst (lanes 5 

pF is stable 

its monom

rms that Om

of freshly pr

fications wo

sentative pu

loped, corre

imer in 2%

e gel. When

into a mono

tion band in

pF is indeed

es the pure O

95°C for 5 

and 6) and 

in SDS, wh

er form and

mpF was pur

repared SD

orked fairly

urification i

esponding w

SDS up to 

n heated at 9

omer form a

n the induce

d what is pre

OmpF “no h

min. The pu

second (lan

hen unheate

d will run at

rified. 

S solutions 

y consistentl

is shown in 

with the mo

70˚C and w

95˚C for 5 

and the prot

d cells. Thi

esent in the 

heat” lane a

urification 

nes 7 and 8) 

d it will run

t approxima

was 

ly and 

Figure 

nomer 

will run 

tein 

s 

 

and the 

n as a 

ately 38 



24 

As an alternative method to purify OmpF, a Histidine-tagged OmpF vector was 

created as shown in Figure 9. At the beginning of this study, access to an ultracentrifuge was 

not available and the procedure used for the Omp8 strain would have been difficult. To 

circumvent this problem, we created a Histidine-tagged OmpF plasmid to purify OmpF using 

affinity chromatography. OmpF was amplified as described in the materials and methods and 

ligated into the NdeI and XhoI restriction sites of the pET 28b(+) vector. This plasmid was 

sequenced and shown to be free of any errors (data not shown). Pilot expressions using this 

vector in BL21 (DE3) cells showed good overexpression of OmpF, as can be observed in 

Figure 10. This OmpF is slightly larger than the OmpF derived from Omp8, as two histidine 

tags and a thrombin site are incorporated from the pET 28 b (+) vector. 

 

 
 

Figure 9 – Construction of Histidine-Tagged OmpF Plasmid. The OmpF gene was PCR 

amplified and ligated into the pET 28 b(+) vector. 
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used. Large materials such as vesicles do not fit inside the pores of the size exclusion media, 

and thus go through the column quickly, in what is termed the void volume. Smaller 

materials like proteins can enter the pores in the media and will thus go through the size 

exclusion column much more slowly. In these experiments, two sets of vesicles are made, 

one with OmpF and one without. As methyl viologen cannot enter the no OmpF vesicles, 

they should not have detectable activity. 

After incubation for a few days (the time needed to form vesicles), the cell-free 

extracts began to aggregate into larger material. The effect of this can be observed in Figure 

13. The “fresh” cell-free extract (run on a column immediately after ultracentrifugation) has 

only a single peak with a shoulder, whereas the cell extract after storage has an additional, 

earlier peak, representing aggregates that have formed and come off the column in the void 

volume. This presented a problem for the purification of perchlorate-reducing engineered 

vesicles, as these aggregates could not be resolved from the polymer vesicles using size 

exclusion. The presence of these aggregates created the potential for enzymatic activity in the 

vesicle fractions from sources other than the vesicles. For example, in an encapsulation 

experiment on 5/6/2010, 7.6 U/L of activity was detected in vesicles without OmpF, similar 

to the amount of activity detected in the OmpF vesicles (15.69 U/L). The source of this 

contaminating activity was thought to be the aggregates. Subsequent experiments, detailed 

below, focused on eliminating these aggregates. 
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Table 3 – Successful Encapsulation Experiments 

 

Batch 
Polymer (mg) 

 

Molar Ratio 
OmpF:Polymer

 

Activity in 
Hydration Mix 

(U/L) 

Specific 
Activity in 

Hydration Mix 
(U/mg) 

 

Activity 
Encapsulated 
in Vesicles 

(U/L) 

7/7/2010 no OmpF  12  NA  9896.1  0.71  24.3 

7/7/2010 OmpF  12  250  13770.9  0.79  44.8 

7/10/2010 no OmpF  12  NA  9884.4  0.79  2.8 

7/10/2010 OmpF 12 250 9884.4  0.79 35.2
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CONCLUSIONS AND FUTURE WORK 

The goal of my work was to create an engineered vesicle capable of reducing 

perchlorate, and this goal was met. I successfully prepared the components of the system: a 

membrane transport protein (OmpF) and perchlorate-reducing cell extracts. In preparation for 

using a specific perchlorate transporter, we have also achieved heterologous expression of the 

NIS protein. There were several issues with the procedure used to make and assay vesicles, 

such as aggregate contamination and oxygen leakage, but those issues have been addressed. 

