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ABSTRACT

The last decade has seen an explosion of  data arising from the development and proliferation 

of  high-throughput data gathering and analysis pipelines. In order to transform this data into useful 

hypotheses and conclusions, it is necessary to determine which of  it is pertinent to the problem being 

studied, and sometimes, conversely, which of  many hypotheses being considered is best supported 

by the data at hand. In particular, the field of  proteomics often grapples with this challenge, due to 

being at the confluence of  a large number of  high-throughput data pipelines. This work presents a 

series of  computational frameworks that address this challenge in a manner that is both computation-

ally efficient and biologically informative, acting as selective filters for the vast amount of  data being 

processed. 

A system is first presented to vastly reduce the potential combinatoric complexity of  post-trans-

lational modifications (PTMs) and coding single nucleotide polymorphisms (cSNPs) for Top Down 

proteomics. Top Down proteomics is uniquely susceptible to a combinatorial explosion; as sequence 

length increases, the number of  potential combinations of  mass shift-inducing sequence features in-

creases exponentially. This may be addressed to some extent by the process of  shotgun annotation, 

where combinations of  known PTMs and cSNPs are considered. This is in contrast to the rule-based 

variable modification approach prevalent in Bottom Up proteomics, where all residues of  a given type 

are considered to be potentially modified in a specified manner. However, as high-throughput annota-

tion pipelines vastly increase the number of  known modifications and polymorphisms, the number of  

their combinations grows exponentially and eventually becomes unmanageable. It becomes necessary 

to restrict the potential combination space in a manner that does not unduly impinge on the identifica-

tion and characterization capabilities of  shotgun annotation. Built as part of  a general framework for 

sequence transformation, the system being presented utilizes a genetic algorithm to identify a group 

of  PTMs and cSNPs that is most suitable for inclusion in a shotgun-annotated sequence database. 

Additionally, a number of  other advancements are presented in the bioinformatics of  Top Down 

proteomics, including a cluster implementation of  the ProSight search engine, and a design plan for 
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the next generation of  ProSight, built using the principles of  online sequence transformation and 

optimization. This addresses the combinatorial explosion by providing means of  efficiently restrict-

ing the search space, minimizing the amount of  duplicated effort, and leveraging modern processor 

design to maximize throughput.

Second, genetic algorithms are applied to the problem of  de novo peptide sequencing in Bottom Up 

proteomics by means of  ultra-high-resolution mass spectrometry. Rather than detecting large num-

bers of  less accurate fragment peaks as is presently typical in Bottom Up proteomics, detecting frag-

ment ions at high resolution results in smaller numbers of  highly accurate monoisotopic masses after 

deisotoping. This allows potential de novo sequence solutions to have exceedingly low fragment mass 

degeneracy. Presently, algorithms for de novo peptide sequencing that fully take advantage of  this capa-

bility have been lacking. A system is presented for incorporating numerous metrics of  solution quality 

simultaneously to evolve a sequence solution that best fits available data. The nature of  proteomic data 

and its amenability to analysis by means of  genetic algorithms is discussed.  This system demonstrates 

highly confident automatic de novo peptide sequencing using a small number of  confident fragment 

masses, potentially measured at the limits of  detection.

Third, a system is presented for the efficient discovery of  protein-DNA interactions by means 

of  multiple simultaneous gene expression measurements. A major problem in discovering transcrip-

tion factor binding motifs is that identifying overrepresented sequence motifs is insufficient; most are 

noise, and some only bind transcription factors under specific biological conditions. It is possible to 

identify real motifs by the correlation of  their presence to differential gene expression under a particu-

lar biological condition. By employing multivariate penalized regression, the system described is ca-

pable of  efficiently identifying transcription factor binding motifs whose presence strongly correlates 

with gene expression in the measured biological condition from amongst hundreds of  candidates. A 

small, highly confident set of  motifs is selected, which may be used for further bioinformatic studies, 

or as targets for in vivo or in vitro experiments. 
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CHAPTER 1: Introduction

Biological systems are famous for their immense complexity. Simple building blocks come to-

gether to produce systems of  breathtaking intricacy and tremendous variation. The magnum opus of  

biology in this century, if  one can define it, would be to bring the analysis and comprehension of  such 

systems in line with the rigor and thoroughness that phyisics and chemistry embraced in the previ-

ous. The complete understanding of  biology would perhaps be far too great a demand; nonetheless, 

drawing biology away from its phenomenological roots and into the realm of  fully-fledged theoretical 

science would be a laudable goal. In order to do so, however, the immense complexity of  biology must 

be tamed.

This work attacks the great challenge of  biology through the lens of  proteomics, the study of  

complete proteomes. The term ‘proteome’ was coined by Marc Wilikins in 1994 [1] and first used in 

the literature in 1995 by Wasinger et al. [2] by analogy to ‘genome’: a proteome is the total protein com-

plement of  a genome. Unlike genomics, however, proteomics suffers tremendously from the curse 

of  complexity. Even if  one considers all unique molecular species that may be produced based on a 

single gene to be the same protein, a proteome contains many more proteins than there are genes in its 

underlying genome. If  one considers every unique proteinaceous species to be distinct, their number 

becomes astronomical. If  one can tame this complexity, however, one can reap great rewards; while 

the genome encodes the blueprint, the proteome is the completed edifice. The understanding of  pro-

teomics in its great complexity will finally allow ‘closing the loop’ on the Central Dogma of  molecular 

biology: from DNA, to RNA, to protein, to function, to survival, and at last, to DNA. This disserta-

tion will present a number of  bioinformatic tools to address the great complexity of  proteomics, and 

to begin linking it to function.
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A Brief History of Proteomics

Before one can begin to discuss the computational tools with which one may tackle proteomics, 

one must first detail the nature of  the science. In a sense, proteomics had existed for many years be-

fore it was named. Before computational techniques, before even programmable computers, the first 

attempts at unraveling the complexity of  the proteome relied on separation. As is often the case with 

techniques used for proteomics, the goal separation is the reduction of  complexity. It seeks to isolate, 

or at least fractionate into more manageable groups, the proteins in a given sample. The first efforts 

at protein separation, carried out in the 19th century, relied on fractional precipitation [3]; the resulting 

fractions were then characterized by various classical methods. This technique was used to great ef-

fect throughout the first third of  the 20th century, and many of  the classic model proteins of  biology 

were first isolated through its use. However, it was, fundamentally, unsuitable as a general-purpose, 

proteome-scale separation technique due to its very low resolution. The number of  distinct fractions 

resolvable by means of  precipitation rarely exceeds ten. The key to proteomics in the middle third of  

the 20th century was electrophoresis.

Electrophoresis is the technique of  propelling particles within some medium via the influence 

of  an electric field. Electrophoresis was first used to study proteins in 1892 by Picton and Linder [4], 

when they observed the movement of  hemoglobin in an electric field. They were also the first to use 

it for the separation of  protein mixtures, in 1897 [5]. Three decades later, the dissertation work of  

Arne Tiselius in 1930 demonstrated the superiority of  electrophoretic separation of  proteins to the 

fractional precipitation methods in vogue at the time [6]. Tiselius would go on to win the Nobel Prize 

for this and later work, and is known to this day as the “Father of  Electrophoresis”. Electrophoretic 

separation of  proteins relies on the fact that as proteins are propelled through some medium by a 

constant electric field, they do so at different rates, determined largely by their mass and shape. In 

polyacrylamide gel electrophoresis (PAGE), the typical technique used today, the application of  an 

electric field to protein samples loaded onto a polyacrylamide gel for a fixed amount of  time results 

in a characteristic pattern of  bands on the gel. Proteins will migrate according to their charge-to-size 
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ratio (typically simplified as molecular weight, MW), and one may identify them based on their repro-

ducible retention factor (location) on the gel.

Basic PAGE is one-dimensional (1D-PAGE): it only separates based on one property, so proteins 

with the same charge-to-size ratio would typically have the same retention factor. The immense com-

plexity of  the proteome means that a single band on a 1D-PAGE gel is composed of  hundreds, if  not 

thousands of  distinct proteins, making identification very difficult. In order to improve the separation 

ability of  gel electrophoresis, it was necessary to add an additional dimension of  separation. In other 

words, while proteins are being separated by their mass, they would simultaneously be separated by 

another, orthogonal (independent) property. The property usually used for the second dimension of  

separation is isoelectric point (pI), and the procedure employing it for separation is isoelectric focus-

ing. The standard technique used for two-dimensional gel electrophoresis with isoelectric focusing for 

the last 35 years is 2D-PAGE, developed by O’Farrell in 1975 [7]. This vastly improved the separation 

ability of  gel electrophoresis, allowing for hundreds of  distinct spots to be observed. Like 1D-PAGE, 

the location of  proteins on similarly-prepared gels run with the same parameters is reproducible. Due 

to this property, 2D-PAGE became the de facto standard for protein identification at the time. It is still 

often used for a quick determination of  whether two samples differ in some reasonably-abundant 

component, especially when combined with computational methods for rapidly comparing two gel 

images. However, the limitations of  2D-PAGE, which include its bias to extremes in pI and MW, have 

been well-documented [8]. In addition, 2D-PAGE suffers from limitations as a separation platform 

for subsequent analytic stages. It has been noted to have poor recovery of  hydrophobic proteins, 

and has a very low loading capacity. Given these limitations, there has been a general movement in 

modern proteomics away from gel-based separation techniques to solution-phase separation, such as 

chromatography.

Chromatography is another very common protein separation technique that gained prominence in 

the latter half  of  the 20th century. First described in the 19th century work of  Schönbein and Goppel-

sröder, it is based on the differential adsorption of  analytes in a mobile phase to a stationary phase [9-
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10]. Goppelsröder used planar chromatography, where filter paper served as the stationary phase, to 

separate the small molecule and proteinaceous components of  human urine, then characterized them 

using spectroscopic and colorimetric assays [11]. This was followed by the work of  Tsvet, who devel-

oped adsorption column chromatography, wherein a column packed with a polar stationary phase (cal-

cium carbonate) had a non-polar mobile phase (petroleum ether) with the analytes of  interest passed 

through it. This process was applied on numerous occasions to successfully separate chlorophylls and 

carotenoids [12]. However, due to language barriers, the work of  both Goppelsröder and Tsvet fell 

into obscurity. It wouldn’t be until 1952 that the award of  the Nobel Prize to Martin and Synge for 

their work on partition chromatography gave prominence to the use of  chromatographic methods to 

separate amino acids, peptides, and proteins [13]. Despite being over a century after the initial work 

of  Goppelsröder, modern high-performance reverse-phase liquid chromatography is used for much 

the same purpose: the protein constituents of  the analyte mixture are eluted off  the chromatographic 

column at differing times. The characteristic elution times are reproducible, and are relatively specific 

to particular protein constituents of  the analyte mixture.

All of  the separation methods detailed above, however, are dependent on some sort of  detector 

to determine the presence of  the analyte. The most basic detector is the human eye; if  the analyte 

has a characteristic color, or an indicator dye is present, the investigator can observe and note distinct 

bands or elution events that arise from the separation procedure. More sophisticated detectors in-

clude UV spectroscopy and microchemical analysis. These methods can also be applied to putatively 

identifying the separated proteins, though their low specificity makes conclusions drawn from such 

techniques somewhat suspect. Nonetheless, highly-specific identification techniques do exist: for ex-

ample, a very specific technique still used for proteomics is immunochemical staining. By reacting a 

protein fraction with a labeled antibody for a particular protein, one may observe whether or not that 

protein is present in that particular fraction. One could also look for an absorption peak at a particular 

frequency, characteristic of  some particular protein. Nonetheless, all of  these techniques have either 

poor specificity (such as UV spectroscopy) or poor throughput (immunochemistry). A highly-specific, 
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highly-sensitive, and high-throughput technique was needed to fully identify the separated proteins, a 

technique that formed the basis of  modern proteomics: mass spectrometry.

Mass spectrometry is a technique for measuring the mass-dependent properties of  molecules in a 

sample. It consists of  three components: an ionization method, a mass analysis method, and a detec-

tion method. The sample to be analyzed is first ionized. The resultant ions are introduced into the 

mass analyzer, which separates them based on their mass-to-charge (m/z) ratio. The presence of  the 

separated ions is then measured by the detector. The combination of  the calibrated mass analyzer and 

the detector enables the mass spectrometer to determine the intensity of  ions present in the instru-

ment at various m/z.

Mass spectrometry as it is understood today was developed by Aston in 1919, with his separation 

and measurement of  distinct isotopes, first of  neon [14], then of  other elements including carbon, 

nitrogen, and oxygen [15] by means of  what he called the “mass spectrograph”, a work which led to 

him being awarded the Nobel Prize in 1922. Mass spectrometry was used extensively in the first half  

of  the 20th century to characterize isotopes, even being used on a preparative scale to separate 235U for 

the Manhattan Project [16]. The use of  mass spectrometry for the characterization of  proteinaceous 

material was, however, first attempted in 1959, when Biemann measured partial hydrolysates of  vari-

ous derivatized peptides, determining their sequence by means of  observing sets of  peaks separated 

from each other by the characteristic mass of  an amino acid [17]. This method, the detection of  peak 

sets separated by amino acid masses, is now known as de novo peptide sequencing, and remains in use 

to this day. One year later, Biemann laid the foundation of  what would become mass spectrometric 

proteomics by mating a separation method (in this case, a gas chromatograph) to a mass spectrometer, 

enabling the characterization of  complex peptide mixtures [18].

Mass spectrometric proteomics rapidly evolved as new techniques were developed. Biemann’s 

partial hydrolysis method for de novo peptide sequencing was eventually replaced by gas-phase dis-

sociation. It was noticed in early work on peptide mass spectrometry that molecular ions tended to 

fragment along the amide backbone, resulting in characteristic sets of  daughter ions [19]. By analyzing 
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the inter-peak distances of  these fragments, it was possible to determine the peptide sequence without 

requiring prior partial hydrolysis. It was likewise immediately noticed that these inter-peak distances 

could be easily determined by a computer program that “walked” the spectrum; development of  such 

a system by McLafferty [20] and Biemann [21] in 1966 could be considered the dawn of  computa-

tional proteomics.

Though gas-phase dissociation of  molecular ions was originally observed when metastable spe-

cies fragmented immediately following ionization (“source-induced dissociation”), work soon focused 

on encouraging and controlling the formation of  daughter ions. The most prominent dissociation 

method developed, and still the dominant method to this day, was collisionally-induced dissociation 

(CID) by McLafferty in 1973 [22]. This technique was of  considerable use, but truly shone when im-

plemented between the stages of  a tandem mass spectrometer (MS/MS). In the MS/MS arrangement, 

there are two stages of  mass analysis. In some systems, such as those using magnetic sectors or a triple-

quadrupole arrangement, two mass analyzers are placed in series, one after the other. In others, such 

as linear ion traps, a mechanism is employed that enables daughter ions from a gas-phase dissociation 

reaction to be reintroduced back into the same mass analyzer. Both techniques allow the separation of  

parent ions in the first stage, selection of  a particular precursor ion, fragmentation of  that precursor, 

separation of  the resultant daughter ions in the second stage, then measurement of  those ions [23]. 

This forms the final conceptual piece of  the standard system used to this day: a separation platform 

directly interfacing with an ionization source of  a tandem mass spectrometer that is capable of  selec-

tion, dissociation, and detection of  parent and daughter ions.

Modern mass spectrometric proteomic investigations typically begin with various dimensions of  

separation using either electrophoresis or varying flavors of  chromatography. They introduce the 

separated samples into an instrument by one of  two “soft” ionization methods: electrospray ioniza-

tion (ESI) [24] or matrix-assisted laser-induced desorption/ionization (MALDI) [25], both of  which 

reliably ionize large proteinaceous species with minimal dissociation at the source. These ionization 

methods are used to introduce sample into what is typically a hybrid tandem mass spectrometer, con-
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sisting of  two different types of  mass analyzer. One very common configuration is ESI introducing 

multiply-charged ions into a relatively low-resolution linear quadrupole ion trap coupled to a high-

resolution Fourier transform mass analyzer – either an ion cyclotron resonance (ICR) cell or Orbitrap. 

Another is MALDI introducing mostly singly-charged ions into a quadrupole mass analyzer coupled 

to a time-of-flight (TOF) tube. Both configurations offer data-dependent selectivity fragmentation, 

affording the analysis of  complex samples and species. Nonetheless, the inherent complexity of  pro-

teins and the nature of  the instrumentation results in two distinct, complementary approaches being 

used for modern proteomics: Top Down and Bottom Up.

The most common technique currently used for proteome-scale protein identification is known 

as Bottom Up Proteomics. The key to this technique is that either before or after protein separation, 

the sample is digested, typically with trypsin, to produce short peptides. These peptides are then usu-

ally separated and introduced into a tandem mass spectrometer, which isolates and fragments intense 

peaks, producing fragment ions that are used to identify peptides (and consequentially the proteins 

from which they came) [26]. This method typically produces sufficient sequence coverage to identify 

many proteins, and indeed, the current records for the number of  proteins identified from a single 

sample are held by Bottom Up techniques [27]. 

