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Abstract

In this dissertation we define and study a two-parameter family of recur-

sive sequences which we call the bow sequences. The general bow sequence

is defined similarly to the Stern sequence, and many of the properties of the

bow sequences are related to known properties of the Stern sequence. In par-

ticular, we derive the generating function for the general bow sequence, and

give interpretations of the generating function for two basic cases. We also

determine properties of the bow sequences modulo 2 and 3, and give conjec-

tures for the behavior of the bow sequences modulo d for d ≥ 4. Finally, we

discuss ideas for future research.
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Chapter 1

Introduction

In this dissertation we define and study a family of recursive sequences

which we call the bow sequences. The general bow sequence is defined simi-

larly to the Stern sequence, and many of the properties of the bow sequences

are related to known properties of the Stern sequence. We begin by discussing

the main properties of the Stern sequence, and follow with the corresponding

properties for the bow sequences as well as properties for some special cases.

1.1 History

In 1858, the mathematician M. A. Stern [17] studied the so-called “di-

atomic” array of integers, which was motivated by a function studied by

Eisenstein. The diatomic array can be completely understood by considera-

tion of the Stern sequence. The Stern sequence is defined as follows:

s(0) = 0, s(1) = 1; (1.1)

s(2n) = s(n), for n ≥ 1; (1.2)

s(2n+ 1) = s(n) + s(n+ 1), for n ≥ 1. (1.3)

The terms in the Stern sequence can be written in an array, where the rth

row consists of s(n) for 2r ≤ n ≤ 2r+1 for r ≥ 0. The even entries in each row

are copied from the previous row, and the odd entries are found by adding

adjacent entries in the row above; it is a Pascal triangle with memory. The

first five rows of the array are given in Table 1.1.

De Rham [5] was the first to consider the Stern sequence as defined above.

He attributed the name to Bachmann [2], who considered only the diatomic

array. The related Stern-Brocot array [7] was used in defining Minkowski’s

?-function [11], and the Stern sequence has recently been used to understand

2-regular sequences [1] and the Tower of Hanoi graph [9]. The following are
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1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

Table 1.1: The first five rows of the diatomic array for the Stern sequence

a few of the important properties of the Stern sequence:

Proposition 1.1.1. [4], [10], [14], [17] For n ≥ 0, every pair of consecutive

terms of the Stern sequence is relatively prime, or gcd(s(n), s(n + 1)) = 1.

Moreover, given a, b ≥ 1 such that gcd(a, b) = 1, there is exactly one n such

that s(n) = a and s(n+ 1) = b.

Proposition 1.1.1 implies the following proposition.

Proposition 1.1.2. [10], [14] There are exactly φ(m) odd integers n ≥ 1

with the property that s(n) = m.

The reason is that, since

(
s(2k), s(2k + 1)

)
=

(
s(k), s(k) + s(k + 1)

)
, (1.4)

it follows that in every pair (a, b) = (s(2k), s(2k + 1)) we have a < b and

gcd(a, b) = 1. In particular, for a fixed m, there are exactly φ(m) possible

values for s(2k) when s(2k + 1) = m.

Next we will show how we can quickly determine all such odd n. As

shown in [10], continued fractions can be used to determine a formula for the

Stern sequence. Let t(n) be defined as follows:

t(n) :=
s(n)

s(n+ 1)
. (1.5)

Then we can see by Proposition 1.1.1 that (t(n)) provides an enumeration of

the positive rationals. Moreover, one can recover s(n) and s(n+1) from t(n).

By considering binary representations, we can find a simple closed formula

for t(n). This formula gives rise to a direct formula for s(n).

Suppose n is odd. Then the binary representation of n consists of a1 1’s,

followed by a2 0’s, a3 1’s, and so on, ending with a2v 0’s and a2v+1 1’s. We

shall write n ∼ [a1, . . . , a2v+1]. Then we have the following proposition.
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Proposition 1.1.3. [10] If n is odd and n ∼ [a1, . . . , a2v+1], then

t(n) =
s(n)

s(n+ 1)
= a2v+1 +

1

a2v +
1

···+ 1
a1

. (1.6)

This formula can be used to determine specific solutions to s(n) = m for

a fixed m.

Example 1. Suppose n is odd and s(n) = 10. Since gcd(10, s(n + 1)) = 1

and s(n+1) < 10, we must have s(n+1) ∈ {1, 3, 7, 9}. We can compute the

finite continued fraction in each case as follows:

10

1
= 10,

10

3
= 3 +

1

3
,

10

7
= 1 +

1

2 + 1
3

,

10

9
= 1 +

1

9
.

Since the second and fourth continued fractions have an even number of

denominators, we adjust the last denominator as follows:

10

3
= 3 +

1

2 + 1
1

,

10

9
= 1 +

1

8 + 1
1

.

Now, reading these denominators from right to left, we see that s(n) = 10

when [n]2 ∼ [10], [1, 2, 3], [3, 2, 1], or [1, 8, 1]. By converting back from binary,

we find that s(n) = 10 for n odd exactly when n = 1023, 39, 57, or 513. For

example, 39 = [1 0 0 1 1 1]2.

