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ABSTRACT 

 The genus Chenopodium consists of several important weed species, including 

Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share 

similar vegetative morphology and high phenotypic plasticity, which makes it difficult to 

correctly identify these species. All of these weedy Chenopodium species have developed 

resistance to one or more classes of herbicides. An experiment was conducted to determine if 

there is variability in response of Chenopodium species present in the North Central states to 

glyphosate. Our results indicate variable responses within and among the Chenopodium species. 

Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than 

did various accessions of C. album. In another experiment, 33 populations of Chenopodium 

sampled across six North Central states were screened with glyphosate. The results showed 

variable responses to glyphosate within and among the Chenopodium populations. In general, the 

Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, 

Indiana and Kansas also had significantly high tolerance to glyphosate.  

 Given there are species other than C. album that have high tolerance to glyphosate, and 

there are Chenopodium populations across the North Central states that showed tolerance to 

glyphosate, one intriguing question was to whether the Chenopodium populations were either 

biotypes of C. album were or are more closely related to other species such as C. berlandieri, C. 

strictum or C. ficifolium, which would indicate that there has been a species shift.  

 To investigate which species are prevalent in North Central states, 12 Chenopodium 

species were investigated using morphological DNA content values and sequence data. With the 

exception of morphological characters such as pericarp covering the seeds, calyx shape (keeled 

or not) and DNA content of the species, most of the morphological characters were not 
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phylogenetically informative. The morphological characters were useful in distinguishing some 

species from others, but with an increase in number of species under investigation, there was 

overlap of morphological characters within closely related species, and hence one cannot use 

morphological markers alone to differentiate the Chenopodium species. 

 Three DNA sequence based markers, ITS (nuclear), matK and trnD-trnT (chloroplast) 

were explored. The sequence data were subjected to maximum parsimony and Bayesian 

analyses. Irrespective of the method used for tree estimation, all three markers gave similar tree 

topologies, but ITS markers gave the greatest number of polymorphic sites. The ITS based 

phylogenetic tree was well resolved. Some closely related species such as C. strictum, C. 

berlandieri and C. album shared high sequence similarity among homologous genes, but these 

species were easily differentiated with the support of the genome size data. Samples of C. 

strictum had a 2C value of 2.0 pg, which was different than C. album (3.6 pg/2C).  Chenopodium 

populations from North Central states were also tested with ITS markers, and DNA content 

values were also obtained from a few samples. Based on the sequence data, results indicated that 

all the field samples were closely related to C. album, and also the genome sizes of all the 

populations were close to the genome size values of different accessions of C. album. In 

conclusion, all the Chenopodium samples that were sampled for our experiment were closely 

related to C. album, and the increase in reports of common lambsquarters populations developing 

tolerance to glyphosate most likely is due to evolution within C. album and not because of a shift 

in weed species. 
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I dedicate this dissertation to all the agricultural scientists and farmers for their efforts 

towards eradicating world hunger 

 

  



 
 

v 

 

ACKNOWLEDGEMENTS 

 First and foremost, I would like to thank my advisor Dr. Patrick Tranel for accepting me 

as his graduate student and for his guidance, advice and patience throughout my academic career 

at the University of Illinois. It is an honor to work with one of the nation‟s best weed scientists as 

my mentor. I would also like to thank other members of my graduate committee, Drs. Aaron 

Hager, Geoff Levin and Matthew Hudson for their suggestions about my research and for their 

guidance and support. I want to thank Dr. Adam Davis for statistical assistance and Dr. A. Lane 

Rayburn for guidance with DNA content analysis. 

 I extend my thanks to past and present lab members Drs Ryan Lee and Danman Zheng 

for teaching me molecular techniques in the beginning of my research career. I would like to 

specially thank Michael Bell, a true friend for his unconditional help and support throughout my 

graduate program. Thank you Mike! Thank to Kate Thinglum for her help with the dissertation 

and also making the Weed Science classes so memorable. Thanks Kate for your friendship! I am 

also thankful to Stephanie Rousonelos and Dr. Jianyang Liu for their support in lab, valuable 

advice and friendship.  

 I would also like to thank Dr. Chance Riggins and Sindhu Krishnankutty for helping me 

with phylogenetics. Thanks to both of you. Many thanks to my friend Madhura Siddappaji who 

always made me believe that anything is possible. I also want to thank all the undergraduate 

students who helped me in the greenhouse with my Chenopodium experiments.   

 I want to thank all my teachers at the University of Illinois and Punjab Agricultural 

University who trained me well to succeed in professional life. I want to thank my Masters 

advisor, Dr D.S. Kler for showing me that hard work and perseverance never goes unnoticed.  



 
 

vi 

 

 A special thanks to my father Mr. Rattan Singh, mother Mrs. Savinderjit Kaur, and my 

brother Lakhwinder Singh for their prayers, blessings and sacrifices to shape my bright future. I 

also want to thank my father-in-law, Mr. Ram Singh who always valued education and 

unconditionally supported me in every possible way.  

 Finally, I owe everything to my wife, Gagan. It has been a long journey and I am so glad 

that you were there to walk with me.  Without your love, unconditional support, encouragement 

and delicious food, this path would have been very tough.   

  



 
 

vii 

 

TABLE OF CONTENTS 

List of Tables ................................................................................................................ ix 

List of Figures .................................................................................................................x 

CHAPTER 1: INTRODUCTION .................................................................................1 

1.1  Introduction to the Genus Chenopodium ..................................................................2 

1.2  Biology and Ecology of Chenopodium Species........................................................3 

1.3  Morphology-Based Studies in Chenopodium Species ..............................................5 

1.4  Molecular markers for Phylogenetic Studies ............................................................7 

1.5  Pitfalls of Molecular Data .......................................................................................13 

1.6  Molecular Analysis in Chenopodium......................................................................18 

1.7  Herbicide Resistance in Common Lambsquarters… ..............................................19 

1.8  Glyphosate Tolerance in Common Lambsquarters .................................................21 

1.9  Research Objectives ................................................................................................23 

1.10 Literature Cited ......................................................................................................24 

 

 

CHAPTER 2: RESPONSES OF CHENOPODIUM SPECIES AND COMMON       

LAMBSQUARTERS POPULATIONS FROM NORTH CENTRAL STATES   

TO GLYPHOSATE .....................................................................................................41 

2.1  Abstract ...................................................................................................................41 

2.2  Introduction .............................................................................................................42 

2.3  Materials and Methods ............................................................................................45 

2.4  Results and Discussions ..........................................................................................51 

2.5  Conclusions .............................................................................................................60 

2.6  Sources of Materials ...............................................................................................61 

2.7  Literature Cited .......................................................................................................61 

 

 

 

 



 
 

viii 

 

CHAPTER 3: MULTI-FACETED APPROACH TO UNDERSTAND THE 

WEEDY CHENOPODIUM COMPLEX ...................................................................67 

3.1  Abstract ...................................................................................................................67 

3.2  Introduction .............................................................................................................68 

3.3  Materials and Methods ............................................................................................70 

3.4  Results and Discussion ...........................................................................................85 

3.5  Conclusions ...........................................................................................................118 

3.6  Sources of Materials .............................................................................................119 

3.7  Literature Cited .....................................................................................................120 

 

 

CHAPTER 4: SUMMARY .......................................................................................129 

4.1 Conclusions and Future Directions ........................................................................129 

4.2 Literature Cited ......................................................................................................132 

  



 
 

ix 

 

LIST OF TABLES 

 

Table 2.1. List of the Chenopodium species used in glyphosate screening .......................46 

Table 2.2. List of the Chenopodium populations from North Central states. ....................47 

Table 2.3. Mean values for dry weight (percent of untreated control) of Chenopodium 

spp. and populations from North Central states averaged over 800, 1600, 3200 g a.e.     

ha
-1

 of glyphosate. ..............................................................................................................55 

Table 2.4. Mean values for dry weight (percent of untreated control) of populations  

from North Central states averaged over 800, 1600 and 3200 g a.e ha
-1

 of glyphosate ....56 

Table 3.1. List of accessions used for molecular analysis. ................................................72 

Table 3.2. Binary codes for selected morphological characters ........................................75 

Table 3.3. List of primers used for amplifying nuclear and chloroplast loci .....................80 

Table 3.4. Mean values of quantitative characters studied in differentiating   

Chenopodium spp...............................................................................................................87 

Table 3.5. DNA content values (pg/2C) of some Chenopodium samples using flow 

cytometry. ..........................................................................................................................94 

Table 3.6. Sequence characteristics of the nuclear rDNA internal transcribed spacer 

region for 33 accessions of different Chenopodium species. .............................................96 

  



 
 

x 

 

 

LIST OF FIGURES 

 

Figure 2.1. Mean dry weight of Chenopodium averaged across 800, 1600 and 3200 g   

a.e. ha
-1

 of glyphosate... .....................................................................................................51 

Figure 2.2. Glyphosate responses of different Chenopodium spp. from North Central 

Regional Plant Introduction Station ...................................................................................52 

Figure 2.3. Response of Chenopodium spp. averaged across 800 and 1600 g a.e. ha
-1

      

of glyphosate ......................................................................................................................54 

Figure 2.4. Dry weight (percent of untreated control) based on the average of mean 

values for two doses (800 and 1600 g a.e. ha
-1

) of glyphosate ..........................................59 

Figure 3.1. Seed pericarp features of C. album and C. berlandieri using scanning  

electron microscope. ..........................................................................................................89 

Figure 3.2. Seed pericarp features of C. ficifolium, C. srtictum, C. berlandieri and          

C. bushianum .....................................................................................................................90 

Figure 3.3. Unrooted maximum parsimony tree based on the differences in  

morphological characters of 17 accessions of Chenopodium ............................................92 

Figure 3.4. Strict consensus tree of gaps from ITS region coded as binary characters  

using maximum parsimony analysis ..................................................................................98 

Figure 3.5. Maximum parsimony strict consensus tree of ITS region with gaps treated      

as missing data .................................................................................................................100 

Figure 3.6. Strict consensus tree derived from maximum parsimony analysis of 35 

nuclear ITS sequences......................................................................................................101 

Figure 3.7. Fifty percent Majority rule tree of 35 sequences of ITS region using   

Bayesian analysis .............................................................................................................103 

Figure 3.8. Phylogram derived with maximum parsimony analysis of entire ITS                 

region ...............................................................................................................................105 

Figure 3.9. Strict consensus tree derived from maximum parsimony analysis of matK 

gene for 22 Chenopodium species ...................................................................................107 

Figure 3.10. Strict consensus tree derived from maximum parsimony analysis of          

trnD- trnT region for 18 Chenopodium species ...............................................................109 



 
 

xi 

 

Figure 3.11. Strict consensus tree derived from maximum parsimony analysis of 

combined chloroplast DNA sequences from 18 sequences. ............................................111 

Figure 3.12. Strict consensus tree derived from maximum parsimony analysis of 35 

sequences using combined DNA sequence data of ITS, matK, trnD-trnT ......................112 

Figure 3.13. Neighbor joining tree of Chenopodium populations sampled across the  

North Central states and selected species based on ITS sequences .................................117 

 

 

 



 
 

1 

 

CHAPTER 1 

INTRODUCTION 

Weeds pose a serious threat to agricultural and natural ecosystems, and managing them is 

one of the biggest challenges for farmers. Weeds represent the most important pest complex 

(Bridges, 1994) and are one of the main limiting factors in crop production (Avery, 1997). 

Today, due to weeds, the annual estimated loss in the US is around $100 billion (Pimentel et al. 

2005). There are several ways to manage weeds but one critical step for efficient weed 

management is prevention, which includes proper weed identification. Correct identification is 

important for weed control as different weed species respond differently to some weed 

management strategies. In fact, weeds that look similar can actually be unrelated and can exhibit 

different responses to the herbicides (Warwick and Black, 1981; Santelmann and Meade, 1961). 

By identifying weed species correctly, herbicide rates can be adjusted, thereby limiting potential 

adverse environmental impacts of herbicides. Another benefit of proper weed identification is 

that we can select for better herbicides to control a particular weed. Identification is also critical 

for determining which newly introduced weeds will pose possible threat to the crop 

(Anonymous, 2009). Several researchers systematically investigated common weed species in 

Amaranthus (Xu and Sun, 2001; Wetzel et al. 1999) Setaria (Dekker, 2003), and Echinochloa 

(Danquah et al. 2002) complexes, and this approach was successful in controlling weeds in 

economically important crops (Quakenbush and Anderson, 1985; Wang and Dekker, 1995). 

The Chenopodium genus is not a well-understood complex and many species are highly 

polymorphic in habit, height, branching and leaf size (Basset and Crompton, 1982). Cole (1961) 

wrote that the confusion in Chenopodium identification mainly results from the abundance of 

morphologically similar species, existence of polymorphisms within the limits of many 
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individual species and of parallel variation between different species, occurrence of marked 

phenotypic plasticity complicating species identification, and presence of putative hybrids 

further complicating the variation pattern.  Rahiminejad and Gornall (2004) also reported 

considerable genetic and morphological variation within the Chenopodium species thereby 

supporting the fact that this is a complex group.  Thus, not only does this group lack good 

morphological characteristics to distinguish species, it also lacks informative sites that can be 

used to differentiate species at the biotype level, and the existence of different intra-specific 

chromosome numbers further complicates the classification (Maude, 1940).  

In agricultural fields, most of the weedy Chenopodium species are referred to as common 

lambsquarters (Chenopodium album L.). Recently, it was reported that common lambsquarters, 

one of the worst weeds in the world (Holm et al. 1977), was difficult to control with the available 

herbicides in corn and soybean fields in the North Central states (Fischer et al. 2004; Conley et 

al. 2003). To more effectively manage the Chenopodium species in agronomic fields, it is 

important to understand the taxonomy of the complex and to develop markers that can help in 

proper species identification. 

 

1.1 Introduction to the Genus Chenopodium 

 The genus Chenopodium consists of about 250 species (Giusti, 1970; Kadereit et al. 

2005) and belongs to the Amaranthaceae, syn. Chenopodiaceae family (APG I 1998). With a few 

exceptions, the majority of them are annual weeds (Cole, 1961). The genus includes herbaceous 

and arborescent perennials, and is distributed throughout Asia, America and Europe (Ruas et al. 

1999). ). The Chenopodium album classification has often functioned as a convenient taxonomic 

receptacle, loosely circumscribed to include material not readily assigned to other species of this 
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difficult genus (Wilson, 1980). The taxonomy of the genus Chenopodium has been a major point 

of controversy. Taxonomic problems mainly arise due to phenotypic plasticity (Kurashige and 

Agarwal, 2005; Zhou et al. 2005), parallel evolution (Duke and Crawford, 1979) and 

hybridization (Cole, 1961; Rahiminejad and Gornall, 2004). Bittrich (1993) included 

Chenopodiaceae as one of the six families that lack clear delimitation or valid synapomorphies. 

While studying the Chenopodium genus, Wahl (1954) wrote  that „„no group of comparable size 

and wide distribution known to the writer has suffered the lack of understanding of the taxa 

involved as has the genus Chenopodium, especially those members of its Section Chenopodium 

that are closely related to C. album and C. berlandieri.‟‟ In Illinois, there are about 20 species 

(USDA, NRCS. 2008) and some of them (C. album, C. berlandieri, C. strictum, C. murale and 

C. hybridum) are recognized as agricultural weeds. Some of these weeds are resistant to one or 

more classes of herbicides (Heap, 2010).  

 

1.2 Biology and Ecology of Chenopodium Species  

 According to the APG II system of 2003, the plants formerly treated as the family 

Chenopodiaceae are now categorized under the family Amaranthaceae, making Amaranthaceae a 

large family with 160 genera and 2,400 species. The Chenopodiaceae and Amaranthaceae 

families were two closely related but separate families in the order Caryophyllales until 1998 

when, based on the similarities of the morphological and molecular data, APG I (1998) 

combined the two species. Traditionally, the two families were considered closely related based 

on the core floral formula consisting of 5 sepals, 0 petals, 5 stamens, and 2-3 carpels 

(Hershokovitz, 1989). Judd and Fergusen (1999) also gave similar facts with both families 

having apomorphic flowers with a single whorl of stamens present opposite to the tepals and 



 
 

4 

 

multiporate pollen grains. Rodman (1990) also supported the inclusion of two families together 

based on the autapomorphy of sieve-element plastids with peripheral ring-shaped bundles of 

proteins but lacking central position inclusion, unique to these two families. Other characteristics 

supporting the close relationship of the two families include anamolous secondary growth, 

presence of isoflavones (Sanderson et al. 1988) and pantoporate pollen (Hershkovitz, 1989). So 

based on their similarities, these two families were always taxonomically close to each other in 

virtually all systems of classifications.  

Molecular data, in addition to the existing morphological data, supported the combination 

of the two families into Amaranthaceae (APG II 2003). Molecular-level support has been 

provided by several researchers working on different gene regions. For instance, Rettig et al. 

(1992) reported the phylogenetic relationship between the two species, and based on the 

nucleotide subunit data of ribulose1, 5-bisphosphate carboxylase /oxygenase (rbcL), supported 

the placement of Amaranthaceae and Chenopodiaceae as a monophyletic lineage. Similar results 

were also reported by Downie et al. (1997) by studying the phylogeny based on the sequence of 

partial chloroplast DNA ORF 2280 homolog. They concluded that phylogeny lacked the 

separation between two families. 

  Some of the most important genera included in Chenopodiaceae are Chenopodium, 

Atriplex, Beta and Salsola. A detailed description of the morphology of Chenopodium is given 

by Clemants and Mosyakin (2004). To provide a brief description, family members are mainly 

characterized as herbs, either annual or perennial, and farinaceous pubescent or glabrous. The 

stems are mostly striped with their orientation varying from erect to prostate, and generally 

branched. The leaves of Chenopodium are alternate, petiolate or sessile, not fleshy; the blade can 

be linear, oblong, lanceolate, ovate, triangular, trullate, or rhombic, with the leaf base truncate, 
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cordate, hastate, or cuneate.  The inflorescence is either spicate and terminal or axillary and 

glomerulate. The genus is generally characterized by small perfect or rarely unisexual flowers 

with the perianth five-parted (rarely three- or four-parted), and the segments rounded or keeled. 