However, Bottom Up is not without its flaws. Firstly, the peptides produced by enzymatic diges-

tion are not necessarily unique to a particular protein. As proteins are composed of  conserved do-

mains, peptides may identify a group of  proteins, rather than one unique protein. Secondly, enzymatic 

digestion destroys combinatorial positional information of  sequence variants and post-translational 

modifications. If  a peptide from a particular protein is detected with a phosphorylation on a given 

residue, and another peptide from the same protein is detected with another phosphorylation, the 

protein is not necessarily simultaneously phosphorylated on both sites. It merely indicates that it could 

potentially bear phosphorylations on one or both residues. Finally, quantitation of  proteins by peptide 

levels is made highly problematic when one considers the first two issues – if  one detects a change 
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in abundance of  a particular peptide, it is not necessarily the case that the protein from which it was 

produced had changed its abundance by the same amount.

These problems are resolved by the other major approach in proteomics, Top Down. In Top 

Down proteomics, separated intact proteins are introduced directly into the mass spectrometer. The 

gas-phase dissociation of  these large molecular ions produces large fragment ions, which often pro-

duce 100% sequence coverage of  the observed protein, enabling confident identification and full 

characterization [28]. Quantitation could likewise be done on the level of  intact protein, eliminating 

problems with backtracking from peptide abundances. Top Down is an area of  rapid development in 

all the major technical aspects of  the methodology: separation, instrumentation, and data analysis. The 

latter component will be elaborated on in detail in the remainder of  this work.

Fundamentals of Computational Proteomics

Computational analysis was a fundamental component of  proteomics since the first peptide mass 

spectra were collected [20-21]. These initial de novo peptide sequencing approaches, however, were 

developed prior to large databases of  predicted protein sequences becoming available in the post-ge-

nome era. Armed with these databases and a wealth of  data arising from instrumentation utilizing ESI 

and MALDI, it became possible to identify and potentially characterize proteins in a sample without 

needing to fully sequence them. There are three major approaches: sequence tag matching, peptide 

mass fingerprinting, and fragment mass matching.

The sequence tag approach, though not the first to be implemented, is the one with perhaps the 

oldest pedigree. It uses partial de novo sequencing of  short regions of  the dissociated protein or pep-

tide, generating a “sequence tag”. This sequence tag is then searched against a sequence database [29]. 

Because automated de novo sequencing algorithms have existed since the original work of  McLafferty 

and Biemann, it is straightforward to couple this database search approach with automated de novo 

sequencing, resulting in a robust searching tool. Because this approach is less sensitive to mass shifts 

in regions not covered by the sequence tag, it remains useful for cases where sequence databases are 
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sparse, or potential sequence variation and modification is unknown. Tools utilizing this approach are 

still under development today, such as PEAKS [30]. Applying this approach to cases of  post-trans-

lational modifications within the sequence tag requires that the set of  potential mass shifts between 

peaks when compiling the tag be expanded to support modified amino acids. This of  necessity in-

creases the potential space of  potential sequences, and may significantly decrease specificity, especially 

on noisy spectra.

Peptide mass fingerprinting was developed simultaneously by a number of  groups in 1993 [31-

33]. The basic principle of  peptide mass fingerprinting is that the observed intact masses of  tryptic 

peptides resulting from a Bottom Up experiment form a “fingerprint” of  the protein from which they 

came. By incorporating a probability-based score utilizing the number of  peptide masses matched, it is 

possible to rank a database of  potential protein hits by the likelihood of  whether or not they were ob-

served. This approach is computationally simple, and can be carried out on a standalone (not tandem) 

mass spectrometer; however, its lack of  specificity has made it fall out of  favor as more sophisticated 

techniques were developed. On the other hand, this approach is least affected by post-translational 

modifications, in the sense that it is incapable of, and not concerned with, their full localization. A 

peptide mass may be considered without post-translational modifications, or with potential modifica-

tions (either known or based on simple residue rules). The number of  theoretical masses considered 

increases, but not nearly the exponential increase suffered by the final approach, direct fragment 

matching.

The last major approach for analyzing mass spectrometric data, fragment matching, was first 

implemented in the Sequest algorithm by the Yates group [34] in 1993. Sequest relies on the cross-

correlation of  a theoretical fragmentation spectrum and an observed fragmentation spectrum. Each 

protein being considered for scoring has a cross-correlation score computed between its theoreti-

cal spectrum and the observed spectrum. This results in an cross-correlation metric (XCorr), which 

when coupled with selective scoring of  peptides based on their intact mass, allows for very high sen-

sitivity. Although it is possible to apply the Sequest algorithm to in-source dissociation spectra on a 
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single-stage mass spectrometer, akin to the data produced by the original de novo peptide sequencing 

attempts of  McLafferty and Biemann in 1966 [20-21], such an approach is not recommended. Using 

the Sequest algorithm on data resulting from such experiments would entail scoring the entire protein 

sequence database against the observed spectrum, which would destroy the algorithm’s specificity. 

Instead, Sequest is ideally suited for tandem mass spectrometric data, where the intact precursor mass 

can be used to restrict the database “window” being searched. However, it is very difficult to interpret 

the cross-correlation metric used by Sequest to determine what counts as a “hit”. All that any search 

engine does is assign a score to the proteins being considered; it takes additional user assumptions to 

determine what scores constitute “hits” and what scores do not. The cross-correlation metric, while 

having exquisite sensitivity, has low specificity and no axiomatic way of  determining cutoffs.

 Another major algorithm in common use is Mascot, developed by Matrix Science in 1999 [35]. 

Based in part on MOWSE [31], one of  the algorithms developed early on for peptide mass finger-

printing, it instead operates on the fragments of  a peptide that result from gas-phase dissociation in-

side the mass spectrometer, rather than on peptides that result from the tryptic digestion of  a protein. 

The same probabilistic score the enabled ranking proteins by how many theoretical peptides matched 

observed data was adapted to ranking peptide by how many theoretical fragments matched observed 

data. This made the Mascot score more comprehensible and analyzable than the opaque and highly 

charge-dependent Sequest cross-correlation metric.

Other, more recent algorithms for fragment matching exist, but in general, they use the same 

approach with more sophisticated probabilistic scoring functions to generate scoring metrics with 

reasonable, axiom-based or procedural ways of  assigning score cutoffs. In general, modern compu-

tational proteomics relies on fragment matching algorithms for most of  its heavy lifting, with the 

other two approaches relegated to specialized tasks. Fragment matching algorithms typically handle 

post-translational modifications as “variable modifications”, assigned by rules. For instance, if  one 

considers serine phosphorylation, all serines may be potentially phosphorylated. If  a peptide being 

scored has 3 serines, then 8 theoretical peptides must be considered: with any reasonable fragment 



11

matching tolerance, a modified observed fragment will not match an unmodified theoretical fragment, 

and vice-versa. Despite this massive increase in the amount of  work necessary to assign post-transla-

tional modifications, fragment matching algorithms are the only effective means of  complete peptide 

and protein characterization, and together with the sequence tag approach, form the core of  the first 

search engine developed specifically for Top Down experiments: ProSight.
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CHAPTER 2: Bioinformatics of Top Down Proteomics

The work detailed here was done as part of  the development of  ProSight PTM 2.0, ProSightPC 2.0, and ProS-

ightCluster, as well as other, ongoing work in the development and maintenance of  ProSight. Reproduced in part, with 

permission, from “ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrom-

etry” Nucleic Acids Research Web Server Issue, Copyright 2007, Oxford Press. This work could not have been possible 

without the contributions of  the entire ProSight development team, but especially Richard D. LeDuc, Bryan Early, and 

Joseph Stull. The work was supported by the National Institutes of  Health through P30 DA 018310-039002 and 

R01 GM 067193.

The first developments in Top Down mass spectrometry were aimed squarely at detecting in-

dividual intact proteins. If  identification was needed, two approaches could be attempted: a direct 

predicted-ion-matching approach and a sequence tag approach [1]. In the former, predicted charge-

reduced theoretical fragment ion masses are directly compared to observed charge-reduced fragment 

ion masses. This technique allows for confirmation of  complete protein characterization by total 

sequence coverage, but has great difficulty in working with highly modified or divergent protein se-

quences. In the latter, a consecutive series of  inter-peak spacings characteristic of  particular amino 

acids is detected, and a short ‘sequence tag’ compiled, which is then used to carry out a straightforward 

lexical search of  a sequence database. This approach works better for highly divergent sequences or 

sequences where both termini are modified, but lacks the specificity of  direct ion matching.

A number of  qualitative differences exist between Top Down and Bottom Up proteomics that 

make analyzing Top Down data a unique challenge [Figure 2.1]. A typical Bottom Up data-dependent 

experiment acquires mass spectra of  low-mass (rarely over 5000 Da) peptides in what is typically a 2+ 

or 3+ charge state using a high-resolution FT-ICR or Orbitrap instrument. The most intense peaks in 

this survey scan (often the monoisotopic peaks of  their respective isotopic distributions) are selected 

for fragmentation using CID or ECD, and their fragment ions (rarely greater than 2+) measured in 

a low-resolution ion trap instrument. The sparse spectra resulting from this type of  experiment may 

be analyzed by a search engine ‘raw’, without any pre-processing. The search engine would generate 
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potential m/z values of  theoretical fragment ions in 1+ and 2+ charge states and compare them to the 

observed peaks. Often, instead of  attempting to match every isotopic peak, one either uses the average 

mass or the monoisotopic mass. Using monoisotopic mass data is preferred in proteomics due to the 

inherent variability of  C12/C13 ratios in biomolecules, and the resultant limits on mass accuracy that 

average mass data imposes [2]. The precursor scan would have easily distinguishable monoisotopic 

peaks, as that is the most intense peak in low-mass species, allowing for monoisotopic neutral masses 

to be trivially assigned via charge inference, and then used to restrict the set of  theoretical peptides 

considered for matching against the fragmentation spectrum. Alternatively, the search engine could 

simply consider all possible charge states for the parent peak, up to a predetermined maximum. 

This type of  strategy, however, cannot be used for Top Down data. An intact protein mass spec-

trum typically has a pronounced ‘hump’ [Figure 2.2], where chemical noise yields considerable inten-

sity in every m/z channel. At higher charge states, monoisotopic peaks are typically below the noise 

floor, and isotopic peaks are spaced too closely for low-resolution instruments to resolve them. In 

order to determine the monoisotopic mass, a sophisticated transformation must be applied [3-4] to 

a high-resolution spectrum infer the charge and monoisotopic peak of  an isotopic distribution. Al-

ternatively, the charges may be inferred from low-resolution data by deconvoluting the characteristic 

multiple consecutive charge states produced by ESI [5-6]. Charge inference is even more vital for frag-

mentation spectra; Top Down CID and ECD spectra contain numerous multiply-charged fragments, 

and an exhaustive charge enumeration strategy for generating theoretical fragments is untenable. Top 

Down fragmentation spectra are often sufficiently dense due to chemical noise that attempting to 

match an arbitrary m/z value will almost always succeed; deconvolution and deisotoping are critical to 

having informative results.

At this writing, there are four search engines that are capable of  analyzing Top Down data: ProS-

ight [7], MascotTD [8], PIITA [9], and OMSSA [10]. These have a number of  similarities imposed by 

the nature of  the data. ProSight, the oldest search engine designed specifically for Top Down data, ap-

plies a neutral mass transform to both precursor and fragment spectra, as does MascotTD and PIITA. 



17

Unlike the others, OMSSA can use either charge enumeration or external charge assignment for the 

precursor mass, and carries out charge enumeration for fragmentation spectra. The major difference 

in these search engines, however, is in how they handle post-translational modifications and sequence 

variations. MascotTD, PIITA, and OMSSA use simple Fasta-format data files as their back-end (con-

verted to BLAST-format databases in the case of  OMSSA), and thus do not incorporate any known 

information about sites of  variation or modification. Instead, they use variable modifications, rule-

based assignments of  mass shifts to all residues based on their identity and general location (terminal 

or internal). For instance, a variable methionine oxidation would consider any methionine in a protein 

as potentially oxidized, and would enumerate all combinations of  those oxidations, ranging from no 

oxidations to some user-defined maximum number of  simultaneous oxidations. ProSight differs from 

the other Top Down-capable search engines in that it incorporates known sites of  modification by 

using a rich dataset. Rather than using rule-based variable modifications, potential combinations of  

known post-translational modifications and sequence  variations are stored in a rich sequence data-

base, allowing them to be directly queried.

The origins of  ProSight lie in the Database Retrieval Algorithm  (DTA) that would eventually 

become the core of  the search engine (Retriever) [11]. It was intended to make the identification 

and complete characterization of  proteins by Top Down mass spectrometry feasible by using direct 

fragment matching, rather than the sequence tag approach. Retriever would form the core of  a web-

based system called ProSightPTM [12]. Although its underlying back-end differed somewhat from the 

modern implementation, the core search engine (Retriever 1.0) was the first publically-available system 

designed specifically to analyze deconvoluted, deisotoped Top Down mass spectral data. It had two 

fundamental search modes: an Absolute Mass search, where the observed neutral precursor mass is 

used to restrict the range of  sequences in the database that are scored, and a Sequence Tag search, 

where manually- or automatically-compiled sequence tags are searched by direct text comparison to 

the database. The next generation of  the search engine, Retriever 2.0 (deployed in ProSightPTM 

2.0, neuroProSight, and ProSightPC) added nonspecific proteolysis support (Biomarker search), via a 

sliding-window algorithm.
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Rather than being a single program, the current version of  ProSight is a collection of  related 

programs based on the same underlying technology [Figure 2.3], but dedicated to different tasks. 

ProSight is based on three primary components: Retriever, the core search engine (1) which uses 

deconvoluted, deisotoped mass spectral data to query a rich sequence database (2), when called by a 

user interface (3). The user interface is modular and several distinct systems were designed that call the 

same underlying search engine for different user-interaction scenarios. Two web-based user interfaces 

are currently in use: ProSightPTM 2.0 [7] for general-purpose searching and neuroProSight [13] for 

nonspecific searching and searching predicted neuropeptides using the NeuroPred algorithm [14]. A 

standalone user interface (ProSightPC 2.0) was also developed for high-throughput analysis. The lat-

ter wraps Retriever 2.0 in an iterative search logic which carries out additional searches on a particular 

query based on the results of  previous searches, as well as supporting ‘turnkey’ data preprocessing and 

results reporting features.

As described earlier, the ProSight suite relies on a rich sequence database, encompassing as much 

known information as possible. The database schema used by the second-generation Retriever (the 

“Absolute Mass Schema” [Figure 2.4]) stores sequences with post-translational modifications embed-

ded directly in prefix notation [Figure 2.5]. These post-translational modification codes refer to a 

general metadata schema (‘DB_index’) that contains information on the mass shifts that modifications 

apply to the following residue. Sequence variations are embedded without an explicit code, simply as 

a different sequence. Multiple sequences derived from a single source (due to sequence variants and/

or PTMs) are grouped together with a single description field in the Gene table of  the Absolute Mass 

Schema.

ProSight databases are typically constructed by drawing upon a rich data source such as UniProt 

[15].  UniProt stores information about potential sequence variation and post-translational modifica-

tion in a per-site, rather than per-protein manner, and with the exception of  alternative splice forms, 

does not describe which modifications are present simultaneously. In other words, a cSNP being noted 

on a protein means that it was observed in a certain number of  individuals, but is not necessarily pres-
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ent all the time; a PTM being noted means that a given residue was observed to be modified in some 

cases, but not necessarily always. This means that in order to store sequences in the Absolute Mass 

Schema that encompass potential protein variation, one must store a sequence for every potential 

combination of  potentially-observable sequence features, whose number scales exponentially with the 

number of  sequence features. A novel database creation system was needed to tame this combinatorial 

explosion.

DBLoader 2.0 Overview

The database creation system (‘DBLoader 1.0’) was originally developed for ProSightPC 1.0 and 

then deployed to ProSightPTM 2.0 while the latter was under construction. DBLoader 1.0 was a 

monolithic program with a fixed set of  functions. The original intent of  the system was to generate 

semi-exhaustive combinatoric databases from rich UniProt [14] data under conditions of  limited fea-

ture space; the feature set that it incorporated into sequences was limited to PTMs and a small set of  

cSNPs.  Based on empirical evidence that numerous proteins were modified at the N-terminus (either 

by cleaving off  the initial methionine, addition of  an acetyl group, or both), DBLoader 1.0 assumed 

these sequence features to be present on all sequences, regardless of  whether or not they were explic-

itly annotated in the source dataset. Handling of  proteolysis was limited to an external pre-processing 

script that generated in silico digested files from input, which it then passed to DBLoader. If  the num-

ber of  sequence features on a protein exceeded what could be reasonably used to generate exhaus-

tive combinatorics, a simple position ordering cutoff  was applied, where all features in the sequence 

feature list past a given point were ignored.