Next, we consider the terms of the Stern sequence modulo d. While the

patterns are more complicated for higher moduli, the terms of the Stern

sequence exhibit a very regular property modulo 2.

Proposition 1.1.4. [13], [14], [15] For n ≥ 0, s(n) is even precisely when

3 | n.
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The formulas for the terms of the Stern sequence which are congruent to

k modulo d are more complex. Formulas for the cases d = 3 and 4 can be

found in [14], and [15]. We will, however, state the following result for the

distribution of pairs modulo d.

Proposition 1.1.5. [14] The pair (s(n) (mod d), s(n+ 1) (mod d)) is uni-

formly distributed amongst all possible pairs (i, j) with gcd(i, j, d) = 1.

Remark. This proposition implies that the density of terms in the Stern

sequence which are divisible by a prime p is 1
p+1 .

1.2 Questions of Interest

In this dissertation we define a new two-parameter family of recursive

sequences called the bow sequences, which have the flipped recursion from

the Stern recursion. The general bow sequence is defined as follows:

bα,β(0) = 0, bα,β(1) = α, bα,β(2) = β; (1.7)

bα,β(2n) = bα,β(n) + bα,β(n+ 1), for n ≥ 2; (1.8)

bα,β(2n+ 1) = bα,β(n), for n ≥ 1. (1.9)

We shall discuss properties of the bow sequences and how these properties

relate to known properties of the Stern sequence. In particular, we would

like to answer the following questions:

Question 1. What is the greatest common divisor of consecutive terms in

the various bow sequences?

It is not true, in general, that the greatest common divisor of two con-

secutive terms in the bow sequences is 1. In fact, b1,0(13) = b1,0(14) = 2,

and b0,1(21) = b0,1(22) = 2, for example. We can, however, state a property

similar to Proposition 1.1.1 for three consecutive terms in the general bow

sequence. In Chapter 2 we will show that

gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β).
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Question 2. Can we find a formula for bα,β(n) that does not depend on the

recursion?

Although we have not discovered a binary or continued fraction expres-

sion for the general bow sequence which is similar to the formula for the

Stern sequence found in Proposition 1.1.3, we have determined a generating

function for the general bow sequence and the values of the bow sequence for

special values of α, β, and n. These formulas and generating functions can

be found in Chapters 2 and 3. We also have work towards a reduced form

involving matrices in Chapter 7.

Question 3. What is the distribution of terms bα,β(n) modulo d for a given

pair (α, β) and an integer d?

For the case d = 2 we find that 3
7 of the terms are even for a given pair

{α, β} where gcd(α, β) is odd. Clearly, in the case where gcd(α, β) is even, all

of the terms in the bow sequence are even. Theorems detailing exactly where

even terms occur for each pair {α, β} can be found in Chapter 4. For higher

moduli, we give a conjecture for the fraction of terms which are congruent to

k modulo d in Chapter 5. We have proved the conjecture to be true in the

case d = 3, and we present numerical evidence for d ≤ 10 in Appendix C.

Question 4. What is the distribution of triples

(bα,β(n) (mod d), bα,β(n+ 1) (mod d), bα,β(n+ 2) (mod d))

for a given pair {α, β} and integer d?

Although pairs of terms are considered in the Stern sequence, we will

mainly consider triples for the general bow sequence. Similar to Proposi-

tion 1.1.5, in Chapter 5 we show for d = 2 and 3 that if gcd(α, β) = 1, the

triple

(bα,β(n) (mod d), bα,β(n+ 1) (mod d), bα,β(n+ 2) (mod d))

is uniformly distributed amongst all triples (i (mod d), j (mod d), k (mod d))

such that

gcd(i, j, k, d) = 1.

5



Remark. This implies that if gcd(α, β) = 1, then the density of terms in the

bow sequence which are divisible by a prime p is p2−1
p3−1 . We have proved the

formula to be true for p = 2 and 3, and we give numerical evidence to support

this conjecture for larger values in Appendix B.

We have a more complicated conjecture detailing the density of terms

which would be divisible by an integer d in Chapter 5.

Question 5. For a given m, how many even integers n ≥ 2 are there such

that bα,β(n) = m?

In Proposition 1.1.2 we considered the number of odd integers n ≥ 1 with

the property that s(n) = m. For the general bow sequence, we shall consider

the even terms since (1.9) tells us that if bα,β(n) = m, then

bα,β(2
r(n+ 1)− 1) = m, for r ≥ 0.

Accordingly, for specific pairs {α, β}, we would like to consider even integers

n ≥ 2 with the property that bα,β(n) = m. A preliminary discussion of these

properties can be found in Chapter 7.
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Chapter 2

The General Bow Sequence

We begin by defining the bow sequences recursively as in Chapter 1. The

general bow sequence, bα,β(n), for α, β ∈ Z is defined by:

bα,β(0) = 0, bα,β(1) = α, bα,β(2) = β; (2.1)

bα,β(2n) = bα,β(n) + bα,β(n+ 1), for n ≥ 2; (2.2)

bα,β(2n+ 1) = bα,β(n), for n ≥ 1. (2.3)

We define bα,β(0) = 0 to simplify results, although the designation does

not affect later terms in the sequence, as bα,β(0) does not enter into the

recurrence.

