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Abstract 
 

Micro-organisms are constantly monitoring their surrounding environment and 

making important lifestyle decisions. This decision process is governed by large genetic 

networks that process the information leading to a phenotypic response from the cell. 

Using the food-borne pathogen, Salmonella, as a model organism, we try to investigate 

how cells encode strategies in networks to optimally control cellular behavior. 

Salmonella, on ingestion with contaminated food, swims in small intestine using 

propeller-like structures, flagella, on its surface. On reaching the site of infection, it 

assembles a hypodermic needle on its surface using which it injects proteins into host 

cells. These proteins cause a change in the host-cell shape leading to internalization of 

the bacterium. If the bacterium fails to get internalized, it assembles finger-like 

projections, fimbriae, on its surface to adhere to and persist in the intestine. How 

Salmonella dynamically regulates gene expression and assembly of these organelles is 

the focus of this study. Our results demonstrate that the networks controlling genes 

necessary for flagella, needle, and fimbriae are designed so as to encode logic gates and 

limit expression to conditions optimum for infection. In addition, there is cross-talk 

between these three systems which serves to dynamically control the timing of 

activation and de-activation of these networks. Collectively, we demonstrate that cells 

dynamically process information in genetic networks which ensures that the encoded 

products are produced at the correct locales, at the appropriate levels, and for the 

appropriate amount of time. 
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Chapter 1. Background And Significance 
 

Salmonella enterica is the causative agent for a wide range of diseases in 

humans, ranging from self-limiting gastroenteritis to life-threatening systemic infections 

and typhoid fever (Ellermeier, 2006, Miller & Sulavik, 1996). Worldwide, Salmonella is 

estimated to cause over sixteen million cases of typhoid fever, resulting in 

approximately six hundred thousand deaths, and over one billion cases of acute 

gastroenteritis, resulting in approximately three million deaths (Pang et al., 1995). 

Salmonella infections constitute a major public health burden and represents a 

significant cost to society. Very few countries report data on the number of infections 

annually or the economic cost of Salmonella-related infections. In the United States, an 

estimated 1.4 million non-typhoidal Salmonella infections, resulting in 168,000 visits to 

physicians, 15,000 hospitalizations and 580 deaths take place annually (WHO, 2005).  

 

The clinical course of human infection is usually characterized by acute onset of 

fever, abdominal pain, diarrhoea, nausea and sometimes vomiting. In some cases, 

particularly in the very young and in the elderly, the associated dehydration can become 

severe and life-threatening. In such cases, as well as in cases where Salmonella causes 

bloodstream infection, effective antimicrobials are essential drugs for treatment. 

Serious complications occur in a small proportion of cases. Although outbreaks usually 

attract media attention, studies indicate that more than 80% of all infections cases 

occur individually rather than as outbreaks (WHO, 2005). 
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While standard fluoroquinolone antibiotic can be used to treat most Salmonella 

infections, the emergence of multi-drug resistant strains in the food chain indicates that 

these therapeutic options may not be viable in the near future (Fabrega et al., 2008). 

Significant effort, therefore, has been devoted towards identifying new antibiotic 

targets and chemical compounds to deal with this emerging threat. However, solving 

this problem has proven to be extremely difficult. For example, in a recent genome- 

wide investigation of Salmonella metabolism, over 800 enzymes were evaluated as 

potential antibiotic targets (Becker et al., 2006). Remarkably, no new targets were found 

in this study despite the large number of enzymes investigated. The reason is that many 

critical metabolic processes in Salmonella involve redundant enzymes and pathways, 

enabling cells to grow even when key enzymes and pathways are disrupted. Because of 

these redundancies, the authors of this study concluded that no new targets for 

antibiotics would be forthcoming in Salmonella.  

 

Clearly, new approaches other than simply targeting metabolic genes must be 

considered. One approach is to target the Salmonella virulence machinery. About two 

hundred genes are virulence factors in Salmonella (Bowe et al., 1998). Invasion and 

systemic infection require the coordinated expression of these genes in response to 

multiple environmental cues. The process is mediated by a number of interacting gene 

circuits. By understanding the dynamics and regulation of these circuits, we can identify 

new drug targets that will potentially attenuate Salmonella’s ability to infect humans 
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and livestock. To better understand this dynamic regulation between multiple systems is 

the motivation for this study. 

 

Previous studies have identified multiple factors, including motility, adhesion, 

invasion, and intestinal persistence, that are involved in Salmonella pathogenesis. Key 

among them is a type 3 secretion system (T3SS) encoded within a 40 kilobase region of 

the chromosome called Salmonella Pathogenicity Island 1 (SPI1) (Mills et al., 1995, Lee 

et al., 1992, Kimbrough & Miller, 2000, Kubori et al., 1998, Kimbrough & Miller, 2002, 

Sukhan et al., 2001). The SPI1 T3SS functions as a molecular hypodermic needle, 

enabling Salmonella to inject proteins into host cells. These injected proteins then 

commandeer the actin cytoskeleton and facilitate the invasion of host cells.  

 

In addition to the SPI1 T3SS, two other systems, flagella and type I fimbriae, have 

been implicated in Salmonella pathogenesis. Briefly, flagella are long helical filaments 

attached to rotary motors embedded within the membrane that enable the bacterium 

to swim in liquids and swarm over surfaces. Flagella are thought to facilitate invasion by 

enabling Salmonella to swim to sites of invasion. In addition to motility, flagellin is a 

potent activator of the immune system as it binds TLR5 and activates the expression of 

proinflammatory cytokines, both outside and within host cells. Type I fimbriae, on the 

other hand, are hair-like appendages that carry adhesions specific for mannosylated 

glycoproteins on eukaryotic cell surfaces. They are thought to be involved in 

pathogenesis by facilitating the binding of intestinal epithelial cells. As with the flagella, 
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type I fimbriae do not appear to play a direct role in intestinal invasion but are rather 

thought to contribute to intestinal colonization and persistent infections in some 

mammals. 

 

Infection requires that expression of the SPI1 TTSS is coordinated with other 

physiological processes (Baxter & Jones, 2005, Lucas et al., 2000, Ellermeier & Slauch, 

2003, Teplitski et al., 2003). The current physiological picture of the infection process is 

as follows. After ingestion with contaminated food, Salmonella survives the harsh acidic 

environment in the stomach. From there, the bacterium reaches its preferred site of 

infection, the lumen of the small intestine. In the lumen, Salmonella specifically target 

microfold cells (or M-cells) lining the intestine (Wallis & Galyov, 2000, Santos et al., 

2003, Zhou & Galan, 2001). The purpose of the M-cells in the intestine is to sample the 

antigenic content in the lumen and pass it to the underlying Peyer’s Patch. Salmonella 

invades M-cells using the SPI1-encoded T3SS and SPI4-encoded adhesion system (Main-

Hester et al., 2008, Gerlach et al., 2007a, Lawley et al., 2006). As described above, the 

injection of effector proteins into the host cell results in engulfment of the bacterium. If 

the bacterium is successfully internalized, Salmonella encodes and assembles another 

T3SS encoded on Salmonella Pathogenicity island 2 (SPI2)(Hensel, 2000). However, if 

internalization fails, the bacterium then assembles another appendage, Type I fimbriae, 

on its surface, to presumably attach itself to the host cells and persist in the intestine for 

a more favorable time for invasion (Figure 1). 
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Multiple studies have shown that extensive transcriptional crosstalk exists 

between these three systems. While the molecular details have been studied 

extensively, the role and significance of these interactions are still relatively unknown. 

All three systems play unique and potentially mutually exclusive roles during the 

infection cycle (Baxter & Jones, 2005, Ellermeier & Slauch, 2003, De Keersmaecker et al., 

2005, Main-Hester et al., 2008). Presumably, the crosstalk between the circuits is used 

to time the various steps involved in infection. How this crosstalk mediates coordination 

is still not known nor is it clear that the infection process necessarily follows this 

simplistic model. 

 

The goal of this research effort is to understand how Salmonella coordinates the 

regulation of the motility (flagella), SPI1 (T3SS), and type I fimbriae (fim) gene circuits. 

Each of these three gene circuits control expression and assembly of a surface 

appendage that serves a mutually exclusive purpose and for a successful infection 

process, it is important that the bacterium switches these systems “on” and “off” at 

precise times. As a first step, we experimentally investigated how each one of these 

circuits is dynamically regulated in isolation. As this regulation is dynamic and involves 

multiple interacting feedback loops, we utilized mathematical modeling to facilitate 

data analysis and to test specific aspects of our hypothesis. Next, we investigated the 

coordinated regulation of these three circuits. In particular, we hypothesize and then 

demonstrate that regulatory crosstalk between these circuits controls the timing of their 

activation and ensures that they do not interfere with one another. This study enables 
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us to extract the general regulatory mechanisms and principles utilized by the 

Salmonella during invasion. By understanding this complex regulation, we will likely be 

able to identify new drug targets, not just by targeting virulence genes but also by 

targeting others involved in interacting processes such as motility and adhesion. In 

addition to their medical significance, these results will provide new insight into the 

regulation of interacting gene circuits. Few cellular processes act in isolation. Therefore, 

to understand how a given process is regulated, we must also investigate how it 

interacts with other processes. 
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Figures – Background And Significance 
 

 

Figure 1. Cartoon depicting steps in the Salmonella infection process. (A) Bacteria 
utilizes the flagella system to swim in the liquid medium to the site of infection. (B) At 
the site of infection, it sheds flagella and encodes a non-fimbrial adhesion system and a 
Type 3 Secretion System (T3SS) (C) The injected proteins via the T3SS lead to actin 
cytoskeletal rearrangement (D) Cytoskeletal rearrangement leads to internalization of 
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the bacterium. (E) If the bacterium is not internalized, it encodes Type I fimbriae on its 
surface to adhere to the epithelial cells and persist in the intestine. 
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Chapter 2. Materials And Methods  
 

General Techniques And Growth Conditions 
 

All culture experiments were performed in Luria-Bertani (LB) broth at 37°C 

unless noted otherwise. Antibiotics were used at the following concentrations: 

ampicillin at 100 ug/ml, chloramphenicol at 20 ug/ml, kanamycin at 40 ug/ml, and 

tetracycline at 15 ug/ml. All experiments involving the growth of strains containing 

plasmid pKD46 were performed at 30°C as previously described (Datsenko & Wanner, 

2000). Loss of pKD46 from strains was achieved by growth at 42°C on non-selective 

media after electroporation of the PCR products. Removal of the antibiotic from the 

FRT-Cm/Kan-FRT insert was achieved by passing pCP20 through the isolated mutants 

(Cherepanov & Wackernagel, 1995). The plasmid pCP20 was removed after growth on 

non-selective media at 42°C. Enzymes were purchased from Fermentas or New England 

Biolabs and used according to the manufacturer’s recommendations. Primers were 

purchased from IDT Inc. 

 

Plasmid Miniprep 
 

5 ml of a LB culture was grown overnight at 37°C with the appropriate antibiotic. 

The cells in the culture were spun down by centrifuging for 5 minutes at 4000 rpm. The 

supernatant was discarded and the plasmid was recovered from the pellet of cells using 
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the Zymo Plasmid Miniprep kit (D4036). Briefly, the cell pellet was resuspended in 0.25 

ml of the Resuspension buffer. The resuspended culture was then transferred to a 

micro-centrifuge tube. The cells were then lysed by adding 0.25 ml of the lysis buffer. 

After addition of the lysis buffer, the tube was shaken for about 30 seconds to ensure 

complete lysis of the cells. This was followed by adding 0.35 ml of the neutralization 

buffer to the tube and shaking the tube for about 30-45 seconds. The sample tube was 

then spun down at 14000 rpm for 5 minutes.  

 

The supernatant from the spin was transferred to a plasmid miniprep column 

and spun for 1 minute at 14000 rpm. The flow-through was discarded and 0.5 ml of the 

wash buffer was added to the column. The column was again spun for 1 minute at 

14000 rpm followed by discarding the flow-through and another spin of 1 minute. The 

column top was then transferred to a micro-centrifuge tube and the plasmid recovered 

by addition of 50 ul of water and spinning at 14000 rpm for 1 minute. To improve the 

plasmid recovery, the column was allowed to stand for 1 minute after addition of water 

and before the centrifuge step for plasmid recovery. 

 

Polymerase Chain Reaction (PCR) 
 

DNA fragments were amplified using PCR. For cloning purposes, the Phusion 

High-Fidelity DNA Polymerase enzyme was used (Finnzymes). For checking DNA 

fragment size, the Green Taq Green Master Mix kit from Promega was used. Primers 
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were ordered from IDT Inc. and their stock solution prepared by adding water to a final 

concentration of 30 nM. For each reaction, 1 ul of each primer and 1 ul of the DNA 

template were added in a total reaction volume of 50 ul. 

 

Checking PCR Products (High Melt Electrophoresis Gels) 
 

To check DNA fragment sizes, the PCR products were run on a 0.8% high melt gel 

(0.8% agarose (Fermentas) in TAE buffer). One liter of 50x TAE buffer was prepared 

using the following recipe: 242 grams of Tris Base, 57.1 ml of glacial acetic acid, and 100 

ml of 0.5M EDTA were mixed and water added to make the total volume 1 liter. Gels 

were cast after adding 1 µl Ethidium Bromide (5.25 mg/ml in water) per 10 ml of the gel 

solution for DNA detection. After the get was poured, it was allowed to solidify and run 

in a TAE buffer solution. Biorad DNA electrophoresis gel boxes were used to run the 

DNA gels. Gels were run at a constant voltage of 130 volts.  To check the band size of 

the PCR product, the samples were run against an appropriate DNA-standard from New 

England Biolabs (N3231 for 100 bp ladder or N3232 for 1 kb ladder). To load the samples 

in the gel wells, 6X Gel Loading Dye (NEB, B7021) was added to the sample before 

loading them on the gel. The gel picture was taken under UV-transilluminator. 

 

Restriction Digest 
 

The plasmid and the PCR DNA fragments were digested using restriction 

enzymes from New England Biolabs (NEB). A sample was digested with 30 ul of the 
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plasmid/PCR, 5 ul of the digestion buffer, 0.5 ul BSA, and 1 ul each of the restriction 

enzymes. De-ionized water was then added to the samples to make the total volume of 

the sample 50 ul. The digest was carried out at 37°C for 4-6 hours, unless otherwise 

specified by the manufacturer. 

 

DNA Recovery After Double Digest (Low melt 
Electrophoresis Gels) 
 

To recover the digested DNA fragments, 8 ul of the 6x DNA dye was added to the 

50 ul digests. The dye-DNA mix was then loaded on 1% low melt agarose gels and run at 

130V for 20-30 minutes. To dissolve the gel fragments carrying the DNA, 0.6ml of 

Agarose Dissolving Buffer (ADB) (Zymo) was added to per 0.2 grams of the gel fragment 

and the mixture heated at 55-60°C. Upon dissolving, the solution was transferred to a 

gel-recovery column (Zymo) and the column spun for 15 seconds at 14000 rpm. The 

flow-through was discarded and the column was spun for 15 seconds after addition of 

0.2 ml of DNA wash buffer.  The flow-through was discarded again and the column spun 

for another 30 seconds after addition of 0.2ml of DNA wash buffer. The column top was 

then transferred to a micro-centrifuge tube and DNA recovered by elution using 8-20 ul 

of de-ionized water and spinning the column for 1 minute at 14000 rpm. The gel-

purified products were mixed in a ratio so as to ensure that the plasmid and PCR 

product in the ligation mix were in the ratio 1:2. 
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DNA Ligation 
 

After recovery of the DNA fragments, ligations were carried in the following 

manner. The cut insert and the plasmid were added roughly in the ratio 2:1 in a 

microcentrifuge tube. The appropriate amount of the ligation buffer (T4 DNA Ligase 

Buffer from NEB or Quick T4 DNA Ligase from Finnzymes) was added to the tube 

followed by addition of water to make the total reaction volume 20 ul. After that, 1 ul of 

DNA ligase was added to the tube and allowed to sit at room temperature (25°C) for a 2-

3 hours. Controls such as ligating the cut plasmid were also prepared in the same 

manner. When using the Quick T4 Ligase, ligations were kept on bench for 30-40 

minutes prior to transformations. For T4 DNA Ligase from NEB, the ligation mixture was 

kept at 4°C for at least 2-3 hours before transforming. 

 

Chemical Transformations – Cell Preparation And Plasmid 
Transformations 
 

The cloned plasmids were transferred to E. coli Dh5α strain using chemical 

transformation. Briefly, the protocol followed was as follows. The cells were thawed and 

50 ul of the cells was transferred to glass test-tubes (which were already sitting on ice). 

5 ul of the ligation mix was added to the cells. The ligation mix-cell mixture was allowed 

to sit on ice for approximately 30 minutes and then transferred to a 42°C for 2 minutes. 

The test-tube was then transferred again to ice for 8 minutes after which 1 ml of LB was 

added to the test-tube and the cells allowed to recover for 1 hour at 37°C. 50-100 ul of 
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the cells were then plated on an agar-plate (12.5 grams LB/lt. and 15 grams agar/lt.) 

carrying the appropriate antibiotic. The plate was then kept at 37°C overnight and 

colonies checked the next morning. The plates were kept at 37°C two hours before the 

plating step. Using warm plates for transformation increased ease of spreading and also 

reduces the time it takes for colonies to appear on the plates. 

 

Electroporation And Electro-Competent Cells 
 

Electroporation was used to transform plasmids into Salmonella strains. The cells 

were prepared as follows. Overnight culture was diluted 1:100 and grown at 37°C till 

mid-log phase. After that, cells were quickly transferred to ice and then, spun at 4000 

rpm for 10 minutes. The culture was discarded and the pellet of cells resuspended in 10 

ml of 10% glycerol. The resuspended culture was again spun at 4000 rpm for 10 minutes 

and the pellet resuspended in 10 ml 10% glycerol. This was repeated 3 times. After the 

final spin, the liquid was discarded and the cells resuspended in 0.5 ml of 10% glycerol. 

The cells were stored at -80°C. 

 

To transform, cells were thawed on ice. 50 ul of the cells were taken out and 

mixed with 1 ul of the plasmid. The mixture was then transferred to an electroporation 

cuvette and cells and plasmid electroporated. Immediately after electroporation, 1 ml of 

LB was added to the cells in the cuvette. The mix was then transferred to a test tube and 

cells allowed to recover at 37°C for 1 hour. 100 ul of the liquid was then plated on plates 
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with the appropriate antibiotic. Electroporation, in general, is a lot more efficient than 

chemical transformations described above. Therefore, plate less to get individual 

colonies and avoid a lawn. 

 

Gene Knockouts  
 

Chromosomal gene knockouts were done as follows. Cells were first transformed 

with the temperature sensitive plasmid, pKD46, with ampicillin resistance gene. pKD46 

has a temperature sensitive replication of origin, therefore, all experiments dealing with 

it were done at 30°C. After transforming pKD46 in the cell, a colony was selected and 

grown in liquid media with ampicillin at 30°C. The overnight culture was then diluted 

1:100 in LB media with 0.2% arabinose. Cells were grown to mid-log phase to prepare 

electro-competent cells. The electro-competent cells were transferred with 5 ul of the 

PCR product from the plasmids pKD3 or pKD4 or from the strain TH8094. After 

transformation with the PCR product, the cells were allowed to recover at 37°C for 2 

hours and then plated on plates with the appropriate antibiotic.  

 

Note: Plate 100 ul on each plate and not more than that to avoid background colonies. 

 

Note: after the PCR product from the plasmids pKD3, pKD4, pKD13 – digest the product 

with 1 ul DpnI to digest the template plasmid from the PCR product. 
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Note: The PCR product from pKD3/pKD4/TH8094 was only eluted with 20µl water 

instead of standard 50µl for PCR clean ups. This concentrated the PCR fragment needed 

for the knock out and was found to increase the efficiency of the knockout. 

 

The colonies obtained on the plates the next day were restreaked on plates with 

the antibiotic to get “clean” colonies. These restreaked colonies were then checked 

using primers that bound outside the deleted region to ensure that the correct mutation 

was introduced. After the check PCR, the colonies were grown on LB plates at 42°C. 

Next, the colonies were checked for the loss of the temperature sensitive plasmid, 

pKD46, by growth on LB plates and also on LB plates with ampicillin. 

 

To remove the antibiotic resistance marker from the mutated strains, the cells 

were transformed with the temperature sensitive plasmid, pCP20. The colonies on the 

ampicillin plates at 30°C were streaked on non-selective plate agar at 42°C and then 

checked for the loss of antibiotics kanamycin/chloramphenicol and ampicillin. Prior to 

removal of the antibiotic marker, all mutations were moved into a wild-type background 

using P22 transduction. 

 

Tetracycline Counter Selection 
 

Chromosomal tetracycline counter-selection was done using the method 

described previously (Karlinsey, 2007). Briefly, the method consists of two steps. In the 
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first step, the region of interest to be mutated was first replaced with a tetRA element 

from the transposon Tn10. This was done using λ-Red recombination using the plasmid 

pKD46. The resultant strain is resistant to tetracycline and was selected for on 

tetracycline plates. In the second step, the tetracycline resistance marker on the plates 

was replaced by the desired mutation. This was again done using λ-Red recombination 

and selecting for colonies on Tetracyline sensitive plates.  

 

For counter-selections, after the transformation of the PCR product, the cells 

were allowed to recover at 42°C (instead of 37°C) for 2 hours. After recovery, the cells 

were plated on plates which were pre-heated to 42°C (J. E. Karlinsey, Personal 

communication). Cellular growth on the counter-selection media was extremely slow 

and small colonies were only visible on the plates after growth for 24 hours at 42°C. The 

colonies were then streaked on LB plates and checked for loss of tetracycline and 

ampicillin resistance. Individual colonies on the LB plate were then PCR checked for 

introduction of the correct mutation. Prior to using the strain in the experiments, the 

PCR product was sequenced. 

 

P22 Transduction 
 

Prior to use in experiments, all mutations were moved (except the mutations 

introduced by counter-selectios) into clean wild-type background (14028) using P22 

transductions (Davis, 1980). The lysate was prepared as follows. The strain carrying the 
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mutation of interest was grown overnight at 37°C. 100 ul of the overnight culture was 

added to 5 ml of LB and 100 ul of wild-type lysate and the mix allowed to grow at 37°C 

overnight. The next morning, cell debris should be visible in the media. Spin the 

overnight culture down at 14000 rpm for 5 minutes. Carefully remove the supernatant 

(the lysate) and store at 4°C. The lysate is good for years. 

 

To move the mutation into wild-type, a wild-type culture grown overnight in LB 

media at 37°C. One hundred microliters of the overnight was then mixed with a hundred 

microliters of 1:10 and 1:100 dilution of the lysate of interest and allowed to sit 

stationary at 37°C for 30-45 minutes. 100 ul of the solution was then plated on plates 

with the appropriate antibiotic. Colonies were re-streaked on LB plates twice before 

selection of a colony for use in experiments. 

 

Note: Prior to use, 3-4 drops of chloroform was added to the wild-type lysate to activate 

the phage. The lysate was then allowed to sit for a few minutes to allow the chloroform 

to settle down. 

 

Note: all phage related work was done with glass pipettes. 

 

Note: Respective controls (recipient strain only or phage lysate only) were also plated to 

check if any colonies were obtained. 
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Transcriptional Fusions 
 

Transcriptional fusions with gfp, venus, luxCDABE, or mCherry for promoter 

activity measurements were made by amplifying the promoter of interest and cloning it 

in the multiple-cloning site of pPROBE. The size of the promoter fragment was decided 

by looking at the inter-genic distance and the previously characterized regulatory 

elements for a particular promoter. While amplifying, we typically, also went 15-20 base 

pairs into the gene to amplify the promoter fragment. 

 

Ectopic Gene Expression 
 

Genes of interest were cloned in the multiple cloning site of the vector 

pPROTet.E tetR. If introducing a synthetic RBS to the gene, the one on pPROBE was used 

and the one on pPROTet.E was removed. The 6x-His tag was also removed from the 

plasmid when cloning the gene of interest. 

 

Motility And Swarm Plates 
 

Motility Plates: Motility plates for swimming assays had the following recipe: 

Tryptone Broth (10 g/lt), NaCl (8 g/lt), and agar (0.3%). After autoclave, the plates were 

poured and allowed to solidify at room temperature. 1 ul of the overnight culture of the 

strain of interest was then pipette on to the plate.  The plate was then transferred to 

37°C and left there for a few hours for the rings to develop.  
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Swarm Plates: Swarming plates contained either LB broth with 0.6% Difco agar 

and 0.5% glucose (Kim & Surette, 2004) or 0.6% Bacto agar, 1% tryptone, 0.8% NaCl, and 

0.02% Tween 80.  

 

Note: motility media left on bench continuously loses water to evaporation. So, after a 

while, the agar percent in the media goes above 0.3% and the cells are no longer able to 

swim. Therefore, always use fresh motility media. 

 

Flagella Kinetic Experiments 
 

All mutants were combined with PflhDC::tetRA by phage-mediated transduction. 

Prior to the assays, the necessary strains were grown overnight at 30°C in LB broth. The 

overnight cultures were diluted to a starting OD600 of 0.02 and incubated with shaking at 

30°C to an OD600 of approximately 0.15, in a method similar to Kalir and co-wokers 

(Kalir et al., 2001). The cultures were then pipetted (200 μl) into a 96-well microplate 

with each well containing 5 μl of tetracycline (2.5 μg ml−1). To allow for aerobic growth 

and reduce desiccation, the plates were overlaid with a Breathe-Easy sealing membrane 

(Sigma, Z380059). The sealed microplates were then incubated at 30°C with intermittent 

shaking, light detection and absorbance readings in a TECAN Safire microplate reader for 

50 cycles. A cycle was defined as: (i) measure light production, (ii) measure absorbance, 

(iii) shake for 5 min and (iv) pause for 25 s. All microplate assays were repeated at least 
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three times (i.e. three independent plates) allowing for the average promoter activity of 

n ≥ 9 to be calculated, unless otherwise stated. 

 

SPI1 Kinetic Experiments 
 

Fluorescence assays: One milliliter cultures were first grown overnight in 16mm 

borosilicate test-tubes in LB medium lacking salt under vigorous shaking at 37°C (SPI1 

repressing conditions) and then subcultured 1:1000 into fresh LB medium (with salt) and 

grown statically in test tubes at 37°C for 12 hours (Ellermeier & Slauch, 2003). A 100 μL 

aliquot of each culture was then transferred to a 96-well microplate, and fluorescence 

and absorbance (OD600) were measured using a Tecan Safire2 microplate reader. The 

fluorescence readings, given in terms of relative fluorescence units (RFU), were 

normalized to the OD600 absorbance to account for cell density. 

 

For single-cell fluorescence measurements, overnight cultures were first grown 

under SPI1-repressing conditions at 37°C. The cells were then sub-cultured to an OD of 

0.05 into fresh LB medium (with salt) and grown statically at 37°C. Samples were 

collected at different time points by resuspending them in phosphate buffered saline 

(PBS) with 34 μg/mL chloramphenicol in order to arrest translation and then storing on 

ice. All fluorescent-activated cell sorting (FACS) experiments were performed on a BD 

LRS II system from BD Biosciences. Data extraction and analysis for the FACS 
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experiments was done using FCS Express Version 3 (De Novo Software). For all FACS 

experiments, fluorescence values of 30,000 events was recorded and reported. 

 

In the flow cytometry experiments involving the PhilC and PhilD promoters, we 

used destabilized GFP transcriptional fusions where the sequence AANDENYAASV was 

appended to the C-terminus of the protein. This tag reduces the half life of GFP from 

approximately 24 hours to 110 minutes (Miller et al., 2000). The reason that we needed 

to employ destabilized GFP is that PhilC and PhilD promoters are partially active even 

when the cells are grown in SPI1-repressing conditions. As a consequence, we were 

unable to observe the “off” to the “on” transition using “tagless” GFP. We did not run 

into similar problems with the PhilA and PrtsA promoters and consequently used 

transcriptional fusions to “tagless” GFP.  

 

Fimbriae End-Point And Kinetic Experiments 
 

As an indirect measure of gene expression, end-point and dynamic 

measurements of the fluorescent reporter system were made using a Tecan Safire2 

microplate reader. For fluorescence end-point measurements, 1 ml culture was grown 

at 37°C overnight and then subcultured 1:1,000 in fresh medium and grown in static 

conditions for 24 h at 37°C. A total of 100 ul of the culture was then transferred to a 96-

well microplate, and the relative fluorescence and optical density at 600 nm (OD600) 

measured. The fluorescence readings were normalized with the OD600 to account for 
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cell density. For time course measurements, overnight cultures at 37°C were 

subcultured to an OD of 0.05 in fresh medium and allowed to grow to an OD of 0.15. A 

total of 100 ul of the culture was then transferred to a 96-well microplate and overlaid 

with 25 ul of oil to prevent evaporation. The temperature was maintained at 37°C, and 

fluorescence and OD readings were taken every 5 min. All experiments were done in 

triplicate and average values with the standard deviations reported. Single-cell 

measurements were done similarly by growing the cells in noninducing conditions with 

vigorous shaking at 37°C. Overnight cultures were subcultured to an OD of 0.05 in fresh 

medium (LB) and grown in inducing conditions of high oxygen and no shaking at 37°C. 

Samples were collected at different time points by spinning the cells down, 

resuspending them in phosphate-buffered saline supplemented with chloramphenicol 

(20 ug/ml) to stop all translation and arrest the cells in their respective state, and finally 

storing on ice. All flow cytometry experiments were performed on a BD LRS II system 

(BD Biosciences). The data extraction and analysis for the flow cytometry experiments 

were done using FCS Express version 3 (De Novo Software). 

 

Western Assay 
 

Cells from overnight cultures were subcultured 1:1,000 in fresh medium and 

grown at 37°C for 6 h. Prior to lysis, OD600 measurements were taken to ensure that 

there were equivalent numbers of cells between samples. To lyse the cells, cultures 

were spun down, resuspended 3:1 in 4x sodium dodecyl sulfate solubilizer, and boiled at 
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95°C for 10 minutes. Lysates were run on a 4 to 20% Tris-HCl precast gel (Bio-Rad) for 50 

min at 150 V. Transfer to the membrane was done using Immobilon transfer 

membranes with 0.2-um pore size (Millipore). 3x FLAG-tagged FlhC was detected with 

an anti-FLAG M2 monoclonal antibody (Sigma) and an anti-mouse horseradish 

peroxidase-conjugated antibody (Jackson Laboratories) using the ECL Plus Western 

blotting detection system (Amersham). In order to quantify the relative protein levels, 

the membrane was scanned using a STORM 840 PhosphorImager (Amersham) and then 

analyzed using the LabWorks software package (UVP). The relative amount of protein in 

each lane was estimated by measuring the integrated OD for each band. All 

measurements were performed in triplicate. 

 

Co-Immunoprecipitation  
 

We followed the basic protocol outlined by Shin and Groisman (Shin & Groisman, 

2005). Briefly, cells from overnight growth were sub-cultured 1/100 in 200ml LB and 

grown for 8 hours at 37°C. Formaldehyde (1%) was then added to the cultures, and the 

reaction was incubated at room temperature for 15 minutes. The cross-linking reaction 

was quenched by addition of 125 mM glycine. The cells were then washed twice with 

ice-cold phosphate-buffered saline (PBS). The cells were lysed in 0.5 ml of lysis solution 

(10 mM Tris, pH 8.0, 50 mM NaCl, 10 mM EDTA, 20% sucrose, 10 mg/ml lysozyme) and 

0.5 ml of 2xRIPA solution (100 mM Tris, pH 8.0, 300 mM NaCl, 2% Nonidet P-40, 1% 
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sodium deoxycholate, 0.2% SDS). The cell extract was sonicated so that the average 

fragment DNA had an average size of 500 bp. 

 

The Ni-NTA resin and the lysate were mixed in equal volumes and allowed to sit 

at 4°C for 60 minutes. The lysate/Ni-NTA mixture was then loaded on a column and the 

flow through discarded. The column was then washed thrice with the wash buffer 

(50mM NaH2PO4, 300mM NaCl, 20mM imidazole, and pH adjusted to 8.0 using NaOH) 

and the flow-through discarded. The protein and the bound DNA were eluted with one-

eighth volume of the elution buffer (50mM NaH2PO4, 300mM NaCl, 250mM imidazole, 

and pH adjusted to 8.0 using NaOH). Reversal of cross-linking and DNA purification was 

done as described by Kuo and Allis (Kuo & Allis, 1999). The isolated DNA was checked for 

the presence of the promoter region of interest by PCR.  

 

DNA Mobility Shift Assay 
 

DNA mobility shift assays were performed using the approach previously 

described by Ellermeier and Slauch (Ellermeier & Slauch, 2003). Briefly, whole-cell 

extracts were prepared by subculturing overnight cultures 1/100 in LB medium and 

growing them to an OD600 of 0.5, at which time 0.2% L-arabinose was added and 

cultures were grown for an additional 4 h at 37°C. The cells were then harvested by 

centrifugation at 5,000 x g for 10 min. The pellet of cells was resuspended in 10 ml of 50 

mM Tris-HCl (pH 7.9) with 30 µM dithiothreitol (DTT), and the solution was then 
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sonicated to lyse the cells. Lysates were then centrifuged at 16,000 x g for 30 min at 4°C. 

The protein concentration in each sample was determined by using a bicinchoninic acid 

(BCA) protein assay reagent (Pierce Protein Research Products).  

 

The binding reaction mixture contained approximately 0.1 ng of 32P-labeled DNA 

(xylA promoter; genomic region, nucleotides 3726575 to 3727102), 50 µg of herring 

sperm DNA per ml, 10 mM Tris-Cl (pH 8), 50 mM KCl, 100 µg of bovine serum albumin 

per ml, 10% glycerol, 1 mM DTT, 0.5 mM EDTA, and 2 µg whole-cell extract in a final 

volume of 20 µl. In the experiments where the I1-I1 binding site was included as a 

competitor, 10 ng of the double-stranded sequence (5'-ATG CG T AGC ATT TTT ATC CAT 

AAG ATT AGC ATT TTT ATC CAT AAG CCA-3') was added to the mixture. The binding 

reaction mixtures were incubated for 30 min at room temperature and then subjected 

to electrophoresis on a 5% native polyacrylamide gel in 0.5x Tris-borate-EDTA (TBE) at 

room temperature. Gels were dried on filter paper in a vacuum drier and were scanned 

using a Storm 840 PhosphorImager (Amersham). 
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Chapter 3. Flagellar Gene Network  
 

Introduction 
 

The bacterial flagellum is a rotary motor that enables cells to swim in liquid 

environments and drift along surfaces (Berg, 2003, Harshey & Matsuyama, 1994). In 

Salmonella enterica serovar Typhimurium, over 50 genes divided among at least 17 

operons are involved in motility (Chilcott & Hughes, 2000). These genes encode not only 

the flagellar subunits and chemotaxis proteins but also a number of regulators that 

synchronize gene expression with the assembly process.  

 

The flagellum consists of three structural elements: the basal body, the hook, 

and the filament (Macnab, 1999) (Figure 2). The basal body, embedded in the 

membrane, anchors the flagellum to the cell. It also houses the rotary motor necessary 

for swimming and the type III secretion apparatus, which is involved in assembly. The 

hook, a flexible joint, transmits torque produced by the motor to the filament, a rigid 

helical structure approximately 5 to 15 μm in length that functions as the propeller 

(Yonekura et al., 2003). In S. enterica serovar Typhimurium, there are approximately 

four to six flagella per cell (Karlinsey et al., 2000b). When the motors spin 

counterclockwise, the filaments form a helical bundle that propels the cell forward in a 

corkscrew-like manner. 
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Flagellar assembly proceeds in a sequential manner beginning at the base along 

the inner membrane and concluding with the filament (Macnab, 2003). The type III 

secretion apparatus, located at the cytoplasmic interface of the flagellum, delivers the 

majority of the protein subunits through a central channel within the growing flagellar 

structure. The process concludes with the nucleation and elongation of the flagellar 

filament, driven by the secretion of flagellin monomers into the hollow interior of the 

filament and subsequent incorporation at the distal tip (Asakura et al., 1968, Homma & 

Iino, 1985, Morgan et al., 1995, Yonekura et al., 2000).  

 

A critical feature of flagellar biogenesis is that gene expression is coupled to 

assembly. Upon initiation, where cells transition from a non-flagellated to a flagellated 

state, gene expression proceeds in a sequential manner: first, genes encoding the basal 

body and hook proteins are expressed, and then, only after these structures are 

assembled, the late genes encoding the filament, motor, and chemotaxis proteins are 

expressed (Kalir et al., 2001, Karlinsey et al., 2000a). If hook or basal body assembly is 

unsuccessful, then the late genes are not expressed. This checkpoint enables cells to 

coordinate assembly and is the main regulatory mechanism observed during initiation. 

The way that cells enforce this checkpoint is to use late protein secretion as a proxy 

signal for hook-basal body (HBB) completion (Hughes et al., 1993).  

 

Coordinated expression of more than 50 genes is required for assembly of a 

functional flagella (Figure 3A). The flagellar promoters can be divided into three classes 
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(Chilcott & Hughes, 2000) (Figure 3). A single Pclass1 promoter controls the expression of 

the flhDC master operon involved in initiating assembly (Figure 3B,C). This promoter 

integrates environmental signals through the combinatorial action of multiple global 

transcriptional regulators, thus allowing cells to determine whether or not to be motile 

(Pruss et al., 2001, Yanagihara et al., 1999). When motility is induced, the FlhD4C2 

complex activates the Pclass2 promoters (Ikebe et al., 1999, Wang et al., 2006). These 

promoters control the expression of the genes encoding the HBB and two regulatory 

proteins, σ28 (or FliA) and FlgM. The σ28 alternate sigma factor, also known as FliA, is 

required for activating the Pclass3 promoters, which control the expression of the late 

genes (Ohnishi et al., 1992). However, prior to HBB completion, FlgM binds to σ28 and 

prevents it from activating the Pclass3 promoters (Chadsey & Hughes, 2001, Chadsey et 

al., 1998, Gillen & Hughes, 1991). This inhibition, however, is relieved when the HBB is 

assembled, as the completed structure can secrete FlgM along with other late proteins 

involved in assembly (Hughes et al., 1993). Thus, the cell is able to use protein secretion 

as a cue for HBB completion.  

