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ABSTRACT 

Interfacial science is a fascinating field in materials science. From grain boundaries in 

bulk materials to interfaces in thin films, the properties of interfaces can lead to novel 

functionality in materials. The effect of interfaces on a material‟s properties becomes amplified 

as the proportion of interfaces increases in relation to the volume of the material, for example in 

supported nanocrystals (NCs). While interfaces in bulk materials and thin films have been well 

characterized, atomic level characterization of NC interfaces is limited. The aim of this thesis is 

to develop a general set of methods to comprehensively study NC interfaces including interfacial 

atomic structure, interfacial energy and interfacial line tension. We have selected Au-TiO2 

interface that has significant attention for its role in the remarkably low temperature catalytic 

oxidation of carbon monoxide to carbon dioxide.  

One of the best methods to study interfaces in bulk materials and thin films is cross 

sectional Transmission Electron Microscopy (TEM). Particularly with the advent of aberration 

corrected electron microscopy the experimental power to probe interfaces has increased 

manifold. However it is difficult to prepare NCs in the cross sectional viewing geometry for 

TEM without damaging the NCs using conventional specimen preparation methods. To enable 

this work, firstly a specimen preparation method was developed to support epitaxial Au NCs in 

the cross sectional geometry for TEM investigations without damaging the NCs.  

The interfacial atomic structure was investigated using aberration corrected Scanning 

Transmission Electron Microscopy (STEM) with a spatial resolution of ~1Å. Interfacial energy 

of the NCs has been measured from cross sectional STEM images of NCs. It is found that Au 

NCs with the epitaxial relationship Au(111)[-110] || TiO2 (110)[001] have the largest adhesion to 
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TiO2 (110) with an interfacial energy of 0.61±0.05 J/m
2 

(assuming γTiO2(110) = 0.33 J/m
2
 and 

γAu(111) = 1.283 J/m
2
). The stability of this epitaxy is attributed to the nucleation of Au atoms in 

the missing titanium row of a (1x2) TiO2 (110) reconstruction – resulting in an interfacial 

reconstruction of Au, Ti and O atoms which lowers the interfacial energy and enhances the 

adhesion of Au NCs to TiO2 (110).  

It has been found that smaller Au NCs dewet more than bigger Au NCs on TiO2 (110). 

The dewetting is attributed to the effect of interfacial line tension. In order to measure interfacial 

line tension, the Wulff-Kaishew was modified to incorporate the effect of interfacial line tension 

on NC shapes. The lower limit of interfacial line tension was measured to be 0.85±0.24 eV/Å 

(1.36±0.38 x 10
-9

 N) (assuming γTiO2(110) = 0.33 J/m
2
 and γAu(111) = 1.283 J/m

2
) for NCs with the 

epitaxial relationship of Au(111)[-110] || TiO2 (110)[001]. 

Since TEM/STEM studies are limited to individual NCs, the formation of epitaxial Au 

NCs was also probed using Reflection High Energy Electron Diffraction (RHEED) of Au NCs 

on flat TiO2 (110) supports in order to obtain structural information averaged from a larger 

number of NCs. The RHEED study confirms the epitaxial relationship of Au NCs as       

Au(111)[-110] || TiO2 (110)[001], irrespective of the details of the starting TiO2 (110) surface 

structure and the annealing atmosphere. On reconstructed (1x2) TiO2 (110) surfaces, the onset 

and completion of epitaxy formation occurred at much lower temperatures than unreconstructed 

TiO2 (110) surfaces. This shows that Au prefers to nucleate and grow as epitaxial NCs over 

(1x2) reconstructed TiO2 (110) in agreement with TEM/STEM images of NCs. 
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CHAPTER 1  

INTRODUCTION 

This chapter introduces the study of gold nanocrystals on titania (Au/TiO2) and the need 

for advanced transmission electron microscopy techniques to study interfaces of Au/TiO2. The 

chapter is organized into three sections. The first section describes the need for studying metal 

nanocrystals (NCs) supported on oxides as catalysts and the general issues related to the study of 

supported NCs. The second section analyzes different experimental methods for studying 

supported NC interfaces. Specifically this section outlines the advantages of aberration corrected 

electron microscopy for studies on interfaces. The third section introduces the Au/TiO2 system, 

including details of unresolved problems in understanding oxidation catalysis by Au/TiO2. The 

third section provides a background of studies using Au NCs grown on TiO2 (110) surfaces. 

1.1 Motivation 

It was estimated in 2005 by US Climate Science and Technology program that catalyzed 

chemical processes contributed to nearly $700 billion worth products in a year. The massive 

figure immediately brings to our mind a picture of how much the world economy depends on 

catalysis. Starting from hydrocarbon cracking of petroleum products to the detoxification of 

noxious exhaust gases in millions of automobiles, catalysis assumes dominant if not visible roles 

in day to day life. The word „catalysis‟ (which in Greek means „breaking down‟) was coined by 

the Swedish scientist Berzelius who in the early part of the 19
th

 century carefully studied the 

phenomenon of platinum being unaffected during chemical reactions even though it was vital to 

the chemical reaction. Today, catalysis has come a long way with the synthesis of many different 

forms of catalysts for various functions. In the broadest sense, these catalysts can be classified 



2 

 

into two categories – homogeneous and heterogeneous catalysts. As the names suggest, 

homogeneous catalysts are ones which have the same phase as the reactants while heterogeneous 

catalysts have phases different from the reactants. Bulk of the industrial catalysts in use today is 

heterogeneous in nature. They form the backbone of oil refining, production of syngas, olefins, 

aromatics as well vital inorganic compounds such as nitric acid, sulfuric acid etc.[1] 

 Heterogeneous catalysts come in many different forms – metals, oxides, sulfides, solid 

acids etc. Of these types, metals form a common component of heterogeneous catalysts for their 

ability to chemisorb gaseous reactants and break them down to reactive intermediates. For 

example molecular hydrogen (H2) spontaneously and exothermally splits into atomic hydrogen 

on platinum whereas it takes 410 kJ/mol of energy to break the hydrogen molecule into hydrogen 

atoms in the absence of a catalyst. While the above example illustrates the ability to use metals 

as catalysts, in order to maximize the potential of metals as catalysts, they need to be finely 

divided into small particles to increase the available surface area available for catalytic action. 

Metals in their finely divided form, however, are not stable at high temperatures unless they are 

affixed to a support that can provide a barrier for metal atom diffusion as well as particle 

coalescence. For this purpose, oxides find use as stable supports for catalytic metal NCs, which 

do not degrade at high temperatures. Over the course of time, it was found that oxide supports 

also performed a significant role in the catalytic mechanism by interacting with the interfacial 

metal atoms and imparting novel chemical properties to the interfacial metal atoms. Today, oxide 

supported metal NCs are used as heterogeneous catalysts in production of aromatics, 

hydrocracking, ethylene oxidation, automobile catalytic convertors etc.[2] A typical three-way 

automobile catalytic convertor uses for example metallic/alloy NCs (Pt,Pd,Rh etc.) supported on 
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gamma alumina to simultaneously perform NOx reduction, carbon monoxide oxidation and 

oxidation of unburnt hydrocarbons.  

The market for oxide supported metal NC catalysts continues to grow and new catalysts 

are sought for more energy efficient and „green‟ processes that reduce environmental pollution. 

In 2007, the market for just automobile catalytic convertors was in excess of $1.7 billion.[3] In 

order to keep up with the market demands, scientists have been working to find more efficient, 

functional, selective and longer-lasting catalysts. One of the thrusts in this direction has been to 

find alternative oxidation catalysts used in automobile exhaust lines to meet the ever-tightening 

federal emission regulations.  In present day automobiles, Pt/Pd NCs supported on silica, 

alumina, zinc oxide etc. perform the function of rapidly converting carbon monoxide to carbon 

dioxide before being released into the atmosphere. However, commercial Pt-group catalysts are 

not active for CO oxidation below 200
o
C which leads to the “cold start-up” problem of excessive 

CO production during incomplete fuel combustion.[4] An alternative to Pt/Pd catalysts are Au 

NCs supported on reducible oxide substrates such as TiO2, Fe2O3 etc. which promote oxidation 

catalysis at much lower temperatures than Pt/Pd. Apart from CO oxidation it has been also found 

that Au catalysts hold promise in catalyzing other reactions such as selective epoxidation of 

propene[5], ethyne hydrochlorination[6] etc. Further, the oxidation of CO is considered critical 

to using methanol or hydrocarbons as fuels for fuel cells, where traces of CO can poison the 

electrodes. Keeping in mind the number of applications, there has been a push to understand the 

mechanism behind Au catalysis. 

In a paper in 1987, Haruta‟s group demonstrated exceptional catalytic activity for Au 

NCs supported on semiconducting oxides such as Co3O4, NiO and α-Fe2O3.[7] Prior to Haruta‟a 

work, other groups also attempted to test the efficacy of Au based catalysts for CO oxidation 
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without as much success using impregnation of porous oxide substrates with HAuCl4. However, 

Haruta et. al. showed that by coprecipitating Au NCs and the oxide support from a solution of 

chloroauric acid and the nitrate of transition metals, it was possible to disperse Au NCs of size 

less than 5 nm uniformly on oxide supports. This proved vital in producing Au/TiO2 catalysts 

with remarkable catalytic activity for CO oxidation to CO2 even at -70
o
C.  

Catalysis by Au varies markedly from Pt-group elements. Specifically, the O2 molecule 

(O=O) does not spontaneously dissociate on Au to form oxygen atoms whereas O2 

spontaneously dissociates on Pt/Pd to form atomic oxygen species which is a critical step to the 

reaction mechanism on Pt/Pd. There has been much effort devoted to unraveling the mechanism 

of Au/TiO2 promoted oxidation catalysis for more than 20 years now. Many proposals have been 

put forward to explain the unexpected low temperature activity of Au catalysts; the details are 

presented in Section 1.3. Despite extensive studies, there is still no agreement on the reaction 

mechanism.  

Some of the fundamental issues in understanding Au NC catalysis stem from a broader 

problem that experimental methods to probe interfaces of NCs are still inadequate. Much is 

unknown about NC interfaces. For instance, fundamental questions such as a) “What is the 

interfacial atomic structure?” or b) “How does the interfacial energy of NCs change with size?” 

or c) “How much charge transfer happens at NC interfaces?”  – have not been answered 

quantitatively for many systems. The predominant issue with studying NC interfaces relates to 

the fact that they are buried. Hence, while a large number of experimental methods can be used 

to study the interior and surfaces of NCs, many of these methods cannot be deployed for 

studying NC interfaces. The various experimental methods have been compared in Section 1.2.1.  
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1.2 Experimental Studies of Nanocluster Interfaces 

Interfaces play a significant role especially in nanoscale systems. For example, inorganic-

organic interfaces form the backbone of colloidal nanoparticle synthesis.[8] However, interfaces 

in materials are often difficult to study since they tend to be inaccessible to many experimental 

methods. Determining the structure and chemistry in nanoscale systems is still an unresolved 

problem [9] and more so in the case of nanoscale interfaces. Section 1.2.1 presents a brief survey 

of experimental methods used to study structure and chemistry of supported NCs. Particular 

emphasis is placed on the capability of the experimental probes to study interfaces of supported 

NCs. Section 1.2.2 provides a brief introduction to aberration corrected electron microscopy as a 

tool for probing NC interfaces. 

1.2.1 Summary of Experimental Methods for Probing Interfaces of Supported Nanoclusters 

Multiple microscopic and spectroscopic techniques have been applied to study the 

structure and chemistry of supported NCs (see Table 1.1). These include Transmission Electron 

Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Scanning Tunneling 

Microscopy (STM), X-Ray Photoelectron Spectroscopy (XPS), Medium Energy Ion Scattering 

(MEIS) etc. The strengths and limitations of some of the major experimental techniques for 

studying interfaces of supported NCs are summarized below.  
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Table 1.1: Summary of experimental techniques to study supported NCs 

Technique Strengths Limitations 

Structure Determination 

TEM 
Atomic resolution real and reciprocal 

space characterization 

Samples must be thin and compatible 

with TEM 

STEM 
Atomic resolution real space  

information, Z-contrast 
Same as TEM 

STM Near atomic resolution of top surfaces 

Conductive samples only; some 

electronic structure  information can be 

obtained from interfaces; Limited to top 

surfaces 

AFM 

High resolution z-axis imaging of 

many materials including insulators 

such as oxides ; Samples can be 

probed in air 

Lower resolution; tip-particle convolution 

for smaller NCs can lead to artifacts 

RHEED 

Diffraction information about the 

structure of an ensemble of NCs or 

surfaces or both 

Cannot analyze individual NCs, no direct 

real space information 

LEED 
Diffraction information from 2D 

surfaces 

More of a 2D surface characterization 

tool; not used in general for NCs 

LEEM 

In-situ characterization of 2D 

surfaces; useful for imaging surface 

steps etc. 

Limited resolution; Cannot image 

interfaces 

XRD 
In-situ characterization, bulk, surface 

and interfacial information 

Large spot size; limited real space 

resolution 

GIXRD 
Diffraction information from surfaces 

and interfaces 
Large spot size 
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Table 1.1 (Cont.) 

Chemical Characterization 

XPS Surface Sensitive Cannot probe individual clusters 

AES 
Surface Sensitive 

Spatial resolution : ~10 nm 

Sampling Depth : 0.5 – 7.5 nm 

Detection Limits: 0.1 – 5 atom% 

MEIS Surface Sensitive Cannot probe individual NCs 

STS 
Surface and interface sensitive 

Spatial resolution : ~ 2Å 
Limited to conductive specimens 

EXAFS 
Atomic bond distances; Applicable to 

bulk, surfaces and interfaces 
Cannot probe individual NCs 

EELS Surfaces and interfaces sensitive 

Limited range of energies for study; 

Samples must be thin and compatible 

with TEM 

 

1.2.2 Aberration Corrected Electron Microscopy and Spectroscopy 

Electron microscopes are one of the best tools available today to study supported NCs. 

The electron wavelengths used in transmission electron microscopes (TEM) range from ~0.4 to 4 

pm. The highest magnification of a modern TEM is about a few million.[10] It has been 

consistently observed, however, that the resolution for conventional TEMs is about twenty times 

worse than their theoretical limits. This discrepancy in resolution is caused by aberrations 

inherent in cylindrical electromagnetic lenses that arise because of differences in field strength 

that increase with the distance away from the lens axis. As a result, the electrons traveling most 
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distant from the axis of cylindrical symmetry are focused more strongly than those traveling 

closer to the axis.
 
 This effect is termed spherical aberration and it ultimately limits the resolution 

of electron microscopes.[11] The point spread (the formation of a disc in the image from a single 

point on the object plane) is proportional to the spherical aberration coefficient (Cs) and the 

square of the off-axis distance divided by the focal length of the lens.  

The cylindrical magnetic lenses used in electron microscopes have positive Cs values.[11] 

Thus, in order to correct the aberration in magnetic lenses, non-cylindrical magnetic lenses with 

negative Cs values must be employed. A lens capable of meeting this requirement is the thick 

magnetic hexapole lens, which is composed of three magnetic dipoles.[12] Unfortunately, the 

hexapole lens, like any other multipole lens system, exerts large low-order aberrations (Cs is a 3
rd

 

order aberration) which, if not removed, impose greater limitations on the resolution than the Cs 

alone.[12, 13] A successful Cs-corrector design for TEM uses two symmetric magnetic 

hexapoles arranged with the help of two additional round lenses to eliminate each other‟s lower 

order aberrations.[13-15]
 
 Krivanek and colleagues have developed an alternative Cs-corrector 

design for STEM dedicated instruments that utilizes a combination of quadrupoles and  

octupoles.[16, 17] 

The Cs-corrector can be positioned either before or after the sample. If placed after the 

sample, high resolution electron microscopy (HREM) imaging with a resolution of 1 Å or better 

can be achieved by correcting for the objective lens‟ aberrations. In HREM, atomic resolution is 

typically achieved with very thin samples (~few nm). The contrast within an image comes 

mostly from modifications to the phase of the electron wave by the electrostatic potential of 

atoms.[18]
 
 This contrast is sensitive to both light and heavy atom contributions. Hence lighter 

elements such as oxygen, carbon etc. can be visualized directly. Positioning the Cs-corrector 
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prior to the specimen plane, results in the formation of a scanning sub-nanometer electron probe 

for STEM imaging by correcting for the condenser lens‟ aberrations. In STEM, the electron 

probe is used to scan across the sample. As it scans, the electron probe is scattered by atoms in 

the specimen. Electrons scattered into an annular detector placed after the specimen plane are 

collected and used to form a rastered image. This mode of imaging is called annular dark-field 

ADF-STEM.[19] In ADF-STEM, the electron image contrast is approximately proportional to 

the square of the atomic number (Z) and thickness, when a large inner cutoff angle is used for the 

ADF detector.[20] This mode of imaging is known as incoherent imaging or Z-contrast. 

Additionally, the electrons passing through the hole in the ADF detector can be analyzed by 

electron energy loss spectroscopy (EELS)[21, 22] for high resolution chemical and electronic 

structure analysis.[23] The combination of Cs-correction and improvements in electron energy 

loss spectrometers have led to the recent demonstration of atomic resolution chemical 

mapping[24, 25] and local electronic structure analysis.[26] A more detailed description of TEM, 

STEM and EELS is provided in the next chapter. 

With the advent of sub-Å resolution from Cs-correction it is now possible to not only 

image atomic structure of interfaces in thin films, grain boundaries, defects etc. with greater 

precision, but also make quantitative measurements of elemental composition, concentration, 

electronic structure etc. For example Jia et. al. used negative Cs-corrected imaging to measure 

the oxygen concentration at grain boundaries of perovskite ceramics. Shibata et. al. imaged 

individual yttrium dopants at an alumina grain boundary using Cs-STEM.[27] Klie et. al. showed 

the segregation of impurity atoms to specific locations in the grain boundaries of polycrystalline 

yttrium barium copper oxide using Cs-Corrected STEM and EELS.[28] Considering the 

advances made in studies of bulk and thin film interfaces, it is conceivable that Cs-corrected 
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electron microscopy will also offer new insights to our understanding of NC interfaces. Chapters 

3,4 and 5 illustrate this amply for Au NCs supported on TiO2 (110), where Cs-corrected 

microscopy and spectroscopy is to understand and interpret the atomic structure, electronic 

structure, interfacial energy and interfacial line tension of this very important interface.  

1.3 Au on TiO2 

Haruta et. al. showed that the size of the Au NCs and the choice of support play a crucial 

role in the catalysis by Au NCs.[7] They showed that Au NCs with sizes smaller than 5 nm were 

active while larger Au NCs (above 20nm) did not catalyze CO oxidation. Also, unsupported Au 

NCs (in the powder form) were reported to have very little catalytic activity [7] while the 

catalysis was much found to be more efficient when Au was supported on reducible transition 

metal oxides (NiO,Fe2O3 etc.). Later on, many research groups have broadly confirmed these 

findings. The large body of work in this area has been reviewed multiple times in the last two 

decades.[6, 29-36]  

However, despite extensive work in this field, there is no consensus about the reaction 

mechanism and the catalytically active sites for even a simple reaction such as Au catalyzed 

oxidation of CO. [6, 31, 37] Two major schools of thought have arisen out of experimental 

observations that catalytic activity is strongly (a) size dependent and (b) support dependent. 

Increased catalytic activity from size dependency has been supported by experiments[38, 39] and 

calculations[40] which suggest that undercoordinated surface gold atoms in smaller NCs are the 

active sites. Another proposal for the size dependent catalytic activity argues that the  appearance 

of non metallic character in smaller Au NCs (measured by Scanning Tunnelling Spectroscopy 

(STS)) is responsible for the increased catalytic activity.[41] The support dependency is buffered 
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by arguments that charge transfer at the interface of the Au NCs[42-44] and favorable reactant 

adsorption sites on support[37, 45] are responsible for increased catalytic activity. 

As noted by Bond[46], it is very difficult to satisfactorily compare the reports from 

various groups since the details of the experimental variables are often different. After an 

extensive summary of various works, Bond summarizes that size dependency and support 

dependency are not separable and consequently should not be treated exclusive of each other. 

Bond goes on to propose a model[37] for Au promoted catalysis of CO where CO molecules 

bind to under-coordinated surface sites at the Au NC surface. The defects in the oxide support 

provide binding sites for oxygen and the reaction is mediated by Au
δ+

 species that is 

hypothesized to exist at the interface. Experimentally, it has been shown using Mössbauer 

spectroscopy that both Au
0
 and Au

δ+ 
are present in active catalysts.[47] However, the precise 

location of the Au
δ+

 species could not been identified. As a result, the presence of Au
δ+

 species at 

the interface of Au NCs remains to be experimentally verified.[6]  

One of the difficulties with studying the precise nature of the interfacial Au sites is that 

real catalysts tend to be difficult to characterize using microscopy and spectroscopy techniques. 

Hence, many researchers have resorted to studying NCs supported on flat, well-defined supports 

for solving fundamental problems in catalysis.[48] In case of Au NC catalysis, TiO2 has garnered 

a lot of attention as a model support because the surfaces of TiO2 have been extensively 

researched and well understood, especially for the TiO2 (110) surface.[49] The subsequent 

sections describe TiO2 surfaces and studies of Au NCs supported on well defined 2-D TiO2 

surfaces. 
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1.3.1 Surface Studies of TiO2 (110) 

TiO2 crystallizes in three major forms – rutile (tetragonal, 𝐷4𝑕
14-P42/mnm, a = b = 4.584 Å, 

c = 2.953 Å)[50], anatase (tetragonal, 𝐷4𝑕
19-I41/amd, a = b = 3.782 Å, c = 9.502 Å) and brookite 

(rhombohedrical, 𝐷2𝑕
15-Pbca, a = 5.436 Å, b = 9.166 Å, c = 5.135 Å).[51] Most of the model 

studies on catalysts use rutile TiO2. For this reason, all further discussions will pertain only to 

rutile TiO2. In the tetragonal lattice of rutile TiO2 (Figure 1.1), the unit cell consists of two 

titanium atoms at (0,0,0) and (½, ½, ½) and four oxygen atoms at ±(x,x,0) and ±(½+x, ½–x, ½) 

where x = 0.306.[50]  

 

Figure 1.1: Unit cell of rutile TiO2 

Surfaces created in oxides can be predicted following autocompensation criteria such that 

the surface truncation creates no unbalanced charges.[52]  In rutile TiO2, the (110) surface is 

thermodynamically most stable.[53] By autocompensation rules, the (110) surface is terminated 

by oxygen atoms that are two-fold coordinated to titanium atoms (Figure 1.2).[49] These oxygen 

atoms are termed as bridging oxygen (Obr). The atomic layer immediately below Obr is termed as 

the basal plane. There are two kinds of Ti atoms in the basal plane – five-fold coordinated Ti (5-c 

TiO2 in Figure 1.2) bonded to four in-plane O atoms and one out of plane O atom and the six-
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fold coordinated Ti (6-c TiO2 in Figure 1.2) bonded to two in-plane O atoms , two Obr and two O 

atoms below the basal plane. The coordination of 6-c Ti is similar to Ti atoms in bulk rutile TiO2. 

 

Figure 1.2: (110) surface of rutile TiO2 viewed along TiO2[001] 

The (1x1) surface of TiO2 (110) shown in Figure 1.2 is thermodynamically stable at room 

temperature in ultra high vacuum (UHV). Under mildly reducing conditions the bridging oxygen 

atoms can be removed resulting in surface oxygen vacancies. Under harsher reducing conditions, 

TiO2 (110) can restructure into a number of possible reconstructions such as (1x2), (1x3), 

rosettes etc.[49] The atomic positions in these reconstructions have been experimentally using 

Scanning Tunneling Microscopy (STM) and confirmed using Density Function Theory (DFT) 

calculations. One of the (1x2) reconstructions observed under reducing conditions is shown in 

Figure 1.3. In this model, which was proposed by Pang et. al., there are no bridging oxygen 

atoms and every alternate column of 4-c Ti atoms and subsurface O atoms immediately below 

the 4-c Ti atoms are absent resulting in a (1x2) reconstruction. (Figure 1.3).[54] A salient feature 

of this reconstruction is that the positions of Ti and O atoms at the surface do not differ from 

unreconstructed TiO2 (110). Depending on the surface preparation technique, other kinds of 
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atomic rearrangements leading to (1x2) reconstructions have also been shown to be stable on 

reduced TiO2 (110).[55, 56]  

 

Figure 1.3: (1x2) reconstruction of TiO2 (110) proposed by Pang et. al. 

 Upon metal deposition onto TiO2, metals generally reduce the substrate and themselves 

become oxidized according to the reaction –  

M + TiO2 → MOx + TiO(2-x) 

if the reaction is thermodynamically favorable.[57] For metal overlayers deposited on TiO2, only 

those metals whose oxides‟ heat of formation is below 250 kJ/mol do not undergo oxidation. 