As the number of  annotated features in UniProt grew [Figure 2.6], it was clear that both a more 

sophisticated means of  incorporating interesting sequence features, and a way of  rejecting less-inter-

esting features was necessary. Additionally, continued demand by experimentalists for new sequence 

processing stages was very difficult to meet with the existing monolithic database creation system. It 

was this rationale that led to the development of  DBLoader 2.0, the database creation system that pro-
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duced the databases that were released with ProSightPC 2.0 and were then deployed to ProSightPTM 

2.0.

DBLoader 2.0 was designed as a modular pipeline [Figure 2.7], intended from the start to be modi-

fied and added to as time progressed. Instead of, e.g., relying on an external pre-processing script to 

produce an in-silico enzymatically digested database, the new pipeline would be able to incorporate an 

in-silico digestion stage internally, capable of  being deployed as-needed. By maximizing the potential 

features that could be implemented within the pipeline, as opposed to outside of  it, the system could 

use internal state information to guide processing in later stages of  the pipeline; this would be quite 

difficult to implement with external pre-processing scripts that needed to write output in a standard 

format, though as will be shown later, not impossible.

The DBLoader 2.0 pipeline was implemented in Perl [16], so as to leverage the considerable exist-

ing capability produced by the BioPerl project [17], such as parsers and abstract data types. The core 

of  the pipeline is a set of  three basic classes: Module, Seq, and SeqFeature.

DBLoader Modules

A DBLoader pipeline is constructed of  objects which implement the module interface.  A mod-

ule, at its core, is an entity that obeys a basic one-to-many input-output contract. It takes a sequence 

as input, and outputs zero or more sequences as output. A module supports, to whatever degree 

feasible, lazy evaluation and generator semantics1. In other words, the module interface provides a 

1)   The terms “lazy evaluation” and “generator semantics” appear often in this work. Lazy evaluation 
is a concept wherein computation is delayed until the last possible moment. In the context of  this 
work, lazy evaluation specifically refers to the ability to define operations on the output of  a previ-
ous processing stage without needing for all of  that output to be present at the time that the next 
stage is defined. In lazy evaluation, a variable is not bound to data when it is defined, but only when 
its contents need to be read. This technique greatly reduces the memory footprint of  a program, as 
results of  one processing stage do not all need to be stored in memory before being supplied to the 
next processing stage.  “Generator semantics” are a specific application of  lazy evaluation, defined in 
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method – Execute – which will incrementally compute the next output for a given input, or return a 

null value indicating that no more output is pending. This, in turn, allows for a chain of  modules to 

be strung together in a user-defined order and a set of  fully-processed sequences produced from a 

limited set of  inputs via a depth-first search along the data-flow graph. This construct is implemented 

by a pipeline utility class, which accepts a list of  modules, and allows for generator semantics to be 

applied to an entire processing chain, whereby one can easily iterate over every output from a single 

input to the chain. The pipeline class is itself  a module, enabling construction of  processing chains 

possessing arbitrary complexity with minimal conceptual and computational overhead. Indeed, by 

leveraging lazy evaluation and generator semantics, the memory footprint of  the pipeline was tightly 

controlled, a vital feature when dealing with a potential combinatoric explosion.

DBLoader Sequences and SeqFeatures

The processing pipeline operates on objects which describe a biological sequence along with its 

potential variations. The BioPerl library provided an abstract data type – Bio::Seq – which imple-

mented much of  this complexity. However, there were a number of  design features necessary for the 

DBLoader pipeline that the existing data type lacked. Firstly, communications between processing 

stages needed to be kept in-band as much as possible, as this would permit ready parallelization if  

necessary, and would obviate the need for any external synchronization. Secondly, this information 

needed to be serializable to a standard format, in order to support external processing stages. Metadata 

stored by the pipeline needed to be transparent to external software, while being fully readable by the 

pipeline. Finally, any object passed down the pipeline needed to support efficient deep copying (clon-

this work as the application of  an iterator-like interface to a lazily-evaluated data structure. In essence, 
it refers to the ability to define an iterator which produces a potentially-infinite output stream lazily, 
and then define operations on all of  its output, without that output being present at that time. While 
possible to implement in Perl to an extent, the most accessible implementations of  these concepts are 
currently present in Python and C#, where iterators employing lazy evaluation can be automatically 
created by using dedicated language syntax.
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ing), in order to permit efficient forking in the pipeline. This last design requirement was a necessity 

due to the very heavily branched nature of  the combinatoric data flow.

Nonetheless, the existing Bio::Seq class contained a number of  useful features that made it useful 

as a basis for a more sophisticated class. It supported automatic construction from standard formats 

by existing parsers, as well as supporting lists of  sequence features (via the Bio::SeqFeature class) that 

could be used to describe contiguous regions of  the protein sequence. The existing class was extended 

into a new DBLoader::Root::Seq class, which retained all features of  its parent, while adding sup-

port for the additional features necessary for the processing pipeline. Support for flexible inter-stage 

in-band communication was added by adding arbitrary ‘flags’ as a set of  key/value pairs bound to the 

DBLoader::Root::Seq object. Because of  Perl’s flexible typing system, these flags could contain arbi-

trary information, ranging from simple strings and integers to objects of  arbitrary complexity. These 

flags would be used to allow important details about the internal state of  upstream processing mod-

ules to inform downstream sequence transformations. An example would be flags describing whether 

or not a given sequence contains the N- or C- terminus of  a protein. If  a sequence transformation 

such as in-silico digestion results in numerous peptide sequences from a single parent protein sequence, 

only those peptides that contain the parent’s N-terminus would retain the N-terminal flag. These flags 

could be used to store any metadata generated during processing, or provided by the user during se-

quence input. The Bio::SeqFeature class was likewise extended into DBLoader::Root::SeqFeature, 

which supported analogous flags, but per each individual sequence feature.

Another type of  in-band communication supported by the DBLoader::Root::Seq class is the 

transformation trace. The transformation trace is a simple list of  ‘notes’ which describe the order and 

details of  the transformations that resulted in a given DBLoader::Root::Seq. Every module was de-

signed to write a descriptive note to the transformation trace of  the sequences it generated, allowing 

for a detailed understanding of  exactly how any given sequence that arrived at the end of  the pipeline 

was produced.
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In order to allow this information to be stored safely in standard formats, ignored by external pars-

ers, but reconstituted by the pipeline if  necessary, a serialization system needed to be implemented for 

DBLoader::Root::Seq and DBLoader::Root::SeqFeature. This was done by means of  serializing 

the in-memory representations of  the metadata fields into strings, and loading them into unstructured 

fields in the formats being written, analogously for both classes. Serializing a DBLoader::Root::Seq 

would, of  necessity, serialize all DBLoader::Root::SeqFeatures that it contained. The final necessary 

feature of  the biological sequence class, the capacity for deep copying, was implemented in a directly 

analogous fashion, via in-memory cloning of  all constituent object fields using existing libraries.

DBLoader Pipeline Termini: Sources and Sinks

Once the basic features of  the pipeline – the processing modules and the data they operated on 

– were defined, the general form of  the processing pipeline took shape. The pipeline would accept a 

stream of  biological sequences at its beginning, in the form of  DBLoader::Root::Seq objects, apply 

various transformations to them, and output a stream of  transformed biological sequences at the end. 

The nature of  where that initial stream of  sequences would arise from, and what the resulting output 

stream would be used for, is outside the context of  the pipeline. Instead, a variety of  ‘sources’ and 

‘sinks’ could be placed at the start and end of  the pipeline, and used for various tasks; in the case of  

DBLoader, this task would be to draw upon the information in a Fasta- or SwissProt-formatted flat 

file and construct a database obeying the ProSight Absolute Mass Schema.

The typical input source relied on the BioPerl library’s parsers to construct Bio::Seq objects 

from a given file. Additional processing would then be carried out to convert these objects to 

DBLoader::Root::Seq objects; this took the form of  removing unnecessary information, determining 

if  additional metadata (either user- or program-supplied) was encoded in the file’s unstructured fields, 

and deserializing this data should it be present. The input source could also be used as an initial filter 

for sequences or sequence features, restricting its output stream to sequences of  interest by means of  

filters on arbitrary sequence and sequence feature fields. Like pipeline processing modules, the input 
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source was written to use lazy evaluation and generator semantics; using it with the pipeline was as 

simple as writing a statement to the effect of  ‘for every sequence in input, apply pipeline processing’.

The output of  the pipeline is similar to its input, a stream of  objects representing sequences that 

are each the result of  numerous consecutive transformations. This stream must then be loaded into 

the database schema. The output sink of  the pipeline is thus what appears to be a processing module, 

but does not return output to the rest of  the program. Instead, information in each sequence object 

is written to the database. Minimal sequence processing takes place in the output sink, only a final 

combinatorial expansion of  selected post-translational modifications. This is largely a performance 

optimization; by placing this operation in the final sink, the number of  potential sequence cloning op-

erations is vastly reduced, increasing overall pipeline throughput. By keeping most sequence transfor-

mations out of  the sink, the user-configurability of  the pipeline is maximized. Most of  the code in the 

sink is dedicated to database-specific operations, such as de-duplication, indexing, and compression. 

These features greatly improve the performance and footprint of  the database, and will be described 

later. Like sources, a sink is completely independent of  the processing occurring within the pipeline; 

this allows arbitrary sinks to be constructed for various database schemas or output formats.

Data Integration

Of  particular interest during the initial development of  DBLoader was the ability to reliably in-

tegrate additional information into the sequence stream that was not present in the original data 

file. Particularly, at the time UniProt was ‘behind the curve’ on integrating the thousands of  newly-

discovered coding single nucleotide polymorphisms (cSNPs) that were discovered in human genes by 

high-throughput projects such as HapMap [18]. Research efforts in the Kelleher Lab were focused 

at the time on ‘proteotyping’, the identification and quantitation of  multiple genetic variants of  a 

particular protein within single individuals [19] and thus a way of  maximizing the number of  variants 

considered during analysis was of  high priority. Because processing modules are constructed indepen-

dently of  each other and communicate strictly in-band, it was possible to readily construct a module 
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that queried mapping tables for possible cSNPs that may have existed on a given protein sequence, 

and carried out coordinate transformations to map them to the query sequence. First, a mapping table 

(provided by the iProClass project [20]) was used to map UniProt accession numbers to RefSeq [21] 

gene identifiers. The RefSeq identifier was then used to retrieve all applicable polymorphisms for that 

protein. However, as the polymorphisms were typically defined in reference to the RefSeq reference 

sequence, they were not guaranteed to match the canonical sequence provided by UniProt. As such, 

a coordinate transformation needed to be carried out by performing a global sequence alignment of  

the two sequences using the Needleman-Wunsch algorithm [22] implemented as part of  the EMBOSS 

suite [23]. This mapping also allowed many cSNPs to be annotated with their observed heterozygosity 

values using the previously described feature flag system, permitting later inference and evaluation.

Another typical use of  the processing pipeline’s data integration capability was the assumption of  

N-terminal processing. Even if  a given sequence did not encode N-terminal methionine cleavage or 

potential N-terminal acetylation or formylation, these modifications occur sufficiently frequently that 

it is useful to assume that they may occur for any protein. A module was constructed to add sequence 

features representing N-terminal acetylation and formylation, and another was constructed to add 

sequence features representing potential N-terminal methionine cleavage. Potential sequences were 

not generated at this point, but rather their possibility was noted; for ease of  conceptual analysis and 

software engineering, it was decided to separate the pipeline informally into three broad conceptual 

stages: integration, complexity reduction, and combinatoric expansion [Figure 2.7]. In other words, 

first the pipeline adds all the additional information that it can, from whatever sources it has available; 

second, it determines which information is worth using; and finally, it generates a stream of  sequences 

from all the potential combinations of  sequence features.

Reducing Combinatorial Complexity

The reduction of  biological complexity is at the heart of  DBLoader’s ability to deal with the ever-

increasing amount of  known information about protein variation and post-translational modification. 
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ProSight relies on a process whereby protein forms bearing all possible combinations of  known post-

translational modifications are constructed and loaded into a database for querying using observed 

data. This process has been termed shotgun annotation, in analogy to shotgun sequencing [24], as one 

cannot typically know in advance what protein forms exist in nature, only what sites could potentially 

be modified.

The nature of  the problem as it originally presented itself  is thus: a post-translational modification 

is either present on a particular residue of  a protein when the protein is observed, or it is absent. If  

it is present, in the majority of  cases, the residue cannot have any other modifications simultaneously 

present. If  one considers a protein composed of  k residues, and where ni is the number of  possible 

PTMs on the ith residue, then the total number of  forms that a protein may take is:

One can observe that ultimately, if  the (slight) restriction of  a residue bearing only a single PTM 

at a time is removed (or if  all PTMs are on different residues), the number of  protein forms result-

ing from an exhaustive enumeration of  all possible combinations of  PTMs scales as O(2N).  If  one 

considers human histone H3.1 (UniProtKB P68431, ver 66), an exhaustive enumeration of  all combi-

nations of  known PTMs will result in 622,080,000 sequences. Consideration of  potential N-terminal 

acetylation and N-terminal methionine cleavage (the former is not known to happen, while the latter 

is) raises the number of  sequences to 2,488,320,000, a further fourfold increase. Considering that the 

lower bound on the size of  an uncompressed Absolute Mass Schema database row describing one 

such sequence is 210 bytes, an uncompressed Absolute Mass Schema database containing only the 

possible forms of  human histone H3.1 will take up at the very least 486 gigabytes, a currently unten-

able prospect. One may, perhaps, justify the creation of  a fully-enumerated database for the targeted 

analysis of  a single protein, but the use of  unrestricted enumeration on the proteome scale is difficult 

to accept, even before one begins to consider sequence features other than PTMs.
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In Top Down proteomics, one must consider the potential state that the observed protein will take 

as a whole. There are two relatively straightforward strategies for reducing the set of  generated se-

quences produced during shotgun annotation without significantly reducing the ability of  the resultant 

database to explain experimental data. The first is reasonably common in the Bottom Up world, and 

relies on reducing the total number of  sequences by straightforwardly controlling the number of  fea-

tures that one would expect to be present on an observed protein simultaneously. In other words, one 

would consider all combinations of  sequence features s taken t at a time, for all values of  t from 0 up 

to a user-defined maximum value. This has the advantage of  tight control over scaling; a closed-form 

solution exists for an upper bound on the number of  total sequences generated, and one may tune 

the maximum value of  t depending on one’s space constraints and data-explanatory requirements. 

Certainly, any number of  efficient algorithms exist for enumerating all such combinations [25]. How-

ever, this approach has a number of  drawbacks. Firstly, it assumes that all sequence features known 

to exist on a protein have an equal probability of  being observed; this assumption is blatantly false. 

Secondly, it assumes that equal amounts of  detail are necessary for all locations on the sequence. This 

assumption is also often wrong; because lower-mass fragment ions are more likely to be observed than 

higher-mass fragment ions, and fragment ions contain sequences that are typically considered to be 

proper prefixes or suffixes of  the intact sequence, a sequence feature is more likely to have fragment 

coverage the closer it is to the termini of  a protein. Finally, this simple enumeration assumes that se-

quence features are independent, and ignores the restriction that typically, a residue may have only one 

feature at a time. This means that one will gain more ‘explanatory power’ (measured in the percentage 

of  known features annotated) with less of  an increase in the total number of  generated sequences if  

one includes a set of  sequence features all known to occur on the same residue than if  one includes 

an equally-sized set of  sequence features on different residues.

An alternative means of  controlling the total number of  generated sequences that that may arise 

during shotgun annotation is by restating the problem in terms of  optimization. In this fashion, one 

can incorporate the additional information about and restrictions on particular sequence features, and 

generate a subset of  known sequence features that maximizes the overall ‘quality’ of  the sequence 
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features while simultaneously minimizing the total number of  generated sequences. One immediately 

runs into a significant challenge: because all the optimized variables are restricted to being 0 or 1, the 

overall problem immediately becomes a binary integer programming problem, one of  Karp’s original 

21 NP-complete problems [26] and in fact NP-hard, at least as hard as the hardest problems in NP. 

If  that wasn’t enough, the fact that the constraint function describing the total number of  sequences 

generated is exponential, not linear, makes this problem even more difficult to solve. However, in 

such a situation, one may take some inspiration from the data being analyzed. Protein sequences are 

the result of  billions of  years of  evolution, undirected optimization under changing conditions. There 

exists an optimization technique that can provide approximate solutions to even a problem as difficult 

as this in bounded time: a genetic algorithm (GA).