 

Recently, a number of additional flagellar proteins have been shown to regulate 

gene expression. These proteins include two chaperones, FlgN and FliT, and a flagellar 

protein, FliZ (Fraser et al., 1999, Kutsukake et al., 1999, Karlinsey et al., 2000a, Lanois et 

al., 2008). FlgN facilitates the secretion of two hook-associated proteins (HAPs), FlgK and 

FlgL, which form the junction between the hook and filament (Bennett et al., 2001, 

Fraser et al., 1999). FlgN also enhances flgM translation with a specific preference for 
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class 3 transcripts (Karlinsey et al., 2000a). In a manner similar to the σ28-FlgM 

checkpoint, both FlgK and FlgL bind to and inhibit FlgN’s regulatory activity, suggesting 

that FlgN too is involved in a checkpoint coupled to the completion of HBB (Aldridge et 

al., 2003). Interestingly, however, FlgN’s effect on gene expression is most pronounced 

in strains defective for secretion, contrary to what we would expect from a HBB-

dependent checkpoint.  

 

FliT has previously been shown to negatively regulate FlhD4C2 activity (Kutsukake 

et al., 1999, Yamamoto & Kutsukake, 2006). FliT is the T3S chaperone for the filament 

cap protein, FliD (Fraser et al., 1999). Yamamoto and Kutsukake (2006) showed that FliT 

binds to FlhD4C2 and prevents it from activating Pclass2 promoters (Yamamoto & 

Kutsukake, 2006). Because it affects FlhD4C2, FliT can potentially inhibit both Pclass2 and 

Pclass3 promoters, unlike FlgM or FlgN. Furthermore, it can potentially activate the Pclass1 

promoter by preventing FlhD4C2 from inhibiting its own expression. Deletion mutants of 

fliT are still motile but show increased flagellar gene expression and numbers consistent 

with it being a transcriptional inhibitor (Yokoseki et al., 1995). Because it is a chaperone, 

FliT’s activity is likely coupled to HBB completion and secretion in a manner similar to 

σ28 and FlgN. Lastly, FliZ is a positive regulator of Pclass2 activity (Kutsukake et al., 1999). 

While FliZ is not known to be a chaperone, it is expressed on the same mRNA transcript 

as σ28 and therefore responsive to secretion as it is expressed from both Pclass2 and Pclass3 

promoters.  
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The flagellum is interesting from various points of view. Research efforts in 

understanding the bacterial flagellum have focused on characterizing the energy 

efficiency of the flagella as a motor-operated organelle; the hydrodynamics of the 

flagellar function; and the evolutionary history of a complex organelle such as the 

flagellum. Our research focus has been to study the role of regulatory interactions in the 

flagellar cascade of genes leading to timely assembly of the flagellar subunits. This 

chapter deals with the following two ideas: 

 

To investigate the role of FliZ in regulating flagellar assembly. FliZ has been 

reported as a flagellar gene expression activator (Bischoff et al., 1992, Kutsukake et al., 

1999, Saini et al., 2008). However, the precise mechanism of FliZ-dependent activation 

of the flagellar genes is not known. In this section, we try and elucidate the mechanistic 

details of FliZ-regulation of the flagellar genes. We also study the impact of fliZ deletion 

on gene expression dynamics and the role of FliZ in controlling flagellar abundance per 

cell.  

 

Role of FliA-FlgM in dictating gene expression dynamics. The second idea we 

explore in this chapter deals with the σ28-FlgM regulatory system in the flagellar 

network. This interaction has previously been thought to function as a binary 

checkpoint, activating expression from the class 3 promoters only when the HBB 

complex is complete and repressing expression when not. However, in recent work from 

our and Phillip Aldridge’s laboratory at the University of Newcastle, we characterized a 
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number a secretion and regulatory mutants where the relative timing of class 2 and 

class 3 promoter activities was altered (Brown et al., 2008). In particular, we found that 

gene expression dynamics were determined by the rate of protein secretion. These 

results led us to hypothesize that the σ28-FlgM regulatory system functions not only as a 

developmental checkpoint but also as a rheostat that serves to dynamically fine tune 

gene expression in response to flagellar abundance using protein secretion as a proxy 

signal. In this work, we investigated the role of the σ28-FlgM regulatory system in 

controlling the dynamics of flagellar gene expression in S. enterica. To explore the 

different elements of this regulatory system, we first developed a mathematical model 

of the flagellar regulon.  Analysis of the model predicted that the temporal ordering in 

the activation of the class 2 and class 3 promoters is not a direct consequence of the 

transcriptional hierarchy but rather due to the σ28-FlgM regulatory system. In particular, 

this system serves to the control the dynamics of gene expression from both the class 2 

and class 3 promoters in response to the rate of protein secretion. Based on our results, 

we conclude that the primary function of the σ28-FlgM regulatory system is not to 

enforce a developmental checkpoint as previously thought but rather to ensure robust, 

homeostatic control. 
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Flagella Results 

 

FliZ Regulates the FlhD4C2 Level in the Cell to Control Flagellar Abundance. 
 

FliZ is a protein of no known homology with regulatory proteins. FliZ is encoded 

in the flagellar network along with the flagellar specific sigma factor, FliA. FliZ has also 

been shown to act as a positive regulator of the SPI1 encoded T3SS used by the 

bacterium S. typhimurium in the intestinal phase of infection. We previously reported 

that FliZ-dependent activation of the flagellar cascade is via post-translation activation 

of the flagellar master regulator, FlhD4C2 (Saini et al., 2008). With these results, we 

hypothesized if FliZ acts via negatively regulating proteases in the cell which are known 

to negatively regulate flagellar gene expression. In particular, we tested the proteases 

Lon and ClpXP. However, against our prediction, our results show that FliZ-dependent 

regulation of the flagellar system is independent of both Lon and ClpXP (Figure 4). 

 

Although, we do not as yet know the mechanism of FliZ-dependent activation of 

the flagellar genes, we wanted to learn impact of a fliZ mutation on the dynamics of 

flagellar gene expression in wild type. Our results indicate that FliZ controls the 

activation kinetics of class 2 promoters in the flagellar cascade. In a ∆fliZ mutant, class 2 

promoters exhibit a delay in activation as compared to the wild type. In addition, 

maximal levels of class 2 promoter activity is also decreased in the ∆fliZ mutant as 

compared to the wild type. On the other hand, loss of FliZ only had an effect on the 
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absolute value of class 3 promoter levels and the dynamics of activation was the same 

as that in the wild type (Figure 5). 

 

Since class 2 gene products are structural components of the HBB of the 

flagellum, we hypothesized that class 2 expression controls the flagella number per cell 

and that a ∆fliZ mutant would be less flagellated as compared to the wild type. To test 

this hypothesize, we performed electron microscopy experiments to count the flagellar 

numbers per cell in wild type and the ∆fliZ mutant. Our results demonstrate that a ∆fliZ 

mutant assembles less flagella per cell as compared to the wild type (Figure 6). 

Therefore, our results suggest that during flagellar assembly FliZ acts to control the 

flagellar abundance per cell. 

 

Flagellar Model for FliA-FlgM Interaction  
 

Following initiation, flagellar gene expression occurs in a sequential manner. The 

class 1 promoter is first induced, then the class 2 promoters, and finally the class 3 

promoters. A characteristic feature of this temporal program is that there is a delay 

between the induction times of these different promoter classes (Figure 7). We 

previously characterized a number of mutants with altered delays between the 

induction of the class 2 and class 3 promoters (Brown et al., 2008). To understand the 

mechanistic origin of these changes in the timing of gene expression, we constructed a 

mathematical model of the flagellar gene circuit.  
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Our initial goal in constructing this model was to understand why there is a 

delay. In particular, the transcriptional hierarchy, where the class 1 gene products are 

necessary for the activation of the class 2 promoters and the class 2 gene products are 

necessary for the activation of the class 3 gene promoters, alone does not explain the 

delays. As simple experimental proof for this ascertain, both the class 2 and class 3 

promoters are activated at roughly the same time in a ΔflgM mutant. These results 

indicate that FlgM somehow plays a role in generating these delays. In further support 

of such a mechanism involving FlgM, many of the timing mutants that we previously 

identified were associated with a secretion defect. In particular, in mutants where the 

secretion rate was increased, the delay between the activation of the class 2 and class 3 

promoters decreased. Likewise, when the secretion rate was decreased, the delay 

increased.  

 

Based on these data, we hypothesized that the rate of FlgM secretion 

determines the magnitude of the delay. A key element of this hypothesis is that the 

secretion rate is a variable quantity and determined by the number of functional HBB’s 

in the cell. 

 

We did not attempt to model expression of FlhD4C2. The Pclass1 promoter, PflhDC, is 

regulated by a large number of global regulators in response to various external and 

intracellular signals. The precise role of these global regulators is not known and 

therefore, was not included in the analysis. However, motility is induced in S. 
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typhimurium in the early exponential phase and therefore, the class 1 promoter activity 

was represented by an incomplete gamma function. 

 

Structural components of the HBB are encoded from a number of FlhD4C2-

dependent class 2 promoters and therefore, were lumped together and treated as one 

entity in our model. 

 

Protein secretion takes place from the cells through discrete number of HBB 

structures assembled. However, in absence of an estimate of the HBB structures 

assembled in the cell we assume that protein secretion is proportional to class 2 gene 

expression. 

 

Flagellar gene circuit is known to be regulated at the translational level 

(FliC/FlgN-FlgM). We, however, ignore the regulatory interactions at the mRNA level in 

the circuit and only study transcription and protein-protein interaction at the FliA-FlgM 

level in our model. 

 

Promoter activity was modeled using equilibrium thermodynamics expressions 

(i.e. Michaelis-Menten type expressions). 

 

FliA is a chaperone for its anti-sigma factor, FlgM. We assume that only FlgM 

bound to FliA is recognized by the export apparatus to be secreted from the cell. Free 
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cellular FlgM will not get secreted from the HBB structure. In addition, we also assume 

that FliA does not affect FlgM stability but only regulates its secretion. Also, we ignore 

the FlgM-dependent stabilization of FliA. 

 

Based on the assumptions enumerated above, we can model the FliA-FlgM 

interaction in the flagellar network with the following set of ordinary differential 

equations: 
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Where, A denotes the concentration of FliA, M the total concentration of FlgM, C 

the total concentration of the FliA-FlgM complex, X the concentration of class 2 genes, Y 

the concentration of class 3 genes, and f the total concentration of the FlhD4C2 

complex. The parameter values used for all our modeling results are as follows: Ka = 1, 
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Km = 1, Kam = 3, k2m = 1.5; k3m = 3, k2a = 0.2, k3a = 1.8, Kon = 30, Koff = 0.006, dx = 1, 

dy = 1, da = dm = dc = 0.4+log(2)/30, and Ke = 2.  

 

To validate our model, we first observed the dynamics of class 2 and class 3 

promoters in a wild type mutant. Consistent with our experimental observations, we 

observed that there exists a delay between induction of class 2 and class 3 promoters. 

We hypothesize that the FliA-FlgM interaction in conjunction with protein secretion 

from the growing flagellum is responsible for tuning the gene expression dynamics. To 

further validate our model, we tested our model output for a ∆flgM mutant. To 

generate the gene expression profiles for the mutant, we put the FlgM generation rate 

equal to zero in our model. Loss of FlgM, consistent with our experimental observation, 

eliminates the hierarchy of class 2 and class 3 promoter activation as both classes were 

induced at the same time (Figure 8).  

 

Next, we tested the model output in a mutant where we reduce the secretion 

rate from the flagellum. Experimentally, we did this by fusing FlgM with β-lactamase, 

and we observe that reducing the secretion rate delays induction of class 3 promoters, 

therefore, further increasing the time delay between class 2 and class 3 promoter 

activation. Our mathematical model was able to capture this effect when we decrease 

the FlgM secretion rate from the growing flagellum (Figure 9). These results suggest that 

the FliA-FlgM interaction does not encode a hard-checkpoint in the flagellar assembly 
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but it serves the role of a gene expression tuning agent in response to the assembly 

status of the growing flagellum. 

 

In this regard, our model predicted that FliA-auto-regulation plays an important 

role in gene expression regulation. FliA expression is under a hybrid class 2 and class 3 

promoter, and by setting the auto-activation term equal to zero, our model predicted 

that this auto-activation is essential for faster activation of the class 3 promoters. In 

other words, our model predicts that in the absence of FliA-autoactivation, the delay 

between class 2 and class 3 promoter induction would increase (Figure 10). To test this 

prediction experimentally, we replaced the hybrid PfliA promoter with pure class 2, PflhB 

promoter. The PflhB promoter is not regulated by FliA and is solely under the control of 

FlhD4C2 complex for activation. Under physiological conditions, the two promoters, PfliA 

and PflhB, are of approximately equal strength. Consistent with our model prediction, we 

observe that replacing the native PfliA promoter by a pure class 2, PflhB promoter, 

increases the delay between inductions of class 2 and class 3 promoters (Figure 10). 

 

The fact that the delay in class 2 and class 3 promoter induction during flagellar 

assembly is not rigid but is tunable in response to assembly status and protein secretion 

rate was also predicted by our model when we ectopically expressed FliA. By replacing 

the FlhDC- and FliA-dependent activation of FliA by a constant term our model predicted 

that the induction of class 3 promoters with respect to class 2 promoters is tunable. To 

test this prediction, we first replaced the PfliA promoter with a tetRA element on its 
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chromosomal locus. The resulting strain was called PfliA::tetRA. The tetRA element in this 

strain was then replaced by the lacIq Ptac element from the CRIM plasmid pAH55 

(Haldimann & Wanner, 2001). The resulting strain was called PfliA::Ptac where FliA 

expression could be induced by addition of IPTG to the medium (Figure 11). The results 

of gene expression dynamics experiments in this strain validated our hypothesis that 

FliA-FlgM interaction is not a hard-checkpoint in the flagellar assembly but a tunable 

interaction that links gene expression to assembly status (protein secretion). 

 

Our model, however, suffers from some important limitations. Flagellar gene 

expression is controlled by a large number of feedback loops. Important among those 

are FliZ-FlhD4C2 positive feedback loop and the FliT-FlhD4C2 negative feedback loop. 

Where, in response to high-secretion rates (high flagellar abundance) FliT binds to 

FlhD4C2 and prevents activation of class 2 promoters, we do not understand the 

mechanism of FliZ-dependent activation of FlhD4C2 amounts inside the cell. Both these 

feedback loops are not accounted for in our model. Other regulatory interactions, FliS 

and FlgN, are also not included in our model. Thus, the next step in this direction is 

incorporation of more interactions in the model to develop a more comprehensive 

understanding of the link between gene expression, assembly process, and control over 

flagellar abundance. 
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Discussion 
 

The FliA-FlgM interaction enforces a critical check point when cells transition 

from a non-flagellated to a flagellated state. This check point includes allowing class 3 

expression to start only when a functional HBB has been assembled. As we have shown, 

it also causes a delay in class 3 gene expression. Our results indicate that in the 

architecture of the flagellar cascade, the fliAZ operon tunes the delay in class 2 and class 

3 gene expression.  In a ∆fliZ mutant, the delay between class 2 and class 3 expression is 

reduced as a mutation in fliZ leads to a delay in class 2 gene expression. Eliminating the 

FliA feedback on its promoter resulted in elimination of the positive feedback driving 

class 3 gene expression. Loss of FliA feedback led to a big delay in class 3 expression in 

PfliA::PflhB strain resulting in increase in the delay between class 2 and class 3 gene 

expression. Eliminating the FliA feedback, however, weakened the FliZ-dependent 

feedback on FlhD4C2 as well. Weakening this positive feedback resulted in lower than 

wild type levels of class 2 promoter activity in PfliA::PflhB though the dynamics of gene 

expression were the same as wild type. 

 

Conversely, we can also enhance the positive feedback loops driving class 2 and 

class 3 gene expression by deleting  flgM. In this case, FliA is free to activate PfliA 

resulting in enhanced FliA and FliZ levels, resulting in stronger feedback loops driving 

class 2 and class 3 expression. Enhancing the positive feedback by eliminating flgM 
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though comes at a cost that the cells no longer check the status of the flagellar assembly 

before initiating with class 3 gene expression. 

 

Based on our experimental and modeling results, we hypothesize that the role of 

the FliZ and FliA dependent positive feedback loops in the flagellar circuit is to tune the 

dynamics of expression of class 2 and class 3 genes.  FliA-FlgM interaction ensures that 

the feedback loops does not start before the assembly of a functional HBB. This 

checkpoint leads to a natural delay in class 3 and class 3 gene expression. We 

demonstrate here that we can tune the delay in gene expression by breaking,  

weakening or strengthening these positive feedback loops dictating flagellar gene 

expression and assembly. Thus, we propose that the role of the feedback loops in the 

fliAZ operon is to tune class 2 and class 3 gene expression timing.  
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Figures – Flagella Gene Network 
 

 

Figure 2. Structure of flagellum in S. typhimurium. The flagellum is divided into three 
distinct parts (a) the basal body which anchors the flagellum to the cell, (b) hook, which 
is a flexible joint that transmits torque from the motor to the filament, and (c) filament, 
which is a long rigid structure. 
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Figure 3. The regulatory network for the flagellar assembly. (A) Chromosomal locations 
of the operons that make up the flagellar regulon of S. enterica serovar Typhimurium. 
The operons are labeled E, M, or L depending on whether they are expressed early, 
middle, or late in the temporal induction pathway (Chilcott & Hughes, 2000). (B) Global 
signals feed into the class 1 promoter. Class 1 products activate the class 2 promoters 
leading to assembly of the hook basal body (HBB). Class 2 products also activate class 3 
promoters, which encode for the filament, motor, and chemotaxis proteins. (C) FliA, 
FlgM, FliZ, and FliT, all encode feedback loops in the flagellar network. 
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Figure 4. FliZ does not regulate flagellar gene expression via proteases, ClpPX and Lon. 
Class 2 and class 3 promoter activity in wild type, ∆fliZ, ∆clpXP, and ∆lon mutants. PflhB 
and PfliC promoters were fused with gfp[tagless] and fluorescence and OD600 were 
measured 8 hours after sub-culturing an overnight culture 1:500. Experiments were 
performed in triplicate at 30°C. 
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Figure 5. FliZ leads to a faster and stronger induction of class 2 promoters. Class 2 
(PflhB) and class 3 (PfliC) promoter dynamics in wild type (solid) and ∆fliZ mutant. 
Overnight culture was sub-cultured to an OD of 0.05 in fresh media and allowed to grow 
to an OD of 0.15 at 30°C. 100 µl of the culture was then transferred to a 96-well plate. 
Fluorescence and Optical Density (OD600) readings were taken every 20 minutes with 
shaking in between. The temperature was maintained at 30°C. All experiments were 
performed in triplicate with average values and standard deviations reported. 
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Figure 6. FliZ positively regulates the flagellar number per cell. Histogram of flagellar 
abundance per cell in wild type and a ∆fliZ mutant. Cells were grown to late exponential 
stage at 30°C and then arrested in their respective state by transferring to PBS with 
34µg/ml chloramphenicol. The cells were then laid on a grid and images taken on a 
Tunneling Electron Microscope (TEM). 
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Figure 7. Flagellar gene expression is hierarchical in nature. Class 1, class 2, and class 3 
promoter activities in wild type cells. All experiments were performed as described in 
Figure 5. 
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Figure 8. (A) FlgM delays class 3 promoter activation. Class 2 and class 3 promoter 
activities in wild type (solid) and ∆flgM mutant (dashed). Experiments were performed 
in triplicate with average value and standard deviations reported. All experiments were 
performed as described in Figure 5. (B) Class 2 and class 3 promoter dynamics in wild 
type (solid) and ∆flgM (dashed) from our mathematical model. 
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Figure 9. (A) Class 3 promoter activation is delayed in a FlgM-Bla mutant. Class 2 and 
class 3 promoter activities in wild type (solid) and an FlgM-Bla (dashed). Experiments 
were performed in triplicate with average value and standard deviations reported. All 
experiments were performed as described in Figure 5. (B) Class 2 and class 3 promoter 
dynamics in wild type (solid) and FlgM-Bla (dashed) from our mathematical model. 
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Figure 10. (A) Class 3 promoter activation is delayed in a ∆PfliA::PflhB promoter mutant. 
Class 2 and class 3 promoter activities in wild type (solid) and a ∆PfliA::PflhB promoter 
mutant (dashed). Experiments were performed in triplicate with average value and 
standard deviations reported. All experiments were performed as described in Figure 5. 
(B) Class 2 and class 3 promoter dynamics in wild type (solid) and a ∆PfliA::PflhB 
promoter mutant (dashed) from our mathematical model. 
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Figure 11. (A) Class 3 promoter activation is delayed in a ∆PfliA::Ptac promoter mutant. 
Class 2 and class 3 promoter activities in wild type (solid) and a ∆PfliA::Ptac promoter 
mutant (dashed). Experiments were performed in triplicate with average value and 
standard deviations reported. All experiments were performed as described in Figure 5. 
(B) Class 2 and class 3 promoter dynamics in wild type (solid) and a ∆PfliA::Ptac 
promoter mutant (dashed) from our mathematical model. 
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Chapter 4. Salmonella Pathogenicity 
Island 1 (SPI1)  
 

Introduction 
 

Salmonella enterica is a common food-borne pathogen that causes a wide array 

of diseases in humans, ranging from self-limiting gastroenteritis to life-threatening 

systemic infections (Zhou & Galan, 2001). The bacterium initiates infection by invading 

intestinal epithelial cells using a type 3 secretion system (T3SS) encoded within a forty 

kilobase region of the chromosome called Salmonella Pathogenicity Island 1 (SPI1) (Lee 

et al., 1992, Ginocchio et al., 1994, Mills et al., 1995) (Figure 12A). The bacterium uses 

this T3SS to inject proteins into the cytoplasm of host cells (Kimbrough & Miller, 2000, 

Kimbrough & Miller, 2002, Sukhan et al., 2001). The secreted proteins are then able to 

commandeer the host cells’ actin-cytoskeleton machinery and promote the uptake of 

the bacterium into these otherwise non-phagocytic cells (Zhou & Galan, 2001, Hayward 

& Koronakis, 2002). These secreted effector proteins mediate engulfment by collectively 

altering the regulation of the actin cytoskeleton (Cain et al., 2008, Galan & Zhou, 2000, 

Zhou & Galan, 2001). Two Salmonella actin-binding proteins – SipA and SipC – are used 

to directly control cytoskeleton dynamics (Zhou et al., 1999a, Zhou et al., 1999b). In 

addition, further cytoskeleton control is achieved by the guanine exchange factors (GEF) 

mimics SopE and SopE2 and the inositol polyphosphatase mimic SopB that, together, 

activate Cdc42 and Rac1 Rho-family GTPases (Hardt et al., 1998, Stender et al., 2000, 
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Zhou et al., 2001). After engulfment, the ATPase activating protein (GAP) mimic SptP is 

used to reverse these changes to the actin cytoskeleton and return the cell to its original 

state (Fu & Galan, 1999). Remarkably, these proteins achieve this regulation by 

mimicking the function of the host regulatory proteins even though they share no amino 

acid sequence similarity (Stebbins & Galan, 2001). Note that Salmonalla also utilizes a 

second TTSS, encoded within Salmonella Pathogenicity Island 2 (SPI2), to persist and 

replicate within host cells (Ochman et al., 1996, Shea et al., 1996). In addition to the 

SPI1 T3SS, Salmonella also utilizes a second T3SS, encoded within Salmonella 

Pathogenicity Island 2 (SPI2), to survive and replicate within host cells during systemic 

infection (Hensel, 2000, Shea et al., 1996). 

 

The genes encoding for the SPI1 T3SS are tightly regulated by a network of 

interacting transcriptional regulators that are responsive to a combination of 

environmental and intracellular signals (Ellermeier et al., 2005). These signals are 

presumably used by Salmonella as anatomical cues for initiating invasion and also for 

coordinating SPI1 gene expression with other cellular processes, most notably adhesion 

and motility (Iyoda et al., 2001, Kovaleva, 1976, Ellermeier & Slauch, 2003, Baxter & 

Jones, 2005). 

  

The master regulator for the SPI1 gene circuit is HilA, a transcription factor that 

contains a DNA binding motif belonging to the OmpR/ToxR family (Lee et al., 1992) and 

a large C-terminal domain of unknown function (Daly & Lostroh, 2008).  HilA activates 
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the expression of the genes encoding for the structural components of the SPI1 T3SS 

(Lee et al., 1992, Bajaj et al., 1995, Ahmer et al., 1999, Bajaj et al., 1996). In addition, 

HilA also activates the expression of an AraC-like transcription factor, InvF, involved in 

regulating the expression of the SPI1 secreted effector proteins and their cognate 

chaperones (Darwin & Miller, 2000, Darwin & Miller, 2001). HilA expression, in turn, is 

regulated by three homologous, AraC-like transcription factors: HilC, HilD, and RtsA 

(Schechter & Lee, 2001, Olekhnovich & Kadner, 2002, Ellermeier & Slauch, 2003). Both 

the hilC and hilD genes are encoded within SPI1 whereas rtsA is encoded elsewhere on 

the chromosome. These three transcription factors can independently activate HilA 

expression. They can also activate each others’ and their own expression (Ellermeier et 

al., 2005). Specifically, HilC, HilD, and RtsA are all capable of individually activating 

expression from the PhilA PhilC, PhilD, and PrtsA promoters. These auto-regulatory 

interactions result in three coupled positive feedback loops comprising HilC, HilD, and 

RtsA, the output of each capable of activating HilA expression. Of the three, HilD is 

dominant, as there is no HilA expression in its absence (Schechter et al., 1999). This 

reflects that fact that many activating signals, both environmental and intracellular, 

affect SPI1 gene expression by modifying the activity of HilD protein (Behlau & Miller, 

1993, Pegues et al., 1995, Baxter et al., 2003, Baxter & Jones, 2005, Ellermeier et al., 

2005, Lim et al., 2007, Ellermeier & Slauch, 2008, Lin et al., 2008a).  

 

In addition to positive regulation, SPI1 gene expression is also subject to negative 

regulation. HilA negatively regulates its own production, apparently by binding to the 
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PhilA promoter and repressing transcription (De Keersmaecker et al., 2005). HilE, a 

protein of unknown structure encoded outside of SPI1, binds HilD (Baxter et al., 2003) 

and prevents it from activating the PhilD, PhilC, PrtsA, and PhilA promoters.  

 

While the core architecture has been determined, the function of all of these 

interacting regulators and associated feedback loops comprising the circuit is still 

unknown (Figure 12B). Therefore, to understand their function, we measured gene 

expression dynamics at both population and a single-cell resolution in a number of SPI1 

regulatory mutants. The results from these experiments show that a pulse in PhilD 

promoter activity activates the SPI1 gene circuit. This pulse is then amplified by the 

positive feedback loops in the circuit, resulting in the rapid transition from the “off” to 

the “on” state. Differences in the timing of this activating signal among individual cells 

result in transient heterogeneity within the population, as some cells are induced more 

rapidly than others. Based on these experimental results, we constructed a simple 

mathematical model of the SPI1 gene circuit. Analysis of the model predicted that HilC 

and RtsA play a secondary role in SPI1 gene expression, serving to amplify the HilD 

signal. Our analysis also predicted that HilE sets a variable threshold for SPI1 activation. 

To experimentally test these two predictions, we remodeled the SPI1 network by 

swapping the promoters for hilC and hilD. Consistent with both predictions of our 

model, we find that HilC and HilD are not interchangeable due to differences in relative 

activity, and that only HilD is sufficiently strong to initiate activation of the SPI1 gene 

circuit. We also find that when HilD is expressed from the weak PhilC promoter, it can 
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activate the circuit only in the absence of HilE. Interestingly, HilA expression dynamics 

are no longer switch-like but rather continuous in this mutant. Collectively, these results 

enable us to deconstruct this complex circuit and determine the role of its individual 

components in regulating SPI1 gene expression dynamics.  
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Results 
 

Dynamics of SPI1 Gene Expression  
 

To investigate the dynamics of SPI1 gene expression, we grew cells statically in 

Luria-Bertani (LB) medium using 1% NaCl as the inducing signal. Growth in low-oxygen 

and high-salt conditions has previously been shown to induce SPI1 gene expression in 

vitro (Bajaj et al., 1996, Lee et al., 1992). In these experiments, we grew the cells 

overnight in LB/no salt and then sub-cultured them into fresh LB/1% NaCl medium, thus 

inducing a transition from SPI1 repressing to SPI1 inducing conditions. We employed 

two different reporter systems to measure gene expression. In our bulk, population-

level experiments, we measured gene expression using plasmid-based promoter fusions 

to the luciferase operon, luxCDABE, from Photorhabdus luminescens (Winson et al., 

1998, Saini et al., 2008). In our single-cell experiments, we employed promoter fusions 

to the green fluorescent protein (GFP) using an otherwise identical plasmid-based 

system (Miller & Lindow, 1997).  

 

The advantage of using the luciferase reporter system is that it is sensitive to 

dynamic changes in promoter activity, particularly at low levels of expression (Hakkila et 

al., 2002). However, bacterial luciferase produces insufficient light for single-cell studies, 

hence the need for fluorescent reporters. We also note that the bacterial luciferase 

reporter system imposes a metabolic burden due to the production of the luciferase 

substrate, tetradecanal, by LuxC, LuxD, and LuxE (Meighen, 1991). To account for any 
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potential biases associated with bacterial luciferase, we repeated a number of 

population-level experiments using the GFP reporters with similar results (results not 

shown). 

 

We measured gene expression dynamics in wild-type cells using the luciferase 

reporter system. After a brief lag following subculture, we found that the PhilD and PhilA 

promoters were activated in a sequential manner, consistent with HilD being necessary 

for HilA expression (Figure 12C). In the case of the PhilC and PrtsA promoters, we found 

that they were activated at roughly the same time as the PhilD promoter. This hierarchy 

can also be seen when the expression values are normalized with respect to their 

maximal value (Figure 12D). These results indicate that there is a temporal hierarchy in 

SPI1 gene expression, with HilC, HilD, and RtsA at the top of the transcriptional cascade 

and HilA at the bottom. A similar hierarchy has also been observed in the activation of 

the downstream promoters regulating the expression of the genes encoding the T3SS 

and secreted effector proteins (Temme et al., 2008). 

 

We also measured wild-type gene expression dynamics using flow cytometry in 

order to determine how individual cells within the population behave during SPI1 

induction. In the case of the PhilA promoter, the dynamics were not continuous; rather, 

individual cells transitioned from an “off” to the “on” state in a switch-like manner 

(Figure 13). By switch-like, we mean that the individual cells exist in one of two 

expression states. At intermediate times, transient heterogeneity in the population is 
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observed, with most cells existing in either the “off” or “on” state. Similar switch-like 

dynamics were also observed for the PhilC, PhilD, and PrtsA promoters, with a comparable 

hierarchy in activation times as observed in the population data (Figure 13). We note 

that heterogeneity in SPI1 gene expression has been previously observed by others 

(Hautefort et al., 2003). As the SPI1 gene circuit involves multiple interacting positive 

feedback loops, these results are not surprising. In particular, positive feedback is known 

to be an integral element in many cellular switches (Mitrophanov & Groisman, 2008).  

To identify the genesis of this behavior, we further investigated the regulation of SPI1 

gene expression. 

 

Induction of the SPI1 Gene Circuit Begins with a Step Increase in PhilD 
Promoter Activity 
 

HilD is necessary for HilA expression. Even though HilC and RtsA can 

independently activate HilA expression when constitutively expressed from ectopic 

promoters, these two regulators are incapable of doing so in the absence of HilD when 

expressed from their native promoters (Ellermeier et al., 2005). Therefore, to 

understand the role of HilD, we measured gene expression dynamics in a ΔhilD mutant 

using the luciferase reporters. In the case of the PhilA promoter, we observed no activity 

in the absence of HilD (data not shown), consistent with previous results (Schechter et 

al., 1999, Ellermeier et al., 2005). In the case of the PhilD promoter, we observed a weak, 

step-like increase in activity in the absence of HilD (Figure 14A). When we performed 

identical experiments using flow cytometry, we found that the PhilD promoter again 
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transitions from an “off” to the “on” state in a switch-like manner (Figure 14B). These 

results are identical to what is observed in wild-type cells, the only difference being that 

the magnitude of expression is significantly reduced when HilD is not present. We also 

performed identical experiments in a ΔSPI1 ΔrtsA mutant and observed an identical 

response (Figure 14C), indicating that the transient switch in PhilD promoter activity is 

not due to any SPI1 regulator but rather factors external to SPI1. 

 

These results demonstrate that the SPI1 gene circuit is activated by a step input 

in PhilD promoter activity. This signal is then amplified by a positive feedback loop 

involving HilD. As discussed below, HilC and RtsA serve to further amplify this signal. 

Interestingly, the heterogeneity in SPI1 activation is not due to the interacting positive 

feedback loops within the circuit but rather is intrinsic to the activating signal. The 

signals activating the PhilD promoter, however, are unknown. While multiple global 

regulators are known to affect SPI1 gene expression (Ellermeier & Slauch, 2007), these 

regulators appear to affect the activity of the HilD protein and not its promoter 

(Ellermeier & Slauch, 2008, Baxter & Jones, 2005, Ellermeier et al., 2005, Lim et al., 

2007, Lin et al., 2008b).  

 

With regards to HilC and RtsA, we found that the PhilC promoter was active in 

absence of HilD, though at a reduced level, whereas the PrtsA promoter was effectively 

off (Figure 14D). However, even though the PhilC promoter is active in the absence of 

HilD, HilA is not expressed. These results suggest that activation of the PhilD promoter is 
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the trigger mechanism for induction of SPI1 gene expression. Interestingly, when we 

assayed PhilC promoter activity in a ∆hilD mutant using flow cytometry, we found that 

the dynamics were not switch-like but rather continuous and rheostatic (Figure 14E). 

This homogeneity within the population indicates that the signal activating the PhilC 

promoter is fundamentally different than the one activating the PhilD promoter.  

 

HilC and RtsA Function as Transcriptional Amplifiers and Accelerators 
 

Unlike HilD, the HilC and RtsA proteins are not absolutely required for HilA 

expression. Yet, these two proteins can independently induce transcription from the 

PhilA promoter when constitutively expressed from an ectopic promoter (Ellermeier et 

al., 2005). To understand the role of these two proteins in regulating SPI1, we compared 

gene expression in wild type and a ΔhilC ΔrtsA mutant using the luciferase reporters 

(Figure 15A). Deleting these two regulators decreases the activity of the PhilD and PhilA 

promoters. Moreover, in the ΔhilC ΔrtsA mutant, there is also a delay in the induction of 

the PhilA promoter. This delay becomes more apparent when we normalize the 

luminescence measurements with respect to their maximal values (Figure 15B). When 

we measured gene expression at single-cell resolution using flow cytometry, we again 

observed a switch-like response in the ΔhilC ΔrtsA mutant (Figure 15C and 15D). The 

main difference relative to wild type was that the transition from the “off” to “on” state 

occurred more slowly in the absence of HilC and RtsA. Also, the activity of the PhilA 

promoter in the “on” state was lower in the ΔhilC ΔrtsA mutant than in wild type. With 

the PhilD promoter, we did not observe any change in the timing of promoter activation 
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in the ΔhilC ΔrtsA mutant relative to wild type (Figure 15E and 15F). Rather, we 

observed only a decrease in the level of PhilD promoter activity associated with the “on” 

state. Similar results for both promoters are observed in the single deletion mutants, 

though the overall effect is less, indicating that HilC and RtsA additively contribute to 

SPI1 gene expression. Based on these results, we conclude that HilC and RtsA serve two 

functions in the SPI1 circuit. First, HilC and RtsA amplify HilA and HilD expression. 

Second, they accelerate the transition of HilA expression from the “off” to the “on” 

state. 

 

HilE Dampens SPI1 Gene Expression 
 

We next investigated the role of HilE in the SPI1 gene circuit. HilE binds to HilD 

and prevents it from activating the PhilD, PhilC, PrtsA, and PhilA promoters (Baxter et al., 

2003). As HilD is at the top of the SPI1 transcriptional cascade, HilE is able to repress the 

expression of all SPI1 genes. However, unlike the other regulators, HilE does not 

participate in a feedback loop, as its expression is not regulated by any SPI1 gene (data 

not shown). Rather, its expression is regulated by exogenous factors. For example, the 

type I fimbrial regulator, FimZ, increases HilE expression whereas the 

phosphoenolpyruvate phosphotransferase system (PTS) regulator, Mlc, represses it 

(Baxter & Jones, 2005, Lim et al., 2007, Saini et al., 2009).  

 

We compared gene expression using the luciferase assay in wild type and a ΔhilE 

mutant (Figure 16A). In the case of both the PhilD and PhilA promoters, we observed a 
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roughly two-fold increase in promoter activity in the absence of HilE. However, we 

found that HilE did not affect the timing of activation for these two promoters (Figure 

16B). Similar results were observed in the flow cytometry experiments for the PhilD and 

PhilA promoters (Figure 16C and 16D) and the PhilC and PrtsA promoters (data not shown). 

These data suggest that HilE serves to dampen SPI1 gene expression by reducing the 

maximal level of promoter activity. 

 

Computational Analysis of SPI1 Gene Circuit 
 

The defining feature of the SPI1 gene circuit is the presence of three coupled 

positive feedback loops. An immediate question then is why are multiple loops present 

when most bacterial circuits have just one. To explore this question in more detail, we 

constructed a simple mathematical model of the SPI1 gene circuit based on our 

understanding of how it functions. The major assumptions used in formulating the 

model are enumerated below. 