At present, vesicle activity can be consistently detected using the procedures developed in my 

work, showing the creation of engineered vesicles capable of reducing perchlorate.  

Now that these vesicles have been created, one may look towards the application of 

these vesicles. To be useable in a reactor, these vesicles will need to be immobilized onto a 

substrate. These vesicles are in the size range of a few hundred nanometers, a size that would 

be difficult to contain in a suspended-growth reactor. However, there is some precedent, as 

engineered vesicles have been immobilized on a glass substrate before [14]. Vesicles 

immobilized on spherical media could be packed into a flow through reactor for utilization as 

a pilot or full-scale reactor. One proposed reactor setup is illustrated in Figure 21. Vesicles 

could be immobilized onto beads at very high densities. These beads could then be packed 

into a flow-through reactor. As these vesicles would only contain the enzymes relevant to 

perchlorate degradation, the enzymes could be packed at much higher densities that would be 

possible in a conventional bioreactor. In addition, these reactors could utilize enzymes in 

conditions where they would not be expressed by bacteria and these reactors could safely 

incorporate genetically-engineered proteins. 
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extraneous material, one could tag these proteins and purify them using affinity 

chromatography. The yields using this method would be significantly increased as well. 

Chlorite dismutase has been expressed and purified recombinantly in the past, and work is 

ongoing to replicate this in our laboratory [37]. Purification of perchlorate reductase with 

similar methods has been attempted, but unsuccessfully. This is a very large protein with 

multiple subunits, and thus may be difficult to heterologously express [43]. If the perchlorate 

reductase cannot be expressed and purified heterologously, purification from its native host 

can be performed [49]. Combined with the heterologously purified chlorite dismutase, pure 

sources of these two enzymes could provide much higher enzyme concentrations and a better 

defined system than the cell-free extract utilized in this work. 

Perchlorate reductase could also be coupled to a non-protein catalyst encapsulated in 

these vesicles. Chlorite dismutase is part of the superoxide dismutase family and research is 

being conducted to find catalysts that perform the same function as the enzymes in this 

family [61]. Chlorite dismutase has a limited number of turnovers before the enzyme ceases 

to function [37]. Thus, this system could couple protected perchlorate reductase and an 

artificial chlorite dismutase catalyst to create a novel enzyme/catalyst system. 

Furthermore, this system could remove perchlorate using different sources of 

reducing power. Our study used methyl viologen as an electron donor due to its use in the 

literature for perchlorate kinetic assays, but other donors could be used. This could allow for 

the use of a cathode to act as a primary electron donor, reducing an electron shuttle that 

powers perchlorate reduction and obviating the need for large amounts of exogenous electron 

donor, as required in traditional biological perchlorate treatment. This has been attempted 

using a perchlorate bioreactor [62]. The addition of excess exogenous donor and the resulting 

regrowth potential in the distribution system is one issue that must be addressed in current 

perchlorate bioreactor designs. If a cathode is used as a donor, no residual exogenous donor 

remains, removing the risk of regrowth [62]. 

Using different enzymes, engineered vesicles could catalyze the removal of other 

contaminants. As a generalized system, one simply needs a source of enzyme, polymer, and 

membrane protein to make these vesicles. Technical hurdles must be overcome for sources of 

these materials to be commercially viable. However, engineered vesicle reactors have a 

number of advantages, such as the ability to utilize enzymes in conditions where they would 

not be expressed by bacteria and the ability to utilize genetically engineered proteins. As 

sources of polymer and recombinant enzymes become available, large-scale vesicle reactors 

could become a reality. My work has prepared the components of engineered vesicle reactors 
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and shown them to be functional. These components have been assembled in polymer 

vesicles and are active. These prototype vesicles can be used for the future development of 

perchlorate-reducing vesicle reactors. 
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APPENDIX A: DETAILED PROTOCOLS 
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ENCAPSULATING CELL-FREE EXTRACT FROM 5000 ML OF AZOSPIRA 
CULTURE IN ABA3 VESICLES  
 
Materials Required: 
 
100 mL Rikken Media 
5 L Rikken Media 
Azospira oryzae glycerol stock 
Stainless Steel Extruder 
Akta Prime 
Sephracyl 500-HR column 
Anaerobic Cuvettes and Septa 
Assay Mixture 
Spectrophotometer 
Zeta Sizer 
Nutrient Agar Plate 
50 mM Phosphate Buffer pH 6.0 
Fisher Sonic Dismembrator 
Ultracentrifuge and 10.9 mL ultra centrifuge tubes 
Rotary Evaporator 
ABA3 Polymer 
20 mg/mL Proteinase K 
Microplate and microplate reader 
BCA protein assay kit (Pierce) 
 
Step 1: Streak Azospira oryzae to a nutrient agar plate. 
 