A genetic algorithm is a global search heuristic that is implemented as a simulation of  a popula-

tion of  candidate solutions. Candidate solutions are typically expressed as a bitstring, and usually 

referred to as ‘chromosomes’. A fitness function is then defined that calculates each chromosome’s 

overall ‘quality’. If  one can express a candidate solution as a chromosome, and can define a quality 

metric for it, one can use a genetic algorithm to optimize the candidate solutions. Although the term 

encompasses myriad variations, one can consider a ‘typical’ genetic algorithm to consist of  three 

phases: initialization, selection, and reproduction. During initialization, the population is typically ini-

tialized to a set of  randomly-generated chromosomes. Then, during the selection phase, some subset 

of  the population (ranging from a small randomly-selected portion to the entire population) has its 

fitness evaluated by the fitness function, and some set of  chromosomes (typically the best-scoring 

ones, though various selection techniques exist) is selected for reproduction. During the reproduction 

phase, the selected chromosomes have (again, typically) two biologically-inspired operators applied: 

crossover and mutation. During crossover, two ‘parent’ chromosomes have sections of  themselves 

swapped with each other, forming two child chromosomes. Mutation randomly flips a random bit in a 

parent chromosome, forming a child chromosome. This process is repeated until a new child popula-

tion, equal in size to the old parent population is formed. Afterwards, the selection and reproduction 
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phases are repeated for some number of  generations, making the resulting final population trend to-

wards a maximization of  the fitness function.

For the problem at hand, it is trivial to encode a potential solution into a bitstring chromosome: 

each position on the chromosome represents a specific sequence feature, while its value represents 

whether the sequence feature is selected or not. The fitness function is somewhat more involved, and 

takes the form of  a preference function p(x) weighted by an attenuation function a(x):

f a px x x:=^ ^ ^h h h

The attenuation function, which encodes the constraint on the maximum number of  sequences to 

be generated, takes the following form: 
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The TotalSeqs function evaluates the candidate solution and returns the total number of  sequenc-

es that may be generated by that particular set of  active sequence features. One can observe that if  the 

constraint is not exceeded, the attenuation function is equal to 1 and does not attenuate the preference 

function. However, if  the constraint is exceeded, the attenuation function begins to penalize the pref-

erence function, at a rate of  an order of  magnitude of  attenuation for every order of  magnitude of  

excess sequences. The limit of  the attenuation function as the number of  excess sequences goes to 

infinity is 0; the function was constructed in this fashion in order to allow for informativeness even if  

the constraint is vastly exceeded. In a GA, as in many cases when making decisions based on value 

measurements, values of  0 are all equally uninformative. A GA shines when it can recombine partially-

useful candidate solutions into good ones. A candidate solution whose fitness is 0 is judged to have no 

worth whatsoever, and that is rarely the correct decision to make. One always should give the algo-

rithm some gradient to climb up. 

Eq 2.3 

Eq 2.2 
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Eq 2.4

The preference function, p(x), encodes the quality-maximization objective and takes the following 

form:
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Coefficients b1 and b2 are the respective weights of  the two components of  the preference func-

tion (set in practice to 0.5), S is the length of  the sequence, and “loc” is the 1-indexed location of  

feature x on the sequence. “Tier” is the empirical integer-valued relative importance function which 

describes a PTM as “high importance” (1), “moderate importance” (2), “low importance” (3), or “un-

important” (-1). If  the feature is a cSNP, its heterozygosity (if  present) can be used instead of  the tier 

function (undefined on cSNPs). Extension of  the preference function is relatively simple; compo-

nents need only obey the following rules:
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In other words, for the preference function to be valid, it must be a convex combination of  com-

ponent functions that map a binary digit (representing the state of  a sequence feature) to a real num-

ber between 0 and 1. This makes the preference function itself  have the range of  real numbers be-

tween 0 and 1. Because the attenuation function is limited to this range as well, the overall fitness 

function is thus trivially a convex combination itself, on the range of  0 to 1. 

Whenever optimization is needed, the algorithm is run for 1000 generations on a 100-individual 

population, using roulette selection, 0.95 probability of  two-point crossover, and 0.05 probability 

of  mutation. The sequence features that are not selected during the complexity reduction phase are 

marked as ‘inactive’ using the feature flag system; although this mark is a suggestion to later modules, 

not a mandate, these features are typically not used for combinatoric expansion in the next phase.

Eq 2.5 
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There are several major benefits to the optimization approach. First, it provides a framework by 

which multiple prioritization metrics can be applied simultaneously to sequence features. It is possible 

to use the preference function to effectively compare disparate sequence features that, while being 

radically different in nature, have the same potential effect on database size (i.e., combinatoric explo-

sion). If  additional sequence features or metrics need to be considered in the future, it is straightfor-

ward to include their consideration into the preference function. Second, the fitness function evaluates 

the worth of  a particular sequence feature relative to a given sequence and to its neighbors. When 

building a general-purpose proteomic database, if  one has the choice, one would pick a commonly-

encountered feature (e.g. acetylation) for shotgun annotation, rather than a rarely-encountered one 

(e.g., lipidation). However, if  there are no commonly-encountered features on a particular sequence, 

but there are several rare ones, one should certainly take the opportunity to annotate them; the cost 

is low, and the benefit may be high. Likewise, if  a protein has many features at the termini, one would 

certainly annotate them first; however, if  the only features a protein has are near its core, then that is 

what one should use. The optimization framework allows all these disparate concerns to be integrated 

into a single function, weighed, and a solution arrived at.

Sequence Transformations and Combinatoric Expansion

Once all possible information has been added to the sequence stream, and those sequence features 

unsuitable for expansion marked inactive, the task of  generating all potential sequences may begin. 

There are, fundamentally, two types of  sequence transformations that may occur: those that preserve 

the coordinate-system of  a sequence and those that do not. We will define sequence transformations 

(and the sequence features that define them) that do not preserve the existing coordinate system as 

being deforming transformations, and those that do as non-deforming. The latter – PTMs and cSNPs – are 

all independent if  on different residues, and are trivial to implement. The former, however, are more 

involved. Consider, for example, the following case. A protein is encoded by a gene made up of  three 

exons. Alternative splicing produces two isoforms of  the protein: one that contains all three exons, 

Isoform-1 and one that contains the first and third exon only, called Isoform-2 [Figure 2.8].  The N-
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terminus of  the protein may be acetylated, while the region of  the protein encoded by the third exon 

contains a residue which may be phosphorylated. The protein is specified in terms of  the ‘canonical 

sequence’, chosen in a way that all sequence feature coordinates may be expressed relative to it – in 

this case, the clear choice for the canonical sequence is Isoform-1. In order to generate all possible 

combinations of  exons (if  desired), or just to consider all possible known isoforms, one must use an 

algorithm that keeps track of  one’s position on the canonical sequence and keep track of  what coor-

dinate maps may apply at any given moment. Additionally, the problem becomes much more complex 

if  the restriction of  all sequence features being initially specified relative to the canonical sequence is 

removed. 

To address the problem of  deforming transformations while preserving sequence features, one 

may consider a sequence generator to consist of  a directed acyclic graph (DAG) of  amino acid resi-

dues (nodes). Non-deforming sequence features would be defined as ‘flags’ attached to the residues, 

while deforming sequence features would be defined as additional paths (with added nodes if  neces-

sary) [Figure 2.9]. The set of  all possible generable sequences would thus be the set of  all paths be-

tween the set of  nodes with no predecessors (potential starting points) and the set of  nodes with no 

successors (potential ending points). If  a non-deforming feature were defined as a range of  residues, it 

could be handled either via splitting (marking each individual node with the feature, independent of  all 

others), or defined as an entry/exit point (defining any path between those two points as annotated by 

the feature). Neither of  these is a perfect solution; the first may introduce ‘holes’ in sequence features 

(such as an alpha helix being split into two pieces by an intercalated exon), while the second may result 

in sequence features spreading to the end of  the sequence if  their entry/exit point is disrupted (such 

as a binding region suddenly encompassing the entire sequence if  its endpoint was in an exon that was 

removed). In all likelihood, neither approach would work in the general case, as annotating sequence 

features needs to be done by residue sequence and content, and sequence transformations may disrupt 

sequence features sufficiently that re-annotation using the original annotation algorithms is required.
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Typically, one does not wish to enumerate all possible sequences resulting from alternative splic-

ing. Instead, one wishes to enumerate known alternative splice forms, each resulting from applying a 

subset of  coordinate-transforming features to the sequence at once. Within each of  those, one would 

possibly wish to generate all possible sequence variants due to known mutations, expressed as either 

non-deforming or additional deforming transformations. One way that this may be implemented is 

to compile the information contained in a sequence with associated transformations into a program 

for a very simple virtual machine (VM). This VM would understand only a few instructions: DATA, 

JUMP, RTRN, NOOP, and HALT.

The VM as implemented in DBLoader is a two-stack machine, a very simple creature. It has a 

single, non-addressable register (the program counter, or PC). It has two stacks: a data stack and a re-

turn stack. The former is used for accumulating output, while the latter is used to allow the machine to 

recall where it jumped from. The VM simply executes the instruction at the memory address which is 

stored in the PC. When the VM is started, the PC is initialized to 0, beginning execution at the start of  

the program. If  it encounters a DATA instruction, it pushes its operand (an amino acid residue with 

possibly some features attached) down onto the data stack and increments the program counter. If  it 

encounters a NOOP instruction (“No-Op”, no operation), it does nothing but increment the program 

counter. If  it encounters a HALT instruction, the VM halts and outputs the contents of  the data stack. 

The remaining two instructions are what allow a program to easily encode divergences from the usual 

path of  execution; a JUMP instruction pushes the current value of  PC+1 to the return stack and then 

sets the PC to its operand, while a RTRN instruction pops the last value from the return stack, adds 

its operand to it, and sets the PC to the result.

One can now observe how a sequence is generated by the VM-program. The JUMP and RTRN 

instructions act as divergence-points from the canonical sequence. The VM-program can, instead of  

going through a region of  sequence, jump to an alternative sequence, then return to a spot just after 

the sequence it replaced. As the program executes, the data stack accumulates a sequence; when the 

VM halts, the resulting sequence is complete. However, as described, the VM-program will generate 
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a single sequence, then terminate. An additional, external component makes it possible for the VM-

program to generate multiple sequences. This component is not in the VM, but rather in the VM-pro-

gram compiler, which is designed as a generator, as so many other elements in the pipeline are. When 

initialized with a sequence object, the compiler emits a stream of  VM-program objects, each of  which 

is executed by the VM, producing a sequence. The compiler maintains a table of  deforming features, 

and the locations in the program where they are stored. It then simply replaces NOOP instructions 

with JUMP instructions as it generates VM-programs. Because the destinations of  the jumps are fixed, 

no other modifications to the initial VM-program are necessary. All one needs to do is to determine 

which deforming features one needs to apply in a particular cycle of  the compiler, and the resulting 

sequence is generated by the compiled VM-program.

Task-Dependent Custom Processing Modules

The flexibility of  the DBLoader framework allows for processing modules to be easily devel-

oped for specific applications without needing to delve into the rest of  the DBLoader codebase. For 

example, in-silico enzymatic digestion was easily supported as a processing module which generates 

peptide sequences given an input protein sequence, and allowed ProSightPC to be used for Middle 

Down and Bottom Up projects [27]. In another application of  the framework, a custom module was 

developed to predict neuropeptides using the NeuroPred algorithm [14][28]. In the last major module 

to be added to the framework, signal peptide cleavage support for all alternative splice isoforms was 

implemented, enabling improved sequence identification based on nozzle-skimmer fragmentation of  

intact protein termini at high mass [29]. All of  these applications are fully integrated into the process-

ing pipeline, and support full information flow-through, allowing for accurate sequence prediction 

with minimal error. 
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Database Creation Challenges and Solutions

Once the task of  determining how one will enumerate the set of  sequences that one wishes to 

store in a database is complete, one must turn their attention to the database itself. ProSight uses a 

MySQL 5.0 database server as the back-end to Retriever. While the pipeline is entirely output-agnostic, 

merely outputting a sequence stream to an arbitrary data sink, one needs to consider the real-world 

performance issues that arise when constructing a MySQL 5.0 database. To do this, one first must 

evaluate the way that the resulting database is used, and the type of  data likely to be loaded into the 

database.

First, one must realize that Absolute Mass Schema databases are WORM objects – once created, 

they are searched numerous times, but never modified (Write-Once, Read-Many). This means that the 

various aspects of  database engines devoted to ACID compliance, row insertion and update perfor-

mance are entirely useless for storing and querying an Absolute Mass Schema, and any performance 

tradeoff  they applied to querying the database is a net detriment. This in turn means that the choice 

of  database engine should be one that maximizes query performance at the cost of  write performance 

and database integrity. In the case of  MySQL 5.0, the fastest database engine for such applications is 

MyISAM.

Second, one must consider the types of  queries issued by Retriever. The first type, the standard 

Absolute Mass Search, is a range query on a floating-point attribute (the intact mass). This query 

enumerates all rows whose value of  the indexed attribute falls between some pair of  endpoints. The 

second type, the Biomarker search, retrieves every sequence in the database that have a specific value 

for an integer attribute (the sequence type). This latter search is more expensive in terms of  process-

ing, so it is carried out less often than the bread-and-butter Absolute Mass Search.

Finally, one must consider the types of  sequences that will be generated. Shotgun annotation 

generates vast numbers of  very similar sequences, different only by a few characters. Additionally, it is 

often possible for an identical sequence to be produced in many different ways from different sources, 
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especially considering potential database rot in the pipeline input source, and including various types 

of  proteolytic processing in the pipeline.

These use-cases imply that any Absolute Mass Schema database must have a clustered index on 

the mass attribute, as this would maximize the performance of  the most common query. However, 

the MyISAM database engine is a very simple engine optimized for speed, and does not support clus-

tered indices. In order to create a MyISAM database with an (effectively) clustered index, a database 

must be first created, and then taken offline and the rows in its backing store physically re-ordered by 

an external program. This procedure is exactly what the Absolute Mass Schema sink module does in 

DBLoader. 

Another important feature implied by these use-cases is database row compression. As shotgun 

annotation results in numerous very similar sequences being stored in the Absolute Mass Schema, 

considerable space-savings would be realized by row compression. MyISAM does support row com-

pression, but with the caveats of  it needing to be applied offline, and any resulting databases becoming 

immutable. As described previously, Absolute Mass Schema databases are WORM objects, making the 

latter restriction irrelevant. Like clustered index application, DBLoader supports row compression by 

default in the Absolute Mass Schema sink module.

Finally, the Absolute Mass Schema sink module addresses the problem of  identical sequences 

being loaded into the database by using a stochastic hash-merge algorithm. Because the number of  

sequences being generated is likely very large, we cannot simply store them in memory and eliminate 

duplicates that way. Instead, a hash-merge algorithm relies on the principle that two identical sequenc-

es will, when a hash function is applied to them, result in the hash value. One then uses the remainder 

of  this hash value divided by the desired number of  ‘buckets’ to assign a file to which the sequence 

will be written. In this fashion, one may process the sequences being written to random buckets one 

at a time, and then only store the contents of  a single bucket in memory when the bucket is read back 

in. If  one chooses the number of  buckets properly, the average bucket size will easily fit into memory, 

and furthermore, all members of  any given set of  identical sequences will be guaranteed to be found 
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in the same bucket. This de-duplication step is carried out by default in the Absolute Mass Schema 

sink module, allowing for only a single instance of  a given sequence to be stored in the database, with 

all possible ways that it could be generated noted in its description field. This feature reduces the size 

of  Middle Down databases considerably [27], though it does provide some benefit to Top Down da-

tabases as well.

Implementing a clustered index and database compression improved Absolute Mass query per-

formance by nearly two orders of  magnitude over a non-clustered implementation, while shrinking 

database sizes by nearly 70%, making it feasible to use ProSightPC for high-throughput applications 

[19][27][30-32]. For instance, a dataset of  several thousand scans searched against a human Top Down 

database built by the old methodology with an Absolute Mass search window of  2000 Da took weeks 

to complete [33], while an equivalent search using a database created by DBLoader 2.0 would take no 

more than hours. This degree of  improvement permitted far wider search windows to be used; 50,000 

Da windows and full-database searches are regularly used with modern Top Down searching [29]. 

Despite this improvement, however, concurrent increases in data-collection throughput demanded 

additional enhancements to existing infrastructure.

Retriever 2.0 Parallelization and ProSightCluster

The vast amount of  data being generated by improved separation and data collection protocols 

necessitated a corresponding increase in throughput, above and beyond what existing implementa-

tions of  the search engine could support, even with the aforementioned database back-end improve-

ments. Thankfully, the problem of  mass spectrometric searching is fundamentally one that is amend-

able to parallelization due to its separable nature. Consider a single spectrum being searched against a 

sequence database. In all modern mass spectrometric search engines, this search consists of  some set 

of  data points derived from that spectrum being used to score a set of  sequences by means of  some 

scoring function. There are at least as many scoring functions as there are search engines, but all of  

them are used as metrics to impose an ordering on the set of  sequences relative to the query spectrum. 
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This ordering is then used by the search engine to return the top sequences, ones that were most likely 

(in some way) to produce the spectrum being analyzed. This process consists of  independent steps 

that may be trivially performed concurrently; the act of  scoring one sequence is entirely independent 

of  scoring another sequence, and the act of  querying one spectrum is (as far as the search engine is 

concerned) entirely independent of  querying another spectrum. Such embarrassingly parallel problems 

are theoretically trivial to solve in a parallel fashion, limited only by engineering details.