However some of the metals (Pt, Pd etc.) that resist oxidation undergo another phenomenon at 

elevated temperatures known as encapsulation – where a layer of TiOx grows over the metal 

NCs.[49] This effect is commonly termed as Strong Metal Substrate Interaction (SMSI) in the 

catalyst community.[58] Among the metals grown on TiO2, only Au, Cu and Ag do not suffer 

from oxidation, interdiffusion or encapsulation (SMSI) on most TiO2 supports.[49] The 

nucleation and growth of Au on TiO2 (110) is discussed further in the next section. 
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1.3.2 Growth of Au NCs on TiO2 (110) 

On a defect-free TiO2 (110) surface, multiple reports suggest that a Au atom binds 

preferentially to either a 5-c Ti atom on the basal plane, or atop Obr.[42, 59] The two sites were 

found to have nearly the same binding energy for Au adsorption.[42, 59]  However, the binding 

of Au-Obr is weak compared to the binding of other transition metals in the same group namely 

Cu and Ag. For instance, the binding energy of Au-Obr is lower than Ag-Obr or Cu-Obr by more 

than 1 eV.[60] As a result, the adhesion energy of larger Au coverage on oxidized defect-free 

TiO2 (110) is very weak.[61]  

However, in the presence of Obr vacancies, Au atoms preferentially bind to Obr vacancies 

(Obr-v).[62] The binding energy of a Au-Obr-v is reduced by ~0.45 eV compared to Au-Obr.[62] 

As a result Au readily nucleates on Obr-v at lower coverages.[62] UHV studies show that Au 

nucleation on defect sites (including Obr-v) on TiO2 (110) leads to 2D growth for lower Au 

coverage (<0.1 ML) at room temperature.[63] Low Energy Ion Scattering (LEIS) and STM 

studies have confirmed that Au grows as 2D clusters for Au coverage less than 0.1 ML.[63-65] 

The 2D clusters are rectangular and elongated along the TiO2 [001] direction which has a close 

lattice match to the Au [110] direction.[65] These rectangular 2D Au clusters are only 1-2 atomic 

layers tall and less than 2 nm wide.[65] With increasing Au coverage at room temperature, Au 

clusters become quasi-2D shaped (diameter = 1.5 - 2.5 nm), hemispherical 3D shaped (diameter 

= 2.5 - 4 nm) and eventually spherical 3D shaped (diameter > 4nm).[63] Upon annealing to high 

temperatures, the clusters transform irreversibly to the 3D morphology.[63] 

The 3D growth of Au NCs on TiO2 (110) can be understood from the following equation, 

which provides a rough estimate for predicting the growth mode of supported NCs. When, 
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γInterface > γSubstrate – γMetal 

metal NCs adopt 3D shapes (Volmer-Weber growth). The surface energy of Au (111) – which is 

lowest amongst the surfaces of Au – was calculated to be 1.283 J/m
2
.[66] The surface energy of 

TiO2 was measured to be 0.28-0.38 J/m
2
 from a liquid drop measurement.[67] A DFT calculation 

from a (1x1) terminated TiO2 (110) surface gave 0.35 J/m
2
 for the surface energy of TiO2 

(110).[68] Since γTiO2(110) is much lesser than γAu and since γInterface > 0 , Au always forms 3D 

NCs for larger NC sizes. 

Au growth on TiO2 (110) at room temperature in UHV results in relatively poor 

epitaxy.[63] Annealing to 775K was results in faceted epitaxial Au clusters (> 100 nm) with Au 

(111)[-110] || TiO2 (110)[001]. Similar epitaxial relationship was reported for Au NCs grown by 

deposition precipitation and gas phase grafting methods followed by heating to 300
o
C in air.[69] 

Au growth at high temperatures results in faceted epitaxial Au clusters (> 100 nm) with Au 

(112)[-110] || TiO2 (110)[001].[70] In most cases, Au [110] orients along TiO2 [001] since there 

exists a reasonable lattice match (dAu(110) = 2.885Å and dTiO2(001) = 2.953 Å).  

1.4 Summary 

In this work we have attempted to address some of the fundamental questions that are 

still controversial in the growth of Au NCs TiO2. Chapter 2 details the experimental techniques 

used in our studies. In chapter 3 we have investigated the driving force behind the epitaxy of Au 

NCs on TiO2 (110) by studying the formation of epitaxial Au NCs on unreconstructed and 

reconstructed TiO2 (110) using RHEED. For comparison, we have also studied Ag NCs on TiO2 

(110) and show the broad differences between Ag and Au which are structurally identical but 

chemically dissimilar. In chapter 4, we have studied the interfacial atomic structure of a specific 
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epitaxy of Au on TiO2 (110) that has a large adhesion energy on TiO2 (110). Using aberration 

corrected STEM we have shown that there exists a special interfacial structure which is 

responsible for the enhanced adhesion. In chapter 5, we have probed the non-self similarity of 

NC shapes for a specific class of epitaxial Au NCs that dewet from the support at smaller sizes. 

We have modeled this phenomenon by invoking the effect of interfacial line tension at the three 

phase interface of Au, TiO2 and air. By suitably fitting the data to the model, we have also 

measured a lower limit to the value of interfacial line tension, thereby laying out a framework for 

measuring interfacial line tension in supported NCs. In Chapter 6, the conclusions from this work 

have been laid out and some future directions have been proposed. 
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CHAPTER 2  

EXPERIMENTAL METHODS 

This chapter introduces the experimental techniques used in this thesis to probe Au NCs 

on TiO2. The chapter is organized into four sections. The first section describes the basics of 

image formation in a Scanning Transmission Electron Microscope (STEM). This section also 

describes electron probe formation in an aberration corrected STEM and the details of the typical 

experimental settings used for imaging in the JEOL 2200FS STEM installed in CMM-MRL. The 

second section describes electron energy loss spectroscopy (EELS) in the STEM mode and the 

conditions used for obtaining high quality EELS data from the JEOL 2200FS STEM. The third 

section describes high resolution transmission electron microscopy (HRTEM) and the issue of 

specimen thickness complicating the phase contrast in HRTEM. The fourth section describes the 

specimen preparation methods used in creating equilibrium shaped NCs supported on atomically 

flat terraces of TiO2 (110) for TEM/STEM imaging and EELS.  

2.1 Image Formation in a Scanning Transmission Electron Microscope 

  A brief introduction to Scanning Transmission Electron Microscopy (STEM) was 

provided in the previous chapter. This section aims to elaborate the physical principles behind 

image formation in a STEM. The origin of the modern STEM traces back to Albert Crewe and 

colleagues working in Argonne National Laboratory towards construction of a STEM fitted with 

a high brightness field emission electron source. Using the reciprocity theorem, Crewe et al. 

showed that the ultimate resolution of a STEM operating under equivalent conditions (of high 

voltage, lens aberrations etc.) will be similar to conventional TEM (CTEM).[71] In the first 

demonstration of atomic resolution STEM, uranium and thorium atoms were imaged on a carbon 
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film.[72] In this demonstration, an annular detector (termed as ADF detector for annular dark 

field detector) subtending a half angle of 20 to 200 mrads below the specimen was used to 

collect 90% of the scattering. That is, the image was formed by collecting both elastically and 

inelastically scattered electrons between 20 and 200 mrads but excluding all beams that scatter 

less than 20 mrads. The scattered intensity was found to be proportional to Z
3/2

, which was 

attributed to the Z
3/2

 dependence of the total elastic scattering cross section.[73] The images 

obtained by this technique were seen to exhibit a key feature of „incoherent imaging‟, i.e. the 

lack of contrast reversals.[74] (Under coherent imaging conditions, the image-contrast of a thin 

specimen can be reversed by a change in focus due to the strong interference effect. Incoherent 

imaging refers to the imaging condition in the absence of the strong interference effect.) 

However, for crystalline specimens whose thicknesses were several tens of nanometers it became 

apparent that contrast reversals were present for images formed from low-angle scattered 

electrons as expected from coherent scattering theory. 

Howie proposed the idea for incoherent imaging which involved the complete exclusion 

of all Bragg diffracted beams by increasing the inner collection angle.[20] The original proposal 

by Howie was aimed at conclusively identifying metal catalysts supported on partially crystalline 

supports where elastic scattering from the crystalline support showed up strongly in the images 

formed with low-angle scattered beams. It was realized that the contribution to higher angle 

electron scattering was mostly from thermal diffuse scattering (TDS), i.e. electron-phonon 

scattering. TDS can result in large momentum transfer and is usually accompanied by very little 

energy loss. Therefore TDS can be observed at much higher angles than Bragg diffraction. While 

elastic scattering falls off as the square of the atomic scattering factor (f
2
(u)), first-order TDS is 

proportional to the product of the angular distance from the center and the atomic scattering 
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factor squared (u
2
f
2
(u)).[75] The elastic mean free path of TDS is 100-200nm which is of the 

same order as plasmon scattering.[76] Therefore TDS is very much prevalent in crystalline 

specimens. Also, electrons scattered at high angles have intrinsically small impact parameters 

with the atomic nuclei in the specimen. For example, the impact parameters at 50 mrad is 0.12 Å 

which is less than the typical atomic vibration amplitude.[77] As a result, electrons scattered to 

high angles see crystal atoms behaving as a random assembly of scattering centers whose 

scattering cross section approaches the Z
2
 dependence of Rutherford scattering in comparison to 

the Z
3/2

 dependence of the total elastic scattering cross-section .[77] The incoherent scattering 

phenomenon does not prevent STEM imaging of crystallographic specimens. In thicker 

crystalline specimens where dynamic diffraction is often strong, the electron waves channel 

preferentially along atomic columns. Thus the number of high angle scattered electrons along 

atomic columns increases proportionately thus producing Z-contrast images of even thicker 

crystalline specimens. The detector which is used to collect the high-angle electron scattering is 

known as the high-angle annular dark field (HAADF) detector (Figure 2.1). HAADF is routinely 

used nowadays in atomic resolution imaging of crystalline specimens.  
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Figure 2.1: Schematic of the STEM geometry. The HA-ADF detector typically collects electrons 

scattering between 60 and 300 mrad. The first bragg diffraction for Au(111) scatters to 10.6 

mrad for comparison. 

One of the key factors that determine the resolution in a modern STEM is the size of the 

electron probe. Hence it is worthwhile to discuss probe formation in a STEM. The wavefunction 

of the probe (Ψ𝑃𝑟𝑜𝑏𝑒 ) is computed as the convolution of the wavefunction of the electrons at the 

“effective” source (Ψ𝑆𝑜𝑢𝑟𝑐𝑒 ) and product of the lens transfer function and aperture function. In a 

simple 2 lens system, the effective source is the image of the electron filament after 

demagnification by the condenser 1 lens. 

Ψ𝑃𝑟𝑜𝑏𝑒 = Ψ𝑆𝑜𝑢𝑟𝑐𝑒 (Transfer Function ∗ Aperture Function)  (2. 1) 

where,  
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Transfer function = (e
-iχ

)                                                     (2. 2) 

Aperture Function  = A(k)                                                    (2. 3) 

where,  
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and  𝜔 = 1/𝑓(𝑥 + 𝑖𝑦), where x, y are real space coordinates. The above terminology is derived 

from Haider et al.[78]  where A1 = Two-fold astigmatism, C1 = Defocus, A2 = Three-fold 

astigmatism, B2 = Coma, A3 = Four-fold astigmatism, C3 = Cs = Spherical Abberation, S3 = 

Two-fold star aberration, A4 = Five-fold astigmatism, B4 = Coma, D4 = Three-lobe aberration, 

and A5 = Six-fold astigmatism. In the above equation, C3 and A1 are the most dominating 

aberrations. A1 which is the two-fold stigmatism can be easily corrected using the objective 

stigmators even in a TEM. Correction of C3 is not possible in an uncorrected TEM and needs an 

aberration corrector to accomplish this task. Therefore in uncorrected TEMs, the aberration 

function can be approximated to be solely a function of C3 and A1. In aberration corrected TEMs, 

the effect of higher order aberrations on the aberration function is seen since C3 is nearly zero 

and the contrast becomes a function of higher order aberrations in this case. 

The effect of the various aberrations leads to a broadening of the probe. The JEOL 

2200FS in CMM-FSMRL is equipped with an aberration corrector that is capable of correcting 

aberrations up to third order. The aperture function also determines the probe size and probe 
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current. For a given aperture size and C5 the optimum defocus and spherical aberration was 

found to be (in the absence of two-fold astigmatism and coma) [78] –  

𝐶1 = 0.144𝜔𝐴
4𝐶5                                                        (2. 5) 

𝐶3 = −0.92𝜔𝐴
2𝐶5                                                       (2. 6) 

where ωA is the half angle subtended due the condenser aperture at the specimen. For the JEOL 

2200FS microscope at CMM-MRL, the aperture cutoff angles ωA were measured to be[79]  

Condenser Aperture Diameter (µm) 

Convergence half 

angle - ωA 

(milliradians) 

 

Probe Current 

(pA) 

#2 40 36.88  

#3 30 26.61 30 

#4 20 16.8 13 

 

Table 2.1: List of aperture sizes and convergence half angles for condenser apertures in JEOL 

2200FS at CMM-MRL 

Figure 4 in Haider et. al.[78] shows the simulated beam profile for aperture sizes similar 

to #2, #3 and #4 with C1 and C3 set to the optimum values as described by the equations above. 

The probe size is often reported as the full width at 59% maximum (FWHM) of the probe beam 

intensity (Ψ𝑃𝑟𝑜𝑏𝑒 Ψ𝑃𝑟𝑜𝑏𝑒
∗ ).[78] It can be seen that the probe size becomes smaller with decreasing 

aperture size when the product of Cc and ΔE is 1.5. This resembles the condition in our 

microscope where Cc ~ 1.4 mm and ΔE = 1.0 eV.[79] It is also seen that both CL#3 and CL#4 

can achieve sub-angstrom resolution when residual aberrations are set to zero. For high 

resolution STEM in our microscope, CL#3 or CL#4 can be used depending upon the resolution 
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and signal to noise ratio constraints (CL#3 provide a higher probe intensity and CL#4 provides a 

slightly better resolution). Other settings to be kept in mind during HR-STEM imaging are the 

spot size and camera length. Spot size is controlled by the strength of the condenser 1 lens which 

forms a demagnified image of the source. During the demagnification, some of the intensity is 

lost thus resulting in weaker intensity for smaller probe sizes. A smaller spot size results in 

higher resolution but lower signal to noise ratios. During typical HRSTEM imaging, spot “3C” in 

“MAG” mode and a camera length of 60cm are found adequate to achieve sub-1Å resolution.  

The formation of an image by summing inelastically scattered electrons at the HAADF 

detector can be quite complicated to describe for many specimens. A reasonable approximation 

image formation at the HAADF detector is that the measured intensity is proportional to the 

probe intensity times the atomic scattering cross section. A simple model for scattering cross 

section using the Einstein model for crystalline specimens is given by[80, 81]  

 

x

2
2 M (s) 2

H AAD F
0 H AAD F

4 m 2
( )( ) f (s)(1 e ) d s

m

 
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
                             (2.5) 

where s = θ/2λ, λ = wavelength, θ = scattering half-angle, f(s) is the atomic scattering factor and 

Mx(s) is the Debye factor. The upper ADF detector in JEOL 2200FS has an inner cut-off angle of 

~100 mrad for a 60cm camera length[79] which is sufficient for avoiding diffraction contrast 

effects in the HAADF image as discussed above. All images reported in this work were recorded 

with spot “3C”, CL#4 and camera length = 60cm. The HAADF detector also has “brightness” 

and “contrast” settings that can be adjusted for optimum image clarity. These functions control 

the post-acquisition electronics of the HAADF detector and do not fundamentally alter the 

sensitivity of the hardware to scattered electrons. 
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2.2 Electron Energy Loss Spectroscopy in a Scanning Transmission Electron Microscope 

The transmission of probe electrons in a TEM through a specimen leads to inelastic 

interactions where the probe electrons lose energy to certain processes in the specimen. The 

dominant inelastic losses arise from the excitation of plasmons and phonons. Plasmon losses 

typically range from 0-50 eV. Phonon losses form a continuous exponentially decreasing 

background over the entire range. The exponential background arises from energy loss due to 

multiple phonon scattering events in the specimen. Intraband losses from core levels (core-loss 

edges) typically occur above ~50 eV. Useful core loss information extends out to 1000eV 

beyond which there is little signal to make meaningful observations.  

EEL spectra are obtained by dispersing the inelastically scattered electrons according to 

their energy loss using a energy-loss spectrometer. The spectrometer consists of a magnetic 

prism which bends the electrons differently according to their energies. The energy dispersed 

electron beams are then refocused and simultaneously spatially separated on a scintillator where 

the electrons are converted to photons. The photons are read out using a photodiode array 

coupled to the scintillator using fiber-optics. The two most common energy filters are the GIF 

(Gatan Imaging Filter) and the in-column Omega (Ω) filter (so named because of the Ω shaped 

arrangement of magnetic prisms). The GIF is a post-column energy filter that is located below 

the TEM viewing screen. The back focal plane of the last projector lens is the image plane for 

the GIF. The Ω filter is an in-column energy filter. It is located between the intermediate and 

projector lenses. The back focal plane of the intermediate lens (sometimes termed as the first 

projector lens) is the object plane for the Ω filter in the “image mode”.  

The JEOL 2200FS at CMM-MRL is fitted with an in-column Ω filter. An entrance 

aperture is located above the Ω filter to limit the angular spread of electron beams entering the Ω 
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filter. We used an acceptance half-angle of ~42 mrad for collecting the EEL spectra. An energy 

selection slit is placed in the spectrum plane below the Ω filter for forming energy filtered 

diffraction patterns and energy filtered TEM (EFTEM) images. While the energy slit is not used 

during EELS acquisition, it is used prior to EELS collection for aligning the Ω filter. During 

EELS acquisition, a diffraction pattern is formed at the back focal plane of the intermediate lens 

(object plane for the Ω filter). The magnification of this diffraction pattern (camera length) 

determines the collection angle for collecting energy loss data.  

While conventional STEM imaging is performed at a camera length of 60cm in our 

microscope, this setting does not permit enough electrons to be available for high quality core-

loss EELS. Hence, for obtaining core-loss EELS, we use a camera length of 20cm. Also, in order 

to increase the signal to noise ratio of the EEL spectra we use spot “3C” in the “AMAG” mode 

which results in a probe current of 160 pA. At these settings the best energy and spatial 

resolution are about 0.9 eV and 0.11nm respectively.[79] It must be noted that large probe 

currents can cause specimen damage and must be therefore used with caution for beam sensitive 

specimens. We observed that repetitive scans on the same atomic columns did cause specimen 

damage in TiO2. We minimized specimen damage by choosing the smallest possible integration 

times for high quality EELS. 

The energy resolution of an EEL spectrum is a function of the energy spread of the 

electron gun (due to ripples in high tension and current supply), chromatic aberration of the 

condenser lenses as well as the energy resolution of the energy filter. The best energy resolution 

obtained in our microscope is ~0.6 eV under specific conditions (that are not normally used in 

day-to-day core-loss EELS operation).[79] The energy resolution in EELS can be further 

improved using monochromators[82, 83], cold-field emission guns[84] etc.  
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2.3 High Resolution Transmission Electron Microscopy 

High resolution transmission electron microscopy (HRTEM) is a vast subject in itself. 

One cannot do justice to the details of the subject in a short space. Therefore, only a brief 

introduction will be given in this section. More information can be found in well-established 

TEM textbooks.[10, 18, 73, 85, 86] After introducing HRTEM, a detailed discussion will ensue 

to describe the strengths and weaknesses associated with HRTEM for studying supported NCs 

and their interfaces. 

In a TEM, an image is formed by first illuminating the specimen with a nearly parallel 

beam of electrons and then by bringing together the scattered electrons using the objective lens 

to form an image. This process is schematically illustrated below in Figure 2.2 for a crystalline 

specimen and an objective lens with no aberrations.  

 

Figure 2.2: Schematic of image formation at the objective lens of a TEM 

Figure 2.2 shows that electrons exiting from the crystalline specimen interfere 

constructively in a periodic manner to produce scattered electrons only along certain defined 

paths. The objective lens brings together the diffracted beams by bending the electron beams 
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towards the optical axis. Since Figure 2.2 assumes an objective lens with no aberrations, all the 

electron paths are shown to overlap perfectly at the image plane. Objective lenses used in TEMs 

however always have aberrations and bend farther deflected electrons further towards the optic 

axis – an effect called spherical aberration. Because of spherical aberration, all the electrons 

never overlap perfectly at any plane resulting in a smearing of information at the image plane. 

This smearing can be mathematically written as –  

𝑔 𝑟 =  𝑓 𝑟 ′ 𝑕 𝑟 − 𝑟 ′ 𝑑𝑟′                                            (2. 7) 

= 𝑓 𝑟  𝑕 𝑟 − 𝑟 ′                                                  (2. 8) 

where f(r) represents the specimen, g(r) represents the image and h(r) represents the nonlocal 

contributions to image formation due to lens aberrations. Using Fourier transforms, the above 

equation can be equivalently and more conveniently written as –  

𝐺 𝒖 =  𝐹(𝒖)𝐻 𝒖                                                  (2. 9) 

where G(u), F(u) and H(u) are the Fourier coefficients of g(r),f(r) and h(r) respectively.  

H(u) is the (complex) contrast transfer function and describes how information from the 

specimen (F(u)) is altered and represented as information in the image (G(u)) in HREM. H(u) is 

made of three factors – objective lens aberration function (B(u)), objective aperture function 

(A(u)) and the envelope function (E(u)). A(u) and E(u) function by cutting off spatial 

frequencies beyond a certain upper limit of u. The lens aberration function B(u) has already been 

described in equations 2.2 and 2.4. The complex dependence of B(u) results in a non-intuitive 

lens aberration function at different lens defoci. Assuming astigmatism can be nearly eliminated, 

B(u) is largely dependent only the defocus (C1) and spherical aberration (Cs) in uncorrected 

lenses. A typical Cs for uncorrected lenses is 1mm. With the addition of an aberration corrector 
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below the objective lens, the effective Cs of the objective lens can be brought down to the order 

of microns (µm). In aberration-corrected lenses, since Cs is of the order of microns, the effect of 

higher order aberrations on B(u) become comparable and results in more non-intuitive transfer 

functions. In aberration-corrected lenses, estimation of B(u) demands complete knowledge of 

higher order aberration coefficients. 

Assuming everything about the contrast transfer function (H(u)) is known, we turn our 

attention to the description of the specimen function (f(r)). For a thin specimen, it is often 

approximated that the specimen plays the role of a phase object and only weakly alters the phase 

of the incident electron beam without causing any change to the amplitude. This approximation 

is known as the Weak Phase-Object Approximation (WPOA). Image analysis under the WPOA 

approximation allows for nearly intuitive image interpretation under optimum lens conditions. 

However, for larger specimen thicknesses WPOA does not hold and multiple-scattering events 

(dynamical diffraction) have to be taken into account in understanding the exit-wave and 

consequently the image formation. Multiple scattering can be simulated using multi-slice 

methods [86] which is however non-intuitive and requires reasonable computing power.  

Most of the specimens used in our study were 30nm or more in thickness. At these 

thicknesses, WPOA cannot be used to estimate the exit wave and the image contrast becomes 

complicated as shown in Figure 2.3 below. In the HRTEM image of a Au NC supported on TiO2 

(Figure 2.3), the contrast at the surface changes quickly upon moving towards the interior of the 

substrate. The hatched box shows that for a unit cell of the rutile lattice, the contrast is dissimilar 

even between successive layers close to the surface. This presents a huge challenge when it 

comes to structure determination of the interface of Au-TiO2 where the exact substrate thickness 
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is not known. A further challenge is the inability to intuitively identify the interfacial atomic 

positions due to the complicated contrast. 

 

Figure 2.3: HRTEM image of a Au NC supported on TiO2. The contrast at the TiO2 surface 

changes quickly upon progressing towards the interior of the substrate. The hatched box is a 

guide to the eye and shows that contrast is dissimilar even between successive layers close to the 

surface. 

The complicated HRTEM contrast can be better interpreted by reconstructing the exit 

wave function. Exit wave reconstruction can be accomplished by taking multiple (alteast three) 

images at various defoci and iteratively obtaining the exit electron wave by post processing. 

However, for thick specimens such as the ones we use for our experiments (Figure 2.3), exit 

wave reconstruction is often very challenging since reconstruction algorithms cannot function 

correctly when there are phase jumps (arising from thickness) between focal series images.   

Because of the complications associated with interfacial contrast of supported NCs 

imaged using HRTEM, we preferred HRSTEM imaging. For supported NCs, HRSTEM allows 

direct measurement of shape of NCs as well as identification of individual atomic positions with 
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ease. Nevertheless with better specimen preparation methods and simulations HRTEM can 

provide information about interfacial binding and interfacial oxygen atoms which are outside the 

realm of HRSTEM. Also, for strain measurements, HRTEM is better than HRSTEM since 

specimen drift is an issue with scanning images. 