The flowers have five or fewer stamens and the style usually has two (rarely five) stigmas 

(Standley, 1916; Clemants and Mosyakin, 2004; Judd and Fergusen, 1999). Fruits are utricles or 

achenes, often associated with persistant tepals; the pericarp appears smooth to papillate. Seeds 

of Chenopodium generally have flat margins but can also be rounded, flattened, or grooved with 

their surfaces appearing shiny to dull and smooth to alveolated (Bassett and Crompton, 1982)   

 

1.3 Morphology-Based Studies in Chenopodium Species 

Species of Chenopodium are not easily defined because of lack of distinctive 

macroscopic morphological characters in the genus (Bassett and Crompton, 1982). Many species 

need more than vegetative material alone for identification. The first post-Linnean study on 

Chenopodium was done by Moquin-Tandon (1840) in his monograph of the family. Murr (1904 

1927) contributed extensively to the Chenopodium complex. Brenan (1964) wrote about the 

taxonomy of Chenopodium for Flora Europaea. In the New World, the majority of the 

contribution to Chenopodium was made by Aellen (1929). Apart from Aellen, other researchers 

who contributed to Chenopodium studies include Watson (1874), Standley (1916), Aellen and 

Just (1943), and Wahl (1954), although they mainly contributed to revision of existing treatments 

of introduced and native American taxa (Bassett and Crompton, 1982).  

The taxonomic classification of Chenopodium species has always proven to be very 

difficult and most of the researchers have used one or more morphological characteristics in 

combination to clear the confusion within the taxa. For instance, Aellen and Just (1943) and 
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Wahl (1954) made subsectional distinctions based on inflorescences and pericarps of the 

Chenopodium species. Similarly, Cole (1961) subdivided Chenopodium into 4 subsections based 

on seed coat markings. Iljin (1936) also differentiated Chenopodium taxa based on pericarp 

structures and keeling of the calyx lobes. Apart from seed coat and inflorescence, some 

researchers have also used leaf color as an additional characteristic (Moquin-Tandon, 1840).  

Bassett and Crompton (1982) worked on clarification of taxonomic circumscriptions and 

the nomenclature and distribution of taxa in Chenopodium across Canada, mainly based on   

characteristics like seed testa and pericarp, along with the information related to the chromosome 

count in the species. Crawford and Reynolds (1974) took a different approach by using phenetic 

characters to understand the relationship among narrow-leaved Chenopodium species. They were 

successful in elucidating the relationship and reported certain affinities that were contrary to the 

literature present at that time. Such studies have also been successfully conducted in other plant 

groups also to gain insight into the variation pattern within the species (Crovello 1968; Gilmartin 

1969; Ornduff and Crevello 1968; Heiser et al. 1965). Another parameter that has been studied to 

gain insight into the Chenopodium taxa is the pollen grain structure along with cytological and 

seed characteristics (Dvorak, 1983). 

Chenopodium album, one of the worst weeds and widespread synanthropic plants, is also 

among the most polymorphic plant species (Clemants and Mosyakin, 2004). It is a loosely 

arranged aggregate with races still being insufficiently understood. Some authors have 

recognized numerous segregate intergrading species, while others have developed elaborate 

infraspecific hierarchies with numerous subspecies, varieties, forms, and even numerous 

subforms, or have combined both approaches. Neither approach has brought satisfactory and 

uncontroversial results (Clemants and Mosyakin, 2004). This lack of solid knowledge about the 
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Chenopodium species has led to the need for a set of molecular markers in order to gain 

additional information about the species. 

 

1.4 Molecular Markers for Phylogenetic Studies 

In the last three decades, molecular sequence data have revolutionized the field of 

systematics by providing additional approaches and giving more confidence to published 

morphology-based systematics or taxonomy. The potential of DNA data to reveal phylogenetic 

relationships was first discussed in 1965 by Zuckerkandl and Pauling. Earlier systematics studies 

focused on DNA-DNA hybridization (Bendich and Bolton, 1967). The potential of restriction 

fragment length polymorphisms (RFLP), as a marker was shown in the Compositae family 

(Jansen and Palmer, 1988). It was only after the advent of the PCR technique (Saiki et al. 1988) 

that DNA analysis came to be used very frequently.  

Most molecular taxonomy data are generated by PCR amplification and sequencing of 

nuclear DNA markers (internal transcribed spacers, external transcribed spacer, transposable 

elements, simple sequence repeats, promoter sequences and single copy nuclear intron 

sequences), chloroplast DNA markers and mitochondrial regions. Soltis and Soltis (1998) have 

discussed the importance of different regions for studying angiosperms at different taxonomic 

levels. 

Since the advent of the research done by Soltis and Soltis (1998), many new markers 

have been discovered, but the information provided still holds true for species and population 

level studies. The nuclear and chloroplast regions are more promising than mitochondrial region 

due to lack of mitochondrial markers that can be used at lower level taxonomy (Palmer, 1992).  
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The use of molecular data has proved to be a powerful approach for achieving well-

delimited taxa in groups like the Ericeae (Kron et al. 2002) and Asteraceae (Kim and Jansen, 

1995). The independent information from DNA-based topologies can help in resolving 

relationships among morphologically intractable groups (Fior et al. 2006) and, along with 

morphological studies, can help in understanding the taxonomic complexities (Schönenberger 

and Conti, 2003). One main advantage of DNA markers is that, unlike morphological and 

biochemical markers, the DNA markers are practically unlimited in number and are not affected 

by plant developmental stage or growth environment (Winter and Kahl, 1995).  

             Molecular markers are developed from the organellar genomes (mitochondria, 

chloroplast) or regions of the nuclear genome and the utilities of these marker types is discussed 

in further detail below. 

 Mitochondrial DNA (mtDNA) 

  Mitochondrial genomic regions are the less used organellar markers in phylogenetic 

analyses in plants. The reasons for their limited use are discussed in detail by Palmer (1992). 

Some of the limitations in using the mitochondrial DNA (mtDNA) are that it is very large and 

highly variable in size; sometimes chloroplast DNA sequences are present in mitochondrial 

genomes; large duplications are frequent; recombination can occur among repeats making the 

genome complex; and the nucleotide substitution rate is 3-4 times less than chloroplast DNA 

(cpDNA) and even less when compared to nuclear DNA (Wolfe et al. 1987, 1989; Palmer and 

Herbon, 1988; Laroche et al. 1995)  

            The utility of mtDNA is more in higher taxonomic studies but less in interspecies or low 

level taxonomic studies (Soltis and Soltis, 1998). An intron, nad1, which is present in NADH 

dehydrogenase has been used to understand the relationship of Polemoniaceae with other 
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families (Porter and Johnson, 1998). Although there are few studies at family and population 

levels (Davis et al. 1998; Luo and Boutry, 1995), mitochondrial regions from plants have not 

been investigated as the substitution rates are low. They have not been explored in detail as has 

been done in animals.  

 Chloroplast DNA (cpDNA) 

   The chloroplast genome is smaller than the nuclear genome and is found in large 

numbers, making it easy to isolate. The chloroplast genome is divided into protein coding genes, 

introns and intergenic spacers. Most phylogenetic studies investigating plant evolution utilized 

chloroplast markers. The cpDNA is successful in such studies because it is structurally stable, 

non-recombinant, and highly conserved in genetic content among closely related species 

(Downie and Palmer, 1991). Chloroplast protein coding gene substitution rates are generally 

slower than those of the nuclear genome, making them good markers for high level taxonomic 

studies (Chase et al. 1993; Soltis and Soltis 1998), but noncoding introns and spacers are used 

frequently at low taxonomic levels, though sometime noncoding cpDNA also fails to provide 

significant phylogenetic information (Shaw et al. 2005, 2007; Small et al. 1998). 

 Among the coding genes, rbcL (Chase et al. 1993) was used in the earlier phylogenetic 

studies, but soon it was followed by other coding genes like ndhF (Olmstead and Palmer 1994; 

Clark et al. 1995; Kim and Jansen 1995), atpB (Hoot
 
et al. 1995; Wolf 1997) and the more 

commonly used matK alone (Johnson
 
and Soltis 1994; Shaw et al. 2005), or matK along with 

intron trnK-matK-trnK region (Johnson and Soltis 1994). Though the coding regions have been 

used extensively in studies at the family or higher taxonomic levels, the noncoding regions are 

used more at the lower taxonomic levels, making them more appropriate for species (Gielly and 

Taberlet, 1994). 
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 A limitation of cpDNA is its slow rate of evolution (Wolfe et al. 1987), which hinders it 

in providing enough phylogenetic informative characters at lower taxonomic levels (Sang, 2002). 

Another problem is uniparental inheritance, which means it reveals information from only a 

single parent. So, if the samples consist of hybrids or polyploids, it will give false phylogeny 

since it cannot reveal hybrid history (Sang 2002; Small et al. 2004). The assumption of 

uniparental inheritance is also not without an exception. There are reports of biparental and 

paternal inheritance in angiosperms (Birky 1995; Corriveau and Coleman, 1988). Another 

assumption is that chloroplast genomes are non-recombinant; however, evidence from Pinus 

contorta suggests that recombination may occur (Marshall et al. 2001).  

Nuclear Sequences 

  Most of the studies using nuclear regions have relied on the nuclear ribosomal regions. 

At higher taxonomic levels, the slowly evolving rRNA genes are used (Soltis and Soltis, 1998; 

Kuzoff et al. 1998), while at lower taxonomic levels internal transcribed spacers (ITS) and 

external transcribed spacers (ETS) are more commonly used (Alvarez and Wendel 2003). In 

general, the eukaryotic ribosomal RNA genes are part of repeat units that are arranged in tandem 

and located at chromosomal sites known as nucleolar organizing regions. Each unit consists of a 

transcribed region having genes for 18S, 5.8S, 26S rRNA, internal transcribed spacer 1 and 2, 

external transcribed spacers (ETS1 and ETS2) and a non-transcribed spacer (NTS) region. 

The ITS has been widely used mainly as it is biparentally inherited, can be amplified 

using universal primers, is present in thousands of rDNA repeats making it easy to amplify, has 

low genomic variability due to concerted evolution but high intra-genomic variability due to 

insertion and deletion mutations (indels) and it appears to largely evolve neutrally (Alvarez and 

Wendel, 2003). These qualities make ITS a popular region for phylogenetic studies, however 
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there are several concerns related to its use (for review Alvarez and Wendel, 2003; Baldwin et al. 

1995; Dubcovsky and Dvorák, 1995; Feliner and Rossello, 2007). Briefly discussing the 

limitations, the first issue is with multiple rDNA repeats. The basic requirement for historical 

inference based on nucleic acid sequence is that the genes compared are orthologous and not 

paralogous. Orthologous sequences are preferred as their history reveals divergence events 

among species. However, if there is a gene duplication event, it leads to the formation of 

paralogous sequences between lineages. This paralogy in phylogenetic estimation will lead to 

incongruence in phylogeny (Alvarez and Wendel, 2003).  

  Another problem pertains to concerted evolution, a phenomenon that tends to 

homogenize the sequences in nrDNA arrays, however this process is not always completed. 

When there is a hybridization or introgression, the speed and direction of homogenization cannot 

be predicted. So analyzed at the species level, concerted evolution is probably responsible for 

complex patterns following the merging of ITS repeats due to hybridization (Feliner and Rosello, 

2007)  

 Due to the concerted evolution, the duplicated ribosomal loci may degenerate into 

pseudogenes and this can lead to wrong inference. Moreover, if there are compensatory base 

mutations in positions located on stem structures, it violates the assumptions of neutrality and 

independence of characters (Liu and Schardl, 1994). Another common problem is with the 

alignment of the sequences. It has been observed that aligning ITS leads to hypothesizing indels.  

This can make the alignment of distantly species difficult and leads to incorrect homology 

assessment. If misalignment is not corrected, then along with compensatory base change, 

paralogy and lack of (complete) concerted evolution can increase homoplasy (Alvarez and 
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Wendel, 2003).  To combat these limitations, single or low copy nuclear genes are often used in 

the place of the aforementioned markers (Sang 2002; Small et al. 2004).  

Low Copy Nuclear Genes (LCNG) 

  An alternate approach to ITS and cpDNA markers is to use single or low copy nuclear 

genes for phylogenetic analyses Slow rates of sequence divergence in cpDNA or too much 

divergence in ITS create a problem for using these markers. The uniparental inheritance of 

cpDNA also cannot provide any information about hybrids, and in nrDNA the process of 

homogenization by concerted evolution creates a similar problem in assessing hybrids. Some of 

the main advantages of using single or low copy nuclear genes are biparental inheritance, and co-

occurrence of introns and exons within the same gene, yielding characters that evolve at different 

rates thus can provide informative signals at different levels and relatively large number of 

markers makes them potentially good alternates to ITS and cpDNA markers (Alvarez et al. 

2008). 

 At higher taxonomic levels LCNGs (such as phytochrome) have proven to be useful 

markers for understanding diversification in angiosperms (Matthews et al. 1995). There is a need 

to explore more LCNGs as they can potentially allow selection of genes with extremely 

conserved rates of evolution and consequently a robust reconstruction of deep branch 

relationships of plants (Sang, 2002). The studies at the intergeneric level also have shown 

promising results for LCNGs like the Adhc gene, which have proven to be better than cpDNA 

(ndhF) for constructing phylogeny. Similarly, the 4CL gene sequence is congruent with the 

chloroplast (matK) and mitochondrial (nad5) genes. Even at the interspecies level, AdhC proved 

to be more useful when studying the relationship of closely related tetraploid species as 
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compared to cpDNA which produced a weakly and poorly resolved phylogeny (Small et al. 

1998).  

However, there are some concerns too with using LCNG, including problems due to 

paralogy, lineage sorting, hybridization, requirement of large amount of high quality DNA, non 

universality of the primers and the need to clone to amplify all the copies of the alleles (Sang, 

2002). 

1.5 Pitfalls of Molecular Data 

The use of DNA as a taxonomic tool has been advocated by several researchers (Doyle, 

1993; Hajibabaei et al. 2007; Tautz et al. 2003). However, there is a strong reaction against 

relying on DNA-based taxonomy (Miller et al. 1997). Some of the reasons for being vigilant 

when using DNA sequences as taxonomic tools are issues related to long branch attraction, 

pseudogenes, homology assessment, polyploidy and hybridization, alignment in sequences with 

indels, model selection to estimate nucleotide substitution rate and computation time for 

phylogenetic analysis. These are discussed separately.  

 Long Branch Attraction (LBA) 

  This is a phenomenon when rapidly evolving lineages, when included with slowly 

evolving lineages, are inferred to be closely related regardless of their actual evolutionary 

relationship or in other words due to false synapomorphies. The maximum parsimony (MP) 

method is more sensitive to LBA.  When LBA is present, tree reconstruction methods are 

inconsistent, and they converge towards an incorrect solution as more data are considered. This 

artifact is serious as there were 112 hits on Web of Science that have discussed this problem. The 

LBA problem has been reviewed in detail by Bergsten (2005). He describes LBA as a 

phenomenon in which an amino acid in two species at a certain position looks identical but had 
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been independently acquired and will appear as synapomorphies. The simulation studies and 

Felsentein four taxon case-study also showed that inference is difficult in the Felsenstein zone 

where the two long branched non sister taxa grouped together rather than with their true shorter 

branched sisters (Huelsenbeck, 1995).  

 

Pseudogenes 

 This is a problem when we are using nuclear genes or rDNA sequence data for 

phylogenetic analysis. The paralogues of ribosomal DNA can become pseudogenes when a 

single rDNA copy is dispersed to other genomic regions. The first step is to discriminate between 

paralogous rDNA, as paralogues may cause species to appear para- or polyphyletic if a gene tree 

is interpreted as a species tree (Buckler et al. 1997). Pseudogenes are more dependent on the 

molecular data used and less on analysis method. Good sequence alignment and rDNA 

secondary structure can help to identify pseudogenes in the given dataset.  

Assessing Homology 

 Hypothesis of homology is the basis of phylogenetic analysis (Phillips, 2006). The term 

homology was first introduced by Owen (1843) to express similarities in basic structure found 

between organs of animals that he considered to be more fundamentally similar than others. 

Homologies can be difficult to identify; this may be attributed in part to the existence of a finite 

number of character states and rates of change sufficient to yield independent expressions of the 

same state. We assign putative homology to molecular data using sequence alignments. The best 

alignment in context with phylogeny is the one that generates the most parsimonious tree when 

analyzed in conjunction with all relevant data. We should therefore be very careful when we are 

aligning the sequences and should check visually for shifts in sequences and manually edit them 
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if required. Another possibility is to give more weight to characters that change less frequently 

which can further help to reduce the effects of homoplastic similarity among the sequences. 

 

Polyploidy and Hybridization 

 One of the most significant finding of molecular data usage is that of polyploidy (genome 

duplication) and hybridization. Several studies have revealed that multiple rounds of polyploidy 

have occurred during angiosperm evolution. Polyploidy has long been recognized to be 

associated with novel morphologies and adaptations, but how genome duplication ultimately 

translates into novel evolutionary opportunity is not very clear.  Interspecific hybridization 

followed by polyploidy can restore fertility to sterile hybrid lineages. There are several studies 

that indicate that there is doubling of chromosome numbers due to autopolyploidy or by 

allopolyploidy via a hybridization event. To uncover past hybridization or introgression events, 

comparison between phylogenies derived from nuclear and chloroplast genomes are important 

because discordance in relationships between the data sets may indicate that hybridization have 

occurred (Rieseberg, 1998; Doyle, 1992).  

 

Multiple Sequence Alignment of Samples with Gaps 

 When we do multiple sequence alignment of DNA sequences, it is very common to 

hypothesize gaps or indels in order to align orthologous sequences. If we use program such as 

Gapcoder, we can convert the gaps into binary characters and then easily analyze them using 

phylogenetic software like PAUP (Swafford, 1999). We should look at the sequences very 

carefully and edit the sequences in order to use gaps as phylogenetic informative characters.  
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Model Selection 

 In the Maximum likelihood and in Bayesian analysis, model selection is really important. 