 

1. In formulating the model, we focused solely on the interacting SPI1 regulators 

- HilC, HilD, HilE, and RtsA - and their role in regulating hilA expression. In particular, we 

ignored the effects of additional external regulators (Altier, 2005, Ellermeier & Slauch, 

2007). These external factors were accounted for implicitly in the model through our 

choice of the kinetic parameters. In other words, we assumed that there are no 

additional feedback loops beyond those detailed in Figure 12A. As a consequence, we 

treated these external regulators as constant inputs into the model. The validity of this 
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hypothesis is debatable, though there is insufficient evidence at this time to consider 

any reasonable alternatives. We also did not include the downstream SPI1 regulators – 

InvF and SicA – in the model. These downstream regulators do not appear to affect HilA 

expression. Rather, they are thought to regulate the timing of expression of the proteins 

comprising the SPI1 needle complex and the secreted effectors (Temme et al., 2008, 

Darwin & Miller, 2000, Darwin & Miller, 1999a). In these regards, the model focuses 

only on initiation and ignores assembly and secretion. It also does not account for the 

decrease in SPI1 gene expression seen when cells enter stationary phase (Figure 12B). 

 

2. The model does not account for negative regulation by HilA and SprB. HilA, in 

particular, negatively regulates its own expression by apparently binding to the PhilA 

promoter and repressing transcription (De Keersmaecker et al., 2005). Likewise, SprB, a 

transcription factor from the LuxR/UhaP family that is positively regulated by HilA, 

appears to bind to the HilD promoter and weakly repress its activity (Saini & Rao, 2010). 

Inclusion of these negative feedback loops does not substantively affect the results from 

our model and, for simplicity, we chose to ignore them in the model.  

 

3. The model does not distinguish between transcription and translation. Both 

are lumped together in a single step. As a consequence, the rate of protein synthesis is 

assumed to be linearly proportional to the concentration of mRNA within the cell. Our 

justification for this assumption is that based on a number of unpublished observations, 
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we believe that regulation of HilD occurs primarily either at the transcriptional or the 

post-translational level (i.e. the level of HilD protein).  

 

4. HilC, HilD, and RtsA are all AraC-like transcription factors and likely function 

only in the dimeric form. In the model, we assume for simplicity that the dimers form 

spontaneously and are stable (i.e. the dimerization reaction is irreversible). As a 

consequence, the model does not distinguish between the monomeric and dimeric 

forms; all protein is assumed to be in the dimeric form. We also do not account for the 

possible formation of heterodimers.  

 

5. HilC and RtsA can independently induce HilA expression (Ellermeier et al., 

2005). Yet, in the absence of HilD, HilA is not expressed even though hilC is transcribed 

(albeit at reduced levels). To account for HilD dominance (or rather dominant epistasis) 

in the model, we needed to assume that the SPI1 promoters have two binding sites with 

occupancy of both required for transcription. We specifically assumed that one site is 

highly specific for HilD with only weak affinity for HilC and RtsA. This first binding site 

establishes dominance as it effectively probes for whether HilD is present in the cell. 

Moreover, because of its high affinity, HilD will occupy this site even when expressed at 

low levels. Due to their weak affinity, neither HilC nor RtsA will occupy this site under 

physiological conditions. However, when over expressed, the elevated concentrations of 

these proteins will compensate for their weak affinity for this site, allowing them to 

bind. The second site, on the other hand, has moderate affinity for all three regulators 
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(with the affinity for HilD still the highest) and serves to tune expression in proportion to 

their aggregate concentration. Other alternatives are possible, though this model for 

promoter regulation offers perhaps the simplest mechanism to explain HilD dominance 

consistent with what we already know about SPI1 gene expression. Moreover, others 

have found that the SPI1 promoters contain multiple binding sites for the HilC, HilD, and 

RtsA (Schechter & Lee, 2001, Olekhnovich & Kadner, 2002), so this assumption is not 

entirely implausible. Lastly, we note that while HilD dominance has been documented 

previously only in the case of the PhilA promoter, our data suggests that it also extends to 

the PhilC, PhilD, and PrtsA promoters as detailed below. 

 

6. The most speculative aspect of the model concerns the mechanism for 

activation of the SPI1 promoters – PhilA, PhilC, PhilD, and PrtsA - by HilC, HilD, and RtsA. In 

the model, we assume that all four promoters have the same two binding sites, one 

highly specific for HilD and the other much less so (see Assumption 5). While there is no 

mechanistic data to support this hypothesis, we have found that the promoter activities 

are linearly proportional to one another when we compared them at varying levels of 

NaCl induction and in different genetic backgrounds (Figure 17). The simplest 

explanation for this linear correlation is that the binding mechanism is the same for all 

four promoters. As a consequence, we used the same mathematical expressions and 

parameters to model occupancy of the PhilA, PhilC, PhilD, and PrtsA promoters by the SPI1 

regulators. Aside from our supporting data, we significantly reduce the number of free 

parameters in the model by invoking this assumption.  
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7. The model assumes that HilE not only binds and inhibits HilD but also 

promotes its degradation. While there is no experimental data to support such a 

mechanism, we found it necessary to match our experimental results for the ΔhilE 

mutant. In the absence of such a mechanism, we found that the steady-state 

concentrations of HilD and HilA were not affected by HilE, a result contrary to 

experimental observations. 

 

8. The model assumes that the transient heterogeneity observed in the gene 

expression data is due solely to asynchrony in the timing of the activation signal. To 

model this behavior, we assumed that the PhilD promoter is activated at random times in 

individual cells, where the activation times are exponentially distributed. Likewise, we 

assumed that the PhilC promoter is activated in a deterministic manner. For simplicity, 

we assumed that both promoters have, on average, the same activation kinetics. 

Beyond asynchrony in the timing of activation, we do not believe that noise arising from 

any number of possible sources plays a critical role in SPI1 gene expression beyond 

introducing variability in the gene expression measurements (see below). 

 

9. To qualitatively compare the simulation results with our flow cytometry data, 

we employed density estimation using a Gaussian kernel with fixed bandwidth. This 

method replaces each data point with a Gaussian basis function of constant variance. 

While this method is typically used to smooth data, namely to approximate a discrete 
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histogram with a continuous function, we employed it to artificially introduce noise into 

our model. Our motivation was simply to obtain a better qualitative fit to the flow 

cytometry data where, aside from the heterogeneity, we observed variable gene 

expression in individual cells. While we do not believe this variability is significant for 

understanding how the circuit functions, we nonetheless attempted to capture it in our 

model. As do not know the origins of this variability (e.g. stochastic gene expression, 

measurement error, etc), we simply assumed that there was an additive Gaussian noise 

term in the model, effectively what density estimation does. 

 

We note that Mande and coworkers previously published a mathematical model 

of the SPI1 gene circuit (Maithreye & Mande, 2007, Ganesh et al., 2009). While there is 

substantial overlap between their model and ours, the Mande model does not account 

for the critical role of positive feedback on HilD expression, a key finding in our 

experimental investigations. More significantly, their model does not include HilE. As a 

consequence, the major conclusion drawn from the analysis of our model regarding the 

activation threshold cannot be obtained from theirs.  

 

Model Equations.  

 

The governing equations for the model are the following: 

 

  1 2D D D E E

dD
H t t k OO D a D E d ED

dt
        ,            (6) 
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E E E E

dE
E a D E d ED

dt
      ,             (7) 

  1 21
t

C C C

dC
e k OO C

dt
 


    ,             (8) 

1 2R R

dR
k OO R

dt
  ,               (9) 

1 2A A

dA
k OO A

dt
  ,              (10) 

E E E

dED
a D E d ED ED

dt
    ,            (11) 

1 2D D G

dG
k OO G

dt
    ,             (12) 

 

where t  denotes time and the state variable D  denotes the concentration of 

HilD, E  the concentration of HilE, C  the concentration of HilC, R  the concentration of 

RtsA, A  the concentration of HilA, ED  the concentration of the HilE-HilD complex, and 

G  the concentration of the luciferase reporter for the PhilD promoter. We included this 

last state variable, G , to better match the model to our experimental data. Otherwise, 

we needed to account for the fraction of HilD bound to HilE (ED ) and the associated 

differences in the stabilities of the respective moieties. The variable t  is used to denote 

an exponentially random distributed with a rate parameter   and  H   the Heaviside 

step function. The occupancy state of the two respective binding sites within the SPI1 

promoters are given by the following equilibrium expressions 

1 1 1
1

1 1 11

D C R

O O O

D C R

O O O

K D K C K R
O

K D K C K R

  
  

     

            (13) 
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and 

2 2 2
2

2 2 21

D C R

O O O

D C R

O O O

K D K C K R
O

K D K C K R

  
  

     

          (14) 

 

With regards to the model parameters, insufficient data are available to 

accurately and uniquely estimate them. However, as our goal was simply to construct a 

model that captured the general trends observed in the data, we simply choose 

numerical values for the parameters that provided a good qualitative fit. In these 

regards, the model is only semi-quantitative given the subjective basis of our 

parameterization. That said, the model captures our current understanding of the SPI1 

gene circuit and provides a reasonable fit to the data as documented in the main text. 

 

The model is qualitatively consistent with our experimental results, both with 

respect to the relative timing of HilD, HilC, RtsA, and HilA induction (Figure 18A-C) as 

well as the effects of mutations on HilD and HilA expression (Figure 18D-E) at both 

population and single-cell resolution.  

 

In constructing this model, we assumed that asynchronous activation of the PhilD 

promoter in individual cells causes the transient heterogeneity observed in SPI1 gene 

expression. We specifically assumed that the PhilD promoter is activated at random times 

in individual cells, where the times are exponentially distributed. Otherwise, the model 

is entirely deterministic. To capture the heterogeneous response, we also needed to 
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assume that the switch from the “off” to “on” state occurs very rapidly. Otherwise, the 

population will respond homogenously as differences in the timing of the activating 

signal in individual cells would be smoothed out due to the slow kinetics of the circuit. 

As our results demonstrate, this mechanism is sufficient for generating transient 

heterogeneity. In fact, if the PhilD promoter is activated in all cells are the same time or 

the kinetics of the switch are too slow, then the population behaves homogenously 

(Figure 19A and 19B). In the case of the PhilC promoter, we assumed that it was 

activated at the same time in all cells. While transient heterogeneity is observed in wild 

type cells, the PhilC promoter behaves homogenously in a ΔhilD mutant. Our model is 

also able to capture this behavior (Figure 19C and 19D). 

 

Our goal in constructing this model was not simply to recapitulate our 

experimental results but rather to explore the behavior of the circuit by simulating it 

over a range of different parameter values. When performing this parametric analysis, 

we found it most informative to focus on the steady-state behavior of the SPI1 gene 

circuit as this enabled us to explore the effect of two model parameters at the same 

time. We also confined our analysis to the parameters characterizing the regulatory 

topology of the circuit and not those defining the dynamics (e.g. degradation and 

protein-protein association/disassociation rates). 

 

We first considered the role of positive feedback on HilD expression, given the 

central role of this SPI1 regulator. To perform this analysis, we varied the degree by 
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which the SPI1 regulators - HilC, HilD, and RtsA - could activate HilD expression by 

simulating the model at different values for the parameter
Dk . When interpreting these 

results, we found it informative to also vary the strength of the activating signal in our 

simulations, given by the parameter D  in the model. As shown in Figure 20A, HilD 

expression increases as the value of the parameter 
Dk  increases, equivalent to 

increasing the strength of the feedback on HilD expression. When this feedback is 

sufficiently strong, the response to the activating signal becomes discontinuous and 

switch-like, the result of a supercritical pitchfork bifurcation (Strogatz, 2001). These 

results suggest that, in addition to amplifying the response, positive feedback may 

serve, along with HilE as described below, to endow the SPI1 circuit with an activation 

threshold. This threshold would ensure that SPI1 gene expression occurs only when a 

sufficiently strong activating signal is present. Moreover, the threshold decreases as the 

strength of the feedback increases, indicating that there is tradeoff between the degree 

of amplification and size of the threshold. 

 

Next, we explored the role of HilC and RtsA on SPI1 gene expression by varying 

the strength of their connectivity within the circuit. Specifically, we varied the degree by 

which the SPI1 regulators – HilD, HilC and RtsA - could enhance both HilC and RtsA gene 

expression, given respectively by the parameters Ck  and Rk  in the model. As HilC and 

RtsA both have a weaker effect on SPI1 gene expression than HilD, the degree of 

amplification is also less strong though the overall trend is the same (Figure 20B). 

Similar results are also obtained when the expression of only one protein is varied, 
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though the effect then is even weaker (data not shown). These results suggest that HilC 

and RtsA serve to fine tune SPI1 gene expression. A useful analogy here is to consider 

the fine and coarse focusing knobs on a microscope, where HilC and RtsA provide the 

fine-tune control and HilD the coarse control. This may explain why HilC and RtsA have a 

significantly weaker effect on SPI1 gene expression than HilD as the circuit is more 

robust than one with three strong regulators in the sense that only a single regulator 

defines the behavior of the circuit whereas the others simply tune the output. 

 

Last, we explored the effect of HilE on SPI1 gene expression. Unlike the other 

SPI1 regulators, HilE is not known to be involved in any feedback loops with the other 

SPI1 regulators. Rather, its expression is controlled by exogenous factors. In our 

simulations, we varied the rate of HilE expression, given by the parameter E  in the 

model. Consistent with its role as a negative regulator, HilE decreased both HilD and 

HilA expression in a dose-dependent manner (Figures 20C and 21C). In addition, when 

expressed at a sufficiently high rate, HilE effectively shuts off the expression of HilD and 

HilA, a result that we also observe experimentally (data not shown). Most notably, our 

model predicts that HilE sets the threshold for SPI1 activation - as the rate of HilE 

expression increases so does the threshold for activation and vice versa. The exogenous 

factors regulating HilE expression, therefore, may serve to tune this activation 

threshold. However, we note that HilE alone does not endow the SPI1 circuit with a 

threshold. Rather, the threshold results from the complex interplay between HilE and 

the HilD positive feedback loop (Figure 21D).  
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Taken together, these results allow us to assign putative function to the 

interacting regulators and associated feedback loops comprising the SPI1 gene circuit.  

When viewed as a whole, the circuit appears to serve two functions. The first is to place 

a threshold on SPI1 activation, ensuring that the assembly of the needle complex is 

initiated only in response to the appropriate combination of environmental and cellular 

cues. The second is to amplify SPI1 gene expression. 

 

Rewiring the SPI1 Gene Circuit 
 

Our computational analysis predicts that SPI1 gene circuit functions as a gene 

expression amplifier with a variable activation threshold. While our experimental results 

directly support the conclusion regarding gene amplification, the one concerning the 

activation threshold is not evident from our experimental results, and thus derives 

solely from analysis of the model. Therefore, to test this prediction regarding the 

threshold experimentally, we rewired the SPI1 gene circuit by replacing the PhilD 

promoter with the weaker PhilC promoter at its native chromosomal locus in an 

otherwise ΔhilC background. In this mutant, (ΔPhilD::PhilC ∆hilC), hilD is transcriptionally 

regulated in a manner similar to hilC. If the circuit does indeed function to place a 

threshold on activation, then we expect that this mutant will be unable to induce HilA 

expression if the activating signal for the PhilC promoter is too weak to overcome the 

threshold.  
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We found the PhilA promoter is not active in this strain (Figure 22A), suggesting 

that the PhilC activating signal is too weak to overcome the threshold as hypothesized. If 

true, then according to our model, removing HilE should enable HilA expression as it 

sets the activation threshold. In agreement with our model predictions, we found that if 

the hilE gene is removed then the PhilA promoter is active in a related strain (ΔPhilD::PhilC 

∆hilC ∆hilE) (Figure 22A). In other words, by removing the threshold set by HilE, HilD is 

capable of inducing HilA expression when expressed from the weaker PhilC promoter. 

However, when the threshold is present, HilD is not expressed at sufficiently high levels 

to overcome this threshold.  

 

When we measured gene expression in this strain (ΔPhilD::PhilC ∆hilC ∆hilE) using 

flow cytometry, we no longer observed the transient heterogeneity found in wild type. 

Rather, we found that the population responded homogeneously (Figure 22B). As we 

have previously noted, the input signal to the PhilC promoter is not switch-like but 

instead is homogenous and rheostatic in nature. These results further support our 

hypothesis that the switch-like dynamics observed in wild type is due to asynchronous 

activation of the PhilD promoter and not intrinsic to the circuit. In particular, when hilD is 

expressed from the PhilC promoter then hilA expression is also not switch-like and 

instead homogenous and rheostatic. Thus, the characteristics of the output of the circuit 

match the input. In other words, the qualitative dynamics of the input driving hilD 

expression are also observed in the network output, namely hilA expression. 

Collectively, these results support our conclusion that the SPI1 gene circuit functions as 
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a genetic amplifier with an activation threshold, where the circuit magnifies the 

activating signal only if this signal exceeds a defined threshold.  

 

A remaining question concerns the uniqueness of the SPI1 regulators given their 

similarity to one another. Namely, to what degree are HilC, RtsA, and HilD 

interchangeable? Of the three, HilD is the most important as HilA is not expressed in its 

absence. In formulating the model, we needed to assume that HilD was dominant in the 

sense that it was required for activating HilA expression. We also found that we needed 

to assume that HilD was necessary for establishing connectivity within the network, 

where it was again required for activating the PhilC, PhilD, and PrtsA promoters by the other 

SPI1 regulators. HilC and RtsA, on the other hand, appear to play an ancillary role in 

regulating SPI1 gene expression. These two proteins simply tune gene expression in a 

HilD-dependent manner. One specific question then is whether this behavior is intrinsic 

to these proteins, as assumed in the model, or simply due to these proteins not being 

expressed at sufficiently high levels (as HilC and RtsA can independently activate SPI1 

gene expression when over expressed). 

 

To explore this issue in more detail, we rewired the SPI1 gene circuit by placing 

HilC under the control of the PhilD promoter. In this reciprocal design, we replaced the 

PhilC promoter with the PhilD promoter at its native chromosomal locus in an otherwise 

ΔhilD background (ΔPhilC::PhilD ∆hilD). The rationale behind this promoter replacement 

experiment was to see whether HilC alone could induce HilA expression if expressed 
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from the PhilD promoter. As HilD is capable of inducing HilA expression in absence of HilC 

or RtsA, we reasoned that HilC may be able to do the same in the absence of HilD if it is 

transcribed in a manner similar to hilD. However, despite trying a number of different 

designs where different sections of the promoter region were replaced, we were unable 

to engineer such a strain where the PhilA promoter was active in the absence of HilD 

(data not shown). These results lend credence to our hypothesis regarding HilD 

dominance used in formulating the model, namely that HilD is necessary for activating 

the SPI1 promoter under physiological conditions. 
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Discussion 

 

Using a combination of experimental and computational approaches, we found 

that the SPI1 gene circuit functions as a signal amplifier with a variable activation 

threshold (Saini, 2010). This virulence switch likely ensures that the SPI1 T3SS is 

assembled only when the bacterium has reached its target site for invasion, the distal 

small intestine (Carter & Collins, 1974). Salmonella is thought to be able to determine its 

location within the host by sensing a number of environmental factors, key among them 

oxygen and osmolarity (Bajaj et al., 1996). In addition to these environmental signals, 

SPI1 gene expression is also coordinated with other cellular processes such as motility 

and adhesion (Lin et al., 2008b, Lucas et al., 2000, Iyoda et al., 2001, Ellermeier & 

Slauch, 2003, Baxter & Jones, 2005, Saini et al., 2009). The accumulated evidence to 

date, including the results from this study, indicates that HilD is the primary site for 

signal integration. According to our model, these activating signals, both intracellular 

cellular and environmental, initiate SPI1 gene expression by inducing the expression and 

activation of HilD through still unknown mechanisms. HilE, however, binds to HilD and 

inhibits its activity. Only when the strength of the activating signals is sufficiently large is 

HilD expressed at a high enough level to overcome sequestration by HilE and activate 

the expression of the other SPI1 regulators – HilC, RtsA, and HilA - and also further 

induce its own expression. Once induced, HilC and RtsA serve to further amplify and also 

accelerate SPI1 gene expression. The result is a two-state switch with a defined 

activation threshold, defined in the sense that the threshold is set by the level of HilE 
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expression and possibly other systems that function through HilD protein (Ellermeier & 

Slauch, 2007).       

 

A notable feature of the SPI1 gene circuit is the presence of three, coupled 

positive feedback loops. At the most fundamental level, positive feedback amplifies the 

response to an external signal (Becskei et al., 2001, Maeda & Sano, 2006). It is also 

capable of effectively transforming a continuous input into a digital output when the 

feedback is sufficiently strong. In the context of bacterial gene circuits, positive feedback 

has most often been associated with multi-stable switches and cell population 

heterogeneity (Mitrophanov & Groisman, 2008, Dubnau & Losick, 2006). What makes 

the SPI1 gene circuit particularly intriguing is that most bacterial systems utilizing 

positive feedback, at least those documented so far in the literature, possess only a 

single loop.  

 

We first note that these additional feedback loops, namely the ones regulating 

the expression of HilC and RtsA, do not add redundancy to the circuit, as the loss of HilD 

effectively shuts off SPI1 gene expression. Rather, they serve to further amplify and 

accelerate SPI1 gene expression. In vivo, loss of either HilC or RtsA does not significantly 

attenuate intestinal invasion. Yet, loss of both does (Ellermeier et al., 2005), indicating 

that the amplification or acceleration provided by these loops plays an important 

physiological role. Whether this role is simply to ensure that the SPI1 structural genes 
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are expressed at sufficiently high levels or to provide a sharp activation threshold is still 

unknown. 

 

Only a few studies to date, mostly focused on eukaryotic systems where this 

regulation is more common, have explored systems employing coupled positive 

feedback (Brandman et al., 2005, Cui et al., 2008, Thomas et al., 1995, Tian et al., 2009). 

In one notable theoretical study, the coupling of a slow and fast positive feedback loop 

was shown to yield a “dual-time” switch that is capable of being rapidly induced yet still 

is robust to fluctuations in the activating signal (Brandman et al., 2005). However, these 

properties are not obtained when two loops of the same type are coupled. While rapid 

induction is observed in SPI1 gene expression, there is no evidence to suggest that some 

loops are fast whereas others are slow. Furthermore, these loops do not operate 

synergistically in the sense that coupling in the SPI1 gene circuit does not engender new 

functions unattainable with just a single loop.  

 

As the loops involving HilC and RtsA only additively contribute to the response, 

we imagine that the coupling in SPI1 may result instead from the piecewise evolution of 

the circuit. According to this model, HilC and RtsA were acquired to compensate for the 

inability of HilD alone to mediate a robust response. The motivation for this model 

comes from a recent study where a synthetic gene circuit coupling two weak positive 

feedback loops was engineered (Chang et al., 2009). The authors found that their 

coupled circuit yielded a bistable response that, in the case of a single loop circuit, could 
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be obtained only with an ultrasensitive activator even though the individual regulators 

in the coupled circuit lacked this behavior. Based on these results, the authors 

speculated that natural circuits could evolve using a similar approach - rather than 

evolve a circuit with a single regulator requiring precise biochemical properties, a more 

robust and facile solution may be obtained by simply linking together multiple 

regulators that alone lack the requisite properties. Similarly, others have shown that by 

changing regulatory architecture of a circuit one can affect is behavior without 

commensurate changes in the underlying proteins (Wu & Rao, 2010, Mitrophanov et al., 

2008, Kato et al., 2007). We hypothesize that a similar process may have occurred with 

the SPI1 gene circuit. As such, this model provides a possible explanation as to why the 

circuit involves multiple feedback loops when one alone would suffice.  

 

In a related study, we found that the gene circuit controlling the expression of 

type I fimbriae in Salmonella utilizes two coupled positive feedback loops (Saini et al., 

2009). In this system, the expression of the genes encoding the type I fimbriae is 

controlled by two regulators, FimY and FimZ. These two proteins form two coupled 

positive feedback loops and encode a logical AND gate or, alternatively, a coincidence 

circuit. A similar logic may also be also encoded within the SPI1 gene circuit. In 

particular, HilC is expressed in the absence of HilD. Moreover, the signals activating the 

PhilC promoter appear to be different than the ones activating the PhilD promoter, given 

their dissimilar dynamics. We are tempted therefore to speculate that, in addition to 

being an amplifier, the SPI1 gene circuit may also function as some sort of coincidence 
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circuit, optimally expressing SPI1 genes only when the activating signals for both the PhilC 

and PhilD promoter are present. Coupled feedback in this case would reinforce the effect 

of these signals and further link the two. While such a model alone would not explain 

why multiple feedbacks loops are present in the SPI1 gene circuit, it may nonetheless 

provide one possible advantage for such a design.  

 

In conclusion, we have been able to propose an integrated model for the 

regulation of SPI1 gene expression. While this system has been studied extensively, an 

integrated model of its regulation was previously lacking. Using a combination of 

experimental and computational analyses, we have been able to deconstruct this 

complex circuit and determine how the individual components contribute towards its 

integrated function. A key element in our analysis involved rewiring the SPI1 genetic 

circuit. As the kinetic parameters are unavailable and difficult to perturb, direct 

validation of our model remains an elusive challenge. However, by rewiring the circuit, 

we were nonetheless able to test a number of predictions from our mathematical 

model. Such an approach provides a powerful framework for integrating models with 

experimental data, particularly when parameters values are lacking or difficult to 

perturb. Finally, our results provide a detailed examination of a natural system 

employing coupled positive feedback, a mechanism of control that to date has primarily 

been investigated in eukaryotes. 
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Figures - Salmonella Pathogenicity Island 1 (SPI1) 
 

 

Figure 12. (A) Salmonella Pathogenicity Island-1 (SPI1). SPI1 is a 40kb fragment on the 
chromosome that encodes all the proteins necessary for assembly of a functional T3SS. 
Also encoded on SPI1 are transcription factors that control gene expression, and 
effector proteins and their cognate chaperones. (B) Diagram of SPI1 gene circuit. HilA is 
the master SPI1 regulator as it activates the expression of the genes encoding the TS33. 
HilA, in turn, is regulated by HilC, HilD, and RtsA. These three regulators can 
independently activate HilA expression. They can also activate their own expression and 
that of each other. HilE represses the activity of HilD by binding to it and preventing it 
from activating to its target promoters. (C) Time-course dynamics of PhilD (pSS074), PhilC 
(pSS075), PrtsA (pSS076), and PhilA (pSS077) promoter activities in wild-type cells as 
determined using luciferase transcriptional reporters. To induce SPI1 gene expression, 
cells were first grown overnight in LB/no salt and then sub-cultured into fresh LB/1% 
NaCl conditions to an OD of 0.05 and grown statically. Luminescence values were 
normalized with the OD600 absorbance to account for cell density. Average promoter 
activities from three independent experiments on separate days are reported. For each 
experiment, six samples were tested. Error-bars indicate standard deviation. (D) 
Normalized promoter activities (data in the Figure 1A was normalized to one for each 
promoter) 
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Figure 13. Dynamics of (A) PhilA, (B) PhilD, (C) PhilC, and (D) PrtsA promoter activity in wild-
type cells as determined using green fluorescent protein (GFP) transcriptional fusions 
and flow cytometry. The SPI1 gene expression was induced as described above. 
Samples were collected at the indicated times and arrested in their respective state by 
addition of chloramphenicol. Approximately 30,000 cell measurements were used to 
construct each histogram. 
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Figure 14. (A) Comparison of time-course dynamics for PhilD (pSS074) promoter activities 
in wild type (black) and a ∆hilD mutant (JS253, red) as determined using luciferase 
transcriptional reporters. (B) Comparison of PhilD (pSS072) promoter activity in wild type 
(black) and a ∆hilD mutant (JS253, grey) as determined using GFP transcriptional 
reporters and flow cytometry. Note that the activation of the PhilD promoter is switch-
like both in wild type and the ∆hilD mutant. (C) Comparison of time-course dynamics of 
PhilD (pSS072) promoter activities in wild type (black) and a ΔSPI1 ΔrtsA mutant (CR349, 
grey) as determined using green fluorescent protein (GFP) transcriptional fusions and 
flow cytometry. (D) Comparison of PhilC (pSS075, black) and PrtsA (pSS076, red) promoter 
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activities in wild type (solid lines) and a ΔhilD mutant (JS253, dashed lines). Note that 
the PrtsA promoter is off in the absence of HilD. (E) Dynamics of PhilC (pSS073) promoter 
activities in a ΔhilD mutant (JS253) as determined using green fluorescent protein (GFP) 
transcriptional fusions and flow cytometry. Note that, in the absence of HilD, the 
activation of the PhilC promoter is no longer switch-like but instead continuous. 
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Figure 15. (A) Comparison of time-course dynamics for PhilD (pSS074, black) and PhilA 
(pSS077, red) promoter activities in wild type (solid lines) and a hilC ∆rtsA mutant 
(CR350, dashed lines) as determined using luciferase transcriptional reporters. (B) 
Normalized PhilD and PhilA promoter activity in wild type (solid) and ΔhilC ΔrtsA (dashed) 
mutant. (C and E) Comparison of PhilA (pSS055, C) and PhilD (pSS072, E) promoter 
activities in wild type (black) and a ∆hilC ∆rtsA mutant (CR350, grey) as determined 
using GFP transcriptional reporters and flow cytometry. Note that the loss of HilC and 
RtsA causes a delay and decrease in PhilA promoter activity whereas it causes only a 
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decrease in activity in the case the PhilD promoter. (D) Comparison of time-course 
dynamics of PhilA (pSS077) promoter activities in wild type and ΔrtsA (JS248), ΔhilC 
(JS252), ΔhilC ΔrtsA (CR350), and ΔhilD (CR253) mutants as determined using luciferase 
transcriptional reporters. (F) Comparison of time-course dynamics of PhilD (pSS074) 
promoter activities in wild type and ΔrtsA (JS248), ΔhilC (JS252), ΔhilC ΔrtsA (CR350), 
and ΔhilD (CR253) mutants as determined using luciferase transcriptional reporters. 
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Figure 16. (A) Comparison of time-course dynamics for PhilD (pSS074, black) and PhilA 
(pSS077, red) promoter activities in wild type (solid lines) and a ∆hilE mutant (CR361, 
dashed lines) as determined using luciferase transcriptional reporters. (B) Normalized 
PhilD and PhilA promoter activities in wild type (solid) and ΔhilE (dashed) mutant. (C) 
Comparison of PhilA (pSS055) promoter activities in wild type (black) and a ∆hilE mutant 
(CR361, grey) as determined using GFP transcriptional reporters and flow cytometry. (D) 
Comparison of PhilD (pSS072) promoter activities in wild type (black) and ΔhilE (CR361, 
gray) mutant as determined using green fluorescent protein (GFP) transcriptional 
fusions and flow cytometry. 
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Figure 17. (A) Correlation of PhilD (pSS052) promoter activity with PhilA (pSS055), PhilC 
(pSS053), and PrtsA (pSS054) promoter activities. To induce SPI1 gene expression, cells 
were first grown overnight in LB/no salt and then sub-cultured into fresh LB at varying 
concentrations of NaCl to an OD of 0.05 and grown statically for 15 hours. Individual 
experiments used to construct correlations are given in Panels B-E. (B-E) Comparison of 
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PhilD (pSS052, B), PhilC (pSS053, C), PhilA (pSS055, D), and PrtsA (pSS054, E) promoter 
activities at varying concentration of NaCl and in different mutant backgrounds as 
determined using GFP transcriptional reporters. Fluorescence values were normalized 
with the OD600 absorbance to account for cell density. Data is the average of three 
independent experiments.  
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Figure 18. (A) Time-course simulation of HilD, HilC, RtsA, and HilA expression dynamics 
in wild-type cells. These results are the average of 1000 simulations. These simulations 
are meant to capture the population-level behavior of the circuit. (B) Time-course 
simulation of HilA expression at single-cell resolution. The expression values are 
normalized to one and plotted on a log scale. The expression values are given in relative 
log units (R.L.U.). Similar expression dynamics are also seen for HilD, HilC, and RtsA (see 
Matlab code provided as supplementary material). (C) Same results provided as a two-
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dimension heat plot. Note that the model captures the transient heterogeneity 
observed in our flow cytometry data where cells in both the “off” and “on” states are 
found at intermediate times. Panels A-C were generated from the same set of 
simulation runs. (D and E) Time-course simulation of HilD (D) and HilA (E) expression 
dynamics in wild type and ∆hilD, ∆hilC ∆rtsA, and ∆hilD mutants at population 
resolution. The results for each mutant were obtained from the average of 1000 
simulations. Similar behavior is also seen at single-cell resolution. Mutants were 
simulated by setting the activity of the respective gene to zero in the model. A detailed 
description of the model is provided in the Materials and Methods.  
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Figure 19. (A) HilA expression at single-cell resolution when activation of the PhilD 
promoter is deterministic. All other equations in the model are unchanged. (B) HilA 
expression at single-cell resolution when the kinetic parameters are reduced by a factor 
of ten. In our simulations, we accomplished this by reducing by a factor of ten and 
rescaling time by a factor of ten. (C-D) Comparison of HilC expression at single-cell 
resolution in wild type (C) and ΔhilD mutant (D). Figures are given as two-dimension 
heat plots, where the color intensity denotes the density of events. The results for each 
plot were obtained from 1000 simulations. The expression values are normalized to one 
and plotted on a log scale. The expression values are given in relative log units (R.L.U.). 
Mutants were simulated by setting the activity of the respective gene to zero in the 
model.  
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Figure 20. (A) Effect of positive feedback on HilD expression. Plot shows steady-state 

concentration of HilD as a function of the parameters 
Dk  and D . The parameter 

Dk  

specifies the degree by which the SPI1 regulators - HilC, HilD, and RtsA - can activate 
HilD expression, effectively the strength of positive feedback on HilD expression. The 

parameter D  specifies the strength of the signal activating HilD expression. (B) Effect 

of HilC and RtsA on HilD expression. Plot shows the steady-state concentration of HilD 

as a function of the parameters Ck , Rk , and D . The parameters Ck  and Rk  specify the 

degree by which the SPI1 regulators - HilC, HilD, and RtsA - can activate HilC and RtsA 
expression, respectively. In other words, these parameters set the strength of feedback 

on HilC and RtsA expression. In these simulations, the parameters Ck  and Rk  were both 

varied in tandem: the numerical values for the two are the same. (C) Effect of HilE on 
HilD expression. Plot shows the steady-state concentration of HilD as a function of the 

parameters E  and D . The parameter Ek  specifies the rate of HilE expression.  
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Figure 21. (A) Effect of HilD positive feedback on HilA expression. Plot shows steady-
state concentration of HilD as a function of the parameters kD and αD. The parameter kD 
specifies the degree by which the SPI1 regulators - HilC, HilD, and RtsA - can activate 
HilD expression, effectively the strength of positive feedback on HilD expression. The 
parameter αD specifies the strength of the signal activating HilD expression. (B) Effect of 
HilC and RtsA on HilA expression. Plot shows the steady-state concentration of HilD as a 
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function of the parameters kC, kR, and αD . The parameters kC and kR specify the degree 
by which the SPI1 regulators - HilC, HilD, and RtsA - can activate HilC and RtsA 
expression, respectively. In other words, these parameters set the strength of feedback 
on HilC and RtsA expression. In these simulations, the parameters kC and kR were both 
varied in tandem: the numerical values for the two are the same. (C) Effect of HilE on 
HilA expression. Plot shows the steady-state concentration of HilD as a function of the 
parameters αE and αD. (D-E) Effect of HilE and HilD positive feedback on HilD (D) and 
HilA (E) expression. Plots shows the steady-state concentrations of HilD and HilA as a 
function of the parameters αE and kD. The black lines in the plots (A-C) are used to 
denote the results obtained using the nominal parameters (aside from αE ). 
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Figure 22. (A) Comparison of time-course dynamics for PhilA (pSS077) promoter activities 
in wild type (black), CR355 (ΔPhilD::PhilC ∆hilC, red) and CR356 (ΔPhilD::PhilC ∆hilC ∆hilE, 
blue) as determined using luciferase transcriptional reporters. In strain CR355, the PhilD 
promoter was replaced with the PhilC promoter in an otherwise ∆hilC background. In this 
strain, hilD is trancriptionally regulated in a manner identical to hilC. Strain CR356 is the 
same as CR355 except that it lacks HilE. (B) Dynamics of PhilA promoter activity in CR356 
as determined using green fluorescent protein (GFP) transcriptional fusions and flow 
cytometry. Note that the activation of the PhilA promoter in CR356 is no longer switch-
like but rather rheostat-like in nature. 
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Table 1. Parameter definitions and nominal values. 
 

Parameter Description Value a 

  Initiation rate for PhilD and PhilC promoter 2.0 hr-1  

D  Basal activity for PhilD promoter 1.2 N hr-1 

E  Basal activity for PhilE promoter 12.0 N hr-1 

C  Basal activity for PhilC promoter 0.4 N hr-1 

Dk  Activity for PhilD promoter 16.0 N hr-1 

Ck  Activity for PhilC promoter 10.0 N hr-1 

Rk  Activity for PrtsA promoter 8.0 N hr-1 

Ak  Activity for PhilA promoter 6.0 N hr-1 

D  HilD degradation/dilution rate 4.0 hr-1 

E  HilE degradation/dilution rate 8.0 hr-1 

C  HilC degradation/dilution rate 4.0 hr-1 

R  RtsA degradation/dilution rate 4.0 hr-1 

A  HilA degradation/dilution rate 4.0 hr-1 

ED  HilE-HilD degradation/dilution rate 16.0 hr-1 

G  Reporter degradation/dilution rate 4.0 hr-1 

Ea  Association rate of HilD and HilE 8.0 N-1 hr-1 

Ed  Disassociation rate of HilE-HilD complex 8.0 hr-1 

1

D

OK  Equilibrium constant for HilD- 1O  complex 10.0 N-1 

1

C

OK  Equilibrium constant for HilC- 1O  complex 0.001 N-1 

1

R

OK  Equilibrium constant for RtsA- 1O  complex 0.001 N-1 

2

D

OK  Equilibrium constant for HilD- 2O  complex 1.0 N-1 

2

C

OK  Equilibrium constant for HilC- 2O  complex 0.1 N-1 

2

R

OK  Equilibrium constant for RtsA- 2O  complex 0.1 N-1 

h  Bandwith for density estimation 0.05 N 

 

 a We are unable to assign absolute concentrations units to the parameter values. As a 
consequence, we report the parameters in terms of dimensionless concentration units, 
denoted by N.  
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Chapter 5. Salmonella Pathogenicity 
Island 4 (SPI4)  
 

Introduction 
 

Along with the regulators that control expression of genes responsible for the 

SPI1-encoded T3SS, also encoded within SPI1 is a transcription factor, SprB, from the 

LuxR/UhaP family of transcription factors. Eichelberg and coworkers (Eichelberg et al., 

1999) previously found this gene to be expressed in conditions similar to other SPI1-

encoded genes. However, they found that it was not involved in regulating the 

expression of SPI1-encoded genes and speculated that it may instead regulate novel 

SPI1 T3SS substrates. In this section of the thesis, we demonstrate that SprB regulates 

the expression of the genes encoded within Salmonella Pathogenicity Island 4 (SPI4).  