From a glycerol stock (labeled Azospira oryzae) in box labeled “SP Freezer stock” in the 
-80°C freezer, streak to a nutrient agar plate, and incubate at 30 deg C for 3 days. 
 
Step 2: Transfer a colony to 100 mL of anaerobic Rikken Media. 
 
Withdraw 0.5 mL of Rikken media from tube and transfer to a sterile microcentrifuge tube 
using a sterile needle and syringe. Pick a large colony from the plate using a sterile toothpick 
and transfer to the medium in the tube. Using a sterile needle, transfer the medium back to 
the larger tube and incubate at 30 deg C for 3-5 days until turbidity has developed in the 
media. 
 
Step 3: Inoculate 5 L bottles.  
 
Pour the starter culture into 5L bottles of Rikken Media. Cap with a rubber stopper. Incubate 
for 4-5 days at 30 deg C on a stir plate. When the OD600 is ≥ 0.6 (measure turbidity before 
pelleting), spin down the cells in the media in a centrifuge for 10 min at 6000 x g. Use pellets 
for cell-free extract preparation or freeze at -80 deg C for later use. For pelleting cells use the 
floor model centrifuge and tubes with purple caps. 
 
Step 4: Resuspend pellets from 5 L culture in a total of 10 mL 50 mM PBS at pH 6.0 with 
0.1 mg/L DNase in a 50 mL tube.  
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Step 5: Sonicate 3s on, 2 sec off for 3 min, with 5 min on ice in between. Set sonicator to ~ 
30 % amplitude. Collect Sample (Lys 1). 
 
Step 6: Centrifuge for 15 min at 5000 x g in 1.7 mL microcentrifuge tubes in a Fisher 
Legend Centrifuge at 4 deg C. Collect supernatant. 
 
Step 7: Centrifuge supernatant from step 6 for 1hr at 40,000 rpm in Ti 70.1 rotor. Use 
Beckman ultracentrifuge bottles and be sure bottles are balanced to within 0.01 g.  
 
Use supernatant in later steps of protocol (cell-free extract). Add protease inhibitor to the 
cell-free extract if desired. Collect Sample (Su 1). Be sure to avoid getting lipid material from 
pellet into supernatant when collecting supernatant. 
 
Step 8: Test enzyme activity of Su1 using the protocol for enzyme assays of perchlorate with 
10 uL of cell-free extract. 
 
Step 9: Hydrate film made using 200 mL flask. 
 
Form a film from 12 mg ABA 3 polymer using a rotary evaporator. Wash flask with soap and 
rinse with chloroform. Dissolve polymer in chloroform. Put flask onto rotary evaporator and 
remove chloroform first using a pressure of 150 mBar and then a pressure of 50 mBar until a 
film forms. Pull a full vacuum on the film for 4 hours. Add 1.5 mL cell-free extract as well as 
desired amount of OmpF (depending on molar ratio desired). Hydrate with stir bar for two 
days in fridge until polymer chunks are gone. Collect fraction (Hy 1) if desired. 
 
Step 10: Extrude. 
 
Spin down hydration mix for 1 min at 16,000 x g in microcentrifuge using a tabletop 
centrifuge. Use supernatant for extrusion. 
 
Extrude 1 time through a 1 micron filter and then 10 times through a 0.4 or 0.6 micron filter 
using extruder in Clark Lab. Do not let pressure go above 50 psi. Collect fraction (Hy 2) and 
measure perchlorate-reducing activity.  
 
Step 11: Treat with Protease. 
 
Add 5% by volume 20 mg/mL solution of proteinase K to extruded vesicle mix. Sample 
should become slightly less turbid as protein aggregates are broken apart. Let sit at room 
temperature for 1 hour before size exclusion. 
 
Step 12: Run vesicles on Sepharcyl 500 pressurized column. 
 
Equilibrate Column using 50 mM PBS buffer for 1 hr. Inject vesicles onto column and record 
UV absorbance.  
 