In molecular phylogenetics, models are used to estimate the evolutionary change at a given 

nucleotide site over the period. The primary aim of molecular phylogenetic inference is to 

approximate the progression of lineage divergences that produced a group of observed 

sequences.  Most of our conclusions are based on phylogeny estimations, and without any prior 

knowledge of the actual evolutionary relationships between organisms, confidence in the 

performance of a model is necessarily a function of confidence in the suitability of the model and 

the data used (Kelchner and Thomas, 2007). Models are based on assumptions and some of them 

are: (i) mutations are independent and identically distributed; (ii) tree-like evolution: lineages 

arise in a divergent manner without reticulation; (iii) stationarity: mutational processes are 

consistent through time; (iv) reversibility: mutations can revert to a previous state; and (v) 

Markov process: mutation events are not influenced by a previous mutation at that site (Kelchner 

and Thomas, 2007). Such assumptions are often violated in reality; for example, prokaryote 

groups frequently share genes among lineages via lateral gene transfer and do not evolve in a 

tree-like fashion. Kelchner and Thomas (2007) have discussed key points that we should keep in 

mind when we select models for analysis. If the model is a poor approximation of reality due to 

absence of key parameters, the consequence can be systematic error that strongly influences the 

analysis, resulting in inaccurate but sometimes well-supported phylogeny estimation. Under-

fitting a model can lead to problems like long-branch attraction (discussed earlier) when 

sampling is inadequate and there is a faster substitution rate in one or more lineages. Model 

selection is important for phylogenetic analysis and there are tools that can help to select a better 

model (Sullivan and Joyce, 2005). In general, the model preferred is a parameter rich model. A 
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thorough review of importance and how to select a good model is also given by Sullivan and 

Joyce (2005). 

 

Computation Time 

 Another limitation in phylogenetic programs is of computation time. Distance based 

methods like UPGMA (Mitchner and Sokral, 1957) and minimum evolution (Kidd and 

Sgaramella, 1971) are fast but the information is lost in compressing sequences into distances. 

Maximum parsimony (Edwards and Cavali-Sforza, 1963) is fastest in character based tree but it 

can perform poorly depending upon the amount of homoplasy. Maximum likelihood (Edwards 

and Cavalli-Sforza, 1964; Felsentein, 1981) is very good but on the other hand a very exhaustive 

method and can be only done with heuristic search if there are more samples. Bayesian analysis 

(Largert and Simon, 1999; Huelsenbeck and and Ronquist, 2001) can take days if the number of 

samples is more, so it comes to the point where we have to decide what kind of information we 

need from our data and accordingly we have to compromise with either time or accuracy.  

 Now, as we know that there are pros and cons of using DNA sequences in phylogenetic 

analysis, the best approach is to integrate morphological characteristics and molecular data. By 

incorporating unambiguous morphological characters and analyzing those along with molecular 

data, the bias of homoplasy within any individual data partition will decrease (Farris, 1983; 

Miller et al. 1997; Wahlberg et al. 2005). The utility of combined analysis has been well-

defended by phylogenetic inferences from Doyle and Endress (2000) and Conard (2008). This 

type of combined analysis has proven to be helpful in distinguishing amongst the plant species. 
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1.6 Molecular Analysis in Chenopodium 

 Molecular studies have been done in Chenopodium using random amplified polymorphic 

DNA (RAPD) (Anderson 1999; Gangopadhay et al. 2002), directed amplification of minisatellite 

DNA (DAMDA) (Rana et al. 2010), microsatellite markers (Mason et al. 2005), ribosomal DNA 

(Maughan et al. 2006) and plastid genes (Downie et al. 1997). Ruas et al. (1999) used RAPD 

markers to distinguish C. album from C. berlandieri and found 90 percent similarity between the 

two, which perhaps gives us a reason why these species are often misidentified. In Bolivia, Ruas 

et al. (1999) found that there was a 75 percent similarity between two accessions of C. 

ambrosoides, but these accessions could not be distinguished using morphological characters. In 

another study involving highland and lowland C. quinoa, Maughan et al. (2006) used the IGS 

region and revealed the presence of synapomorphic polymorphisms that separated the lowland 

from highland C. quinoa.  

A majority of the research related to genetic diversity and phylogenetic studies in 

Chenopodium mainly emphasized domesticated species like C. quinoa and C. berlandieri. There 

are very few studies (Rana et al. 2010) that include the important weed species like C. album, C. 

berlandieri, C. ficifolium, C. glaucum, C. murale and C. strictum, and there is a clear lack of 

understanding of these species using both morphological and molecular data. Given the recent 

accounts of herbicide-tolerant common lambsquarters that have been reported, understanding 

this complex now is more important than ever.  The following two sections will discuss herbicide 

tolerance in common lambsquarters.  
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1.7 Herbicide Resistance in Common Lambsquarters 

Herbicide resistance in weed populations is an evolutionary process and refers to the 

evolution of a mechanism to withstand a normally effective herbicide dose as a result of 

selection pressure (Harper, 1956). In plants, resistance can occur naturally or can be induced by 

techniques such as genetic engineering or selection of variants produced by tissue culture or 

mutagenesis (Anonymous 1998). Resistance is different than tolerance in which the plants have 

the inherent ability to survive and reproduce after herbicide treatment and there is no role of 

selection or genetic manipulation of plants to be tolerant (Anonymous, 1998). 

Resistance to herbicides is an ever-increasing problem and has become a threat to 

conventional agricultural practices in agriculture (Jasieniuk et al. 1996). Several factors like gene 

mutation, initial frequency of resistant alleles, inheritance, weed fitness in the presence and 

absence of herbicide, type of mating, and gene flow influence the evolution of herbicide 

resistance.  

 Since the observation in 1970 of triazine resistance in Senecio vulgaris L. (Ryan, 1970), 

herbicide resistance has increased dramatically. According to the latest report of International 

Survey of Herbicide Resistant Weeds, globally 195 species, of which 115 are dicots and 80 are 

monocots, have developed resistance to one or more classes of herbicides (Heap, 2010). In the 

US, there are 354 biotypes that are resistant to one or more classes of herbicides and Illinois 

ranks third with 18 resistant biotypes to photosystem system II (PSII), acetolactate synthase 

(ALS), protoporphrinogen oxidase (PPO) and glycine herbicides. It is estimated that 4,062,200 

acres of Illinois (Anonymous, 2010) land is affected with these resistant biotypes, with 

Amaranthus tuberculatus being the predominant species. This weed has evolved resistance to 

four classes of herbicides (Heap, 2010).  
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The first report of a weed resistant to atrazine and simazine appeared in 1970 when 

common groundsel (Senecio vulgaris) was reported resistant to simazine and atrazine (Ryan 

1970). It was soon recognized that herbicide resistance in the weed species was passed down 

maternally and attributed to a change in the properties of photosystem II. However, the 

molecular basis of resistance, an amino acid change in the sequence of one of the reaction center 

proteins of photosystem II, was first reported in Amaranthus hybridus L. in which resistant plants 

had a serine to glycine substitution at position 264 on the D1 protein (Hirschberg and McIntosh, 

1983). Another mutation at the amino acid position 219 has been identified which is also 

responsible for resistance to PS-II inhibitor (Dumont and Tardiff, 2002; Mengistu et al. 2000).  

Chenopodium is on the list of top ten resistant weeds and is reflected by the fact that there 

are 42 resistant biotypes of Chenopodium in 17 countries (Heap, 2010). The majority of these 

biotypes are resistant to photosystem II inhibitors, followed by ALS inhibitors, synthetic auxins, 

ureas and amides. In the US, there are 21 biotypes that are resistant to photosystem II (19) and 

ALS inhibitors (2) and tolerant to glyphosate (Westhoven et al. 2008a). In 2009, within Illinois, 

there were 18 biotypes of resistant weeds and Chenopodium album was one of them.   

The earliest case of herbicide resistance in the Chenopodium complex dates back to the 

1970s in the Midwest when they evolved resistance to triazine herbicides (Bandeen and Mclaren, 

1976). In fact, triazine resistance in Chenopodium is quite notable and there are more than 19 

biotypes of Chenopodium that are resistant to triazines (Bandeen and McLaren, 1976).   

 Herbicides that target photosystem II (triazine and phenylurea) inhibit plant growth by 

competing with the native plastoquinone, which is the binding site of the D1 protein in the 

photosystem II, thereby disrupting the linear electron transport from the electron donor, QA, to 

the mobile electron carrier, QB  (Oettmeier, 1999). This results in a shortage of reduced NADP
+
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which is required for CO2 fixation and the formation of free radicals which cause photooxidation 

of important molecules in the chloroplast, the latter being the major herbicidal action of these 

herbicides (Devine and Shukla, 2000). 

A biotype of Chenopodium album in New Zealand has also developed resistance to 

synthetic auxins such as dicamba (James et al. 2005). A recent report from New Zealand 

confirmed that a biotype of Chenopodium was tolerant to 2400 g ha
-1

 dicamba, which is 

equivalent to eight times the recommended field rate (Rahman et al. 2008). This is another major 

setback for weed control as dicamba mixed with other herbicides has proven to be very effective 

in controlling triazine resistant Chenopodium album (Ritter and Menbere, 2001). Chenopodium 

album has occasionally shown poor control with pre-emergence (PRE) herbicide treatments with 

dinitroaniline herbicides such as pendimethalin (Hagwood, 1989), but the results are not very 

consistent and the cases of tolerance to these herbicides are rare. 

  Within glyphosate-based cropping systems, weed scientists have confirmed that weed 

shifts have occurred, with common lambsquarters becoming more problematic (Culpepper, 

2006). Control of common lambsquarters with glyphosate has been variable and there is an 

increase in the number of reports that show poor common lambsquarters control with glyphosate.  

 

1.8 Glyphosate Tolerance in Common Lambsquarters  

 Glyphosate is the most commonly used broad-spectrum herbicide and is effective in 

controlling many weeds. It acts by blocking the shikimate pathway through inhibition of 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPs). Inhibition of EPSPS results in reduced 

biosynthesis of aromatic amino acids tyrosine, phenylalanine, and tryptophan in sensitive plant 

species (Amrhein et al. 1980; Kishore and Shah, 1988).  Glyphosate competes with 
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phosphoenolpyruvate (PEP) for the binding site on the EPSPs enzyme (Sikorski and Gruys, 

1997).  Upon inhibition of EPSPS, shikimic acid and shikimate 3-phosphate levels increase in 

plants and this increase is linked to a decline in carbon fixation intermediates and a reduction of 

photosynthesis (Duke et al. 2003).   

  In the last decade, glyphosate resistant (GR) and tolerant populations have increased 

(Powles, 2008). Currently, 16 weed species have evolved resistance to glyphosate and some of 

the common weeds species are Ambrosia, Amaranthus, Conyza, Lolium, Conyza and Sorghum. 

Apart from resistant weeds, farmers have reported tolerance to glyphosate in different 

populations of common lambsquarters. Similar reports have been given by researchers across 

Midwestern states confirming that common lambsquarters has some level of tolerance to 

glyphosate (Westhoven 2008a). With over-reliance on glyphosate in GR cropping systems, there 

are chances of these tolerant weeds developing resistance due to high selection pressure. Several 

factors, such as rapid growth of common lambsquarters plants to maturity, ability to germinate 

under different environmental conditions (Chu et al. 1978; Cummings 1963; Hilgenfield et al. 

2004 ), indeterminate growth, environmental plasticity under field conditions (Kurashige and 

Agarwal, 2005), high seed production (Conn and Deck, 1995; Holm et al. 1977), long seed 

viability (Conn and Deck, 1995; Madsen, 1962), delayed germination, discontinuous dormancy 

and germination under low temperature conditions ahead of the crop make it a problematic weed 

(Chu et al. 1978; Wiese and Binning, 1987). Although resistance in agronomic fields is not yet a 

problem, the threat is always there; so even if a single plant survives, its progeny can establish as 

a resistant weed. 

Within GR based cropping systems, weed scientists have confirmed that weed shifts have 

occurred, with common lambsquarters becoming more problematic (Culpepper, 2006). The 
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incidence of lambsquarters has increased under no-tillage systems (Sosnoskie et al. in 2006). 

Similar results were also reported in seed bank studies by Cardina et al. (2002). Field surveys 

conducted in Indiana from 2003 to 2005 reported that common lambsquarters plants were 

present in 11 percent of randomly sampled soybean fields (Westhoven et al. 2008b). Similar 

results have also been reported by researchers across other Midwestern states (Curran, 2005; 

Harder et al. 2007; Loux and Stachler, 2003; Kniss et al. 2006; Schuster et al. 2007). Season long 

interference by common lambsquarters in soybean fields has decreased soybean yield by 20 to 61 

percent (Crook and Renner, 1990; Conley et al. 2003). Common lambsquarters became one of 

the dominant weed species in long-term experiments evaluating weed species shifts in 

glyphosate-resistant cropping systems. Results from these experiments indicate the dominance of 

common lambsquarters in soybean-corn rotation in the fields (Jeschke and Stoltenberg, 2006).  

 

1.9 Research Objectives 

 The weedy Chenopodium complex is not well understood within the North Central states 

and there are ongoing reports that the complex is becoming more difficult to control with 

glyphosate. We conducted greenhouse and laboratory studies on this weedy Chenopodium 

complex to determine the species present in the Midwest and the response of these populations to 

glyphosate. We test the hypothesis that there is no difference in the response to glyphosate of 

different Chenopodium spp. across the Midwest. Based on our testing hypothesis, we had three 

main objectives: 

1. Determine the responses to glyphosate of different Chenopodium species and populations 

present in the North Central states.  

2. Develop molecular markers to identify different species of Chenopodium spp. 
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3. Determine which species are present in North Central states using molecular markers. 
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CHAPTER 2 

RESPONSES OF CHENOPODIUM SPECIES AND COMMON LAMBSQUARTERS 

POPULATIONS FROM NORTH CENTRAL STATES TO GLYPHOSATE 

 

2.1 Abstract 

 Experiments were conducted to determine the responses to glyphosate of 12 accessions 

representing 7 Chenopodium species, and 33 populations of Chenopodium from agricultural 

fields across the North Central states. Glyphosate responses of Chenopodium species were 

variable within and among the different species. One interesting finding was that C. ficifolium, C. 

berlandieri 2 and C. simplex were more tolerant to glyphosate than the four accessions of C. 

album, which is presumed to be the most common weed species in this genus. Variability to 

glyphosate was observed among the accessions of C. album and C. berlandieri. C. album 4 had 

more tolerance than other C. album accessions, and C. berlandieri 2 had significantly higher 

tolerance to glyphosate than C. berlandieri 3 and C. bushianum. When the 33 populations were 

evaluated for response to glyphosate, we observed variability within and among the populations 

from different North Central states. The populations from Iowa were more tolerant to glyphosate, 

but high tolerance was also observed in a few populations (IN6, IL3, IL7, IL8 KS21 and ND7) 

from Indiana, Illinois, Kansas and North Dakota. Our results indicate that if there are mixed 

populations of different Chenopodium species or biotypes in a field, the control of these weeds 

will be difficult due to the differential tolerance of the plants to glyphosate. 
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2.2 Introduction 

 The genus Chenopodium includes about 150 plant species and most of them are annual, 

herbaceous flowering plants, commonly known as goosefoot. The genus is distributed 

throughout Asia, America and Europe (Ruas et al. 1999). Although some species of the genus 

have been domesticated and used for their seeds (C. quinoa, C. berlandieri subsp. nuttalliae, 

chia and huautzontle) and vegetative parts (C. album and C. giganteum) in Asia and Europe 

(Pratap et al. 1998), the genus is more commonly known for having some of the most 

troublesome weed species (Cole, 1961).  

 Chenopodium album is among the most important weed species in this genus, and is 

considered among the ten most important weeds in the world (Holm et al. 1977). Characters that 

make C. album a successful weed include its ability to germinate under different environmental 

conditions (Chu et al. 1978; Cummings 1963; Hilgenfield et al. 2004 and Schuster et al. 2007), 

phenotypic plasticity under different environments, and prolific seed production (Holm et al. 

1977). Chenopodium seeds can also remain dormant and viable in the soil for many years (Conn 

and Deck 1995; Madsen 1962), which maximizes their fitness while reducing their losses due to 

sib competition in the fields (Hyatt and Evans 1998). 

  There are about 20 species of Chenopodium that are present in Illinois (USDA, NRCS 

2008), and some of the species (C. album, C. berlandieri, C. bushianum, C. strictum, C. murale, 

C. ficifolium and C. hybridum) are recognized as agricultural weeds. Several variants of these 

species also have been reported by Aellen (1929a, 1929b), who recognized 34 sub-species, 

varieties and forms of common lambsquarters in North America.  

 Due to taxonomic difficulties in identifying Chenopodium species, most of the weedy 

Chenopodium species in agricultural fields are generally referred to as common lambsquarters 
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(Chenopodium album L.). In the last decade, there have been increased reports of common 

lambsquarters being a problem in corn and soybean fields across North Central states (Conley et 

al. 2003; Fischer et al. 2004). The incidence of lambsquarters has increased under no-tillage 

systems (Cardina et al. 2002; Sosnoskie et al. 2006). Common lambsquarters became one of the 

dominant weed species in long-term experiments evaluating weed species shifts in glyphosate-

resistant cropping systems. Results from experiments with soybean-corn rotation indicate the 

dominance of common lambsquarters in these fields (Jeschke and Stoltenberg, 2006). Field 

surveys conducted in Indiana from 2003 to 2005 reported that common lambsquarters plants 

were present in 11 percent of randomly sampled soybean fields (Westhoven et al. 2008a). 

Season-long interference by common lambsquarters in soybean fields has decreased soybean 

yield by 20 to 61 percent (Conley et al. 2003; Crook and Renner, 1990).  