 

SPI4 encodes a non-fimbrial adhesion (Gerlach et al., 2007b) that is involved in 

the intestinal phase of infection (Kiss et al., 2007, Lawley et al., 2006, Morgan et al., 

2004). Previously, a number of studies have shown that there is a link between SPI1 and 

SPI4-encoded gene expression (Ahmer et al., 1999, De Keersmaecker et al., 2005, 

Ellermeier & Slauch, 2003, Gerlach et al., 2007b, Main-Hester et al., 2008). In particular, 

they demonstrated that SPI4-encoded gene expression is HilA dependent. However, 

Main-Hester and coworkers showed that, in the absence of the SPI1 locus, HilA is unable 

to activate SPI4 gene expression (Main-Hester et al., 2008). Their results suggest that 
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some other HilA-dependent regulator within SPI1 may be involved. Here, we show that 

this other regulator is SPI1-encoded transcription factor, SprB. 
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Results 

 

SprB Transcriptionally Regulates SPI4-Encoded Gene Expression 
 

The SPI4 locus encodes six genes within a single operon under the control of the 

PsiiA promoter (Gerlach et al., 2007b). While previous reports have identified that SPI1 

and SPI4 gene expression are liked together, the regulator responsible for this is still 

unknown. In addition to HilC, HilD, and HilA; SPI1 also encodes for a transcriptional 

regulator, SprB. Previous studies have so far not assigned any role to SprB in reglating 

SPI1 gene expression. Therefore, we hypothesized that SprB might act as a molecular 

link between SPI1 and some other systems’ gene expression. In particular, we tested 

whether SprB regulates SPI4 gene expression or not. To test this hypothesis, we 

measured PsiiA promoter activity using a plasmid-based, Venus transcriptional reporter 

(Nagai et al., 2002) in wild type and a ΔsprB mutant. As shown in Figure 23, deleting 

sprB causes a two-fold decrease in PsiiA promoter activity as determined by changes in 

fluorescence. Moreover, we can complement this mutant by expressing SprB from an 

anhydrotetracycline (aTc)-inducible promoter on a compatible plasmid.  

 

We next tested how individually expressing the SPI1 regulators – HilA, HilC, HilD, 

RtsA, and SprB – from a tetracycline-inducible promoter would affect PsiiA promoter 

activity in a ΔSPI1 ΔrtsAB mutant. Of the five, only SprB was capable of activating the 
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PsiiA promoter (Figure 23). We performed similar experiments in Escherichia coli and 

observed identical results (data not shown). 

 

To test whether SprB directly binds to the PsiiA promoter, we used chromatin 

immunoprecipitation (ChIP). In this experiment, we first expressed 6xHis-tagged SprB 

from the constitutive PLtetO-1 promoter on a plasmid in a ∆sprB mutant and then passed 

the cross-linked cell lysate over a Ni2+ column (see supplemental material for more 

details). Upon elution from the column and reverse cross-linking, we found by PCR that 

SprB directly binds the PsiiA promoter region (Figure 23). As a negative control, we also 

tested whether SprB binds to the PfimA promoter region, a promoter whose activity is 

unaffected by SprB, and found that it did not. Collectively, these results demonstrate 

that SprB binds to PsiiA promoter and activates SPI4-encoded gene expression.  

 

HilA Transcriptionally Regulates SprB Expression 
 

Multiple studies have previously shown that SPI4-encoded gene expression is 

HilA dependent (Ahmer et al., 1999, De Keersmaecker et al., 2005, Ellermeier & Slauch, 

2003, Bode et al., 1980, Main-Hester et al., 2008). We therefore hypothesized that HilA 

regulates SprB expression, as this would explain the decrease in PsiiA promoter activity 

previously observed when HilA is deleted. It would also explain why other SPI1 

regulators - namely HilC, HilD, and RtsA - affect SPI4-encoded gene expression, as they 

in turn regulate HilA expression.  
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To test this hypothesis, we measured the effect of individually expressing the 

SPI1 regulators - HilA, HilC, HilD, and RtsA – from an aTc-inducible promoter in a ΔSPI1 

ΔrtsAB mutant on PsprB promoter activity. Similar to the experiments described above, 

we used a plasmid-based Venus transcriptional reporter to measure PsprB promoter 

activity. Of the four, only HilA was capable of activating PsprB promoter activity (Figure 

24). Identical results were obtained when we performed similar experiments in E. coli 

(data not shown). To test whether this effect is direct, we used ChIP and found that HilA 

does indeed bind the PsprB promoter (Figure 24). As respective positive and negative 

controls, we used the PprgH and PfimA promoter regions. These results demonstrate that 

HilA transcriptionally regulates SprB expression. 

  

SprB Transcriptionally Represses HilD Expression 
 

We last tested whether SprB regulates SPI1-encoded gene expression. Here, we 

measured the activity for a number of SPI1 promoters using plasmid-based, Venus 

transcriptional reporters in wild type, a ∆sprB mutant, and a ∆sprB mutant constitutively 

expressing sprB from the PLtetO-1 promoter on a plasmid. Our data show that deleting 

sprB resulted in a mild increase in SPI1 promoter activity (Figure 25). However, plasmid 

expression of SprB caused a two-fold reduction in SPI1 promoter activity in a ∆sprB 

mutant background. These results suggest that SprB is a weak negative regulator of 

SPI1-encoded gene expression. The weak level of repression may explain why Eichelberg 

and coworkers (Eichelberg et al., 1999) previously concluded that SprB does not 

regulate SPI1-encoded gene expression. Since SPI1-encoded gene expression is known 
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to be growth dependent, we also checked if expressing SprB from a plasmid in a ΔsprB 

mutant caused any growth defect. Our data show that it has no effect (Figure 25). 

 

As SprB regulates multiple SPI1 promoters, we hypothesized that it likely 

represses the transcription of either HilC, HilD, or RtsA. These three regulators are all 

activators of PhilA promoter activity and each others expression as well (Ellermeier et al., 

2005, Ellermeier & Slauch, 2007, Lostroh & Lee, 2001b). To identify the target for 

repression, we first expressed SprB from an arabinose-inducible promoter on a plasmid 

(Guzman et al., 1995) in ∆hilC ΔsprB and ∆rtsA ΔsprB null mutants and found that PhilA 

promoter activity was still repressed by SprB, as determined using a plasmid-based, 

Venus transcriptional reporter (Figure 25). These results demonstrate that repression is 

not HilC or RtsA dependent. Next, we investigated if SprB represses the PhilD promoter 

by measuring PhilA promoter activity in a strain where the PhilD promoter was replaced 

with the tetRA element from transposon Tn10 (Karlinsey, 2007).  

 

This arrangement decouples hilD expression from its native regulation and 

causes it to be constitutively expressed from its native chromosomal locus in the 

presence of tetracycline. In the strain, PhilD::tetRA ΔsprB, we found that expressing SprB 

from an arabinose-inducible promoter plasmid (Guzman et al., 1995) did not affect PhilA 

promoter activity (Figure 25), suggesting that SprB represses HilD expression. To 

demonstrate that the SprB-dependent repression of SPI1-encoded gene expression is 

due to the binding of the SprB protein to the PhilD promoter, we used ChIP (Figure 25). 
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These results demonstrate that SprB binds to PhilD promoter region and likely represses 

SPI1-encoded gene expression by inhibiting hilD transcription. 
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Discussion  
 

Our results demonstrate that SprB functions as a molecular link between SPI1 and SPI4 

gene expression. We propose the following model (Figure 26). Upon induction of the 

SPI1 gene circuit, HilA activates SprB expression. SprB plays a dual role in regulating 

gene expression. First, it weakly represses SPI1-encoded gene expression by binding to 

the PhilD promoter and likely inhibiting hilD transcription. Secondly, it activates the 

expression of the SPI4-encoded adhesin, presumably helping the bacterium adhere to 

intestinal epithelial cells during invasion. This mode of regulation links gene expression 

in two distinct systems in Salmonella, enabling the coordinate regulation of adherence 

to and invasion of the intestinal epithelia.  
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Figures – Salmonella Pathogenicity Island 4 (SPI4) 

 

 

 

Figure 23. SprB regulates SPI4-encoded gene expression. (A) Comparison of PsiiA 
promoter activity in wild type, a ΔsprB mutant, and a ΔsprB mutant expressing SprB 
from an anhydrotetracyclone (aTc)-inducible promoter on a plasmid (pSprB). pTetR 
denotes the empty plasmid control. Expression was induced with 50 ng/mL of aTc. (B) 
SprB can activate the PsiiA promoter in the absence of other SPI1 genes (ΔSPI1 ΔrtsAB); 
the other SPI1 regulators – HilA, HilC, HilD, and RtsA – cannot. Activators were 
expressed from an aTc-inducible promoter on a plasmid. Expression was induced with 
50 ng/mL of aTc. Fluorescence values were normalized with the OD600 absorbance to 
account for cell density. Errorbars indicate standard deviations. C. SprB binds to the PsiiA 
promoter region as determined by a co-precipitation assay using 6xHis-tagged SprB. PCR 
was used to determine whether the PsiiA promoter region is in the co-precipitated DNA. 
The PfimA promoter region was included as a negative control. An expanded description 
of the experimental procedures is provided as supplementary material. 
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Figure 24. HilA regulates SprB expression. (A) HilA can activate the PsprB promoter in the 
absence of other SPI1 genes (ΔSPI1 ΔrtsAB); the other SPI1 regulators – HilC, HilD, and 
RtsA – cannot. SprB was also found not to regulate its own expression. Activators were 
expressed from an aTc-inducible promoter on a plasmid. Expression was induced with 
50 ng/mL of aTc. Fluorescence values were normalized with the OD600 absorbance to 
account for cell density. Error-bars indicate standard deviations. (B) HilA binds to the 
PsprB promoter region as determined by a co-precipitation assay 6xHis-tagged HilA. PCR 
was used to determine whether the PsprB promoter region is in the co-precipitated DNA. 
The PprgH and PfimA promoter regions were included as positive and negative controls, 
respectively. An expanded description of the experimental procedures is provided as 
supplementary material. 
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Figure 25. SprB represses SPI1-encoded gene expression through HilD. (A) Comparison 
of SPI1 promoter activities in wild type, a ΔsprB mutant, and a ΔsprB mutant 
constitutively expressing SprB from a plasmid (pSprB-con). (B) SprB repression of SPI1-
encoded gene expression is through the PhilD promoter. Comparison of PhilA promoter 
activity in ΔhilC ΔsprB, ΔhilC ΔsprB, and PhilD::tetRA ΔsprB mutants when SprB is 
expressed from an arabinose-inducible promoter on a plasmid (pBAD-SprB). SprB 
expression was induced with 2 mg/mL of arabinose. In the experiments involving the 
PhilD::tetRA ΔsprB mutant, 2 μg/ml tetracycline was added to the growth medium in 
order to induce HilD expression. Induction in panel B is used to denote the presence or 
absence of arabinose. Fluorescence values were normalized with the OD600 absorbance 
to account for cell density. Errorbars indicate standard deviations. (C) SprB binds to the 
PhilD promoter region as determined by a co-precipitation assay using 6xHis-tagged SprB. 
PCR was used to determine whether the PhilD promoter region is in the co-precipitated 
DNA. The PfimA promoter region was included as a negative control. 
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Figure 26. Model for SPI1 and SPI4 regulation. Arrows indicate transcription activation. 
Blunt-ends represent repression. 
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Chapter 6. Type I Fimbriae Gene Network 
 

Introduction 
 

Type I fimbriae in Salmonella enterica serovar Typhimurium are proteinaceous 

surface appendages that carry adhesions specific for mannosylated glycoproteins 

(Buchanan et al., 1985). Type I fimbriae are involved in serovar Typhimurium 

pathogenicity by facilitating the binding to and invasion of intestinal epithelial cells 

(Tavendale et al., 1983). In orally inoculated mice, a wild-type strain has been shown to 

cause more infections and deaths than a fim mutant strain (Duguid et al., 1976). A fim 

mutant has also been shown to exhibit severalfold weaker binding to HEp-2 and HeLa 

cells, and the defect in binding could be restored by complementing the fim system on a 

plasmid (Baumler et al., 1996). Apart from type I fimbriae, mutations in different 

Salmonella fimbrial systems—lpf, pef, and agf— have all also been shown to greatly 

reduce virulence in mice (van der Velden et al., 1998). These systems appear to work 

synergistically in order to facilitate colonization of the ileum (Baumler et al., 1997). In 

serovar Typhimurium, the fim gene cluster possesses all of the genes necessary for type 

I fimbrial production. This gene cluster is composed of six structural genes, three 

regulators, and a tRNA specific for rare arginine codons (AGA and AGG). The structural 

genes fimA, fimI, fimC, fimD, fimH, and fimF are all expressed in one transcript from the 

PfimA promoter (Hancox et al., 1997, Piknova et al., 2005, Purcell et al., 1987, Rossolini et 

al., 1993). The regulators fimZ, fimY, and fimW are all expressed from independent 
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promoters (Tinker & Clegg, 2000, Tinker et al., 2001, Yeh et al., 1995). The tRNA 

encoded by fimU is located at one end of the cluster and is required for the effective 

translation of the regulatory genes that all carry rare arginine codons (Swenson et al., 

1994).  

 

Type I fimbriation is environmentally regulated with fim gene expression favored 

in static liquid medium, whereas growth on solid medium inhibits expression (Duguid et 

al., 1966a). Moreover, serovar Typhimurium cultures in fimbriae-inducing conditions 

contain cells in both fimbriated and nonfimbriated states (Old & Duguid, 1970). While 

the regulation of fim gene expression has been studied extensively in Escherichia coli, 

far less is known about the regulation in serovar Typhimurium (Abraham et al., 1985, 

Klemm, 1984). In particular, despite homology between the structural genes for type I 

fimbriae in E. coli and serovar Typhimurium, their expression is regulated in completely 

different manners. No homologs of E. coli regulators, FimB and FimE, are present in 

serovar Typhimurium (Gally et al., 1996, Klemm, 1986). Also, the serovar Typhimurium 

PfimA promoter is inactive in E. coli, indicating that the PfimA promoter is regulated by 

different factors in these two organisms (Yeh et al., 1995).  

 

In serovar Typhimurium, the expression of the structural genes is regulated by 

three transcription factors, FimY, FimZ, and FimW (Tinker & Clegg, 2000, Tinker et al., 

2001, Yeh et al., 1995). Both FimZ and FimY are essential for the expression of the 

structural genes from the PfimA promoter (Yeh et al., 1995). In particular, the deletion of 
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either the fimY or fimZ gene reduces expression from the PfimA promoter and prevents 

serovar Typhimurium from making type I fimbriae. FimZ has been shown to bind the 

PfimA promoter and promote transcription (Cotter & Miller, 1994, Yeh et al., 1995). FimY, 

on the other hand, is thought to facilitate the activation of the PfimA promoter, as direct 

binding has not been observed (Tinker & Clegg, 2000). FimW is a negative regulator of 

fim gene expression (Tinker & Clegg, 2001). FimW has also been suggested to 

autoregulate its expression, as enhanced PfimW activity has been observed in the ∆fimW 

mutant. In DNA-binding assays, FimW was not observed to bind any of the fim 

promoters. However, FimW was found to interact with FimZ in a LexA-based two-hybrid 

system in E. coli (Tinker & Clegg, 2001). Thus, a possible mechanism for FimW mediated 

repression may be that it binds FimZ and prevents it from activating transcription. 

However, an analysis of the FimW amino acid sequence predicts that it has a DNA-

binding domain. Moreover, it is related to a broad range of prokaryotic transcription 

factors, with its closest relatives being BpdT from Rhodococcus spp. and an 

uncharacterized response regulator, TodD, from Pseudomonas putida (Labbe et al., 

1997, Lau et al., 1997). Thus, FimW may also act by an alternate mechanism involving 

DNA binding.  

 

In addition to these transcription factors, the fimU tRNA also plays a role in fim 

gene expression (Swenson et al., 1994). All three regulators— FimZ, FimY, and FimW—

contain a number of the rare arginine codons, AGA and AGG, recognized by the fimU 

tRNA. In the case of FimY, ΔfimU mutants have been shown to be nonfimbriated due to 
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the inefficient translation of fimY mRNA. This translational regulation results from FimY 

having three rare arginine codons within its first 14 amino acids. The phenotypic effect 

of the ΔfimU mutation could, however, be overcome by expressing fimU from a plasmid 

or by changing these three rare arginine codons in fimY to ones more efficiently 

translated.  

 

As a pathogen, serovar Typhimurium invades host cells by a process in which effector 

proteins are injected into the target cells with the help of the Salmonella pathogenicity 

island 1 (SPI1) type III secretion system (Collazo & Galan, 1997a, Darwin & Miller, 

1999b). SPI1 gene expression is regulated by a number of proteins, with the critical 

activator being HilA (Bajaj et al., 1995). The expression of hilA, in turn, is regulated by 

three AraC-like transcriptional activators, hilC, hilD, and rtsA (Eichelberg et al., 1999, 

Ellermeier & Slauch, 2003, Fahlen et al., 2000, Lucas & Lee, 2001, Schechter et al., 1999, 

Schechter & Lee, 2001). HilD activity is controlled by HilE; this protein binds HilD and is 

thought to prevent it from activating the PhilA promoter (Baxter et al., 2003, Boddicker et 

al., 2003). FimY and FimZ have been previously shown to regulate SPI1 gene expression 

by repressing hilA expression through their activation of the PhilE promoter (Baxter & 

Jones, 2005).  

 

In the work reported in this chapter, we investigated the gene circuit regulating 

fim expression. Using genetic approaches, we found that FimZ and FimY activate each 

other’s expression and that each protein can independently activate the PfimA promoter. 
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Moreover, FimZ and FimY were found to be weak autoactivators. Our data also suggest 

that FimW-mediated repression occurs at the level of fimY transcription. As the fim gene 

circuit involves a combination of positive and negative feedback, we tested whether 

induction was bistable. However, we found the cell population responded 

homogeneously when induced. By reprogramming the genetic circuit we were able to 

qualitatively change the response of the PfimA promoter from a homogeneous 

rheostat-like response to a heterogeneous switch-like transition from the “off” to the 

“on” state. 
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Results 
 

FimZ and FimY are Activators and FimW is a Repressor of Fim Gene 
Expression 
 

FimZ and FimY have previously been reported as activators of fim gene 

expression in serovar Typhimurium (Tinker & Clegg, 2001, Yeh et al., 1995). Both have 

also been reported as essential for fimbriation, as the deletion of either one results in 

the loss of expression from the PfimA promoter (Yeh et al., 2002). To understand the 

roles of FimZ and FimY in the fim gene circuit, we measured expression from the PfimA, 

PfimZ, PfimY, and PfimW promoters in the wild type and the ∆fimZ, ∆fimY, ∆fimYZ, and 

∆fimW mutants (Figure 27). Chromosomally integrated Venus transcriptional reporters 

were employed as indirect measures of promoter activities (Nagai et al., 2002). In the 

cases of all four promoters, activity levels were found to be about two times less active 

in the ∆fimZ, ∆fimY, and ∆fimYZ mutants than in the wild type. For all four promoters, 

note that no further reduction in promoter activity was observed in the double mutant. 

In a ∆fimW mutant, the activities of all four promoters were approximately two times 

higher than the wild-type levels. While these results agree with previously published 

data regarding the fim system in serovar Typhimurium, they still do not tell us how 

FimW, FimY, and FimZ individually contribute to PfimA activation. 

 

FimY and FimZ Form a Coupled Positive Feedback Loop 
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To determine the relative effect of FimY and FimZ on fim gene expression, the 

PfimY and PfimZ promoter activities were measured in a ∆fimYZ mutant in which either 

FimZ or FimY was expressed from a strong, aTc-inducible promoter on a plasmid. Using 

this system, we found that expressing FimZ in the ∆fimYZ mutant led to a more than 10-

fold increase in PfimY activity (Figure 28A). Likewise, expressing FimY in the ∆fimYZ 

mutant led to about a 10-fold increase in PfimZ levels. In addition to their ability to 

activate each other’s promoters, FimY and FimZ were found to increase expression from 

their own promoters roughly threefold. Even though E. coli makes type I fimbriae, the 

serovar Typhimurium fim promoters by themselves are inactive in this organism. 

Therefore, we performed an identical set of experiments with E. coli using the serovar 

Typhimurium proteins and promoters. Overall, the results were identical to those for 

serovar Typhimurium (Figure 28B). In particular, FimZ expression led to a more than 10-

fold increase in PfimY promoter activity, and FimY expression led to a 10-fold increase in 

PfimZ activity. Both FimZ and FimY were again found to weakly activate expression from 

their own promoters. The goal of these experiments was to remove the effect of any 

serovar Typhimurium specific regulatory mechanisms, thus allowing us to more 

confidently conclude that the observed results are due to direct interactions. 

Collectively, these results show that FimY and FimZ strongly activate each other’s 

expression and weakly activate their own expression. This cross-regulation also explains 

why both FimY and FimZ are required for strong PfimA promoter activity, as the 

expression of each is dependent on the other. Next, we wanted to investigate to what 
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extend do FimY and FimZ control the PfimA promoter activity independently of each 

other. 

 

FimZ and FimY can Independently Activate the PfimA Promoter  
 

Next, we looked at how FimZ and FimY independently affected PfimA expression. 

To investigate this problem, we measured PfimA promoter activity in a ∆fimYZ mutant in 

which either FimY or FimZ was expressed using the aTc-inducible system. FimZ 

expression was found to strongly (15-fold) activate the PfimA promoter, whereas FimY 

could only weakly (more than twofold) activate it (Figure 29). We also performed these 

experiments with E. coli with similar results (data not shown). Based on these results, 

we conclude that FimZ and FimY can both independently activate the PfimA promoter. In 

the case of FimY, the weak activation of the PfimA promoter is likely due to its strong 

dependence on fimU tRNA (see below) (Swenson et al., 1994). 

 

FimY Activates the PfimW Promoter, and FimW Represses the PfimY 
Promoter  
 

FimW has previously been observed to repress fim gene expression (Tinker & 

Clegg, 2001). Consistent with these results, we observed that PfimA, PfimW, PfimY, and PfimZ 

promoter activities were all elevated in a ∆fimW mutant. To understand the mechanism 

of FimW-mediated repression, we first sought to identify the proteins that regulate 

expression from the PfimW promoter. To answer this question, we measured the level of 
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expression from the PfimW promoter in a ∆fimYZ mutant in which FimW, FimY, and FimZ 

were independently expressed using the aTc-inducible system. In the case of FimW and 

FimZ, expression had no effect on PfimW promoter activity (data not shown). However, in 

the case of FimY, we observed a significant increase in PfimW promoter activity (1,052 +/- 

381 relative fluorescence units [RFU]/OD [uninduced] versus 14,718 +/- 1,032 RFU/OD 

[induced]). Similar results were also obtained when these experiments were performed 

with E. coli (data not shown). To identify the regulatory targets of FimW, we measured 

the expression of the PfimA, PfimZ, and PfimY promoters in a ∆fimW ∆fimYZ mutant in which 

FimW was expressed using the aTc-inducible system. In the cases of the PfimA and PfimZ 

promoters, we found that FimW expression had no effect. However, in the case of the 

PfimY promoter, FimW expression led to about a threefold decrease in PfimY activity (7,462 

+/- 319 RFU/OD [uninduced] versus 2,781 +/- 188 RFU/OD [induced]). Based on these 

results, we conclude that FimY activates expression from the PfimW promoter and that 

FimW represses expression from the PfimY promoter. 

 

The PfimU Promoter is Not Regulated by FimW, FimY, or FimZ 
 

Both fimY and fimZ contain rare arginine codons (AGA and AGG) and need fimU, 

a tRNA specific for rare arginine codons, for effective translation. In a ∆fimU mutant, 

PfimA activity was less than 10-fold compared to the wild-type levels (wild type, 16,723 

+/- 1,173 RFU/OD; the ∆fimU mutant, 1,389 +/- 261 RFU/OD). The expression of FimY in 

the ∆fimU mutant using the aTc-inducible system, however, did not increase PfimA 

activity (988 +/- 319 [uninduced] versus, 343 +/- 166 [induced]). Replacing the rare 
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arginine codons in the fimY gene with consensus ones did restore PfimA activity to the 

wild-type levels (817 +/- 73 RFU/OD [uninduced] versus 11,294 +/- 462 RFU/OD 

[induced]). These experiments are consistent with previously published results (Tinker & 

Clegg, 2001) and indicate that fimU is essential for effective fimY translation.  As fimU 

has a strong effect on PfimA promoter activity, we hypothesized that it may be subject to 

regulation by the other proteins within the circuit. To test this hypothesis, we measured 

PfimU promoter activity in different regulatory mutants. Contrary to our hypothesis, we 

did not observe any change in PfimU promoter activity in any mutant (wild type, 26,717 

+/- 1,381 RFU/OD; the ∆fimZ mutant, 28,991 +/- 2,164 RFU/OD; the ∆fimY mutant, 

25,884 +/- 1,983 RFU/OD; the ∆fimYZ mutant, 26,516 +/- 1,772 RFU/OD; and the ∆fimW 

mutant, 24,829 +/- 2,073 RFU/OD). Likewise, we did not observe any change in PfimU 

promoter activity when FimW, FimY, and FimZ were expressed using the aTc-inducible 

system in wildtype serovar Typhimurium or E. coli (data not shown). Based on these 

results, we conclude that the PfimU promoter is not regulated by any fim protein. 

 

FimZ Alone is Able to Regulate SPI1 Gene Expression 
 

Previous studies have shown that both FimY and FimZ regulate SPI1 expression 

through their activation of the PhilE promoter (Baxter & Jones, 2005). HilE, in turn, is 

known to bind HilD and repress the HilD-mediated activation of the PhilA, PhilC, PrtsA, and 

PhilD promoters (Baxter et al., 2003, Ellermeier et al., 2005). To test which protein 

activates the PhilE promoter, we independently expressed FimY and FimZ in a ∆fimYZ 

mutant using the aTc-inducible system and then measured the level of expression from 
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the PhilE promoter. Of the two, only FimZ was found to affect PhilE expression (1,089 +/- 

421 RFU/OD [uninduced] versus 17,654 +/- 2,234 RFU/OD [induced]). Similar results 

were also observed for E. coli (data not shown). We note that these results are contrary 

to those previously reported, for which it was shown that both FimY and FimZ were 

necessary for activation of the PhilE promoter (Baxter & Jones, 2005). One possible 

explanation for the discrepancy involves how the two gene products were selectively 

expressed. In the original study, a DNA fragment containing the fimYZ gene cluster was 

cloned onto a plasmid and expressed using the tetracycline promoter. To study their 

relative effects, each gene was selectively inactivated using a universal translational 

terminator. As part of the PfimY promoter and the whole PfimZ promoter were left intact 

in their construct, transcriptional inference may have occurred between the various 

promoters. In our design, we selectively cloned each gene and then expressed it from an 

inducible promoter, eliminating any potential interfering effects from having the native 

promoters still present. 

 

Dynamics of Fim Gene Expression 
 

Finally, we wished to investigate the dynamics of fim gene expression. We first 

measured PfimA promoter activity in the wild type and the ∆fimY, ∆fimZ, ∆fimYZ, and 

∆fimW mutants using a microplate reader (Figure 30A). Consistent with our end-point 

measurements, we found that the PfimA promoter was weakly expressed in the ∆fimY, 

∆fimZ, and ∆fimYZ mutants. Likewise, expression was enhanced in a ∆fimW mutant. 

Note that the microplate experiments tell us only about the average response of the 
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population and nothing about how individual cells are behaving. To test whether the 

cells were responding homogeneously, we also performed single-cell measurements of 

PfimA promoter activity at selected times in the wild type and a ∆fimW mutant using flow 

cytometry (Figure 30B). Our results indicate that individual wild-type and ∆fimW mutant 

cells are responding homogeneously with respect to PfimA promoter activity at all times 

tested. In other words, we did not observe any phase variation or heterogeneity with 

regard to PfimA promoter activity in our kinetic experiments. 
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Discussion 
 

In this work, we investigated the regulatory gene circuit controlling the 

expression of type I fimbriae in S. typhimurium. Using genetic approaches, we 

demonstrated that FimY and FimZ independently activate the PfimA promoter. Of the 

two, FimZ was found to be the dominant activator. We also found that FimY and FimZ 

strongly activate each other’s expression and weakly activate their own expression. In 

addition to these two positive regulators, a third regulator, FimW, is known to repress 

fim gene expression. We found that FimW negatively regulates fim gene expression by 

repressing expression from the PfimY promoter. Furthermore, FimW participates in a 

negative feedback loop as FimY was found to enhance PfimW expression. Interestingly, 

these results suggest that FimY is both an activator and repressor of fim gene 

expression, as it can directly activate the PfimZ, PfimY, and PfimA promoters and indirectly 

repress them by enhancing FimW expression. In addition to these regulators, type I 

fimbriation is also dependent on expression of rare arginine codon tRNA, fimU. 

However, our results showed that the PfimU promoter is not regulated by FimY, FimZ, or 

FimW. The results suggest that fimU does not play a role in the internal regulation of the 

circuit. Finally, we demonstrated that the previously observed coordinate regulation of 

SPI1 gene expression by the fim gene circuit (Baxter & Jones, 2005) occurs through the 

activation of hilE expression by FimZ. Based on these results, we are able to propose the 

following model for the fim gene circuit in S. typhimurium (Figure 31). 
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According to our model, induction of the fim circuit begins with activation of the 

PfimY and PfimZ promoters, resulting in small amounts of fimY and fimZ being expressed. 

FimY and FimZ then rapidly accumulate in the cell due to the positive feedback loop 

formed by the cross-activation of PfimY and PfimZ promoters by these two proteins. 

Expression of the type I fimbrial structural genes from the PfimA promoter commences 

when the concentration of FimY and FimZ accumulates within the cell beyond a critical 

level. These two regulators can independently activate the PfimA promoter; however, 

their expression is correlated as each activates the others expression. Moreover, FimY 

and FimZ protein expression levels are controlled by a negative feedback loop involving 

FimW. In this loop, FimY activates expression of the PfimW promoter, and FimW represses 

expression from the PfimY promoter. We hypothesize that this negative feedback loop 

involving FimW prevents runaway expression of FimY and FimZ arising from their 

participation in an interacting positive feedback. Specifically, we hypothesize that when 

FimY and FimZ reach their optimum expression levels, the FimW negative feedback loop 

is activated and halts expression from the PfimY and PfimZ promoters. 

 

While our model for the fim circuit explains internal regulation, it still does not 

explain how the circuit is activated. In particular, we do not know which factors induce 

the PfimY and PfimZ promoters. We suspect that these factors activate both promoters as 

each alone exhibits some activity in a ∆fimYZ mutant. In addition to these factors, 

another open question concerns whether fimU plays a role in regulating circuit 

dynamics. While it is tempting to speculate that fimU expression is tuned in response to 
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environmental signals and thus affects circuit dynamics, more likely this gene is 

constitutively expressed like other tRNAs.  

 

Our results also indicate that FimW-mediated inhibition of fim gene expression is 

through repression of the PfimY promoter. Earlier reports suggested that FimW binds 

FimZ and somehow inhibits FimZ-dependent activation of fim promoters (Tinker & 

Clegg, 2001). Moreover, FimW was not found to bind to the PfimW promoter. Based on 

these results, FimW would appear to repress the PfimY promoter by preventing FimZ 

from activating it. However, we found that FimW is able to repress the PfimY promoter in 

the absence of FimZ. Our results would suggest that FimW directly binds the PfimY 

promoter and represses transcription, irrespective of FimZ. Consistent with our model, 

FimW has a C-terminal LuxR-type helix-turn-helix DNA domain (SM00421) (Letunic et al., 

2006). However, at this time we have no direct experimental support for such a 

mechanism. Moreover, an equally likely hypothesis is that repression by FimW is 

indirect. Further experiments are clearly required to determine the mechanism of 

FimW-mediated repression and distinguish between these different putative models. 

 

A final unanswered question concerns the role of the positive and negative 

feedback loops in the fim gene circuit. Our initial hypothesis was that these feedback 

loops would result in bistability. In particular, interacting positive and negative feedback 

loops are known to be sufficient ingredients for bistability (Ferrell, 2002). This bistability 

could potentially explain the phase variation observed in type I fimbriation during 
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growth in inducing conditions (Old & Duguid, 1970). To test whether the fim circuit 

exhibited bistability, we measured PfimA activity at single-cell resolution as a function of 

time. Contrary to our initial hypothesis, we did not observe a heterogeneous or switch-

like response in induction, the tell tale indicator of bistability. Rather, we observed a 

continuous or rheostatic-like response in both wild type and a ∆fimW mutant (Batchelor 

et al., 2004). One possibility is that there is a lack of correlation between fim gene 

expression and the production of type I fimbriae in S. typhimurium (Clegg et al., 1996). 

Moreover, Duguid and coworkers previously observed distinct subpopulations of cells 

expressing type I fimbriae indicative of phase variation, though under conditions 

different from those used in our study (Duguid et al., 1966b). With these in mind, we 

hypothesize that the bacteria exhibit type I fimbriae phase variation under specific 

environmental conditions and that the regulation of this process involves post-

transcriptional mechanisms as well. 
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Figures – Type I Fimbriae Gene Network 

 

Figure 27. FimY and FimZ are activators and FimW is repressor of fim gene expression. 
Comparison of PfimA, PfimY, PfimZ, and PfimW promoter activites in wild type (WT) and 
ΔfimY, ΔfimZ, ΔfimYZ, and ΔfimW mutants. (Data is average of 3 experiments. Each 
experiment was done in triplicate). 
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Figure 28. FimY and FimZ are strong activators of each other’s expression and also 
weak auto-activators. Comparison of PfimY and PfimZ promoter activities in a S. 
typhimurium ΔfimYZ mutant (A) and E. coli (B) where FimY and FimZ are independently 
expressed from an aTc-inducible promoter on a plasmid. Note that tetR is also 
expressed from this plasmid in order to achieve aTc-inducible expression. (Data is 
average of 3 experiments. Each experiment was done in triplicate). 
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Figure 29. FimY and FimZ can independently activate expression from the PfimA 
promoter. Comparison of PfimA promoter activity in a ΔfimYZ mutant where FimY and 
FimZ are independently expression from an aTc-inducible promoter on a plasmid. (Data 
is average of 3 experiments. Each experiment was done in triplicate). 
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Figure 30. Dynamics of PfimA promoter activity. (A) Population-average PfimA activity as a 
function of time in wild type (WT) and ΔfimY, ΔfimZ, ΔfimYZ, and ΔfimW mutants. (B) 
Histogram of single-cell PfimA promoter activity at select times in wild type and a ∆fimW 
mutant. Single-cell measurements of promoter activity were obtained using flow 
cytometry. (Figure 4A: Data is average of single experiment with average of 6 
independent cultures. The experiment was repeated thrice and identical results 
observed. Figure 4B: Population distribution data is from a single experiment. The 
experiment was repeated thrice and identical results were observed (data not shown)). 
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Figure 31. Model for the type I fimbriae gene circuit in S. typhimurium. 
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Chapter 7. Coordinated Regulation of the 
Flagellar, SPI1, and Type I Fimbriae Gene 
Networks  
 

Introduction 
 

Salmonella serovars are responsible for a large number of diseases ranging from 

self-limiting gastroenteritis to life-threatening systemic infection (Ellermeier, 2006, 

Miller SI, 2000). The complete infection process comprises of a number of steps and for 

successful infection, the bacterium needs to ensure that the appropriate cellular 

processes are activated at the right times and in the right amounts. After ingestion, on 

reaching the preferred site of infection - the ileum of the small intestine – the bacterium 

utilizes flagella on its surface to swim in the liquid media. In the environmental 

conditions of the small intestine, the bacterium then assembles a Type 3 Secretion 

System (T3SS) encoded on a 40 kilobase fragment of the chromosome called Salmonella 

Pathogenicity Island 1 (SPI1) (Mills et al., 1995, Lee et al., 1992, Kimbrough & Miller, 

2000, Kubori et al., 1998, Kimbrough & Miller, 2002, Sukhan et al., 2001). The SPI1-

encoded T3SS injects effector proteins directly into the host cell cytoplasm (Collazo & 

Galan, 1997b, Collazo & Galan, 1996). The injected effector proteins elicit a large 

number of physiological responses from the host cell, including actin rearrangement 

that promotes invasion, fluid accumumation and transepithelial migration of 

polymorphonuclear leukocytes, and necrosis of Peyer’s patch macrophages (Ginocchio 
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et al., 1994, Francis et al., 1993, Hayward & Koronakis, 2002, Zhou & Galan, 2001). 

Regulators encoded on the SPI1 fragment also activate a non-fimbrial adhesin encoded 

on SPI4 that helps bacteria adhere to epithelial cells during invasion (Gerlach et al., 

2007a, Main-Hester et al., 2008, Saini & Rao, 2010). In addition, during stationary phase 

of growth, Salmonella assembles surface appendages, Type I fimbriae, which are finger-

like projections that carry adhesins specific for mannosylated glycoproteins. These Type 

I fimbriae facilitate binding to the epithelial cells and long-term persistence of the 

bacterium in the small intestine (Lawley et al., 2006, Gerlach et al., 1989, Saini et al., 

2009). Therefore, successful invasion and persistence requires successful assembly and 

function of a number of surface organelles namely – flagella, SPI1-encoded T3SS, SPI4-

encoded adhesin, and Type I fimbriae. All these appendages serve distinct cellular 

functions of motility, injection, and adhesion. 