2.4 Sample Preparation of Supported Au NCs on TiO2 (110) 

For successful TEM/STEM characterization of nanocrystal (NC) interfaces and NC 

shapes, model NCs must be prepared such that – 

a) NCs are in cross-sectional geometry. 

b) The support is thin enough for TEM/STEM observation (< 100nm). 

c) The facet supporting the NC must be well defined and flat. 

d) The interface of NC and support facet must be produced reproducibly. 

e) NC surface and interface should not be altered by sample preparation methods. 

Prior to this work, many groups have used cross-sectional TEM sample preparation to 

image supported nanoclusters. However NCs prepared using cross sectional TEM images are 

questionable when it comes to structure determination of small NCs because specimen 

preparation typically involves burying the clusters in polymeric materials and ion milling of the 

specimen. These procedures alter the surface chemistry and may cause atomic rearrangement, 

thereby altering the shape, surfaces and the interfaces of the nanoclusters.  

We prepared pristine Au NCs on atomically flat TiO2 terraces in the cross-sectional 

geometry using the following methods. We first prepared electron transparent (<100nm) TiO2 

regions in a rutile TiO2 (110) single crystal (MTI Corporation) by dimpling a 3mm disc of the 

single crystal followed by ion-milling (GATAN PIPS) at 5keV. After ion-milling the crystal 
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turned olive green and resulted in the production of leaf-like features that were TEM transparent 

(Figure 2.4).  

 

Figure 2.4: TEM image of amorphous TiO2 after ion milling 

The ion-beam damage was removed by heating the olive green TiO2 disc in an air furnace 

at 1000
o
C for 30 minutes and cooling at ~1

o
C/minute. The crystal turned light yellow after 

annealing. The annealing also produced extensive electron transparent regions in the crystal with 

(110) faceted edges. Figure 2.5 shows a single crystalline TiO2 that has been thinned to become 

TEM transparent after annealing in air to 1000
o
C for 30 minutes. The grey region on the top and 

bottom of the image is empty space.   
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Figure 2.5: TEM image of crystalline TiO2 after annealing 

Prior to gold deposition, the substrate was cleaned in oxygen plasma (20torr, 100W) for a 

minute. Gold was then sputtered onto the TiO2 substrate in a vacuum chamber (~5x10
-7

 torr) at 

room temperature. The sample was then removed from the vacuum chamber and heated to 

desired temperatures (up to 700
o
C) in an air furnace to promote NC growth and formation of the 

equilibrium shape in an ambient environment. This procedure produced single crystal Au NCs 

supported on facets of TiO2(110) as shown in Figure 2.6. 

 

Figure 2.6: TEM image of Au nanoclusters supported on TiO2 (110) planes 

2 nm2 nm

5  n m
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The above sample preparation method enables the analysis of surfaces and interfaces of 

nanoclusters for a wide range of nanocluster sizes. Figure 2.7 shows an example of an aberration 

corrected HRTEM and an aberration corrected STEM image of gold nanoclusters supported on 

TiO2 (Au/TiO2). The white lines on the STEM image are a guide to the eye showing how the 

particle dimensions, namely the center-to-edge (h) and center-to-interface (h-Δh) distances, can 

be typically extracted.  

 

 

 

Figure 2.7: Aberration corrected (a) HRTEM and (b) HRSTEM images of Au/TiO2. The white 

lines are a guide to the eye.  
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CHAPTER 3  

EFFECT OF TITANIUM DIOXIDE SURFACE STOICHIOMETRY ON EPITAXY OF 

GOLD AND SILVER NANOCRYSTALS 

The structural evolution and epitaxy of gold and silver nanoclusters (NCs) on TiO2 (110) 

surfaces are reported here for oxidized (oxygen rich) and reduced TiO2 surfaces. Additionally for 

silver, the sublimation temperature is also explored as a function of the surface stoichiometry. 

The reduced TiO2 (110) surface was found to be (1x2) reconstructed after annealing the oxidized 

surface in vacuum to ~750
o
C. It is shown that gold NCs evolve to the same epitaxial orientation 

– (111) Au || (110) TiO2, [-110] Au || [001] TiO2 irrespective of the details of the surface 

preparation and annealing conditions. In all the experiments, a (1x2) reconstruction is always 

observed along with the presence of Au epitaxy. For vacuum annealed samples, the onset and 

completion of epitaxy happens at much lower temperatures on the reduced (reconstructed) 

surface compared to a oxidized (unreconstructed) surface.  

For silver, it is shown that silver NCs deposited at room temperature on oxidized TiO2 

(110) surfaces are unable to form a single epitaxy prior to sublimation. When heated close to 

sublimation - two particle orientations dominate - (111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

; (112)Ag || (110) TiO2,  [-110] Ag || [001] TiO2. Single twinned silver NCs are found to be 

stable even at temperatures close to sublimation. On the other hand, silver NCs prepared 

similarly on reduced TiO2 (110) surfaces behave very differently when heated to higher 

temperatures. On the reduced surface, the NCs are able to evolve into a single epitaxy - (111) Ag 

|| (110) TiO2,  [-110] Ag || [001] TiO2. The sublimation temperature for silver NCs on the 

reduced surface is found to be less than those on the oxidized surface by about 35 degrees. The 
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epitaxy formed by annealing is the same as the one formed by depositing silver onto reduced 

TiO2 (110) at 350
o
C (> 0.5 Tm of Ag).  

3.1 Introduction 

Single crystal titanium dioxide (TiO2) is a model substrate for the study of oxide surfaces 

and growth of metal nanoparticles, which has been investigated extensively in the literature[49]. 

A major motivation of this study comes from the catalytic activities of metal nanoclusters (NCs) 

supported on TiO2[49, 65], the importance of NC structure and the effect of TiO2 surfaces on the 

NC structure. For example, gold NCs on TiO2 have been shown to convert carbon monoxide to 

carbon dioxide at relatively low temperatures[29, 32, 87]. The properties of the TiO2 surfaces 

also present unique opportunities for the study of surface and interfacial physics. For example, 

the chemistry and structure of TiO2 surfaces can be very well controlled by different processing 

conditions[49]. The (110) surface of TiO2 has the lowest surface energy [53] and has been a 

popular choice for experimental studies. Amongst various transition metals that have been 

studied on TiO2 (110) surfaces[49, 57], gold, silver and copper are free of encapsulation at high 

temperatures on TiO2 (110) surfaces [49], which makes them amenable to in-situ surface studies.  

NCs on 2D oxide surfaces provide a model system to understand the effect of the 

support‟s surface on the size, shape and structure of metal NCs.[48] A number of experimental 

[41, 49, 63-65, 69, 70, 88-102] and theoretical investigations[42, 60-62, 68, 103, 104] have been 

conducted on Au NCs supported on TiO2 (110) surfaces. As summarized in chapter one, it is 

known that at room temperature Au prefers to nucleate on oxygen vacancies. At coverages less 

than 0.1ML Au NCs grow as elongated islands along the TiO2 [001] direction. [63-65] Au NCs 

align parallel to TiO2 [001] since the spacing between Au atoms along the <110> close packing 
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direction (dAu(110) = 2.885 Å) lattice matches with TiO2 (001) (dTiO2(110) = 2.954 Å). Increasing 

coverage leads to the formation of quasi-2D, hemispherical and eventually spherical 3D shaped 

islands when NC diameter is greater than 4nm. Annealing these NCs in vacuum leads to the 

formation of epitaxial Au islands with the epitaxial relationship[70] – Au(111)[-110] || 

TiO2(110)[001]. The same epitaxy was reported for Au NCs prepared on TiO2 powders by 

precipitation and calcinations.[69] However, using DFT calculations, Lopez et. al. found that the 

work of adhesion for a defect-free Au(111)/TiO2(110) interface was nearly zero.[61, 68] Lopez 

et. al. further calculated the binding energy of a Au NC to be 1.6 eV/defect and argued that 

interfacial defects stabilize the Au(111)/TiO2(110) interface. Lopez et. al. did not offer an 

explanation for why the defects stabilize the epitaxial relationship found by Cosandey et. al. and 

others. It is conceivable that the changes to surface atomic structure of TiO2 (110) during 

vacuum annealing could have resulted in surface atomic structures/ surface reconstructions that 

result in a preferred epitaxial relationship. We wanted to probe the formation of a preferred 

epitaxy in Au/TiO2(110) and identify the effect of surface stoichiometry and surface 

reconstruction on Au/TiO2 (110) epitaxy to help us understand why Au (111) adheres to TiO2 

(110) even though DFT calculations suggest that the work of adhesion of such an interface is 

nearly zero.   

Further, it would also be instructive to compare the similarities and differences in the 

formation of epitaxial islands between Au and Ag on TiO2 (110). Au and Ag are both FCC solids 

with similar lattice parameters (a0-Au = 4.08 Å, a0-Ag = 4.09 Å) but prefer different nucleation 

sites on TiO2 (110) because of their markedly different chemical properties.[59] While small Au 

NCs preferentially nucleate on surface defects such as oxygen vacancies,[62] small Ag NCs  

nucleate on step edge of TiO2 (110).[105, 106] Also, while the binding energy of Au-Obr-v is 
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lower than Au-Obr  the binding energy of Ag-Obr-v is more than Ag-Obr.[59] Hence it is expected 

that the effect of surface stoichiometry of TiO2 (110) on Au and Ag will be quite different. 

Moreover, compared to Au that prefers nanocrystal formation,[63] Ag can form a number of 

intermediate structures, including multiply twinned particles (MTPs).[107-109] While the 

growth characteristics of Ag on TiO2 (110) surfaces have been studied by several groups [94, 

105, 110], there is no systematic study of the structure evolution and epitaxy formation of Ag 

NCs on TiO2 (110). Temperature dependent studies are important, in general, for understanding 

the effect of sintering on the structure of NCs.[99, 111] Hence we investigated the effect of 

surface structure and stoichiometry on the epitaxy of Au and Ag on TiO2 (110). In the case of 

Ag, we also investigated the effect of surface stoichiometry on the sublimation temperature of 

Ag NCs. 

We used RHEED to investigate the structure and epitaxy of Au and Ag NCs on TiO2 

(110). We show that RHEED offers a reliable way to obtain real time, in-situ, structural data 

from an ensemble of NCs during heating.[112, 113] We studied the structural evolution of Au 

and Ag NCs on TiO2 (110) as a function of temperature up to the formation of epitaxy for Au and 

up to sublimation for Ag. The results from these experiments show the surface stoichiometry of 

TiO2 (110) is critical for the evolution and sublimation of Au and Ag NCs. Information about Au 

and Ag NCs‟ structural evolution at high temperatures can be useful, for example in catalytically 

relevant systems.[5, 6, 114-116]  

3.2 Experimental Methods 

For Au and Ag, slightly different specimen preparation methods were used since Au NCs 

were imaged using AFM while Ag NCs were imaged using TEM. For both Au and Ag we started 
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with epi-polished TiO2 (110) substrates obtained from MTI Corporation. The as-received TiO2 

(110) substrates were heated in air for 2 hours at 1100
o
C. Such substrates will henceforth be 

referred to as “furnace oxidized” TiO2 (110). The furnace oxidized TiO2 showed predominantly a 

(1x1) surface (Figure 3.1). There is some weak intensity observable in the RHEED patterns taken 

along the TiO2 [001] zone axis (Figure 3.1 (b)) between the strong (1x1) spots which suggest that 

other atomic arrangements exist on the surface in agreement with earlier studies.[117] We also 

observe little streaking of the RHEED spots, which implies that the terrace width on our surfaces 

are quite large. All the specimens in this work exhibited charging and beam deflection when the 

specimen was transferred from air. The contamination was removed by heating to ~200
o
C in 

vacuum for ~ 10 minutes. 

 

Figure 3.1: RHEED patterns of furnace oxidized TiO2 (110) taken close to (a) TiO2 [-110] and 

(b) TiO2 [001] zone axes respectively. The diffraction patterns were obtained at the same 

magnification. 

Au NCs were deposited by sputtering at a rate of ~0.2Å/s in a AJA International Co-

Sputtering Unit (Microfab, CMM). The deposition rate was read from a quartz crystal monitor. 

The rate was measured by setting the density of Au to 1/10
th

 of the actually density of Au (19.3 

g/cc). It was found using AFM that the actual deposition rate was higher than the value read out 

on the thickness monitor. A 1Å deposition on the quartz crystal thickness monitor was found to 
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correspond to roughly 4.8Å of Au deposition using AFM as a calibration tool (without taking 

into account particle size broadening due to AFM tip). Post deposition, the samples were 

transferred to a high vacuum chamber (base pressure < 3x10
-8

 torr) or an air furnace for 

annealing. RHEED was performed using a 15 keV electron beam using a STAIB RHEED gun 

(http://www.staibinstruments.com). The substrate was placed on a rotation stage, permitting 

diffraction measurements from different azimuthal angles. RHEED patterns were recorded using 

a combination of a phosphor screen and an optically coupled CCD camera. For annealing in 

vacuum, the substrate was heated by radiation from a resistive heater that is located ~ 15 mm 

from the stage. For annealing in air, the substrate was heated in a three zone lindberg tube 

furnace (http://www.lindbergmph.com) in an alumina boat obtained from Coorstek. 

For Ag, the as-received wafer was coated with 300nm of SiO2 via PECVD to prevent any 

damage to the surface during the sample preparation processes. SiO2 was chosen since it could 

be removed fully using HF, without affecting the TiO2 surface below. The wafer was heated to 

300
o
C during PECVD. The wafer was then cut into pieces of ~8mm x 2mm in dimension using a 

diamond saw. The cut specimens were back thinned by dimpling to obtain a thin region of 10-

20μm thickness, which was later ion-milled on the back side using 5keV Argon ions in a Gatan 

Precision Ion Miller to create electron transparent regions. The SiO2 protective layer was later 

removed by etching using 49% HF – thereby maintaining a clean TiO2 (110) surface, that was 

verified using RHEED. In a separate control experiment it was seen that 49% HF did not etch 

TiO2 (110) even after 48 hours. 

  In the case of ion milled samples, the oxygen vacancies created during ion-milling (which 

is evident from the color change of the sample) were removed by annealing the sample at 

1450
o
K [118] for 2 hours in air. Regrowth features are expected to be seen on such surfaces, 
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similar to the regrowth features seen during high temperature oxygen exposure in vacuum [119]. 

The regrowth features on the surface were removed by etching the sample in boiling sulfuric acid 

for 2 minutes. Such specimens showed a (1x1) RHEED pattern after heating to 150
o
C inside a 

vacuum chamber.  

Specimens that were reduced in vacuum can be reused by the above method of air 

furnace oxidation, etching in H2SO4 and heating to 150
o
C inside a vacuum chamber. It was seen 

that the RHEED pattern had no streaks for the as-received specimens indicating a flat surface. 

The surface flatness was also checked in an AFM. However, the RHEED pattern shows streaks 

after the samples were reduced in vacuum and were reoxidized; this is expected from a more 

disordered terrace structure after the reduction-oxidation process. However, no significant 

difference was observed between using the reoxidized specimen as against the as-received 

specimen. We will henceforth refer to the reoxidized surface also as „furnace-oxidized‟ along the 

lines of furnace oxidized TiO2 specimens prepared for Au.  

Ag was deposited onto the substrate from a MDC “e-Vap® Mighty Source™”– a 4 

pocket (2cc capacity) rotary e-beam evaporator in a vacuum chamber with a base pressure of 

2x10
-7

 torr during evaporation and a base pressure of 5x10
-8

 torr during specimen heating. The 

amount of Ag deposited was monitored using a quartz crystal monitor. Reflection High Energy 

Electron Diffraction (RHEED) was performed using a 13 keV electron beam using a FOCUS 

RHEED gun from Focus-gmbh. The geometry of the substrate, heater and screen are the same as 

described earlier for Au. 

 For Transmission Electron Microscopy (TEM) measurements, the sample was transferred 

in air before being loaded onto the TEM stage using a custom-made holder that could hold a 
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8mm x 2mm TiO2 specimen and simultaneously fit into any JEOL single tilt TEM holder. TEM 

micrographs were obtained from JEOL 2010 LaB6 and JEOL 2010F, both operating at 200 keV.  

3.3 Results  

3.3.1 Studies of Gold NCs onTiO2 (110) 

3.3.1.1 Gold NCs deposited on furnace oxidized TiO2 (110) and vacuum annealed 

Figure 3.2(a) shows a RHEED pattern of 1 Å Au deposited on furnace oxidized 

TiO2(110) at 215
o
C. The azimuth of TiO2 could not be determined since the diffraction from 

TiO2 was weak due to shadowing by Au NCs. The samples were heated at the rate of 5
o
C/s. The 

series of RHEED patterns in Figure 3.2 (a), (b) and (c) show the evolution of the Au NCs with 

temperature. At 215
o
C, the random arrangement of Au NCs gave rise to broad diffraction rings 

in the RHEED pattern of the as-deposited Au (Figure 3.2 (a)). On heating, epitaxial NCs began 

to form and showed up in the RHEED pattern as strong diffraction spots. Figure 3.2 (b) shows 

the diffraction pattern recorded at ~500
o
C. It is seen that the epitaxy is still very weak and not 

discernable to the eye at 500
o
C. Figure 3.2 (c) shows the diffraction pattern at ~785

o
C. At 785

o
C, 

the epitaxy is clearly identifiable. Upon the formation of epitaxial Au NCs, the diffraction spots 

from TiO2 also became strong and allowed us to obtain diffraction patterns from the surface 

along low index TiO2 zone axes. Figure 3.2 (d) and (e) show RHEED patterns from TiO2 [1-10] 

and TiO2 [001] azimuths respectively. On indexing the RHEED patterns in Figure 3.2 (d) and 

(e), it was seen that epitaxy could be described as –  

(111) Au || (110) TiO2,  [-110] Au || [001] TiO2 
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In such NCs, both ABCABC and ACBACB (energetically equivalent) stacking are 

observed in the RHEED pattern. For both kinds of NCs, the electron beam is parallel to Au [-

110]. This epitaxial orientation relationship is consistent with Cosandey et. al.‟s experiments for 

room temperature deposition of Au on TiO2 (110) followed by vacuum annealing.[70] The AFM 

image in Figure 3.3 shows that the Au NCs are mostly smaller than 20 nm and dense (coverage 

~0.2) following vacuum annealing to 750
o
C. 

The black arrows in Figure 3.2 (e) point to the appearance of TiO2 diffraction peaks 

corresponding to a spacing of 12.96 Å, i.e. two times the periodicity of TiO2 (1-10) ( dTiO2(1-10) = 

6.48 Å ). At the same time, no new TiO2 diffraction peaks was observed in Figure 3.2 (d), which 

is a RHEED pattern along an orthogonal azimuth (TiO2[-110]). Thus the reconstruction can be 

described as TiO2 (110) (1x2). The (1x2) reconstruction was not observed in the furnace 

oxidized TiO2 (110) prior to vacuum annealing (Figure 3.1). Hence, vacuum annealing was 

responsible for the appearance of the (1x2) reconstruction. Multiple stable (1x2) reconstructions 

have been observed on the TiO2 (110) surface subject to different surface treatments in 

vacuum.[54-56, 120] We cannot identify the type of (1x2) reconstruction present in our samples 

post vacuum annealing from just RHEED patterns; identification of atomic co-ordinates from 

diffraction patterns require a more quantitative understanding of diffraction patterns. One of the 

possible reconstructions is the „added-row‟ model proposed by Pang et. al. where the surface has 

no bridging oxygen atoms and every second Ti-row along TiO2[001] is missing.[54] The 

periodic arrangement of the surface atoms in this reconstruction has been shown in Figure 3.4.  
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Figure 3.2: RHEED patterns of 1Å Au deposited on furnace oxidized TiO2 (110) at 25
o
C 

annealed to (a) 215
o
C,  (b) 500

o
C, (c) 785

o
C, (d) and (e) 785

o
C in vacuum taken close to TiO2 [1-

10] and TiO2 [001] zone axes respectively. The arrows in (e) point to spots arising from (1x2) 

TiO2 reconstruction. All directions on the figures are specified with respect to bulk rutile TiO2 

lattice. The directions in the bottom left corners of the figures are specified with respect to bulk 

rutile TiO2 lattice. All diffraction patterns were obtained at the same magnification. 

 

Figure 3.3: AFM image of 1Å Au deposited on a furnace oxidized TiO2(110), and heated to 

750
o
C in vacuum. 
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Figure 3.4: Schematic of the top row of Pang et al.‟s TiO2 (110) (1x2) reconstruction showing 

the unit cell on the reconstructed surface. 

3.3.1.2 Gold NCs deposited on reduced TiO2 (110) and vacuum annealed 

A reduced surface of TiO2 (110) was prepared by heating a furnace oxidized TiO2 (110) 

to 750
o
C in vacuum. Figure 3.5 (a) shows a RHEED pattern of the reduced TiO2 (110) surface 

along the TiO2 [001] azimuthal direction. The black arrows in Figure 3.5 (a) point to the 

appearance of TiO2 diffraction peaks corresponding to a spacing of 12.96 Å. The RHEED pattern 

along the orthogonal azimuth – TiO2[-110] – was similar to the RHEED pattern from furnace 

oxidized TiO2 (110) (Figure 3.1) and hence is not shown. Hence, the surface of reduced TiO2 is 

(1x2) reconstructed similar to the vacuum annealed TiO2 (110) in the previous section. Thus, 

subsequent reference to reduced TiO2 (110) implicitly means that the surface is also (1x2) 

reconstructed. 

The samples were heated at the rate of 5
o
C/s. The series of RHEED patterns in Figure 3.5 

(b), (c) and (d) show the evolution of the Au NCs with temperature. The RHEED patterns in 

Figure 3.5 (b), (c) and (d) were obtained along the TiO2 [1-10] azimuth. In contrast to Au NCs 
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on furnace oxidized TiO2 (110) where there was little sign of epitaxy at 215
o
C (Figure 3.2(a)), 

Au NCs deposited on reduced TiO2 (110) show a stronger sign of epitaxy at 215
o
C, which is 

clear from the appearance of a discernable Au diffraction peak (indicated by white arrow Figure 

3.5 (b)). In the diffraction pattern at 500
o
C (Figure 3.5 (c)), it is seen that the epitaxy becomes 

more prevalent and the peak identified by the white arrow becomes stronger (Figure 3.5 (c)).  

The visible appearance of a strong Au peak is again in contrast with Au deposited on furnace 

oxidized TiO2 (110) where the epitaxy was weak and not discernable to the eye at 500
o
C (Figure 

3.2 (b)).  Figure 3.5 (d) shows the diffraction pattern at 760
o
C. At 760

o
C, the epitaxy is clearly 

identifiable. On indexing the RHEED patterns in Figure 3.5 (d), it was seen that the epitaxy 

could be described as –  

(111) Au || (110) TiO2,  [-110] Au || [001] TiO2 
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Figure 3.5: (a) RHEED pattern of reduced TiO2 (110) taken close to TiO2 [001] zone axis. The 

black arrows point to diffraction peaks from TiO2 (110) (1x2) reconstruction. (b), (c), (d) 

RHEED patterns (close to TiO2 [1-10] zone axis) of 1Å Au deposited on reduced TiO2(110) at 

25
o
C annealed to 215

o
C,  500

o
C and 760

o
C respectively in vacuum. The white arrows in (b), (c) 

point to Au(222) diffraction peak. The directions in the bottom left corners of the figures are 

specified with respect to bulk rutile TiO2 lattice. All diffraction patterns were obtained at the 

same magnification. 

While the epitaxial relationship of 1 Å Au on reduced TiO2 (110) is similar to the epitaxy 

of 1 Å Au on furnace oxidized TiO2 (110) at high temperatures, the onset and completion of 

epitaxy appear to happen at much lower temperatures on a reduced (and reconstructed) TiO2 

(110) substrate. In order to probe the temperature dependence of Au NC epitaxy more 

quantitatively, we plotted the integrated intensity of a Au diffraction peak as a function of 

temperature in Figure 3.6. Figure 3.6 (a) and Figure 3.6 (b) show the evolution of a selected Au 

diffraction (Bragg) peak for Au NCs deposited on furnace oxidized TiO2 (110) and reduced TiO2 

(110) respectively. The dashed lines point to temperatures where the intensity was seen to 

change abruptly signifying the onset and completion of epitaxy. The onset of epitaxy is inferred 
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from the abrupt rise in intensity of the Au Bragg peak since epitaxial rearrangement leads to an 

increased number of Au atoms scattering into the same direction. It is seen that the onset of 

epitaxy happens at ~750
o
C for Au NCs on furnace oxidized TiO2 (110) while the onset happens 

at ~600
o
C for Au NCs on reduced TiO2 (110). The completion of epitaxy is inferred from the 

abrupt drop in intensity of the Au Bragg peak since at the completion of epitaxy, the fall in 

diffraction intensity due to increased atomic vibration at higher temperatures (described by the 

Debye-Waller factor) takes over. (The abruptness in the drop suggests that the epitaxial 

transformation is highly temperature sensitive and completes in a small temperature range where 

the TiO2 surface is probably reconstructing and aiding the epitaxial transformation of Au.) It is 

seen that the completion of epitaxy happens at ~780
o
C for Au NCs on furnace oxidized TiO2 

(110) while the completion happens at ~700
o
C for Au NCs on reduced TiO2 (110). 