 Within Chenopodium, there are 42 resistant biotypes in 17 countries (Heap, 2010) and the 

majority of these biotypes are resistant to photosystem II inhibitors, followed by acetolactate 

synthase (ALS) inhibitors, synthetic auxins, ureas and amides (Heap, 2010). In the US, there are 

21 biotypes that are resistant to either Photosystem II (19) or ALS inhibitors (2) and there are 

also reports of tolerance in some biotypes to glyphosate (Westhoven 2008a, b). A recent survey 

conducted by weed extension specialists in 2007 reported that common lambsquarters is one of 

the seven genera or species that represents 80 percent of the herbicide resistant biotypes (Scott et 

al. 2009). 

 Inter- and intra-specific differences in response to herbicides are common in weeds as 

well as in crops (Hayes, 1959; Smith and Illnicki, 1973; Wax et al. 1974). Within weed species, 

there are several studies that have shown differential responses of weeds to herbicides. Some of 

the commonly studied genera include Amaranthus (Coetzer et al. 2002; Xu and Sun, 2001), 
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Chenopodium (Warwick and Black, 1981), Echinochloa (Damalas et al. 2008), Setaria (Wang 

and Dekker, 1995) and Trifolium (Smith, 1985). This difference in response to herbicides can be 

attributed to differences in the physiology of weeds affecting herbicide absorption or 

translocation (Baylis, 2000; Klingman, 1961), differences in plant morphology (Damalas et al. 

2008), and the variability in the species to metabolize the herbicides to non-toxic products 

(Smith, 1985).  

 The incidence of common lambsquarters resistant to triazine herbicides and ALS 

inhibitors is reported to be more common than to glyphosate, but in recent years, there have been 

several reports demonstrating less control of some Chenopodium populations by glyphosate 

(Westhoven et al. 2008a). Similar reports of reduced sensitivity to common lambsquarters have 

also been documented by weed scientists across the Midwestern states (Curran, 2005; Harder et 

al. 2007; Kniss et al. 2006; Loux et al. 2004; Schuster et al. 2007).  

 Although there are several reports of herbicide tolerance in the Chenopodium genus, very 

few studies have been conducted that look at the responses of different weedy Chenopodium 

species and common lambsquarters populations to glyphosate under controlled environmental 

conditions. Such a study would be important to test the hypothesis that there will be species 

shifts in fields having species with different herbicide tolerances. Thus, the aim of the study was 

to determine the responses to glyphosate of different Chenopodium spp. and populations present 

in the North Central states.  
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2.3 Materials and Methods 

Plant Materials 

 The plant materials selected for this study were obtained from the North Central Regional 

Plant Introduction Station (NCRPIS), Ames, Iowa. Chenopodium species prevalent in North 

Central states were selected based on the information provided in the Flora of North America 

(Clemants and Mosyakin, 2004). In the present study, seeds were obtained for 12 accessions 

representing eight Chenopodium species, and the information about the species and their 

accession numbers is provided in Table 2.1.  

 For the study including common lambsquarters populations, seeds were provided by 

colleagues from six North Central states (Illinois, Indiana, Iowa, Kansas, Missouri and North 

Dakota). In a preliminary study, randomly pooled seeds from plants within a single field showed 

very limited variability in their response to glyphosate; therefore, the seeds from 2 to 5 plants 

from a single field were pooled and used for herbicide screening. This method was useful in 

evaluating a large number of seed lots under limited space and resources. The information 

regarding the common lambsquarters populations from fields across the North Central states is 

presented in Table 2.2.
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Table 2.1. List of the Chenopodium species used in glyphosate screening. The seeds were 

obtained from North Central Regional Plant Introduction Station, Ames, Iowa. 

S.No Genus  

Accession No. 

(NCRPIS) Origin   Year collected 

1 C. album 1 Ames 23855 Poland 1997 

2 C. album 2 PI 605700 MI, USA 1994 

3 C. album 3 PI 262168 France 1959 

4 C. album 4 PI 605701 CO, USA 1983 

5 C. ficifolium Ames 25246 Switzerland 1999 

6 C. murale PI 614895 Portugal 1998 

7 C. bushianum PI 608030 IL, USA 1995 

8 C. berlandieri 2 PI 595316 IA, USA 1995 

9 C. berlandieri 3 PI 612858 UT, USA 2000 

10 C. simplex Ames 21981 MI, USA 1994 

11 C. strictum1 Ames 23893 Germany 1997 

12 C. rubrum1 Ames 23860 Poland 1997 
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Table 2.2. List of the Chenopodium populations from North Central states. 

Population Location Crop 

IA20 N. Harding Co., IA Soybean 

IA21 S. Harding Co., IA Soybean 

IA22 W. Story Co., IA Soybean 

IA23 S. Story Co., IA Soybean 

IA24 Adair Co., IA Soybean 

KS20 S. Riley Co., KS Soybean 

KS21 E. Doniphan Co., KS Soybean 

KS22 C. Doniphan Co., KS Soybean 

MO10 Platte Co., MO Corn 

MO6 Boone Co., MO Pumpkin 

ND14 Ransom Co., ND - 

ND2 Steele Co., ND - 

ND3 Trail Co., ND - 

ND5 Grand Forks Co., ND - 

ND 7 Griggs Co., ND - 

ND9 Barnes Co., ND - 

IL1  Champaign Co., IL Soybean 

IL2  Clark Co., IL Soybean 

IL3 Kankakee Co., IL Soybean 

IL4 Piatt Co., IL Soybean 

IL5 Putnam Co., IL Between field  

IL6 Ogle Co., IL Corn 

IL7 Iroquois Co., IL Soybean 

IL8 LaSalle Co., IL Soybean 

IL9 Lee Co., IL Corn 

IL10 Livingston Co., IL Soybean 

IN2 Benton Co., IN Soybean  

IN3 Fountain Co., IN Soybean 

IN4 Fountain Co., IN Soybean  

IN5 Huntington Co., IN Soybean  

IN6 Jackson Co., IN Soybean  

IN9 Montgomery Co., IN Soybean  

IN11 Ripley Co., IN Soybean 

- Data not available for the crops
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 Common lambsquarters seeds have high dormancy (Williams 1962), so before using the 

seeds for herbicide evaluation, the seeds were treated to break the dormancy. This procedure 

involved treating the seeds with 1:1 bleach: distilled water and intermittently vortexing for 10 

min. Then the seeds were rinsed twice with distilled water before suspending the seeds in 

autoclaved 0.2 percent agar. The treated seeds were then stored at 4
o
C for at least a month before 

sowing in the greenhouse.  

 

Growth Conditions 

  Chenopodium seeds were first grown in flats using a medium that was a non sterilized 

mixture of LC1
1
 and soil:peat:sand in 1:1 ratio with osmocote, a 14:14:14 slow release fertilizer, 

added to the soil. At the cotyledon stage, the plants were transferred into sectioned flats. The 

seedlings were maintained in sectioned flats, one seedling in each section having approximately 

10 g of the above-mentioned medium, until they were 4-5 cm tall. Plants were again transferred 

into 20 cm round plastic pots containing the same non-sterile medium. It has been reported that 

sensitivity of Chenopodium seedlings to glyphosate is greatly reduced when the plants were 

grown in steamed soil (Schafer et al. 2009).  

  The greenhouse room was maintained at 28/22°C day/night, with supplemental light 

(minimum of 800 μmol·m
−2

·s
−1

 photon flux at the plant canopy) provided by mercury halide and 

sodium vapor lamps programmed for a 16-hr photoperiod. Plants were watered daily.  

 

Glyphosate Applications  

 To study the responses of different Chenopodium species and common lambsquarters 

populations, 5 seedlings from each species or biotype from North Central states were treated at 
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10 to 14 cm height with the potassium salt of glyphosate (Roundup WEATHERMAX
2
) at 0, 800, 

1600 or 3200 g a.e. ha
-1

 along with 2.5% ammonium sulfate (AMS). These rates correspond to 

roughly 0X, 1X, 2X and 4X the recommended rate used in fields to control weeds. In a 

preliminary study (data not shown), glyphosate at 800 g ha
-1

 controlled 95 percent of our 

sensitive biotype (a population from North Dakota referred as ND5), which was also used as 

sensitive control in the greenhouse experiments.  

 Herbicide treatments were applied with a compressed-air, moving-nozzle laboratory 

sprayer equipped with an 80° flat fan TeeJet
3
 nozzle delivering 187 liters·ha

−1
 of water at 207 

kPa. The nozzle was maintained at 40-45 cm above the plant canopy to ensure proper coverage 

with herbicide.  

 Two weeks after glyphosate applications, the treated plants were evaluated for herbicide 

injury. The aboveground biomass of each common lambsquarters seedling was harvested to 

determine the decrease in dry weight due to the herbicide injury.  The harvested seedlings were 

oven dried at 68ºC for 72 hrs and weighed.  

  

Statistical Analysis  

 The experiment was conducted as a completely randomized design. To study the 

responses to glyphosate of different Chenopodium species, the experiment was replicated twice. 

Based on the homogeneity of variance test (Levene‟s test), which determines the interaction 

between two replications, no significant effect of replications (p=0.05) was found, and the data 

from the two replications were pooled. Using the Proc GLM procedure in SAS
4
, the mean 

differences between the Chenopodium species and populations were calculated based on the LSD 

values (α=0.05).  
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 A separate study was conducted to determine if there is variability in Chenopodium 

populations from the North Central states. For this study, 33 populations of Chenopodium were 

selected from six states (Illinois, Indiana, Iowa, Kansas, Missouri and North Dakota) and they 

were compared to a glyphosate susceptible population (ND5). The experiment was replicated 

twice, however for the second run, due to the limitation of conducting an experiment involving a 

large number of populations, we reduced the number of populations by selecting 19 populations 

from the original 33 that spanned the range of responses observed in the first run. The data from 

two replicates for populations across North Central states were pooled as the homogeneity of 

variance test (p=0.05) was not significant for the two runs. The Spearman rank correlation 

between the two replications was 0.84 which was significant at p<0.001, indicating similar 

response of Chenopodium populations to glyphosate in both the replications.  

  To compare the responses of different plants to glyphosate, the more common procedure 

is to analyze data using nonlinear logistic model. However, in this experiment we cannot use 

data to fit a logistic model as there were too few low doses, which resulted in failure of the 

model to converge. Low doses (between 0 and 800 gm a.e ha
-1

) were not used as our objective 

was to determine variable response in species and not to quantify levels of resistance by 

calculating the ED50 values.  

 Results are presented as dry weight (percent of untreated control) for comparing the 

effect of various doses of glyphosate (0, 800, 1600 and 3200 g a.e ha
-1

) on different 

Chenopodium species and populations across the North Central states.  

 

 

 



 
 

51 

 

2.4 Results and Discussions 

Interspecific Variability Within Chenopodium Species to Glyphosate 

 Glyphosate injury to Chenopodium species increased with increasing glyphosate dose. 

Injury symptoms included stunting and chlorosis of treated plants within 10 days after treatment 

(DAT) and eventual plant death within 14-16 DAT in the susceptible plants; however the tolerant 

plants slowly recovered from injury. These findings were similar to other studies on common 

lambsquarters (Schuster et al. 2007).  Figure 2.1 and Table 2.3 present the mean values of dry 

weight, expressed as percent of untreated control averaged across 800, 1600 and 3200 g a.e ha
-1

 

of glyphosate.  

 

Figure 2.1. Mean dry weight of Chenopodium averaged across 800, 1600 and 3200 g a.e. ha
-1

 of 

glyphosate. Bars followed by same letter are not different according to Fischer‟s LSD test 

(p<0.05). 

 

As shown in Figure 2.1, when we average the herbicide dose and look at the variability in 

response to glyphosate, we found C. berlandieri 2 and C. ficifolium had significantly more 

tolerance than other accessions, indicating variability to glyphosate within the species. The more 
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detailed Figure 2.2 shows the responses of various Chenopodium species to individual doses of 

glyphosate.  

At the 1X dose of glyphosate (800 g a.e ha
-1

), there was a difference in tolerance to 

glyphosate within and among Chenopodium species. Differences were observed between C. 

album biotypes (different accessions of C. album) and morphologically similar species such as 

C. berlandieri, C. strictum and C. ficifolium. Compared to untreated control plants, at 800 gm a.e 

ha
-1

 dose of glyphosate, the percent reduction in dry weight of C. album ranged from 70 to 90 

percent of the untreated control. In contrast, dry weights of accessions of C. berlandieri ranged 

from 37.13 to 39.57 percent of the untreated control. 

 
 

Figure 2.2. Glyphosate responses of different Chenopodium spp. from North Central Regional 

Plant Introduction Station. 

 

 When we compared accessions of C. album and C. berlandieri to C. ficifolium, which is 

another weedy species in the Chenopodium complex, the reduction in dry weight in C. ficifolium 

was only 50 percent as compared to untreated control, indicating that there is more tolerance to 

glyphosate than other species with similar morphology (i.e. C. album, C. berlandieri). 
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Comparing other weedy species such as C. strictum, C. murale, C. rubrum and C. simplex to the 

susceptible control, reduction in dry weight indicates there was not a significant difference in 

tolerance to glyphosate among these species. When the plants of C. album 4, C. berlandieri 1, C. 

ficifolium and C. simplex were treated with 4X dose (3200 g a.e/ha) of glyphosate, some of the 

plants survived and were healthy enough to complete reproductive growth. 

 The data were also analyzed by excluding the highest dose (3200 g a.e ha
-1

) and 

averaging the results of 1X and 2X doses of glyphosate on various Chenopodium species (Fig 

2.3). The highest dose was excluded because the dry weight expressed as percent control values 

at 4X dose were close to 0. So, by including only 800 (1X) and 1600 g a.e ha
-1 

(2X), we obtained 

a better representation of variability in plants when they were treated with glyphosate at rates 

equivalent to field use rates. The results from Fig 2.3 indicated that C. ficifolium and C. 

berlandieri 2 were significantly more tolerant to glyphosate that other Chenopodium species and 

the susceptible biotype. 

 Variability in response to glyphosate was also observed among the species (Figure 2.2 

and 2.3). Comparison between C. album 1, 2, 3 and 4 showed that C. album 4 was more tolerant 

to glyphosate than other C. album accessions. Similarly, among different C. berlandieri 

accessions, plants from C. berlandieri 2 showed more tolerance to glyphosate than C. berlandieri 

3 or C. bushianum, which is often regarded as subspecies of C. berlandieri. This variability in 

response among different species is important because under herbicide selection, the species 

composition can change to more tolerant species in the ecosystem (McNeill, 1976).  
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Figure 2.3. Response of Chenopodium spp. averaged across 800 and 1600 g a.e. ha
-1

 of 

glyphosate. Bars followed by same letter are not different according to Fischer‟s LSD test 

(p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0
5

10
15
20
25
30
35
40
45

D
ry

 W
e

ig
h

t 
(P

e
rc

e
n

t 
o

f 
u

n
tr

e
at

e
d

 
co

n
tr

o
l)

Chenopdium species

CDE

BCD

A

BC

DE DE
E

BCD

B

A

DE DE

B



 
 

55 

 

Table 2.3. Mean values for dry weight (percent of untreated control) of Chenopodium spp. and 

populations from North Central states averaged over 800, 1600 and 3200 g a.e. ha
-1 

of 

glyphosate.  

Species Mean Dry Weight 

(Percent of untreated 

control)  

Populations of 

common 

lambsquarters 

Mean Dry Weight   

(% of untreated 

control)  

C. album 1         (38) 9.52   BCD IA20  19.56 CD 

C. album 2         (40) 11.89 BCD IA21  31.84 B 

C. album 3         (40) 11.95 BCD IA22  25.21 BC 

C. album 4         (39) 18.39 B IA23  29.02 B 

C. berlandieri 2 (40) 30.85 A IA24  20.32 CD 

C. berlandieri 3 (39) 15.19 BC IN11  14.97 DEFGHI 

C. bushianum     (40) 9.80   CDE IN2  15.39 DEFGH 

C. ficifolium       (40) 50.46 A IN3  7.77 JKL 

C. murale           (40) 6.40   DE IN4  11.7 EFGHIJK 

C. rubrum1         (40) 6.55   DE IN5  7.48 JKL 

C. simplex          (40) 15.02 BC IN6  6.66 JKL 

C. strictum1        (40) 9.25   CDE IN9  28.07 B 

Control              (39) 3.82   DE KS20  5.05 KL 

  KS21  32.0 B 

  KS22  9.12 GHIJKL 

  MO10  10.14 GHIJKL 

  MO6  10.44 FGHIJKL 

  ND14  9.47 GHIJKL 

  ND2  17.15 DEF 

  ND3  4.86 KL 

  ND7  4.51 L 

  ND9  52.52 A 

  IL1  4.464 L 

  IL2  9.52 GHIJKL 

  IL3  17.77 DE 

  IL4  8.49 IJKL 

  IL5  8.68 HIJKL 

  IL6  12.17 EFGHIJK 

  IL7  20.45 CD 

  IL8  15.74 DEFG 

  IL9  10.15 GHIJKL 

  IL10  6.5 JKL 

  Control       4.75    L 

LSD (0.05) 7.38   6.88  

IA- Iowa   KS-Kansas                   ND-North Dakota 

IN-Indiana  MO- Missouri              IL- Illinois 
a
 Number in parentheses refer to the number of plants screened with glyphosate 

b
 Means followed by same letter are not different according to Fischer‟s LSD test (p<0.05) 
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Table 2.4. Mean values for dry weight (percent of untreated control) of populations from North 

Central states averaged over 800, 1600 and 3200 g a.e. ha
-1 

of glyphosate.
 

State Dry Weight (% of untreated control) 

Iowa 25.19 A 

Kansas 19.54 B 

North Dakota 18.38 BC 

Indiana 14.86 CD 

Illinois 11.49 DE 

Missoiri 10.29 E 

LSD ( 0.05) 4.34 

 
a
 Means followed by same letter are not different according to Fischer‟s LSD test (p<0.05) 

 

Our finding of variability in glyphosate response is not unique and several researchers 

have documented such patterns in Amaranthus, Setaria and Chenopodium spp. Differential 

response within species can be attributed to differences in plant height and herbicide rates 

(Coetzer et al. 2002), differences in resistance mechanism (Wang and Deker, 1995), competitive 

advantage as in the case of C. album when compared to C. strictum, phenotypic plasticity and 

spatial heterogeneity resulting in variability in adaptive traits such as herbicide resistance 

(Warwick and Black, 1981). 