 

In Salmonella enterica serovar Typhimurium (S. typhimurium), more than 50 

genes arranged in at least 17 operons are involved in gene-regulation, assembly and 

function of flagella. Structurally, the flagellum is composed of three parts – the basal 

body, hook, and the filament. Basal body anchors the flagellum to the cell, hook is a 

flexible joint that transmits torque produced by the motor to the filament, and the 

filament is a rigid helical structure 5-15 µm in length that on counter-clockwise rotation 

propels the cell forward (Chilcott & Hughes, 2000).  
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Assembly proceeds in a sequential order beginning with the basal body and 

concluding at the distal tip of the filament. This order in assembly process is dictated by 

the genetic logic governing gene expression. Specifically, the flagellar promoters can be 

divided into three classes (Chilcott & Hughes, 2000). The class 1 promoter, PflhDC, 

controls expression of the two genes, flhD and flhC. A large number of regulators feed 

into the PflhDC promoter and their combinatorial action decides if the cell decides to be 

motile or not. FlhD and FlhC then form the complex FlhD4C2 which is essential for class 2 

promoter activation (Figure 32) (Ikebe et al., 1999, Wang et al., 2006). Class 2 promoters 

control expression of hook-basal body (HBB) genes and the class 3 sigma factor, FliA. On 

successful completion of HBB assembly, FliA activates class 3 promoters which control 

expression of chemotaxis, motor, and the filament proteins (Kutsukake, 1994, Karlinsey 

et al., 2000b). Apart from FlhD4C2 and FliA, flagellar gene expression is also controlled by 

a number of regulators encoded in the flagellar network. These regulators include, FlgM, 

FliT, FlgN, and FliZ (Ohnishi et al., 1992, Yamamoto & Kutsukake, 2006, Kutsukake et al., 

1999, Saini et al., 2008, Aldridge et al., 2003). Of particular interest in this report is FliZ, 

which is encoded in the same operon as FliA and is known to be a positive regulator of 

flagellar and SPI1 gene expression.  

 

The expression of SPI1-encoded T3SS is controlled in response to specific 

environmental cues that presumably mimic the conditions in the small intestine. In 

laboratory, SPI1-incuding conditions mean those of high-osmolarity and low oxygen. 

Regulation of the structural genes for the T3SS is primarily controlled by HilA, a member 
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of ToxR/OmpR family of transcriptional regulators encoded within SPI1 (Bajaj et al., 

1995). Expression of HilA in-turn is controlled by three AraC-like regulators – HilD, HilC, 

and RtsA (Figure 32) (Schechter & Lee, 2001, Olekhnovich & Kadner, 2002, Akbar et al., 

2003, Ellermeier & Slauch, 2003). While HilD and HilC are encoded in SPI1, RtsA is 

encoded on a 15 kb island inserted near the tRNAPheU gene. All three bind to the PhilA 

promoter region individually and drive HilA expression. All three – HilD, HilC, and RtsA – 

independently of each other, also activate the PhilD, PhilC, and PrtsA promoters. SPI1 gene 

expression is negatively regulated by a Salmonella-specific protein, HilE. HilE binds to 

and prevents HilD-dependent activation of SPI1 promoters (Baxter et al., 2003). The PhilE 

promoter is not known to be regulated by any SPI1-encoded regulators. In addition, 

encoded in the same operon as rtsA is a gene called rtsB (STM4314). RtsB is known to 

bind the PflhDC promoter and repress motility (Ellermeier & Slauch, 2003).  

 

In S. typhimurium, all the genes necessary for Type I fimbriae production are 

present in the fim gene cluster. This gene cluster consists of six structural genes, three 

regulators, and a tRNA specific for rare arginine codons (AGA and AGG). All six structural 

genes are transcribed from a single, PfimA promoter (Piknova et al., 2005, Hancox et al., 

1997, Purcell et al., 1987, Rossolini et al., 1993). The PfimA promoter is independently 

activated by FimZ and FimY (Figure 32). In addition, FimZ and FimY also activate each 

other’s expression (Saini et al., 2009, Yeh et al., 2002, Tinker & Clegg, 2000). Fim gene 

expression is negatively regulated by FimW. This is done in a negative feedback loop 

where FimY activates the PfimW and FimW represses PfimY (Saini et al., 2009, Tinker et al., 
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2001). In addition, FimZ is known to repress flagellar and SPI1 gene expression. FimZ 

binds to the PflhDC promoter to repress expression of the flagellar genes (Clegg & 

Hughes, 2002). It also activates transcription of HilE which negatively regulates SPI1 

gene expression (Saini et al., 2009). 

 

While the molecular details of FliZ-, RtsB-, and FimZ-dependent cross-talk 

interactions have been studied extensively, the significance of these interactions is 

relatively unknown. Each of the three networks – flagella, SPI1, Type I fimbriae – serve a 

unique and mutually exclusive cellular function during invasion. Therefore, for 

successful infection, it is important that the timing of expression and function of these 

systems is robustly controlled. We hypothesize that the cross-talk between the flagellar, 

SPI1, and Type I fimbriae in S. typhimurium serves to fine-tune the activation and de-

activation dynamics to ensure hierarchical expression of the three systems. 

 

To test the hypothesis, we monitored the gene expression dynamics of the 

flagellar, SPI1, and Type I fimbriae in a number of regulatory mutants. We demonstrate 

that there is a natural hierarchy of gene expression where flagellar gene expression is 

followed by SPI1 and then Type I fimbrial gene expression. Our results indicate that the 

regulatory cross-talk between the three systems ensures the correct timing of activation 

and de-activation of these circuits, presumably leading to a successful infection process. 
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Results 
 

Hierarchical Expression of Flagellar, SPI1, and Type I Fimbriae 
 

For a successful infection cycle, multiple processes need to be simultaneously 

regulated by the bacterium S. typhimurium. In this report, we focus on the role of cross-

talk between three major systems in the Salmonella infection cycle – flagella, SPI1, and 

Type I fimbriae – in controlling the gene expression dynamics of these three systems. To 

monitor expression dynamics, we chose the PflgA, PhilA, and the PfimA promoters as 

representatives of the flagellar, SPI1, and Type I fimbriae gene circuits respectively. The 

PflgA promoter controls expression of genes that encode structural components of the 

flagellar P-ring (Nambu & Kutsukake, 2000); the PhilA promoter controls expression of 

the master regulator HilA in the SPI1 regulatory network (Lostroh & Lee, 2001a); and the 

PfimA promoter regulates expression of the structural genes of the Type I fimbriae in S. 

typhimurium (Rossolini et al., 1993, Purcell et al., 1987). To track the dynamics of these 

promoters’ activities, in our kinetic experiments we cloned the promoter of interest 

upstream of the luciferase operon, luxCDABE, from Photorhabdus luminescens on a 

medium copy plasmid (Goodier & Ahmer, 2001, Saini et al., 2008). Since, luciferase-

based reporter system is far more sensitive than fluorescent proteins, particularly at low 

levels of expression, use of luxCDABE allowed us to effectively track promoter activity 

over time. However, the enzymatic complex in the luciferase system, LuxCD, has a half 

life of only about 10 minutes and therefore is not suited for end-point measurements 

(Hakkila et al., 2002). Therefore, for end-point experiments, we used promoter fusions 
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to a fluorescent gene, venus, on an otherwise identical plasmid system (Nagai et al., 

2002). 

 

To monitor gene expression dynamics of the three systems (flagella, SPI1, and 

Type I fimbriae), we first monitored the PflgA, PhilA, and PfimA promoter activity in wild-

type cells. Our results show that in wild type Salmonella, flagellar, SPI1, and Type I 

fimbriae systems are expressed sequentially (Figure 33). Specifically, the cells first 

express the flagellar genes, followed by the SPI1, and lastly Type I fimbriae genes. 

Previous work has established that growth phase plays an important role in the timing 

of activation of these three systems. In particular, the flagellar genes are known to get 

expressed during the early log phase, the SPI1 network turns “on” during the late 

exponential phase, and the Type I fimbriae genes are expressed in the stationary phase 

of growth.  

 

The Flagellar, SPI1, and Type I Fimbriae Circuits Control Each Other’s 
Expression Dynamics 

 

Our results in wild type Salmonella indicate that, when grown in conditions that 

mimic those inside the small intestine - the flagellar, SPI1, and Type I fimbriae systems 

are expressed sequentially. Next, we wanted to study if the three systems control the 

dynamics of expression of each other or not. Many reports have shown the regulatory 

links between the flagellar, SPI1, and Type I fimbriae networks. Therefore, we wanted to 

investigate the impact of this regulation on the timing of expression of these systems. 



141 

 

We studied gene expression dynamics in mutants where one of the three systems was 

knocked out. Specifically, we monitored the PflgA, PhilA, and PfimA promoter activities in an 

∆flhDC mutant, a ∆SPI1 mutant, and a ∆fimYZ mutant.  

 

Our results show that absence of one of the three systems has an impact on the 

timing of expression of all three systems. In particular, we note that in a ∆flhDC mutant, 

the PflgA promoter was inactive, the PhilA promoter dynamics were slower, and the PfimA 

promoter activity “off” to “on” transition was faster as compared to the wild type 

(Figure 34A). In a ∆SPI1 mutant, the PflgA promoter’s “on” to “off” transition was 

delayed, the PhilA promoter was inactive, and the PfimA promoter activation was delayed 

(Figure 34B). Finally, in a ∆fimYZ mutant, there was no impact on flagellar gene 

expression dynamics, the “on” to “off” step for the PhilA promoter activity was delayed, 

and the PfimA promoter activity was about 70-80% lower than the wild type (Figure 34C). 

 

These results clearly demonstrate that apart from being expressed at different 

times in the growth phase, the timing of expression of the flagellar, SPI1, and Type I 

fimbriae systems is also controlled by the cross-talk between the three systems. In this 

report, we focus on the role of FliZ, RtsB, and FimZ in conducting this cross-talk and 

orchestrating the dynamics of gene expression in the three systems. In addition, we also 

wanted to test the impact of the three systems on end-point expression of each other. 
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FliZ-, RtsB-, and FimZ-Mediated Cross-Talk Controls Fla, SPI1, and Fim 
Levels 
 

FliZ from the flagellar network is a post-translational activator of the flagellar 

master regulator FlhD4C2 complex. In addition, FliZ is also known to be a positive 

regulator of the SPI1-encoded genes via an unknown mechanism. To understand the 

effect of FliZ on flagellar, SPI1, and fimbrial gene expression, we measured end-point 

expression levels of the PflgA, PhilA, and PfimA promoter activity in wild type, a ΔfliZ mutant 

and a ΔfliZ mutant constitutively expressing FliZ from an inducible PLTetO-1 promoter. Our 

results indicate that deletion of fliZ leads to about a two-fold decrease in PflgA and PhilA 

promoter activity as compared to the wild type. On the other hand, deletion of fliZ leads 

to an approximately thirty percent increase in PfimA promoter activity. Consistent with 

these results, over-expression of FliZ from a high-copy plasmid resulted in a roughly 

two-fold increase in the flagellar and SPI1 network gene expression and about a two-

fold decrease in the Type I fimbriae network gene expression (Figure 35A). 

 

Next, we studied the impact of RtsB on gene expression of the three systems. 

RtsB - encoded in the same operon as the SPI1 regulator, RtsA - binds to the flagellar 

class 1 promoter, PFlhD4C2 promoter, and represses activation of the flagellar cascade. 

The PrtsA promoter, which controls RtsB expression, is activated by SPI1 regulators HilD, 

HilC, and RtsA. Therefore, cues that turn on SPI1 gene expression also trigger RtsB 

expression. Deletion of rtsB resulted in a roughly 40% increase in the PflgA promoter 

activity, while over-expression of RtsB lead to about 50% decrease in the PflgA activity. 
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Interestingly, while knocking out rtsB was found to have minimal impact on SPI1 and 

Type I fimbriae gene expression, over-expression of RtsB resulted in roughly 40% 

decrease and increase in the SPI1 and Type I fimbriae activity, respectively (Figure 35B). 

 

The Type I fimbriae regulator, FimZ, in conjunction with another regulator in the 

fimbriae network, FimY, activates transcription from the PfimA promoter. The PfimA 

promoter controls expression of six genes which form the export apparatus and the 

structural components of the Type I fimbriae. In addition, FimZ is also known to activate 

the PhilE promoter. The resulting HilE, then, binds to HilD and prevents HilD-dependent 

activation of SPI1 genes. FimZ is also known to bind to the PFlhD4C2 promoter and repress 

expression of the flagellar genes. Consistent with these previous results, deletion and 

over-expression of FimZ resulted in an increase and decrease of flagellar and SPI1 gene 

expression, respectively. In addition, consistent with previous reports, deletion of FimZ 

leads to an approximately 70% decrease in the PfimA promoter activity (Figure 35C).  

 

While the characterization of the molecular interactions of FliZ, RtsB, and FimZ in 

these three systems has been a subject of a large number of studies, little is known 

about the role of these cross-talk interactions in controlling the dynamics of gene 

expression. With this understanding of the infection process, we hypothesized that FliZ-, 

RtsB-, and FimZ-mediated cross-talk interactions serve to fine-tune the timing of 

activation and deactivation of the three systems. Therefore, we next systematically 

studied the dynamics of gene expression in the three systems in different regulatory 
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mutants where the FliZ-, RtsB-, and FimZ-mediated cross-talk elements have been 

altered. 

 

FliZ Fine-Tunes the Timing of Activation of the Flagellar, SPI1, and Type I 
Fimbriae Circuits 
 

First, we studied the dynamics of flagellar, SPI1, and fimbriae gene expression in 

wild type, a ∆fliZ mutant, and a ∆fliZ mutant constitutively expressing FliZ from a high 

copy plasmid. Consistent with the previous reports, in a ∆fliZ mutant, the peak PflgA 

(flagellar) and PhilA (SPI1) activity is reduced. Over-expression of FliZ led to about a two-

fold increase in the peak promoter activity levels for the PflgA and PhilA promoters. 

However, in a ∆fliZ mutant, we also observed slower induction of the SPI1 gene circuit. 

In addition, a ∆fliZ mutant also displayed elevated and faster induction of the fim circuit 

as compared to the wild type (Figure 36A). Our results also demonstrate that over-

expression of FliZ led to delay in the “on” to “off” transition of the flagellar and SPI1 

systems (Figure 36B) and a delay in the “off” to “on” transition of the Type I fimbriae 

network.  

 

A number of studies have tried to characterize the mode of action of FliZ-

dependent activation of the flagellar and SPI1 genes. However, the precise mechanism 

is still unknown. We previously reported that FliZ acts as a post-translational activator of 

the flagellar master regulator complex FlhD4C2. In similar way, we hypothesized that 

FliZ dependent activation of SPI1 and repression of fimbrial networks is via regulation of 
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their respective master regulators, HilD and FimZ. Therefore, we next tested the 

hypothesis whether FliZ activates SPI1 via HilD and represses fimbriae via FimZ. 

 

To understand the mechanism of FliZ regulation of SPI1, we first tested whether 

FliZ could activate the PhilA promoter in the absence of HilC and RtsA. To do this, we 

over-expressed FliZ in a ∆hilC ∆rtsA mutant, and measured the PhilA promoter activity. 

Our results show that FliZ is able to activate HilA expression in the absence of HilC and 

RtsA (data not shown). Next, to test whether FliZ activates SPI1 independent of HilD, we 

over-expressed FliZ from a PLtetO-1 promoter from a medium copy plasmid in a ∆hilD ∆fliZ 

mutant and measured the PhilA promoter activity. Our results show that in the absence 

of HilD, FliZ was unable to activate SPI1 gene expression (Figure 37A).  

 

To investigate if the FliZ-dependent SPI1 activation is PhilD promoter dependent; 

we replaced the PhilD promoter with a tetRA element at its native chromosomal locus. In 

this construct (ΔPhilD::tetRA), expression of HilD was under a PtetA promoter and 

expression could be induced by addition of tetracycline. We then measured PhilA 

promoter activity in the strain (ΔPhilD::tetRA ΔhilC ΔrtsA ΔfliZ) in the presence of 

tetracycline with and without over-expression of FliZ. The rationale behind the 

experiment was to test whether FliZ controls HilD transcription or does it control HilD-

amount or HilD-activity post-transcriptionally. In this experiment, FliZ was over-

expressed from an arabinose-inducible promoter PBAD on a medium copy plasmid. Our 

results demonstrate that in the strain ΔPhilD::tetRA ∆hilC ∆rtsA ∆fliZ, over-expression of 
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FliZ was still able to induce the PhilA promoter activity (Figure 37B), suggesting that FliZ 

regulates SPI1 gene expression by its regulation of HilD post-transcriptionally. 

 

A novel observation from this study was FliZ-dependent repression of the Type I 

fimbriae gene expression. In a ΔfliZ mutant, the PfimA promoter exhibited faster and 

stronger induction kinetics as compared to the wild-type. To characterize the 

mechanism of this FliZ-dependent repression of the fimbrial gene circuit we measured 

PfimA promoter activity in the strain ΔPfimZ::tetRA ΔfimY ΔfliZ, with and without ectopic 

over-expression of FliZ from a plasmid source. Based on our data, we show that FliZ 

represses the Type I fimbriae circuit by either controlling FimZ level post-

transcriptionally or FimZ-activity inside the cell (Figure 37C and 37D). In addition, it is 

also known that the Type I fimbriae regulator FimY binds to and activates the PfimA 

promoter. To test the possibility if FliZ also acts through FimY to repress PfimA promoter 

activity, we did similar experiments in the strain ΔPfimY::tetRA ΔfimY ΔfliZ. Our results 

show that FliZ-dependent regulation of the PfimA promoter activity is independent of 

FimY (data not shown). 

 

Collectively, our results show that FliZ, in addition of being a positive flagellar 

regulator, plays an important role in linking the expression of SPI1 and Type I fimbriae 

with flagellar expression. Despite the fact that the precise mechanism of the FliZ-

dependent regulation still eludes us, we demonstrate that FliZ plays an important role in 

controlling the hierarchy of activation of the processes involved during the infection 
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cycle. Physiologically, when the cell is motile, FliZ-dependent activation of SPI1 seems to 

better prepare the cell for the next process in the infection cycle. This seems to be 

important for rapid “off” to “on” transition of the SPI1 gene circuit. In addition, FliZ also 

ensures that the genes responsible for persistence in the intestine are not turned “on” 

prematurely. 

 

RtsB Controls the “On” to “Off” Dynamics of the Flagellar Circuit 
 

Next, we focused on characterizing the role of RtsB in regulating the dynamics of 

the flagellar, SPI1, and Type I fimbriae gene expression. RtsB is encoded in the same 

operon as RtsA. While RtsA is a SPI1 activator, RtsB binds to and represses expression 

from the PFlhD4C2 promoter. To understand its role in dictating gene expression dynamics, 

we measured the PflgA, PhilA, and PfimA promoter activity in wild type, an ∆rtsB mutant, 

and an ∆rtsB mutant where RtsB was over-expressed from a high copy plasmid. Our 

data shows two important observations. First, deletion of rtsB delays shutting down of 

the flagellar network. In other words, in an rtsB mutant, the flagellar system is in the 

“on” state for longer than in wild type. Secondly, deletion of rtsB also delays the 

induction of the fim circuit (Figure 38A).  Consistent with these observations, over-

expression of RtsB led to - the flagellar system being completely turned “off”; SPI1 gene 

expression was delayed and slower as compared to wild type; and the fimbrial genes 

were induced faster and to higher levels as compared to the wild type (Figure 38B). 

These results demonstrate that RtsB plays an important role in coupling the dynamics of 

the SPI1 network with the dynamics of the flagellar and Type I fimbriae system. 
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While RtsB-dependent repression of the flagellar network has been reported 

previously, RtsB is not known to regulate the PfimA promoter. To characterize the 

mechanism of RtsB-dependent activation of the fim circuit, we performed experiments 

where we measured end-point PfimA promoter activity in wild-type and ∆fliZ ∆rtsB, pRtsB 

strain. The rationale behind this experiment was to test if RtsB-dependent activation of 

the Type I fimbriae circuit was via FliZ. Consistent with our hypothesis, we observed that 

in a ∆rtsB mutant, the PfimA promoter was upregulated by around 25%. Over-expression 

of RtsB in the absence of FliZ however, was not able to repress PfimA promoter (Figure 

38C).  

 

Therefore, we conclude that once the SPI1 genes are “on”, they also activate 

RtsB expression. RtsB, then, binds to the PflhDC promoter and down-regulates the 

flagellar gene expression. As indicated by our results, RtsB-dependent repression of the 

flagellar network is important in the effective shut-down of the flagellar circuit. 

Secondly, down-regulation of flagellar genes consequently negatively regulates the FliZ 

levels inside the cell which relives the FliZ-dependent repression of the Type I fimbrial 

circuit. Physiologically, this additional regulation likely ensures two things. First, SPI1-

activation also turns “on” RtsB expression, which is important to turn “off” the flagellar 

network. Secondly, by shutting down the flagellar network rapidly, RtsB ensures timely 

activation of the Type I fimbrial network. 
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FimZ-Dependent Negative Regulation of FlhD4C2 and HilD 
 

Last, we analyzed the role of Type I fimbriae regulator FimZ in dictating dynamics 

of flagellar, SPI1, and Type I fimbriae gene expression. FimZ binds to and activates 

transcription from the PfimA promoter. In addition, however, FimZ is also known to 

repress SPI1 and flagellar networks. FimZ binds to and activates the PhilE promoter. The 

resultant HilE negatively regulates SPI1 gene expression. FimZ is also known to bind to 

the PFlhD4C2 promoter and repress flagellar gene expression. Therefore, we hypothesized 

that FimZ controls the dynamics of the three systems under consideration in this study.  

 

To test this hypothesis, we tracked the PflgA, PhilA, and PfimA promoter activity in 

wild type, a ∆fimZ mutant, and ∆PfimZ::tetRA, where the PfimZ promoter was replaced by 

a tetRA element. In the strain ∆PfimZ::tetRA, FimZ expression could be induced by 

addition of tetracycline. Consistent with our hypothesis, we observed that in the 

absence of FimZ - SPI1 shut-down and Type I fimbriae-induction are both delayed. In 

addition, we note that in the absence of FimZ, the absolute levels of the PfimA promoter 

drop considerably (Figure 39A). Similarly, we also tested the gene expression dynamics 

of the three systems in a strain called ∆PfimZ::tetRA. In this strain, we replaced the PfimA 

promoter with a tetRA element. By doing this, FimZ expression was made conditional on 

the presence of tetracycline in the media. Upon induction, in this strain, the PfimA 

promoter was induced first followed by the PflgA, and the PhilA promoter (Figure 39B). In 

addition, the flagellar and SPI1 expression levels were also reduced by about 70% in this 

strain. Therefore, in addition to being a PfimA activator, FimZ-dependent repression of 
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the flagellar and SPI1 networks leads to a change in the timing of gene expression 

dynamics.  

 

To demonstrate that FimZ-dependent repression of the SPI1 circuit was because 

of activation of PhilE promoter, we measured PhilA activity in the strains ΔfimZ and ΔfimZ 

ΔhilE where FimZ was being over-expressed from a PLtetO-1 promoter on a high copy 

plasmid. Our results indicate that over-expression of FimZ in the absence of HilE did not 

lead to repression of the PhilA promoter expression levels (data not shown). There was 

no impact of a ∆fimZ mutation on flagellar dynamics or absolute levels of flagellar 

activity. This is probably due the fact that the fim system only comes on late in the 

growth phase and by that time the flagellar network has already been shut down by 

global regulators and SPI1-activated RtsB. But, FimZ-dependent repression of the 

flagellar gene expression likely encodes an additional check-point inside the cell to 

ensure effective shut-down of the flagellar gene expression. 

 

Put together, our results indicate that cross-talk interactions between the 

flagellar, SPI1, and Type I fimbriae gene circuits serve an important purpose in 

controlling the timing of activation and deactivation of the systems. Coordinated 

expression of the three systems is critical for successful infection and long-term 

persistence of the bacterium in the intestine. We demonstrate that FliZ, RtsB, and FimZ 

regulators encoded in the flagellar, SPI1, and Type I fimbriae networks respectively, 

control the level and timing of interaction the three steps. 
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Discussion 
 

The food-borne pathogen Salmonella coordinates a number of cellular functions 

to cause a successful infection. The three main systems employed by the bacterium in 

the intestinal phase of the infection are flagella, SPI1 encoded T3SS, and Type I fimbriae. 

Presumably, the bacteria use flagella to swim to the site of infection (M-cells lining the 

small intestine), SPI1 encoded T3SS to invade M-cells, and Type I fimbriae to persist in 

the intestine. In order to ensure that each of these three systems is expressed at the 

appropriate times in the infection cycle, it is important that Salmonella regulates the 

dynamics of these systems. In this report, we demonstrate that the flagellar, SPI1, and 

Type I fimbriae networks are expressed sequentially in wild type Salmonella. In this 

hierarchy, the flagellar genes are activated first, followed by the SPI1 and Type I fimbriae 

genes respectively. As flagellar genes are expressed in the early log-phase, SPI1 genes in 

the late log-phase, and the Type I fimbriae genes in the stationary phase of growth, this 

hierarchy in gene expression is enforced by the growth-phase of the bacterium. 

However, to better control the temporal activation and deactivation of these systems, 

Salmonella utilizes regulatory cross-talk between the flagellar, SPI1, and Type I fimbriae 

networks. Our results show that in the absence of regulatory cross-talk between these 

systems, cells are unable to maintain both, wild type hierarchy of activation and also the 

maximal levels of expression. 
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In the context of invasion, our results suggest that this dynamic regulation of the 

flagellar, SPI1, and Type I fimbriae gene circuits is important for the following reason. In 

the conditions prevailing in the small intestine, the flagellar network is active resulting in 

the bacterium actively swimming to the site of infection. FliZ from the flagellar network 

then: (a) positively regulates HilD, and (b) negatively regulates FimZ. As demonstrated 

by our results, FliZ-dependent activation of HilD accelerates SPI1 gene expression, 

resulting in the cell actively assembling needle complexes for invasion and FliZ-

dependent repression of FimZ likely prevents premature activation of the Type I 

fimbriae gene network. 

 

Once the SPI1 network is “on”, SPI1-regulators HilD, HilC, and RtsA activate 

expression of RtsB. As mentioned before, RtsB binds to the PflhDC promoter and 

represses transcription. This interaction is important for rapid shut-off of the flagellar 

network. RtsB-dependent repression of the flagellar gene circuit also weakens the FliZ-

dependent repression of the Type I fimbriae network. This secondary interaction allows 

for the activation of the fimbriae genes if the bacterium is not internalized in the host 

cell. The activation of the Type I fimbriae gene network is likely important for long-term 

persistence in the intestine, as has been observed before. Last, once the Type I fimbriae 

genes are “on”, FimZ represses both flagellar and SPI1 gene circuits leading to effective 

shut-down of these systems. 
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Dynamic regulation of multiple systems is widely observed in bacteria. In 

particular, pathogens are often required to coordinate the expression of multiple 

systems to accomplish a successful infection process. A number of studies have 

identified mechanisms employed in different pathogens to exhibit this coordination and 

dynamic control on expression of multiple systems. Perhaps the most common example 

of regulatory cross-talk mediating the timing of activation leading to hierarchical 

expression of systems is sugar transport and utilization in bacteria (Monod, 1966, Desai 

& Rao, 2010). Simple cross-talk interactions in E. coli ensure that the bacterium 

processes multiple carbon sources sequentially. This cross-talk mediated hierarchy 

allows the bacterium to utilize its preferred carbon source first before it moves to less 

desire able carbon sources.  

 

In this study, we demonstrate that using regulatory cross-talk interactions 

between the flagellar, SPI1, and Type I fimbriae networks, the bacterium S. typhimurium 

controls the hierarchical expression of these systems and ensures a successful infection 

process. However, Salmonella is also known to employ long polar fimbriae (lpf), SPI4-

encoded non-fimbriae adhesin, and SPI2-encded T3SS during different stages of the 

infection process. While lpf (van der Velden et al., 1998, Baumler et al., 1997, Ledeboer 

et al., 2006) and SPI4-encoded (Gerlach et al., 2007b) adhesin are known to coordinate 

attachment of the bacteria to the epithelial cells, SPI2-encoded T3SS is central for the 

ability of the cell to cause systemic infections and for intracellular pathogenesis. 

Consistent with this, the lpf and the SPI4 systems are expressed in conditions prevailing 
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in the small intestine, and are known to be co-regulated with the flagellar and SPI1 

networks respectively (Ahmer et al., 1999, De Keersmaecker et al., 2005, Ellermeier & 

Slauch, 2003, Gerlach et al., 2007b, Main-Hester et al., 2008, Saini & Rao, 2010). The 

SPI2 system is also known to be activated by SPI1-encoded regulator HilD (Fass & 

Groisman, 2009, Bustamante et al., 2008), but, the environmental cues that turn “on” 

SPI2 genes are different from the ones that activate systems involved in the intestinal 

phase of the infection. More precisely, SPI2 gene expression is known to get activated in 

response to low Mg2+ concentration and low pH (Hensel, 2000). How the cells 

coordinate the transition from SPI1-activated to SPI2-activated gene expression profile, 

and what is the significance of HilD-mediated regulatory cross-talk between these two 

systems is not well understood. 

 

To conclude, in this chapter, we present evidence for role of cross-talk in 

dynamically coordinating a number of cellular processes in the common food-borne 

pathogen, Salmonella. We show that three important systems in the early phase of the 

infection cycle – flagella, SPI1, and Type I fimbriae – are expressed hierarchically in wild 

type Salmonella and that regulatory cross-talk between the three systems is an 

important tool employed by the bacterium to effectively transition from one system to 

another. 
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Figures – Coordinated Regulation of the Flagellar, SPI1, 
and Type I Fimbriae Gene Networks 

 

 

Figure 32. Regulatory cross-talk between the flagellar, SPI1, and Type I fimbriae gene 
regulatory networks in S. typhimurium. FliZ from the flagellar network activates HilD 
expression post-translationally. FliZ also represses Type I fimbriae network by its action 
on FimZ post-translationally. FimZ binds to the PhilE promoter to activate transcription. 
FimZ binds to the PflhDC promoter to repress flagellar expression. RtsB binds to the PflhDC 
promoter to repress motility. 
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Figure 33. Flagellar, SPI1, and Type I fimbrial gene expression is sequential. Flagellar 
(PflgA promoter), SPI1 (PhilA promoter), and Type I fimbrial (PfimA promoter) gene 
expression is hierarchical. Wild-type cells (14028) were grown overnight at 37°C in 
conditions of high oxygen, no salt, and vigorous shaking. The overnight culture was then 
sub-cultured 1:500 in fresh LB media (with salt). 100 µl aliquot of the sub-cultured cells 
was transferred to a 96-well plate and covered with a breathe-easy membrane to 
prevent evaporation. Luminescence and optical density (OD600) readings were taken 
every 20 minutes. All experiments were done in three independent repeats with six 
samples in each experiment. Error bars denote standard deviations. 



157 

 

 

 

Figure 34. Flagellar, SPI1, and Type I fimbriae gene networks control each other’s gene 
expression dynamics. (A-C) Comparison of the PflgA (A), PhilA (B), and PfimA (C) promoter 
activity in wild type cells and a ∆flhDC mutant. (D-F) Comparison of the PflgA (D), PhilA (E), 
and PfimA (F) promoter activity in wild type cells and a ∆SPI1 mutant. (G-I) Comparison of 
the PflgA (G), PhilA (H), and PfimA (I) promoter activity in wild type cells and a ∆fimYZ 
mutant. Experiments were done on three different days and average values and 
standard deviations are repeated. All experiments were performed as described in 
Figure 33. 
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Figure 35. Cross-talk between flagella, SPI1, and Type I fimbriae networks controls the 
end-point expression levels. (A) FliZ is a flagellar and SPI1 activator and a Type I fimbrial 
repressor. PflgA, PhilA, and PfimA promoter activities in wild-type, ∆fliZ, and ∆fliZ pFliZ 
strains. (B) RtsB tunes flagellar, SPI1, and Type I fimbriae activities. PflgA, PhilA, and PfimA 
promoter activities in wild-type, ∆rtsB, and ∆rtsB pRtsB strains. (C) FimZ regulates 
flagella, SPI1, and fimbrial gene expression. PflgA, PhilA, and PfimA promoter activities in 
wild-type, ∆fimZ, and ∆fimZ pRtsB strains. 



159 

 

 

Figure 36. FliZ controls the timing of expression of the flagellar, SPI1, and fimbrial gene 
expression. (A-C) PflgA (A), PhilA (B), and PfimA (C) promoter activities in wild-type cells and 
a ∆fliZ mutant. (D-F) PflgA (D), PhilA (E), and PfimA (F) promoter activities in wild-type and 
(∆fliZ pFliZ) strain where FliZ is constitutively being expressed from a PLTetO-1 promoter. 
All experiments were performed as described in Figure 33. 
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Figure 37. FliZ controls flagellar and Type I fimbriae gene expression by regulating HilD 
and FliZ post-transcriptionally. (A) FliZ activates SPI1 gene expression via HilD. PhilA 
promoter activity in wild-type, ∆hilD, ∆hilD ∆fliZ, and ∆hilD ∆fliZ pFliZ. (B) FliZ regulation 
of SPI1 is independent of HilD transcription. PhilA promoter activity in PhilD::tetRA ∆hilC 
∆rtsA, PhilD::tetRA ∆hilC ∆rtsA ∆fliZ, and PhilD::tetRA ∆hilC ∆rtsA ∆fliZ pFliZ. (C) FliZ 
activation of fimbrial genes is through FimZ. PfimA promoter activity in wild-type, ∆fimZ, 
∆fimZ ∆fliZ, and ∆fimZ ∆fliZ pFliZ. (D) FliZ repression of fimbrial network is by post-
transcriptional regulation of FimZ. PfimA promoter activity in PfimZ::tetRA ∆fimY, PfimZ::tetRA 
∆fimY  ∆fliZ, and PfimZ::tetRA ∆fimY  ∆fliZ pFliZ. All experiments were performed in 
triplicate. Average values and standard deviations are reported. 
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Figure 38. RtsB controls the timing of flagellar and fimbrial gene circuits. (A-C) PflgA (A), 
PhilA (B), and PfimA (C) promoter activity in wild-type cells and a ∆rtsB mutant. (D-F) PflgA 
(D), PhilA (E), and PfimA (F) promoter activity in wild-type cells and a ∆rtsB mutant 
constitutively expressing RtsB from a PLTetO-1 promoter on a high-copy plasmid (dashed 
lines with open symbols).  The experiments were performed as described in Figure 33. 
(G) RtsB controls the timing of activation of the fim circuit by repression of FliZ. PfimA 
promoter activity in wild-type, ∆fliZ, ∆rtsB ∆fliZ, and ∆rtsB ∆fliZ pRtsB. All experiments 
were performed in triplicate. Average values and standard deviations are reported. 
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Figure 39. FimZ controls the timing of flagellar, SPI1 and fimbrial gene circuits. FimZ 
speeds up the “On” to “Off” transition of the SPI1 network and the “Off” to “On” 
transition of the fim network.  (A-C) PflgA (A), PhilA (B), and PfimA (C) promoter activities in 
wild-type cells and a ∆fimZ mutant. (D-F) PflgA (D), PhilA (E), and PfimA (F) promoter 
activities in wild-type cells and the strain ∆PfimZ::tetRA where expression of FimZ could 
be induced by addition of tetracycline. All experiments were performed as described in 
Figure 33. All experiments were performed in triplicate. Average values and standard 
deviations are reported. 
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Chapter 8. Other Results  
 

HilE Acts as a Switch Between SPI1 and SPI2 
 

In our previous work, we have demonstrated that the HilD-HilE interplay sets a 

threshold-mechanism for SPI1 gene expression. In this model, we assumed that HilE is 

expressed at constant rates inside the cell and sequesters HilD resulting from the step-

input. However, as the cell transitions from the intestine to the intracellular 

environment, it has to make rapid adjustments to its gene expression profile to better 

survive in the harsh intracellular environment. To accomplish this, the cell requires an 

effective switching mechanism from one gene expression profile to the other. One 

example of this switching is shutting the SPI1 T3SS “off” and triggering the SPI2 encoded 

T3SS “on”. In this work, we try to understand this switching mechanism and the role of 

HilE and the two-component regulator, PhoPQ. 

 

We first measured PhilA promoter activity in wild type and ∆hilE mutant in both, 

SPI1-inducing and SPI2-inducing conditions. Our results indicate that in SPI1-inducing 

media, absence of HilE is only able to upregulate HilA expression about 2-fold (Figure 

40). However, in SPI2-inducing media, in a ∆hilE mutant, HilA expression is upregulated 

approximately 5 times, indicating that HilE is an important component in the genetic 

architecture to shut-down SPI1 gene expression after the internalization of the cell. 
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To test the role of HilE in the switch between SPI1 and SPI2, we also measured 

PhilE promoter activity in wild-type and a ∆hilE mutant. Our data demonstrates that in 

SPI2 inducing media, HilE gene expression is up-regulated 4-5 folds (Figure 41). The 

increase in promoter activity in the SPI2 media is dependent on a large number of 

factors. Among them is the two-component system, PhoPQ. Consistent with this result, 

we observe that a PhilE promoter fusion is up-regulated in SPI2-inducing media, however, 

the up-regulation is significantly lower in a ∆phoP mutant. Based on this observation, 

we hypothesize that, PhoPQ-mediated up-regulation of the PhilE promoter serves as a 

mechanism to switch off SPI1 gene expression. 

 

To monitor the effect of PhoPQ on SPI2 gene expression, we measured PsseA 

promoter activity in SPI1- and SPI2-inducing media. Our results show that SPI2 is turned 

“on” specifically in SPI2-inducing conditions. This up-regulation of SPI2 gene expression 

was, however, not observed in a ∆phoP mutant (Figure 42). Put together, our results 

indicate that as cells transition from the intestinal to the intracellular phase of infection, 

PhoPQ and HilE serve to switch the SPI1-encoded T3SS “off” and the SPI2-encoded T3SS 

“on”. 

 

We do not, as yet, know how PhoPQ system induces PhilE promoter activity. 

PhoPQ has been reported to induce HilE expression, but the precise mechanism of this 

activation is not known. But we demonstrate that the interplay between HilE and PhoPQ 
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encodes a strategy that helps the cell efficiently switch from SPI1- to SPI2-inducing gene 

expression profile. 