Thus the onset and completion of epitaxy of Au NCs on (1x2) reconstructed TiO2 (110) 

happen at 150 degrees and 80 degrees lower than the onset and completion on unreconstructed 

furnace oxidized TiO2 (110) respectively. The significantly lower epitaxial onset and completion 

temperatures can be attributed to the nucleation of epitaxial NCs even at lower temperatures 

(215
o
C) on reduced TiO2 (110) surfaces as against randomly nucleated Au NCs on furnace 

oxidized TiO2 (110) surfaces at lower temperature. This is also supported by the AFM image in 

Figure 3.7 which shows that the coverage (~0.3) for Au NCs deposited on reduced and 

reconstructed TiO2(110) is greater than the coverage of Au NCs deposited on furnace oxidized 

TiO2 (110) (~0.2 in Figure 3.3). However, since the effect of tip-shape can influence the details 

of coverage for smaller NCs, we don‟t rely too much on the AFM data at these NC sizes. 

 



49 

 

 

 

Figure 3.6: RHEED intensity versus temperature for gold nanoclusters deposited at 25
o
C on (a) 

furnace oxidized TiO2(110) and (b) reduced TiO2(110) with (1x2) reconstruction. The RHEED 

intensities were obtained from Au (224) and Au (222) diffraction spots respectively. The dashed 

lines show the onset of dramatic increase in the intensity. 
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Figure 3.7: An AFM image of 1Å Au deposited on a reduced TiO2(110) with (1x2) 

reconstruction, and heated to 750
o
C in vacuum. 

3.3.1.3 Gold NCs deposited on furnace oxidized TiO2 (110) and air annealed 

Au NCs deposited at room temperature on a furnace oxidized surface of TiO2 (110) were 

heated to 750
o
C in an air furnace for 1 hour. Figure 3.8 (a) and (b) shows the diffraction patterns 

after the Au NCs were heated to 750
o
C along the TiO2 [-110] and TiO2 [001] azimuths 

respectively. On indexing the RHEED patterns in Figure 3.8 (a), it was seen that the epitaxy 

could be described as –  

(111) Au || (110) TiO2,  [-110] Au || [001] TiO2 

which is identical to the epitaxy reported in the previous sections. Figure 3.8 (c) is a magnified 

view of the red box in Figure 3.8 (b). The black arrows in Figure 3.8 (c) point to the TiO2 (1x2) 

diffraction peaks. The other peaks close to the (1x1) peaks probably stem from different types of 

oxygen induced surface restructuring phenomena that appear during air annealing of TiO2 

(110).[117] It is interesting to see that in all the above cases, some form of (1x2) TiO2 (110) 

reconstruction is seen along with the occurrence of the Au(111)[-110]||TiO2(110)[001] epitaxy. Even 
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though the epitaxial relationship is similar to Au NCs annealed in vacuum, we found that the 

density (coverage = ~0.15) of Au NCs on air annealed specimens was much lower than the 

previous cases (Figure 3.9).  

 

 

Figure 3.8: (a) RHEED pattern (close to TiO2 [001] zone axis) of 1Å Au deposited on furnace 

oxidized TiO2 (110) at 25
o
C annealed to 750

o
C in air. (b) RHEED pattern (close to TiO2 [1-10] 

zone axis) of 1Å Au on furnace oxidized TiO2 (110) annealed to 750
o
C in air. (c) Magnified view 

of box in (b). The arrows in (c) point to spots arising from (1x2) TiO2 reconstruction. The 

diffraction patterns were obtained at the same magnification. 

 

Figure 3.9: AFM image of 1Å Au deposited on a furnace oxidized TiO2(110), and heated to 

750
o
C in air. 
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3.3.2 Studies of Silver NCs on TiO2 (110) 

3.3.2.1 Silver NCs deposited at room temperature on furnace oxidized TiO2 (110) 

A. Structure Evolution and Epitaxy 

Figure 3.10 (a) shows a RHEED pattern of furnace oxidized TiO2(110) along the [001] 

azimuth of TiO2. There are no obvious diffraction spots from surface reconstructions and the 

surface structure appears (1x1) terminated. A coverage of 6.5 Å of Ag was deposited onto 

furnace oxidized TiO2 (110) at room temperature (~25
o
C). The samples were heated at the rate of 

5
o
C/s. The series of RHEED patterns in Figure 3.10 (b), 1(d) and 1(e) show the evolution of the 

Ag NCs with temperature. All RHEED patterns in Figure 3.10 were obtained along the [001] 

azimuth of TiO2 (110). Figure 3.10 (c) shows a TEM micrograph of 6.5 Å of Ag deposited on 

fully oxidized TiO2 (110) at room temperature. It can be seen from Figure 3.10 (c) that, as 

deposited there are multiple orientations of NCs, as well as single twinned and multiply twinned 

NCs. This random arrangement of Ag NCs gave rise to broad diffraction rings in the RHEED 

pattern of the as deposited Ag (Figure 3.10 (b)). On heating, different textures – each with its 

own epitaxial relationship – began to appear on the RHEED pattern. Figure 3.10 (d) shows the 

diffraction pattern at ~460
o
C. Figure 3.10 (e) shows the diffraction pattern at ~585

o
C. Figure 

3.10 (g) shows a schematic of the diffraction pattern in Figure 3.10 (e) along with indices of the 

Ag diffraction rings. TiO2 spots are not shown in the schematic for the sake of clarity. On 

indexing the RHEED diffraction pattern, it is seen that two epitaxial relationships dominate. 

They can be described by –  

(111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 
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(112) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

In such NCs, both ABCABC and ACBACB (energetically equivalent) stacking are 

observed in the RHEED pattern. This has been previously observed for FCC metals on other 

ceramic substrates as well [70]. This is shown schematically in Figure 3.10 (g) by diametrically 

opposite shading on diffraction spots belonging to different stacking sequences but similar 

epitaxial orientations. The spots corresponding to Ag (111) have been shaded horizontally while 

the spots corresponding to Ag (112) have been shaded vertically. When spots from two different 

stacking sequences overlap, it is shown as a filled dark circle. For both kinds of NCs, the electron 

beam is parallel to Ag [-110]. The lack of single epitaxy is most likely from the nucleation and 

growth of NCs around different kinds of surface defects. As shown in previous work [119] 

TiO2(110) heated in the presence of oxygen results in a multitude of surface 

regrowth/reconstructions. These surface reconstructions, which are small enough to be not 

detected by RHEED (Figure 3.10 (a)), most likely act as pinning sites for the growth of epitaxial 

NCs. 
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Figure 3.10: All RHEED patterns were obtained close to TiO2[001]. (a) RHEED pattern of 

furnace oxidized TiO2(110), (b) RHEED pattern and (c) TEM micrograph of Ag NCs on furnace 

oxidized TiO2(110) at 25
o
C showing multiple NC orientations, (d) RHEED pattern of Ag NCs on 

furnace oxidized TiO2(110) at 460
o
C showing the appearance of weak Ag diffraction spots, (e) 

RHEED pattern of Ag NCs on furnace oxidized TiO2(110) at 585
o
C showing multiple epitaxies 

just prior to sublimation, (f) TEM micrograph at 585
o
C showing the presence of many singly 

twinned NCs prior to sublimation, (g) Schematic of RHEED pattern at 585
o
C – spots 

corresponding to Ag (111) have been shaded horizontally while the spots corresponding to Ag 

(112) have been shaded vertically. When spots from two different stacking sequences overlap, it 

is shown as a filled dark circle. The electron beam is parallel to Ag [-110] for both kinds of 

nanoclusters. 

B. Sublimation 

 The RHEED intensities of the Ag (222) spot, TiO2 (2,0) and the specular spot are shown 

in Figure 3.11 as a function of temperature. The increase of the Ag (222) intensity starts at ~ 

450
o
C and continues until ~580

o
C. At the same time, the intensities of the TiO2 (2,0) and 
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specular change only marginally. At 580
o
C (shown by dashed line in plot), the Ag (222) intensity 

begins to decrease while the TiO2 (2,0) and specular intensities increase dramatically. The 

intensities of the specular and the TiO2 (2,0) mimic each other which suggests that the Ag 

desorbs significantly starting at 580
o
C. The decrease in Ag coverage results in a larger surface 

region being exposed, which resulted in both the TiO2 (2,0) and the specular intensity increasing. 

The decrease in Ag coverage is also seen by comparing Figure 3.10 (c) and Figure 3.10 (f). The 

Ag (222) intensity decreases till 620
o
C (shown in dashed line in the plot), after which it stabilizes 

to more or less the background value. At this point no evidence of Ag is observed in the RHEED 

pattern.  The dramatic decrease of the Ag diffraction spots beyond 620
o
C is taken as the 

completion Ag NC sublimation. It must be noted that smaller NCs are expected to sublime at a 

lower temperature which cannot be detected here since the diffraction intensity is dominated by 

the signal from larger NCs. Melting of the Ag NCs is not completely ruled out, but since no 

amorphous rings were seen in the RHEED pattern, the silver disappearance event will be termed 

as sublimation henceforth.  

At 585
o
C, just prior to sublimation (Figure 3.10 (f)) singly twinned NCs dominate with a 

few epitaxial NCs also being present. Twinning is expected because the two predominant types 

of Ag NCs – (112) and (111) – have two orientations that are rotated 180
o
 about the TiO2 (110) 

axis. Epitaxy is inferred from the presence of moiré fringes. Twinning is inferred from the 

presence of two sets of moiré fringes on the same island. It is clearly seen that twinned Ag NPs 

are stable all the way until sublimation and do not convert to single domain epitaxial islands in 

the timescales of our experiment. 
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Figure 3.11: RHEED intensity versus temperature for silver nanoclusters deposited at 25
o
C on 

furnace oxidized TiO2(110). The dashed line to the left shows the onset of sublimation and the 

dashed line to the right shows the completion of sublimation. 

3.3.3 Silver NCs Deposited at Room Temperature on Reduced TiO2 (110)  

A. Structure evolution and epitaxy 

A reduced TiO2 (110) was prepared by starting with a furnace oxidized substrate (see the 

experimental section) and heating it to 750
o
C in vacuum. The substrate was then cooled to room 

temperature and 6.5 Å of Ag was deposited on it. The samples were then heated at the rate of 

5
o
C/s. The series of RHEED patterns in Figure 3.12 (a)-(c) show the evolution of the Ag NCs 

with temperature. All RHEED patterns in Figure 3.12 were obtained along the [-110] azimuth of 

TiO2 (110).  The random arrangement of Ag NCs in the as deposited state gave rise to broad 
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diffraction rings in the RHEED pattern at low temperatures. Figure 3.12 (a) shows a diffraction 

pattern at ~100
o
C that is dominated by the rings with a couple of weak spots. On further heating, 

a single epitaxial orientation began to appear on the RHEED pattern. Figure 3.12 (b) shows the 

diffraction pattern at ~350
o
C where the Ag diffraction spots have been indexed. Figure 3.12 (c) 

shows the diffraction pattern at ~560
o
C (that is after the start of sublimation) where the Ag spots 

have become weaker. It is seen from the RHEED pattern in Figure 3.12 (b) that the electron 

beam is parallel to Ag [11-2] and that there is only one epitaxy namely –  

(111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

In such NCs, both ABCABC and ACBACB (energetically equivalent) stacking were observed 

by recording RHEED patterns along the [001] azimuth of TiO2 (not shown here).  

 

Figure 3.12: Silver nanoclusters on reduced TiO2(110) : RHEED pattern taken along [-110] TiO2 

at (a) 100
o
C showing the onset of epitaxy and weak Ag diffraction spots, (b) 350

o
C showing the 

completion of epitaxial rearrangement of NCs and a single epitaxial orientation (Ag diffraction 

spots have been indexed with electron beam being parallel to Ag [11-2]), (c) 560
o
C showing 

TiO2 spots becoming stronger and Ag spots becoming weaker signifying sublimation of some Ag 

NCs. 
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B. Sublimation 

 The intensities of the Ag (222) diffraction spot, TiO2 (2,0) and the specular spot are 

shown in Figure 3.13 as a function of temperature. The increase in the Ag (222) diffraction 

intensity starts right from room temperature and continues until ~315
o
C (shown in dashed line in 

the plot). At the same time, the intensity of the TiO2 (2,0) remains constant. This suggests that 

the ordering in the Ag NCs is not accompanied by significant dewetting of the substrate and is 

due to intra-island ordering. At 315
o
C, the Ag (222) intensity begins to decrease. The decrease in 

the Ag (222) could come from both the conventional decrease in intensity with temperature that 

can be described by the Debye-Waller factor and the disappearance of the smaller Ag NCs. 

However, since the smaller Ag NCs do not contribute significantly to the RHEED intensity, it is 

expected that the decrease in the Ag (222) intensity starting at 315
o
C is mainly due to the 

increased thermal vibrations of the Ag atoms. It also means that most of the Ag NCs become 

epitaxially oriented by 315
o
C. The intensity of the Ag (222) spot decreases dramatically at 

~525
o
C, signifying the start of Ag sublimation. The intensities of the TiO2 (2,0) and the specular 

spot increase dramatically at the same time signifying that the coverage of Ag is decreasing. The 

decrease in Ag coverage results in a larger region of the surface being exposed which causes 

both the TiO2 (2,0) and the specular intensity to increase. The decrease in the Ag coverage 

beyond 525
o
C can also be seen visually by observing that TiO2 diffraction spot intensities in 

Figure 3.12 (c) are higher than Figure 3.12 (b). The Ag (222) intensity decreases till 585
o
C 

(shown in dashed line in the plot), after which it is seen to more or less stabilize to the 

background value. At this point all Ag has been removed from the surface.  The TiO2 (2,0) and 

the specular intensities rise dramatically until 585
o
C and thereafter fall down due the 
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conventional decrease in intensity expected from increasing temperature as described by the 

Debye-Waller factor.  

It is seen that Ag deposited on a reduced TiO2 (110) at room temperature completes its 

epitaxial formation at 315
o
C even for the largest Ag island, which for a 8 nm Ag cluster is more 

than 80 K below the 2/3 Tm [121, 122] even if one assumes a large value of 1.4 J/m
2
 for the 

surface energy of Ag [66, 123]. The epitaxy is dominated by one kind of orientation only. 

Furthermore, the sublimation temperature for complete silver disappearance is about 35 degrees 

lower than the sublimation temperature of Ag NCs supported on furnace oxidized TiO2(110). 

These observations clearly show that the stoichiometry of the substrate plays a significant role in 

driving the structural change of Ag NCs on TiO2 (110).  
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Figure 3.13: RHEED intensity versus temperature for silver nanoclusters deposited at 25
o
C on 

reduced TiO2(110). The dashed line to the left shows the completion of epitaxial rearrangement 

and dashed line to the right shows the completion of sublimation. 

3.3.4 Silver NCs Deposited at 350
o
C on Reduced TiO2 (110)  

A. Structure evolution and epitaxy 

A reduced TiO2 (110) was prepared by taking a furnace oxidized substrate (refer 

experimental section) and heating it to 750
o
C in vacuum. 6.5 Å of Ag was deposited at 350

o
C 

onto the reduced TiO2 (110) surface. The samples were then heated at the rate of 5
o
C/s. The 

RHEED patterns in Figure 3.14 (a), (b) were taken close to the [-110] azimuth of TiO2 (110). It 

is seen that there is complete epitaxy even as deposited at 350
o
C (Figure 3.14 (a)), which does 

not change in Figure 3.14 (b) which was taken close to the sublimation temperature. Figure 3.14 
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(c) shows a TEM micrograph of the as deposited Ag NCs at 350
o
C. The Ag NCs were found to 

be mostly epitaxial as expected with a few multiply twinned NCs also seen. For most of the 

epitaxial Ag NCs, the (111) plane of Ag was parallel to the surface of the TiO2 (110). The 

electron beam is parallel to Ag [11-2]. Both ABCABC and ACBACB stacking were seen in the 

Ag NCs similar to previous observations. The predominant epitaxial orientation as seen from 

RHEED was –  

(111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

 

Figure 3.14: Silver nanoclusters on reduced TiO2(110) at 350
o
C: (a) RHEED pattern taken along 

[-110] TiO2 at 350
o
C showing formation of single epitaxy (Ag diffraction spots have been 

indexed with electron beam parallel to Ag [11-2]), (b) RHEED pattern taken along [-110] TiO2 at 

620
o
C showing the presence of weaker Ag diffraction spots signifying sublimation of some Ag 

NCs. (c) TEM micrograph of nanoclusters deposited at 350
o
C showing large size range of NCs. 

B. Sublimation 

The intensities of the Ag (222) spot, TiO2 (2,0) and the specular spot are shown in Figure 

3.15 as a function of temperature. The decrease in the Ag (222) intensity starts right from the 

temperature of deposition and continues till all Ag has disappeared at ~ 660
o
C (as shown in 

dashed line on the plot). The decrease in the Ag (222) could come from both the conventional 

decrease intensity with temperature that can be described by the Debye-Waller factor and the 

disappearance of the smaller Ag NCs. Noticeably, there is no further ordering of Ag NCs 
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indicating that the NCs formed immediately after deposition are equilibrium structures. Unlike 

the previous cases, there is no dramatic decrease in the intensity of the Ag (222) spot to signify 

the start of Ag sublimation. This is due to the fact that higher temperature depositions lead to 

larger size distributions for the NCs (as also seen in Figure 3.14 (c)). Consequently, the 

temperature of desorption of the NCs occurs over a range of temperatures. However, the largest 

NCs of Ag cause the greatest shadowing of the TiO2 substrate. Hence, once the disappearance of 

the larger NCs begin, the TiO2 (2,0) and the specular increase dramatically at the same time. This 

happens around 630
o
C. At 630

o
C, the TiO2 (2,0) and the specular intensities rise dramatically 

until 660
o
C (when all Ag NCs sublime) and thereafter fall down due the conventional decrease in 

intensity expected from increasing temperature as described by the Debye-Waller factor. 

It is seen that the epitaxial relationship obtained on depositing Ag on a reduced TiO2 

(110) surface at 350
o
C is the same as the epitaxy seen when Ag was deposited at room 

temperature on a reduced surface and then heated up. These results prove that the structural 

evolution of Ag NCs deposited on reduced TiO2 (110) (in section B) leads to equilibrium 

structures for the Ag NCs and not metastable structures. Furthermore, it shows that the high 

temperature deposition leads to the formation of larger cluster sizes and greater size distribution 

in the process of obtaining equilibrium structures, while deposition on a reduced TiO2 (110) 

surface at room temperature followed by annealing leads to a tighter size distribution and smaller 

structures for obtaining similar equilibrium structures.  
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Figure 3.15: RHEED intensity versus temperature for silver nanoclusters deposited at 350
o
C on 

reduced TiO2(110). The dashed line shows the completion of sublimation. 

3.4 Discussion 

3.4.1 Epitaxy of Au NCs 

The stability of the commonly observed Au(111)/TiO2(110) interface has been a subject 

of debate in the past. Lopez et. al. showed using DFT calculations that an ideal (1x1) oxygen 

terminated TiO2 (110) surface has nearly zero adhesion for Au (111) and therefore the interface 

of Au (111) and defect-free TiO2 (110) (1x1) could not be stable.[68] They suggested that the 

presence of oxygen vacancies and other defects as being probable causes for stabilizing the 

interface of Au(111) and TiO2 (110). The observation that Au atoms and small Au clusters (<20 
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atoms) bind more strongly to oxygen vacancies (Obr-v) on TiO2 (110) than Obr has also been 

broadly confirmed by various other groups.[42, 59, 62, 104, 124] However, the presence of 

random defects such as oxygen vacancies on TiO2 (110), whose number and configuration have 

to necessarily change for the three different TiO2 (110) surfaces in our studies, cannot account 

for the appearance of an identical epitaxy in all the three cases. The dominant epitaxy of Au NCs 

on TiO2 (110) in our experiments does not change with different starting surfaces of TiO2 (110) 

and different annealing atmospheres. While other minor epitaxial arrangements of Au NCs may 

be present in our experiments, the presence of only one epitaxy in all the RHEED patterns 

suggest that the Au(111)[1-10] || TiO2 (110)[001] epitaxy is highly dominant. 

We argue that the stability of the Au(111)[1-10] || TiO2 (110)[001] epitaxy is due to the 

nucleation and growth of epitaxial Au NCs at areas of TiO2 (110) that are (1x2) reconstructed. 

We infer this hypothesis from four key observations – (a) Au NCs on (1x2) reconstructed TiO2 

(110) surfaces nucleate as epitaxial NCs even at room temperatures, (b) Au NCs evolve to the 

equilibrium epitaxial configuration at lower temperatures when the bare surface is (1x2) 

reconstructed prior to Au deposition,  (c) the coverage of Au NCs on TiO2 (110) increases with 

increasing fraction of (1x2) surface reconstruction and (d) TiO2 (110) (1x2) reconstruction is 

simultaneously observed along with the Au(111)[1-10] || TiO2 (110)[001] epitaxy in RHEED, 

irrespective of the stoichiometry of the starting surfaces and the details of their heat treatments.  

Au NCs most likely prefer to nucleate over the (1x2) reconstruction since these 

reconstructions are oxygen deficient[54-56, 120] and lattice match to TiO2 [001] along Au [1-

10]. Others have also reported selective Au nucleation over (1x2) TiO2 (110).[125, 126] In these 

studies, the authors use Low Energy Electron Diffraction (LEED), X-Ray Photoelectron 

Spectroscopy (XPS) and Density Functional Theory (DFT) to infer that Au preferentially 
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nucleates over missing row (1x2) reconstruction as atomic chains which lattice match along the 

TiO2 [001] direction and .are separated by ~13Å along TiO2 [-110], thus matching the periodicity 

of the (1x2) reconstruction along TiO2 [-110]. The authors contend that the (1x2) reconstructions 

in their studies are of the missing-row type[120] and Au nucleates at these missing row (1x2) 

reconstructions as Au atomic chains. While we agree that Au likes to nucleate on TiO2 (110) 

(1x2) reconstruction, we think the nucleation of Au on the (1x2) reconstruction is not limited to 

just the missing row type since we observe the same epitaxy on (1x2) reconstructions created by 

vacuum heating and air annealing – which most likely are not identical.  

Once the first Au row is nucleated by lattice matching to the TiO2 (1x2) reconstruction, 

the subsequent growth of Au NCs on top these nucleation sites is preferred since the adhesion of 

Au to the (1x2) reconstruction is strong.[125, 126] The growth of 3D Au NCs over the (1x2) 

reconstruction would result in an interfacial strain of 3% along the Au [11-2] and TiO2 [-110] 

direction assuming five periods of Au with each period consisting of three Au (112) lattice 

planes are lattice matched to two periods of the TiO2 (110) (1x2) reconstruction along TiO2 [-

110]. In the orthogonal direction (along TiO2 [001]), as mentioned earlier, we expect one is to 

one lattice match. We note that we were not able to measure interfacial strain using RHEED 

since RHEED signal is dominated by larger NCs which relax to the equilibrium Au spacing 

away from the interface. In all of our measurements, the equilibrium spacing of Au NCs was 

found to be fully relaxed.  

Even though we have made a strong case for Au nucleation over the (1x2) reconstruction 

of TiO2 (110) using RHEED studies, we cannot prove it beyond doubt unless we are able to view 

the interface using microscopy. Electron microscopy analysis of this interface will be presented 

in Chapter 4 which agrees with all the conclusions we have arrived at with RHEED experiments.  
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3.4.2 Epitaxy and Sublimation of Ag NCs 

 Our observation of Ag NC disappearance at ~ 620
o
C is similar to the temperature regime 

of disappearance of Ag islands on furnace annealed TiO2 (110) in a previously reported 

study.[106] In this study, the authors noted that the density of Ag NCs decreases utmost by a 

factor of four even after a long period of annealing and the average size of the Ag NCs does not 

change significantly, which indicates that Ag NCs are quite stable after their initial formation at 

room temperature. Also, Scanning Tunneling Microscopy (STM) studies revealed that Ag NCs 

nucleate on step edges of TiO2 (110)[105, 106] even at room temperature. Based on this 

observation, it was concluded that there is a high diffusion rate for Ag atoms at room 

temperature on oxidized TiO2 (110) terraces. The lack of coarsening during annealing, despite a 

relative fast Ag diffusion on TiO2 (110) terraces, indicates a strong bonding of Ag atoms to step 

edge defects. These defects are likely to provide sites for pinning of Ag atoms. We suspect that 

the strong bonding of the Ag atoms to the step edge defects is also responsible for the lack of the 

uniform epitaxy of Ag NCs on furnace oxidized TiO2 (110) upon annealing. On a step edge, the 

orientation of a Ag NC is highly dependent on the details of the step edge atomic structure. The 

dominant epitaxial configurations possibly reflect the dominance of different step edges of the 

TiO2 surface. However, further study is needed here to clarify the relationship between step 

edges and NC orientations.  