 

Variability Among Common Lambsquarters Populations from North Central States 

 Variability in populations of common lambsquarters from the North Central states was 

studied and reflected in Table 2.3 and Fig 2.4. Without taxonomic study, we could not 

definitively classify them as C. album, so we referred to all the populations as common 

lambsquarters. 

 Thirty three populations were tested for glyphosate response using 4 doses (0, 800, 1600 

and 3200 g a.e ha
-1

) of glyphosate. The samples screened included 5, 6, 3, 2, 5 and 10 

populations from Iowa, Indiana, Kansas, North Dakota and Illinois fields, respectively.    
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 The independent runs of the experiment were pooled and the combined analysis was done 

to evaluate the variability in responses of common lambsquarters populations to glyphosate 

across the North Central states (Table 2.3). The results from Table 2.3 showed that there was 

difference in responses within and among the Chenopodium populations across the North Central 

states. There was substantial variability within populations from different states. The average dry 

weight (percent of untreated control) ranged from 52.52 (ND9) to 4.46 (IL1). The populations 

from Iowa were, in general, more tolerant to glyphosate than populations from other states, 

however few populations from other states (Indiana, Illinois, North Dakota, Kansas) were also 

tolerant to glyphosate (Table 2.4). 

 When the results of 1X and 2X doses were averaged across the Chenopodium 

populations, the results showed that ND9 (Figure 2.4) had a significantly higher level of 

tolerance with less than 50 percent reduction in dry weight compared to untreated control, 

followed by IA23, IA21, IN9 and MO10, which also had considerably high tolerance levels. 

Previous reports from North Central states have also shown increase in tolerance to glyphosate in 

common lambsquarters populations (Westhoven et al. 2008a; Curran, 2005; Harder et al. 2007; 

Loux and Stachler, 2003; Kniss et al. 2006; Schuster et al. 2007). Some populations were not so 

different than the sensitive control, as indicated by the fact that there are populations where there 

was more than 90 percent reduction in dry weight of plants from Indiana (IN3, IN5, IN6), 

Kansas (KS20, KS22), North Dakota (ND3, ND7, ND14), and Illinois (IL1, IL2, IL4, IL5, IL6 

and IL10). 

Variability is also observed among populations within a state. For instance, most 

populations from North Dakota were sensitive to glyphosate with the exception of ND9. Similar 

results were also observed among populations from other states (Figure 2.4 and Table 2.2). 
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Previous research on populations of Avena barbata, Avena fatua, and Clarkia williamsonii also 

showed significant genetic variation in herbicide responses (Price et al. 1985). Such variability is 

not uncommon and has been reported previously in Chenopodium (Hite et al. 2008, Westhoven 

2008b) as well as other important weed species (Werner and Putnam, 1980; Patzoldt et al. 2002). 

One reason for this variability might be repeated exposure of weeds to certain persistent 

herbicides over long periods of time (Westhoven et al. 2008b).  



 
 

59 

 

 

 

 

 

 

Figure 2.4. Dry weight (percent of untreated control) based on the average of mean values for 

two doses (800 and 1600 g a.e ha
-1

) of glyphosate. Bars followed by same letter are not different 

according to Fischer‟s LSD test (p<0.05). 
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2.5 Conclusions 

  The major finding from this experiment is that there is considerable variation in tolerance 

levels to glyphosate among and also within the different Chenopodium spp. This can be 

attributed to the fact that different species respond differently to herbicides, which can be mainly 

due to different levels of herbicide absorption, translocation or metabolism, and needs to be 

further tested.  Our results indicate that if there are mixed populations of these species in a field, 

the control of these weeds will be difficult due to the differential tolerance of the species to 

herbicide. As glyphosate is the most commonly used herbicide for controlling weeds, it is 

possible that there can be a shift in weed species under selection pressure to more glyphosate 

tolerant Chenopodium species. As some populations and species even survived 4 times the 

recommended rate for glyphosate, our result raises the concern of tolerance in these 

Chenopodium species and populations to glyphosate. It also suggests that there is high potential 

for a decrease in glyphosate sensitivity within common lambsquarters populations to a point 

where they would not be controlled by a normal field use rate of glyphosate.  

 Our next step is to use DNA sequence data and classify the common lambsquarters 

populations from North Central states into different species and investigate if there are more than 

one Chenopodium species present in agricultural fields. Inter- and intra-specific variation in 

herbicide tolerance among weedy Chenopodium species can have important implications for the 

spread of herbicide resistant biotypes and genetic structure, and can help us in understanding the 

adaptations of weedy Chenopodium complex.  
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2.6 Sources of Materials 

1
LC1 Professional Growing Mix. Sun Gro Horticulture Canada Ltd. 

2
 WEATHERMAX Roundup, Monsanto Company, St. Louis, MO. 

3 80° flat fan nozzle, TeeJet, Spraying Systems Co., P.O. Box 7900 Wheaton, IL 60187.  

4
[SAS] Statistical Analysis Systems Institute, Inc., Cary, NC 27512-8000. 
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  CHAPTER 3 

MULTI-FACETED APPROACH TO UNDERSTAND THE WEEDY                  

CHENOPODIUM COMPLEX 

 

3.1 Abstract 

 The Chenopodium genus is not a well-understood complex and taxonomy of the genus 

has been a point of controversy. In agricultural fields, most of the weedy Chenopodium species 

are referred to as common lambsquarters. Research was conducted to find informative markers 

that can help in species identification. Both morphological and DNA sequence data were 

explored. Among the morphological characters, the seed pericarp, calyx shape (keeled or not), 

and DNA content of the species proved to be informative characters. DNA content (2C) values 

proved to be informative in differentiating C. album (3.6 pg), C. berlandieri (2.7 pg), C. strictum 

(2.0 pg) and C. ficifolium (1.9 pg). Sequence data from 3 loci, ITS (nuclear), matK and trnD-trnT 

(chloroplast) were explored. DNA sequences from all three regions gave similar tree topologies, 

but ITS sequences had more polymorphic sites. A well supported ITS phylogenetic tree resolved 

the Chenopodium species into four main clusters.  The C. album group was separated from the C. 

berlandieri with good bootstrap support from parsimony analysis and high posterior probabilities 

from Bayesian analysis.  The chloroplast sequences also showed similar results. Closely related 

species such as C. strictum, C. berlandieri and C. album share highly similar sequences among 

homologous genes, but they can be differentiated based on genome size. ITS region of 

Chenopodium samples from agricultural fields in the North Central states were amplified, and 

the phylogenetic tree showed that all the field samples clustered with Chenopodium album. Our 
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conclusion is that only a multi-faceted approach using ITS sequence, cytogenetic, morphological 

data can differentiate the Chenopodium species.  

 

3.2 Introduction 

 The genus Chenopodium L. consists of about 250 species (Giusti, 1970; Kadereit et al. 

2005) and belongs to family Amaranthaceae, syn. Chenopodiaceae (APG II, 2003). The genus 

includes mostly annual and perennial herbs, and is distributed throughout Asia, America and 

Europe (Ruas et al. 1999). With the exception of C. quinoa and C. berlandieri subsp. nuttalliae, 

most of the Chenopodium spp. are considered annual weeds (Cole, 1961) that can compete with 

economically important crops and thereby affect yield.  

 The designation Chenopodium album has often functioned as a convenient taxonomic 

receptacle, loosely circumscribed to include material not readily assigned to other species of this 

difficult genus (Wilson, 1980). Species of Chenopodium are not easily defined because of lack of 

distinctive macroscopic morphological characters in the genus (Bassett and Crompton, 1982). 

The taxonomy of the genus Chenopodium has been a major point of controversy arising mainly 

due to phenotypic plasticity (Kurashige and Agarwal, 2005; Zhou et al. 2005), parallel evolution 

(Duke and Crawford, 1979), hybridization (Cole 1961; Rahiminejad and Gornall, 2004) and 

cytogenetic diversity as some species of Chenopodium can be found as diploid, tetraploid and 

hexaploid (Allen 1929). While studying the Chenopodium genus Wahl (1954) wrote  that „„No 

group of comparable size and wide distribution known to the writer has suffered the lack of 

understanding of the taxa involved as has the genus Chenopodium, especially those members of 

its Section Chenopodium that are closely related to C. album and C. berlandieri.‟‟  
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 The taxonomic classification of Chenopodium species has always proved to be very 

difficult and many researchers have used one or more morphological characters in combination 

to clear the confusion among the taxa. For instance, Allen and Just (1943) and Wahl (1954) made 

subsectional distinctions based on inflorescence and pericarp characters. Similarly, Cole (1961) 

subdivided Chenopodium into 4 subsections based on seed coat markings. Iljin (1936) also 

differentiated taxa based on pericarp structures and keeling of the calyx lobes. Some researchers 

have also used leaf color as an identifying character (Moquin-Tandon, 1840). Bassett and 

Crompton (1982) worked on clarification of taxonomic circumscriptions, nomenclature and 

distribution of taxa in Chenopodium across Canada; mainly based on the seed characteristics and 

information related to the chromosome count. Crawford and Reynolds (1974) studied narrow 

leaved Chenopodium species, including C. atrovirens Rybd., C. desiccatum A. Nelson var. 

desiccatum, C.desiccatum A. Nelson var leptophylloides (Murr.) Wahl, C. leptophyllum Nutt. Ex 

Moq., and C. subglabarum (S. Wats) A. Nelson, using numerical techniques in which several 

seed, leaf, and inflorescence characters were studied. Crawford and Reynolds (1974) were 

successful in elucidating the relationship of closely related Chenopodium species and found 

certain affinities that were contrary to the literature of that time. Such studies have been 

successfully conducted in other plant groups to gain insight into variation patterns within the 

plant species (Crovello, 1968; Gilmartin, 1969; Ornduff and Crevello, 1968; Heiser et al. 1965).  

 The use of DNA sequence data has proved to be a powerful approach to investigate 

relationships within morphologically complex groups like Ericaceae (Kron et al 2002) and 

Asteraceae (Kim and Jansen, 1995). Such studies have also been done in Chenopodium using 

random amplified polymorphic DNA (RAPD) (Anderson, 1999; Gangopadhay et al. 2002), 

direct amplification of minisatellite DNA (DAMDA) (Rana et al. 2010), microsatellite markers 
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(Mason et al. 2005), ribosomal DNA (Maughan et al. 2006; Soliai et al. 2009) and plastid genes 

(Downie et al. 1997; Soliai et al. 2009).   

 There are about 20 species of Chenopodium that are present in Illinois (USDA, NRCS. 

2008), and some of them (C. album, C. berlandieri, C. strictum, C. murale and C. hybridum) are 

recognized as agricultural weeds. Some of these weeds are resistant to one or more class of 

herbicides (Heap, 2010). Much of the research on the genetic diversity and phylogeny within 

Chenopodium mainly emphasized domesticated species like C. quinoa and C. berlandieri. There 

are very few studies which include the important weed species like C. album, C. berlandieri, C. 

strictum, C. ficifolium, C. murale and C. glacum, and there clearly is a lack of attempts at 

understanding among these species using both morphological and molecular data.  

 The aim of this study was to: 1) study morphological characters in the Chenopodium 

complex in order to identify those that can be used to differentiate the species; 2) develop 

markers based on DNA sequences data which can aid in species identification, and can be used 

as additional tools to morphological data in understanding the Chenopodium complex; and 3) 

determine which Chenopodium species predominate across the North Central states using DNA 

sequences. 

This study was not done to revise the phylogeny of the Chenopodium genus, but to 

increase the precision of classification in the Chenopodium genus with a multi-faceted approach.   

 

3.3 Material and Methods 

Plant Materials 

  The Chenopodium species for this study were selected based on the prevalence of the 

species in North Central states. There are about 20 species of Chenopodium that are found 
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commonly in the North Central US, and depending on seed availability, 28 accessions 

representing 12 species were selected (Table 3.1). Five additional ITS sequences of C. album 

were downloaded from the National Center for Biotechnology Information (NCBI) for sequence 

comparison. Most seed for different Chenopodium species were provided by North Central 

Regional Plant Introduction Station (NCRPIS) and some by other researchers. All the 

Chenopodium samples were sequenced for ITS region, but only a representative subset of 

Chenopodium species were sequenced for chloroplast markers. Information related to the 

accessions used and loci examined is provided in Table 3.1. 

 A subset of Chenopodium samples from North Central states that were earlier screened 

with glyphosate (Chapter 2), were also sequenced to amplify the ITS region (details for choosing 

this marker is discussed later in the chapter). As stated in the objectives, the aim of this 

experiment was to use molecular marker(s) to determine if the samples collected from North 

Central states were genetically more close to C. album or other weedy Chenopodium species.  

 Seeds from all the populations that were used were stratified and then sown in a 

greenhouse. At maturity, seeds were harvested from single parents and again stratified and sown 

in the greenhouse for morphological, cytogenetic and molecular data analyses. 

 

 Morphological Analysis 

  Based on the literature available, we selected all the characters that were used by 

researchers to identify the Chenopodium species. The qualitative characters studied included 

plant height, seed length and width, stem diameter and length to width ratio of primary, 

secondary and tertiary leaves (description given by Utolia, 1978). The mean values were 
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calculated for each character and compared using the LSD values obtained by the PROC GLM 

procedure in SAS 9.2 (Table 3.2).  

  

Table 3.1. List of accessions used for molecular analysis. Loci examined indicate the species 

that have been tested with corresponding marker.  

S. No Genus  PI  Origin  Loci examined 

1  C. album 1  Ames 23855  Poland  ITS matK trnD-trnT 

2  C. album 2  PI 605700  MI, USA  ITS matK trnD-trnT 

3  C. album 3  PI 262168  France  ITS matK trnD-trnT 

4  C. album 4  PI 605701  CO, USA  ITS - - 

5 C. album 5 ? Germany ITS - - 

6 C. album 6 FN561545 NCBI  - - 

7 C. album 7 FN561549 NCBI  - - 

8 C. album 8 FN561547 NCBI  - - 

9 C. album 9 FN561552 NCBI  - - 

10 C. album 10 FN561550 NCBI  - - 

11  C. bushianum  PI 608030  IL, USA  ITS matK trnD-trnT 

12 C. berlandieri 1  PI 595315  IA, USA  ITS matK trnD-trnT 

13 C. berlandieri 2  PI 595316  IA, USA  ITS matK trnD-trnT 

14 C. berlandieri 3  PI 612858  UT, USA  ITS matK trnD-trnT 

15 
C. berlandieri  

var. zschackei 4  
?  IN, USA  ITS - - 

16  
C. berlandieri 

macrocalycium 5  
BYU-803 ME, USA ITS - - 

17 
C. berlandieri 

sinuatum 6 
BYU 865 AZ, USA ITS - - 
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Table 3.1 Cont’d 

18  C. capitatum 1 NSL 90209 CO, USA  ITS matK trnD-trnT 

19 C. capitatum 2 PI 658745 MI, USA ITS   

20 C. bonus-henricus  Ames 23109  Germany  ITS matK trnD-trnT 

21  C. ficifolium  Ames 25246  Switzerland  ITS matK trnD-trnT 

22  C. glaucum  PI 612859  IA, USA  ITS matK trnD-trnT 

23  
C. glaucum 

salinum  
BYU-534  UT,USA ITS - - 

24  C. murale  PI 614895  Portugal  ITS matK trnD-trnT 

25  C. murale  Ames 26140  CA, USA  ITS - - 

26  C. quinoa 1 PI 614880  Chile  ITS - - 

27  C. quinoa 2 PI 614881 Argentina ITS   

28 C. rubrum1 Ames 23860  Poland  ITS matK trnD-trnT 

29  C. rubrum2 BYU 665 UT, USA ITS - - 

30  C. simplex  Ames 21981  MI, USA  ITS matK trnD-trnT 

31  C. strictum 1 Ames 23893  Germany  ITS matK trnD-trnT 

32 C. strictum 2 BYU-436  CA, USA ITS - - 

33 C. vulvaria  PI614896 Portugal ITS matK trnD-trnT 

- Not tested, (*) used from gene bank (NCBI) for phylogenetic analysis 

? - accession no. not provided 

 Apart from the quantitative characters, some important morphological characters were 

also studied. Several researchers have mainly classified the species based primarily on seed 

characters, inflorescence studies and vegetative characters like leaf shape and pubescence. In this 
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study, we evaluated plants for growth habit of stem, branching pattern, base branching presence, 

pubescence of the leaves, perianth structure, fruit covering at maturity, and seed pericarp. 

Analysis of the morphological data was conducted using Mesquite v 2.72 (Madison and Madison 

2009). Morphological data were converted into a similarity matrix and the nexus file generated 

from Mesquite was used to derive maximum parsimony tree and presented as phylogram. The 

characters used and their codes are provided below:  

1) Growth habit of main stem: 

1- erect; 2- prostrate; 3: ascending 

2) Perianth Keeled or not 

  1-not keeled; 2- slightly keeled; 3-moderately keeled; 4-sharply keeled 

3) Branching 

0-Simple; 1-less branched; 2-medium branched; 3-highly branched  

4) Fruits covering at maturity: 

                 1-exposed; 2- slightly exposed; 3-completely covered 

5) Branching at the base of plant 

                 1-present; 2-absent 

6) Seed Pericarp:  

                1-Smooth to reticulate; 2-honeycomb pitted 

7) Farinose (adaxial surface of leaf) 

                 1-medium to highly farinose; 2-low to medium; 3- slightly to glabrous 

8) Farinose (abaxial surface of leaf) 
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Table 3.2.  Binary codes for selected morphological characters.  