 

Salicylic Acid is a SPI1 Repressor 
 

Salicylic acid is a known activator of the mar/sox/rob regulon in both E. coli and 

S. typhimurium. Presence of Salicylic acid turns on the interlocked mar/sox/rob regulons 

which are responsible for turning on a large number of downstream genes responsible 

for survival in the presence of antibiotics. While the role of Salicylic acid as an inducer of 

the mar/sox/rob regulon has been the subject of considerable effort in the related 

organism E. coli (Cherepenko & Hovorun, 2005, Randall & Woodward, 2002, Miller & 

Sulavik, 1996), its effect on SPI1 gene expression has previously not been looked at. 

With this intention, we studied SPI1 gene expression in the presence of antibiotics such 

as Salicylic acid. 

 

As a first experiment, we observed PhilA promoter activity in wild type in the 

presence and absence of 10 mM Salicylic Acid. Surprisingly, we found that addition of 

Salicylic Acid completely turns off the PhilA promoter Figure 43. This effect on the PhilA 

promoter activity was independent of SPI1-activators HilC and RtsA and was also 

independent of the SPI1-repressor, HilE. Salicylic acid was, however, unable to repress 

SPI1 gene expression in the strain PhilD::tetRA, where the PhilD promoter is replaced by a 
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tetRA element. Therefore, we conclude that Salicylic Acid-dependent repression of SPI1 

gene expression is dependent on the PhilD promoter. 

 

Many systems are known to get turned on in response to antibiotics in the 

surrounding media. Among them is the mar/sox/rob regulon in E. coli. In particular, 

marRAB system is induced by Salicylic Acid, and is known to induce downstream targets 

which are responsible for controlling a variety of systems in the cell, for example, porin 

concentrations, and providing antibiotic resistance (Allen et al., 2008). Therefore, we 

hypothesized that Salicylic acid-dependent repression of SPI1 gene expression might be 

through its action on the mar/sox/rob regulon. To test this hypothesis, we deleted 

marRAB, rob, and soxRS from the wild-type and checked PhilA promoter activity in the 

presence and absence of Salicylic Acid. Contrary to our hypothesis, we observed that 

even in the absence of marRAB, rob, and soxRS, Salicylic Acid was able to repress SPI1 

gene expression Figure 44. As an additional test, we over-expressed the regulators 

marR, rob, and soxR in wild type Salmonella and monitored PhilA promoter activity. Over-

expression of these regulators did not significantly alter SPI1 gene expression (data not 

shown). 

 

Next, to identify the target through which Salicylic Acid-dependent repression of 

SPI1 gene expression is mediated, we developed a screen to carry random transposon 

mutagenesis in wild type Salmonella. In this screen, we integrated a hilA’-lac fusion at 

the lambda attachment site in the Salmonella chromosome. When this strain was 
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streaked on plates containing 20 µg/ml of X-Gal, all colonies were blue in color. 

However, when the strain was streaked on plates containing 20 µg/ml of X-Gal and 10 

mM Salicylic Acid, white colonies were observed. The two plates are as shown in Figure 

45. To identify the target of Salicylic Acid-dependent repression of SPI1 genes, we did 

random transposon mutagenesis with this screen. We have screened around 15000 

colonies till date. However, we have been unable to isolate mutants where the Salicylic 

Acid-dependent repression was relieved. 

 

Reprogramming the Type I Fimbriae Network 
 

From a networks perspective, the Type I fimbriae gene network poses an 

interesting question. As previously discussed in Figure 31, Type I fimbriation in S. 

typhimurium is controlled by two-interlocked positive feedback loops. These loops likely 

encode an AND gate in the network where only when activating signals feed into both 

PfimY and PfimZ promoters will fimbriation take place. Despite the presence of coupled-

positive feedback, we demonstrated that the network does not exhibit switch-like 

transition from the “off” to the “on” state. Rather, the transition of the PfimA promoter 

from the “off” to the “on” state was like a rheostat. With this understanding of the 

network, we were interested in answering the following questions about the fimbriae 

network.  
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Firstly, what are the precise signals that are fed into the PfimY and the PfimZ 

promoters that control fimbriae gene expression in S. typhimurium. Type I fimbriae are 

known to be assembled in static, highly aerobic conditions in liquid media (Duguid et al., 

1966a). To investigate which promoter are these signals fed through, we monitored the 

PfimY and PfimZ promoter activity in several environmental conditions in a ∆fimYZ mutant. 

Our results indicate that the two different promoters likely integrate two distinct 

environmental signals leading to expression of genes responsible for Type I fimbriae.  

We demonstrate that high oxygen signal is fed through the PfimY promoter as its activity 

was 3-fold higher in high oxygen conditions than in anaerobic conditions, while there 

was no appreciable increase in the PfimZ promoter in the presence or absence of oxygen 

in a ∆fimYZ mutant. Similarly, we also monitored PfimY and PfimZ promoter activity 

following growth on solid media vs. liquid cultures. Our results demonstrate that while 

both, PfimY and PfimZ promoters are upregulated in liquid media as compared to solid 

media, the increase in PfimZ promoter activity is much more as compared to the increase 

in the PfimY promoter activity. These results suggest that information about growth on 

soild/liquid media is fed to the Type I fimbrial circuit primarily at the level of PfimZ 

promoter (Figure 46). Therefore, in this manner, the network integrates different signals 

leading to fimbriation under the most appropriate conditions. 

 

Secondly, we were also interested in investigating the dynamics of the system at 

both population average and a single-cell level by changing the architecture of the 

network. Specifically, we wanted to strengthen the positive feedback in the network 
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and monitor if that leads to a change in qualitative behavior of the network response at 

a single-cell level. To reprogram the fim system where the positive feedback is 

strengthened, we switched the PfimY and the PfimZ promoters on the chromosome. The 

motivation behind doing this was that in wild type arrangement, FimZ primarily 

activates PfimY promoter and FimY is an activator of the PfimZ promoter. Therefore, in the 

resulting strain PfimY::PfimZ PfimZ::PfimY, both FimY and FimZ will be free to feedback on the 

respective promoters driving their expression.  

 

We first checked the gene expression dynamics of the PfimA promoter in the 

PfimY::PfimZ PfimZ::PfimY strain and compared it with wild type and a ∆fimW mutant (Figure 

47). Our results show that the PfimA promoter activity in the reprogrammed strain is 

stronger as compared to the wild type. In fact, the expression levels were very similar to 

those observed in the ∆fimW mutant. This demonstrates that our hypothesis of 

switching the promoters to strengthen the system was correct. Along with 

strengthening positive feedback in the reprogrammed strain, we note that we are also 

strengthening the FimY-FimW negative feedback loop. To remove this negative 

feedback loop, we removed FimW from the reprogrammed strain. The resulting strain 

was called PfimY::PfimZ PfimZ::PfimY ∆fimW. In this strain, the PfimA promoter activity was 

about twice as stronger than the wild type and about 50% stronger than the 

reprogrammed PfimY::PfimZ PfimZ::PfimY strain. Therefore, we demonstrate that the fim 

circuit employs interlocked positive and negative feedback loops to generate the wild 

type response of the system. 
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We have previously shown that the Type I fimbrial gene expression, despite 

encoding coupled feedback loops, does not exhibit transient heterogeneity as cells 

transition from the “off” to the “on” state. To examine the response of the 

reprogrammed fim network, we monitored PfimA promoter activity in the wild type, the 

reprogrammed PfimY::PfimZ PfimZ::PfimY mutant, and the PfimY::PfimZ PfimZ::PfimY ∆fimW 

mutant. Our results demonstrate that in wild type and the PfimY::PfimZ PfimZ::PfimY strain, 

the transition of the cells from the “off” to “on” state was homogeneous and there was 

no heterogeneity in the population. However, in the PfimY::PfimZ PfimZ::PfimY ∆fimW strain, 

we see a switch-like transition of PfimA gene expression as cells transition from the “off” 

to “on” state (Figure 48). These results demonstrate that the natural Type I fimbrial 

gene circuit encodes coupled positive and negative feedback loops. The coupled positive 

feedback loop between FimY and FimZ acts to integrate different environmental and 

cellular signals and the FimY and FimW negative loop prevents a run-away reaction in 

terms of PfimA gene expression. By tuning the strength of the positive feedback loops (by 

reprogramming the network) and by eliminating the negative feedback loop (∆fimW), 

we demonstrate that we can change the qualitative gene expression pattern across the 

population, as cells transition from the “off” to the “on” state. 
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Figures – Other Results 
 

 

Figure 40. PhilA promoter activity in wild type and ∆hilE mutant in SPI1- and SPI2-
inducing conditions. In the absence of HilE, HilA expression increases 5-fold in SPI2-
inducing conditions as compared to 2-fold in SPI1-inducing conditions. Cells were grown 
for 12  hours before measuring fluorescence and optical density. All experiments were 
performed in triplicate and average values and standard deviations are reported. 
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Figure 41. HilE expression is tuned by PhoPQ two-component system. HilE is up-
regulated in SPI2-inducing conditions by PhoPQ. PhilE promoter activity in wild type, 
∆phoP mutant, and PhoQ24 mutant where PhoQ is constitutively active. Fluorescence 
and optical densities were measured after 12 hours of growth. All experiments were 
performed in triplicate and average values and standard deviations are reported. 
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Figure 42. PsseA promoter activity is up-regulated in SPI2-inducing conditions. Induction 
of the SPI2 promoter is dependent on presence of PhoPQ in SPI2-inducing conditions. All 
experiments were performed in triplicate with average values and standard deviations 
reported. 
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Figure 43. Salicylic Acid shuts down SPI1 gene expression. Repression is independent of 
SPI1 regulators HilC, RtsA, and HilE; but dependent on PhilD promoter. PhilA promoter 
activity in wild type, ∆hilC ∆rtsA, ∆hilE, and ∆PhilD::tetRA. All experiments were done in 
triplicate. Average values and standard deviations are reported. 
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Figure 44. Salicylic Acid- dependent repression of SPI1 gene expression is independent 
of marRAB, soxRS, and rob regulons. PhilA promoter activity in wild type, ∆marRAB 
mutant, ∆soxRS mutant, and ∆rob mutant in LB and LB containing 10mM Salicylic Acid. 
All experiments were done in triplicate. Average values and standard deviations are as 
shown above. 
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Figure 45. Salicylic Acid & X-Gal screen for SPI1 gene expression. (A) Wild type 
Salmonella strain carrying hilA’-lac fusion streaked on plates with 20 µg/ml X-Gal. (B) 
Wild type Salmonella strain carrying hilA’-lac fusion streaked on plates with 20 µg/ml X-
Gal and 10 mM Salicylic Acid. 
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Figure 46. Environmental signals feeding through the PfimY and PfimZ promoters are 
integrated in the fim gene circuit leading to assembly of the Type I fimbriae. PfimY and 
PfimZ promoter activity in ∆fimYZ mutant in different environmental conditions. Cells 
were grown for 24 hours in the respective conditions and then fluorescence and optical 
density (OD600) measured. The experiments were performed at 37°C. All experiments 
were performed in triplicate, and average values and standard deviations are reported. 
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Figure 47. By reprogramming the Type I fimbrial gene circuit, we can tune the dynamic 
response of the system. PfimA promoter activity in wild type, ∆fimW, PfimY::PfimZ 
PfimZ::PfimY, and PfimY::PfimZ PfimZ::PfimY ∆fimW mutant. The control is wild type cells with 
empty pVenus vector integrated at the lambda attachment site. The experiments were 
performed thrice, and average values with the standard deviations are reported. 
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Figure 48. Reprogramming the Type I fimbrial gene circuit and eliminating the negative 
feedback leads to a switch-like transition of the cells from the “off” to “on” state. PfimA 
promoter activity in the PfimY::PfimZ PfimZ::PfimY ∆fimW mutant at a single-cell resolution at 
the indicated times. Around 30,000 cells were processed for each experiment. The 
experiments were performed three times with similar behavior observed each time. 
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Chapter 9. Conclusions and Future 
Directions 
 

In this work, we demonstrate that multiple systems coordinate in the food-borne 

pathogen Salmonella leading to a successful infection process. We investigated the 

design of genetic networks controlling the flagellar, SPI1, SPI4, and Type I fimbriae gene 

networks and demonstrate that the underlying feature in this design is the presence of a 

logic gate which limits expression to conditions most favorable for invasion. We 

hypothesize that these logic gates serve as check points which prevent waste of 

precious cellular responses.  

 

Another result presented in this study is the coordination between the cellular 

processes. We show that regulatory cross-talk between the flagellar, SPI1, SPI4, and 

Type I fimbriae gene networks is important for correct timing of activation and de-

activation of these networks. These processes serve mutually exclusive roles in the 

infection process and are expressed sequentially in wild type Salmonella. Cross-talk 

between these systems ensures that for each system, the transition from “off” to “on” 

and “on” to “off” takes place at the correct time in the infection cycle. These results 

illustrate that cellular processes do not work in isolation but are closely linked to each 

other in accomplishing a complex task such as invasion of a mammalian host.  
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We still do not many things about the infection process gene regulation in 

Salmonella. Some of the questions which might be of interest for future studies are 

discussed below: 

 

Salicylic Acid-Dependent Repression of SPI1 Gene 
Expression 
 

To investigate if there is a link between multiple antibiotic resistance (mar) locus 

(Randall & Woodward, 2002, Miller & Sulavik, 1996) and SPI1, we measured SPI1 gene 

expression in presence of mar inducer Salicylic acid (Cohen et al., 1993). Our data 

suggests that addition of Salicylic acid completely turns off SPI1 gene expression. This 

effect was found independent of genes involved in multiple antibiotic resistance, 

marRAB, soxSR, and rob, and SPI1 regulators, hilC, rtsA, and hilE. However, the effect 

was found to be dependent on the PhilD promoter. Using transposon mutagenesis, we 

attempted to identify the target of Salicylic Acid-dependent repression of SPI1 gene 

regulation but no target was identified. 

 

Gene Expression Profile as Cells Switch from SPI1-
Inducing to SPI2-Inducing Conditions 

 

Upon internalization in the host cells, the bacteria need to rapidly adapt their 

gene expression profile. To do this, they need to switch from SPI1-expression to a SPI2-

expression state. Hence, they need to encode a strategy where upon internalization, 
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SPI1 gene expression is repressed and SPI2 gene expression is activated. We speculate 

that this strategy is encoded by two component systems, PhoPQ and PmrAB, and SPI1-

regulator HilE. PhoPQ is known to respond to low pH and Mg2+ and activate SPI2 gene 

expression (Garcia Vescovi et al., 1994, Smith & Maguire, 1998, Prost & Miller, 2008). It 

also up-regulates HilE expression and likely involved in shutting down SPI1 gene 

expression. The two-component system PmrAB is also known to respond to low pH and 

Fe2+ in the environment (Gunn, 2008, Kato et al., 2007, Perez & Groisman, 2007, 

Nishino et al., 2006). However, its role in regulation of SPI1 and SPI2 gene expression 

has not been studied yet. We hypothesize, that PhoPQ and PmrAB, in conjunction with 

HilE play the role of the switch. This switch likely helps the cell transition from a SPI1-

active gene expression profile to a SPI2-active gene expression profile, thus, helping the 

cell survive in the harsh environment in the Salmonella-containing vacuoles. 

 

SPI1 Negative Regulation 
 

It has previously been reported that SPI1 gene regulation is subject to negative 

regulation (De Keersmaecker et al., 2005). It was proposed that this negative regulation 

is mediated by HilA binding to its own PhilA promoter and repressing transcription. To 

understand this negative regulation of the SPI1 gene circuit, we studied promoter 

activity in wild type and a ∆hilA mutant. In our experiments, we observe that all SPI1 

regulators (HilD, HilC, RtsA, and HilA) were up-regulated in a ∆hilA mutant (data not 

shown). The source and target for this regulation was not identified. The effect was also 
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observed in a needle complex mutant where the prg operon was knocked out. However, 

to account for the possibility that disrupting the prg operon might have interfered with 

hilD transcription regulation, we also constructed an invG mutant. We observed 

identical results in an ∆invG mutant. Therefore, we speculate that there is a negative 

feedback loop in the SPI1 gene network that is linked to the assembly status of the 

needle complex. We note that this form of regulation is observed in the flagellar 

network where intra-cellular concentration of regulators is controlled by protein 

secretion through the growing flagellum. 
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Appendix A: Strains Used in This Study 

 
Strain No. Genotype Genomic Region Ref. 

SS572 ∆flhDC::cm 2021671-2022298  

SS573 ∆flgM::cm 1257046-1257339  

SS684 ∆flgM::kan 1257046-1257339  

SS687-I ∆fliT::cm 2051201-2051605  

SS687 ∆fliT::kan 2051201-2051605  

SS701 ∆fliA::kan 2044747-2045480  

SS702 ∆fliA::cm 2044747-2045480  

SS699 ∆fliZ::cm 2044068-2044678  

SS700 ∆fliZ::kan 2044068-2044678  

SS703 ∆fliAZ::kan 2044068-2045480  

SS704 ∆fliAZ::cm 2044068-2045480  

SS707 ∆flhDC::cm 2021431-2022298  

SS901 ∆PfliA::tetRA 2045466-2045714  

SS903 ∆PfliA:: PflhB 2045466-2045714:: 
2011434-2011994 

 

SS912 ∆PfliA:: PfliC 2045466-2045714:: 
2049148-2049654 

 

SS913 ∆PfliA:: PflhDC 2045466-2045714::  
2023077-2022070 

 

SS1105 FlgM-Bla   

SS608 ∆PflhDC::tetRA  ∆SPI1::frt   

SS609 ∆PflhDC::tetRA  ∆fliAZ::frt   

SS619 ∆SPI1::frt ∆rtsB::frt   

SS685 ∆fliZ::frt ∆fliT::cm   

SS686 ∆fliZ::frt ∆fliT::kan   

SS695 ∆PflhDC::tetRA 2022440-2022080  

SS696 ∆PflhDC::tetRA ∆fliZ::frt   

SS697 ∆PflhDC::tetRA ∆fliT::frt   

SS698 ∆PflhDC::tetRA ∆fliZ::frt ∆fliT::frt   

SS708 ∆flhDC::frt pCP20 (SS707)  

SS717 ∆flhDC::cm ∆fliA::frt   

SS718 ∆flhDC::cm ∆fliAZ::frt   

SS719 ∆flhDC::cm ∆fliZ::frt   

SS720 ∆flhDC::frt ∆fliA::frt   



185 

 

SS721 ∆flhDC::frt ∆fliAZ::frt   

SS722 ∆flhDC::frt ∆fliZ::frt   

SS724 ∆flhDC::frt ∆fliZ::cm   

SS725 ∆flhDC::frt ∆fliZ::kan   

SS917 ∆PflhDC::tetRA ∆PfliA:: PflhB   

SS918 ∆PflhDC::tetRA ∆PfliA:: PfliC   

SS919 ∆PflhDC::tetRA ∆PfliA:: PflhDC   

SS930 ∆clpP::cm ∆fliZ::frt   

SS976 ∆PflhDC::tetRA ∆flgM::cm   

SS977 ∆PflhDC::tetRA ∆flgM::cm ∆PfliA:: PflhDC   

SS978 ∆PflhDC::tetRA ∆flgM::cm ∆PfliA:: PflhB   

SS979 ∆PflhDC::tetRA ∆flgM::cm ∆PfliA:: PfliC   

SS1006 Wild Type λatt::PflhD-Venus kanR   

SS1007 Wild Type λatt::PflhB-Venus kanR   

SS1009 Wild Type λatt::PmotA-Venus kanR   

SS1038 ∆PflhDC::tetRA λatt::PflhB-Venus kanR   

SS1039 ∆PflhDC::tetRA λatt::PmotA-Venus kanR   

SS1040 ∆PflhDC::tetRA ∆fliZ::frt  λatt::PflhB-Venus 
kanR 

  

SS1041 ∆PflhDC::tetRA ∆fliZ::frt  λatt::PmotA-Venus 
kanR 

  

SS0142 ∆PflhDC::tetRA ∆PfliA::PflhB  λatt::PflhB-
Venus kanR 

  

SS1043 ∆PflhDC::tetRA ∆PfliA::PflhB  λatt::PmotA-
Venus kanR 

  

SS1044 ∆fliZ::frt  λatt::PflhB-Venus kanR   

SS1045 ∆fliZ::frt  λatt::PmotA-Venus kanR   

SS1046 ∆PfliA::PflhB  λatt::PflhB-Venus kanR   

SS1047 ∆PfliA::PflhB  λatt::PmotA-Venus kanR   

SS1072 Wild Type λatt::PfliD-Venus kanR   

SS1073 Wild Type λatt::PfliC-Venus kanR   

SS1074 Wild Type P22att::PflhDC-cherry genR   

SS1077 Wild Type P22att::PfliC-cherry genR   

SS1080 ∆PflhDC::tetRA λatt::PfliD-Venus kanR   

SS1081 ∆PflhDC::tetRA λatt::PfliC-Venus kanR   

SS1083 ∆PflhDC::tetRA  ∆fliZ::frt  λatt::PflhD-Venus 
kanR 

  

SS1084 ∆PflhDC::tetRA  ∆fliZ::frt  λatt::PflhB-Venus 
kanR 

  

SS1085 ∆PflhDC::tetRA  ∆fliZ::frt  λatt::PfliD-Venus   
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kanR 

SS1086 ∆PflhDC::tetRA  ∆fliZ::frt  λatt::PfliC-Venus 
kanR 

  

SS1087 ∆PflhDC::tetRA  ∆flgM::frt  λatt::PflhD-
Venus kanR 

  

SS1088 ∆PflhDC::tetRA  ∆flgM::frt  λatt::PflhB-
Venus kanR 

  

SS1089 ∆PflhDC::tetRA  ∆flgM::frt  λatt::PfliD-Venus 
kanR 

  

SS1090 ∆PflhDC::tetRA  ∆flgM::frt  λatt::PfliC-Venus 
kanR 

  

SS1091 ∆PflhDC::tetRA  ∆PfliA::PflhB  λatt::PflhD-
Venus kanR 

  

SS1092 ∆PflhDC::tetRA  ∆PfliA::PflhB  λatt::PflhB-
Venus kanR 

  

SS1093 ∆PflhDC::tetRA  ∆PfliA::PflhB  λatt::PfliD-
Venus kanR 

  

SS1094 ∆PflhDC::tetRA  ∆PfliA::PflhB  λatt::PfliC-
Venus kanR 

  

SS1095 ∆PflhDC::tetRA  FlgM-Bla λatt::PflhD-Venus 
kanR 

  

SS1096 ∆PflhDC::tetRA  FlgM-Bla  λatt::PflhB-Venus 
kanR 

  

SS1097 ∆PflhDC::tetRA  FlgM-Bla  λatt::PfliD-Venus 
kanR 

  

SS1098 ∆PflhDC::tetRA  FlgM-Bla  λatt::PfliC-Venus 
kanR 

  

SS1201 ∆flgKL::cm 1265458 - 1268046  

SS1202 ∆flgKL::frt 1265458 - 1268046  

SS1203 ∆PflhDC::tetRA  ∆flgKL::frt λatt::PflhD-
Venus kanR 

  

SS1204 ∆PflhDC::tetRA  ∆flgKL::frt  λatt::PflhB-
Venus kanR 

  

SS1205 ∆PflhDC::tetRA  ∆flgKL::frt  λatt::PfliD-
Venus kanR 

  

SS1206 ∆PflhDC::tetRA  ∆flgKL::frt  λatt::PfliC-Venus 
kanR 

  

SS1207 ∆PflhDC::tetRA  ∆flgKL::frt     

SS1185 ∆PfliA::Ptac lacIq   

SS1186 ∆PflhDC::tetRA ∆PfliA::Ptac lacIq   

SS1187 ∆PflhDC::tetRA ∆PfliA::Ptac lacIq λatt::PflhD-   
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Venus kanR 

SS1188 ∆PflhDC::tetRA ∆PfliA::Ptac lacIq λatt::PflhB-
Venus kanR 

  

SS1189 ∆PflhDC::tetRA ∆PfliA::Ptac lacIq λatt::PfliD-
Venus kanR 

  

SS1190 ∆PflhDC::tetRA ∆PfliA::Ptac lacIq λatt::PfliC-
Venus kanR 

  

SSCR004 ∆hilA::cm 3019859-3021522  

SSCR009 ∆hilE::cm 4763554-4764087  

SSCR097 ∆iagB::cm 3021539-3022037  

REB114    

REB107    

JS252 ∆hilC113::cm  (Ellermeier & 
Slauch, 2003) 

JS253 ∆hilD114::cm  (Ellermeier & 
Slauch, 2003) 

JS248 ∆rtsA5  (Ellermeier & 
Slauch, 2003) 

JS481 ∆SPI1:: cm  (Ellermeier et 
al., 2005) 

SS351 ∆invF::cm 3043282-3043932  

SS403 ∆SPI1::frt   

SS404 ∆invF::frt pCP20 on SS351  

SS405 ∆hilA::frt pCP20 on SSCR004  

SS413 ∆SPI1::frt ∆rtsA::frt   

SS812 Fur box in hilA by tetRA, 14028 3020955-3020974  

SS813 Fur box in hilC by tetRA, 14028 3012391-3012410  

SS814 Fur box in hilA by tetRA, hilD fur box mut   

SS815 Fur box in hilC by tetRA, hilD fur box mut   

SS891 fur box in hilA mutated, 14028 3020955-3020974  

SS892 fur box in hilC mutated, 14028 3012391-3012410  

SS893 fur box in hilC and hilD mutated, 14028   

SS766 ∆fur box in hilD::tetRA 3017894-3017913  

SS883 ∆spaPQRS::cm 3034340-3031522  

SS894 14028 hilD-3XFLAG 3018762- 3018778  

SS895 14028 ∆PhilD::tetRA hilD-3XFLAG   

SS902 14028 ∆fliZ::cm  hilD-3XFLAG   

SS903 14028 ∆PhilD::tetRA ∆fliZ::cm hilD-3XFLAG   

SS914 ∆PhilC::tetRA 3013780-3013010  

SS913 ∆PhilD::tetRA 3017694-3017820  
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SS915 ∆PhilD::PhilC 3017694-3017820:: 
3013780-3013010 

 

SS916 ∆PhilC::PhilD 3013780-3013010:: 
3017294-3017820 

 

SS931 ∆PhilC::PhilD  ∆hilD::cm   

SS932 ∆PhilC::PhilD  ∆hilD::frt   

SS933 ∆PhilC::tetRA (at hilC ATG) 3013780-3013000  

SS938 ∆PhilC::PhilD(at hilC ATG) 3013780-3013000:: 
3017694-3017830 

 

SS1004 14028 λatt::PprgH-venus kanR   

SS1005 14028 λatt::PhilA-venus kanR   

SS1008 14028 λatt::PhilD-venus kanR   

SS1016 ∆sipBC::cm 3030862-3027844  

SS1017 ∆sipBC::kan 3030862-3027844  

SS1021 ∆prg::cm (leaving hilD promoter intact) 3017533-3014999  

SS1026 14028 ∆rtsA::kan 4561800-4561402  

SS1027 14028 ∆rtsAB::kan 4561800-4560581  

SS1028 14028 ∆rtsA::frt 4561800-4561402  

SS1029 14028 ∆rtsAB::frt 4561800-4560581  

CR218 14028 FlhC-3XFLAG 2021569-2021500  

CR219 14028 ∆fliZ::frt FlhC-3XFLAG   

CR220 14028 ∆PflhDC::tetRA FlhC-3XFLAG   

CR221 14028 ∆PflhDC::tetRA ∆fliZ FlhC-3XFLAG   

 hilD::frt pCP20 on JS252  

 hilC::frt pCP20 on JS253  

SSCR018 Dh5α Z1   

SS095 MG1655 attλ::lac-gfp pAx1 ApraR   

SS098 MG1655 attλ::PBAD-gfp pAx1 ApraR   

SS406 CR1 ∆fliZ::frt   

SS516 LT2 (John Roth’s strain)   

SS536 LT2 ∆fliZ::kan   

SS710 BL21   

SS764 14028 ∆PluxS::tetRA 2966810-2966935  

SS780 LT2 ∆fliZ::frt   

SS869 1655 rhaT-T1-cm-T1-rhaR   

SS890 14028 sodCI-3XFLAG   

SS906 ∆clpP::cm 503210-503839  

SS907 ∆clpP::kan 503210-503839  

SS920 ∆hns::cm 1847261-1847700  

SS924 M04450 (IGEM)   
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SS934 LT2 ∆cheRB::cm 2014610-2012690  

SS935 LT2 ∆cheRBY::cm 2014610-2012283  

SS936 LT2 ∆cheV::kan 2420641-2421660  

SS939 LT2 ∆cheRB::frt 2014610-2012690  

SS940 LT2 ∆cheRBY::frt 2014610-2012283  

SS943 LT2 ∆cheRB::frt ∆cheV::kan   

SS944 LT2 ∆cheRBY::frt ∆cheV::kan   

SS953 ∆luxS::cm 2966810-2966270  

SS954 ∆ygiXY::cm 3340782-3342839  

SS955 ∆feoAB::cm 3363883-3666559  

SS956 ∆feoAB::kan 3363883-3666559  

SS973 ∆sprB::frt ∆fliZ::cm   

SS974 ∆sprB::frt ∆fliZ::kan   

SS975 ∆sprB::kan ∆fliZ::frt   

SS1010 ∆hfq::cm 4604571-4604898  

SS1011 ∆hfq::kan 4604571-4604898  

SS1014 BW25142   

SS1018 14028 ∆lon::cm 505592-507856  

SS1019 14028 ∆lon::kan 505592-507856  

SS1023 TH3468   

SS1024 TH3467   

SS1025 TH3466   

SS1030 MG1655 λatt::PrhaBAD-venus kanR   

SS1031 MG1655 ∆rhaT1::frt phi80::pCAH63 
λatt::PrhaBAD-venus kanR 

  

CR362 ∆sprB::kan 3011762-3010927  

 ∆sprB::cm 3011762-3010927  

CR363 ∆sprB::frt 3011762-3010927  

CR365 ∆hilC::FRT ∆sprB::FRT   

CR366 ∆rtsA5 ∆sprB::kan   

CR367 ∆rtsA5 ∆sprB::FRT   

CR369 PhilD::tetRA ∆sprB::kan   

CR370 PhilD::tetRA ∆sprB::FRT   

CR311 ∆fimY::cm 612218-611488  

CR312 ∆fimZ::cm 610886-610251  

CR313 ∆fimYZ::cm 612218-610251  

CR314 ∆fimW::cm 612706-613302  

CR315 ∆fimU::cm 613570-613648  

CR322 ∆fimY::frt 612218-611488  

CR328 ∆fimZ:: frt 610886-610251  
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CR334 ∆fimYZ:: frt 612218-610251  

CR340 ∆fimW:: frt 612706-613302  

CR316 ∆fimU:: frt 613570-613648  

CR317 14028 attλ::PfimA-venus kanR   

CR318 14028 attλ::PfimY-venus kanR   

CR319 14028 attλ::PfimZ-venus kanR   

CR320 14028 attλ::PfimW-venus kanR   

CR321 14028 attλ::PfimU-venus kanR   

CR323 ∆fimY::frt attλ::PfimA-venus kanR   

CR324 ∆fimY::frt attλ::PfimY-venus kanR   

CR325 ∆fimY::frt attλ::PfimZ-venus kanR   

CR326 ∆fimY::frt attλ::PfimW-venus kanR   

CR327 ∆fimY::frt attλ::PfimU-venus kanR   

CR329 ∆fimZ::frt attλ::PfimA-venus kanR   

CR330 ∆fimZ::frt attλ::PfimY-venus kanR   

CR331 ∆fimZ::frt attλ::PfimZ-venus kanR   

CR332 ∆fimZ::frt attλ::PfimW-venus kanR   

CR333 ∆fimZ::frt attλ::PfimU-venus kanR   

CR335 ∆fimYZ::frt attλ::PfimA-venus kanR   

CR336 ∆fimYZ::frt attλ::PfimY-venus kanR   

CR337 ∆fimYZ::frt attλ::PfimZ-venus kanR   

CR338 ∆fimYZ::frt attλ::PfimW-venus kanR   

CR339 ∆fimYZ::frt attλ::PfimU-venus kanR   

CR341 ∆fimW::frt attλ::PfimA-venus kanR   

CR342 ∆fimW::frt attλ::PfimY-venus kanR   

CR343 ∆fimW::frt attλ::PfimZ-venus kanR   

CR344 ∆fimW::frt attλ::PfimW-venus kanR   

CR345 ∆fimW::frt attλ::PfimU-venus kanR   

 ∆fimU::frt attλ::PfimA-venus kanR   

 ∆fimU::frt attλ::PfimY-venus kanR   

 ∆fimU::frt attλ::PfimZ-venus kanR   

 ∆fimU::frt attλ::PfimW-venus kanR   

 ∆fimU::frt attλ::PfimU-venus kanR   

 14028 attλ::PhilE-venus kanR   

CR347 ∆fimYZ::frt attλ::PhilE-venus kanR   

 ∆fimYZ::frt ∆fimW::cm   

CR372 ∆fimYZ::frt ∆fimW::frt   

CR361 ∆rtsB::cm 4560891-4560592  

CR362 ∆rtsB::frt 4560891-4560592  

CR365 ∆fimZ::cm ∆fliZ::FRT   
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CR366 ∆fimZ::FRT ∆fliZ::FRT   

CR367 ∆PfimZ::tetRA 611401-610904  

CR368 ∆PfimZ::tetRA ∆fimY::FRT   

CR369 ∆PfimZ::tetRA ∆fimYZ::FRT   

CR370 ∆rtsB::cm ∆fimZ::FRT   

CR371 ∆rtsB::FRT ∆fimZ::FRT   

SS1146 ∆PfimY::tetRA 612222-612289  

SS1147 ∆PfimY::PfimZ 612222-612289:: 
611401-610904  

 

SS1148 ∆PfimY::PfimZ ∆PfimZ::tetRA   

SS1149 ∆PfimY::PfimZ ∆PfimZ::PfimY 611401-610904:: 
612222-612289  

 

SS1150 ∆PfimY::PfimZ ∆PfimZ::PfimY ∆fimW::cm   

SS1151 ∆PfimY::PfimZ ∆PfimZ::PfimY ∆fimW::frt   

SS1152 ∆marRAB::cm 1598139-1596185  

SS1153 ∆rob::cm 2916367-2917512  

SS1154 ∆soxRS::cm 4504367-4504869  

a:This study unless specified 
b: American Type Culture Collection 
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Appendix B: Plasmids Used in This Study 

 
Plasmid 
Number 

Plasmid Name Reference 

pSS001 PflgA -gfp, pPROBE (Saini et al., 2008) 

pSS002 PflgB-GFP pPROBE (Saini et al., 2008) 

pSS003 PflhB-GFP pPROBE (Saini et al., 2008) 

pSS004 PfliE-GFP pPROBE (Saini et al., 2008) 

pSS005 PfliD-GFP pPROBE (Saini et al., 2008) 

pSS006 PflgK-GFP pPROBE (Saini et al., 2008) 

pSS007 PfliC-GFP pPROBE (Saini et al., 2008) 

pSS008 PflhD-GFP pPROBE (Saini et al., 2008) 

pSS009 pPROBE luxCDABE (Saini et al., 2008) 

pSS010 PflgA-luxCDABE (Saini et al., 2008) 

pSS011 PfliC-luxCDABE (Saini et al., 2008) 

pSS012 pPROTet.E tetR (Saini et al., 2008) 

pSS013 pFliZ (Saini et al., 2008) 

pSS014 pFliZ-TetR (Saini et al., 2008) 

pSS015 pFliZ-native (Saini et al., 2008) 

pSS016 pFliA-TetR (Saini et al., 2008) 

pSS017 pFlhDC-TetR (Saini et al., 2008) 

pSS018 PflhDC flhDC-lacZ (Saini et al., 2008) 

pSS019 PLtetO-1 flhC-lacZ (Saini et al., 2008) 

pSS020 PLtetO-1 flhDC-lacZ (Saini et al., 2008) 

SS444 pPROTet.E rtsB   

SS448 pBAD30 rtsB   

SS450 pPROTet.E fliZ (5' His)   

SS451 pPROTet.E fliZ (3' His)   

SS621 pFliAZ – native  

SS672 pBAD30 flhDC  

SS673 pPROTet.E flhDC tetR  

SS675 pPROTet.E fliAZ tetR  

SS676 pPROTet.E fliZ tetR  

SS677 pPROTet.E fliA tetR  

SS679 pPROTet.E fliT tetR  

SS682 pQE80L flhDC  

SS714 pET28a flhC  
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SS822 pPROBE fliA-luxCDABE  

SS824 pPROBE flgM-luxCDABE  

SS829 pBAD30 fliD  

SS830 pBAD30 flgM  

SS831 pBAD30 flgKL  

SS832 pBAD30 fliS  

SS833 pBAD30 fliT  

SS834 pSE380 fliD  

SS835 pSE380 flgM  

SS836 pSE380 flgKL  

SS837 pSE380 fliS  

SS838 pSE380 fliZ  

SS839 pSE380 fliT  

SS878 pQE80L flhDC  

SS879 pBAD30 flhDC  

SS908 pPROBE fljB-gfp[tagless]  

SS909 pPROBE fljB-luxCDABE  

SS969 PflhDC-venus  kan λatt  

SS970 PflhB-venus kan λatt  

SS1052 pPROBE flgA-cherry  

SS1053 pPROBE motA-cherry  

SS1054 pPROBE flhB-cherry  

SS1055 pPROBE fliD-cherry  

SS1057 (PflgA-cherry kan λatt) BW15142  

SS1058 (PmotA-cherry kan λatt) BW15142  

SS1059 (PflhB-cherry kan λatt) BW15142  

SS1060 (PfliD-cherry kan λatt) BW15142  

SS1062 (PflgA-cherry gen P22) BW15142  

SS1063 (PmotA-cherry gen P22) BW15142  

SS1064 (PflhB-cherry gen P22) BW15142  

SS1065 (PfliD-cherry gen P22) BW15142  

SS1066 (PfliD-venus kan lambda) BW25142  

SS1067 (PmotA-venus kan lambda) BW25142  

SS1068 (PflhDC-cherry kan lambda) BW25142  

SS1069 (PflhDC-cherry gen P22) BW25142  

SS1101 (PflhDC-cherry cmR P22) BW25142  

SS1102 (PflhB-cherry cmR P22) BW25142  

SS1103 (PfliD-cherry cmR P22) BW25142  

TPA30 pRG19(PmotA-luxCDABE  TCR)/LT2  

TPA38 pRG38(pflhD-luxCDABE TCR)/LT2  
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TPA42 pRG39(pmotA - luxCDABE TCR)/LT2  