Size Exclusion Protocol: 
 
Set UV-lamp to “on”; go to manual run, set pressure limit to 0.38 mPa; clean loading loop 
tubing (2 ml volume) with DI, then buffer (take off port and clean with syringe in sink); start 
run and click prompts to get run going. 
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Pause flow rate before loading the vesicle solution; set valve to “load!”; add sample; 
set valve to inject; resume flow rate (up to 0.5 ml/min); set collect fraction to 5.0 ml (for 
cleaning tubing in advance). Collect first peak, as this is the void volume-vesicle fraction. 
 
Step 13: Measure activity of approximately 400 uL of vesicles. 
 
Use PROTOCOL FOR ENZYME ASSAYS OF PERCHLORATE to measure activities. 
 
Step 14: Quantify Size of vesicles using a 1:10 or 1:20 dilution of vesicles in buffer using 
DLS. 
 
Dilute samples 1:10 or 1:20 in buffer (e.g. 50 uL vesicles in 500 uL buffer) in a disposable 
sizing cuvette. Using zeta sizer, make 3 size measurements. Set material to polystyrene latex. 
 
Step 15: Measure protein concentration of cell extract batch, Hydration Mix (Hy2), and 
vesicles using BCA protein method, use a 1:10 to 1:20 dilution of the hydration mix and the 
cell extract batch. 
 

Use microplate reader method for Pierce BCA method. 

http://www.piercenet.com/products/browse.cfm?fldID=02020101 
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Buffers: 

50 mM Phosphate Buffer, pH 6.0: 

6g NaH2PO4 H20 

1.6g Na2HPO4 7 H20 or 0.8 g Na2HPO4 

 

 

 

Other buffers and materials are described in later protocols. 
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GROWING 5 L OF AZOSPIRA ORYZAE CULTURE [39] 
 
Materials Required: 
 
100 mL Rikken Media 
5 L Rikken Media 
Azospira oryzae glycerol stock 
 
Step 1: Streak Azospira oryzae to a nutrient agar plate. 
 
From a glycerol stock (labeled Azospira oryzae) in box labeled “SP Freezer stock” in the 
-80°C freezer, streak to a nutrient agar plate, and incubate at 30 deg C for 3 days. 
 
Step 2: Transfer a colony to 100 mL of anaerobic Rikken Media. 
 
Withdraw 0.5 mL of Rikken media from tube and transfer to a sterile microcentrifuge tube 
using a sterile needle and syringe. Pick a large colony from the plate using a sterile toothpick 
and transfer to the medium in the tube. Using a sterile needle, transfer the medium back to 
the larger tube and incubate at 30 deg C for 3-5 days until turbidity has developed in the 
media. 
 
Step 3: Inoculate 5 L bottles.  
 
Pour the starter culture into 5L bottles of Rikken Media. Cap with a rubber stopper. Incubate 
for 4-5 days at 30 deg C on a stir plate. Make sure stir bar is rotating. When the OD600 is ≥0.6 
(measure turbidity before pelleting), spin down the cells in the media in a centrifuge for 10 
min at 6000 x g and use for cell-free extract preparation or freeze for later use. For pelleting 
cells use floor model centrifuge and tubes with purple caps. 
 



53 

Rikken Media for Azospira [39]: 
 

In 1 L Water (2 L) {5 L}: 
1.55 g K2HPO4 (3.1) {7.75} 
0.85 NaH2PO4 H2O (1.7) {4.25} 
1 g NaClO4 or 1.15 g NaClO4 H2O (2.3) {5.75} 
2 g NaCH3COO (4g) {10 g}: 
0.5 g (NH4)2HPO4 (1) {2.5} 
0.1 g MgSO4 7H2O (0.2) {0.5} 
0.02 g yeast extract (.04) {0.1} 
0.2 ml trace elements (0.4) {1 mL} 
0.17 mg Na2SeO4  
 
Mix together ingredients in order shown. 
Dispense in to smaller tubes if desired. 
Degass smaller tubes (100 mL) under N2 gas using a canula (30 min for 100 mL cultures). 
Flush headspace of smaller tubes (100 mL) with 80% N2 20% CO2 gas using a canula (6 min 
for 100 mL cultures). 
Add a stir bar into 5 L broth (5L broth is not degassed). 
Autoclave 30L cycle. 
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Trace metal solution [63] 
1L     250 mL  

Ethylenediamine tetraacetic acid  50.0 g,    12.5 g 
ZnSO47H20      2.20  g,   0.55 g 
CaCl2-2H20      5.54 g,    2 g 
MnCl2-4H20      5.06 g,     1.265 g 
FeSO4-7H2O      4.99 g    1.248 g 
(NH4)Mo7024-4H2O    1.10 g,     0.275 g 
CuSO4*5H20      1.57 g    0.3925 g 
CoCl2.6H20      1.61 g    0.4025 g 
H20        250 mL    1000 ml.  
 