For understanding the remarkable difference in the behavior of Ag on furnace oxidized 

versus reduced TiO2, we note that DFT calculations have shown that the bonding of Ag atoms to 

Obr is much stronger than the bonding of Ag to Ti sites[60] or Ag to Obr-v. This is in contrast to 

Au where Au binds much stronger to Obr-v than Obr. Therefore, on reduced TiO2 (110) surfaces, 

where the bridging oxygen atoms are expected to be missing, it is anticipated that the adsorption 
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of Ag will be much weaker. This is consistent with our experimental observation that the 

sublimation temperature in the case of Ag NCs on furnace oxidized TiO2 (110) is higher than 

reduced TiO2 (110) by ~35 degrees. It should be noted that not all bridging oxygen atoms are 

missing on the reduced TiO2 (110). The somewhat small temperature difference observed 

experimentally is likely an indication of a mixture of different adsorption sites at the interface of 

Ag NCs and TiO2 (110).  

Also, since we observe epitaxial Ag NCs form even at 100
o
C on reduced TiO2 (110) 

substrates, we believe that Ag nucleates on the (1x2) reconstruction by lattice matching with the 

(1x2) reconstruction similar to Au. Similar to Au NCs on reduced TiO2 surfaces, the presence of 

small Ag NC nuclei with epitaxial arrangement should drive the reorganization of Ag NCs 

supported on reduced TiO2 (110) surfaces to epitaxy at lower temperatures than furnace oxidized 

surfaces. Indeed this is supported by our observation that Ag NCs fully evolve to a single epitaxy 

- (111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 - on reduced TiO2 (110) at 350
o
C as against 

575
o
C for Ag NCs on furnace oxidized TiO2 (110). Thus, we see that the bridging oxygen atoms 

play a strong role in determining the bonding and epitaxy of Ag NCs to TiO2 (110). 

3.5 Summary and Conclusions 

The structural evolution and epitaxy of Au NCs on TiO2 (110) surfaces prepared in three 

different ways have been studied using RHEED characterization. 

1. 1 Å of Au deposited on furnace oxidized TiO2 (110) at room temperature evolves into a 

single epitaxial arrangement upon annealing in vacuum to 785
o
C. The predominant 

epitaxial arrangement is – 

(111) Au || (110) TiO2, [-110] Au || [001] TiO2 
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It is seen from the RHEED intensity analysis that the onset of epitaxy happens around 

750
o
C and is completed by 750

o
C. The TiO2 (110) surface is seen to be (1x2) 

reconstructed after heating to 785
o
C.  

2. 1 Å of Au deposited on reduced and (1x2) reconstructed TiO2 (110) at room temperature 

evolves into a single epitaxial arrangement upon annealing in vacuum to 750
o
C. The 

predominant epitaxial arrangement is – 

(111) Au || (110) TiO2, [-110] Au || [001] TiO2 

RHEED patterns show evidence of epitaxy even at room temperatures. It is seen from the 

RHEED intensity analysis that the onset of epitaxy happens around 600
o
C and is 

completed by 700
o
C. The nucleation and growth of Au NCs on (1x2) reconstructed TiO2 

(110) therefore happens at much lower temperatures and is mostly likely favored by 

nucleation of Au atomic chains on the (1x2) reconstruction. 

3. 1 Å of Au deposited on furnace oxidized TiO2 (110) at room temperature evolves into a 

single epitaxial arrangement upon annealing in air to 750
o
C. The predominant epitaxial 

arrangement is – 

(111) Au || (110) TiO2,  [-110] Au || [001] TiO2 

The TiO2 (110) surface is seen to be (1x2) reconstructed after heating to 750
o
C in air. The 

omnipresence of the (1x2) reconstruction in all the three cases suggests that the lattice 

match of (1x2) TiO2 (110) and Au/Ag is responsible for the formation of epitaxial Au 

NCs on TiO2 (110). 
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The structural evolution, epitaxy and sublimation temperature of Ag NCs on TiO2 (110) 

surfaces prepared in two different ways have been studied using a combination of in-situ 

RHEED characterization and ex-situ electron imaging. The results show: 

1. 6.5 Å of Ag deposited on furnace oxidized TiO2 (110) at room temperature does not get 

into complete or single epitaxial structure before sublimation. The predominant 

orientations just before sublimation are – 

(111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

(112) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

It is seen from the RHEED intensity analysis that sublimation is complete at 620
o
C. 

Single twinned NCs are seen to be stable even at temperatures close to sublimation. This 

suggests that either the local interfacial atomic arrangement causes twinned structures to 

be thermodynamically stable or that surface diffusion of Ag atoms on the NCs is too slow 

to cause significant structural change in the timescales of this experiment.  

2. Ag deposited on reduced TiO2 (110) at room temperature and 6.5 Å coverage gets into 

complete and single epitaxial relationship with the substrate, which can be described as- 

(111) Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

It is seen from the RHEED intensity profile that epitaxy is complete by 315
o
C, which is 

80K below 2/3 Tm of an 8nm Ag cluster, which is a typical size in this case. It is also 

seen that sublimation is complete by ~585
o
C, which is significantly lower than the 

sublimation temperature of Ag NCs supported on furnace-oxidized TiO2 (110). Both 
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these observations clearly show that surface stoichiometry plays a crucial role in the 

structural evolution, epitaxy and sublimation of Ag NCs on TiO2 (110).   

3. 6.5 Å of Ag was deposited on a reduced TiO2 (110) surface at 350
o
C, which is greater 

than 0.5 Tm of Ag. This is expected to yield equilibrium epitaxial structures. It was seen 

that complete epitaxy was achieved, which can be described as – 

(111)Ag || (110) TiO2,  [-110] Ag || [001] TiO2 

This proves that the epitaxy seen in the previous case was indeed the equilibrium 

structure and that structural evolution on a reduced TiO2 (110) surface can lead to the 

formation of equilibrium structures. Sublimation was complete at 660
o
C, which is 

significantly higher than both the above cases. This is attributed to the presence of larger 

Ag NCs due to the higher deposition temperature. Unlike the previous cases, the start of 

desorption did not show up significantly in the RHEED. This is attributed to the larger 

distribution in the cluster size which results in sublimation over a larger temperature 

range.  

Further, the similarities and differences between Au and Ag are highlighted by this study. 

The similar lattice parameters and atomic structures of Au and Ag cause both Au and Ag NCs to 

nucleate on the TiO2 (110) (1x2) reconstruction with identical epitaxial relationships and evolve 

to the same epitaxy on reduced TiO2 (110) surfaces. However, the dissimilarities in the bonding 

of Au and Ag to defects and oxygen vacancies results in the presence of two dominant epitaxies 

for Ag NCs deposited and vacuum annealed on furnace annealed TiO2 (110) surfaces and only a 

single epitaxy for Au NCs processed under similar conditions.  
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CHAPTER 4  

INTERFACIAL ATOMIC STRUCTURE AND INTERFACIAL ENERGY OF 

EPITAXIAL GOLD NANOCRYSTALS SUPPORTED ON TITANIUM DIOXIDE (110) 

Substantial parts of materials technology, major components of chemical industry, and 

exciting new developments in medical diagnostics rely on the synergistic interactions at the 

interface of metal nanoparticles and oxide surfaces
1
. The interfacial property is largely 

determined by its atomic structure, however, we know little about this relationship for 

nanoparticles.  Here we report an examination of the interface formed between gold nanocrystals 

(NCs) and the TiO2 (110) surface, which is a model oxidation catalyst[30, 33, 37, 41]. Using 

aberration corrected scanning transmission electron microscopy (STEM), we observed direct 

evidence of interface reconstruction for epitaxial Au NCs with 
2

(11 1 ) || (110)Au TiO . The 

reconstructed interface is formed by Au atoms sitting between added-rows of TiO2 (110) (1x2) 

reconstruction,[54] resulting in a single atomic layer of Au, Ti and  oxygen, as evidenced by 

atomic scale electron spectroscopy. It has a significantly lower interfacial energy by ~0.5 J/m
2
 

compared to interfaces without reconstruction. The interface is also stable under high 

temperature annealing. First-principles calculations suggest that the interfacial Au atoms are 

ionized with a valence of 1.5.  

4.1 Introduction 

In 1878, Gibbs had proposed that the equilibrium shape of a droplet or a crystal will be 

the one that minimizes the net surface energy of the droplet or crystal. In other words, the crystal 

will adopt that shape which minimizes the quantity GCrystal=  γ
ii Ai , where “i” represents each 
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facet. In 1901, Wulff stated that the length of the vector (hi) drawn from the center of a crystal 

normal to a facet “i” will be proportional to the surface energy of the facet (γi),[127] i.e.  

hi

γi

 = Constant                                                              (4. 1) 

 The Wulff theorem was later proved by many others and found to be exact in both two 

and three dimensions.[128-130] Kaishew is credited with modifying the Wulff theorem for 

predicting the equilibrium shape of supported crystals which have an interface.[131] The 

following derivation of the Wulff-Kaishew has been reproduced from Kern et al.[132].  The 

excess free energy of a supported nanocluster with n atoms with interfacial line tension can be 

expressed as  

Int2TiOInt
Intj

jj A)(An)n(G  


                                  (4. 2) 

where ΔG and Δμ are the excess free energy and chemical potential difference between a Au 

atom in the gas phase and a Au atom in the nanocluster respectively, n is the number of atoms in 

the nanocluster, γj and Aj are the surface energy and surface areas of the free surfaces, and γInt is 

the interfacial energy. Noting that 

 nV                                                                      (4. 3) 

where V is t he volume of the nanocluster and ν is the atomic volume, and 
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where, hj is the distance from the centre of the nanocrystal to the centroid of the facet (Figure 

4.1), the derivative of ΔG can be written as –   
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Figure 4.1: Schematic illustration of a supported nanocrystal. “h” is distance from the center of 

the crystal to the facets. “Δh” is the undercut. “w” is the width of the NC. 

Using the partial equilibria conditions 
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we get,  
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where γAu is the surface energy of the gold surface facet parallel to the interface.  

Combining equations (7) and (8) we get, 
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The above equation is fundamentally similar to the effect of interfacial energy on the shape of 

liquid droplets. It can be seen from the above equation that as the interfacial energy of an 

interface is lowered, the undercut (Δh) increases, that is the crystal wets the support as the 

interfacial energy decreases. This is illustrated schematically in Figure 4.2.  

 

Figure 4.2: Schematic illustration of wetting with decreasing interfacial free energy. The dashed 

lines are a guide to the eye and depict increasing undercut with decreasing interfacial energy.  

An alternative description of the interfacial formation energy is the work of adhesion 

(Wadh) defined originally by Dupré, where 

Int2TiOAuadh
W                                                 (4. 11) 

which represents the net energy gained from forming an interface. A lower interfacial energy 

results in a larger work of adhesion (Wadh). Scaling the work of adhesion by the surface of 

energy of the nanocrystal facet forming the interface gives the relative work of adhesion as -  

Au

adh
W

h
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(4. 12) 
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The relative work of adhesion is a convenient measure for comparing the relative adhesive 

strengths of interfaces formed between disparate materials.  

Using the Wulff-Kaishew principle, the work of adhesion and interfacial energies of 

many interfaces have been determined. It must be noted that all these measurements rely on the 

shape information of the crystals. Since the shape provides only relative values of Wadh and γint , 

(scaled by the surface energy), one has to know the surface energy apriori in order to find 

absolute values of Wadh and γint. However experimental determination of surface energies is often 

extremely difficult and many authors use theoretically calculated surface energies in order to 

obtain absolute values for Wadh and γint. Similar to other researchers, we have also used 

theoretical estimates for the surface energy to provide reasonable estimates for Wadh and γint, but 

we note that shape measurement experiments such as ours can quantitatively measure only 

relative Wadh and γint, i.e. Wadh/γAu and γint/γAu. For the surface energy of gold, we use the first-

principles calculations by Vitos et al.[66] For the surface energy of TiO2, we use the 

measurement from a droplet based method[67] in order compare our measurements with other 

reports that use the droplet based value for TiO2 (110) surface energy.[63] 

Some of the experimental techniques that have been used to determine the shapes (and 

hence the interfacial energy) of metal nanocrystal-oxide support systems are – Transmission 

Electron Microscopy (TEM) [63, 133], Scanning Electron Microscopy (SEM)[134] and 

Scanning Probe Microscopy (SPM) [135]. The results of some previous studies are summarized 

in Table 4.1 below. Since absolute values of Wadh and γint do not make sense when comparing 

interfaces formed by different surfaces/materials, Δh/h has been tabulated in Table 4.1. Higher 

(Δh/h) implies stronger adhesion. 
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Metal Oxide 
Crystal 

Size  (nm) 
Δh/h 

Comme

nts 
Technique Reference 

Au (111)  TiO2 (110) 150 0.39 3D 
Cross 

sectional 

TEM 

[63] 

Au (111) TiO2 (110) 5 0.47 
3D-

Circular 

Cross 

sectional 

TEM 

[63] 

Au (111) 
Sapphire 

(0001) 
550 0.35 3D 

Cross 

sectional 

TEM 

[133] 

Au (001)  
Sapphire 

(0001) 
570 0.37 3D 

Cross 

sectional 

TEM 

[133] 

Cu (111) 
Sapphire 

(0001) 
4-6 1.48 2D STM [136] 

Pd (111) 
Sapphire 

(0001) 
4 1.70 2D STM [137] 

Au (111)  Graphite < 4000 0.38 3D SEM [134] 

Cu (111)/ 
ZnO 

(0001) 
4-6 1.54 2D STM [138] 

 

Table 4.1: Experimentally measured undercut for various metal/oxide systems 

For smaller nanocrystals (<10nm), interfacial energies have not been extensively 

measured [139]. The prime difficulty with measuring interfacial energies of smaller nanocrystals, 

is the lack of an experimental technique that can image the interface, facets and the equilibrium 

shape of nanoclusters supported on model atomically flat surfaces. As seen from the above table, 

SEM can be used only for bigger crystals. Cross sectional TEM is useful for bigger NCs 

(>10nm), but cross sectional sample preparation methods can lead to modifications of the surface 

atomic structure of smaller clusters. Scanning probe microscopy (SPM) was successful in 
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determining the interfacial energy of 2-D metal NCs in a few systems[136-138]. However, 

generally SPM has difficulties with many 3-D metallic NCs [97, 105, 140-144], in general due to 

lack of atomic resolution, and since interpretation of SPM data involves deconvoluting the 

particle-tip interactions. Therefore, a more direct method is sought to address the issue of 

measuring interfacial energies of small NCs. The sample preparation method we have developed 

(described in detail in Chapter 2) presents a novel way of measuring interfacial energies of 

smaller NCs.  

Another issue with the study of nanocrystal interfaces is the general inability to directly 

probe the interface‟s atomic and electron structure. While 2D (thin film/ superlattice) interfaces 

can be interrogated by a combination of techniques including  X-ray diffraction, atom probe and 

electron microscopy and first-principle calculation studies[145], only  atom probe and electron 

microscopy are sensitive to nanoscale interfaces. However, both techniques require significant 

improvement in resolution for atomic structure determination of NC interfaces. In particular, 

conventional cross-sectional sample preparation methods, which are found to be rather adequate 

for obtaining high quality experimental data[146]  from thin interfaces, can alter NCs smaller 

than 10nm. Also, coating the NCs with polymeric materials reduces the signal to noise ratio from 

the interface in a TEM/STEM. These are serious limitations that restrict our ultimate ability to 

obtain high quality data from NC interfaces. Other direct microscopy techniques such as SEM 

and  STM cannot image the interface either (except in very special situations[147]).  

The novel cross-sectional sample preparation method we have developed not only helps 

measure interfacial energies but also presents a neat system for studying the interfacial atomic 

structure, electronic structure and interfacial energy of small supported NCs using TEM/STEM. 

We have used the above method to characterize the interface of Au NCs supported on TiO2 (110) 
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which has been the subject of a long debate in the catalyst community (as described in detail in 

Chapter 1). The following section describes our work on the interfacial energy, atomic structure 

and electronic structure of Au NCs supported on TiO2. 

4.2 Au-TiO2 Interface 

The atomic structure of Au/TiO2 interfaces has been a subject of considerable speculation 

[37, 96]. Au nanoclusters (NCs), when supported on reducible oxides like TiO2, show unusual  

size-dependent catalytic activity, including the oxidation of CO at low temperatures[30, 31, 37, 

41, 63, 148]. Bulk Au however is chemically inert. In supported Au NCs, the simultaneous 

presence of Au cations next to metallic Au atoms has been suggested crucial for catalytic activity 

of Au [31, 33, 37]. Despite many proposals, so far there has been no „direct‟ study of interfacial 

Au atoms. 

Nanoparticle interfaces, in general, are difficult to characterize. While 2D (thin film/ 

superlattice) interfaces can be interrogated by a combination of techniques including  X-ray 

diffraction, atom probe and electron microscopy and first-principle calculation studies[145], only  

atom probe and electron microscopy are sensitive to nanoscale interfaces. However, both 

techniques require significant improvement in resolution for atomic structure determination of 

NC interfaces. In particular, conventional cross-sectional sample preparation methods, which are 

found to be rather adequate for obtaining high quality experimental data[146]  from thin 

interfaces, can alter NCs smaller than 10nm. Also, coating the NCs with polymeric materials 

reduces the signal to noise ratio from the interface in a TEM/STEM. These are serious 

limitations that restrict our ultimate ability to obtain high quality data from NC interfaces. Other 

direct microscopy techniques such as SEM and  STM cannot image the interface either (except 

in special situations[147]).  
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We used aberration corrected scanning transmission electron microscopy (STEM) in the 

cross sectional geometry for the characterization of Au NC interfaces by developing a novel way 

to prepare NC interfaces. The high resolution (< 1 Å ) allows for direct visualization of 

individual interfacial atomic columns in projection, which has proved to be extremely useful for 

understanding atomic and electronic structure of interfaces[149-152]. Furthermore, the 

quantitative dependence on Z in the STEM image contrast obtained using a high angular annual 

dark field (HAADF) detector[153] allows determination of the nanocrystal shape and its 

interfacial energy, as we will show here.  

The interface between Au nanocrystals and rutile (110) surfaces was formed by 

deposition of few monolayers of Au atoms followed by annealing. The (110) is most stable 

among different rutile surfaces. The structure of rutile (110) ranges from the fully oxygenated 

(1x1) structure to reconstructed oxygen deficient (1x2), (1x3) structures, rosettes etc[49]. For our 

TEM study, the TiO2 crystal was first thinned and then annealed in air to promote the formation 

of TiO2 surface facets. Previous studies have shown that upon deposition Au forms 2-3 

monolayer high, randomly oriented nanoparticles[154] and after annealing there is a tendency to 

form epitaxial nanocrystals[63]. The formation of Au NCs on the top, bottom and side surfaces 

of the TiO2 crystal was achieved by sputtering and annealing. Annealing promotes epitaxial 

nanocrystal formation[113]. The sizes of Au NCs ranged from 5nm to 12nm in width depending 

upon the annealing conditions. More details of sample preparation are given in Chapter 2.  

4.3 Epitaxy and Equilibrium Nanocrystal Shapes 

Figure 4.3 shows images of epitaxial Au NCs supported on a thin slab of TiO2 crystal. 

The TiO2 crystal in Figure 4.3 (a) recorded by HAADF-STEM has two side surfaces, both 

belong to (110); one is relatively flat and the other has a large miscut with many surface steps. 
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The density of the NCs is higher on stepped surfaces, where the surface steps provide 

preferential nucleation sites. The facets of larger NCs are also visible. The two TEM images in 

Figure 4.3 (b),(c) represent two different epitaxies of Au NCs observed on TiO2 (110). The Au 

NC in Figure 4.3 (b) with a hemispherical shape is oriented along the Au [112] zone axis. In this 

orientation, the Au atoms are arranged in a rectangular lattice defined by the basis lattice vectors 

of [11 1 ]Au  and [1 10]Au . The epitaxy in Figure 4.3 (b) can be described as
2

(11 1 ) || (110)Au TiO

and
2

[1 10] || [001]Au TiO . This was the most common type of epitaxy that we observed and will 

be henceforth referred as Au[112]. This epitaxy has also been reported earlier by vacuum 

deposition and annealing[102] as well by precipitation and calcination[69].  The Au NC in 

Figure 4.3 (c) with a large dewetting is oriented along the Au [110] zone axis. The epitaxy in 

Figure 4.3 (c) can be described as 
2

(001) || (110)Au TiO  and
2

[1 10] || [001]Au TiO , which will be 

referred as Au[110]. This epitaxy was much less frequently observed than Au[112]. 
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Figure 4.3: (a) Low-magnification STEM image of Au NCs supported on TiO2(110). The NCs 

on the edge were used in this study. High resolution TEM images of two types epitaxial Au 

nanocrystals: (b) Au[112] and  (c) Au[110] NC. 

In order to determine the shape of the NCs, we examined the atomic resolution contrast 

of the two types of epitaxial NCs recorded by HAADF-STEM (Figure 4.5). The nanocrystals 

were imaged along the TiO2 ]011[  direction. The atomic columns of Au are clearly resolved in 

both cases. The Au atomic columns appear bright and the Ti atomic columns appear much duller 

due to the Z-contrast. Superimposed on the experimental images are estimated equilibrium 

(Wulff) shapes of supported NCs. The parameters used for modeling are the ratio of distances to 

the {100} and {111} facets, corresponding to the ratio of the surface energies of {100} and 

{111}, or 111100 /  . The NC facets are obvious for the Au[110] NC as seen in Figure 4.4 (a). The 

fit for the NC shape gave 111100 /  =1.14. The nanocrystal was viewed along the [110] 
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orientation of Au. For the Au[112] NC shown in Figure 4.5 (b), the fit was obtained with 
100 111

/ 

= 1.06.  There is noticeable edge roughness at the top and side surfaces in this case. Because of 

this, the nanocrystal facets are not obvious in this image. Thus, we performed modeling and 

simulations of image contrast to establish the NC shape of Au[112] NCs.  

 

Figure 4.4: (a) and (b) Atomic resolution HAADF-STEM images of two Au NCs of different 

epitaxy. A model of the Au shape is overlaid on half of the NC in each case.  

Figure 4.5 (b) shows a line profile along the width direction of a smaller (dia = 4.3nm) 

Au[112] NC Figure 4.5 (a). Figure 4.5 (c) shows a line profile along the height direction of the 

smaller Au[112] NC in Figure 4.5 (a). The change in the slope of the experimental intensity profile 

is reproduced by the simulation (the discrepancy between the experiment and simulation in 

Figure 4.5 (c) at the interface is a key point and will be discussed later). Based on these 

evidences, we concluded that both Au[110] and Au[112] NCs are faceted, with additional corner and 

edge roughness, as expected from the contribution of entropy to the free energy[135].  As a side 
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note, we observed in both cases that the models give surface energy ratios less than the 

theoretical value of 
100 111

/  =1.268 [66].   

 

Figure 4.5: (a) Atomic resolution HAADF-STEM image of smaller Au[112]. Experimental and 

simulated (blue) (b) horizontal and (c) vertical line profiles from the Au[112] NC in (a). The 

simulation used the crystal shape model and multiple scattering as implemented by the multislice 

method. 

4.4 Interfacial Atomic Structure 

The combination of Z-contrast and atomic resolution as evidenced above allows a direct 

examination of the interface atomic structure between the Au NC and TiO2. Figure 4.6 (a) shows 

a magnified image of the Au[112] interface imaged by HAADF-STEM. The (111) Au close 

packed planes (dAu(111) = 2.35 Å) are parallel to the interface and the (220) Au atomic columns 

perpendicular to the interface (dAu(220) = 1.44 Å) are clearly resolved.  The TiO2 substrate is 

imaged along its ]011[ zone axis; two types of atomic columns are seen – „Ti-only‟ columns and 

„Ti-O‟ columns, which have the same number of Ti atoms as the Ti-only columns and two extra 

oxygen atoms for every Ti atom. Ti-O columns have a stronger HAADF signal than Ti only 

columns[101] as supported by simulation.  
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Figure 4.6: (a) Magnified HAADF-STEM image of the Au[112] NC interface. The Ti-O columns 

(red and blue dots) and Ti-only columns (blue dots) are indicated. The arrow points to the 

interface with alternating dark and bright atomic columns. (b) Line profiles (averaged over ~2.5 

nm) at (blue) and away from (red) the Au NC in (a). The inset shows a magnified view of the 

profile below the interface.  

The intensity line profile (averaged over ~2.5nm) across the interface has been plotted in 

Figure 4.6 (b). The red and the blue curves are line profiles taken from regions inside and away 

from the NC respectively. The position of the interfacial layer is indicated by the first peak 

where difference between the red and blue curves is significant (inset in Figure 4.6 (b)). This 

peak has been labeled as the interface in Figure 4.6 (b). 

The blue intensity curve gradually decreases towards the surface of the NC (right side of 

the plot) because the equilibrium shape of a Au NC tapers towards the surface resulting in lesser 

number of Au atoms per column (along the viewing direction) at the surface compared to the 

center of the NC. It is well known that as the number of atoms per column decreases, ADF 

intensity in STEM becomes weaker. At the interface however, something unexpected happens. 

The intensity of the interfacial Au atomic layer is abruptly lesser than its neighboring Au layer. 