TPA46 pRG46(pfliD - luxCDABE TCR)/LT2  

TPA50 pRG51(pflgA - luxCDABE TCR)/LT2  

TPA58 pRG53(pfliE - luxCDABE TCR)/LT2  

TPA74 pRG19::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA82 pRG38::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA86 pRG39::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA90 pRG46::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA94 pRG51::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA102 pRG53::FCF/p(flhDC)5451::Tnd10Tc[del-25]  

TPA1154 pPROmotA/LT2  

TPA1155 pPROfliD/LT2  

TPA1156 pPROmotA/LT2  

TPA1157 pPROflgA-3/LT2  

TPA1158 pPROflgB/LT2  

TPA1159 pPROflgA-5/LT2  

 pVenus (attλ) (Saini et al., 2009) 

 PfimA - venus (attλ) (Saini et al., 2009) 

 PfimY - venus (attλ) (Saini et al., 2009) 

 PfimZ - venus (attλ) (Saini et al., 2009) 

 PfimW - venus (attλ) (Saini et al., 2009) 

 PfimU - venus (attλ) (Saini et al., 2009) 

 PhilE - venus (attλ) (Saini et al., 2009) 

 pPROTet.E fimY tetR (Saini et al., 2009) 

 pPROTet.E fimZ tetR (Saini et al., 2009) 

 pPROTet.E fimW tetR (Saini et al., 2009) 

 pPROTet.E fimY* tetR (Saini et al., 2009) 

SS790  (pPROBE fimZ-gfp[tagless])  

SS791  (pPROTet.E fimY)  

SS801  (pPROBE fimA-gfp[tagless])  

SS802  (pPROBE fimZ-gfp[tagless])  

SS803  (pPROBE fimY-gfp[tagless])  

SS804  (pPROTet.E fimZ)  

SS816  (pPROBE fimA-lux)  

SS817  (pPROBE fimY-lux)  

SS818  (pPROBE fimZ-lux)  

SS927 pBAD30 fimZ (CDC)  

SS929 pPROTET.E fimY fimZ (CDC) tetR  

SS945 pPROBE Venus  

SS946 pPROBE PfimZ Venus (14)  
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SS947 pPROBE PfimA Venus (15)  

SS948 pPROBE PfimY Venus (37)  

SS949 pPROBE PfimZ Venus (103)  

SS950 pPROBE PfimW Venus  

SS952 pPROBE PfimW GFP [tagless]  

SS959 pPROBE PfimU GFP [tagless]  

SS960 pPROBE PfimU Venus  

SS961 pPROBE PhilE Venus  

pSS052 pProbe hilD-gfp[tagless] (Saini, 2010) 

pSS053 pProbe hilC-gfp[tagless] (Saini, 2010) 

pSS054 pProbe rtsA-gfp[tagless] (Saini, 2010) 

pSS055 pProbe hilA-gfp[tagless] (Saini, 2010) 

pSS072 pProbe hilD-gfp[asv] (Saini, 2010) 

pSS073 pProbe hilC-gfp[asv] (Saini, 2010) 

pSS074 pProbe hilD-lux (Saini, 2010) 

pSS075 pProbe hilC-lux (Saini, 2010) 

pSS076 pProbe rtsA-lux (Saini, 2010) 

pSS077 pProbe hilA-lux (Saini, 2010) 

 pProbe-Venus (Saini & Rao, 2010) 

 pProbe PhilD –Venus (Saini & Rao, 2010) 

 pProbe PhilC –Venus (Saini & Rao, 2010) 

 pProbe PrtsA –Venus (Saini & Rao, 2010) 

 pProbe PhilA –Venus (Saini & Rao, 2010) 

 pProbe PprgH –Venus (Saini & Rao, 2010) 

 pProbe PsicA –Venus (Saini & Rao, 2010) 

 pProbe PsopB –Venus (Saini & Rao, 2010) 

 pProbe PfimA –Venus (Saini & Rao, 2010) 

 pProbe PsprB –Venus (Saini & Rao, 2010) 

 pProbe PsiiA –Venus (Saini & Rao, 2010) 

 pSprB (pPROTet.E sprB tetR) (Saini & Rao, 2010) 

 pHilA (Saini & Rao, 2010) 

 pHilD (Saini & Rao, 2010) 

 pHilC (Saini & Rao, 2010) 

 pRtsA (Saini & Rao, 2010) 

 pSprB-con (pPROTet.E sprB) (Saini & Rao, 2010) 

 pBAD-SprB (Saini & Rao, 2010) 

 pHis-SprB (Saini & Rao, 2010) 

 pHis-HilA (Saini & Rao, 2010) 

SS005 PinvF-gfp (pProbe)   

SS006 PprgH-gfp (pProbe)   
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SS009 PsicA-gfp (pProbe)   

SS010 PsopB-gfp (pProbe)   

SS014 PflhDC-gfp (pProbe)   

SS018 PssaB-gfp (pProbe)   

SS019 PhilE-gfp (pProbe)   

SS061 pBAD30 hilA   

SS062 pBAD30 hilC   

SS063 pBAD30 hilD   

SS064 pBAD30 rtsA   

SS442 pPROBE PsprB-gfp   

SS490 pPROTet.E hilA tetR   

SS491 pPROTet.E hilC tetR   

SS492 pPROTet.E hilD tetR   

SS493 pPROTet.E rtsA tetR   

SS556  (pBAD30 IagB)  

SS674  (pPROTet.E iagB tetR)  

SS713  (pET28a hilD) (86F/34R)  

SS757  (PprgH-lux)  

SS758  (PsicA-lux)  

SS759  (PsopB-lux)  

SS771  (pPROBE hilA-gfp[aav])  

SS772  (pPROBE hilA-gfp[asv])  

SS773  (pPROBE hilA-gfp[lva])  

SS775  (pPROTet.E hilE tetR)  

SS776  (pBAD30 hilE)  

SS778  (pBAD30 hilD fur box mut)  

SS787  (pPROBE hilD-gfp[aav])  

SS788  (pPROBE hilD-gfp[asv])  

SS789  (pPROBE hilD-gfp[lva])  

SS840  (pPROBE hilC-gfp[aav])  

SS841  (pPROBE hilC-gfp[lva])  

SS842  (pPROBE rtsA-gfp[aav])  

SS843  (pPROBE rtsA-gfp[lva])  

SS880 pPROBE hilE-gfp[tagless]  

SS881 pPROBE hilE-lux   

SS967 PprgH Venus (964) in REB114  

SS968 PhilA Venus (964) in REB114  

SS969 PflhD Venus (964) in REB114  

SS970 PflhB Venus (964) in REB114  

SS971 PhilD Venus (964) in REB114  
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SS972 PflgM Venus (964) in REB114  

SS863 pLA2 rhaBAD-gfp[tagless]  

SS864 pLA2 rhaSR-gfp[tagless]  

SS865 pLA2 rhaT-gfp[tagless]  

SS866 pPROTet.E Venus  

SS867 pPROBE fur-gfp[tagless]  

SS868 pPROBE venus  

SS921 pPROBE clpP-gfp[tagless]  

SS922 pPROBE lon-gfp[tagless]  

SS957 pPROBE PfeoAB GFP [tagless]  

SS958 pPROBE PfeoAB Venus  

SS964 pVenus (kanR,  λatt), Dh5a pir+  

SS980 PlpfA Venus (pProbe) (CDC)  

SS981 PstdA Venus (pProbe) (CDC)  

SS982 PstdB Venus (pProbe) (CDC)  

SS983 PsafA Venus (pProbe) (CDC)  

SS984 PsafB Venus (pProbe) (CDC)  

SS985 PbcfA Venus (pProbe) (Dh5a)  

SS986 PstbA Venus (pProbe) (Dh5a)  

SS987 PstcA Venus (pProbe) (Dh5a)  

SS988 PstfA Venus (pProbe) (Dh5a)  

SS989 PstfC Venus (pProbe) (Dh5a)  

SS990 PsthA Venus (pProbe) (Dh5a)  

SS488 pPROTet.E tetR (Saini et al., 2008) 

a:This study unless specified 
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Appendix C: Matlab Code for Flagella 
Gene Network Model 

 
function fliA_dynamic() 
  
t0 = linspace(0,200,1001); 
x0 = zeros(6,1); 
x0(2) = 1; 
p = linspace(0,4,60); 
b = linspace(0,1,10); 
  
clf 
h1 = axes; 
set(h1,'FontSize',16) 
  
 
[t,x] = ode15s(@model,t0,x0,[],3,1.8); 
c2 = x(:,4); 
c3 = x(:,5); 
  
[t,x] = ode15s(@model,t0,x0,[],3,0); 
c2b = x(:,4); 
c3b = x(:,5); 
  
figure(1) 
h = plot(t,c2,'-k',t,c3,'-r',t,c3b,'--r'); 
set(h,'LineWidth',4) 
axis([0 max(t) 0 max([max(c2),max(c3),max(c3b)])]) 
xlabel('Time (A.U.)','FontSize',18); 
ylabel('Gene Expression (A.U.) ','FontSize',18); 
legend('Class 2','Class 3','Class 3 (PfliA::Plac)','Location','SouthEast') 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
function xdot = model(t,x,p,check) 
xdot = zeros(size(x)); 
  
x(1) = max(x(1),0); 
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% doubling time (minutes) 
mu = 30; 
  
% half-life of FliA (Barembruch) 
ga = 0.4 + log(2)/mu; 
% half life of FlgM 
gm = 0.4 + log(2)/mu; 
% half life of complex 
gam = 0.04 + log(2)/mu; 
  
% FlgM-FliA association rate 
% 30 /uM/min (0.5e6 /M/sec) (Chadsey and Hughes) 
a_am = 30.0; 
d_am = 6e-3; 
  
f = gammainc(t/10,6); 
  
% diassociation constants 
Ka = 1; 
Km = 1; 
Kam = 3; 
  
k2m = 1.5; 
k3m = 3; 
k2a = 0.2; 
k3a = 1.8; 
sec = 2; 
  
sec = p*x(4); 
%k2m = b; 
  
p2m = k2m*f; 
%p3m = 3*x(1)/(Km+x(1)); 
p3m = k3m*x(1)/(Km+x(1)); 
  
if check>0 
    pa = (k2a*Ka*f + k3a*x(1))/(Ka+x(1)); 
else 
    pa = 0.65; 
end 
  
export = sec*x(3)/(Kam+x(3)); 
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% A 
xdot(1) = pa - ga*x(1) - a_am*x(1)*x(2) + d_am*x(3) + export; 
  
% M 
xdot(2) = 1*(p2m + p3m) - gm*x(2) - a_am*x(1)*x(2) + d_am*x(3); 
  
% A-M 
xdot(3) = a_am*x(1)*x(2) - d_am*x(3) - gam*x(3) - export; 
  
% c2 
xdot(4) = f - x(4); 
 
% c3 
xdot(5) = 2*f*x(1)/(Km+x(1)) - x(5); 
 
xdot(6) = sec-x(6); 
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Appendix D: Matlab Code for SPI1 Gene 
Network Model 

 
% Supporting matlab m-file for Chapter 4 
  
function SPI1_model_final() 
close all 
  
% uncomment functions below to generate specific figure 
%Figure_5ABC(); % wild type 
%Figure_5DE(); % mutants 
Figure_S5AB(); % continous mutants 
%Figure_S5CD(); % more mutants 
%Figure_6A(); % alphaD versus kD 
%Figure_6B(); % alphaD versus RC 
%Figure_6C(); % HilE 
%Figure_S6D(); % alphaE versus kD 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
function Figure_5ABC() 
  
% get parameters 
p = parameters(); 
  
% integration time domain 
t0 = linspace(0,6,40); 
  
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D(:,i) = x(:,6); 
    A(:,i) = x(:,7); 
    C(:,i) = x(:,4); 
    R(:,i) = x(:,5); 
end  
  
figure(1) 
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clf 
ha = axes; 
set(ha,'FontSize',16) 
h=plot(t0,mean(D'),t0,mean(A'),t0,mean(C'),t0,mean(R')); 
set(h,'LineWidth',3) 
xlabel('Time (hr.)') 
ylabel('Gene Expression (A.U.)') 
legend('HilD','HilA','HilC','RtsA','Location','NorthWest') 
  
% show Hil1 expression at single-cell resolution 
[pAx,pAy] = parzen_estimation(log(A+1)/max(max(log(A+1))),t0,p.Ncells); 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pAx,t0,pAy) 
lighting phong 
shading interp 
colormap(jet) 
view([25 30]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
zlabel('Density of Events') 
axis tight 
  
figure(3) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pAx,t0,pAy) 
lighting phong 
shading interp 
colormap(jet) 
view([90 -90]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
axis tight 
colorbar('FontSize',14) 
  
%%% UNCOMMENT TO SEE OTHER PROTEINS AT SINGLE-CELL RESOLUTION 
% % show HilD expression at single-cell resolution 
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% [pDx,pDy] = parzen_estimation(log(D+1)/max(max(log(D+1))),t0,p.Ncells); 
  
% figure(4) 
% clf 
% ha = axes; 
% set(ha,'FontSize',16) 
% set(ha,'LineWidth',2) 
% surf(pDx,t0,pDy) 
% lighting phong 
% shading interp 
% colormap(jet) 
% view([25 30]) 
% ylabel('Time (hr.)') 
% xlabel('Gene Expression (A.L.U.)') 
% zlabel('Density of Events') 
% axis tight 
  
% % show HilC expression at single-cell resolution 
% [pCx,pCy] = parzen_estimation(log(C+1)/max(max(log(C+1))),t0,p.Ncells); 
  
% figure(5) 
% clf 
% ha = axes; 
% set(ha,'FontSize',16) 
% set(ha,'LineWidth',2) 
% surf(pCx,t0,pCy) 
% lighting phong 
% shading interp 
% colormap(jet) 
% view([25 30]) 
% ylabel('Time (hr.)') 
% xlabel('Gene Expression (A.L.U.)') 
% zlabel('Density of Events') 
% axis tight 
  
% % show RtsA expression at single-cell resolution 
% [pRx,pRy] = parzen_estimation(log(R+1)/max(max(log(R+1))),t0,p.Ncells); 
  
% figure(6) 
% clf 
% ha = axes; 
% set(ha,'FontSize',16) 
% set(ha,'LineWidth',2) 
% surf(pRx,t0,pRy) 
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% lighting phong 
% shading interp 
% colormap(jet) 
% view([25 30]) 
% ylabel('Time (hr.)') 
% xlabel('Gene Expression (A.L.U.)') 
% zlabel('Density of Events') 
% axis tight 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
function Figure_5DE() 
  
% get parameters 
p = parameters(); 
  
% integration time domain 
t0 = linspace(0,6,40); 
  
% wild type 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D(:,i) = x(:,6); 
    A(:,i) = x(:,7); 
    C(:,i) = x(:,4); 
    R(:,i) = x(:,5); 
end  
  
% hilE 
p = parameters(); 
p.KO_E = 0; 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D_E(:,i) = x(:,6); 
    A_E(:,i) = x(:,7); 
    C_E(:,i) = x(:,4); 
    R_E(:,i) = x(:,5); 
end  
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% hilC rtsA 
p=parameters(); 
p.KO_C = 0; 
p.KO_R = 0; 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D_RC(:,i) = x(:,6); 
    A_RC(:,i) = x(:,7); 
    C_RC(:,i) = x(:,4); 
    R_RC(:,i) = x(:,5); 
end  
  
% hilD 
p=parameters(); 
p.KO_D = 0; 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D_D(:,i) = x(:,6); 
    A_D(:,i) = x(:,7); 
    C_D(:,i) = x(:,4); 
    R_D(:,i) = x(:,5); 
end  
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = plot(t0,mean(D'),'-b',t0,mean(D_E'),'-r',... 
    t0,mean(D_RC'),'-k',t0,mean(D_D'),'-g') 
set(h,'LineWidth',3) 
xlabel('Time (hours)') 
ylabel('HilD Expression (A.U.)') 
legend('Wild Type','\DeltahilE','\DeltahilC\DeltartsA',... 
    '\DeltahilD','Location','NorthWest') 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = plot(t0,mean(A'),'-b',t0,mean(A_E'),'-r',... 
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    t0,mean(A_RC'),'-k',t0,mean(A_D'),'-g') 
set(h,'LineWidth',3) 
xlabel('Time (hours)') 
ylabel('HilA Expression (A.U.)') 
legend('Wild Type','\DeltahilE','\DeltahilC\DeltartsA',... 
    '\DeltahilD','Location','NorthWest') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
function Figure_S5AB() 
  
% get parameters 
p = parameters(); 
  
% integration time domain 
t0 = linspace(0,6,100); 
  
  
% continuous mutant 
p.flag = 1; 
for i=1:p.Ncells 
  
  ti = sum(-log(rand()))*p.lambda; 
  x0 = zeros(7,1); 
  [t,x] = ode15s(@model,t0,x0,[],p,ti); 
  D1(:,i) = x(:,6); 
  A1(:,i) = x(:,7); 
  C1(:,i) = x(:,4); 
  R1(:,i) = x(:,5); 
end  
  
  
% slow mutant 
t02 = linspace(0,2,100); 
p = parameters(); 
  
% rescale time by factor of ten 
p.lambda = 0.2; 
for i=1:p.Ncells 
  
  ti = sum(-log(rand()))*p.lambda; 
  x0 = zeros(7,1); 
  [t,x] = ode15s(@model,t02,x0,[],p,ti); 
  D2(:,i) = x(:,6); 
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  A2(:,i) = x(:,7); 
  C2(:,i) = x(:,4); 
  R2(:,i) = x(:,5); 
   
end  
t02 = t02*10; 
  
% show HilA expression at single-cell resolution 
[pA1x,pA1y] = parzen_estimation(log(A1+1)/max(max(log(A1+1))),t0,p.Ncells); 
[pA2x,pA2y] = parzen_estimation(log(A2+1)/max(max(log(A2+1))),t02,p.Ncells); 
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pA1x,t0,pA1y) 
lighting phong 
shading interp 
colormap(jet) 
view([90 -90]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
axis tight 
colorbar('FontSize',14) 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pA2x,t02,pA2y) 
lighting phong 
shading interp 
colormap(jet) 
view([90 -90]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
axis tight 
colorbar('FontSize',14) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
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function Figure_S5CD() 
  
% get parameters 
p = parameters(); 
  
% integration time domain 
t0 = linspace(0,6,40); 
  
% wild type 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D(:,i) = x(:,6); 
    A(:,i) = x(:,7); 
    C(:,i) = x(:,4); 
    R(:,i) = x(:,5); 
end  
  
% hilE 
p = parameters(); 
p.KO_E = 0; 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D_E(:,i) = x(:,6); 
    A_E(:,i) = x(:,7); 
    C_E(:,i) = x(:,4); 
    R_E(:,i) = x(:,5); 
end  
  
% hilD 
p=parameters(); 
p.KO_D = 0; 
for i=1:p.Ncells 
    ti = sum(-log(rand()))*p.lambda; 
    x0 = zeros(7,1); 
    [t,x] = ode15s(@model,t0,x0,[],p,ti); 
    D_D(:,i) = x(:,6); 
    A_D(:,i) = x(:,7); 
    C_D(:,i) = x(:,4); 
    R_D(:,i) = x(:,5); 
end  
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% show HilC expression at single-cell resolution in WT versus HilD 
[pCx,pCy] = parzen_estimation(log(C+1)/max(max(log(C+1))),t0,p.Ncells); 
[pCDx,pCDy] = parzen_estimation(log(C_D+1)/max(max(log(C_D+1))),t0,p.Ncells); 
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pCx,t0,pCy) 
lighting phong 
shading interp 
colormap(jet) 
view([90 -90]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
axis tight 
colorbar('FontSize',14) 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
surf(pCDx,t0,pCDy) 
lighting phong 
shading interp 
colormap(jet) 
view([90 -90]) 
ylabel('Time (hr.)') 
xlabel('Gene Expression (A.L.U.)') 
axis tight 
colorbar('FontSize',14) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function Figure_6A() 
% alphaD verus kD 
x0 = zeros(7,1); 
t0 = linspace(0,500,3); 
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p = parameters(); 
  
p1 = linspace(0,0.8,45); 
p2 = linspace(0,25,45); 
  
  
for i=1:length(p1); 
    for j=1:length(p2) 
        p.alphaD = p1(i); 
        p.kD = p2(j); 
        [t,x] = ode15s(@model,t0,x0,[],p,0); 
        D(i,j) = x(end,6); 
        A(i,j) = x(end,7); 
    end 
end 
  
p = parameters(); 
for i=1:length(p1) 
   p.alphaD = p1(i); 
   [t,x] = ode15s(@model,t0,x0,[],p,0); 
   Dn(i) = x(end,6); 
   An(i) = x(end,7); 
end 
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
h = mesh(p1,p2,D'); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
xlabel('Parameter \alpha_D') 
ylabel('Parameter k_D') 
zlabel('HilD Expression') 
%view([-130 30]) 
hold on 
h1 = plot3(p1,p.kD*ones(size(p1)),Dn,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
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figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
h = mesh(p1,p2,A'); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
xlabel('Parameter \alpha_D') 
ylabel('Parameter k_D') 
zlabel('HilA Expression') 
%view([-130 30]) 
hold on 
h1 = plot3(p1,p.kD*ones(size(p1)),An,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function Figure_6B() 
% alphaD versus RC 
x0 = zeros(7,1); 
t0 = linspace(0,500,3); 
  
p = parameters(); 
  
p1 = linspace(0,0.8,40); 
p2 = linspace(0,20,40); 
  
for i=1:length(p1); 
    for j=1:length(p2) 
        p.alphaD = p1(i); 
        p.kC = p2(j); 
        p.kR = p2(j); 
        [t,x] = ode15s(@model,t0,x0,[],p,0); 
        D(i,j) = x(end,6); 
        A(i,j) = x(end,7); 
    end 
end 
  
p = parameters(); 
p.kR = p.kC; 
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for i=1:length(p1) 
   p.alphaD = p1(i); 
   [t,x] = ode15s(@model,t0,x0,[],p,0); 
   Dn(i) = x(end,6); 
   An(i) = x(end,7); 
end 
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
h = mesh(p1,p2,D'); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
xlabel('Parameter \alpha_D') 
ylabel('Parameter k_C/k_R') 
zlabel('HilD Expression') 
%view([-130 30]) 
hold on 
h1 = plot3(p1,p.kC*ones(size(p1)),Dn,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
set(ha,'LineWidth',2) 
h = mesh(p1,p2,A'); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
xlabel('Parameter \alpha_D') 
ylabel('Parameter k_C/k_R') 
zlabel('HilA Expression') 
%view([-130 30]) 
hold on 
h1 = plot3(p1,p.kC*ones(size(p1)),An,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function Figure_6C() 
% HilE plot 
  
x0 = zeros(7,1); 
t0 = linspace(0,500,3); 
  
p = parameters(); 
  
p1 = linspace(0,0.8,45); 
p2 = linspace(0,25,45); 
  
for i=1:length(p1); 
    for j=1:length(p2) 
        p.alphaD = p1(i); 
        p.alphaE = p2(j); 
        [t,x] = ode15s(@model,t0,x0,[],p,0); 
        D(i,j) = x(end,6); 
        A(i,j) = x(end,7); 
    end 
end 
  
  
p = parameters(); 
for i=1:length(p1) 
   p.alphaD = p1(i); 
   [t,x] = ode15s(@model,t0,x0,[],p,0); 
   Dn(i) = x(end,6); 
   An(i) = x(end,7); 
end 
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = mesh(p2,p1,D); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
ylabel('Parameter \alpha_D') 
xlabel('Parameter \alpha_E') 
zlabel('HilD Expression') 
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view([-15 30]); 
hold on 
h1 = plot3(p.alphaE*ones(size(p1)),p1,Dn,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = mesh(p2,p1,A); 
lighting phong 
colormap([0 0 0]) 
set(h,'LineWidth',1) 
ylabel('Parameter \alpha_D') 
xlabel('Parameter \alpha_E') 
zlabel('HilA Expression') 
view([-15 30]); 
hold on 
h1 = plot3(p.alphaE*ones(size(p1)),p1,An,'-k') 
set(h1,'LineWidth',6) 
hold off 
axis tight 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function Figure_S6D() 
% HilE plot 
  
x0 = zeros(7,1); 
t0 = linspace(0,500,3); 
  
p = parameters(); 
  
p1 = linspace(0,30,45); 
p2 = linspace(0,30,45); 
  
for i=1:length(p1); 
    for j=1:length(p2) 
        p.kD = p1(i); 
        p.alphaE = p2(j); 
        [t,x] = ode15s(@model,t0,x0,[],p,0); 
        D(i,j) = x(end,6); 
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        A(i,j) = x(end,7); 
    end 
end 
  
  
figure(1) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = surf(p1,p2,D'); 
lighting phong 
colormap(jet) 
set(h,'LineWidth',1) 
xlabel('Parameter k_D') 
ylabel('Parameter \alpha_E') 
zlabel('HilD Expression') 
axis tight 
  
  
figure(2) 
clf 
ha = axes; 
set(ha,'FontSize',16) 
h = surf(p1,p2,A'); 
lighting phong 
colormap(jet) 
set(h,'LineWidth',1) 
xlabel('Parameter k_D') 
ylabel('Parameter \alpha_E') 
zlabel('HilA Expression') 
axis tight 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function [x,y] = parzen_estimation(xi,t0,m,xmax) 
  
h = 0.05; 
xi_min = min(min(xi)); 
xi_max = max(max(xi)); 
x = linspace(xi_min-3*h,xi_max+3*h,100); 
n = length(t0); 
y=zeros(n,length(x)); 
  
for j=1:n 
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    for i=1:m 
        y(j,:) = y(j,:) +1/(m*h*sqrt(2*pi))*exp(-0.5*(x-xi(j,i)).^2/h/h); 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function xdot = model(t,x,p,ti) 
xdot = zeros(size(x)); 
  
D = p.KO_D*x(1); 
C = p.KO_C*x(4); 
R = p.KO_R*x(5); 
  
O1 = (p.KO1D*D + p.KO1C*C + p.KO1R*R)/(1+p.KO1D*D + p.KO1C*C + p.KO1R*R); 
O2 = (p.KO2D*D + p.KO2C*C + p.KO2R*R)/(1+p.KO2D*D + p.KO2C*C + p.KO2R*R); 
pX = O1*O2; 
  
pX = O1*O2; 
  
% HilD 
xdot(1) = p.alphaD*(t>=ti) + p.kD*pX - p.deltaD*x(1) ... 
    - p.aE*x(1)*x(2) + p.dE*x(3); 
  
% HilE 
xdot(2) = p.alphaE*p.KO_E - p.deltaE*x(2) - p.aE*x(1)*x(2) + p.dE*x(3); 
  
% HilD-HilE 
xdot(3) = p.aE*x(1)*x(2) - p.dE*x(3) - p.deltaDE*x(3); 
  
% HilC 
xdot(4) = p.alphaC*(1-exp(-t/p.lambda)) + p.kC*pX - p.deltaC*x(4); 
  
% RtsA 
xdot(5) = p.kR*pX - p.deltaR*x(5); 
  
% hilD'-reporter 
xdot(6) = p.alphaD*(t>=ti) + p.kD*pX - p.deltaG*x(6); 
  
% HilA 
xdot(7) = p.kA*pX - p.deltaA*x(7); 
  
if (p.flag) 
  xdot(1) = p.alphaD*(1-exp(-t/p.lambda)) + p.kD*pX - p.deltaD*x(1) ... 
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    - p.aE*x(1)*x(2) + p.dE*x(3); 
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
function p = parameters() 
  
% number of cells for stochastic simulations 
p.Ncells = 1000; 
  
% initiation 
p.lambda = 2.0; 
  
p.alphaD = 1.2; 
p.alphaC = 0.4; 
p.alphaE = 12.0; 
  
% promoters 
p.kD = 16; 
p.kC = 10; 
p.kR = 8; 
p.kA = 6; 
  
% promoter binding 
p.KO1D = 10.0; 
p.KO1C = 0.001; 
p.KO1R = 0.001; 
  
p.KO2D = 1.0; 
p.KO2C = 0.1; 
p.KO2R = 0.1; 
  
% degradation 
p.deltaD = 4.0; 
p.deltaE = 8.0; 
p.deltaC = 4.0; 
p.deltaR = 4.0; 
p.deltaA = 4.0; 
p.deltaG = 4.0; 
  
% binding and unbinding of HilE and HilD 
p.aE = 8.0; 
p.dE = 8.0; 
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p.deltaDE = 16.0; 
  
% flags for KO 
p.KO_D = 1; 
p.KO_C = 1; 
p.KO_R = 1; 
p.KO_E = 1; 
  
% flags for continuous mutant 
p.flag = 0; % continuous 
 



219 

 

References 
 

 

Abraham, J. M., C. S. Freitag, J. R. Clements & B. I. Eisenstein, (1985) An invertible 
element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. 
Proc Natl Acad Sci U S A 82: 5724-5727. 

Ahmer, B. M., J. van Reeuwijk, P. R. Watson, T. S. Wallis & F. Heffron, (1999) Salmonella 
SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 
31: 971-982. 

Akbar, S., L. M. Schechter, C. P. Lostroh & C. A. Lee, (2003) AraC/XylS family members, 
HilD and HilC, directly activate virulence gene expression independently of HilA 
in Salmonella typhimurium. Mol Microbiol 47: 715-728. 

Aldridge, P., J. Karlinsey & K. T. Hughes, (2003) The type III secretion chaperone FlgN 
regulates flagellar assembly via a negative feedback loop containing its 
chaperone substrates FlgK and FlgL. Mol Microbiol 49: 1333-1345. 

Allen, K. J., D. Lepp, R. C. McKellar & M. W. Griffiths, (2008) Examination of stress and 
virulence gene expression in Escherichia coli O157:H7 using targeted microarray 
analysis. Foodborne Pathog Dis 5: 437-447. 

Altier, C., (2005) Genetic and environmental control of salmonella invasion. J Microbiol 
43 Spec No: 85-92. 

Asakura, S., G. Eguchi & T. Iino, (1968) Unidirectional growth of Salmonella flagella in 
vitro. J Mol Biol 35: 227-236. 

Bajaj, V., C. Hwang & C. A. Lee, (1995) hilA is a novel ompR/toxR family member that 
activates the expression of Salmonella typhimurium invasion genes. Mol 
Microbiol 18: 715-727. 

Bajaj, V., R. L. Lucas, C. Hwang & C. A. Lee, (1996) Co-ordinate regulation of Salmonella 
typhimurium invasion genes by environmental and regulatory factors is 
mediated by control of hilA expression. Mol Microbiol 22: 703-714. 

Batchelor, E., T. J. Silhavy & M. Goulian, (2004) Continuous control in bacterial 
regulatory circuits. Journal of bacteriology 186: 7618-7625. 

Baumler, A. J., R. M. Tsolis & F. Heffron, (1996) Contribution of fimbrial operons to 
attachment to and invasion of epithelial cell lines by Salmonella typhimurium. 
Infect Immun 64: 1862-1865. 

Baumler, A. J., R. M. Tsolis & F. Heffron, (1997) Fimbrial adhesins of Salmonella 
typhimurium. Role in bacterial interactions with epithelial cells. Adv Exp Med Biol 
412: 149-158. 

Baxter, M. A., T. F. Fahlen, R. L. Wilson & B. D. Jones, (2003) HilE interacts with HilD and 
negatively regulates hilA transcription and expression of the Salmonella enterica 
serovar Typhimurium invasive phenotype. Infect Immun 71: 1295-1305. 

Baxter, M. A. & B. D. Jones, (2005) The fimYZ genes regulate Salmonella enterica Serovar 
Typhimurium invasion in addition to type 1 fimbrial expression and bacterial 
motility. Infect Immun 73: 1377-1385. 



220 

 

Becker, D., M. Selbach, C. Rollenhagen, M. Ballmaier, T. F. Meyer, M. Mann & D. 
Bumann, (2006) Robust Salmonella metabolism limits possibilities for new 
antimicrobials. Nature 440: 303-307. 

Becskei, A., B. Seraphin & L. Serrano, (2001) Positive feedback in eukaryotic gene 
networks: cell differentiation by graded to binary response conversion. Embo J 
20: 2528-2535. 

Behlau, I. & S. I. Miller, (1993) A PhoP-repressed gene promotes Salmonella 
typhimurium invasion of epithelial cells. J Bacteriol 175: 4475-4484. 

Bennett, J. C., J. Thomas, G. M. Fraser & C. Hughes, (2001) Substrate complexes and 
domain organization of the Salmonella flagellar export chaperones FlgN and FliT. 
Mol Microbiol 39: 781-791. 

Berg, H. C., (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72: 19-54. 
Bischoff, D. S., M. D. Weinreich & G. W. Ordal, (1992) Nucleotide sequences of Bacillus 

subtilis flagellar biosynthetic genes fliP and fliQ and identification of a novel 
flagellar gene, fliZ. J Bacteriol 174: 4017-4025. 

Boddicker, J. D., B. M. Knosp & B. D. Jones, (2003) Transcription of the Salmonella 
invasion gene activator, hilA, requires HilD activation in the absence of negative 
regulators. J Bacteriol 185: 525-533. 

Bode, U., I. T. Magrath, W. A. Bleyer, D. G. Poplack & D. L. Glaubiger, (1980) Active 
transport of methotrexate from cerebrospinal fluid in humans. Cancer Res 40: 
2184-2187. 

Bowe, F., C. J. Lipps, R. M. Tsolis, E. Groisman, F. Heffron & J. G. Kusters, (1998) At least 
four percent of the Salmonella typhimurium genome is required for fatal 
infection of mice. Infect Immun 66: 3372-3377. 

Brandman, O., J. E. Ferrell, Jr., R. Li & T. Meyer, (2005) Interlinked fast and slow positive 
feedback loops drive reliable cell decisions. Science 310: 496-498. 

Brown, J. D., S. Saini, C. Aldridge, J. Herbert, C. V. Rao & P. D. Aldridge, (2008) The rate of 
protein secretion dictates the temporal dynamics of flagellar gene expression. 
Mol Microbiol 70: 924-937. 

Buchanan, K., S. Falkow, R. A. Hull & S. I. Hull, (1985) Frequency among 
Enterobacteriaceae of the DNA sequences encoding type 1 pili. J Bacteriol 162: 
799-803. 

Bustamante, V. H., L. C. Martinez, F. J. Santana, L. A. Knodler, O. Steele-Mortimer & J. L. 
Puente, (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. 
Proc Natl Acad Sci U S A 105: 14591-14596. 

Cain, R. J., R. D. Hayward & V. Koronakis, (2008) Deciphering interplay between 
Salmonella invasion effectors. PLoS Pathog 4: e1000037. 

Carter, P. B. & F. M. Collins, (1974) The route of enteric infection in normal mice. J Exp 
Med 139: 1189-1203. 

Chadsey, M. S. & K. T. Hughes, (2001) A multipartite interaction between Salmonella 
transcription factor sigma28 and its anti-sigma factor FlgM: implications for 
sigma28 holoenzyme destabilization through stepwise binding. J Mol Biol 306: 
915-929. 



221 

 

Chadsey, M. S., J. E. Karlinsey & K. T. Hughes, (1998) The flagellar anti-sigma factor FlgM 
actively dissociates Salmonella typhimurium sigma28 RNA polymerase 
holoenzyme. Genes Dev 12: 3123-3136. 

Chang, D. E., S. Leung, M. R. Atkinson, A. Reifler, D. Forger & A. J. Ninfa, (2009) Building 
biological memory by linking positive feedback loops. Proc Natl Acad Sci U S A. 

Cherepanov, P. P. & W. Wackernagel, (1995) Gene disruption in Escherichia coli: TcR and 
KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-
resistance determinant. Gene 158: 9-14. 

Cherepenko, Y. & D. M. Hovorun, (2005) Bacterial multidrug resistance unrelated to 
multidrug exporters: cell biology insight. Cell Biol Int 29: 3-7. 

Chilcott, G. S. & K. T. Hughes, (2000) Coupling of flagellar gene expression to flagellar 
assembly in Salmonella enterica serovar typhimurium and Escherichia coli. 
Microbiol Mol Biol Rev 64: 694-708. 

Clegg, S., L. S. Hancox & K. S. Yeh, (1996) Salmonella typhimurium fimbrial phase 
variation and FimA expression. Journal of bacteriology 178: 542-545. 

Clegg, S. & K. T. Hughes, (2002) FimZ is a molecular link between sticking and swimming 
in Salmonella enterica serovar Typhimurium. J Bacteriol 184: 1209-1213. 

Cohen, S. P., S. B. Levy, J. Foulds & J. L. Rosner, (1993) Salicylate induction of antibiotic 
resistance in Escherichia coli: activation of the mar operon and a mar-
independent pathway. J Bacteriol 175: 7856-7862. 

Collazo, C. M. & J. E. Galan, (1996) Requirement for exported proteins in secretion 
through the invasion-associated type III system of Salmonella typhimurium. 
Infect Immun 64: 3524-3531. 

Collazo, C. M. & J. E. Galan, (1997a) The invasion-associated type-III protein secretion 
system in Salmonella--a review. Gene 192: 51-59. 

Collazo, C. M. & J. E. Galan, (1997b) The invasion-associated type III system of 
Salmonella typhimurium directs the translocation of Sip proteins into the host 
cell. Mol Microbiol 24: 747-756. 

Cotter, P. A. & J. F. Miller, (1994) BvgAS-mediated signal transduction: analysis of phase-
locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect 
Immun 62: 3381-3390. 