Add ZnSO4 and EDTH Adjust to pH, 6.0 with KOH. Allow time for these two to dissolve,  
add other components slowly, maintaining pH 6.0 with KOH. Solution should have a green 
color after everything dissolves. Autoclave. After sitting on bench for a few weeks, solution 
will turn purple. 
 
Nutrient Agar Plates: 
 
Beef Extract   3.0 g 
Peptone   5.0 g 
Agar    15.0 g 
 
1.  Suspend 23 g of the powder in 1 L of purified water. Mix thoroughly. 
2.  Heat with frequent agitation to completely dissolve the powder. 
3.  Autoclave at 121°C for 15 minutes. 
 
Procedure: 
Autoclave the agar, cool to 45-50°C and pour into Petri dishes. Allow to solidify for at least 
30 minutes.   
 

 

References: 

Kengen SWM, Rikken GB, Hagen WR, van Ginkel CG, Stams AJM (1999) Purification and 

characterization of (per) chlorate reductase from the chlorate-respiring strain GR-1. Journal 

of Bacteriology 181 (21):6706-6711. 

 

Rikken GB, Kroon AGM, van Ginkel CG (1996) Transformation of (per)chlorate into 

chloride by a newly isolated bacterium: reduction and dismutation. Applied Microbiology 

and Biotechnology 45 (3):420-426. 

 

Vishniac W, Santer M (1957) The thiobacilli. Bacteriological reviews 21 (3):195-213. 
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PROTOCOL FOR GROWING 2 L OF OMP8 CELLS AND OMPF PURIFICATION 
 
Materials Required: 
 
Glycerol Stock “New Omp8” 
LB-Amp Plate 
2 L LB Broth 
20 mM Tris-CL pH 8.0 
20 mM phosphate buffer pH 7.4 
Octyl-PoE 
20% SDS 
Fisher Dismembrator 
Wheaton 7 mL Homogenizer 
Ultracentrifuge 
 
Day 1: Streak Plate. 
 
5 PM - Streak Omp8 (freezer stock labeled Omp8 in box labeled “SP Freezer Stocks”) to an 
LB-Amp plate, grow for 18+ hours. 
 
Day 2: Make Starter Cultures. 
 
12 PM - take plate out, immediately pick colonies and inoculate three 5 mL Starter cultures 
in LB-Amp. DO NOT STORE PLATE IN FRIDGE BEFORE MAKING STARTER 
CULTURES. Plate is often bad after going into the fridge. 
 
Day 3: Inoculate, Induce and pellet Omp8 Cells.  
 
6 am – Inoculate each of the 1 L LB fernbach flasks with 1 starter culture. Grow Until OD600  
0.5 to 0.8 AU (Approx 3-7 hours) at 37 deg C at 200-250 rpm. 
 
~12 pm – induce with 0.4 mM IPTG (0.0952 g IPTG per 1 L fernbach flask). Grow for 
another 6 hours at 37 deg C. 
 
~6 pm – pellet cells for 15 min at 6000 x g using floor model centrifuge and tubes with 
purple caps. 
 



56 

OmpF Purification 
 
Step 1: Lyse Cells. 
 
Resuspend cell pellet in 10 mL buffer per g cell pellet (20 mM Tris-Cl pH 8.0). 
 
Add 10 uL DNase I (1 U/uL) per 10 mL Buffer. 
 
Disrupt cells using a sonicator: 3 sec on 2 sec off for 5 min at 30% amplitude. Leave sample 
on ice during and for 5 min between cycles. Sonicate three times. 
 
Step 2: Add SDS and incubate. 
 
Add 1 mL 20% SDS per 10 mL cell suspension. Make fresh SDS every day. Sample should 
turn clear after addition of SDS. If not, sonicate for additional time. Incubate for 1 hr at 60°C 
with gentle stirring. 
 
Step 3: First Centrifuge cycle. 
 
Centrifuge at 40,000 x g (~17,000 rpm) using Type 70.1 rotor at 4°C for 60 min. 
 
Step 4: Preextraction. 
 