The abrupt decrease in interfacial intensity is unlike the gradual change in intensity observed 
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between successive Au(111) planes away from the interface. Additional NCs with similar 

interfacial contrast are presented in Figure 4.7, Figure 4.8 and Figure 4.9.  

 

Figure 4.7: An Au[112] NC of 6.7nm in width 

 

 

Figure 4.8: An Au[112] NC of 8.5 nm in width 
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Figure 4.9: An Au[112] NC of 9.0 nm in width 

In Figure 4.10, we have plotted the integrated intensity scan taken perpendicular to the 

interface (similar to Figure 4.6 (b)) from Au[112] NCs shown in Figure 4.5 (b), Figure 4.6 (a), 

Figure 4.7, Figure 4.8 and Figure 4.9. It is seen that all the Au[112] NCs show a abrupt drop in 

intensity at the interface and a more gradual drop in intensity between successive Au layers away 

from the interface.  The much smaller STEM intensity at the interface implies that the number of 

Au atoms in the interfacial layer (along the viewing direction) is much smaller than what is 

theoretically expected of a FCC close packed Au (111) plane.  In order to verify this hypothesis 

quantitatively, we simulated the STEM line profile from a model Au[112] NC with a Wulff shape 

and compared it to the experimental line profile of Au[112] NCs (Figure 4.5 (c)). It was seen that 

the simulated STEM intensity (green curve) of the interfacial layer from the model Au[112] NC 

was orders of magnitude larger than the observed STEM intensity (blue curve). This proves that 

the interfacial layer in our experimental images is not a close packed Au(111) layer, but has a 

different atomic configuration with much lesser Au atoms along the viewing direction than a 

close packed Au(111) layer.  



87 

 

 

Figure 4.10: Integrated intensity plots from five Au[112] NCs demonstrating the abrupt drop in 

intensity at the interface. 
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In order to understand the atomic structure and composition of the interface we took a 

closer look at the interface. We found periodically altering bright and dark Au columns in the 

interfacial layer (indicated by arrow in Figure 4.6 (a)). The bright columns appeared on top of 

dark Ti-only columns of the substrate. Since it is hard to visually recognize the periodically 

appearing intensity in the figures, we have plotted the intensity (Figure 4.11) of the interfacial 

row parallel to the interface (squares, red line) for Figure 4.6 (a), Figure 4.7 and Figure 4.9 and 

compared it to the intensity line scan away from the interface (triangles, green line). All the 

images were processed by smoothing in order to get rid of scan noise in the line scans. Away 

from the interface (green curves), we see that there is a small modulation in STEM intensity 

between atomic columns that arises due to different number of Au atoms per column along the 

viewing direction in a typical Au NC. The modulation in the contrast away from the interface 

(green curve) has been reproduced in our simulated horizontal line scan in Figure 4.5 (b). The 

spacing between strong peaks in the curve was 1.44Å which is consistent with the d-spacing 

between Au(220) lattice planes. At the interface, however there is a much stronger drop in 

intensity (pointed out with arrows) with a periodicity of 2.89Å. Because of the periodic drop in 

the intensity, the spacing between the strong peaks at the interface is seen to be 2.89Å at the 

interface.  

The periodic intensity cannot be seen throughout the interface in Figure 4.6 (a), Figure 

4.7, Figure 4.8 and Figure 4.9. This happens for two reasons. Firstly, the interface of Au and 

TiO2 in our specimens is not perfect. We believe that Au nucleates in between reconstructed 

TiO2 (discussed in more detail later). This reconstruction does not fully cover the surface of TiO2 

(110). As a result the interface is not perfect throughout the entire length of the interface. 

However, such an interface still provides a strong nucleation for equilibrium shaped Au NCs 
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above itself. Secondly, the presence of surface steps on TiO2 along the viewing direction can 

alter the Z-contrast signal from the interfacial layer, particularly away from the center of the 

interface where only few Au atoms are available to contribute to STEM intensity along the 

viewing direction. Surface steps along the viewing direction is the norm and one does not expect 

to normally observe the interfacial layer without any interference from the surface steps during 

cross-sectional STEM imaging of supported NCs.  
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Figure 4.11: Intensity line scans at interface (squares, red line) and away from interface 

(triangles, green line) from four Au[112] NCs. The arrows point to the reduced intensity in the 

interfacial line scan appearing with a periodicity of ~ 2.89Å. The peak to peak separation of 

strong peaks is 2.89Å at the interface in contrast to 1.44Å away from the interface. 

In comparison to the Au[112] interface discussed above, the Au[110] NC shown in Figure 

4.4 (a) or other Au[110] NCs we observed, bright atomic columns were also seen at the interfacial 

layer, but they were not periodic as in Figure 4.6 (a). Since there is a defined periodic array of 

alternating bright and dark spots at the interface of Au[112] NCs that cannot be explained by close 

packed FCC Au(111) atomic arrangement and because the interface of Au[112] NCs has lesser 
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number of Au atoms than a close packed FCC Au(111) arrangement, we propose that a special 

reconstructed interface exists for Au[112] NCs. In the following, we will describe in detail the 

atomic structure of this reconstructed interface by combining our experimental observations and 

prior investigations of the TiO2(110) surface. 

Firstly, we found that the spacing between the interfacial layer and its neighboring TiO2 

layer was 3.2±0.4Å, which is close to the bulk TiO2 (110) spacing. Secondly, the atomic 

arrangement of the interface atoms along TiO2 [001] direction has the same periodicity as bulk 

TiO2 itself along the same direction. Because the interfacial layer maintains the same lattice 

structure of bulk TiO2 and has Au atoms in it (judging from STEM-contrast) we propose that Au 

atoms are located in between reconstructed Ti and O atoms on a reconstructed TiO2 (110) 

surface wherein missing atoms in the surface reconstruction provide nucleation sites for Au 

atoms. Since we observed that all atomic columns at the interface follow the lattice of bulk TiO2, 

we infer that the TiO2 (110) surface reconstruction has to be such that when viewed from TiO2 

[001] direction, the atomic positions of the surface reconstruction are same as bulk TiO2.  

Among the many stable reconstructions of TiO2 reported [49, 54, 56], the only one we found that 

fit the above requirement was the (1x2) TiO2 (110) reconstruction proposed by Pang et. al.[54] In 

this reconstruction, the TiO2 (110) surface is reduced (has no bridging oxygen atoms) and every 

second row of 4-c Ti and O below the 4-c Ti are missing when observed along TiO2 [001] 

(Figure 4.12) .[49, 54]  
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Figure 4.12: (1x2) reconstruction of TiO2 (110) proposed by Pang et. al. 

The interfacial reconstruction we propose has Au atomic columns occupying the missing 

Ti-columns with a periodicity of 16.96 Å (4xdTiO2(-110)) when viewed along TiO2 [001] (Figure 

4.13 (a)). To determine the position of the Au atoms along TiO2 ]011[  we go back to our 

experimental images (which were always taken close to TiO2 ]011[  zone axis) and see that the 

brighter interfacial atomic columns always appear above the duller (Ti-only) columns of TiO2 

substrate. Thus Au atoms occupy Ti-only columns at the interface when viewed along TiO2 

]011[ . This is shown schematically in Figure 4.13 (b). When viewed normal to the interface 

(along TiO2 [110] - Figure 4.13(c)) the proposed interfacial reconstruction has Au atoms 

occupying the interstice between four coplanar- oxygen atoms neighboring the missing Ti row. 

The presence of the four co-planar oxygen atoms allows only 2.14 Å for Au atoms to be 

accommodated in the interstice, while the diameter of a metallic Au atom is ~3.2Å. Hence, we 

suspect that some or all of these nearest neighbor oxygen atoms might be missing in the 

reconstruction. In order to show that the oxygen sites next to Au could be vacant, we have 

shaded co-planar oxygen atoms neighboring Au (marked by arrows in Figure 4.13(c)). Since 

STEM imaging is not sensitive to scattering from oxygen atoms, the above hypothesis needs to 

be verified by theory. 
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Figure 4.13: Schematic of reconstructed interface of Au[112] and TiO2 (110) (1x2) viewed along 

a) TiO2 [001] b) TiO2 ]101[  and c) TiO2 [110] directions. Au sits in Ti-only columns when 

observed along TiO2 ]101[  direction. The oxygen atoms neighboring Au have been shaded to 

indicate that they may not be present in the reconstruction. 

To verify if our proposed interfacial reconstruction is correct, we created a Au[112]  model 

with the interfacial reconstruction and simulated the projected HAADF scattering potential of 

our model. Figure 4.14 shows the projected HAADF scattering potential[155] of our proposed 
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interfacial structure model along the TiO2 ]011[  direction. The potential was convoluted with 

the simulated electron probe to mimic the Z-contrast of the HAADF-STEM image. The projected 

potential map does not bring out the strong contrast between the dull Ti-only and bright Ti-O 

columns since it is not a full STEM image simulation. The strong contrast between the Ti-O and 

Ti-only columns can come out only in a full STEM simulation. We refer to the results of a full 

STEM simulation for TiO2 in the [110] zone axis from other groups which show this effect more 

clearly.[101] The reference shows that the Ti-only columns are duller than the Ti-O columns, in 

agreement with our experimental images. We did not do a full STEM simulation for our images 

since it takes unreasonably long computational times to simulate full multi-slice STEM images 

for a large non-periodic object like the ones presented in our work. Nevertheless, a full STEM 

simulation is not needed to pick up the contrast between Au and Ti-O because of the large 

difference in Z between the elements. Hence the projected potential map is sufficient for our 

purposes of demonstrating the emergence of periodic bright-dark contrast at the interface and the 

reduced STEM signal from the interface based on our interface reconstruction model.  

The result of the simulation (Figure 4.14) clearly reproduces the alternate bright and dark 

contrast at the interface similar to the experimental image in Figure 4.6 (a).  Further, when we 

plot the line profile across the simulated image in Figure 4.15, we are also able to reproduce the 

abrupt drop in STEM intensity at the interface seen in experimental images (Figure 4.10). Since 

we are able to reproduce all the major features of the interfacial STEM intensity from our model, 

we believe that the proposed interfacial reconstruction is correct. 
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Figure 4.14: Simulated STEM image from a model Au[112] NC with interfacial reconstruction. 

The arrow points to the interface, showing the same alternating atomic columns as Figure 4.6 (a).  

  

 

Figure 4.15: Integrated intensity of projected potential across a model Au[112] NC whose interface 

is reconstructed with Au atoms sitting in the missing Ti rows of a TiO2 (1x2) reconstruction. 

Another important issue is whether the interfacial Au atoms are cationic. To explore this, 

we performed EELS to characterize the interfacial chemistry. Figure 4.16 (a)-(c) show the 

integrated Ti L2,3 and O K edge intensity together with the electron scattering signal 

simultaneously recorded by the ADF detector. The ADF signal was used to determine the 

interface position as indicated by the line in Figure 4.16 (a)-(c). Both Ti L2,3 edge (Figure 4.16 
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(b)) and O K edge (Figure 4.16 (c)) have a strong signal at the interface. However there is also 

some signal inside the NC. This comes from EELS delocalization. EELS delocalization refers to 

the presence of EELS signal at a given location from neighboring atomic columns due to 

electrons scattering to neighboring columns and causing inelastic scattering events in 

neighboring columns. We anticipate that EELS delocalization is present in our specimen since 

the specimen thickness is between 30 and 40 nm. We have measured the EELS delocalization for 

Ti L Edge on our instrument at 200kV to be ~4 Å [156]  which is far worse than the imaging 

resolution of ~ 1 Å achievable in our microscope. Such reduced microanalysis resolution when 

compared to microscopy resolution is common to STEM-EELS [157]. The presence of Ti and O 

peaks inside the Au does not imply there is Ti and O inside the Au NC but instead shows that the 

delocalized EELS signal inside of the Au NC had to come from the interfacial Ti atoms rather 

than the bulk of TiO2 since the bulk of TiO2 is more than 4 Å away from the regions where we 

see a reasonable Ti signal inside the Au NC. 

The EELS fine structure of Ti and O in the interfacial layer is presented in Figure 4.16 

4(d) and (e), which compares the fine structure of Ti L2,3-Edge and O K-Edge acquired from the 

interface (red) and from the substrate TiO2 (blue). The interfacial Ti L2,3 edge is consistent with 

an ionization state between Ti
3+

 and Ti
4+

, [146] which is a further evidence of neighboring 

oxygen atoms in our proposed structural model. The four-fold coordination of Au with oxygen in 

our model is also consistent with the bonding motif of the known Au2O3 structure[158].  

For the four-fold oxygen coordination in our proposed interfacial reconstruction the 

dimensions of the unit cell composed of one Au surrounded by four O is 3.97Åx2.95Å. Two O 

atoms and one Au atom are close packed along the diagonal of this rectangular cell. Since radius 

of O
2-

 ~ 1.4Å, this gives radius of Au ~1.07 Å, which is much lesser than the metallic radius of 
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Au(rAu0 ~ 1.6Å). For a Au atom to fit in a lattice where the available space is less than its 

metallic radius, the atom has to either strain the lattice or become smaller by losing some valence 

electrons. We have experimental evidence from electron micrographs that the interface has the 

same inter-atomic spacing as the bulk TiO2. Hence there is no significant strain in the lattice due 

to Au atoms sitting in the interface. This means that the space constraint had to be 

accommodated by losing some electrons i.e. by the Au becoming cationic. Based on the space 

constraints, we estimated above that the radius of a Au atom at the interface to be 1.07Å. Since 

we know that the radius of Au when it adopts a 3+ state is ~0.85, the Au atoms at the interface 

must have a larger radius than Au
3+

 but smaller radius than Au
0
. Therefore we conclude that the 

Au atoms have to be cationic with an oxidation state less than three in order to fit into our 

proposed interfacial reconstruction.  

To examine the charge states of Au atoms more quantitatively, we carried out a first-

principles calculation (The first principle DFT calculations were done by Min Yu and Dr. Dallas 

Trinkle in the Materials Science Department at University of Illinois). A plane wave density-

functional theory[159-162] calculation of an 8-layer periodic slab of TiO2 with the (1x2) 

reconstruction with an added row of 4-fold coordinated Au atoms allows computation of the 

electronic charge density at the surface, as well as a comparison of the projected electronic 

density-of-states (DOS) at the surface.  The integrated projected DOS for the Au shows a loss of 

about 1.5e compared to the atomic valence (Figure 4.16 (h)).  Moreover, there is a shift in the 

lowest-lying unoccupied states around the Ti and O ions (Figure 4.16 (f), (g)) at the surface 

compared with the interior that is consistent with the EELS measurements.  Both the bond length 

consideration and calculations suggest that the four-fold coordinated Au site at the interface 

between Au and TiO2 is cationic.. 
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Figure 4.16: (a) Simultaneously acquired (a) ADF intensity, (b) integrated Ti-L Edge intensity 

and (c) integrated O-K Edge intensity from a line scan across the Au[112] interface. The red line 

points to the reconstructed interfacial layer with Au, Ti and O atoms. (d) Ti L2,3 edge and (e) O K 

edge obtained from the interface (red)  and far away from the interface (blue). The EELS profiles 

from points between 1.5 – 1.9 nm and 2.2 – 2.4 nm were averaged to obtain the interface and 

TiO2 EEL spectra respectively. Projected density of states from (f) Ti, (g) O and (h) Au at the 

surface of a reconstructed TiO2(110) (1x2) surface with Au atoms inserted along missing Ti 

rows. DFT calculations were done by Min Yu and Dr. Dallas Trinkle in the Materials Science 

department at University of Illinois.  
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4.5 Interfacial Energy 

To see whether the interfacial reconstruction affects NC adhesion, we measured the 

interfacial energy for Au[112] and Au[110] interfaces by analyzing the equilibrium shape of the 

NCs. The equilibrium shape of a supported NC is determined by the same principle of minimum 

free energy as for a free crystal as described in section 4.1, which gives[163] –                                               
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where h is the distance from the center to the top facet, Δh (undercut) is the reduced distance 

from the center to the bottom facet because of the support, and γ with its subscript refers to the 

surface and interface energies. The interfacial energy can be determined by examining Δh if the 

surface energies are known. The dimensions that can be measured directly from experimental 

images of Au[112] NCs are the total height (2h-Δh) and the width (w). It can be shown that for 

Au[112] NCs with the equilibrium shape / 6h w .     

It is seen from Figure 4.17 that  
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Figure 4.17: Schematic of the ES of a supported Au[112] NC viewed from the [112] zone axis. 

The blue facets are {111} and the red facets are {100}. w is the width of the NC and h111 is the 

distance from the center of the unsupported NC to the center of any 111 facet. 

For Au[110] NCs, center to top distance (h), total height (2h-Δh) and width (w) were 

obtained directly from the image. For measuring NC dimensions we calibrated the images using 

FFT spots of Au )111( or TiO2(110). The error in measuring the peak to peak separation of FFT 

spots was taken to be 2 pixels. The total height (2h-Δh) was measured from line profiles 

averaged over the width of the NC. The error in measuring the peak to peak separation of Au 

(111) rows was 2 pixels. Experimentally, we observed that beam induced roughness can lead to 

additional incomplete Au layers appearing at top surface, which was taken into account in our 

measurement. The width was measured from line profiles averaged over the widest Au (111) 

planes. The error in measuring the peak to peak separation of Au (111) rows was taken to be 

2*dAu(220) based on the roughness of side edges.  

The interfacial energy was calculated by using γAu(111) = 1.283 J/m
2
 following Vitos et 

al[66] and γTiO2(110) = 0.33 J/m
2
 following Cosandey et al[63]. The average interfacial energy of 

Au[112] NCs was measured to be 0.67±0.1 J/m
2
 from 23 Au[112] NCs. Similarly, we measured 

the interfacial energy of Au[110] NCs to be 1.12±0.17 J/m
2
 using γAu(100) = 1.627 J/m

2
 [66] 

from 3 Au[110] NCs that we observed.   
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There is a difference of 0.45 J/m
2
 in interfacial energy between Au[112] and Au[110] NCs. 

The interfacial energy difference somewhat depends on the surface energies of Au that we used. 

Even in the case, when the ratio of γAu(100)/γAu(111) is reduced to 1.05, γAu(100)/TiO2(110) drops only to 

0.99±0.14 J/m
2
. The γAu(100)/TiO2(110)  is still higher than γAu(111)/TiO2(110)  by ~0.3 J/m

2
. Thus, the 

interfacial reconstruction in Au[112] NCs leads to a significantly reduced interfacial energy of 

Au[112] NCs. Indeed, the reduced interfacial energy of the Au[112] NCs is reflected by their 

abundance among observed nanocrystals after extended annealing (>2 hours).  
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CHAPTER 5  

MEASUREMENT OF LINE TENSION OF EPITAXIAL GOLD NANOCRYSTALS 

SUPPORTED ON TITANIUM DIOXIDE (110) 

Atoms at the intersection of three phases have an additional free energy compared to 

interfacial atoms between two phases. This energy normalized by length is referred to as a line 

tension (LT) at the three phase boundary. The LT competes with surface/interface energies and 

ultimately determines the morphology of interfaces. For examples, LT of lipid membrane 

stabilizes a range of membrane structures and their associated mechanic properties  [164-166] 

and in vapor-solid-liquid catalytic growth of nanowires LT determines the preferred growth 

diameter.[167] For solids, where the surface energy is typically two orders of magnitude larger 

than liquids, LT becomes important only when the interfacial dimension reaches the scale of 

several nanometers (nm). Experimental measurements of LT in solids are therefore extremely 

difficult. Consequently, LT has been mostly ignored in the study of solid-solid interfaces. This 

approximation leaves large gaps in thermodynamic predictions of nanocrystal properties 

precisely where they matter most, for example, in the early stage of nanocrystal formation and in 

supported catalyst particles of a few nanometers in size. Here we report the first experimental 

measurements of interfacial LT of supported nanocrystals by investigating epitaxial Au 

nanocrystals supported on rutile (TiO2).  Studying nanocrystals of the same epitaxy allows us to 

separate interfacial energy from interfacial LT. The study was enabled by aberration corrected 

electron microscopy; the significantly improved image resolution allows us to determine the 

shape of NCs in the cross-sectional geometry with accuracy of a single atomic layer. By 

examining Au nanocrystals less than 12nm in size, we measured the interfacial LT to be 
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0.85±0.24 eV/Å (1.36±0.38 x 10
-9

 N) and interfacial energy to be 0.61±0.06 J/m
2
 (assuming 

γTiO2(110) = 0.33 J/m
2
 and γAu(111) = 1.283 J/m

2
) for NCs with the epitaxial relationship Au(111)[-

110] || TiO2(110)[001]. The effects of surface energy and strain relaxation on NC shape are 

discussed. 

5.1 Introduction 

Line tension (LT) is defined as the free energy required to increase the interfacial 

circumference by a unit length. LT arises since atoms at a three phase line have a different 

energy than atoms at a two phase interface. Line tension (LT) was first conceptually described by 

Gibbs. Later, Boruvka and Neumann[168] generalized the Young‟s equation for the contact 

angle of a liquid droplet on a solid surface by incorporating LT as – 

 

  SV SL

LV LV

cos
r

   
  

 
 (5.1) 

 where, θ is the contact angle of the droplet, γSV, γLV are surface energies of solid substrate and 

liquid droplet, γSL is interfacial energy, r is radius of the droplet and τ is interfacial line tension. 

In liquid droplets, LT becomes important in determining the wetting angle (θ) when the LT term 

in equation (5.1) becomes significant, i.e. as r reduces to the order of the characteristic length = 

τ/γ. From equation (5.1), it is clear that LT (τ) can be extracted from plots of cos(θ) versus 1/r if 

all the other thermodynamic parameters are constant. Using this approach, LT has been 

measured in several liquids[169-171]. Theoretical estimates of LTs of liquid droplets is on the 

order 10
-10

 N while experimental values range from 10
-6

 to 10
-9

 N.[171] For non-metallic liquids 

with typical values of  γLV  = 10
-2

 J/m
2
 and LT = 10

-9
 N, the effect of LT on droplet shape can be 

seen below 100nm. In comparison to liquids, the surface energies of metallic solids are about 
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two orders of magnitude larger. Thus for similar values of LT, the characteristic length of 

metallic solids is two orders of magnitude smaller, thus making it more difficult to 

experimentally observe the effect of LT on the shape of supported metallic nanocrystals (NCs). 

Measurements of LT in supported metallic NCs are also complicated by the fact that the NC 

shape and interfacial energy change with the NC orientation. Measurements of LT are 

meaningful only for NCs having the same orientation relationship with the support. Further, one 

has to be careful to avoid the effect of surface inhomogeneties that create a „pseudo-line tension‟ 

effect.[172, 173] To the best of our knowledge interfacial line tension has not been reported 

before for supported metallic NCs. 

The prime issue with measuring the shapes of small (<10nm) metallic NCs is the 

experimental difficulty in imaging the interface, facets and ES to high accuracy. Measurements 

of ES of NCs have been previously reported using multiple experimental techniques including 

Transmission Electron Microscopy (TEM),[63, 133] Scanning Electron Microscopy (SEM), 

[133, 134] Scanning Probe Microscopy (SPM),[135-138] Grazing Incidence Small Angle X-Ray 

Scattering[174] etc. Among these techniques, TEM and SPM are capable of measuring 

individual shapes of sub-10nm NCs. Cross sectional TEM is potentially useful for smaller NCs 

(<10nm), but conventional cross sectional sample preparation methods leads to modifications of 

the surface atomic structure of smaller NCs. SPM has been successful in determining the shapes 

of small 2-D metal islands [136-138] but generally has difficulties with shape measurements of 

3-D metallic NCs that are less than 10nm.[97, 105, 140-144] Therefore, a more direct method is 

sought to address the issue of measuring ES of small 3-D metallic NCs.  

In this study, we have analyzed the equilibrium shape (ES) of epitaxial Au NCs 

supported on TiO2 (110) in an aberration corrected Scanning Transmission Electron Microscope 
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(ac-STEM). The NCs are prepared after the oxide support has been thinned to electron 

transparency to avoid damaging the NCs during sample preparation. The NC images were 

formed in the so-called Z-contrast mode by collecting high angle scattered electrons using a 

High-Angular Annular Dark Field (HAADF) detector; the Z-contrast in HAADF-STEM resulted 

in straightforward image interpretation and shape measurement (in contrast to complicated phase 

contrast in TEM images). The ~1Å resolution of our ac-STEM[175] allowed us to measure the 

shapes of NCs to a single atomic layer accuracy. All the Au NCs used in this work had the same 

epitaxial arrangement (Au(111)[-110] || TiO2(110)[001]) which has been reported before.[69, 70]  

Using shape measurements from ac-STEM images of epitaxial Au NCs in the size range 

4 to 11 nm, we show that smaller Au NCs are more dewet from the support than larger NCs. We 

attribute the dewetting to the enhanced effect of LT at smaller NC sizes. In order to measure LT 

from ES of NCs, we have modified the Wulff-Kaishew equation.[127, 131] By fitting the 

experimentally observed shapes from ac-STEM images to the modified Wulff-Kaishew equation, 

we were able to measure the interfacial LT of epitaxial Au NCs.  