Unfortunately, one cannot ignore engineering details in any real-world system, and parallelizing 

Retriever 2.0 posed a number of  challenges. The nature of  searching with ProSightPC is that an ex-

ternal search logic feeds experiments, one at a time, to Retriever 2.0 for searching [Figure 2.11]. De-

pending on the results of  the search, the logic either carries out another search or stores the results in 

a database. Any parallelization framework would need to take this external search-management layer 

into account to be useful for existing search protocols. Additionally, the codebase of  Retriever 2.0 has 

been under continuous maintenance for nearly seven years by a highly heterogeneous development 

team with high turnover. Combined with the nature of  its design (a very highly side-effect-dependent 

pseudo-object-oriented monolithic codebase), this would make implementing parallelization within 

Retriever (by means of  a threading library such as pthreads) a daunting task.

Instead, parallelization was implemented by means of  multiprocessing and leveraging the first 

level of  independence in search engine input, that of  query independence. A Linux cluster was con-

structed utilizing the Rocks cluster-management framework [34], incorporating the Sun Grid Engine 

(SGE) job scheduling system [35]. This framework allows for batch scripts to be executed asynchro-

nously on dynamically-managed computing resources. Batch scripts run in a consistent environment 

no matter where they were queued, an illusion maintained by accessing the filesystem via NFS [36]. 

This allows a single call to the search logic to be queued asynchronously by the job scheduling system, 

and run on any core of  any machine in the cluster when resources are available. The search logic, once 

called, would execute Retriever as necessary, and when searching is completed, write the results. The 

search logic was modified slightly to support purely filesystem-based operations, replacing the final 
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output to a database backend with a results file. As all queries are independent, each may be queued 

independently of  others [Figure 2.12].

This parallel implementation of  the search engine was used to support the high-throughput Top 

Down project. A web interface was developed enabling the user to submit a ProSight Upload For-

mat (PUF) file containing their deconvoluted, deisotoped, averaged data and an XML file containing 

the search tree they wished to run on it to the cluster. The cluster would then split the PUF file into 

numerous PUF files, each containing an individual experiment, and queue a call to the search logic 

using the submitted search tree for every individual PUF file. Once each experiment was analyzed, the 

cluster would then merge the resulting PUF files (now containing search results) into a single output 

PUF file, copy it to the requesting user’s home directory, and send them an email notifying them of  job 

completion. By parallelizing the analysis across 48 cores, an entire 3D analysis run, consisting of  60 

to 80 RPLC injections, could be analyzed in less than a day using a highly complex and wide-ranging 

search tree [29]. By combining this parallel implementation with the optimized databases described 

earlier in the chapter, new types of  searching become feasible, such as full-database evaluation in situ-

ations where no observed precursor mass exists to limit the scope of  the search.

The Future of ProSight

To a large degree, many of  the challenges in implementing the features described earlier in the 

chapter were due to the legacy platform that they needed to be implemented on. In order to continue 

to develop and support Top Down proteomics in the future, a fresh start is needed to incorporate 

the lessons learned over the years with an eye towards continuous refinement and maintenance. The 

final section of  this chapter will describe the presently ongoing efforts to design and implement an 

entirely new search engine, Retriever 3.0, and how it will fit into a new computational framework for 

Top Down proteomics.
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One of  the main challenges in implementing any new features with the Retriever 2.0 codebase 

was the design and implementation of  the existing code. Retriever 2.0 was implemented in C++ with 

highly C-like semantics, with practically all instance methods being void. Essentially every method 

modified the data structures that its arguments pointed to, resulting in a tremendous number of  side-

effects; in fact, one may truthfully say that the Retriever 2.0 codebase worked because of  side-effects, 

rather than despite of  them. Most abstractions used in the code were highly leaky, leading to great 

difficulties in maintenance and adding additional features. Any replacement needed to be both fast 

(addressing a common concern with the existing codebase) and far more maintainable.

Initial work on Retriever 3.0 focused on addressing these issues by means of  a streamlined, mod-

ern C++ implementation. After several months of  work, a highly optimized, hand-tuned implementa-

tion of  the core fragment-matching algorithm was discovered to be no faster than the existing imple-

mentation in Retriever 2.0, and nearly as opaque from a maintainer’s perspective. However, during 

development of  the prototype matcher, a curious property of  the experimental codebase was noted: 

a Common Language Runtime (C# 3.0) wrapper written to permit simple crossplatform I/O was 

observed to be considerably faster than a (laboriously-written) native C++ implementation. Following 

a brief  series of  experiments with several CLR compilers on multiple platforms, it was conjenctured 

that compilers and libraries for the CLR had matured sufficiently that a pure managed-code imple-

mentation of  the search engine would be sufficiently efficient and far more straightforward to extend 

and maintain. This decision led to a plethora of  highly useful design features and implementation 

aspects that continue to benefit the project to this day.

Retriever 3.0 was designed to incorporate two fundamental design principles that were developed 

over the last five years of  work. The first was lazy execution generator semantics, described earlier in 

this chapter; the second was the Automated Protein Characterization schema (APC), the novel da-

tabase schema designed by my predecessor [30]. One fundamental structural problem with shotgun 

annotation as it is implemented by the Absolute Mass Schema is its static nature and the combinato-

rial explosion that it is, in truth, unsuitable for containing. As the number of  features contained in 
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a database grows, the total database size explodes [Figure 2.13]. Even with the GA-based optimizer 

described previously, one is fundamentally limited by the nature of  the schema; one has to store as 

much data as possible, and the way that the data is stored (as already-applied combinations of  features) 

is very highly inefficient. APC resolves this problem by annotating all features independently, rather 

than as sequences presenting combinations of  features, permitting the search engine to implement op-

timizations that greatly reduce matching overhead. Unfortunately, previous attempts at implementing 

APC to replace the AMS were hampered by the great difficulty of  maintaining the existing codebase. 

By incorporating the generator semantics used to such great effect in DBLoader 2.0, however, it is 

possible to utilize APC to its fullest potential.

A fundamental feature of  modern C# (2.0 and above) is the ability to trivially construct genera-

tors. All that is necessary is to declare a method that returns an object which implements the IEnumer-

able (iterator) interface, and uses a specialized yield return statement to return a value. The compiler 

then automatically constructs the ‘plumbing’ that makes the returned object a generator. Every time 

the returned iterator is called, the underlying method is executed until it yield returns; the value is 

returned by the iterator, and execution of  the underlying method pauses at the yield return state-

ment. Later calls to the iterator resume execution of  the underlying method where it left off  the last 

time, until no more data is forthcoming. In this fashion, the custom implementation of  one-to-many, 

lazily executed generators developed for DBLoader 2.0 can be replaced with a single, simple method. 

The resulting iterators may be operated on by Language-Integrated Query (LINQ) extension meth-

ods, trivially iterated on by built-in language constructs, processed through lambda functions, and 

trivially (and automatically!) parallelized by parallel implementations of  LINQ (PLINQ). Thus, the 

complex sequence transformations that DBLoader 2.0 implemented using custom interface can now 

be accomplished via a simple nested chain of  generators in Retriever 3.0, each taking input from the 

last. Retriever 3.0 enables the user to determine the degree of  combinatorial complexity they desire 

at runtime by constructing a chain of  generators, and supports matcher optimizations that take into 

account different types of  sequence features.
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APC fundamentally distinguished between transformations that modified the mass of  a single 

residue (‘Monomer Mass Changes’ or MMCs) and those that modified multiple residues (‘Polymer 

Mass Changes’, PMCs) [30]. The difference between these is not the mass shift, but rather the co-

ordinate shift. Anything that does not affect the coordinate system by which sequence features are 

mapped to a sequence can be treated purely arithmetically inside the matcher. Retriever 3.0 does so, 

doing simple mathematical operations on pre-allocated arrays, saving considerable cycles by not re-

allocating them and using vectorized arithmetic – something that modern superscalar processors excel 

at. By avoiding checking observed and theoretical fragments unnecessarily, Retriever 3.0 can check for 

N-terminal methionine cleavage and N-terminal acetylation for all sequences, an operation that would 

take four times as long under the old paradigm, in only 35% more time than matching the unmodified 

sequence. Transformations which do modify the coordinate system by changing the length of  the un-

derlying sequence are handled via generators which return transformed ‘views’ of  the parent sequence 

(analagous to views of  parent tables in relational databases). These are lightweight objects defined 

as transformations of  parent objects, but implementing the same ISequence interface as the parent. 

This enables them to be used anywhere where the parent could be, and their transformations are only 

applied when they would affect something downstream, ensuring that paying the cost of  evaluation is 

only carried out when absolutely necessary.

Retriever 3.0 is thus designed as a stream of  sequence objects being processed by the matcher. Any 

transformation that modifies sequence coordinates, such as alternative splicing or enzymatic digestion, 

is handled via nested generators, resulting in lazily-evaluated, lightweight objects interchangable with 

any other sequence object as far as the matcher is concerned. As shown, such a design is fast, has a low 

memory footprint, is trivially parallelizable, is easily maintainable and extensible, and may be used as 

a component in larger projects. Implementation of  the full design is currently underway, but existing 

prototypes have performed very well in tests. The core Retriever 3.0 matching engine, when compared 

with Retriever 2.0 on the same dataset and queries, exhibited a substantial performance improvement, 

without factoring in any paralellization. 
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The codebase presently under development will be deployed in a number of  ways. It will form the 

core of  ProSightPTM 3.0, the next generation of  the web-based public search engine. The same clus-

ter implementation will support job submission not only via the web interface, but also from stand-

alone systems such as a future ProSightPC 3.0. A Proteome Discoverer [37] node implementation is 

also under development, both in local and offsite-cluster job-submission variants (ProSightPD).
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Figure 2.1 
Typical Bottom Up (A) and Top Down (B) high-resolution survey scan mass spectra.
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Figure 2.2  
A highly-convoluted Top Down survey scan mass spectrum, exhibiting the characteristic high-mass 
“hump”.
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Figure 2.3  
A diagram of  the ProSight family of  tools. All user interfaces 
rely on the same search technology, differing in how they inter-
act with it.
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Figure 2.4  
Entity-Relationship diagram of  the Absolute Mass Schema. Individual ProSight Warehouses are stored as 
distinct MyISAM databases, with common information and metadata for all ProSight Warehouses stored in 
a separate ‘DB_index’ database.
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Figure 2.5  
Example of  post-translational modifications embedded in a sequence in prefix notation (A) and as color-
codes (B). This particular form of  Histone H3.2 has the following modifications: 1MAc, T4P, K5Ac, K10Me3, 
S11P, K28Me3, K37Ac, and K80Ac. The prefix codes are references to mass shift tables in the DB_index 
metadata schema.
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Figure 2.6  
Number of  features representing post-translational mod-
ifications in SwissProt, the manually-annotated compo-
nent of  UniProt. Growth in the number of  protein forms 
is exponential relative to the number of  sequence features 
on a given protein.
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DBLoader abstract 
pipeline.
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Figure 2.8  
An example of  a deforming transformation. Isoform-2 (B) dif-
fers from Isoform-1 (A) by the removal of  the middle exon. This 
deforms the coordinate system, requiring a remapping of  all  fea-
ture coordinates past the point of  deformation, such as the loca-
tion of  the phosphorylation in the third exon.
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Figure 2.9  
An example of  a directed acyclic graph (DAG) representation of  the variability of  a single polypeptide. A 
polypeptide sequence is represented by a path from a start node to a stop node, while potential PTMs are 
represented as flags on individual amino acid nodes. The set of  all flag combinations on all paths through the 
DAG is thus the set of  all possible observable forms that this polypeptide may occur in.

Figure 2.10 
All observable forms 
that may result from 
Figure 2-9.
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ProSightPC data flow diagram.
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Figure 2.12  
ProSightCluster data flow diagram. Users submit a PUF file and a search tree via the web interface, which is  
then split into individual experiments, processed in parallel, and results are delivered to their home directory.
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Figure 2.13  
Human Top Down Absolute Mass Schema size for 2008 and 2009. Due to 
exponential scaling, a doubling of  the number of  annotated features caused 
a nearly fourfold increase in stored forms, even after optimization.
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CHAPTER 3: De-Novo Peptide Sequencing By Means Of High-Resolution Mass Spec-
trometry

This work was presented, in part, as “Automated Protein Characterization by High-Resolution Mass Spectrom-

etry”, a poster at the 2009 ASCI/AAP Joint Meeting. Elements of  the genetic algorithm were implemented in col-

laboration with Lukasz Strzelecki.

Genetic algorithms have applications in proteomics beyond feature selection during database cre-

ation. In particular, it is possible to apply them to the problem of  de novo sequencing using highly ac-

curate mass spectrometry. Currently, the basic method of  automated de novo sequencing, such as that 

used by ProSight, is a simple graph-theoretic algorithm [1-2]. The set of  mass differences between all 

peaks in a deconvoluted and deisotoped spectrum is computed, and pairs of  peaks separated by the 

mass of  an amino acid are identified. This data is entered into a graph where the vertices are peaks, and 

the edges connecting them are amino acid masses. The set of  paths through this graph, then, become 

the set of  possible de novo sequences that can arise from the deconvoluted, deisotoped spectrum.

However, this approach has a number of  problems. It does not attempt to characterize the se-

quence; nor does it quantify the quality of  the resulting sequence tags; nor does it use any additional 

information to improve the sequence solution. It is possible to improve this simple sequence tag com-

piler by incorporating some techniques from sequencing tools for Hi-Lo data, such as PepNovo [3] 

and PEAKS [4] which incorporate sophisticated probabilistic models for amino acid composition and 

arrangement. However, because they are designed for Hi-Lo data, they are limited in their character-

ization power due to the inherent degeneracy of  their fragmentation. Due to the high data locality and 

straightforwardness of  encoding of  GA-based protein sequence representations, it should be possible 

to use genetic algorithms to construct a novel Hi-Hi de novo sequencing tool which can use numerous 

pieces of  information to arrive at a better sequence solution than previously possible. To investigate 

this, a prototype system for GA-based de novo sequencing using high-resolution data was developed, 

codenamed ‘Refiner’.



59

Input and Data Filtering

Refiner accepts as input data consisting of  a single neutral monoisotopic precursor mass and a set 

of  neutral monoisotopic fragment masses. The system, as with most data processing systems detailed 

in this work, is composed of  a number of  distinct components which process data in sequence [Fig-

ure 3.1]. The first component, run prior to any analysis step, is a noise reduction filter. Unlike typical 

noise reduction filters, which filter by S/N ratio or local intensity, this prototype filter was designed 

specifically to remove peaks that, while valid, would potentially skew the results of  the genetic algo-

rithm. The filter eliminates fragments that were essentially identical (i.e., sets of  fragments within a set 

tolerance of  each other would be reduced to a single value), thereby eliminating the possibility that a 

single theoretical fragment could match multiple observed fragments. Additionally, the filter eliminates 

known neutral losses and adducts, i.e., peaks at known fixed offsets from other peaks. Water losses, 

ammonia losses, metal ions, non-standard fragments (e.g., a-ions) and the like can be easily removed 

from the peak list in this fashion. The precursor mass is also used for filtering. Nonsense fragments 

(i.e., fragment masses that exceed the mass of  the precursor) are removed, as well as neutral loss chains 

from the precursor (a remarkably common occurrence). If  desired, the filter can even infer additional 

data; if  one assumes that the remainder of  the fragment ions are real, one may locate complementary 

ion pairs, and infer the ghost ions for those peaks that are missing their partner, a process made pos-

sible only due to the high-accuracy measurement of  both precursor and fragment ions. The resulting 

filtered peak list is then returned to Refiner for further processing and analysis.

Sequence Tag Compilation and Initial Conditions

Once the data is filtered, the next step prior to the main computation loop is determining initial 

conditions. A genetic algorithm does not start from an empty population of  candidate solutions; typi-

cally, a random set of  chromosomes is generated prior to the first evolution step. However, this is a 

somewhat naïve approach when additional information is present. Refiner was designed to be capable 

of  characterizing putatively identified sequences. In other words, given a sequence solution which is 
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partially correct, Refiner can manipulate it to fit the data better. To facilitate ease of  testing and use, 

Refiner was built to use existing ProSight (PUF) files, which contain both data and prior analyses. 

When called on a particular ProSight experiment, it will use the data contained in that experiment for 

its own purposes, and can set the initial conditions to the results of  some particular search. This con-

strains the overall search space and allows the process of  evolution to ‘fill in the gaps’.

Another way by which Refiner populates initial conditions is by the compilation of  sequence tags. 

While limited, the usual graph-theoretic algorithm for de novo sequencing is quite useful for coming 

up with an initial population of  candidate solutions. A new implementation of  this algorithm was de-

veloped for use within Refiner, extending the feature set found in the existing ProSight sequence tag 

compiler. Firstly, the new algorithm used an extended table of  potential mass shifts, supporting not 

just single-residue mass shifts but dipeptidyl shifts as well. Because Refiner was developed for high-

resolution fragmentation data, it can leverage the vastly improved mass accuracy provided to greatly 

reduce the degeneracy of  the potential mass shift space, making dipeptidyl mass shifts feasible. Unfor-

tunately, experiments with tripeptidyl and above mass shifts did not result in useful sequence solutions. 