Keep 100 uL of supernatant for SDS-PAGE. Wash pellet with 20 mM phosphate buffer pH 
7.4 to remove residual SDS. Add 5 mL/g cell pellet 0.125% Octyl-POE in 20 mM phosphate 
buffer pH 7.4.  
 
Homogenize pellet using Wheaton 7 mL homogenizer. 
 
Shake for 1 hr at 37°C. 
 
Centrifuge at 40,000 rpm (~145,000 x g) at 4°C for 45 min using Type 70.1 Ti rotor. 
 
Step 5: Extraction. 
 
Keep 100 uL of supernatant for SDS-PAGE. Add 2 mL/g cell pellet 3% Octyl-POE in 20 
mM phosphate buffer pH 7.4.  
 
Homogenize pellet using Wheaton 7 mL homogenizer. 
 
Shake for 1 hr at 37°C. 
 
Centrifuge at 40,000 rpm (~145,000 x g) at 4°C for 45 min using Type 70.1 Ti rotor. OmpF 
is in the supernatant.  
 
Check samples on 12% SDS-PAGE. 
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Buffers: 
 
20% SDS: 
 
2 g SDS 
Make up to 10 mL total volume. 
 
Heat to approx 70°C and stir until SDS is dissolved. 
 
20 mM Tris-Cl: 
 
In 200 mL: .48 g Tris base 
Adjust to pH 8.0 using HCL. 
 
20 mM phosphate buffer: 
 
Stocks to make 20 mM phosphate buffer: 
 
0.2 M Na2HPO4 x H2O (M=178.05 – 1.78 g/50mL) 
0.2 M NaH2PO4 x H2O (M=156.05 – 1.56 g/50mL) 
 
For 500 mL 20 mM buffer: 40.5 mL 0.2 M NaH2PO4 + 9.5 0.2 M Na2HPO4 + 450 mL H2O. 
 
LB: 
 
20 g Lennox LB Broth. 
 
Dissolve in 1 L water. 
 
Autoclave. 
 
LB amp plate: 
 
20 g Lennox LB Broth 
15 g Agar 
 
Dissolve in 1 L water. 
 
Autoclave, allow to cool, add 50 mg Amp. 
 
Pour into petri dishes and allow to cool. 
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PROTOCOL FOR ENZYME ASSAYS OF PERCHLORATE 
 
Materials Required: 
 
Assay Mixture 
Anaerobic Cuvettes with 13 mm septa (SIGMA catalog number Z106496-100EA) 
Spectrophotometer  (to measure absorbance at 578 nm) 
Dithionite Solution (0.2 M) 
Perchlorate (1 M) 
 
Purge 10 mL assay mixture with N2 for 6 min beforehand to remove O2. Use Finneran lab 
gassing station to do this.  
 
Experimental Design: 
 
Sample: hydration mix/cell extract/perchlorate reducing vesicles  
 
Negative control 1: Add 30 µL DI water in lieu of perchlorate + cell free extract 
Negative control 2: Add 30 µL 1M sodium perchlorate but no cell free extract 
 
Step 1: Prepare Assay Mixtures and Capped Cuvette 
 
Move degassed assay mixture, cuvettes, and septa inside anaerobic glove box. Pipette 2 mL 
assay mixture into cuvettes inside glove box. Cap with septa and screw cap and cuvette 
together tightly.  Move cuvette from glove box, and add desired volume of sample to 
cuvette for cell extract activity measurments. For vesicles, add vesicle mix before capping 
with septa and use spectrophotometer in Strathmann glove box. 
 
Place sample into spectrophotometer and blank at 578 nm. 
 
Assay mixture volume: 2 mL 
 
Components: 
50 mM Tris-Cl- Buffer 
0.5 mM MV 
20 µL enzyme mixture/cell fraction or approx 400 µL vesicle solution 
 
Step 2: Prereduce Assay Mixture 
 
Add: 
 
Dithionite solution (0.2 M) until absorbance of 1.5 is reached (Range of 1.3 to 1.8 should be 
fine, usually requires around 5 uL of dithionite). Sample should turn royal blue as dithionite 
is added. If measuring activity of vesicles, let sample sit for 5 min to scavenge any remaining 
oxygen and to decrease blank measurement. 
 
Step 3: Start reaction  
 
Set up spectrophotometer to start logging blank for at least 100 seconds to get a baseline 
slope.  
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Add 20 µL chlorate or perchlorate (0.1 M) to samples and measure absorbance over 1-2  
min if measuring activity of hydration mix/cell extract. Log for 1000-5000 seconds if 
measuring activity of vesicles. 
 