Cui, J., C. Chen, H. Lu, T. Sun & P. Shen, (2008) Two independent positive feedbacks and 
bistability in the Bcl-2 apoptotic switch. PLoS One 3: e1469. 

Daly, R. A. & C. P. Lostroh, (2008) Genetic analysis of the Salmonella transcription factor 
HilA. Can J Microbiol 54: 854-860. 

Darwin, K. H. & V. L. Miller, (1999a) InvF is required for expression of genes encoding 
proteins secreted by the SPI1 type III secretion apparatus in Salmonella 
typhimurium. Journal of bacteriology 181: 4949-4954. 

Darwin, K. H. & V. L. Miller, (1999b) Molecular basis of the interaction of Salmonella 
with the intestinal mucosa. Clin Microbiol Rev 12: 405-428. 

Darwin, K. H. & V. L. Miller, (2000) The putative invasion protein chaperone SicA acts 
together with InvF to activate the expression of Salmonella typhimurium 
virulence genes. Mol Microbiol 35: 949-960. 



222 

 

Darwin, K. H. & V. L. Miller, (2001) Type III secretion chaperone-dependent regulation: 
activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO 
J 20: 1850-1862. 

Datsenko, K. A. & B. L. Wanner, (2000) One-step inactivation of chromosomal genes in 
Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640-6645. 

Davis, R. W., D. Botsein, and J. R. Roth, (1980) Advanced bacterial genetics: a manual for 
genetic engineering. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 
NY. 

De Keersmaecker, S. C., K. Marchal, T. L. Verhoeven, K. Engelen, J. Vanderleyden & C. S. 
Detweiler, (2005) Microarray analysis and motif detection reveal new targets of 
the Salmonella enterica serovar Typhimurium HilA regulatory protein, including 
hilA itself. J Bacteriol 187: 4381-4391. 

Desai, T. A. & C. V. Rao, (2010) Regulation of arabinose and xylose metabolism in 
Escherichia coli. Appl Environ Microbiol 76: 1524-1532. 

Dubnau, D. & R. Losick, (2006) Bistability in bacteria. Mol Microbiol 61: 564-572. 
Duguid, J. P., E. S. Anderson & I. Campbell, (1966a) Fimbriae and adhesive properties in 

Salmonellae. J Pathol Bacteriol 92: 107-138. 
Duguid, J. P., E. S. Anderson & I. Campbell, (1966b) Fimbriae and adhesive properties in 

Salmonellae. The Journal of pathology and bacteriology 92: 107-138. 
Duguid, J. P., M. R. Darekar & D. W. Wheater, (1976) Fimbriae and infectivity in 

Salmonella typhimurium. J Med Microbiol 9: 459-473. 
Eichelberg, K., W. D. Hardt & J. E. Galan, (1999) Characterization of SprA, an AraC-like 

transcriptional regulator encoded within the Salmonella typhimurium 
pathogenicity island 1. Mol Microbiol 33: 139-152. 

Ellermeier, C. D., J. R. Ellermeier & J. M. Slauch, (2005) HilD, HilC and RtsA constitute a 
feed forward loop that controls expression of the SPI1 type three secretion 
system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 
57: 691-705. 

Ellermeier, C. D., Slauch J.M., (2006) The genus Salmonella. In: Dworkin M, Falkow S, 
Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes, 3rd ed. New 
York, NY.: Springer. pp. 123-158. 

Ellermeier, C. D. & J. M. Slauch, (2003) RtsA and RtsB coordinately regulate expression of 
the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J 
Bacteriol 185: 5096-5108. 

Ellermeier, J. R. & J. M. Slauch, (2007) Adaptation to the host environment: regulation of 
the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. 
Curr Opin Microbiol 10: 24-29. 

Ellermeier, J. R. & J. M. Slauch, (2008) Fur regulates expression of the Salmonella 
pathogenicity island 1 type III secretion system through HilD. Journal of 
bacteriology 190: 476-486. 

Fabrega, A., J. Sanchez-Cespedes, S. Soto & J. Vila, (2008) Quinolone resistance in the 
food chain. Int J Antimicrob Agents 31: 307-315. 



223 

 

Fahlen, T. F., N. Mathur & B. D. Jones, (2000) Identification and characterization of 
mutants with increased expression of hilA, the invasion gene transcriptional 
activator of Salmonella typhimurium. FEMS Immunol Med Microbiol 28: 25-35. 

Fass, E. & E. A. Groisman, (2009) Control of Salmonella pathogenicity island-2 gene 
expression. Curr Opin Microbiol 12: 199-204. 

Ferrell, J. E., (2002) Self-perpetuating states in signal transduction: positive feedback, 
double-negative feedback and bistability. Curr Opin Cell Biol 14: 140-148. 

Francis, C. L., T. A. Ryan, B. D. Jones, S. J. Smith & S. Falkow, (1993) Ruffles induced by 
Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364: 
639-642. 

Fraser, G. M., J. C. Bennett & C. Hughes, (1999) Substrate-specific binding of hook-
associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. 
Mol Microbiol 32: 569-580. 

Fu, Y. & J. E. Galan, (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate 
host-cell recovery after bacterial invasion. Nature 401: 293-297. 

Galan, J. E. & D. Zhou, (2000) Striking a balance: modulation of the actin cytoskeleton by 
Salmonella. Proc Natl Acad Sci U S A 97: 8754-8761. 

Gally, D. L., J. Leathart & I. C. Blomfield, (1996) Interaction of FimB and FimE with the fim 
switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-
12. Mol Microbiol 21: 725-738. 

Ganesh, A. B., H. Rajasingh & S. S. Mande, (2009) Mathematical modeling of regulation 
of type III secretion system in Salmonella enterica serovar Typhimurium by SirA. 
In silico biology 9: S57-72. 

Garcia Vescovi, E., F. C. Soncini & E. A. Groisman, (1994) The role of the PhoP/PhoQ 
regulon in Salmonella virulence. Res Microbiol 145: 473-480. 

Gerlach, G. F., S. Clegg, N. J. Ness, D. L. Swenson, B. L. Allen & W. A. Nichols, (1989) 
Expression of type 1 fimbriae and mannose-sensitive hemagglutinin by 
recombinant plasmids. Infect Immun 57: 764-770. 

Gerlach, R. G., D. Jackel, N. Geymeier & M. Hensel, (2007a) Salmonella pathogenicity 
island 4-mediated adhesion is coregulated with invasion genes in Salmonella 
enterica. Infect Immun 75: 4697-4709. 

Gerlach, R. G., D. Jackel, B. Stecher, C. Wagner, A. Lupas, W. D. Hardt & M. Hensel, 
(2007b) Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin 
and the cognate type 1 secretion system. Cell Microbiol 9: 1834-1850. 

Gillen, K. L. & K. T. Hughes, (1991) Molecular characterization of flgM, a gene encoding a 
negative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol 
173: 6453-6459. 

Ginocchio, C. C., S. B. Olmsted, C. L. Wells & J. E. Galan, (1994) Contact with epithelial 
cells induces the formation of surface appendages on Salmonella typhimurium. 
Cell 76: 717-724. 

Goodier, R. I. & B. M. Ahmer, (2001) SirA orthologs affect both motility and virulence. J 
Bacteriol 183: 2249-2258. 

Gunn, J. S., (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, 
antimicrobial peptide resistance and more. Trends Microbiol 16: 284-290. 



224 

 

Guzman, L. M., D. Belin, M. J. Carson & J. Beckwith, (1995) Tight regulation, modulation, 
and high-level expression by vectors containing the arabinose PBAD promoter. J 
Bacteriol 177: 4121-4130. 

Hakkila, K., M. Maksimow, M. Karp & M. Virta, (2002) Reporter genes lucFF, luxCDABE, 
gfp, and dsred have different characteristics in whole-cell bacterial sensors. 
Analytical biochemistry 301: 235-242. 

Haldimann, A. & B. L. Wanner, (2001) Conditional-replication, integration, excision, and 
retrieval plasmid-host systems for gene structure-function studies of bacteria. J 
Bacteriol 183: 6384-6393. 

Hancox, L. S., K. S. Yeh & S. Clegg, (1997) Construction and characterization of type 1 
non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS 
Immunol Med Microbiol 19: 289-296. 

Hardt, W. D., L. M. Chen, K. E. Schuebel, X. R. Bustelo & J. E. Galan, (1998) S. 
typhimurium encodes an activator of Rho GTPases that induces membrane 
ruffling and nuclear responses in host cells. Cell 93: 815-826. 

Harshey, R. M. & T. Matsuyama, (1994) Dimorphic transition in Escherichia coli and 
Salmonella typhimurium: surface-induced differentiation into hyperflagellate 
swarmer cells. Proc Natl Acad Sci U S A 91: 8631-8635. 

Hautefort, I., M. J. Proenca & J. C. Hinton, (2003) Single-copy green fluorescent protein 
gene fusions allow accurate measurement of Salmonella gene expression in vitro 
and during infection of mammalian cells. Appl Environ Microbiol 69: 7480-7491. 

Hayward, R. D. & V. Koronakis, (2002) Direct modulation of the host cell cytoskeleton by 
Salmonella actin-binding proteins. Trends Cell Biol 12: 15-20. 

Hensel, M., (2000) Salmonella pathogenicity island 2. Mol Microbiol 36: 1015-1023. 
Homma, M. & T. Iino, (1985) Locations of hook-associated proteins in flagellar structures 

of Salmonella typhimurium. J Bacteriol 162: 183-189. 
Hughes, K. T., K. L. Gillen, M. J. Semon & J. E. Karlinsey, (1993) Sensing structural 

intermediates in bacterial flagellar assembly by export of a negative regulator. 
Science 262: 1277-1280. 

Ikebe, T., S. Iyoda & K. Kutsukake, (1999) Promoter analysis of the class 2 flagellar 
operons of Salmonella. Genes Genet Syst 74: 179-183. 

Iyoda, S., T. Kamidoi, K. Hirose, K. Kutsukake & H. Watanabe, (2001) A flagellar gene fliZ 
regulates the expression of invasion genes and virulence phenotype in 
Salmonella enterica serovar Typhimurium. Microb Pathog 30: 81-90. 

Kalir, S., J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M. G. Surette & U. 
Alon, (2001) Ordering genes in a flagella pathway by analysis of expression 
kinetics from living bacteria. Science 292: 2080-2083. 

Karlinsey, J. E., (2007) lambda-Red genetic engineering in Salmonella enterica serovar 
Typhimurium. Methods Enzymol 421: 199-209. 

Karlinsey, J. E., J. Lonner, K. L. Brown & K. T. Hughes, (2000a) Translation/secretion 
coupling by type III secretion systems. Cell 102: 487-497. 

Karlinsey, J. E., S. Tanaka, V. Bettenworth, S. Yamaguchi, W. Boos, S. I. Aizawa & K. T. 
Hughes, (2000b) Completion of the hook-basal body complex of the Salmonella 



225 

 

typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol 
Microbiol 37: 1220-1231. 

Kato, A., A. Y. Mitrophanov & E. A. Groisman, (2007) A connector of two-component 
regulatory systems promotes signal amplification and persistence of expression. 
Proc Natl Acad Sci U S A 104: 12063-12068. 

Kim, W. & M. G. Surette, (2004) Metabolic differentiation in actively swarming 
Salmonella. Mol Microbiol 54: 702-714. 

Kimbrough, T. G. & S. I. Miller, (2000) Contribution of Salmonella typhimurium type III 
secretion components to needle complex formation. Proc Natl Acad Sci U S A 97: 
11008-11013. 

Kimbrough, T. G. & S. I. Miller, (2002) Assembly of the type III secretion needle complex 
of Salmonella typhimurium. Microbes Infect 4: 75-82. 

Kiss, T., E. Morgan & G. Nagy, (2007) Contribution of SPI-4 genes to the virulence of 
Salmonella enterica. FEMS Microbiol Lett 275: 153-159. 

Klemm, P., (1984) The fimA gene encoding the type-1 fimbrial subunit of Escherichia 
coli. Nucleotide sequence and primary structure of the protein. Eur J Biochem 
143: 395-399. 

Klemm, P., (1986) Two regulatory fim genes, fimB and fimE, control the phase variation 
of type 1 fimbriae in Escherichia coli. EMBO J 5: 1389-1393. 

Kovaleva, L. G., (1976) [Determination of life expectancy of patients with acute 
leukemia]. Ter Arkh 48: 67-73. 

Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A. Sukhan, J. E. Galan & 
S. I. Aizawa, (1998) Supramolecular structure of the Salmonella typhimurium 
type III protein secretion system. Science 280: 602-605. 

Kuo, M. H. & C. D. Allis, (1999) In vivo cross-linking and immunoprecipitation for 
studying dynamic Protein:DNA associations in a chromatin environment. 
Methods 19: 425-433. 

Kutsukake, K., (1994) Excretion of the anti-sigma factor through a flagellar substructure 
couples flagellar gene expression with flagellar assembly in Salmonella 
typhimurium. Mol Gen Genet 243: 605-612. 

Kutsukake, K., T. Ikebe & S. Yamamoto, (1999) Two novel regulatory genes, fliT and fliZ, 
in the flagellar regulon of Salmonella. Genes Genet Syst 74: 287-292. 

Labbe, D., J. Garnon & P. C. Lau, (1997) Characterization of the genes encoding a 
receptor-like histidine kinase and a cognate response regulator from a 
biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. J 
Bacteriol 179: 2772-2776. 

Lanois, A., G. Jubelin & A. Givaudan, (2008) FliZ, a flagellar regulator, is at the crossroads 
between motility, haemolysin expression and virulence in the insect pathogenic 
bacterium Xenorhabdus. Mol Microbiol 68: 516-533. 

Lau, P. C., Y. Wang, A. Patel, D. Labbe, H. Bergeron, R. Brousseau, Y. Konishi & M. 
Rawlings, (1997) A bacterial basic region leucine zipper histidine kinase 
regulating toluene degradation. Proc Natl Acad Sci U S A 94: 1453-1458. 



226 

 

Lawley, T. D., K. Chan, L. J. Thompson, C. C. Kim, G. R. Govoni & D. M. Monack, (2006) 
Genome-wide screen for Salmonella genes required for long-term systemic 
infection of the mouse. PLoS Pathog 2: e11. 

Ledeboer, N. A., J. G. Frye, M. McClelland & B. D. Jones, (2006) Salmonella enterica 
serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm 
formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect 
Immun 74: 3156-3169. 

Lee, C. A., B. D. Jones & S. Falkow, (1992) Identification of a Salmonella typhimurium 
invasion locus by selection for hyperinvasive mutants. Proceedings of the 
National Academy of Sciences of the United States of America 89: 1847-1851. 

Letunic, I., R. R. Copley, B. Pils, S. Pinkert, J. Schultz & P. Bork, (2006) SMART 5: domains 
in the context of genomes and networks. Nucleic acids research 34: 257-260. 

Lim, S., J. Yun, H. Yoon, C. Park, B. Kim, B. Jeon, D. Kim & S. Ryu, (2007) Mlc regulation of 
Salmonella pathogenicity island I gene expression via hilE repression. Nucleic 
acids research 35: 1822-1832. 

Lin, A. Y., C. Y. Lin, C. T. Chen & W. L. Chen, (2008a) Host defense against Salmonella and 
rotaviral gastroenteritis: a serial study of transcriptional factors and cytokines. J 
Microbiol Immunol Infect 41: 265-271. 

Lin, D., C. V. Rao & J. M. Slauch, (2008b) The Salmonella SPI1 type three secretion 
system responds to periplasmic disulfide bond status via the flagellar apparatus 
and the RcsCDB system. Journal of bacteriology 190: 87-97. 

Lostroh, C. P. & C. A. Lee, (2001a) The HilA box and sequences outside it determine the 
magnitude of HilA-dependent activation of P(prgH) from Salmonella 
pathogenicity island 1. J Bacteriol 183: 4876-4885. 

Lostroh, C. P. & C. A. Lee, (2001b) The Salmonella pathogenicity island-1 type III 
secretion system. Microbes Infect 3: 1281-1291. 

Lucas, R. L. & C. A. Lee, (2001) Roles of hilC and hilD in regulation of hilA expression in 
Salmonella enterica serovar Typhimurium. J Bacteriol 183: 2733-2745. 

Lucas, R. L., C. P. Lostroh, C. C. DiRusso, M. P. Spector, B. L. Wanner & C. A. Lee, (2000) 
Multiple factors independently regulate hilA and invasion gene expression in 
Salmonella enterica serovar typhimurium. Journal of bacteriology 182: 1872-
1882. 

Macnab, R. M., (1999) The bacterial flagellum: reversible rotary propellor and type III 
export apparatus. J Bacteriol 181: 7149-7153. 

Macnab, R. M., (2003) How bacteria assemble flagella. Annu Rev Microbiol 57: 77-100. 
Maeda, Y. T. & M. Sano, (2006) Regulatory dynamics of synthetic gene networks with 

positive feedback. J Mol Biol 359: 1107-1124. 
Main-Hester, K. L., K. M. Colpitts, G. A. Thomas, F. C. Fang & S. J. Libby, (2008) 

Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in 
Salmonella enterica serovar Typhimurium. Infect Immun 76: 1024-1035. 

Maithreye, R. & S. S. Mande, (2007) Modelling of the regulation of the hilA promoter of 
type three secretion system of Salmonella enterica serovar Typhimurium. 
Systems and synthetic biology 1: 129-137. 



227 

 

Meighen, E. A., (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55: 
123-142. 

Miller, P. F. & M. C. Sulavik, (1996) Overlaps and parallels in the regulation of intrinsic 
multiple-antibiotic resistance in Escherichia coli. Mol Microbiol 21: 441-448. 

Miller SI, P. P., (2000) Salmonella species, including Salmonella typhi. In: Bennett JE, 
Dolin R, editors. Principles of infectious diseases. Philadelphia PA: Churchill 
Livingstone. pp. 2344-2363. 

Miller, W. G., J. H. Leveau & S. E. Lindow, (2000) Improved gfp and inaZ broad-host-
range promoter-probe vectors. Mol Plant Microbe Interact 13: 1243-1250. 

Miller, W. G. & S. E. Lindow, (1997) An improved GFP cloning cassette designed for 
prokaryotic transcriptional fusions. Gene 191: 149-153. 

Mills, D. M., V. Bajaj & C. A. Lee, (1995) A 40 kb chromosomal fragment encoding 
Salmonella typhimurium invasion genes is absent from the corresponding region 
of the Escherichia coli K-12 chromosome. Mol Microbiol 15: 749-759. 

Mitrophanov, A. Y. & E. A. Groisman, (2008) Positive feedback in cellular control 
systems. Bioessays 30: 542-555. 

Mitrophanov, A. Y., M. W. Jewett, T. J. Hadley & E. A. Groisman, (2008) Evolution and 
dynamics of regulatory architectures controlling polymyxin B resistance in 
enteric bacteria. PLoS Genet 4: e1000233. 

Monod, J., (1966) From enzymatic adaptation to allosteric transitions. Science 154: 475-
483. 

Morgan, D. G., C. Owen, L. A. Melanson & D. J. DeRosier, (1995) Structure of bacterial 
flagellar filaments at 11 A resolution: packing of the alpha-helices. J Mol Biol 249: 
88-110. 

Morgan, E., J. D. Campbell, S. C. Rowe, J. Bispham, M. P. Stevens, A. J. Bowen, P. A. 
Barrow, D. J. Maskell & T. S. Wallis, (2004) Identification of host-specific 
colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 
54: 994-1010. 

Nagai, T., K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba & A. Miyawaki, (2002) A variant of 
yellow fluorescent protein with fast and efficient maturation for cell-biological 
applications. Nat Biotechnol 20: 87-90. 

Nambu, T. & K. Kutsukake, (2000) The Salmonella FlgA protein, a putativeve periplasmic 
chaperone essential for flagellar P ring formation. Microbiology 146 ( Pt 5): 1171-
1178. 

Nishino, K., F. F. Hsu, J. Turk, M. J. Cromie, M. M. Wosten & E. A. Groisman, (2006) 
Identification of the lipopolysaccharide modifications controlled by the 
Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol 
Microbiol 61: 645-654. 

Ochman, H., F. C. Soncini, F. Solomon & E. A. Groisman, (1996) Identification of a 
pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad 
Sci U S A 93: 7800-7804. 

Ohnishi, K., K. Kutsukake, H. Suzuki & T. Lino, (1992) A novel transcriptional regulation 
mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma 



228 

 

factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol 
Microbiol 6: 3149-3157. 

Old, D. C. & J. P. Duguid, (1970) Selective outgrowth of fimbriate bacteria in static liquid 
medium. J Bacteriol 103: 447-456. 

Olekhnovich, I. N. & R. J. Kadner, (2002) DNA-binding activities of the HilC and HilD 
virulence regulatory proteins of Salmonella enterica serovar Typhimurium. J 
Bacteriol 184: 4148-4160. 

Pang, T., Z. A. Bhutta, B. B. Finlay & M. Altwegg, (1995) Typhoid fever and other 
salmonellosis: a continuing challenge. Trends Microbiol 3: 253-255. 

Pegues, D. A., M. J. Hantman, I. Behlau & S. I. Miller, (1995) PhoP/PhoQ transcriptional 
repression of Salmonella typhimurium invasion genes: evidence for a role in 
protein secretion. Mol Microbiol 17: 169-181. 

Perez, J. C. & E. A. Groisman, (2007) Acid pH activation of the PmrA/PmrB two-
component regulatory system of Salmonella enterica. Mol Microbiol 63: 283-293. 

Piknova, L., E. Kaclikova, D. Pangallo, B. Polek & T. Kuchta, (2005) Quantification of 
Salmonella by 5'-nuclease real-time polymerase chain reaction targeted to fimC 
gene. Curr Microbiol 50: 38-42. 

Prost, L. R. & S. I. Miller, (2008) The Salmonellae PhoQ sensor: mechanisms of detection 
of phagosome signals. Cell Microbiol 10: 576-582. 

Pruss, B. M., X. Liu, W. Hendrickson & P. Matsumura, (2001) FlhD/FlhC-regulated 
promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 
197: 91-97. 

Purcell, B. K., J. Pruckler & S. Clegg, (1987) Nucleotide sequences of the genes encoding 
type 1 fimbrial subunits of Klebsiella pneumoniae and Salmonella typhimurium. J 
Bacteriol 169: 5831-5834. 

Randall, L. P. & M. J. Woodward, (2002) The multiple antibiotic resistance (mar) locus 
and its significance. Res Vet Sci 72: 87-93. 

Rossolini, G. M., P. Muscas, A. Chiesurin & G. Satta, (1993) Analysis of the Salmonella fim 
gene cluster: identification of a new gene (fimI) encoding a fimbrin-like protein 
and located downstream from the fimA gene. FEMS Microbiol Lett 114: 259-265. 

Saini, S., J. D. Brown, P. D. Aldridge & C. V. Rao, (2008) FliZ Is a posttranslational 
activator of FlhD4C2-dependent flagellar gene expression. J Bacteriol 190: 4979-
4988. 

Saini, S., J. R. Ellermeier, J. M. Slauch, C. V. Rao, (2010) The role of coupled positive 
feedback in the expression of the SPI1 type three secretion system in Salmonella. 
PLoS Pathog In Press. 

Saini, S., J. A. Pearl & C. V. Rao, (2009) Role of FimW, FimY, and FimZ in regulating the 
expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J 
Bacteriol 191: 3003-3010. 

Saini, S. & C. V. Rao, (2010) SprB is the molecular link between Salmonella pathogenicity 
island 1 (SPI1) and SPI4. J Bacteriol 192: 2459-2462. 

Santos, R. L., R. M. Tsolis, A. J. Baumler & L. G. Adams, (2003) Pathogenesis of 
Salmonella-induced enteritis. Braz J Med Biol Res 36: 3-12. 



229 

 

Schechter, L. M., S. M. Damrauer & C. A. Lee, (1999) Two AraC/XylS family members can 
independently counteract the effect of repressing sequences upstream of the 
hilA promoter. Molecular microbiology 32: 629-642. 

Schechter, L. M. & C. A. Lee, (2001) AraC/XylS family members, HilC and HilD, directly 
bind and derepress the Salmonella typhimurium hilA promoter. Molecular 
microbiology 40: 1289-1299. 

Shea, J. E., M. Hensel, C. Gleeson & D. W. Holden, (1996) Identification of a virulence 
locus encoding a second type III secretion system in Salmonella typhimurium. 
Proc Natl Acad Sci U S A 93: 2593-2597. 

Shin, D. & E. A. Groisman, (2005) Signal-dependent binding of the response regulators 
PhoP and PmrA to their target promoters in vivo. J Biol Chem 280: 4089-4094. 

Smith, R. L. & M. E. Maguire, (1998) Microbial magnesium transport: unusual 
transporters searching for identity. Mol Microbiol 28: 217-226. 

Stebbins, C. E. & J. E. Galan, (2001) Structural mimicry in bacterial virulence. Nature 412: 
701-705. 

Stender, S., A. Friebel, S. Linder, M. Rohde, S. Mirold & W. D. Hardt, (2000) Identification 
of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide 
exchange factor for Cdc42 of the host cell. Mol Microbiol 36: 1206-1221. 

Strogatz, S. H., (2001) Nonlinear Dynamics And Chaos: With Applications To Physics, 
Biology, Chemistry, And Engineering (Studies in nonlinearity) (Paperback). 
Westview Press; 1 edition. 

Sukhan, A., T. Kubori, J. Wilson & J. E. Galan, (2001) Genetic analysis of assembly of the 
Salmonella enterica serovar Typhimurium type III secretion-associated needle 
complex. J Bacteriol 183: 1159-1167. 

Swenson, D. L., K. J. Kim, E. W. Six & S. Clegg, (1994) The gene fimU affects expression of 
Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli 
tRNA gene argU. Mol Gen Genet 244: 216-218. 

Tavendale, A., C. K. Jardine, D. C. Old & J. P. Duguid, (1983) Haemagglutinins and 
adhesion of Salmonella typhimurium to HEp2 and HeLa cells. J Med Microbiol 16: 
371-380. 

Temme, K., H. Salis, D. Tullman-Ercek, A. Levskaya, S. H. Hong & C. A. Voigt, (2008) 
Induction and relaxation dynamics of the regulatory network controlling the type 
III secretion system encoded within Salmonella pathogenicity island 1. Journal of 
molecular biology 377: 47-61. 

Teplitski, M., R. I. Goodier & B. M. Ahmer, (2003) Pathways leading from BarA/SirA to 
motility and virulence gene expression in Salmonella. J Bacteriol 185: 7257-7265. 

Thomas, R., D. Thieffry & M. Kaufman, (1995) Dynamical behaviour of biological 
regulatory networks--I. Biological role of feedback loops and practical use of the 
concept of the loop-characteristic state. Bull Math Biol 57: 247-276. 

Tian, X. J., X. P. Zhang, F. Liu & W. Wang, (2009) Interlinking positive and negative 
feedback loops creates a tunable motif in gene regulatory networks. Phys Rev E 
Stat Nonlin Soft Matter Phys 80: 011926. 



230 

 

Tinker, J. K. & S. Clegg, (2000) Characterization of FimY as a coactivator of type 1 fimbrial 
expression in Salmonella enterica serovar Typhimurium. Infect Immun 68: 3305-
3313. 

Tinker, J. K. & S. Clegg, (2001) Control of FimY translation and type 1 fimbrial production 
by the arginine tRNA encoded by fimU in Salmonella enterica serovar 
Typhimurium. Mol Microbiol 40: 757-768. 

Tinker, J. K., L. S. Hancox & S. Clegg, (2001) FimW is a negative regulator affecting type 1 
fimbrial expression in Salmonella enterica serovar typhimurium. J Bacteriol 183: 
435-442. 

van der Velden, A. W., A. J. Baumler, R. M. Tsolis & F. Heffron, (1998) Multiple fimbrial 
adhesins are required for full virulence of Salmonella typhimurium in mice. Infect 
Immun 66: 2803-2808. 

Wallis, T. S. & E. E. Galyov, (2000) Molecular basis of Salmonella-induced enteritis. Mol 
Microbiol 36: 997-1005. 

Wang, S., R. T. Fleming, E. M. Westbrook, P. Matsumura & D. B. McKay, (2006) Structure 
of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of 
transcription. J Mol Biol 355: 798-808. 

WHO, (2005) Drug-resistant Salmonella. In.: WHO Media Center, pp. 
Winson, M. K., S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr, B. W. Bycroft, P. Williams & G. 

S. Stewart, (1998) Engineering the luxCDABE genes from Photorhabdus 
luminescens to provide a bioluminescent reporter for constitutive and promoter 
probe plasmids and mini-Tn5 constructs. FEMS microbiology letters 163: 193-
202. 

Wu, K. & C. V. Rao, (2010) The role of configuration and coupling in autoregulatory gene 
circuits. Mol Microbiol 75: 513-527. 

Yamamoto, S. & K. Kutsukake, (2006) FliT acts as an anti-FlhD2C2 factor in the 
transcriptional control of the flagellar regulon in Salmonella enterica serovar 
typhimurium. J Bacteriol 188: 6703-6708. 

Yanagihara, S., S. Iyoda, K. Ohnishi, T. Iino & K. Kutsukake, (1999) Structure and 
transcriptional control of the flagellar master operon of Salmonella typhimurium. 
Genes Genet Syst 74: 105-111. 

Yeh, K. S., L. S. Hancox & S. Clegg, (1995) Construction and characterization of a fimZ 
mutant of Salmonella typhimurium. J Bacteriol 177: 6861-6865. 

Yeh, K. S., J. K. Tinker & S. Clegg, (2002) FimZ binds the Salmonella typhimurium fimA 
promoter region and may regulate its own expression with FimY. Microbiol 
Immunol 46: 1-10. 

Yokoseki, T., K. Kutsukake, K. Ohnishi & T. Iino, (1995) Functional analysis of the flagellar 
genes in the fliD operon of Salmonella typhimurium. Microbiology 141 ( Pt 7): 
1715-1722. 

Yonekura, K., S. Maki-Yonekura & K. Namba, (2003) Complete atomic model of the 
bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643-650. 

Yonekura, K., S. Maki, D. G. Morgan, D. J. DeRosier, F. Vonderviszt, K. Imada & K. Namba, 
(2000) The bacterial flagellar cap as the rotary promoter of flagellin self-
assembly. Science 290: 2148-2152. 



231 

 

Zhou, D., L. M. Chen, L. Hernandez, S. B. Shears & J. E. Galan, (2001) A Salmonella 
inositol polyphosphatase acts in conjunction with other bacterial effectors to 
promote host cell actin cytoskeleton rearrangements and bacterial 
internalization. Mol Microbiol 39: 248-259. 

Zhou, D. & J. Galan, (2001) Salmonella entry into host cells: the work in concert of type 
III secreted effector proteins. Microbes and infection / Institut Pasteur 3: 1293-
1298. 

Zhou, D., M. S. Mooseker & J. E. Galan, (1999a) An invasion-associated Salmonella 
protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci U S A 
96: 10176-10181. 

Zhou, D., M. S. Mooseker & J. E. Galan, (1999b) Role of the S. typhimurium actin-binding 
protein SipA in bacterial internalization. Science 283: 2092-2095. 

 

 



232 

 

Curriculum Vitae 

 
Education     Ph.D., Chemical and Biomolecular Engineering – August 2010 
      University of Illinois at Urbana-Champaign, Urbana, IL 

Dissertation: “Coordinated regulation of the flagellar, Salmonella 
Pathogenicity    Island 1 (SPI1) and Type I fimbriae gene circuits in 
Salmonella enterica serovar Typhimurium” 
 
M.S., Chemical and Biomolecular Engineering – October 2008 
University of Illinois at Urbana-Champaign, Urbana, IL 
Thesis: “Characterization of FliZ as an FlhD4C2-dependent activator of 
flagellar genes in Salmonella enterica serovar Typhimurium” 
 
B.Tech., Chemical Engineering – May 2005 
Indian Institute of Technology, Delhi, India 
Thesis: “Heat and Pressure drop studies in helical tube-in-tube heat 
exchangers” 

 

Research     Graduate Research Assistant – August 2005 to date 
experience     University of Illinois at Urbana-Champaign, Urbana, IL 
      Research advisor: Dr. Christopher V. Rao 
   
      Undergraduate researcher – January 2003 to August 2004 
      Indian Institute of Technology Delhi, India 
      Research advisor: Dr. Ashok N. Bhaskarwar 
   
      Undergraduate researcher – 2004 to 2005 
      Indian Institute of Technology Delhi, India 
      Research advisor: Dr. Krishna D. P. Nigam 
 
 
 
Teaching      Introduction to Chemical Engineering – Spring 2010 

    Hidden World of Engineering – Fall 2009 

    Mass Transfer Operations – Spring 2009, 2008, 2007 

      Process Control and Dynamics – Fall 2008, 2007, 2006 

Assistant 



233 

 

             

Publications Saini, S., Slauch, J.M., Aldridge, P.D., and Rao, C.V., “The role of 
crosstalk in regulating the dynamic expression of the flagellar, 
Salmonella pathogenicity island 1 (SPI1), and type I fimbrial genes” 
Journal of Bacteriology, In Review. 

Aldridge, C., Poonchareon, K., Saini, S., Ewen, T., Soloyva, A., Rao, C.V., 
Imada, K., Minamino, T., and Aldridge, P.D. “The interaction dynamics 
of a negative feedback loop regulates flagellar number in Salmonella 
enterica serovar Typhimurium” (2010) Molecular Microbiology In 
Review. 

 Saini, S., Ellermeier, J.R., Slauch, J.M., Rao, C.V., “The role of coupled 
positive feedback in the expression of the SPI1 type three secretion 
system in Salmonella” PLoS Pathogens In Review. 

 Saini, S., Rao, C.V., “SprB is the molecular link between Salmonella 
Pathogenicity Island 1 (SPI1) and SPI4” Journal of Bacteriology (2010) 
192(9):2459-62. 

 Saini S., Pearl J.A., Rao C.V. “Role of FimW, FimY, and FimZ in 
regulating the expression of type i fimbriae in Salmonella enterica 
serovar Typhimurium.” Journal of Bacteriology (2009) 191(9):3003-10. 

 Brown J.D., Saini S., Aldridge C., Herbert J., Rao C.V., Aldridge P.D. “The 
rate of protein secretion dictates the temporal dynamics of flagellar 
gene expression.” Molecular Microbiology (2008) 70(4):924-37.  

 Saini S., Brown J.D., Aldridge P.D., Rao C.V. “FliZ Is a posttranslational 
activator of FlhD4C2-dependent flagellar gene expression.” Journal of 
Bacteriology (2008) 190(14):4979-88. 

 Kumar V., Saini S., Sharma M., Nigam K.D.P. “Pressure drop and heat 
transfer study in tube-in-tube helical heat exchanger.” Chemical 
Engineering Science (2006) 61(13): 4403-4416. 

 
 

Presentations Saini, S., Rao C.V., “Coordinated regulation of the flagellar, SPI1, and 
type I fimbriae networks in Salmonella” Poster, American Institute of 
Chemical Engineers Annual Meeting, Nashville, TN – 2009. 

 Chubiz, L.M., Saini, S., Rao, C.V., “Convergent Transcription and 
Transcriptional Interference as a regulatory mechanism in the 
rhamnose regulon in Escherichia coli” Presentation, American Institute 
of Chemical Engineers Annual Meeting, Nashville, TN – 2009 

http://www.ncbi.nlm.nih.gov/pubmed/19218381?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19218381?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19218381?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19218381?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18811728?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18811728?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18811728?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18811728?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18469103?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18469103?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18469103?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4JP9G10-1&_user=10&_coverDate=07%2F31%2F2006&_alid=909810188&_rdoc=1&_fmt=high&_orig=search&_cdi=5229&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=5ad9b32b323d62c6820330354d5b4d38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4JP9G10-1&_user=10&_coverDate=07%2F31%2F2006&_alid=909810188&_rdoc=1&_fmt=high&_orig=search&_cdi=5229&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=5ad9b32b323d62c6820330354d5b4d38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4JP9G10-1&_user=10&_coverDate=07%2F31%2F2006&_alid=909810188&_rdoc=1&_fmt=high&_orig=search&_cdi=5229&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=5ad9b32b323d62c6820330354d5b4d38


234 

 

 Saini, S., Aldridge, P.D., Rao, C.V., “Role of feedback in dictating 
flagellar gene expression dynamics” Presentation, American Institute 
of Chemical Engineers Annual Meeting, Nashville, TN – 2009 

 Saini, S., Aldridge, P.D., Rao, C.V., “Role of positive feedback in 
dictating flagellar gene expression dynamics in Salmonella” Poster, 
Foundations of Systems Biology and Engineering (FOSBE) – Colorado, 
DN – 2009 

 Saini, S., Slauch, J.M., Rao, C.V., “Dynamics of SPI1 gene expression in 
Salmonella typhimurium” Presentation, American Society of 
Microbiology Annual Meeting, Philadelphia, PA – 2009 

 Saini, S., Slauch, J.M., Rao, C.V., “Role of positive feedback and 
stochasticity in dictating SPI1 gene expression in Salmonella 
typhimurium” Poster, American Society of Microbiology Annual 
Meeting, Philadelphia, PA – 2009 

 Saini, S., Aldridge, P.D., Rao, C.V., “Characterization of FliZ as an 
flagellar and SPI1 gene activator in Salmonella typhimurium” Poster, 
Bacterial Locomotion and Signal Transduction (BLAST), Cuernevaca, 
Mexico – 2009 

 
Honors Food and Pharmaceutical Division Poster Award – 2009 
 American Society of Chemical Engineers (AIChE) General Meeting, 

Nashville, TN 

Drickamer Fellowship – 2009-2010 
Chemical & Biomolecular Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 

 Girdhari Tikku Memorial Award – 2009 
 Center for South Asian and Middle Eastern Studies (CSAMES), 

University of Illinois at Urbana-Champaign, Urbana, IL 

 Hanratty Travel Award – 2009 
 Chemical & Biomolecular Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL 

 Richard & Mary Finkelstein Travel Award - 2009  
 American Society of Microbiology (ASM) General Meeting, 

Philadelphia, PA 

 Excellence in Teaching Award – 2007-2008 
 School of Chemical Sciences, University of Illinois at Urbana-

Champaign, Urbana, IL  
 