The second improvement in the new sequence tag algorithm was the use of  an explicit graph-theoretic 

formalism, rather than the implicit one used previously. If  a mass shift was matched, the two peaks 

between which the mass shift was observed were added to the result graph as vertices, and an edge was 

created between them, annotated with the residue or oligopeptide that matched to the mass shift. Ad-

ditionally, a numeric weight was assigned to the edge; if  the match was to the mass of  a single amino 

acid residue, the weight was -1.0, while dipeptidyl matches were assigned a weight of  -0.5. The reason-

ing behind these negative edge weights merits some discussion. In the graph-theoretic formulation of  

the de novo sequencing problem, one needs to traverse the matching mass shift graph, where each edge 

corresponds to a known mass shift, and a path consisting of  these mass shifts is a potential sequence 

solution. Since one does not wish to include proper subsequences in the output of  the algorithm, one 

would naturally seek to enumerate the longest paths in the graph, between the set of  vertices with no 

inbound paths (starting points) and the set of  vertices with no outbound paths (ending points). This 

problem does not occur nearly as often in graph theory as its inverse, locating the shortest paths, which 
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is straightforwardly and efficiently solvable by two classic algorithms, Dijkstra’s Algorithm [5] and the 

Bellman-Ford Algorithm [6]. While both of  these algorithms are taught routinely to undergraduates in 

computer science, typically all will use Dijkstra’s Algorithm due to its higher efficiency. The only major 

advantage typically cited for the Bellman-Ford Algorithm is its ability to use negative edge weights, 

a capability that is rarely used. In this case, however, negative edge weights are a boon, because by 

using only negative edge weights, one can transform an algorithm that finds the shortest path into an 

algorithm that finds the longest path. The path between two vertices that has the “smallest” (i.e., most 

negative) aggregate weight is thus the “longest”. The reason that two distinct edge weights (-1.0 and 

-0.5) were used was due to the use of  dipeptidyl mass shifts. A dipeptidyl mass shift contains less in-

formation than a single-residue mass shift, and should not be weighted equivalently; as such, it is made 

to be worth half. Once the set of  longest paths is enumerated by Bellman-Ford algorithm, the final 

step is resolving any remaining mass degeneracy, and expanding out any path components that could 

result from multiple sources, such as the mass shift that corresponds to both asparagine and glycine-

glycine. After the set of  all possible sequence tags is compiled, they are passed back to Refiner and 

added to the initial population of  solutions, providing a useful source of  variation – as well as serving 

as an additional component of  the quality function, as will be detailed later.

Fitness Function

Once extraneous peaks are filtered, and initial conditions set, Refiner can begin evolving solutions. 

The encoding of  potential solutions as virtual chromosomes is entirely straightforward, simple integer 

coding representing amino acids. The details of  the genetic algorithm, however, are novel and merit 

explanation. Any genetic algorithm runs in phases: an evaluation step is followed by a reproduction 

step. Evaluation is carried out by a fitness function, while reproduction uses various operators. Refiner 

uses both a sophisticated fitness function that incorporates many distinct pieces of  information about 

the problem, and a complex reproduction framework. 
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The fitness function used by Refiner consists of  a linear combination of  five components [Figure 

3.2]. The first component represents the precursor mass difference. As the purpose of  Refiner is to 

construct a sequence solution that fully characterizes the polypeptide being fragmented, it is vital to 

ensure that any such solution minimizes the mass difference between the theoretical mass of  the solu-

tion and the observed mass to at least within measurement error. The first objective component uses 

a piecewise linear function of  the precursor mass difference, where a sufficiently low mass difference 

gives full weight to the component function, a sufficiently large mass difference gives no weight at all, 

and values in-between give weight as a linear interpolation between the two. This function breaks a 

strong guideline for designing genetic algorithms, that is, always give the algorithm a gradient to tra-

verse, and never clip at arbitrary maxima or minima. However, this algorithm is designed to function 

with real-world data, which is not infinite-precision. All mass differences within experimental error 

are equivalent; any ordering between them is false and may be misleading, so the fitness function 

treats all sufficiently low mass differences as being fully minimized. The clipping at sufficiently high 

mass differences is because at that point, not mass space degeneracy expands the number of  potential 

sequences to the degree that any ordering of  potential solutions is misleading. Instead, at high mass 

differences, other components of  the fitness function are used to bring the solutions back into the 

‘real world’.

The second component of  Refiner’s fitness function is a simple proportion of  matching frag-

ments versus all observed fragments. The reasoning behind this is simple: we wish our sequence solu-

tion to explain the fragmentation pattern as comprehensively as possible.

The third component is a proteolysis specificity criterion. If  the polypeptide being sequenced has 

resulted from a defined proteolytic method, one wishes to skew the optimization process to favor so-

lutions which reflect the cleavage specificity of  the proteolysis method. For example, tryptic peptides 

should terminate in lysine or arginine residues; when the proteolysis criterion is initialized to trypsin, 

sequence solutions ending in lysine or arginine are favored. Additionally, solutions should be reason-

ably free from internal cleavable residues; a tryptic peptide should have minimal, if  any, internal lysines 
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or arginines, as these would have been cleaved during sample digestion. The third component gives a 

constant value to a solution that ends in the correct residue, and penalizes the value by the same con-

stant for each internal cleavable residue. This gives a low, but appreciably better fitness function value 

for solutions with no internal cleavage sites and the correct terminal residue, and strongly penalizes 

highly improbable (more than one internal cleavage site) solutions.

The fourth component of  the fitness function is based on the sequence tags compiled in the pre-

vious stage. It gives benefit to the fitness function relative to how much of  the sequence solution is 

explained by the sequence tags, via a coverage metric, ranging from no coverage to complete coverage, 

normalized to the sequence length.

The fifth and final component of  the fitness function is a parsimony criterion. It is often pos-

sible to have two sequences that have the same fitness based on the previous four components, but 

one is clearly a better solution than the other. Due to degeneracy of  the mass space as the number of  

residues increases, it is possible to have two sequences that differ in length, but have identical masses, 

numbers of  fragment matches, coverage, and proteolytic specificity. The parsimony criterion simply 

penalizes the sequence for every additional residue, attempting to keep the sequence solution as short 

as possible.

These component functions are defined on the range of  0 to 1, and each has a coefficient that 

represents how much the component contributes to the overall fitness function. Typically, the precur-

sor mass difference criterion receives the lion’s share of  the weight, at 70%. The fragmentation and 

proteolysis criteria each receive 10%, while the sequence tag coverage and parsimony criteria receive 

5% respectively. The resulting fitness function value is used to order candidate solutions, so that selec-

tion and reproduction can take place.
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Framework and Evolution Loop

The genetic algorithm framework used by Refiner is AI::Genetic::Pro [7], a comprehensive Perl 

[8] module for writing genetic algorithms. It runs for 50 generations in a pass, using a 5000-member 

population size. Selection is carried out using a roulette strategy, which uses the set of  fittest solutions 

based on a proportional minimal fitness criterion, and selects candidates for reproduction from that 

set with a probability proportional to the candidate’s fitness. Two parents are used for reproduction.

The reproduction process uses basic two-point crossover with 95% probability, and a 30% prob-

ability of  point mutation. The latter merits comment; this mutation rate is an order of  magnitude 

higher than typical mutation rates, and would for many problems cause the algorithm to diverge. The 

inherently highly local nature of  this problem, however, appears to require a very high degree of  point 

mutation, to the point where in experiments, normal mutation rates (3-5%) caused the algorithm to 

remain in its initial conditions and not discover any further local maxima. Additionally, several rela-

tively unique operators were added to the standard mutation and crossover operators in order to take 

advantage of  the unique conditions associated with this problem.

The first of  the unique operators of  Refiner’s GA is variable-length chromosome support. In ad-

dition to the typical mutation operator, which converts a single random element in the chromosome 

array to another random value, it is possible for the mutation operator to select a terminal value (at the 

beginning or end of  the chromosome), or even one step beyond it. In the former case, it is possible 

for the operator to convert the value at the end of  the chromosome to nothing, thereby shrinking 

the chromosome at that end. Conversely, it is possible for the operator to convert the empty space 

beyond the edge of  the chromosome to something, thereby growing the chromosome at that end. 

Two types of  variable-length chromosomes are supported: single-ended, where all growth and shrink-

ing takes place at one end of  the chromosome, and double-ended, where it is supported at both ends. 

Variable-length chromosome support is vital to solving the de novo sequencing problem, as otherwise, 

one would be locked into sequences of  the same length as the initial conditions, all of  which must also 
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be the same length. This would be sufficient to characterize cSNPs on an already identified sequence, 

but insufficient for true de novo sequencing.

The second unique operator that distinguishes Refiner’s GA from most others is the adjacent-

substitution operator. This operator runs on daughter chromosomes after they are produced by the 

crossover and mutation operators, and swaps adjacent residues in candidate sequences with a defined 

probability, typically set to 10%. The reason for this is that while a mutation event may produce a 

sequence that is close to the correct precursor mass, there is no sequence specificity to mutation op-

erators. As such, given generally correct regions of  sequence interspersed with incorrect regions, it 

is important to preserve those “building blocks” that work. The adjacent-substitution operator can 

convert incorrect sequences consisting of  correct amino acids into the correct order with minimal 

disruption of  correct subsequences. Accomplishing this with regular operators would require a highly 

improbable pair of  adjacent mutation events, or an even more improbable chain of  crossovers.

Refiner’s final unique operator is in fact a modification to the typical reproduction procedure. 

Under normal circumstances, a given iteration of  the evolution loop starts with a population of  

chromosomes that is strictly the result of  selection and reproduction operators; in other words, each 

chromosome is a daughter chromosome of  some set of  parent chromosomes in the previous itera-

tion of  the loop. Because we need to sample many points in the sample space, however, we use a very 

high mutation and crossover probability, which has a chance of  destroying the building blocks that 

developed in the last generation. The final unique feature of  Refiner’s evolution loop is elitist selection, 

which retains the top-scoring parent chromosomes from the last loop iteration and carries them over 

to the next loop iteration unchanged. This allows us to run at a very high mutation rate, analogous to 

a very high simulated annealing temperature, without worrying about solution divergence.

During the course of  the evolution loop, Refiner applies all these operators, eventually producing 

a population with, one may hope, a significantly higher fitness than the initial conditions. However, in 

systems with very jagged fitness landscapes, it is easy to be caught in a local maximum, depending on 
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both the initial conditions and the first few iterations of  the evolution loop (path-dependence). A way 

of  dealing with this needed to be developed.

Iterative Refinement

The process that allows the system some robustness to initial conditions is also the process that 

allows for parallelization, and coincidentally the same process that gave the system its name: iterative 

refinement [Figure 3.3]. It functions as follows – when the initial conditions are first set, the initial 

population is cloned several times, and evolution runs separately on each population, in parallel. Once 

evolution is complete for each population, the top-scoring members of  each are pooled into a single 

population, identical in size to the initial conditions. This new, optimal population serves as the initial 

conditions for the next cycle of  iterative refinement. A biological analogy for this process would be 

hills and islands. First, there is an ancestral population that lives in a hilly area. There are no barriers 

to movement, and members of  that population mix freely all across the area. Then, the water level 

rises and the hills become islands. Members of  the same, well-mixed population are trapped on each 

island, and each island begins to evolutionarily diverge. After some time, the water level falls, and 

members of  the new, divergent populations can mix again, forming a new overall population. Then 

the process repeats. The advantage of  this sort of  hill-island architecture is that multiple paths can 

be taken from the same initial conditions, under the same selection pressure, without worrying that 

one will out-compete the others. Each sub-population finds its own local maximum, independent of  

the others, and populations only mix when they are stable. Multiple iterative refinement stages permit 

wide-ranging exploration from the best platforms, enabling a much more robust optimization than a 

single evolutionary loop.

Iterative refinement also lends itself  to a number of  tuning parameters. One can tune the num-

ber of  subpopulations evolved in each step. By increasing this number, one samples more distinct 

evolutionary paths and increases the odds of  finding some rare, interesting local maximum. One can 

also write an early termination rule – when the result of  an iterative refinement stage is identical to 
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the result of  the previous stage, one can say that one has found the global maximum with far more 

confidence than with a similar rule within a single evolution loop.

Once evolution is completed, Refiner takes the top-scoring sequences from the final population, 

and evaluates them. Typically, not every bond has bidirectional fragmentation, so there is some degree 

of  mass degeneracy. For example, there may be a dipeptidyl region without any fragmentation on the 

internal bond, so X-Y may be Y-X. Both would be generated during final combinatorial expansion, 

as well as all isobars equivalent to this. The resulting population of  solutions is rescored in case extra 

fragments match, and solutions are returned.

Refiner, or a system similar to it, can be used in a number of  ways. It can be embedded in a stand-

alone characterization system and generate better solutions based on existing data. It can be used for 

purely de novo sequencing of  very low-abundance sample, where every last erg of  information must be 

squeezed out. It can also be used to generate candidate sequences for a downstream homology-based 

search platform, such as MS-BLAST [9], or just act as a much smarter sequence tag compiler. In the 

future, the technology behind Refiner will be integrated into the ProSight family of  analysis tools to 

substantially improve the quality of  characterization.

In tests, Refiner has demonstrated the ability to successfully recapitulate correct sequence solu-

tions from error-prone initial guesses and several iterative refinement cycles. In addition to recovering 

correct sequence solutions from synthetically-perturbed sequence guesses, in tests Refiner was capable 

of  generating the correct sequence given an initial guess of  a homologous sequence from a different 

organism [Figure 3.4], in this case human when the real sample was bovine.

This gives an interesting application for Refiner: sequencing peptides from organisms that lack 

sequenced genomes. If  it is possible to identify the peptide based on a database search with a related 

species, Refiner can then take the next step and determine the fully-characterized solution. This also 

suggests a number of  future improvements for Refiner, such as a more sophisticated evolution system 

that instead of  having an identical probability of  point mutation for all amino acids, would instead 
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be parameterized by a BLOSUM [10] or other position-specific scoring matrix, and allow for certain 

mutations to be more probable than others. Additionally, it may be possible to modify the mutation 

operator by making it position-dependent, ensuring that the probability of  mutation in regions with 

excellent fragmentation is low. By making the in-silico evolutionary process carried out by Refiner more 

closely resemble biological evolution, it would be possible to better adapt the system for recapitulating 

real-world evolutionary relationships. In this fashion, one could begin analysis with a high-throughput 

tool that would assign putative identifications to observed peptides based on a sequence database 

from an evolutionarily-close species, and then use these as initial conditions to begin refining solu-

tions. These solutions would be a sophisticated synthesis of  numerous pieces of  information, none of  

which could lead to a correct solution on their own, but which can, together, result in a useful answer.
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Bovine angiotensin sequence recapitulated from human initial hypothesis.
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CHAPTER 4: Discovery of Protein-DNA Interactions

The work presented in this chapter is reproduced in part with permission from “Discovery of  Protein-DNA Inter-

actions”, Nucleic Acids Research 37(16), p. 5246-5254, Copyright 2009, Oxford Press. This work was supported 

by the National Science Foundation through DMS 0800631.

Transcription factors (TFs) regulate the expression of  target genes by binding in a DNA sequence-

specific manner to their recognition sites in the promoter regions of  these genes. The common pattern 

of  the binding sites for a particular TF is called a transcription factor binding motif  (TFBM), usually 

modeled by a position-specific weight matrix (PWM). Discovery of  transcription factor binding sites 

(TFBSs) and TFBMs in TF-DNA interaction is essential for understanding the regulatory circuits that 

control cellular programs. In recent years, considerable progress has been made in developing both 

experimental and computational methods for elucidating TFBSs, and the mapping of  their locations 

in a number of  model organisms. Experimental techniques such as ChIP-chip [1] on promoter mi-

croarrays and whole genome tiling arrays and ChIP-seq [2] have been used to discover genome-wide 

TF-DNA binding sites for organisms ranging from Saccharomyces cerevisiae [3] to Homo sapiens [4]. 

Nonetheless, these experimental techniques are laborious and expensive, and require specialized anti-

bodies which may be difficult to obtain [5]. As a given binding site is not necessarily occupied under 

all conditions [6], a single set of  ChIP-chip/ChIP-seq experiments conducted under one experimental 

condition is insufficient to fully detect all sites to which a transcription factor may bind to in another 

experimental condition. Because of  these limitations, computational methods provide appealing alter-

natives for pinning down TFBSs. De novo motif  discovery algorithms based on probability models 

using PWMs, such as AlignACE [7], MDscan [8], MEME [9], and Weeder [10] have been accepted as 

important components of  the computational biologist’s toolkit. Moreover, rapid progress has been 

made to detect cis-regulatory modules which consist of  highly coordinated TFBMs [11-12].