5.2 Results   

5.2.1 Nanocrystal Epitaxy and Equilibrium Shape 

The STEM image in Figure 5.1 represents a typical epitaxial Au NCs observed on TiO2 

(110). The Au NC in Figure 5.1 with a hemispherical shape is oriented along the Au [112] zone 

axis. In this orientation, the Au atoms are arranged in a rectangular lattice defined by the basis 

lattice vectors of Au[11 1 ] and Au[1 10 ] . The epitaxy in Figure 5.1 can be described as   

Au(111)[-110] || TiO2(110)[001]. This was the most common type of epitaxy that we observed. This 
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epitaxy has also been reported earlier by vacuum deposition and annealing[102] as well by 

precipitation and calcination[69].   

In order to determine the shape of the NCs, we examined atomic resolution contrast of 

the epitaxial NCs recorded by HAADF-STEM. The nanocrystals were imaged along the TiO2 

[110]  direction. The atomic columns of Au are clearly resolved in Figure 5.1. The Au atomic 

columns appear bright and the Ti atomic columns appear much duller due to the Z-contrast. 

Superimposed on the experimental image in Figure 5.1 is the estimated equilibrium (Wulff) 

shape. The parameters used for modeling are the ratio of distances to the {100} and {111} facets, 

corresponding to the ratio of the surface energies of {100} and {111}, or γ100/ γ111. For the Au 

NC shown in Figure 5.1, the fit was obtained with γ100/ γ111 = 1.06. There is noticeable edge 

roughness at the top and side surfaces in this case. The edge roughness is expected from surface 

step fluctuations at finite temperatures.[135] Because of this, the nanocrystal facets are not 

obvious in the HAADF-STEM image. Thus, we performed modeling and simulations of image 

contrast to establish the faceting of Au NCs.  
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Figure 5.1: High resolution STEM image of epitaxial Au NC with the epitaxial relationship 

Au(111)[-110] || TiO2(110)[001]. The best fit Wulff shape has been overlaid on one half of the NC. 

Figure 5.2(b) shows a line profile along the width direction of a (dia = 4.3nm) Au NC 

shown in Figure 5.2(a). The solid blue curve shows the experimental line profile from the region 

marked by the box in Figure 5.2(a). The dashed green curve shows the simulated STEM line 

profile from a similar region in a model NC, whose dimensions were identical to the NC in 

Figure 5.2(a). It can be seen from Figure 5.2(b) that the change in the slope of the experimental 

line profile is well reproduced by the simulated line profile. Thus we concluded that Au NCs are 

faceted and close to the ES, with additional corner and edge roughness, as expected from the 

contribution of entropy to the free energy.[135] As a side note, we observed that the Wulff shape 

fit for NC shape always gave surface energy ratios less than the theoretical value of 
100 111

/ 

=1.268 .[66] 
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Figure 5.2: (a) Atomic resolution HAADF-STEM image of smaller Au NC. (b) Experimental 

(solid, blue) and simulated (dashed, green) horizontal line profiles from the Au NC in (a). The 

simulation used a crystal shape model with the same size as the NC in (a) and multiple scattering 

as implemented by the multislice method. 
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The Au NCs were faceted at all sizes (Figure 5.3(a) and (b)) which is consistent with 

earlier reports that larger Au NCs are dewet and faceted at equilibrium[63, 154] but inconsistent 

with reports that equilibrium shapes of smaller Au NCs is spherical.[63, 102] We suspect that 

edges of smaller NCs became rounded during cross sectional TEM sample preparation in prior 

work[63].  

5.2.2 Size Dependence of NC Shapes 

Figure 5.3(c) is a 3D model of a typical Au NC. The well-defined NC shapes allow us to 

extract NC dimensions from experimental images as shown in Figure 5.3(d), which is a 

schematic illustration of measurements from a typical Au NC. The dimensions that can be 

extracted with confidence are the total height (2h-Δh) and the width (w). These dimensions have 

been identified in Figure 5.3(d). It can be shown (Appendix B) that for Au NCs, the center to top 

surface distance (h) = w/6. The undercut for Au NCs then can be measured using Δh = 

2*(w/6) – (2h- Δh). 

Using the shape information in STEM images of Au NCs, we measured Δh/h for a 

number of NCs. Figure 5.4(a) plots Δh/h versus NC width from 42 Au NCs. Since the data has 

outliers, we performed leave-one-out cross validation to see if the data was better fit by a linear 

curve or a horizontal line. The cross validation score (CVS) was computed for each case as – 
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where f(xj,θ) is computed by fitting all the data points except (xj,yj) to the curve of 

choice. Using leave-one-out cross validation, we got a CVS of 2.976 for a linear fit and a CVS of 



110 

 

3.813 for a horizontal line fit, which shows that the data is better predicted by a linear curve. 

Thus we used a direct-weighted linear fit for the data which is shown by the dashed red line in 

Figure 5.4(a). The weighted linear fit to the data (dashed red line) shows Δh/h by drops by ~0.14 

over 7nm. In other words, smaller epitaxial Au NCs are more dewet than larger epitaxial Au 

NCs. Indeed, the dewetting of smaller Au NCs is also obvious upon comparing Figure 5.3(a) and 

(b). The error bars in Figure 5.4(a) are conservative estimates based on the largest possible 

measurement error as explained in detail below. 

a) Error in calibration: Distances in images were calibrated using FFT spots of Au(11 1 ) or 

TiO2( 110 ). The error in measuring the distance between Au(11 1 )  and Au( 1 11 )  spots was 

taken to be 2 pixels. In real space units this corresponds to a half error up to 0.1 nm 

depending upon image magnification and NC size. 

b) Error in measuring total height (H = 2h - Δh): We noticed that the electron beam induced 

roughening could result in partially formed, additional, Au layers at the top surface. For some 

Au NCs, the beam-induced layer was easily discernable where the layer was only half, or 

less, formed or was much duller in contrast than the Au layer immediately below. In such 

cases, we did not include the beam induced layer while measuring the total height. 

But for other cases, where the top layer was more than half formed, but much duller in 

contrast than the layer adjacent to it, it was difficult to decide whether the top layer was beam 

induced. For such NCs, we assumed that the top layer was beam induced but to account for 

the uncertainty, an extra layer being present in the NC is included in the error bar.  

Additionally, the error in measuring the peak to peak separation of Au (11 1 ) rows was 

taken to be 2 pixels (corresponding to a half error of 0.02 – 0.05 nm depending upon image 

magnification and NC size). 
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c) Error in measuring width (W): The error in measuring width was taken to be 2dAu(220) 

because of the roughness of the side edges. The error in measuring the peak to peak 

separation of Au ( 220 ) rows was taken to be 2 pixels (corresponding to a half error of 0.03 – 

0.1 nm depending upon image magnification and NC size). 

 

Figure 5.3: (a) 10.9 nm Au NC, (b) 4.3 nm Au NC, (c) Model of Au NC and (d) Schematic of Au 

NC shape showing measurements of NC dimesions. 

5.2.3  Measurement of Line Tension of Epitaxial Au NCs 

The ES of a supported NC is related to the surface and interfacial energies by the Wulff-

Kaishew[127, 131] principle which gives –  
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where γ with its subscript refers to the surface and interface energies. By taking into account the 

interfacial line tension (τInt) for supported NCs, the Wulff-Kaishew principle can be modified as 

–  
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where AInt and lInt  are the interfacial area and interfacial perimeter respectively (derived in next 

section). This expression for ES of solid NCs with LT is fundamentally similar to the effect of 

LT on liquid droplets[168] except for the „geometric factor‟ of dlInt/dAInt , which depends on the 

shape of the interface. The geometric factor in (5.3) can be rewritten in terms of measurable 

quantities as (derived in next section) –          
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where tan(θ)=1.633.  

By measuring NC dimensions as well as expressing the geometric factor in terms of 

measurable NC dimensions, all terms except LT are known in equation(5.3). Therefore by 

plotting appropriately we can extract LT. Figure 4(b) shows a plot of “(Δh-h)/h” versus “1/aInt” 

for Au , where aInt is defined in equation (5.31). Since the data has outliers, we performed leave-

one-out cross validation to see if the data was better fit by a linear curve or a horizontal line. We 

obtained a CVS of 2.764 for a linear fit and a CVS of 3.813 for a horizontal line fit, which shows 
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that the data is better predicted by a linear curve. From the slope of a direct-weighted linear fit to 

Figure 5.4(b), LT was measured to be 0.85±0.24 eV/Å (1.36±0.38 x 10
-9

 N). The value of LT 

depends on the value of γAu. We used γAu(111) = 1.283 J/m
2
 following Vitos et al[66]. The error 

bar in our measurements is about 24 percent which is higher than LT measurements of liquid 

droplets. The reason for this larger error stems from the fact that LT in different Au NCs is equal 

only to an approximation since the details of atomic bonding at the boundary of interfaces cannot 

be universally self similar among NCs of various sizes. Further, incomplete equilibrium shape 

formation as well as beam induced shape change in some NC could contribute to some error.  

We were also able to measure interfacial energy from intercept of the plot in Figure 

5.4(b) as γAu(111)/TiO2(110) = 0.61±0.06 J/m
2
. The value of interfacial energy depends on the values 

of γAu and γTiO2(110). We used γAu(111) = 1.283 J/m
2
 as mentioned above and γTiO2(110) = 0.33 J/m

2 

following Cosandey et al[63]. We compared our measurements to prior work using the same 

γAu(111), γTiO2(110) and found that the reported value of γAu(111)/TiO2(110) from a 200nm Au NC 

prepared on TiO2 (110) in vacuum[63] was larger by ~0.52 J/m
2
. Other reports of interfacial 

energies of Au NCs on TiO2 (110) do not consider equilibrium shaped NCs[95, 102] and 

therefore not suitable for comparison.  
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Figure 5.4: (a) Plot of Δh/h versus NC width for Au NCs in the size range of 4 – 11 nm, (b) Plot 

of (dh-h)/h versus 1/aInt where aInt has been defined in equation (5.31). LT and interfacial energy 

have ben measured from the slope and intercept respectively. 
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5.2.4 Modified Wulff-Kaishew Theorem 

Following Kern et al.,[132] interfacial LT can be incorporated into the expression for 

excess free energy of assembling a supported and unstrained NC from n atoms as –  

 
2j j Int T iO Int Int Int

j Int

   G (n ) n A ( )A l



           

 (5.5) 

where ΔG and Δμ are the excess free energy and chemical potential difference between a Au 

atom in the gas phase and a Au atom in the NC respectively, n is the number of atoms in the NC, 

γj is the surface energy of free Au NC surfaces, γInt is the interfacial energy and τInt is the 

interfacial LT. Equation (5.5) ignores the effect of misfit strain in assembling the NC on a 

support. It has been suggested that the contribution to the free energy of the NC from misfit 

strain can be modeled as a fraction of the uniform strain energy (λEε
2
V),[176] where E is a 

combination of the elastic coefficients of the NC and the support, ε is the strain close to the 

interface from lattice misfit and V is the volume of the NC and λ is a parameter that accounts for 

strain relaxation. The linearity of H vs W (Figure 5.5) suggests that the strain relaxation is self-

similar for all the Au NCs we have observed. Hence, we approximate λ to be a constant for the 

NCs we studied. Now, the total excess free energy of a Au NC can be rewritten by including the 

strain energy as – 

 
2j j Int T iO Int Int Int

j Int

2
G (n ) n A ( )A l E ε V



             

  (5.6) 

where λ is a parameter that comes from strain relaxation and is approximated to not change with 

NC size. Noting that,  
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V n 

 (5.7) 

where V is the volume of the NC and ν is the atomic volume, and  

 

j j Int
j Int

1
V h A (h h )A

2 

 
    

 
   (5.8) 

where h is the distance from the center to the top facet, Δh (undercut) is the difference in the 

distance between the center to the bottom facet of an unsupported cluster and the center to 

bottom facet of the supported cluster, the derivative of ΔG can be written as –  

 

 
2

2

j j Int j j Int T iO Int Int Int
j Int j Int

E

d G (n ) h A (h h )A dA ( )dA dl
2  

     
              

 
  (5.9) 

Using the partial equilibria conditions, 

 j
Int A ,...,T ,

G
0

A


 
 

   (5.10) 

 i Int
j

A ,...,A ,T ,

G
0

A


 
 

 
   (5.11) 

 we get, 

 

2

Int
Int T iO Int 2

Int

dl

dA E

h h 2

    
   


  

 (5.12) 

 

2
Au E

h 2

    



 (5.13) 
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where γAu is the surface energy of the Au NC facet parallel to the interface. Combining equations  

(5.12) and (5.13) we get, 

 

2TiO Int Int Int

Au Au Int

dlh h

h dA

    
 

 
 (5.14) 

In order to express the geometric factor in terms of measurable dimensions we first 

examine the shape of a Au (111) facet as shown in Figure 5.6 (a). The blue regions are {111} 

type facets and the red regions are {100} type facets. This color scheme will be followed 

throughout. 

As long as the reentrant {100} facets exist at the interface (which is the case in all the 

NCs that we analyzed), the shape of the interface will be similar to the (111) surface facets. The 

dimensions a,x,wtop of the surface facets will be referred as  aint, xint and wint respectively for the 

interfacial (111) facet. The circumference and the area of the interface will then be given by: 

 

Int Int Intl 3(a x ) 

 (5.15)                                                 

 

2 2
Int Int Int

3
A (a x )

4
 

 (5.16)  

xint does not change with a marginal increase in the interfacial area (corresponding to an 

increasing undercut). Thus, 

 

Int Intdl 3(da )

 (5.17)                                                 

 

Int Int

3
dA a (da )

2


 (5.18)                                            
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Therefore the geometric factor can be expressed as –  

 

Int

Int Int

dl 2

dA 3a


 (5.19)     

Since aint is not experimentally measurable, we wish to express aint in terms of 

experimentally measurable quantities. By considering the Au NC in the [112] zone axis we can 

see that (Figure 5.6 (b)) 

 Int Int

a 2x z

a 2x z h




  
 (5.20)       

 

a 2 x
z tan

2


 

 (5.21)       

Substituting for z in equation (5.20) and simplifying we get, 

 

Int Int

2 h
a 2 x a 2 x

tan


   


 (5.22)      

Since x = xInt, equation (5.22) simplifies to  

 

Int

2 h
a a

tan


 


 (5.23)                 

where tan(θ) = 1.633 (from geometrical considerations). 

In the above expression (5.23) for aInt, „a‟ is not a measurable quantity. Hence, in order to 

express „a‟ in terms of measurable quantities, we consider the Au NC in the [110] zone axis 

(Figure 5.6 (c)). 

From Figure 5.6 (c), we see that 
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 111

AO
tan

h
 

 (5.24)                                                                  

where tan(φ)=√2. 

Since, 

 

2 3 a
AO a

3 2 3

 
   

   (5.25)                                                       

We get, 

 
111a 6h

 (5.26)                                                                 

It is seen from Figure 5.6 (d) that –  

 

111

w
h cos( )

2

 
  
 

 (5.27) 

where, 

 

[1 1 1 ] [1 10] 2
cos( )

1 1 1 1 10 3


  

 (5.28) 

Hence, 

 

111

w 2 w
h *

2 3 6

 
  
 

 (5.29) 

Thus  –   

 
111w 6h

 (5.30)                                                                 
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where „w‟ is the width of NC as seen in the [112] zone axis. 

Hence equation (5.23) simplifies to 

 

Int

2 h
a w

tan


 


 (5.31)   

Thus,  

 

Int

Int Int112

dl 2 2

2 hdA 3a
3 (w )

tan

 
  


  


 (5.32) 

 In the above analysis, all Au NCs are assumed to be dewet from the TiO2 substrate which is 

consistent with our experimental observations. We note that for even larger Au NCs, where the 

reentrant facets might disappear at the interface, the above analysis has to be modified. 

 

Figure 5.5: Plot of NC height vs NC width for Au NCs. 
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Figure 5.6: The ligher (blue) facets are {111} and darker (red) facets are {100}. (a) Plan view ES 

of a Au(111) facet. The green lines are not present in the real Au NC shown on the right. The 

edge with length „x‟ is formed at the intersection of (111) facet with {100} facets. (b) Schematic 

of the ES of a supported Au NC viewed from the [112] zone axis. Δh is the undercut due to the 

formation of an interface. The dashed lines are a guide to the eye. (c) Schematic of the ES of a 

supported Au NC viewed from the [110] zone axis. The top figure shows a plan view of the 

(111) facet at the top of the Au NC. „O‟ is the centroid of the top (111) facet. (d) Schematic of 

the ES of a supported Au NC viewed from the [112] zone axis. w is the width of the NC and h111 

is the distance from the center of the unsupported NC to the center of any 111 facet. 
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5.2.5 Measuring the Ratio of γ100 and γ111 Surface Energies 

Cross-sectional STEM images of Au[112] NCs also enabled us to estimate the surface 

energy ratios of Au(100) and Au(111) by looking for the best fit to the NC shape. For fitting NC 

shapes, we optimized our imaging conditions to obtain images without roughening the NC 

surface. We found that it was not possible to exactly fit the NC shape by using conventional 

Wulff construction wheret all NCs facets of the same family have identical surface energies. This 

is shown in Figure 5.7 where we obtained the best fit Wulff shape by assuming the ratio of 

γ100/γ111 to be 1.15 for all (100) facets. (The surface roughness in this image is seen to be much 

lesser than previously presented images since it was acquired using a fast scanning conditions 

that prevented beam damage of the NC. However, the resolution of this image is consequently 

poorer. This tradeoff is inevitable while obtaining images of NCs at room temperature.)  It is 

seen in Figure 5.7 that the edge near the interface (indicated by arrow) does not fit well with the 

Wulff shape. This feature was typical of most Au[112] NCs, i.e. the undercutting resulting from 

Au{100} facets at the interface could not be satisfactorily fitted by a regular Wulff construction.  
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Figure 5.7: Fitting a Wulff shape to a Au[112] NC by using smaller surface energy values for 

Au{100} facets terminating at the interface. 

Since we observed larger undercutting of Au {100} facets at the interface this implied a 

smaller surface energy for Au {100} facets at the interface. We found that by setting γ100/γ111 = 

0.9 for Au {100} facets terminating at the interface, we were able to obtain a good fit for the NC 

shown in Figure 5.7.  The new fit is shown in Figure 5.8, where γ100/γ111 = 1.15 for Au {100} 

facets near the top of the NC and γ100/γ111 = 0.9 for Au {100} facets near the interface.  
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Figure 5.8: Fitting a Wulff shape to a Au[112] NC by using smaller surface energy values for 

Au{100} facets terminating at the interface. 

It can be shown that h100 = 2(rInt – Δh/tanθ) for Au {100} facets terminating at the 

interface, where rInt is half the width of the interface in the viewing direction and tanθ = 1.633. 

Since rInt and Δh  are directly measurable quantities, h100 at interface is also measurable. Also, 

since Au (111) is parallel to the interface, h111 = h = w/6. Hence, it is possible to measure the 

ratio of γ100/γ111 (= h100/h111) for Au {100} facets terminating at the interface from measurable 

parameters in the images. Figure 5.9 shows a plot of γ100/γ111 versus NC width. It is seen from 

Figure 5.9 that the ratio of γ100/γ111 at the interface is mostly less than one with mean γ100/γ111 = 

0.93.  
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Figure 5.9: Plot of of γ100/γ111 versus NC width 

5.3 Discussion  

5.3.1 Line Tension 

The value of line tension in our study of Au NCs on TiO2 (110) is of the same order of 

magnitude of line tension measured recently at a grain boundary triple junction of copper (6.0  

3.0 x 10
-9

 N).[177] However, the analysis so far has assumed that size dependence of NC shape 

is solely due to line tension. Other factors that could potentially affect the analysis and induce 

size dependent changes in ES of NCs include followings:– 

a) Size dependent interfacial energy : A change in interfacial energy is expected when the 

interfacial atomic structure changes with size. This could happen for example by 

nucleation of dislocations at larger NC sizes (for example, Pd NCs on MgO).[178] By 

imaging the interfacial atomic structure with atomic resolution Scanning Transmission 
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Electron Microscopy (STEM), we found that atomic structure of interfaces were similar 

for all NC sizes and we did not observe misfit dislocations at the interface. In absence of 

obvious structural difference, we assume that the interfacial energy is nearly constant in 

all NCs we have investigated and does not contribute to the drop in Δh/h for smaller NCs 

in Figure 5.4(a).  

b) Size dependent surface energy: Since Δh/h = 1+ (γTiO2 - γInt)/γAu and (γTiO2 - γInt < 0), γAu 

should „decrease‟ for smaller NCs in order to explain the trend in Figure 5.4(a). However, 

it is well known that surface energy increases for smaller NCs where the proportion of 

atoms at the edge sites of a surface increases. [99, 179]  

c) Size dependent interfacial strain relaxation: Misfit strain arises due to the lattice 

mismatch of the NC and its support when the NC lattice is coherent or semi-coherent 

with the support‟s lattice. For Au NCs on TiO2 (110), we observed full coherency at the 

interface with Au ( 220 ) lattice planes aligning with TiO2 (002) throughout the length of 

the interface. The misfit strain at this interface is ~2.3% (dAu(110) = 2.885Å, dTiO2(001) = 

2.954Å). We observed that the strain relaxes as we move away from the interface and the 

Au (220) spacing away from the interface is close to the bulk Au (220) spacing. Misfit 

strain can have a significant impact on NC shape and can be quite complicated to model 

particularly when the strain relaxes away from the interface. The effect of interfacial 

misfit strain on the shape of NCs is profound in many supported NCs and has been 

extensively studied.[176, 180-184] When strain relaxation varies as a function of NC 

size, the self-similarity of supported NC shape will be lost. The loss of self similarity is 

expected to manifest as a non-linearity in a plot of nanocrystal (NC) height (H) versus 

NC width (w).[176, 185] In order to verify the effect of interfacial misfit strain relaxation 
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on the shape of Au NCs, we plotted the NC height (H) versus the NC width (w) (Figure 

5.5).  In Figure 5.5 we see that a plot of H versus w is linear with a R
2
 value of 0.93. The 

linearity of H versus W suggests that the contribution to shape from strain relaxation can 

be approximated to be size-independent for the sizes of NCs in our experiments. Accurate 

measurement of strain and strain relaxation is not possible in our STEM images, 

however, because of STEM scan distortions, which is on the same order or larger than the 

strain. 

By neglecting the size dependent effects of surface energy and strain relaxation, the 

measured value of LT represents a lower limit for the actual value of LT. To see this, we  express 

Δh/h as a function of the ratio of NC height (H) and NC width (w):  

 

h 2h H 6H
2

h h w

 
  

 (5.33) 

Muller and Kern have concluded analytically for a 2D rectangular crystal that misfit 

strain relaxation results in an increase of H/w with increasing NC size based on comparison with 

several experimental data.[176] According to equation (5.33), an increase in H/w corresponds to 

a decrease in Δh/h. Thus misfit strain relaxation is expected to result in a „decrease‟ in Δh/h with 

increasing NC size. However our experimental measurements show that Δh/h increases for larger 

NCs (Figure 5.4(a)). Therefore if strain induced change in H/w contributed significantly to shape 

change, then the actual value of LT must be larger than what we have measured in order to 

overcompensate for the hypothetical strain induced decrease in Δh/h for larger NCs. Similar to 

the effect of strain, an increase in surface energy for smaller NCs should also result in an 

increase in Δh/h for smaller NCs as explained earlier. Because we have neglected the change in 

surface energy as well, the actual value of LT will have to also overcompensate for the effect of 
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surface energy on size in order to explain the observed decrease in Δh/h for smaller NCs. Thus 

by neglecting contributions of strain and surface energy, we are measuring a lower limit for LT. 

5.3.2 Ratio of γ100 and γ111 near NC and Substrate Interface 

The decrease in γ100/γ111 for Au {100} surfaces near the interface probably is the effect of 

interfacial misfit strain on surface stress and surface energy. The relation between surface stress 

and surface energy is given by the Shuttleworth-Herring equation[186] –  

 

ij ij
ij

d
g

d


  


 (5.34) 

where gij and εij are components of the surface stress and strain tensors respectively and δij is the 

Kronecker delta function. At the interface of the Au[112] NCs we know that there exists ~2.3% 

tensile strain from interfacial misfit. Interfacial misfit strain can alter the surface stress and 

surface energy of the Au facets terminating at the interface, thereby resulting in lower values for 

γ100/γ111 at the interface compared to γ100/γ111 expected for a free NC. 

 It is difficult to analytically model the change in surface stress and surface energy at the 

interface since surface stress (and consequently surface energy) is also affected by 

adsorbates.[187] The values for Au surface energies used in this work were obtained from earlier 

DFT calculations for metal surfaces in vacuum. Such calculations for the surface energies[66] 

and surface stresses[188] do not account for changes due to adsorbates such as gas atoms in 

ambient atmosphere. The adsorption of gases to the Au surfaces can result in complicated 

interactions that would require first principle calculations to accurately predict the change in 

surface stress and surface energy for Au facets near the interface. 
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5.4 Conclusion 

In conclusion, we examined the ES of epitaxial Au NCs with the epitaxial relationship – 

Au(111)[-110] || TiO2(110)[001] and found that shapes of epitaxial Au NCs were not self similar 

between the largest and smallest sizes analyzed in this work. The smaller NCs were more dewet 

than the larger NCs. We attributed the increased dewetting for smaller NCs to the increased 

effect of interfacial LT for smaller NCs. In order to measure LT, we incorporated the line tension 

into Wulff-Kaishew theorem and fitted a value of LT to the observed experimental NC shapes. 