Repeat with controls as desired. 
 
Step 4: Calculate perchlorate-reducing activity 
 
Use extinction coefficient of 13.1 mM-1 for MV and Equation 1. 
 
Units of activity 1 μmol min-1 = 1 U. 
 
 
References: 
 
Grzelakowski M, Onaca O, Rigler P, Kumar M, Meier W (2009) Immobilized  
 
Protein-Polymer Nanoreactors. Small 5 (22):2545-2548. 
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Preparation of Solutions: 
Assay Mixture: 
Make 1 M Tris-Cl 
 
Tris-HCl is a solution frequently used in biochemistry made from Tris base and concentrated 
hydrochloric acid (HClaq). To make 1 mol/L Tris-Cl dissolve 121.1 g of tris base in 700 ml 
of double distilled water, bring to desired pH with concentrated HClaq (usually 7.5 or 8.0), 
add double distilled water to 1 L, filter with 0.5 μm filter, autoclave, and store at room 
temperature. 
 
Make 50 mM Tris-Cl- Buffer, MW = 121.13, = 12.5 mL 1 M Tris in 250 mL. 
Adjust to pH 7.5. 
 
Add Methyl Viologen (MV), MW = 257.16, (0.5 mM) = 0.032 g in 250 mL (Adjust for 
hydrate). Add enzymes per experimental design to cuvettes. 
 
Dithionite Solution: 
 
Dithionite Solution, MW = 174.10, (0.2 M) = 0.1745 g in 5 mL. 
 
Perchlorate Solution: 
 
Sodium Perchlorate, MW = 122.4 g/mol, (100 mM) = 0.124 g in 10 mL. 
 
 
 
References: 

Kengen SWM, Rikken GB, Hagen WR, van Ginkel CG, Stams AJM (1999) Purification and 

characterization of (per) chlorate reductase from the chlorate-respiring strain GR-1. Journal 

of Bacteriology 181 (21):6706-6711. 
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WESTERN BLOT PROTCOL 
 
Materials Required: 
 
Transfer buffer 
Tris Tween Buffered Saline 
Filter Paper 
Membrane (Nitrocelluose or PVDF) 
Antibodies 
Gel electrophoresis and western blot setup 
Shaker 
Fiber pads 
 
Step 1: Transfer Blotting 
 
1. Prepare the transfer buffer. (Using buffer chilled to 4°C will improve heat dissipation.) 
 
2. Cut the membrane and the filter paper to the dimensions of the gel or use precut 
membranes and filter paper. Always wear gloves when handling membranes to prevent 
contamination. Equilibrate the gel and soak the membrane, filter paper, and fiber pads in 
transfer buffer (15–20 min depending on gel thickness). It helps to soak the membrane in 
methanol first and then in water.  
 
3. Prepare the gel sandwich. 
Place the cassette, with the gray side down, on a clean surface. 
Place one pre-wetted fiber pad on the gray side of the cassette. 
Place a sheet of filter paper on the fiber pad. 
Place the equilibrated gel on the filter paper.* 
Place the pre-wetted membrane on the gel.* 
Complete the sandwich by placing a piece of filter paper on the membrane.* 
Add the last fiber pad. 
 
* Removing any air bubbles which may have formed is very important for good results. Use 
a glass tube or roller to gently roll out air bubbles. 
 
Current flows from the gray to the red (black to red) so that the protein comes out of the gel 
and onto the membrane. 
 
4. Close the cassette firmly, being careful not to move the gel and filter paper sandwich. 
Lock the cassette closed with the white latch. 
 
5. Place the cassette in module. Repeat for the other cassette. 
 
6. Add the frozen blue cooling unit. Place in tank and fill to the "blotting" mark on the tank. 
 
7. Add a standard stir bar to help maintain even buffer temperature and ion distribution in 
the tank. Set the speed as fast as possible to keep ion distribution even. 
 
8. Put on the lid, plug the cables into the power supply, and run the blot.  
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A 30 V current run overnight (~16 hours) worked for us in the past for transfer.  
 
9. Upon completion of the run, disassemble the blotting sandwich and remove the membrane 
for development. Clean the cell, fiber pads, and cassettes with laboratory detergent and rinse 
well with deionized water. 
 
 
Step 2: Developing  
 
1. Take out membrane mark the top (active) side of the membrane to make sure reaction is 

being conducted on the correct side of the membrane. 
 