A recent trend to improve the aforementioned computational methods is to integrate information 

from relatively-inexpensive and easily-obtained gene expression data. The key idea to facilitate motif  

discovery using gene expression is that a gene’s mRNA copy number is associated with active TFBMs’ 
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matching scores (or more intuitively, number of  TFBM copies) in the promoter region of  this gene. 

A number of  attempts have been made along this line of  thinking. For example, REDUCE [13] uses 

an exhaustive oligo-enumeration strategy to identify a potential set of  candidate motifs, then ‘reduces’ 

this candidate set to a set of  active motifs whose binding was best correlated with gene expression. 

As an improvement over REDUCE, Motif  Regressor [14], incorporates gene expression in the initial 

identification of  candidate motifs; the top-ranking genes in a single sample microarray experiment are 

used to identify an initial set of  candidate motifs by MDscan [8]. This candidate list is then winnowed 

using stepwise regression with genome-wide gene expression serving as the response in a multiple 

regression model, resulting in a subset of  motifs that are best correlated with gene expression across 

the genome.

These two approaches have stimulated many further studies in the past several years [15], and 

have generated a number of  interesting results [16]. However, several issues remain that hinder their 

effective application in real practice.  Since they rely on a single sample microarray measurement to 

carry out ranking and regression, they are sensitive to experimental and biological noise, especially in 

regards to low copy-number genes. Consequently, they may select different sets of  motifs depending 

which single sample of  microarray experiment is used in regression, requiring time-consuming manual 

merging and validation of  the selected sets of  motifs. Additionally, the stepwise motif  selection in 

Motif  Regressor relies on adding/deleting one motif  at a time, a technique which is highly unstable 

and can only explore a small portion of  all the possible models  as the number of  candidate motifs is 

usually hundreds [17].

To overcome these obstacles, we propose MotifExpress, a novel method that selects a set of  mo-

tifs that best correlate with multiple samples of  gene expression measured by microarrays simultane-

ously. We utilize multivariate regression to link gene expression (as responses) and candidate motifs (as 

predictors) together.  In the multivariate regression framework, the selection of  active motifs is very 

challenging as the number of  parameters is much larger than the number of  motifs. Thus we have a 

huge space to search for the globally-optimal model which gives rise to the set of  active motifs. To 
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score xikwhich indicates how likely motif  k binds upstream of  gene i in terms of  both goodness of  

matching and number of  sites as defined in Conlon et al [14].
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Where k=1,…p and p is the total number of  candidate motifs, θk is the probability matrix of  motif  

k of  width w, θ0 is the third-order Markov model learned from intergenic sequences, and Siw is the set 

of  all w-mers in the upstream regulatory region of  gene i.

Integration of Gene Expression with Motif Selection

The gene expression profile of  gene i is denoted as yi = (yi1, yi2, …, yim) where yij is the expression 

ratio in sample j for gene i, and m is the number of  samples. Motif  discovery further associates expres-

sion of  gene i with all candidate motifs’ matching scores xik, k = 1,…, p. We assume a multivariate 

regression model between expression y and motif  matching scores x of  the form

y x x xij i j i j ip pj ij1 1 2 2 fb b b f= + + + +

Where random errors εij are independently and identically distributed with mean zero and standard 

deviation σε, and βkj is the unknown coefficient which relates the expression of  gene i to the motifs that 

putatively regulate it. We may rewrite [Eq 4.2] as
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Note that for any motif  k, if βk1 = …= βkm = 0, then motif  k is not associated with gene expres-

sion. We thus infer that motif  k is not active in the biological conditions under which gene expression 

was measured. Otherwise, motif  k is inferred to be active. Identifying active motifs thus becomes a 

variable selection problem in [Eq 4.3].

Eq 4.1

Eq 4.2

Eq 4.3
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Motif Selection Using Penalized Multivariate Regression with CAP

By combining regression with variable selection, it is possible to select a set of  active motifs which 

is significantly associated with gene expression. Classically, stepwise regression is used for variable 

selection; however, this technique is sensitive to perturbation of  the data and can only explore a small 

portion of  all the possible models as the number of  candidate motifs is usually in the hundreds. A 

more modern technique,  Lasso [20], has recently received significant attention as an efficient variable 

selection method. Lasso estimates the coefficients of  predictors through minimization of  the follow-

ing expression

RSS im b+ /

where the residual sum of  squares (RSS) and the sum of  absolute values of  coefficients are two 

conflicting measures: the model with a smaller residual sum of  squares tends to have more nonzero 

coefficients, which in turn results in a higher sum of  absolute values of  coefficients. λ is a regulariza-

tion parameter controlling the trade-off  between these two goals. Compared to a solution that mini-

mizes only the residual sum of  squares, i.e., the least squares estimate, the estimated coefficients in 

Lasso are closer to zero, which is referred to as ‘shrinking’. It has been shown that the Lasso can select 

predictors consistently, i.e., to select correct predictors with probability approaching unity asymptoti-

cally, by shrinking the coefficients of  the insignificant predictors to zero. However, Lasso was devel-

oped for regression with a single response rather than with multivariate responses as in [Eq 4.2]. 

Moreover, we are interested in eliminating any inactive motif  in [Eq 4.2], which requires simultane-

ously shrinking all m coefficients corresponding to that motif  to zero, rather than shrinking an indi-

vidual coefficient. Recently, the simultaneous variable selection [23] and group Lasso [21-22] methods 

have been developed for selecting groups of  variables. These methods have been nicely summarized 

in a unified shrinkage method, the composite absolute penalty (CAP) approach [22].  We apply the idea 

of  a composite absolute penalty to a multivariate regression model in [Eq 4.2].

Our estimate is defined as the minimizer of

Eq 4.4
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where λ is a regularization parameter. The composite absolute penalty uses a combination of  various met-
rics to achieve the objective of  group predictor selection. One possible choice of  penalty to achieve this goal is 

, , ,pen pm k k km

k

p

11 12 1
2

2
2 2

1

f fb b b b b b= + + +
=

^ h / , which reduces to the group Lasso penalty. However, the 
computation of  group Lasso relies on a shooting algorithm, and the cost of  computation is very high [21].  We 
instead elected to use the following CAP:

, , , , , ,pen maxpm k k km

k

p

11 12 1 2

1

f fb b b b b b=
=

^ ^h h/

which is the penalty used in [23]. For each motif, the corresponding m coefficients are grouped 

through their maximum absolute values. As λ is increased, the group of  motif  coefficients β shrink 

simultaneously; a motif  whose group of  coefficients have shrunk to zero falls out of  the model.

Since minimizing [Eq 4.5] is a convex optimization problem, a solution satisfying the Karush-

Kuhn-Tucker conditions is a global minimum [23-24]. A beneficial feature of  the proposed method 

[Eq 4.5] with penalty [Eq 4.7] is that the solution has a piecewise linear solution path for all values of  

λ. We adopt the homotopy algorithm [25-26], also known as the LARS/Lasso algorithm [27] to find 

the solutions for all values of  λ. Even though the solution path for all values of  λ can be effectively 

computed, it is still highly desirable that one solution is given for a fine-tuned value of  λ. To choose a 

value of  λ with a good balance of  goodness-of-fit of  the model and model parsimony, we minimize 

the Bayesian Information Criterion (BIC) [19]. 

ln lnnm nm

y x x x
p nmBIC

ij i j i j ip pj

j

m

A

i

n
1 1 2 2

2

11

#
fb m b m b m

m=
- - - -

+
==

t t t_ _ _a
_ _

i i ik
i i//

where , , ,j j pj1 2 fb m b m b mt t t^ ^ ^h h h are CAP estimates of  β1j, β2j, …, βpj, pA(λ) is the number of  esti-

mated active motifs, i.e., non-zero coefficients, that depend on the tuning parameter λ. Since the solu-

tion path is piecewise linear, the minimum BIC can be found by comparing [Eq 4.7] for a number of  

λ values.

Eq 4.7

Eq 4.6

Eq 4.5
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Once the model is selected, we test the significance of  each selected motif  by calculating for each 

of  them a pooled P-value which combines all P-values of  the corresponding m coefficients using 

Stouffer’s method [28-29].

Functional Annotation of Discovered Motifs

To verify identifications and further elucidate biological relationships, manual analysis and func-

tional annotation was carried out on discovered motifs. Results were validated where possible by com-

parison to known TF binding sites by ChIPCodis [30] against the MacIsaac et al yeast TFBM dataset 

[3] as well as additional STAMP [32] comparison to the common ribosome-associated RRPE and PAC 

motifs [33].

Validation – Simulations

Extensive simulations were carried out to examine the effectiveness of  MotifExpress in identify-

ing active motifs. We set number of  genes, n = 5000, and number of  the motif  candidates as 100, 

among which 10 motifs were active. We generated motif  scores xik from N(0,1) and random error 

from N(0,σε).  We gradually increased the standard deviation of  random error from σε = 1 to σε = 5. 

Gene expression was generated as the summation of  linear combinations of  the active motif  scores 

and random error as in [Eq 4.2]. We let m = 3,4,5. We generated 100 datasets for each setting, i.e., 

each combination of  σε and m. The Matthews Correlation Coefficient (MCC) [34], was calculated for 

each dataset, where a value of  1 indicates perfect selection of  active motifs and rejection of  spurious 

motifs, while a value of  0 is average random selection.

The summary statistics of  the resulting MCCs are given in [Table 4.1]. It can be seen that our 

proposed method consistently performs very well across all settings. Since AIC with second order 

correction (AICc) was also suggested as an alternative criterion to choose the regularization param-

eter, we tested the performance of  our proposed method using AICc. MotifExpress with BIC-min-
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imization consistently outperformed that with AICc-minimization; average MCCs were significantly 

higher across all simulation regimes. MotifExpress with AICc was observed to identify more motifs 

spuriously; its performance was robust as σε increased, but had a lower MCC throughout the settings 

[Figure 4.2]. In comparison, the performance of  MotifExpress with BIC did degrade as σε increased, 

but still had much higher MCC as we see in Fig 4.2

Simulations were also carried out to compare the performance of  MotifExpress and Motif  Re-

gressor.  Simulations were carried out as previously, with 100 datasets generated for each level of  

random error from σε  = 1 to σε = 5. MotifExpress made its selections based on m = 3 responses, while 

Motif  Regressor used a single response. While MCC performance remained similar for both, a consid-

erable difference was observed in the false discovery rate (FDR) [Figure 4.3]. MotifExpress controlled 

the FDR efficiently and consistently, while Motif  Regressor’s performance varied across the tested 

error levels; as observed in later experiments on real data, MotifExpress consistently returned more 

parsimonious sets of  confident motifs, especially as the noise was increased.

Validation – Experiments

In addition to simulations, experiments were carried out with real-world data to gauge the effec-

tiveness of  MotifExpress under known conditions. For all experiments, microarray data was retrieved 

from the Gene Expression Omnibus (GEO) [35] and log2 transformed. Missing values were estimated 

using k-nearest-neighbor imputation [36], implemented in the R [37] impute package. The upstream 

800 bp sequence for each gene was used, with repetitive sequences masked using RepeatMasker [38]. 

Two experiments were carried out: one probing GCN2 pathway, and the other investigating heat 

shock response, both in the budding yeast Saccharomyces cerevisiae.
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GCN2 Constitutive Activation Analysis

The protein kinase GCN2 has drawn attention in recent years due to its extensive regulatory 

impact. The Gcn2p homodimer associates with the large ribosome subunit in the cytosol, and when 

activated, phosphorylates Ser-52 of  eIF2α [39]. In yeast, this has two immediate effects; firstly, the 

repression of  general translation by sequestration of  eIF2β, and secondly the derepression of  GCN4 

translation. Gcn4p then acts as a transcription factor that modulates the expression of  numerous 

stress- and starvation-related genes [40].  Gcn2p may be activated by numerous signals via multiple 

pathways, including the drug rapamycin [41].  

We elected to use constitutively-active Gcn2 as a means of  validating our method. As active Gc-

n2p results in Gcn4p activation, consequentially leading to an activation of  downstream genes, it fol-

lows that the presence of  the GCN4 motif  should be strongly correlated with gene expression under 

the condition of  constitutively-active Gcn2p. A four-sample dataset of  cDNA microarrays, which 

hybridized four biological replicates of  GCN2c constitutively-active mutant samples to a common 

reference wild-type sample, was retrieved from GEO (GSE8111) [42]. The data retrieved was the 

log-transformed gene expression ratios between mutant and wild-type, and was used by MotifExpress 

as the response to fit a multivariate regression model.  Three motifs were selected by MotifExpress, 

identified by STAMP as GCN4, PAC, and RAP1.

The results obtained by MotifExpress were compared with those obtained by running Motif  Re-

gressor [14] separately on each sample. In contrast to three motifs discovered by MotifExpress, Motif  

Regressor discovered 130 motifs. For Motif  Regressor running on each sample, the smallest P-value 

of  the motifs identified by STAMP [32] as GCN4 and the highest rank of  the GCN4 motifs sorted by 

P-values in the result is reported in [Table 4.2]. MotifExpress analysis resulted in a parsimonious set 

of  results, where the GCN4 motif  had the lowest P-value and ranked first, while analyzing individual 

samples in the dataset by Motif  Regressor yielded highly heterogeneous results. The P-value was much 

lower in the MotifExpress results than in any of  the Motif  Regressor results.
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The presence of  the PAC and RAP1 motifs is likewise unsurprising; the RP regulon (strongly as-

sociated with the RAP1 motif) and the RRB regulon (strongly associated with the PAC motif) [43] are 

both known to be repressed by treatment with rapamycin, which is also known to induce Gcn4p syn-

thesis [41]. The GSE8111 dataset shows a transcription profile quite similar to rapamycin treatment, 

with the RRB and RP genes downregulated, and amino acid biogenesis genes upregulated. Analysis of  

genes used for motif  discovery via ChIPCODIS revealed a significant overrepresentation of  genes to 

which Gcn4p binds under rapamycin treatment, with a pooled P-value of  1.56×10-18.

Heat Shock Analysis

The heat shock response is a conserved and concerted cellular program in eukaryotes. Tempera-

ture changes above the physiological optimum induce the synthesis of  heat shock proteins, a diverse 

class of  proteins that have effects on protein folding, metabolism, and antioxidant response. Expres-

sion of  the genes coding for these proteins is regulated by a set of  stress-related transcription factors, 

most importantly Hsf1p and Msn2/4p.

A three-sample dataset of  cDNA microarrays, comparing wild-type cells in mid-log-phase grown 

at 30C to wild-type cells heat-shocked at 39C for 15 minutes, was downloaded from GEO (GSE7665) 

[44]. The data was the log-transformed gene expression ratios between heat shock and control condi-

tions, and was used by MotifExpress as the response to fit a multivariate regression model. A set of  

15 active motifs was selected by MotifExpress, among them HSF1, RPH1, MSN2/4, SFP1, FHL1, 

and PAC; of  these, the HSF1 motif  was the most significant, with a pooled P-value of  7.8×10-37. In 

contrast, Motif  Regressor discovered 113 motifs, many of  which were redundant. 

It is known that many of  the genes regulated by Hsf1p encode chaperones, proteins responsible 

for inducing and maintaining protein conformation and preventing unwanted protein aggregation, 

such as HSP82 [45]. It would be expected that cells undergoing heat shock would experience an up-

regulation of  genes regulated by Hsf1p and Msn2/4p; analysis by MotifExpress analysis demonstrates 

the detection of  this response. The PAC motif, as mentioned in the previous example, is a signature of  
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the RRB regulon, which is down-regulated under heat shock conditions [46]. The genes in the dataset 

were confirmed to be significantly overrepresented for Hsf1p, Msn2/4p, Fhlp, and Sfp1p binding un-

der stress conditions by ChIPCODIS (P-values ranging from 8.82×10-62 to 3.63×10-18).   

It is interesting to note that the HSF1 motif  is known to consist of  repeats of  a 5-bp consensus 

sequence 5’-NGAAN-3’ and its reverse complement 5’-NTTCN-3’ [47]. In Fig 4.4, we plotted the 

motif  logos of  the most significant HSF1 motifs discovered by MotifExpress, by Motif  Regressor via 

analyzing each sample independently, and by MacIsaac et al  using ChIP-chip and phylogenetic meth-

ods [3]. The HSF1 motif  discovered by MotifExpress is notably the closest to the consensus sequence 

reported in [47] among the five motifs [Figure 4.4].

Discussion

In this chapter, we presented a novel method, MotifExpress, for identifying transcription factor 

binding motifs (TFBMs) strongly associated with multiple samples of  gene expression. Existing meth-

ods for identifying TFBMs correlate sequence information to a single sample of  gene expression, one 

sample at a time, which results in a redundant set of  active motifs with many spurious results [48]. 

Additionally, existing methods rely on classical variable selection techniques such as stepwise regres-

sion, which is highly unstable and can only explore a small portion of  all the possible models as the 

number of  candidate motifs is usually in the hundreds. Our method is designed to integrate multiple 

samples of  gene expression via multivariate regression. Using the CAP approach and selecting the 

regularization parameter using BIC, we can effectively identify a parsimonious set of  active motifs. 