Species Stem Branching 

Base  

branching Keeled 

Fruit at 

maturity Pericarp 

Farinose 

Adaxial 

Farinose 

Abaxial 

C album 1 1 3 2 4 3 1 3 2 

C album 2 1 0 2 3 1 1 3 1 

C album 3 1 1 2 3 1 1 3 1 

C album 4 1 3 2 4 3 1 3 2 

C berlandieri 1 1 0 2 3 3 1 1 3 

C berlandieri 2 1 0 2 3 1 2 3 2 

C berlandieri 3 1 1 2 3 1 2 3 2 

C berlandieri 5 1 2 2 2 1 2 2 1 

C berlandieri 6 1 0 2 2 1 2 3 2 

C bushianum 1 0 2 2 1 1 3 2 

C ficifolium 1 0 2 2 3 2 3 2 

C glaucum 2 2 3 1 1 3 1 3 1 

C murale 1 1 2 2 1 3 1 3 3 

C rubrum 1 1 3 2 1 3 1 3 3 

C strictum 1 1 2 2 3 1 1 3 3 

C strictum 2 1 2 2 3 1 1 3 2 

C vulvaria 3 3 1 1 3 1 2 1 
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 DNA Content Analysis 

 Chenopodium samples were prepared for flow cytometric analysis using the protocols of 

Rayburn et al. (1989). Briefly, leaf tissues (~1 cm
2
 of each) from Chenopodium species and 

maize inbred line W22 (Biridar and Rayburn, 1993), used as an internal control, were co-

chopped and placed in a small (15 mL) beaker containing 10 mL extraction buffer (13% (v/v) 

hexylene glycol, 10 mmol Tris–HCl L
-1

 (pH 8.0), and 10 mmol MgCl2 L
-1

) and 200 μL 25% 

Triton®-X . The nuclear DNA content of maize used as internal control was 5.35 pg/2C. The 

tissue was homogenized using a tissue grinder for 25-30 s at 4500 × g, and samples were filtered 

through 250- and 53-μm nylon meshes into a labeled test tube kept on ice. The samples were 

then centrifuged for 15 min at 11000 × g at 4°C. The supernatant was removed, and nuclei were 

re-suspended in 300 μL of propidium iodide stain (Bashir et al.1995). The solution was then 

transferred to a 1.5 mL microcentrifge tube and incubated for 20 min at 37°C. Following 

incubation, 300 μL of propidium iodide salt was added to each sample. Samples were then 

lightly vortexed and stored at 4 °C for 2 hours. 

 For each sample, 10000 nuclei were analysed using a laser Flow Cytometer-Cell Sorter 

Epics XL-MCL (Coulter Electronics, Hialeah, Florida, US). Mean fluorescence of sample G1 

peak was divided by the fluorescence reading of the internal control, multiplied by 5.35 pg/2C, 

and expressed in pg/2C nucleus. For each genotype, 2 samples (1 leaf per replication) were 

analyzed. Readings on nuclear DNA content were used for GLM analysis, and LSD tests were 

conducted using SAS v 9.2
1
. 

  

 



 
 

77 

 

Scanning Electron Microscope Analysis                                                                              

 Several researchers found that fruit and seed characters are useful in the identification 

and classification of plant taxa, and in establishing phylogenetic and evolutionary relationships 

among taxa. Mature seeds from Chenopodium plants were used for examining the pericarp using 

Scanning electron microscopy (SEM). Briefly, the seeds were mounted onto a metal plate and 

were then sputter coated in Denton Desk II TSC turbo-pump. The samples were then viewed 

under Field-Emission Environmental Scanning Electron Microscope (ESEM-FEG) with Energy-

Dispersive Spectroscopy (EDS) at the Beckman Institute
2 
for Advanced Science and 

Technology, University of Illinois. The pictures were taken at 120X and the exposure was 

manually adjusted.  

  

Molecular Analysis 

DNA Extraction, Amplification and Sequencing 

 Total genomic DNA was extracted following the procedure
 
of Doyle and Doyle (1987) 

with slight modifications. Briefly, 100 mg of fresh tissue was placed individually in 1.5 ml sterile 

microcentrifuge tubes. The tubes were then dipped in liquid nitrogen and samples were finely 

grounded.  Then 600 µL of CTAB extraction buffer was added and the tubes were incubated at 

60
o
C for 30 min, during which the tubes were inverted several times to mix the contents. The 

samples were then extracted with 500 µL of chloroform by vigorously inverting the tubes for 2 

mins. The samples were centrifuged for 5 min at 10000 x g in a micro-centrifuge. The upper 

phase was transferred to a fresh tube. DNA was precipitated with 400 µL of absolute ethanol and 

the DNA was allowed to precipitate at -20
o
C for 30 min. The precipitated DNA was collected by 

centrifugation at > 12000 x g for 10 min. The ethanol was decanted and DNA was washed with 
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250 µL of 70 % ethanol, followed by another wash with 250 µL 90 % ethanol and then samples 

were centrifuged.  The ethanol was decanted and DNA pellets were dried in a vacuum evaporator 

centrifuge for 1 to 2 mins. Finally, the DNA pellet was dissolved in 50 µL of TE buffer for use in 

polymerase chain reaction amplification.    

 

Loci Examined 

Nuclear Internal Transcribed Spacer (ITS) Region 

 The entire ITS region (ITS1, 5.8S, and ITS2) was amplified using the ITS 5 and ITS 4 

primers (Table 3.5). These are universal primers and the ITS region was amplified following 

protocol of Wetzel (1999) with slight modifications. The following were combined to a final 

PCR volume of 25 µL: 1 µl of approximately 100 ng DNA, 2 units of Taq polymerase 

(Promega
3
), 1X reaction buffer (Bioline), 2.5 mM MgCl2, 200 µM dNTPs, and 0.2 µM of 

forward and reverse primer. Reactions were incubated for 2 min at 95
o
 C, followed by 36 cycles 

of 1 min at 95
o
 C, 1 min at 50

o
C, 2 min at 72

o
C, followed by final extension at 72

o
C for 5 min.  

  Five micro liters of each double-stranded DNA PCR product was resolved by 

electrophoresis in a 1 % agarose gel using 1X TBE as the gel buffer. Agarose gels were stained 

with 0.5 µg ml
−1

 ethidium bromide and visualized under ultraviolet light to observe the DNA 

fragments. Subsets of amplified fragments were selected for DNA sequencing. Fragments were 

isolated from the gel using QIAGEN
4
  gel purification kit following the manufacturer‟s 

instructions. The purified DNA product was then sequenced using AB BigDye Terminator v3.1 

Cycle Sequencing Kit
5 

and the sequence data were analyzed using Sequencher 4.7 software
6
. 

Sequencing reactions consisted of 0.25 µL of primer, 4 µL of purified PCR product and 4 µL of 

ddH2O. Cycle sequencing conditions were 96
o
C for 1 min of denaturing, followed by 30 cycles 
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of 15 sec at 95
o
C, 5 sec at 45

o
C and 4 min at 60

o
C. Sequencing was carried out at the W. M. 

Keck Center
7
 for Comparative and Functional Genomics at the University of Illinois. 

 In C. album 3, polymorphic sequences were observed at single loci, which indicated the 

possibility of heterogeneous ITS repeat, but as they were localized to one nucleotide position 

with double peaks, this position was not included in sequence analysis.  

 

Chloroplast DNA 

  The chloroplast genome is smaller than the nuclear genome and is found in large numbers 

which makes it easy to isolate. Apart from the nuclear markers, chloroplast markers are also 

among the most commonly used markers for phylogenetic studies in plants.  The chloroplast 

DNA is useful because it is structurally stable, non recombinant, mostly uniparentally inherited 

and highly conserved in gene content in closely related species (Downie and Palmer 1991). 

Nuclear substitution rates are slower than those of the nuclear genome, making it a good marker 

for high level taxonomic studies.  
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Table: 3.3. List of primers used for amplifying nuclear and chloroplast loci. 

Loci Primer  Primer sequence (5”-3”) Annealing 

temp (
o
C) 

NUCLEAR    

ITS 

ITS5 GGAAGTAAAAGTCGTAACAAGG 

50 

ITS4 TCCTCCGCTTATTGATATGC 

CHLOROPLAST    

matK 

(partial gene) 

390F CGATCTATTCATTCAATATTTC 

48 

1326R TCTAGCACACGAAAGTCGAAGT 

trnD-trnT 

trnD ACCAATTGAACTACAATCCC 

53 

trnT CTACCACTGAGTTAAAAGGG 

 

 The chloroplast regions matK and trnD-trnT were PCR amplified using the primers listed 

in Table 3.3. Due to difficulty in amplifying complete regions because of background noise, only 

partial sequences were used. Both the chloroplast regions were amplified in 25 µL reaction with 

the same concentrations of reagents as used for amplifying ITS regions. PCR protocol included 

initial denaturation at 95
o
C for 2 min, followed by 35 cycles of 94

o
C for 30 sec, annealing at 

52
o
C for 45 sec and extension at 72

o
C for 2 min followed by final extension of 72

o
C for 5 min.  

 

Outgroup Selection 

  The choice of Amaranthus for outgroup was based on several factors. The molecular 

systematic studies of the Caryophyllales in which more than two taxa were studied from 

Amaranthaceae and Chenopodiaceae, and several researchers such as Giannasi et al. (1992), 

Rettig et al. (1992), Downie and Palmer (1994), all treated Amaranthaceae and Chenopodiaceae 
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as sister families. In similar studies by Rodman (1990), he concluded that the two families are 

sisters to each other. Based on such facts, Judd and Ferguson (1999) also suggested the inclusion 

of Chenopodiaceae into Amaranthaceae in the APGII system of classification. In a recent study 

on Chenopodium, Rana et al. (2010) have also used Amaranthus species as outgroup to the 

Chenopodium species. 

 

Assessing Homology  

 Hypothesis of homology is the basis of the phylogenetic analysis (Phillips, 2006). The 

term homology was first introduced by Owen (1843) to express similarities in basic structure 

found between organs of animals that he considered to be more fundamentally similar than 

others. In other words, homology is the similarity that is the result of inheritance from a common 

ancestor. Homology can be difficult to identify; this may be attributed in part to the presence of 

large number of character states and rates of change sufficient to yield independent expressions 

of the same state. We assigned the putative homology to molecular data using multiple sequence 

alignments. The best alignment in context with phylogeny is the one that generates the most 

parsimonious tree when analyzed in conjunction with all relevant data. We therefore were very 

careful when aligning the sequences and checked visually for shifts in sequences and manually 

edited the sequences if required.  

 

Sequence Alignment 

  Sequence alignment is the first step in identification of homologous sites and 

phylogenetic reconstruction. It is the starting point of any kind of analysis that involves the 

comparison of molecular data (Mullan, 2002). When we align ITS sequences, it is very common 
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to have indels due to alignment. This makes aligning of unrelated species difficult and leads to 

incorrect homology assessment.  

 The most common multiple sequence alignment is CLUSTAL W (Thompson et al. 

1994). When sequences are aligned using CLUSTAL W, first the sequences are compared to 

each other (pairwise alignment), then a dendogram is constructed which describes the 

approximate groupings of the sequences by similarity and finally the multiple alignment is 

carried out using the dendogram as a guide. When the numbers of sequences are small, then 

CLUSTAL or any other method of sequence alignment like Multiple sequence comparison by 

log-expectation (MUSLCE) (Edgar 2004), MAFFT (Katoh and Toh 2008) and T-COFFEE 

(Notredame et al. 2000) all give similar results (Edgar and Batzoglou 2006). However, in some 

cases, MUSCLE proved to be slightly better in assessing homology. MUSCLE (Edgar 2004)  

proceeds in three stages - draft progressive using kmer counting, improved progressive using a 

revised guide-tree from the previous iteration, and refinement by sequential deletion of each tree 

and new multiple alignment is produced by realignment of the
 
two profiles (Edgar and Batzoglou 

2006).  

 For this study, the forward and reverse sequences were examined in Sequencher v4.7 and 

assembled into contiguous sequences. The sequences from all the taxa were then aligned using 

MUSCLE v 3.6 and Clustal W.  The aligned sequences were opened in MEGA v3.1 (Tamura et 

al. 2007). Alignment of contigs was done by inserting gaps if required to minimize nucleotide 

mismatches. The taxa were aligned to already published sequences of Chenopodium (Rana et al. 

2010) deposited in GenBank. The length of the ITS region was 643 bp and included gaps in ITS1 

and ITS2, but the 5.8S region was well conserved. Chloroplast DNA regions were aligned in 
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ClustalW and the sequences were compared to Amaranthus sequences. A few ambiguously 

aligned nucleotides in the 5‟ or at the 3‟ end were excluded from the analysis.  

 

Treatment of the Gaps 

  Multiple sequence alignment converts the unequal length sequences to equal length 

sequences by introduction of gaps that represent the insertion or deletion (indel) event. The 

position of indels in molecular data can be useful phylogenetic information (Simmons and 

Orchoterena, 2000; Egan and Crandall, 2008). The pitfall of using gap characters is that they are 

the product of sequence alignment, and contrary to nucleotides, gaps are not actually present in 

the organism and they do not have anything to compare with other sequences at the loci where 

gap occurs (Simmons et al. 2001). Gaps can be treated in different ways. Simmons and 

Orchoterena (2000) provided a detailed discussion of how to treat gaps. In general, there are 

three common ways of treating gaps: 1) gap positions are excluded from the analysis altogether 

and the advantage of excluding gaps is that the missing data are eliminated; 2) treat gaps as 5
th

 

character base in the DNA based alignment (Eernisse and Kluge. 1993); 3) simple indel coding 

in which gaps are coded as presence or absence of characters (Simmons and Orchoterena, 2000). 

The advantages and the concerns of using the above three methods for treating gaps has been 

reviewed by several researchers (Simmons and Orchoterena, 2000; Muller 2006; Ogden and 

Rosenberg 2007; Dwivedi and Gadagkar, 2009). In our analysis, gaps were treated as absence or 

presence of characters. The gaps were binary coded as 0 for absence and 1 for presence of 

character with the help of Gapcoder (Young and Healy, 2003)  
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Phylogenetic Analysis 

  The multiple sequence alignments were subjected to phylogenetic analyses, including 

maximum parsimony (MP) and model-based Bayesian Inference methods. For all the regions 

investigated, Amaranthus species were used as the outgroup, and trees were rooted to them. 

Review on the methods for phylogenetic analyses is provided by Swafford et al. (1996) and more 

recently by Holder and Lewis (2003), who discussed the advantages and limitations of various 

estimation methods. 

 

Maximum Parsimony 

  MP analyses were conducted using PAUP v4.0b (Swofford 2003). Characters were 

treated as unordered and equally weighted. Heuristic searches were carried out with MulTree 

ON, tree-bisection-reconnection branch swapping, starting tree obtained via random stepwise 

addition with 10 replications. Clade support was assessed using bootstrap estimation (Felsentein 

1985). One thousand bootstrap replicates were analyzed in PAUP and only those values 

compatible with the strict consensus tree were recorded.  

 

Bayesian Analysis 

  Bayesian analysis has a computational advantage over maximum likelihood (ML) 

approach. The Bayesian analysis was performed using MrBayes v 3.1.2 (Ronquist and 

Huelsenbeck, 2003). Starting trees were chosen at random and 2 million generations were run 

with sampling occurring every 100 generations. For ITS and trnD-trnT, the best model was 

general time reversible with invariable gamma (GTR +I+J) model, and for matK and combined 

analysis of DNA data, the model selected was TMI+I+J. The models were selected based on the 
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AIC criteria using the Modeltest v 3.7 (Pasoda and Crandal 1998). The “burn in” was determined 

and those trees prior to stationarity (2000-2500) were discarded before a 50% majority-rule 

consensus tree was calculated from the remaining trees along with the posterior probability 

values.  

 

3.4 Results and Discussion 

Importance of Morphological Characters in Identifying the Chenopodium Species  

 For any study that deals with the identification or classification of plants, the first and 

foremost step is to use morphological characters as a tool for classification. Key morphological 

characters can be compared among plants to determine the differences or similarities in plant 

taxa. These key characters can be either quantitative characters that can be counted or measured 

or qualitative characters such as flower color, leaf shapes, pubescence or seed color. 

In the present study, both quantitative and qualitative characters were measured. The key 

characters were identified based on the previously published monographs of Chenopodium 

species (Moyaskin and Clements, 1996). Quantitative characters studied are presented in Table 

3.4. It shows the mean values of measurements from 10 plants for studied characters of each 

Chenopodium accessions. The results indicate that there is variability within and among the 

Chenopodium species. For instance, when we studied plant height, the plants ranged from 52.6 

cm (C. album 1) to 141.4 cm (C. album 4). Similar trends were also observed in accessions of C. 

berlandieri (94-119.6 cm). Chenopodium album and C. berlandieri species were significantly 

taller than other Chenopodium species investigated. Stem diameter values overlapped within the 

Chenopodium species and no grouping was observed in the species. 
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 The leaf length/width approximates the shape of the leaves. Measurements were taken 

from 10 plants and from each plant, three stems (near base, middle and terminal area of main 

stem) were selected. From each stem, primary, secondary and tertiary leaves were measured for 

length and width and we present the data as mean values for ratio of length to width of the 

leaves. The primary leaf was the oldest leaf, secondary is the middle leaf, and the youngest leaf 

was the tertiary leaf. This measuring scheme was used to capture the maximum variability in the 

leaf size. The results indicated that for primary leaves, the species that have length/width ratios 

greater than 2, such as C. ficifolium and C. glaucum, were different from the other Chenopodium 

species. The differences were non-significant between the accessions of C. album and C. 

berlandieri. For secondary and tertiary leaves, there was not a clear distinction and these cannot 

be confidently used as important characters. Another character studied was the seed length and 

width. The results indicated that length and width of seeds of C. berlandieri accessions were 

significantly different than accessions of C. album, with an exception of C. berlandieri 1 and C. 

bushianum. 