2. Soak the membrane in 30 ml blocking buffer (TTBS+ 0.9 g non-fat dry milk (1.5%))  

for 45 minutes to 1 hour. 
 

3. Incubate with 30 ml TTBS + anti His antibody –primary antibody (1:500 ratio, 60 uL) or 
anti NIS antibody –primary antibody (1:200 ratio, 150 uL) +  0.3 g non-fat dry milk 
(0.5%))  for 60 min.  Antibody volume – 60 uL or 150 uL depending on antibody. Save 
TBS/antibody mix in fridge. 

 
4. Wash membrane in TTBS with gentle shaking for 5 min X 3. 
 
5. Incubate membrane in 30 ml TTBS + secondary antibody  (1:1000 ratio, 30 uL) - 30 

microL of secondary antibody + 0.3 g non-fat dry milk (0.5%)) for 60 min. Save 
TTBS/antibody mix in fridge. 

 
6. Wash membrane in TTBS with gentle shaking for 5 min X 3. 
 
7. Dry the membrane in air for a minute or two. Add developing solution, use sigma HRP 

solution. 
 
Note: 
 

1) Samples were run two ways, one as described here and another in which membranes 

were blocked overnight and the primary anti-His antibody was incubated for 5 hours 

before washing. 

2) Blocking with a mix of BSA and milk and overnight seems to help (1.5% each). The 

same mix should be used for primary and secondary antibodies. Overnight blocking, 

longer primary antibody incubation time (2-3 hours) and only 45 min for secondary 

antibody incubation are other conditions that seem to work. Instead of 3 x 5min 

washes in between the primary and secondary antibody incubation, 6 x 5min seemed 

to work better (also the same for after the secondary antibody incubation, before the 

substrate reaction). 
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Buffers: 
 
Towbin transfer Buffer (w SDS)  
25 mM Tris            3.03 g Tris 
192 mM glycine     14.4 g glycine 
20% methanol 
1g SDS 
Bring to 1 L. 
 
pH should be around 8.3. 
 
TTBS (Tris Tween Buffered Saline) 
 
20mM Tris, pH 7.5   20 ml 1 M Tris  (or 3.15 g Tris) 
0.1 M NaCl   100 ml 1 M NaCl (or 5.85 g NaCl) 
0.1% Tween 20  1ml Tween 20 
Upto 1L with water, adjust pH to 7.5. 
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APPENDIX B: PRIMER DESIGN 
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5’TTAGAACTGGTAAACGATACCCACAGCAACGGTGTCGTCTGAACCTACGCCCAGTTTGTT
GTCAGAATCGATCTGGTTGATGATGTAGTCAACATAGGTGGACATGTTTTTGTTGAAGTAGT
AGGTTGCGCCCACTTCAAAGTAGTTCACCAGATCAACATCAC 3’  
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Upstream Primer Complementary Sequence (just chose beginning of 
OmpF sequence, see highlighted region in OmpF sequence): 
ATGATGAAGCGCAATATTCTG 
  
Add Nde I Restriction Site (CA^TATG); upstream bases to allow for 
restriction (TGA); and remove extra ATG: 
 
CAGCA^TATGATGAAGCGCAATATTCTG 
 
Number of base pairs of total primer: 27 
Tm = 58˚C  
GC = 41% 
 
Number of base pairs of complementary sequence of primer: 21 
 
ATGAAGCGCAATATTCTG 
 
Tm = 49˚C  
GC = 39% 
 
Upstream primer will be: 
 
 
CAGCATATGATGAAGCGCAATATTCTG 
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Downstream primer anti sense sequence (used primer selection tool 
from ApE): 5’ GAACTGGTAAACGATACC 3’(See reverse complement 
sequence after stop codon above) 
 
Add XhoI Restriction sequence for downstream (CTCGAG), 3 base pairs 
to allow for restriction (TAC)  
 
Final Primer Complete Sequence: 
TATC^TCGAGGAACTGGTAAACGATACC 
 
Number of base pairs: 27 
Tm = 59˚C  
GC = 44% 
 
Final primer complementary sequence only: 
 
GAACTGGTAAACGATACC 
 
 
Tm = 48˚C  
GC = 44% 
 
TATCTCGAGGAACTGGTAAACGATACC 
 
Comparison of Melting Temperatures: 
 
 Upstream 

Primer 
Downstream 
Primer 

Complementary 
Sequence 

49 48 

Full Primer 58 59 
 
 