We examined the performance of  MotifExpress using synthetic data under an array of  settings with 

different numbers of  samples and various variance magnitudes of  random error. In these simulations, 

MotifExpress performed consistently well throughout all settings. We then analyzed two real experi-

ments using MotifExpress, identifying active motifs correlated with expression.  In both experiments, 

the set of  discovered motifs agreed well with current literature.
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surmount this challenge, we fit a model using a composite absolute penalty (CAP). Unlike the stepwise 

regression procedure, the CAP procedure selects motifs via a convex optimization and can effectively 

find the globally-optimal set of  active motifs. We use the Bayesian information criterion (BIC) to 

select the regularization parameter. We demonstrate the excellent performance of  MotifExpress by 

applying it to synthetic data as well as GCN2 constitutive activation and heat shock experiments in 

Saccharomyces cerevisiae. It is evident from these results that incorporating multiple samples of  gene 

expression substantially reduced the number of  spurious results.

MotifExpress Framework Overview

The MotifExpress framework consists of  several stages. First, significance analysis of  microarrays 

(SAM) [18], a microarray analysis algorithm, is used to identify genes that are differentially expressed 

between the treatment and control conditions. The upstream promoter sequences of  significantly 

differentially-expressed genes are then used as input in a de novo motif  discovery algorithm (MDscan) 

to search for candidate motifs.  The upstream promoter sequences of  all genes for which expression 

was measured are then scored for matches to each candidate motif; the algorithm then uses multivari-

ate regression to link gene expression in all samples with the motif  matching scores of  all candidate 

motifs. Finally, the active motifs that are significantly associated with gene expression are identified 

using a composite absolute penalty approach with the regularization parameter selected through mini-

mizing BIC [19]  [Figure 4.1].

Motif Discovery

SAM [18] analysis is run on the gene expression profiles to determine which genes are differen-

tially expressed between treatment and control conditions at a pre-specified false discovery rate. MD-

scan [8] is then run on the upstream promoter sequences of  the significantly differentially expressed 

genes to discover motifs ranging from 7 to 15 bp in width. The 30 most significant motifs for each 

motif  width are combined to form a set of  candidate motifs. We then calculate the motif  matching 
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The MotifExpress framework is easily extensible to support other TF-DNA binding discovery 

methods, especially cis-regulatory module discovery methods. Statistically, penalized multivariate re-

gression with CAP is ready to incorporate additional structural information about motifs. Likewise, 

as high-throughput transcriptomic studies transition from hybridization-based microarrays to rapid 

whole-transcriptome sequencing, this new data is easily integrated in MotifExpress. 

Aside from motif  selection, another challenge is to identify the regulatory targets of  a TF. In prin-

ciple, given the motifs (including promoter sequence) and estimated coefficients, we can predict gene 

expression. Once this is done, the genes with significantly high or low predicted expression could be 

considered as potential regulatory targets. However, such prediction in practice typically has too large 

an uncertainty to be used for identifying regulatory targets. A possible alternative is to build a predic-

tion model with gene cluster membership as the response, as Beer and Tavazoie [49]. The variable 

selection method that we employed in this paper can be adapted to that model.
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m = 3 m = 4 m = 5
σε

MCC (AICc) MCC (BIC) MCC (AICc) MCC (BIC) MCC (AICc) MCC (BIC)
ave std ave std ave std ave std ave std ave std

1 0.582 0.143 0.928 0.056 0.620 0.159 0.933 0.057 0.587 0.143 0.940 0.058

2 0.590 0.158 0.923 0.068 0.572 0.147 0.918 0.058 0.639 0.156 0.939 0.057

3 0.580 0.142 0.895 0.069 0.591 0.150 0.904 0.072 0.614 0.148 0.922 0.068

4 0.577 0.149 0.872 0.077 0.556 0.132 0.854 0.073 0.609 0.139 0.864 0.086

5 0.576 0.150 0.839 0.091 0.575 0.135 0.831 0.081 0.598 0.144 0.838 0.078

Table 4.1  
Mean (ave) and standard deviation (std) of  Matthews Correlation Coefficient (MCC) for MotifExpress with 
regularization parameters selected through AICc-minimization and BIC-minimization as the random error’s 
standard deviation σs and the number of  samples m are varied in the simulation study.

Analysis
Number 
of  Motifs 
Identified

GCN4 Motif  
with Lowest 

P-value

Rank of  
Result

MotifExpress 3 1.73×10-40 1st in 3
MotifRegressor Sample 1 42 8.86×10-3 9th in 42
MotifRegressor Sample 2 15 4.37×10-4 3rd in 15
MotifRegressor Sample 3 55 1.22×10-3 7th in 55
MotifRegressor Sample 4 18 8.28×10-12 2nd in 18

Table 4.2  
GCN4 motif  discovery on constitutively-activated Gcn2 mutant 
dataset by MotifExpress on all samples simultaneously and by 
Motif  Regressor, on each sample individually.

Tables
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Figure 4.1  
MotifExpress conceptual diagram.
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Figure 4.2  
Summary plot of  Matthews Correlation Coefficient (MCC) for MotifExpress with regularization parameters 
selected through AICc-minimization and BIC-minimization as the random error’s standard deviation σε and 
the number of  samples m are varied in the simulation study. MotifRegressor performance in the same simula-
tion was computed by pooling results from independent runs.

Figure 4.3  
False Discovery Rate (FDR) of  MotifRegressor and MotifExpress as the error standard deviation σε was 
varied. 100 runs were carried out at each error level, each with 10 real and 90 spurious motifs; MotifRegressor 
selected motifs based on a single simulated response, while MotifExpress selected motifs based on three 
simulated responses simultaneously.
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Figure 4.4  
HSF1 binding motif  discovered by MotifExpress by analyzing all samples in GSE7665 simultaneously com-
pared to MotifRegressor analyzing each sample individually, as well as current literature. The head-to-head 
inverted NGAAN motif  is prominent in the MotifExpress results.
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CHAPTER 5: Conclusions and Future Directions

High-throughput data-gathering modalities caused an explosion in available data about biological 

systems. The last decade has seen a new ‘omic’ field arise for practically every aspect of  biology, rang-

ing from investigations into the central dogma of  molecular biology (genomics, transcriptomics, and 

proteomics) to investigations of  primary and secondary metabolism (metabolomics), to other, strang-

er beasts such as regulomes, interactomes, ionomes, kinomes, mechanomes, and physiomes. Practi-

cally every ‘omic’ field has had, at its founding, some core technology that produced a qualitatively 

larger volume of  data than any predecessor, and formed the nucleus around which the field accreted. 

Genomics as we know it now could not be possible without the high-throughput automated Sanger 

sequencer, now several generations old. The core of  transcriptomics was the hybridization microar-

ray, which catalyzed numerous fruitful collaborations between biologists and statisticians. Proteomics 

and metabolomics as we know it could not have existed without high-throughput LC-MS technology, 

and so on. Each of  these technologies catalyzed the creation of  a fundamentally new field, but one 

of  the things that separate the ‘omic’ fields from their low-throughput predecessors is the realization 

that high volumes of  data behave fundamentally differently than low volumes. One cannot treat a 

microarray experiment, which measures the expression of  ten thousand genes, as simply a somewhat 

larger set of  measurements, tractable with the same analytic tools as those used on simple multi-well 

PCR-based assays. One cannot evaluate the results of  a proteomic experiment which produced data 

on ten thousand peptides in the same way as one would the results of  spraying a sample containing a 

single purified peptide into a mass spectrometer. Every ‘omic’ field required new tools and new ways 

of  looking at data in order to make sense of  itself.

One vital aspect of  this was the interactions within the data, both within individual data points 

and between them, potential and actual. When one only has access to measurements that could result 

from the interactions of  hundreds of  ‘hidden’ variables, one requires very careful analysis. While vast 

amounts of  data could be a great boon, this could just as easily turn into a terrible curse that saps sta-

tistical power from experiments and destroys conclusions before they are formed. The tools that one 
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uses must take this into account, and the classical methods of  yesteryear often have great difficulty in 

coping with the vast search spaces opened up by the combinatoric interactions of  vast arrays of  data 

points. My work has focused on developing tools to make some sense of  this, and on validating funda-

mental algorithmic and statistical approaches to determine their suitability for answering real biologi-

cal questions given the results of  a high-throughput data pipeline. In particular, it has focused on two 

fundamental approaches for addressing a potential combinatorial explosion: genetic algorithms and 

penalized regression.

Genetic Algorithms

Genetic algorithms have broad applications for optimization, but are especially suitable for cases 

where one is attempting to optimize a system that may be easily represented as a sequence which may 

have its state summarized in a simple metric. This makes GAs directly applicable to many situations in 

proteomics, where one observes a simple function (mass) of  a complex underlying system (a protein 

with potential variations and modifications). One significant problem that is tractable by means of  

genetic algorithms is the problem of  Top Down protein characterization. If, after fragmenting a pro-

tein, one has identified both the gene that encoded it and the specific splice form that was produced 

from it, then in most cases one has fixed the overall sequence length of  the protein. The remainder 

of  the characterization work is to determine which set of  known and/or unknown cSNPs and PTMs 

is present on this instance of  that particular protein. This overall problem can be potentially quite 

difficult. It is solved in Bottom Up proteomics by exhaustive enumeration of  potential mass shifts, 

and choosing the combination of  mass shifts that results in the best value of  the scoring metric that 

one uses. This approach will simply break down in Top Down proteomics, where the combinatorial 

explosion results in billions of  potential combinations to consider. A GA, however, may be the ideal 

way of  solving this problem in the general case of  no limitations on the number of  simultaneously 

applied mass shifts. The set of  mass shifts applied to the residues of  a protein is trivially encoded as a 

virtual chromosome. Fragmentation data exhibits excellent locality, where a given fragment in the vast 

majority of  cases represents a proper prefix or suffix of  the sequence. This means that it would be 
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simple for the genetic algorithm to converge towards a set of  useful ‘building blocks’, components of  

the solution that are relatively independent of  each other and each of  which encode a significant im-

provement to the scoring metric. There are numerous scoring metrics in proteomics, each of  which is 

designed to reflect the degree to which a given sequence hypothesis fits the data, which is exactly what 

a GA needs to function. By taking advantage of  the tremendous locality of  mass spectrometric data, 

it is possible to use such a GA to convert the exponential enumeration algorithms used by Bottom Up 

search engines to a heuristic with a constant maximum runtime. The results of  this heuristic may then 

be straightforwardly evaluated in polynomial time to identify regions of  potential variation, which 

enables the algorithm to output explicit bounds on the specificity of  the returned solution. Because 

the algorithm may be designed to operate in constant time with a constant population of  candidate 

sequences, the overall space of  evaluated candidate sequences is vastly reduced, with a corresponding 

increase in statistical power for the score returned with the final output of  the algorithm. By leveraging 

an existing high-throughput identification platform, the amount of  time spent on characterization can 

be vastly decreased, increasing the throughput of  analysis even further.

This approach for automated protein characterization for Top Down proteomics forms the first 

aspect of  planned future work. The existing framework provided by ProSight’s iterative search logic 

may be trivially extended in order to support this functionality, providing a useful means of  taking 

the results of  a high-throughput identification run to the next level. It would, in many ways, be com-

parable to the current way that gene-restricted searches work in the context of  the iterative search 

logic; by using a fast, statistically-strong search for identification, one can greatly reduce the search 

space that is evaluated by a subsequent slow and statistically-weaker characterization stage. In addi-

tion, nothing obligates such a system to operate downstream of  an identification stage. All that is 

necessary for efficiency is a small number of  initial candidate sequences. While these can be provided 

by a high-throughput identification pipeline, they may also be provided by the user directly. In this 

way, the GA-based automatic protein characterization system can act as a core algorithm underlying a 

powerful standalone characterization system. Such a system would be highly useful for many types of  
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experiments where the user has a purified protein of  known provenance, but lacks information about 

variation or post-translational modification.

In addition to characterizing on a protein sequence resulting from the presence of  cSNPs or 

PTMs, a GA-based characterization system may be used for further analysis. If  one localizes a mass 

shift resulting from a glycosylation event, it is possible to use further analysis to determine the struc-

ture of  the sugar. If  one has an additional level of  fragmentation data (MS3) that separates and cleaves 

the sugar moiety from its bound residue, one can use a GA to characterize the complex branching 

pattern present in such structures. These branching patterns form a tree structure, which may be 

trivially represented as an array, which, in turn, can be encoded as a virtual chromosome. By carefully 

constructing the GA to generate possible branching patterns from a set of  possible sugar residues, 

one can fit the observed fragments of  the tree, and the total mass of  the tree, to the generated branch-

ing patterns.

Genetic algorithms may in fact be the ideal means of  dealing with complex feature combina-

tions on large protein sequences. Their bounded runtime and highly effective optimization properties 

should make them a vital component of  any future Top Down analysis toolkit.

Penalized Regression

Penalized regression techniques, as described in [Chapter 3], have broad applicability for variable 

selection and dealing with ill-conditioned problems. Unlike genetic algorithms, which can optimize a 

hypothesis to best fit the available data, penalized regression is best suited for variable selection. In 

other words, given a posited relationship between a multidimensional dataset and some function of  it, 

penalized regression can choose the set of  dimensions that best fit that relationship. While this may 

potentially be useful in direct proteomic applications, such as carrying out exploratory data analysis 

to determine which information is sufficient to predict some outcome, it is better suited for analyz-

ing the relationships between disparate datasets, such as those between genomic, transcriptomic and 

proteomic data. [Chapter 3] detailed the development of  a system that used penalized regression to 
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identify putative motifs in an overpopulated set of  candidates based on their ability to predict gene 

expression. This is hardly the only possible application of  this technique; another, currently under 

development, is the use of  penalized regression to discover chromatin-associated motifs.

It has been hypothesized that just as nucleosome positioning is significantly encoded by the DNA, 

so too are the patterns of  post-translational modification present on those nucleosomes. By extend-

ing the MotifExpress framework, it is possible to identify the DNA elements that are significantly 

correlated with the presence of  particular histone PTMs, and thus gathering evidence in support of  

this hypothesis. The first step is replacing gene expression as the response with a measurement that 

represents the presence of  a PTM of  interest. This may be accomplished by using ChIP-chip mea-

surements. By first carrying out chromatin immunoprecipitation for a particular histone PTM, and 

then hybridizing the selected DNA to a microarray, it is possible to measure the overall presence of  a 

given PTM for the promoter regions of  every gene. In particular, a straightforward analysis would be 

to use an antibody against hyperacetylated histone H4, thus getting good sensitivity and eliminating 

the specificity problems that plague antibodies raised against specific modified sites. Genes with sig-

nificant H4 hyperacetylation in their promoter regions (identified in much the same way as previously 

in MotifExpress) would then be used as a training set for de novo motif  discovery, creating a set of  

candidate motifs putatively associated with H4 hyperacetylation. Using these motifs as the explanatory 

part of  a design matrix, and the set of  ChIP-chip measurements as the response part, one is capable 

of  then carrying out penalized regression to determine which candidate motifs are significantly cor-

related with histone hyperacetylation, genome-wide.

However, this is simply the first step. It is known that many histone PTMs, and H4 hyperacet-

ylation in particular, are correlated with gene expression; likewise, overrepresented motifs may be 

transcription-factor binding motifs, and not H4 hyperacetylation-related motifs. The motifs selected 

in the manner described above may simply be TFBMs, and may not necessarily be acetylation motifs. 

In order to identify which motifs are associated strictly with H4 hyperacetylation and not gene expres-

sion, a second stage of  selection may be employed, utilizing gene expression as the response and the 
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selected subset of  putative acetylation motifs as the explanatory variables. This selection stage would 

identify which, if  any, of  that subset of  motifs are significantly correlated with gene expression, and 

would then eliminate them, retaining only those which are correlated with only H4 hyperacetylation. 

In preliminary synthetic tests, such an approach works very well, achieving strong sensitivity and speci-

ficity under high noise conditions. However, due to the aforementioned interrelationship between H4 

hyperacetylation and gene expression, it may be that all acetylation motifs are correlated with both 

H4 hyperacetylation and gene expression, and two stages of  selection cannot distinguish them; under 

these conditions, one would need to use a database of  known TFBMs to eliminate them from the set 

of  candidates.

Conclusion and Final Words

Computational biology and bioinformatics are still in their infancy. As new means of  data collec-

tion are invented, and richer datasets are generated, so too will new analysis techniques keep pace. Just 

as computation and mathematical analysis made physics and chemistry fundamental sciences in the 

last century, so too will biology achieve the same in this century. Quantity has a quality all of  its own, 

and as datasets become richer and larger, novel analysis techniques will permit us to probe deeper into 

them, teasing out subtle interactions and building useful models of  biological systems. The presence 

of  quantitative models will permit the generation of  useful hypotheses and give in silico experiments as 

prominent a place in biology as they hold in chemistry and physics.