The results indicated that although some characters are important in differentiating some 

species from each other, due to overlap in values, the same character cannot be used to 

differentiate the other species. Among the characters measured, seed characters were the most 

important and they have been studied extensively in various phylogenetic studies (Bassett and 

Crompton, 1982). One interesting finding from this experiment was that when we measured seed 

length and width, the C. berlandieri 1 and C. bushianum seeds had values that were more similar 

to the C. album group and were significantly different than other accessions of C. berlandieri.  
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Table 3.4. Mean values of quantitative characters studied in differentiating Chenopodium spp. 

Species Plant 

Height (cm) 
Stem 

Diameter 

(mm) 

Leaf 

(Length/ 

Width) 
1º Leaf 

Leaf 

(length/ 

Width) 
2 º Leaf 

Leaf  

(Length/ 

Width) 
3º Leaf 

Seed 

Length 

(mm) 

Seed Width 

(mm) 

C. album 1 52.65 H 3.66 E 1.50 CD 1.68 DE 1.89 CDE 1.38 C 1.28 CD 

C. album 2 116.51BC 4.66 AB 1.08 F 1.69 DE 1.67 E 1.28 D 1.17 E 

C. album 3 141.47 A 4.46 AB 1.29 DEF 1.71 DE 2.42 BC 1.27 D 1.21 DE 

C. album 4 60.79 G 3.69 E 1.47 CDE 1.87 CDE 2.34 BCD 1.40 C 1.27 CD 

C berlandieri 1 95.59 E 4.28 CD 1.11 F 1.70 DE 1.99 CDE 1.18 E 1.08 F 

C berlandieri 2 112.05CD 4.02 D 1.23 EF 1.75 DE 1.95 CDE 1.49 B 1.41 B 

C berlandieri  5 94.46 E 4.06 D 1.61 C 1.84 CDE 2.55 AB 1.86 A 1.72 A 

C berlandieri  6 119.61 B 4.47 BC 1.31 DEF 1.79 DE 2.34 BCD 1.50 B 1.41 B 

C. bushianum 107.79 D 4.80 A 1.39 DEF 2.01 CD 2.57 AB 1.24 DE 1.19 E 

C ficifolium 85.17 F 4.47 BC 2.20B 3.03 A 3.08 A 1.10 G 0.98 GH 

C glacum salinum 31.32 J 3.70 E 2.75 A 2.77 AB 2.71 AB 0.74 H 0.68 I 

C murale 1 31.66 J 2.87 F 1.11 F 1.37 E 1.72 E 1.39 C 1.32 C 

C strictum 1 44.36 I 4.06 D 1.61 C 1.67 DE 1.85 DE 1.10 F 1.01 G 

C strictum 2 64.83 G 4.06 D 1.30 DEF 1.53 DE 1.91 CDE 1.18 E 1.08 F 

C vulvaria 32.71 J 2.30 G 1.28 DEF 1.55 DE 1.60 E 1.01 G 0.92 H 

C. rubrum1 32.38J 4.23 CD 1.37 CDE 2.35 BC 2.37 BCD 0.68 H 0.65 I 

LSD (α = 0.05) 7.27 0.27 0.24 0.52 0.54 0.068 0.062 
a 
Means followed by same letter are not different according to Fischer‟s LSD test (p<0.05). 
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Along with the quantitative characters, a parallel study was also initiated to study 

qualitative characters which include stem growth habit, branching, calyx keeled or not, whether 

or not the fruit is covered with perianth at maturity, pubescence of leaves and surface features of 

the pericarp. Most of these characters have been used as key characters in writing monographs 

for these species (Aellen 1929, Mosyakin and Clemants, 1996; Clemants and Mosyakin 2004).  

 Morphological characters, including pericarp structure, calyx shape (keeled or not) and 

DNA content values have proved to be the “key” characters in differentiating various 

Chenopodium species (Bassett and Crompton 1982; Cole 1961; Aellen and Just 1943; Wahl 

1954; Bhargava et al. 2006; Wang et al. 1993; Sederberg et al. 2009). For studying the pericarp 

structure, seeds were selected from single plant and 2-3 seeds were examined under 

Environmental scanning electron microscope (ESEM). The results of the surface pattern were 

similar to the findings of Cole (1961), Uotila (1978) and Karcz (2005). Based on the pericarp 

structure (Figure 3.1, 3.2), we can easily separate the accessions of Chenopodium berlandieri, C. 

ficifolium and C. quinoa from C. album and other species of Chenopodium (Figure 3.1 and 3.2). 

The C. berlandieri and C. ficifolium have a distinct honeycomb pitted pericarp that is very 

different from the smooth to reticulated pericarp of C. album, C. strictum and C. glaucum. 

Similar to our previous findings using quantitative characters, C. berlandieri 1 and C. bushianum 

resembled C. album more than accessions of C. berlandieri (Figure 3.2). When we studied the 

sepals for being keeled or not, the results were overlapping and similar results were shared with 

many species.  
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Figure 3.1. Seed pericarp features of C. album and C. berlandieri using scanning electron 

microscope. 
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Figure 3.2. Seed pericarp features of C. ficifolium, C. strictum, C. berlandieri 1 and C. 

bushianum. 
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 We were not very successful in identifying key morphological character(s) that can 

distinguish the Chenopodium species. Our next approach was to combine the information from  

all the morphological characters and develop a phylogenetic tree based on maximum parsimony 

analysis. The tree (Figure 3.3) shows the clustering of the species based on eight morphological 

characters (coded as binary codes). The CI value was 0.39 and the homoplasy index (HI) was 

very high at 0.60. The phylogram shows that the tree was not resolved due to high homoplasy 

between the morphological characters, which is evident from high homoplasy index values. The 

reason for less reliability of the morphological characters is based on the fact that Chenopodium 

genus is a complex group. Several species in this genus have more than one ploidy level and they 

have remarkable phenotypic plasticity, which makes it difficult to use the morphological 

characters alone for identifying Chenopodium species. Seed characters such as size and pericarp 

are considered to be unmistakably distinct in C. berlandieri and C. album but they can also show 

polymorphism as they are partly a function of the environment (Cole, 1961). One reason for 

polymorphism is that pericarp surface patterns are influenced by temperature, and low 

temperature near maturity results in more reticulated seeds than when grown under warm 

conditions (Cole, 1961). So, although seed coat has a genetic basis, it is also influenced by 

environment; it is not advised to use the seed coat pattern alone to indicate even incipient 

speciation (Cole 1961). 
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Figure 3.3. Unrooted maximum parsimony tree based on the differences in morphological 

characters of 17 accessions of Chenopodium.  
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 From our study using the morphological characters, we conclude that the morphological 

characters alone cannot be used for phylogenetic analysis as the characters overlap within 

different species. The fact that there are no key characters that can be used across the genus to 

identify the species explains the taxonomic difficulty of the genus Chenopodium. The 

morphological data need additional support from molecular or cytological data to resolve the 

phylogeny.  

 

DNA Content Analysis of Chenopodium Species and Populations from North Central States 

 Relative nuclear DNA content of nuclei isolated from Chenopodium species and selected 

populations of Chenopodium across North Central states along with the  Zea mays (internal 

standard) using flow cytometry is shown in Table 3.5. The reason for measuring the genome size 

is that it is one character under strict genotypic control within defined limits (Benett et al. 2000). 

Nuclear DNA analysis has proved to be very effective in delimiting infrageneric division in a 

number of taxa (Ohri, 1998). Based on the range of 2C values (1.8 to 3.8 pg), Chenopodium 

species can be grouped into three categories. These categories resemble the ploidy level, but as 

we did not count the chromosomes, we used a general classification or grouping of 

Chenopodium species. Different accessions of C. album had a genome size between the range of 

3.6 to 3.8 pg/2C, which was well outside the range of the closely related C. strictum (2.0 to 2.1 

pg/2C) and C. berlandieri (2.7 to 2.9 pg/2C). C. ficifolium, which is closely related to C. 

berlandieri, had a smaller genome size of 1.85-1.9 pg/2C. The DNA content data were useful in 

differentiating C. album from C. strictum and C. berlandieri from C. ficifolium. There is a 

significant difference between the genome size of C. album and C. berlandieri. Although no 

study of the ploidy level was done, based on the DNA content values, the best estimate is that C. 
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strictum and C. ficifolium are diploid; C. berlandieri is a tetraploid and C. album accessions are 

hexaploid. The C. berlandieri 1 and C. bushianum also had 2C values that were close to that of 

C. album. The results from our experiments are consistent with those of Sederberg et al. (2009) 

who estimated ploidy levels for various Chenopodium species using fluorescent in situ 

hybridization. In fact, some of the accessions used in our study were from the same seed source. 

The ploidy levels they determined were very similar to our grouping based on the DNA content 

values.  

Table 3.5. DNA content values (pg/2C) of some Chenopodium samples using flow cytometry. 

Accessions examined DNA content (pg/2C) 

C. album1 3.6 ABCD 

C. album 2 3.6 ABCD 

C. album 3 3.7 ABCD 

C. bushianum 3.7 ABCD 

C. berlandieri 1 3.7 ABCD 

 C. berlandieri 2 2.7 E 

C. berlandieri 3 2.7 E 

C. berlandieri 5 2.8 E 

C. ficifolium 1.8 G 

C. strictum 1 2.0 FG 

C. strictum 2 2.0 FG 

IA 20 3.6 ABCD 

IA 21 3.6 ABCD 

IL 7 3.5 CD 

IL 6 3.8 AB 

IN5 3.7 ABC 

KS22 3.5 D 

KS8 3.7 ABC 

KS 9 3.7 ABC 

MO 6 3.5 BCD 

ND 7 3.8 A 

LSD (alpha=0.05) 0.30 
a 
Means followed by same letter are not different according to Fischer‟s LSD test (p<0.05). 
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 The DNA content analysis of Chenopodium populations sampled from the North Central 

states were 3.5-3.9 pg/2C, and are not significantly different from the C. album samples, but are 

significantly different from the other species sampled (Table 3.5). These populations therefore all 

appear to be of C. album. The variability among the Chenopodium populations can be due to 

deletions, duplications or genome responses to environmental stress (Price 1976).  

 

Molecular Data Analysis 

  Towards the second research objective, DNA sequences from nuclear and chloroplast 

regions were explored to find a locus that has enough polymorphic positions that can be used 

either alone or in combination with morphological characters to resolve the Chenopodium 

phylogeny.  Three loci, ITS, matK and trnD-trnT were investigated. In the following sections I 

will discuss the results from all three regions separately.  

 

ITS Sequence Analysis 

Sequences were obtained for two or more plants from 33 accessions (including 5 samples 

of C. album from Genbank) representing 12 Chenopodium species. In addition to the 

Chenopodium species, sequences for ITS region were also obtained for A. spinosus 

(DQ005961.1) and A. retroflexus (AF210906.1) which were used as outgroup. The numbers of 

accessions were increased in closely related species like C. album and C. berlandieri, however 

due to limited number of accessions for other species, we could not increase the accessions of C. 

strictum, C. bushianum and C. strictum. Increasing the populations within the species increases 

the confidence in clustering and increases the reliability of our analyses. 
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 To check if there is any difference in the alignment methods, the ITS sequences were 

aligned with Clustal W and MUSCLE alignment software. Alignment results from both the 

methods were almost identical (data not shown) and required manual editing by adding or 

deleting gaps. The number of parsimony informative (PI) sites obtained using Clustal W were 

201 as compared to 199 from MUSCLE. This small difference can either be due to different 

algorithms used by the software, but more importantly, it can also be an artifact due to manual 

editing of the alignments to increase the homology. We used the Clustal W alignment algorithms 

for aligning all the genera used in this study. 

 The ITS region was 643 bp long and it included 249 bp of ITS-1 spacer and 232 bp of 

ITS-2 spacer region (Table 3.6). One important character in phylogenetic studies is the number 

of parsimony informative (PI) sites. These sites are different than the variable sites by the fact 

that any variable site is parsimony informative only when there are at least two different kinds of 

nucleotides at the site, each of which is represented in at least two or more sequences under 

study. There were 201 parsimony informative sites, which represent 31.2% of the entire region. 

Among ITS-1 and ITS-2, the PI sites were more in ITS1 (45.7%) than ITS2 (34%).  

Table 3.6. Sequence characteristics of the nuclear rDNA internal transcribed spacer region for 

33 accessions of different Chenopodium species.  

 ITS ITS-1 ITS-2 ITS-1 & ITS-2 

No. of total characters 643 249 232 488 

No. of conserved characters 413 123 137 260 

No. of variable sites 229 125 95 130 

No. of Parsimony Informative characters 201 114 79 193 

G+C content (%) 57.1 58.1 55.4 56.7 
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 Alignment of ITS sequences resulted in gaps across the ITS-1 and ITS-2 regions. The 

gaps from the alignment were analyzed separately to check if the gaps are informative and if they 

can increase the overall resolution of the tree. Using Gapcoder (Young and Healy, 2003), the 

gaps were coded as presence or absence of character. Gapcoder program codes the gaps and puts 

these values at the end of the sequence. For phylogenetic analysis, additional phylogenetic 

information is obtained from the gaps. 

The result from the analyzing the gaps is presented in Figure 3.4. Two measures used for 

estimating the relative amount of homoplasy are consistency index (CI) and retention index (RI). 

The CI is calculated as the number of steps expected given the number of character states in the 

data, divided by the actual number of steps multiplied by 100. The RI measures the amount of 

synapomorphy expected from a data set that is retained as synapomorphy on a cladogram.  The 

uncorrected consistency index (CI) was 0.89 and the corrected CI, which excluded uninformative 

sites, was 0.880. The retention index (RI) was 0.95. The bootstrap values ranged from 55 to 

100%. Using the gaps alone as characters, there was grouping among the Chenopodium species. 

Different accessions of C. album were grouped together with 66% bootstrap support values. The 

other major clade consisted of C. berlandieri along with other species in the subsect. Favosa. 

Despite the fact that bootstrap values are not large, these results suggest that gaps are 

phylogenetically informative, and it was decided to include the gaps as additional characters for 

maximum parsimony analysis of  ITS and trnD-trnT spacer regions. 



 
 

98 

 

 

Figure 3.4. Strict consensus tree of gaps from ITS region coded as binary characters 

using maximum parsimony analysis. Bootstrap values are shown above the branches.  
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Maximum Parsimony Analysis of Nuclear Regions 

 Maximum parsimony analysis of the ITS DNA matrix, with gaps treated as 

missing data is presented in Figure 3.5. The topology with the minimum tree length is 

known as the maximum parsimony tree. MP analysis of the entire ITS region resulted in 

4 most parsimonious trees with 419 steps (steps refers to the tree length).  The 

uncorrected CI was 0.89 and the corrected CI, which excluded uninformative sites, was 

0.88. The RI for the current tree was 0.95. Both the C. album and C. berlandieri group 

were separated as separate clades with bootstrap of 100%. Some variability was visible 

among the accessions of C. album but all of them shared the same clade. Two species, C. 

vulvaria and C. simplex did not group with other Chenopodium species. 

   When we compared these results to the MP tree obtained by including gaps in the 

analysis and scoring them as binary characters (Fig 3.6), there was an increase in the 

bootstrap values. The length of the sequences increased from 643 to 671 bp after the 

inclusion of the gaps to the sequences. Even with including gaps to the sequences, four 

trees were retained with 237 steps. The uncorrected consistency index (CI) was 0.76 and 

the corrected CI, which excluded uninformative sites, was 0.75.  The retention index was 

estimated to be 0.90. Irrespective of if the gaps are included or excluded, there were no 

major changes in the tree topology, but the bootstrap values did increase with inclusion of 

the gaps. A similar trend was also observed for bootstrap support for species within the 

clade comprising the C. berlandieri species. Outside the C. album and C. berlandieri 

groups, the bootstrap values decreased which may be due to homoplasy in gaps among 

more distantly related groups. This is consistent with lower CI and RI values. 
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Figure 3.5. Maximum parsimony strict consensus tree of ITS region with gaps treated as 

missing data. Bootstrap values are shown above the branches.  
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Figure 3.6. Strict consensus tree derived from maximum parsimony analysis of 35 

nuclear ITS sequences. The values on top of the branch represent bootstrap values. 
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The ITS-1 and ITS-2 spacer regions were also individually tested (trees not 

shown), but the results were not different than the topology from the entire ITS region. 

The CI (0.73) and RI (0.90) were close to what we obtained by analyzing the entire ITS 

region.  

Our conclusion from estimating the phylogeny based on ITS region is that the 

species studied can be mainly grouped into four main clades. All four clades are 

supported with high bootstrap values and there is no conflict between trees using ITS-1, 

ITS-1, ITS1-2 (excluding 5.8S), and ITS (with or without gaps as additional character).   

 

Bayesian Analysis 

  Based on the AIC estimator, Modeltest (Pasoda and Crandall, 1998) selected the 

GTR+I+G model as best fitting the ITS dataset. General time reversible (GTR) model is a 

parameter rich model and it considers base frequencies and substitution rates as unequal 

(GTR) with invariable sites (+I) and rate variation (+G) among sites. The base 

frequencies were as follows: f(A) = 0.2443; f(C)=0.2931; f(G)= 0.2717; f(T)= 0.1908. 

The estimates of rates of substitution were: A↔C=1.3244; A↔G=1.8458; A↔T= 

1.4470; C↔G=0.3349; C↔T= 4.5867; G↔T=1.0000. The proportion of invariable sites 

(I) = 0.3961.   