By doing so, we measured the lower limit of LT for Au NCs supported on TiO2 (110) to be 

0.85±0.24 eV/Å (1.36±0.38 x 10
-9

 N) by using γAu(111) = 1.283 J/m
2
 and γTiO2(110) = 0.33 J/m

2
. In 

this measurement, we neglected the effects of change in strain relaxation and surface energy with 

NC size. 

Further, we also found that the ratio γ100/γ111 is ~0.93 for Au {100} facets near the 

interface. We attribute this reduced value of γ100/γ111 to the effect of interfacial misfit strain on 

the surface stress and surface energy of Au facets at the interface. 
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

6.1 RHEED Studies of Au and Ag NCs on TiO2 (110) 

The epitaxial formation of Au and Ag NCs on different surfaces of TiO2 (110) with 

varied stoichiometry was investigated. For Au NCs, the following critical observations were 

made – 

a) Irrespective of whether the starting stoichiometry of TiO2 (110) was oxygen-rich 

or oxygen-deficient and irrespective of whether the annealing was carried out in 

vacuum or air, the Au NCs always evolved to the same epitaxial arrangement. 

This ubiquitous epitaxy was found to be – Au (111)[-110] || TiO2 (110)[001].  

b) After the formation of epitaxial Au NCs, a (1x2) TiO2 (110) reconstruction was 

seen in the RHEED patterns in all the above cases.  

c) The onset of epitaxial rearrangement of Au NCs on oxygen-deficient and (1x2) 

reconstructed TiO2 happens at ~600
o
C on reduced TiO2 (110) surfaces while the 

onset of epitaxial rearrangement of Au NCs on oxygen-rich happens at ~750
o
C. 

These observations led to the conclusion that epitaxial rearrangement of Au NCs on TiO2 

(110) proceeds by the nucleation of Au over (1x2) TiO2 (110) reconstructions. The lattice match 

of Au and TiO2 along Au [-110] and TiO2 [001] drives the formation of the first few atomic 

layers which serve as nuclei for further growth of Au NCs. TiO2 (110) surfaces that have large 

number of (1x2) areas are able to nucleate epitaxial Au NCs more readily than TiO2 (110) 

surfaces which have little (1x2) reconstruction areas. The proposed interface of Au (111) and 



131 

 

(1x2) reconstructed TiO2 also explains the stability of Au(111)/TiO2(110) interfaces which have 

reported many times before despite theoretical calculations that the interface has a negligible 

work of adhesion on oxidized TiO2 (110). 

Epitaxial rearrangement of Ag NCs on TiO2 (110) responds differently to the 

stoichiometry of the TiO2 support. While a similar epitaxy (Ag (111)[-110] || TiO2 (110)[001]) was 

observed for Ag NCs supported on oxygen-rich or oxygen-deficient supports, some of the Ag 

NCs supported on oxygen-rich TiO2 (110) also evolved into another favorable epitaxial 

configuration (Ag (112)[-110] || TiO2 (110)[001]). For Ag NCs also, the onset of epitaxial 

rearrangement happened at lower temperatures on a reduced TiO2 (110) support. Further, the 

sublimation of Ag NCs as a function of the support stoichiometry was also investigated. It was 

found that Ag NCs supported on oxygen-rich TiO2 (110) sublimed at higher temperatures than 

Ag NCs supported on reduced TiO2 (110). While it is well known that the sublimation 

temperature of unsupported or weakly supported NCs are determined by NC size,[189] our 

studies on the effect of TiO2 (110) stoichiometry on Ag NC sublimation highlight the need for 

considering the effect of interfacial adhesion of NCs when determining the sublimation 

temperature of supported NCs. 

6.2 Enhanced Adhesion of Au[112] NCs on TiO2 (110) from Interfacial Reconstruction 

The interface of Au[112] NCs on TiO2 (110) was investigated using aberration corrected 

Scanning Transmission Electron Microscopy (STEM) in order to understand the enhanced 

interfacial adhesion of this interface as compared to other interfaces observed in Au/TiO2(110). 

Consistent with the conclusions from RHEED, it was found that the interface of Au[112] NCs was 

formed by Au atoms sitting along a missing Ti row of a (1x2) reconstruction proposed by Pang 
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et al.[54] By sitting periodically in the missing Ti row, the interface of Au[112] NCs becomes an 

ordered mix of Au, Ti and O – termed as an interfacial reconstruction.  

Conventionally, the chemical interactions between metal NCs and oxides are classified 

into redox reaction, alloy formation, encapsulation, interdiffusion and no interaction.[57, 190] 

From thermodynamic free energy of heats of reactions and surface energy considerations, Au is 

not expected to have no chemical interactions on TiO2 (110).[49] In our work, we have observed 

a novel interaction between Au and TiO2 where Au atoms, driven by lattice match constraints, 

nucleate along the missing Ti row of the (1x2) TiO2 reconstruction – resulting in an interfacial 

reconstruction of Au, Ti and O atoms. This novel interfacial arrangement of atoms leads to an 

enhanced interfacial adhesion for Au NCs on TiO2 (110). The enhanced adhesion of metal-oxide 

interfaces from interfacial reconstruction reveals another pathway for creating stable metal-oxide 

interfaces for commercially relevant systems such as catalysts, thermal barrier coatings, erosion 

and corrosion resistant coatings, wear resistant coatings etc. 

6.3 Measurement of Interfacial Line Tension in Au[112] NCs Supported on TiO2 (110) 

This work concerns the first experimental measurements of interfacial line tension (LT) 

of supported NCs and the demonstration of its importance in determining equilibrium shape (ES) 

of NCs. By studying epitaxial gold NCs supported on titanium dioxide using aberration corrected 

electron microscopy, we found that shapes of gold NCs were not self-similar below 10nm. We 

have explained this unexpected observation by accounting for interfacial line tension that was 

measured to be 1.03±0.24 eV/Å (1.65±0.40 x 10
-9

 N) for Au(111)[-110]||TiO2(110)[001].  

 More than hundred years ago Gibbs had predicted line tension to be a fundamental 

physical property of an interface. However there have been no measurements of line tension of 
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3D supported NCs till date. Our breakthrough in measuring this fundamental interfacial property 

not only provides an estimate for line tensions of supported NCs but also demonstrates an 

experimental technique that can  spur advancements in accurately predicting nucleation, growth 

and ES of NCs. Our technique is particularly appealing for material systems that require 

processing in ambient. 

Further, we also found that the ratio γ100/γ111 for Au {100} facets near the interface was 

0.93, which was unexpected since experimental measurements[134] of and theoretical 

estimates[66] of γ100/γ111 are always greater than one, i.e. the {100} facets are less stable than 

{111} facets. We attributed this reduced value of γ100/γ111 to the effect of interfacial misfit strain 

on the surface stress and surface energy of Au facets at the interface.  

6.4 Outlook 

Nanocrystal interfaces, like nanocrystal surfaces, are an important issue in nanomaterials 

research. Most nanocrystals used in applications are supported; the interface can have a large 

effect on nanocrystal properties. Interfacial phenomena at the nanoscale can often lead to 

surprising and distinctive functionality.[191, 192] Electron microscopy is one of best tools for 

studying interfaces. Recent developments in aberration corrected electron microscopy has 

brought significantly new insights to oxide interfaces,[152] grain boundaries. [151] The work 

presented in this thesis is the first elucidation of atomistic structure at a very important 

nanocrystal interface by aberration corrected electron microscopy. Furthermore, we demonstrate 

that unambiguous nanocrystal shape information can be obtained from the electron images. The 

unambiguous shape information helped us to measure the line tension for Au NCs supported on 
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TiO2, a thermodynamic parameter that could prove useful in understanding nucleation and 

growth of NCs better.   

We selected the Au/TiO2 interface for study because of the tremendous interest in this 

system due to the unusual catalytic activity of Au nanoparticles. Interfacial Au cations has been 

suggested as responsible for Au/TiO2‟s catalytic activity.[46] However, there has been no 

conclusive evidence for the existence of interfacial Au atoms of different chemical nature. The 

study presented here also shows for the first time that the interfacial reconstruction of Au, Ti and 

O atoms possibly results in cationic Au species at the interface. 

Despite much progress, many questions remain – both for Au/TiO2 specifically and for 

NC interfaces in general. Future work should help sort out some of the big questions raised by 

this study. In this regard, some of the following outlined experiments will be useful –  

(i) Quantitative 2D atomic resolution chemical characterization of NC interfaces – The ideal 

characterization of any interface would involve understanding the atomic structure and its 

electronic (chemical) structure. The characterization of a NC interface‟s atomic structure 

is easier than the characterization of its electronic structure. EELS offers the best local 

probing technique to study the electronic structure of interfaces. However, as explained in 

chapter 4, atomic resolution EELS is difficult since EELS delocalization is not only a 

function of probe size but also atomic scattering to neighboring columns. EELS 

delocalization can be minimized by using thinner specimens and higher energy electrons. 

However, both are not trivial issues since thinner specimens are more difficult to 

synthesize and higher energy electron can cause more beam damage to the specimen.  
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Further, quantitative EELS interpretation requires the use of multislice and DFT 

simulations for determining delocalization and electronic structure. Nevertheless, quantitative 

understanding of EEL spectra combined with atomic resolution analysis will pave way for a 

better understanding of interfaces. Also, while all EEL spectra shown in this work are line scans, 

2D EELS, which has been demonstrated by many groups will be ideal for the characterization of 

NC interfaces where the edge atoms of the interface have different electronic structures than 

atoms in the interior of the interface. 2D EELS has not yet been reported for NC interfaces since 

the beam damage during 2D EELS is large. However, with the advent of faster EELS acquisition 

systems and better energy filters which reject little signal, 2D EELS of NC interfaces are a 

realistic possibility. 

(ii) Line tension of NCs – Line tension is a thermodynamic parameter that has been sparsely 

measured for supported NCs despite its significance in nucleation and growth of NCs, 

nanowires, stability of quantum dots etc. The experimental difficulty in measuring line 

tension is because it is manifest only at smaller NC sizes whereas shape measurement of 

smaller NCs is not straightforward even with aberration corrected microscopes. An 

alternative is to use scanning probe microscopes (SPMs). SPMs are useful for measuring 

shapes of 2D NCs, but do not in general give atomic resolution for 3D metallic NCs. For 

using aberration corrected microscopes for shape measurement of small NCs, care must 

be taken to ensure that the NC shape is not altered by beam damage. Better electron 

detectors can greatly increase the efficiency of signal collection and reduce the time spent 

on collecting images of NCs. In our experience, STEM is better than TEM when studying 

NC shapes, since beam damage is lesser in STEM. However, the scan distortion in STEM 

images still has room for improvement in order to get strain information simultaneously 
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with shape information. Obtaining strain information is very critical to measuring line 

tension with confidence since size dependent strain in NCs can also affect the shape of 

NCs and lead to erroneous measurement of line tension. 
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APPENDIX A: IMAGE SIMULATIONS 

 

Image simulations are an integral part of electron microscopy. Particularly, quantitative 

image contrast interpretation requires the use of image simulations. We have used multislice 

simulations as implemented in the “ZMULT” program (http://cbed.mse.uiuc.edu) for simulating 

HRTEM and HRSTEM images. A typical input file (“.ms” file) for STEM simulation using 

“ZMULT” is shown below –  

--------------------------------------------------------------------------------------------------------------------- 

# enter title and control flags 

AU/TiO2 Nanoparticle Simulation File: _sf _auto _xyz _file _cor _new 

 

# atomic coordinate file 

au_tio2.dat 

 

# HV tiltx tilty 

200 0.0 0.0 

 

# meshx meshy 

1024 1024 

 

# number of slices 

40 

 

# extinction rule 1 1 default 

1 1 

 

# 1 to calculate potential in real space 

1 

 

# Specify the atom and the Debye-Waller factor 

3 

Ti 

0.5 

O 

0.5 

Au 

0.574 

http://cbed.mse.uiuc.edu/
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# Objective aperture 

7.0 

 

# Output 

40 -1 

 

# pendulusung output 

au.pl 

1 0 0  

 

# STEM control 

STEM-ADF 

 

# Probe parameters 

df_nm   -1.582 

c3_mm   0.5658E-02 

c5_mm  -0.8450 

kmax   0.89715 

a1_nm     1.34    5.44 

a2_nm    22.96    2.31 

a3_um     2.76  -16.70 

a4_um     3.65  -84.00 

a5_mm     2.02  -12.70 

b2_nm    15.90   60.42 

b4_um    48.84  -35.00 

d4_um    19.88   82.20 

s3_um     1.19  150.90 

fhi 90 

 

#starting probe position 

probe 0.5137 0.3105 

 

#end of probe parameter input 

end 

 

#scan area (in units of image size, i.e. 1 pixel  1/1024 = 0.0098) followed by  

# number of sampling points in x and y directions (in units of pixels) 

0.00098 0.5664 1 290 

 

#inner and outer detector radius in sin(theta)/lamda and maximum atomic radius in Angstrom 

1 2 10 

----------------------------------------------------------------------------------------------------------------------------- ----------- 



161 

 

The atomic coordinates of the specimen were provided in the form of a “.dat” file as the 

input for the above program. The “.dat” file is generated using the “MXTAL” program 

(http://cbed.mse.uiuc.edu). The commands used to generate a typical Au-TiO2 “.dat” file in 

“MXTAL” are given below –  

mxtal> load tio2rutile.dat                                                                                                      

mxtal>  transform 0 0 1 1 -1 0 1 1 0 0 0 0                                                                                       

mxtal>  box -13 -6 -7 13 0 7                                                                                                     

mxtal>  place 1 0 0 0 0 1 0 0 0  

At this stage, the output should appear as shown below (Figure A1) where the TiO2 

model is being viewed along [-110] direction. Blue atoms represent oxygen and pink atoms 

represent titanium. 

 

Figure A1: Model of TiO2 slab generated using MXTAL 

http://cbed.mse.uiuc.edu/
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The oxygen atoms at the surface can be modified/removed using the select command in 

“MXTAL”. The Au nanocrystal is added to the model using the following commands in 

“MXTAL”. 

mxtal> load au.xtl                                                                                                              

mxtal> sphere 35 -1                                                                                                             

mxtal> hcut 1 1 1 22.0                                                                                                          

mxtal> hcut 1 0 0 23                                                                                                            

mxtal> acut -1 -1 -1 9.75                                                                                                       

mxtal> place -1 1 0 1 1 -2 0 0 0                                                                                                

mxtal> shift 2 0 11 0                                                                                                           

mxtal> view 3 110 0.8  

      At this stage the output should appear as shown below (Figure A2) where the 

interfacial distance between Au and TiO2 has been fixed arbitrarily by the “shift” command. 

Blue atoms represent oxygen, pink atoms represent titanium and green atoms represent gold.     
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Figure A2: Model of Au nanocrystal supported on TiO2 (110) generated using MXTAL 

In order to output the atomic coordinates to a “.dat” file that is recognized by “ZMULT” 

the following commands are used 

mxtal> open au_tio2.dat                                                                                                         

mxtal> print_a 4 

Often times, it is necessary to alter the original atomic coordinates created in “MXTAL” 

– for example to create a wedge shaped specimen, surface reconstructions etc. This was achieved 

by altering the coordinate file (“.xyz”) produced by “MXTAL” in the Accelrys Discovery Studio 

program. 
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APPENDIX B: E-BEAM EVAPORATION PROCEDURES  

Prior to using the e-beam evaporator, the material of choice has to be loaded in the e-

beam evaporator by venting the chamber. The choice of crucible liners is vital for each material. 

An extensive list of crucible liners is available at 

“http://www.plasmaterials.com/ThinFilmEvapMatSrcRef.pdf”. The crucibles can be replaced 

quickly through the glass-viewport flange located on the filament-side of the evaporator using 

type-7 tweezers. There is no need to remove the entire e-beam evaporator for crucible 

replacement. Once the required materials have been loaded into the e-beam evaporator, the 

chamber has to be pumped down and baked to less than 100
o
C for 24 hours. Since the e-beam 

evaporator has O-ring seals for isolating the flowing water from the vacuum, baking to greater 

than 120
o
C will result in the fracture of O-rings and leak of water into the vacuum chamber. 

After the bake, the chamber base pressure should be below 2x10
-8

 torr. Upon obtaining this 

pressure, the e-beam evaporator can be degassed and kept ready for later operation (degassing 

instructions below). The following instructions are for routine e-beam evaporation of materials.  

1. Rotate the crucibles and bring the required target into position. 

a. Always perform only anticlockwise motion of the rotary handle. This increases the life 

of the O-Rings. 

b. Always go slow when doing the rotation. Fast rotation can damage the O-Rings. 

2. Check if HV supply is connected to the copper leads.  

3. Turn on water. Wait for at least 15 minutes before starting the e-beam evaporator.  
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 Water Supply Instructions: 

a. Open the red valve, so that water can flow through the e-beam evaporator and 

the thickness monitor 

b. The water pressure is sufficient only if the bubbles are pushed out through the 

outlet pipe. If the bubbles are stuck in the pipes, increase the water pressure 

slowly till they are pushed out and water flows freely. 

4. Switch on the MAIN toggle switch. (Black color toggle switch at Right bottom corner). Wait 

till the High voltage and current reading stabilize to a value around zero. The “OFF/RESET” 

button will automatically come on. 

5. Press the “HIGH VOLTAGE ON” (white) button. It should light up. Wait for the high 

voltage reading to reach 5.5 kV. 

6. Press the “FIL ON/OFF” (white) button. It should light up. 

7. Deposition instructions (only if the e-beam has been degassed already): 

a. Make sure that the shutter is closed. Very slowly (at the rate of <1 milliampere per 

minute) turn up the “EMISSION CURRENT ADJUST” rotary knob while watching 

the pressure. The pressure should not rise above 5x10
-7

 torr at any point of time. 

b. Set up the thickness monitor in the meantime.  

c. Upon reaching desired value of emission current, open the physical shutter and the 

thickness monitor‟s shutter at the same time. 

d. After depositing the required amount of material, close the physical shutter. 

e. Slowly turn down the “EMISSION CURRENT ADJUST” to zero.  

f. Switch off the “FIL ON/OFF”. The light should go off. 
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g. Press “OFF/RESET”. The “HIGH VOLTAGE ON” (white) button light should go 

off. Wait for the high voltage reading to reach 0 kiloVolts. The “OFF/RESET” light 

will continue to be on. This is normal. 

Degassing Instructions (to be followed if e-beam is being operated for the first time after 

venting the chamber) : 

a. Make sure that the e-beam shutter is open. 

b. Go up to 1 milliAmpere. The pressure will jump to ~4 x 10
-7

 torr. Wait till the 

pressure comes down to ~ 2 x 10
-7

 torr. 

c. Now slowly increase the emission current by 1 milliampere. The pressure will jump 

each time. Wait for the pressure to drop to ~2x10
-7

 before increasing the emission 

current again.  

d. Keep increasing the emission current slowly until the thickness monitor records 

around 5 A of deposited material. The e-beam source is then sufficiently. 

e. Now Slowly turn down the “EMISSION CURRENT ADJUST” to zero.  

f. Switch off the “FIL ON/OFF”. The light should go off. 

g. Press “OFF/RESET”. The “HIGH VOLTAGE ON” (white) button light should go 

off. Wait for the high voltage reading to reach 0 kiloVolts. The “OFF/RESET” light 

will continue to be on. This is normal. 

h. Rotate the crucibles and go to the next source.  

a. Always perform only anticlockwise motion of the rotary handle. This  increases 

the  life of the O-Rings. 

b. Always go slow when doing the rotation. Fast rotation can damage the O-

Rings. 
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i. Repeat the degassing procedure for the next crucible and thus successively degas all 

four sources. 

8. SHUTDOWN Instructions: 

a. Switch off the MAIN toggle switch. 

b. Close the physical shutter. 

c. Swithch off the thickenss monitor. 

d. Let the water run for 30 minutes after turning off the e-beam evaporator 

e. Close the red valve, so that water does not flow through the ebeam evaporator and the 

thickness monitor any more. 

f. Reduce the water flow rate (green knob) so that it is enough for the Turbo pump. 
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APPENDIX C: RHEED DATA ANALYSIS  

The evolution of epitaxy with temperature can be tracked by tracking the intensity of individual 

spots in the RHEED patterns. In our system, we used the following procedure to track individual 

RHEED spots. 

1. Filename of images were designated to be the µV reading of thermocouple, i.e. a reading of 

0.811mV on the voltmeter would translate to a filename “0811.tif”. 

2. Background images were acquired every 1000 µV by blanking the beam.  

3. The images were processed using “Gatan Digital Micrograph” using the following script 

which computes the integrated intensity of a chosen spot on the topmost image by 

compensating for spot motion from electric field of the heater. The script calculates 

temperature by a 10
th

 order polynomial fit to the thermocouple reading versus temperature 

curve. Care must be exercised in choosing a spot that is not close to any damaged pixels 

(damaged pixels refer to various spots on the RHEED screen that light up upon heating 

beyond 500
o
C). Once a spot is identified, the following input parameters in should be entered 

in the script before running the script to process all the images. The inputs to the script are 

described below –  

i. Input 1: x and y coordinates of the maximum intensity in the spot from RHEED 

patterns taken after the heater is turned off and the sample has cooled down and the 

difference in the x and y positions of the spot‟s maximum between the highest 

temperature RHEED pattern and the RHEED pattern obtained after sample has 

cooled down. 
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ii. Input 2: Width and height (in pixels) of box to be used for obtaining integrated 

intensity. Typical values for the width and height of box used for integrated intensity 

are 20 pixels each. 

iii. Input 3: The lowest and highest temperatures measured in the experiment. The 

temperature should be obtained by the same 10
th

 order polynomial fit used in the 

script. 

iv. Input 4: The x, y coordinates of the top left corner and width and height of box used 

for obtaining background. The background must be obtained close to the spot for 

accurate background subtraction. Also, the background should have any damaged 

pixels. Typical values for the background height and width are 36 pixels each. 

The script is given in full below. 

------------------------------------------------------------------------------------------------------ -------------------------------------- 

image front := findfrontimage() 

///////////////////////////////// INPUTS Section ////////////////////////////////////////// 

// INPUT 1: max_X, max_y, x_drift, y_drift 

 number max_x = 192;  number max_y = 153; // To be obtained from last cooling down image  

 number x_drift = 5; number y_drift = 6;  

 // Difference in positions of maxima ( Maximum_x_Highest_Temp - Maximum_x_Cooling_Down) 

// INPUT 2: width_spot, height_spot 

 number width_spot = 20;  number height_spot = 20; 
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// INPUT 3: start_temp, end_temp 

 number start_temp = 214.625; // Lowest temperature measured 

 number end_temp = 767.087; // Highest temperature measured 

// INPUT 4: start_x_bg, start_y_bg, width_bg, height_bg  

 number start_x_bg = 278; number start_y_bg = 344; 

 number width_bg = 36; number height_bg = 36; 

/////////////////////////// Processing Section /////////////////////////////////////////// 

number end_x_bg = start_x_bg + width_bg; 

number end_y_bg = start_y_bg + height_bg; 

number integrated_intensity_bg = sum (front [start_y_bg, start_x_bg, end_y_bg, end_x_bg]); 

number integrated_intensity_bg_norm = integrated_intensity_bg*(width_spot*height_spot)/(width_bg*height_bg); 

number Tc = val(Getname(front))/1000; 

number T = (-0.00000196844*(Tc**10)) + 0.000142706*(Tc**9) - 0.0043851*(Tc**8) + 0.074395*(Tc**7)-

0.76341*(Tc**6) + 4.9277*(Tc**5) - 20.674*(Tc**4) + 60.628*(Tc**3) - 139.42*(Tc**2) + 284.96*Tc + 50.298; 

number start_x = max_x - width_spot/2 + ( x_drift * (T - start_temp) / (end_temp - start_temp) ); 

number start_y = max_y - height_spot/2 + ( y_drift * (T - start_temp) / (end_temp - start_temp) ); 

number end_x = start_x + width_spot; 

number end_y = start_y + height_spot; 

number integrated_intensity_spot = sum (front [start_y, start_x, end_y, end_x]); 
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number integrated_intensity_spot_bgsub = integrated_intensity_spot - integrated_intensity_bg_norm; 

/////////////////////////// Output Section ///////////////////////////////////////////////// 

result (Getname(front) + " , " + T + " , " + start_x + " , " + start_y + " , " + integrated_intensity_spot_bgsub + " , " + 

integrated_intensity_bg_norm + "\n"); 

 closeimage(front); 

----------------------------------------------------------------------------------------------------------------------- --------------------- 

 

 