  The 50% majority rule consensus tree from the Bayesian analysis is shown in 

Figure 3.7. The posterior probability values were higher than the parsimony bootstrap 

values but the resulting consensus tree from Bayesian analysis was very similar to the 

strict consensus tree obtained through MP analysis. 
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Figure 3.7.  Fifty percent Majority rule tree of 35 sequences of ITS region using 

Bayesian analysis. The values on top of branch are posterior probabilities. 
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 In Figure 3.8, a phylogram is presented based on the ITS sequences of 

Chenopodium species. It is a branching diagram that is assumed to be an estimate of a 

phylogeny. The branch lengths are proportional to the amount of inferred evolutionary 

change.  These results show that there is little to no sequence divergence within species 

that are well separated from each other. The results from the analyses are consistent with 

the classification of Moyaskin and Clemants (2004). The evolutionary relationships 

between the Chenopodium species have not been investigated in detail, so our phylogram 

gives us an idea of the evolution of Chenopodium species over time.  
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Figure 3.8.  Phylogram derived with maximum parsimony analysis of entire ITS region. 
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Chloroplast Markers 

 Two chloroplast markers, matK (gene) and trnD-trnT (spacer) were also 

investigated to check for robust markers that can aid in identifying the Chenopodium 

species. Both chloroplast regions were analyzed using MP and Bayesian analysis. For the 

MP analysis (Fig 3.10) of matK gene, 20 taxa were screened and aligned sequence length 

had 823 characters. Two parsimonious trees were retained with 198 steps.  The 

uncorrected CI was 0.90 and the corrected CI, which excluded uninformative sites, was 

0.82.The RI for the tree was estimated to be 0.92. Despite the fact that the bootstrap 

values for MP analysis were high, the number of parsimony informative characters were 

only 8.99 % (74 PI characters).  

 For the Bayesian analysis of the matK gene, the nucleotide substitution model 

selected for matK using Modeltest was TIM+G. The base frequencies were as follows:  

f(A) = 0.2852; f(C)=0.1762; f(G)= 0.1699; f(T)= 0.3687. The estimates of rates of 

substitution were: A↔C=1.000; A↔G=0.9557; A↔T= 0.2128; C↔G=0.2128; C↔T= 

1.6055; G↔T=1.0000. Four simultaneous analyses were run for 2 million generations, 

each with four Markov Chain Monte Carlo (MCMC) chains, and sampling every 100 

generations. The resulting 50% majority rule tree was very similar to the MP consensus 

tree, and the posterior probability values were similar to bootstrap values (Figure 3.9). 

The trees for matK resulting from both analytic methods were less resolved than the trees 

based on the ITS data, particularly for the C. album and C. berlandieri groups. This 

reflects smaller number of informative characters in matK compared to ITS. 
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Figure 3.9. Strict consensus tree derived from maximum parsimony analysis of matK 

gene for 22 Chenopodium species. The values on top of branch are bootstrap values from 

maximum parsimony analysis and values under the branch are posterior probability 

values from Bayesian analysis.  
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 The chloroplast spacer region (trnD-trnT) had an aligned length of 755 bp aand 

included 102 parsimony informative characters (13.5% of total characters). When the 

data containing 18 taxa were subjected to MP analysis, only one parsimonious tree was 

retained with 233 steps.  The uncorrected CI was 0.875 and the corrected CI, which 

excluded uninformative sites, was 0.801.The RI for the tree was estimated to be 0.884. 

The phylogenetic tree from MP analysis of Chenopodium species was well supported by 

the bootstrap values, ranging from 72-100 % (Figure 3.10). 

 The Bayesian analysis of the trnD-trnT spacer was conducted with the nucleotide 

substitution model, selected by Modeltest, GTR+I. The base frequencies were as follows:  

f(A) = 0.3413; f(C)=0.1845; f(G)= 0.1615; f(T)= 0.3127. The estimates of rates of 

substitution were: A↔C=0.6125; A↔G=1.0832; A↔T= 0.1701; C↔G=0.5993; C↔T= 

0.6638; G↔T=1.0000 and the proportion of invariable site were 0.5605. Four 

simultaneous analyses were run for 1 million generations, each with four Markov Chain 

Monte Carlo (MCMC) chains, and sampling every 100 generations. The 50% majority 

rule tree was very similar to the MP consensus tree (Figure 3.10). Bayesian posterior 

probability values are shown in Figure 3.10. The topology of the trnD-trnT was similar to 

ITS gene topology, however, with trnD-trnT spacer, C. ficifolium did not share the clade 

with C. berlandieri, but instead was placed as sister to the C. album clade.  
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Figure 3.10. Strict consensus tree derived from maximum parsimony analysis of trnD-

trnT region for 18 Chenopodium species. The values on top of branch are bootstrap 

values from maximum parsimony analysis and values under the branch are posterior 

probability values from Bayesian analysis.
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 Combined Analysis of Molecular Markers 

  Maximum parsimony and Bayesian analyses for the combined chloroplast region 

and combined nuclear and chloroplast regions were conducted to determine if they result 

in more resolved trees than the individual regions alone. The MP and Bayesian trees were 

almost identical and only the MP strict consensus tree is shown in Figure 3.11. The tree 

topology from the strict consensus tree was not different than the topology from the 

analysis of trnD-trnT. Compared to individual chloroplast markers, the bootstrap values 

increased for the combined analysis. The only significant difference between the ITS 

phylogeny and that from the chloroplast regions was that C. ficifolium grouped with C. 

berlandieri group based on ITS but was sister to the C. album/C. strictum clade based on 

the chloroplast regions. 

 Maximum parsimony analysis of the data set combining DNA sequences from the 

ITS, matK, trnD-trnT is presented in Figure 3.12. The bootstrap values ranged from 54 to 

100%. The combined result showed similar tree topology to ITS alone with similar 

bootstrap values. The results indicated that C. bonus-henricus and C. capitatum are close 

to C. glaucum. Accessions of C. murale and C. simplex are sister to the clade consisting 

of the C. berlandieri and C. album group. Chenopodium album and C. berlandieri are 

very close to each other C. strictum is within the C. album clade, C. ficifolium and C. 

quinoa are nested in the C. berlandieri clade. 
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Figure 3.11. Strict consensus tree derived from maximum parsimony analysis of 

combined chloroplast DNA sequences from 18 sequences. The values on top of branch 

are bootstrap values from MP analysis and values under the branch are posterior 

probability values from Bayesian analysis.  
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Figure 3.12. Strict consensus tree derived from maximum parsimony analysis of 35 

sequences using combined DNA sequence data of ITS, matK, trnD-trnT.  Bootstrap 

values are shown above the branches.
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Phylogenetic Information from the Phylogenetic Study 

  The ITS region is a good marker and the tree is well resolved. Compared to the 

chloroplast markers, ITS markers generated more phylogenetic informative sites that had 

a direct effect on tree topology and the clades. Little resolution was gained by adding the 

chloroplast regions, although bootstrap support did increase in some cases. The few 

morphological characters added little phylogenetic information. We can broadly classify 

the sampled Chenopodium species into four clades or groups (Figure 3.6). The clade I 

comprises C. capitatum and C. bonus-henricus and they are basal to the remaining 

Chenopodium species. The position of these species is in accordance with the 

morphological classification in the Flora of North America (Clemants and Mosaykin 

2004) which separates two species as Chenopodium subg. Blitum sect. Agathophytum. 

These species have the distinct characteristics of horizontal seeds (relative to the position 

of the flower) with smooth pericarps and flowers not covering the seed at maturity. 

Another sect. in the Subgenus Blitum is sect. Pseudoblitum, which contains C. rubrum 

and Sect. Glauca which contains C. glaucum. This grouping of Chenopodium subg. 

Blitum is also strongly supported by our results from molecular data analysis of nuclear 

and chloroplast regions. Chenopodium simplex belongs to subg. Chenopodium sect. 

Grossefoveata and is the only North American species classified under the section. The 

leaves of C. simplex are large in size and they resemble maple (Acer spp.) shaped leaves. 

Chenopodium murale, which belongs to subsect. Undata, forms a separate clade from C. 

simplex based on ITS, but matK and trnD-trnT sequence data support it forming a clade 

with C. simplex. 
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 The phylogenetic tree was not well resolved for the subsect. Favosa (C. 

berlandieri, C. ficifolium, C. quinoa) and subsect. Chenopodium (C. album, C. strictum). 

Two accessions labeled as species within the subsect. Favosa, C. berlandieri 1 and C. 

bushianum were found to be more closely related to C. album. The morphological and 

molecular data supported the position of these two accessions in the C. album group. The 

best explanation is that these accessions are misidentified as both these species did not 

had the honeycomb pitted pericarp, and the DNA content values were also more close to 

C. album as compared to C. berlandieri (Table 3.3). Rana et al 2010 also used the same 

accession of C. bushianum and they also reported that C. bushianum is more related to C. 

album than C. berlandieri species.  

 Within the subsect. Chenopodium, we were not successful in finding any 

polymorphic sites between C. album and C. strictum. Phylogenetic analyses of ITS and 

trnD-trnT revealed similar results, but sequences from matK did not improve the 

resolution of phylogenetic tree. The morphological differentiating characters between C. 

album and C. strictum were the size of the seeds (small as compared to C. album), and C. 

strictum having a smaller 2C values than C. album. Although the chromosomes were not 

counted for Chenopodium species, but based on the 2C values, we expect that C. strictum 

to be a diploid and may be an ancestor to hexapolid C. album.   

  

Chenopodium Diversity and Glyphosate-Based Species Shift in the North Central 

States  

  The third objective of our research was to use the informative sequence data and 

investigate if the samples from North Central states belong to C. album or if there is 
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diversity in Chenopodium species which might indicate a species shift. For the ease of 

amplifying the ITS region with universal primers and having more parsimony 

informative character (35%), ITS loci was sequences from Chenopodium populations. 

The molecular data from the ITS region was in accordance with the morphological data 

that is used by the taxonomist for classifying the Chenopodium genus (Clemants and 

Moysakin, 1996). 

 In chapter 2, we found that when we screened different populations of 

Chenopodium from the North Central states, there was variability in response to the 

application of glyphosate herbicide. In this section, using the ITS markers, first we 

investigated if there is any population structure across the North Central states and then 

we investigated if there is any population structure between glyphosate resistant (R) and 

sensitive (S) samples.  

 ITS region from 24 populations of Chenopodium populations across the North 

Central states (7R, 5S and 12 Untreated), were sequenced. The consensus sequences were 

then aligned with Clustal W and manually adjusted. Neighbor joining (NJ) method of tree 

construction was used for these Chenopodium populations and selected accessions from 

the C. album and C. berlandieri groups. Bootstrap values were calculated to estimate the 

reliability of the tree (Figure 3.13). The NJ tree revealed two results. First, all the 

Chenopodium populations from the North Central states grouped into the same cluster as 

Chenopodium album, indicating that all sampled populations are more closely related to 

C. album than to other weedy Chenopodium species. Furthermore, there was no 

separation based on the geographic location. With additional support from DNA content 

values and plant morphology (personal observations), we conclude that the samples 
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tested were different biotypes of C. album. The second result is that no apparent structure 

was observed for R and S samples. Had the tree separated the Chenopodium plants based 

on whether they were resistant or sensitive, it would have indicated that under glyphosate 

selection pressure, there might be shift in population to more tolerant species. In 

conclusion, the variability in responses to glyphosate among populations from different 

states cannot be attributed to variable response among the Chenopodium species. Further, 

the reported increase of glyphosate resistance in common lambsquarters are likely due to 

evolution of C. album rather than a shift towards more tolerant Chenopodium species. 
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Figure 3.13. Neighbor joining tree of Chenopodium populations sampled across the 

North Central states and selected species based on ITS sequences. Bootstrap values 

greater than 50% are shown above the branches.  
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3.5 Conclusions 

 The Chenopodium species were investigated using morphological, cytogenetic 

and molecular data. Some morphological characters such as surface pattern of pericarps 

and presence or absence of keel on the perianth are informative characters. Many 

quantitative characters were also used, but due to phenotypic plasticity and similar 

growth habits, these characters overlapped within and among the species, hence did not 

prove to be useful in identifying species. The DNA content analysis proved to be an 

important technique and helped in separating C. album (hexaploid) from C. berlandieri 

(tetraploid) and C. strictum (diploid). Using the DNA content values is a challenge if 

used alone because of the presence of polyploidy C. album. This means that C. album 

that is a tetraploid will be no different than C. berlandieri or C. quinoa as both of these 

species are also tetraploid.  

 Sequence data from three loci (ITS, matK and trnD-trnT) all resulted in similar 

tree topologies. However, the ITS region contained the most polymorphic sites and hence 

was considered the best marker in the current study. The phylogeny based on ITS region 

was well resolved and was in accordance with the taxonomic classification of 

Chenopodium genus (Moyaskin and Clements 2004). The only limitation of the ITS 

molecular markers was that they did not differentiate C. strictum from C. album. The best 

explanation for the grouping of C. album and C. strictum can be deduced from the DNA 

content values for these two species. Both are in the same subsect. Chenopodium and it is 

possible that diploid C. strictum is a recent ancestor of hexaploid C. album. Accessions 

labeled C. bushianum and C. berlandieri 1 were found to be more closely related to C. 

album than C. berlandieri. The molecular data, DNA content values and morphological 
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characters all indicate that these accessions are actually biotypes of C. album and have 

been misidentified. Another finding was that all the Chenopodium populations sampled 

across the North Central states belong to C. album, so decreased sensitivity to glyphosate 

is due to variation within that species rather than a shift in species.  

 

3.6 Sources of Materials 

1
 SAS 9.2 software, SAS Institute Inc., Cary, NC 27513-2414, USA.  

2
 Beckman Institute for Advanced Science and Technology 405 North Mathews, Urbana, 

IL 61801, USA. 

3
 Taq polymerase, Promega Corporation 2800 Woods Hollow Road Madison, WI 53711  

4
 QUIAquick PCR Purification Kit, 27220 Turnberry Lane Suite 200, Valencia, 

California 91355, USA. 

5
 AB Big Dye Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems Inc.,850 

Lincoln Centre Drive,Foster City, CA 94404, USA. 

6 
Sequencher

TM
 4.7 software, Gene Codes Corporation, 775 Technology Drive 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7
 W.M. Keck Center for Comparative and Functional Genomics, University of Illinois 
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CHAPTER 4 

SUMMARY 

 

4.1 Conclusions and Future Directions 

 Weed management is a significant challenge in agricultural systems. Every year, 

new weed species are added to the list of resistant weeds (Heap, 2010). There are several 

ways to manage weeds but the first step is to correctly identify them. In the past, several 

researchers have systematically investigated complex weed species (Ogg et al. 1981; 

Schilling 1981), but not much research has been done in understanding the weedy 

Chenopodium complex. The weedy Chenopodium complex is not well understood within 

the North Central states and there are ongoing reports that the complex is becoming more 

difficult to control with glyphosate. 

 The overall purpose of this dissertation was to understand the Chenopodium 

complex and to develop markers that can identify and differentiate various species of 

Chenopodium. Prior to this research, several reports were published suggesting increase 

in tolerance of common lambsquarters populations to glyphosate. Also, we know from 

the taxonomic studies in Chenopodium that several of the weedy Chenopodium species 

are so closely related that it is very difficult to differentiate the species in the field. 

   Towards our objectives, we first investigated the response of different 

Chenopodium species to glyphosate, followed by screening populations from the North 

Central to glyphosate. We observed inter- and intra-species variation in response to 

glyphosate, and within the samples from the North Central states, we observed variability 

within and among the populations from one state.  Although C. album is considered as 
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the main weed present in agricultural fields, we did find other species (C. ficifolium and 

C. berlandieri) that were more tolerant than most C. album populations.   

 The variability in response of Chenopodium species and populations led to an 

interesting question. Are the samples that are less sensitive to glyphosate actually C. 

album, or  there is shift in species towards more tolerant Chenopodium species. To test 

the hypothesis of shift in weed species, we developed sequence based markers that can be 

used to differentiate the species. Results from morphological and molecular markers 

showed that morphological characters are highly variable and of little taxonomic value. 

Among the three loci examined, ITS sequence data proved to be most useful in 

segregating Chenopodium species. Some species that shared homologous genes were not 

resolved, however the DNA content analysis helped in discriminating these closely 

related species that did not differ in ITS sequences.  

 Implications from this research are that variability in response to glyphosate 

among populations from different states cannot be attributed to differences among the 

Chenopodium species. Instead, the increased reports of glyphosate resistance in common 

lambsquarters is due to evolution within C. album rather than a species shift. However, 

some other weedy Chenopodium species outperform C. album under herbicide 

treatments, so farmers should remain vigilant as species like C. ficifolium and C. 

berlandieri also have the potential of developing high level of tolerance to glyphosate.  

 Based on the results from this research working with the Chenopodium complex, 

we conclude that the best approach to study this genus includes: 

1) Studying morphological characters such as seed pericarp structure (honeycomb 

pitted or smooth), seed orientation on the fruit (vertical or horizontal) and perianth 
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structure (keeled or not). All these characters were useful in differentiating some 

species from others. Most of the vegetative characters have high levels of 

homoplasy and hence cannot be used successfully.  

2) Using loci that have high number of polymorphic sites. We investigated ITS, 

matK and trnD-trnT spacer, but we should look for loci that are more 

polymorphic to better distinguish closely related species. 

3) Using DNA content analysis to determine the genome size which proved to be of 

great help in differentiating those species which have high similarity in the DNA 

sequences. We were able to differentiate C. album from C. strictum mainly due to 

the difference in their genome size.  

A take home message from this research is that all the methods described above 

for species identification can be successfully used to detect one or another species, but a 

single marker cannot resolve the whole genus. In this research, we took a multi-faceted 

approach and were successful in understanding the taxonomic makeup of this weedy 

complex. Future work should incorporate more molecular, morphological and 

cytogenetic approaches in understanding complex genomes.  

 Another important aspect of this genus is its reported potential to form hybrids. 

In the present study, the hybridization potential was not explored, but based on the 

congruence of results from nuclear and chloroplast markers, we found no evidence for 

hybrids in our samples. It will also be interesting to include multiple samples of C. album 

that are diploid, tetraploid and hexaploid and then examine whether there are differences 

associated with ploidy level. It would also be valuable to explore how tetraploid C. album 

differs from C. berlandieri, another tetraploid species in the genus.  
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This research was not aimed at taxonomic revision or providing a detailed 

phylogenetic relationship among the species, but it again proved that Chenopodium is a 

complex group and taxonomists should work more on this genus to develop easy 

identification keys and should explore more informative markers to develop a robust 

phylogeny. In this research, we showed that to investigate complex problems, weed 

scientists can use molecular, cytogenetic and phylogenetic approaches, and the combined 

data will yield more conclusive results.  
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