Here is a table listing the first 17 values of the general bow sequence:

n bα,β(n)
0 0
1 α
2 β
3 α
4 α + β
5 β
6 2α + β
7 α
8 α + 2β
9 α + β
10 2α + 2β
11 β
12 3α + β
13 2α + β
14 2α + 2β
15 α
16 2α + 3β

Table 2.1: The general bow sequence

7



Note that the terms of the general bow sequence are not necessarily dis-

tinct. In particular, we can see from Table 2.1 that bα,β(10) = bα,β(14).

It is also worth noting that (2.2) fails in the case where n = 1, since if

α '= 0, then bα,β(2) '= bα,β(1) + bα,β(2).

2.1 Preliminaries

By considering the recursion, we see that bα,β(n) is linear in α and β.

Accordingly, we can write

bα,β(n) = αb1,0(n) + βb0,1(n). (2.4)

For simplicity, we shall define

b0(n) := b0,1(n),

and

b1(n) := b1,0(n).

In this dissertation we mainly consider the sequences b0(n) and b1(n), as

all other cases of the general bow sequence can be determined from these two

cases by applying equation (2.4).

Remark. Three applications of the recursion to 2n, 2n + 1, and 2n + 3 give

the following. For n ≥ 2,

bα,β(2n) = bα,β(2n+ 1) + bα,β(2n+ 3). (2.5)

For α, β ≥ 0, the following inequalities follow directly:

bα,β(2n) ≥ bα,β(2n+ 1),

bα,β(2n) ≥ bα,β(2n+ 3).

Notice that equation (2.5) can be rewritten as

bα,β(2n+ 1) = bα,β(2n− 2)− bα,β(2n− 1). (2.6)

8



By applying (1.2) and (1.3) to the Stern sequence, we can construct a

property similar to (2.5) for the Stern sequence: for n ≥ 1,

s(2n+ 1) = s(2n) + s(2n+ 2). (2.7)

Remark. Note that iterating (2.2) and (2.3) also gives the following identities:

bα,β(4n) = 2bα,β(n) + bα,β(n+ 1), (2.8)

bα,β(4n+ 1) = bα,β(n) + bα,β(n+ 1),

bα,β(4n+ 2) = bα,β(n) + bα,β(n+ 1) + bα,β(n+ 2),

bα,β(4n+ 3) = bα,β(n).

This means that for α, β ≥ 0 we have

bα,β(4n+ 3) ≤ bα,β(4n+ 1) ≤ bα,β(4n+ 2), and

bα,β(4n) = bα,β(2n) + bα,β(n). (2.9)

2.2 Triatomic Arrays

We can present the values of the general bow sequence as a “triatomic”

array where the first row is bα,β(1), bα,β(2), bα,β(3), and the second row is

bα,β(3), bα,β(4), bα,β(5), bα,β(6), bα,β(7). In general the r-th row contains

bα,β(2r − 1), ..., bα,β(2r+1 − 1). The odd entries in each row are copied from

the previous row in Table 2.2. The even entries are found by adding the

two numbers in the previous row that occur to the right of the entry. For

example, the second entry in the third row, bα,β(8) = α+ 2β, is obtained by

adding the second and third entries in the second row of the array, namely,

α + β and β. The last even entry in each row is obtained by summing the

first two entries in that same row. Here are the first three rows of the array:

α β α
α α + β β 2α + β α
α α + 2β α + β 2α + 2β β 3α + β 2α + β 2α + 2β α

Table 2.2: First three rows of the triatomic array for the general bow sequence

9



The triatomic arrays for b0(n) and b1(n) are quite different from each

other. As we will see in Chapter 5, b0(n) is much more regular than b1(n),

but the two sequences share many properties. Consider the tables below:

0 1 0
0 1 1 1 0
0 2 1 2 1 1 1 2 0
0 3 2 3 1 3 2 2 1 2 1 3 1 2 2 3 0

Table 2.3: First four rows of the triatomic array for b0(n)

1 0 1
1 1 0 2 1
1 1 1 2 0 3 2 2 1
1 2 1 3 1 2 2 3 0 5 3 4 2 3 2 3 1

Table 2.4: First four rows of the triatomic array for b1(n)

2.3 Greatest Common Divisors and Maxima

One interesting property of the bow sequences is that although two con-

secutive terms may share a nontrivial factor, three consecutive terms can

only share factors which divide gcd (α, β).

Theorem 2.3.1. For all {α, β} and n > 0,

gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β). (2.10)

Proof. Observe that gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β)

for n = 1. Now assume that this holds true for n < k.

10



Case 1: k = 2n+ 1, with n < k. Then,

gcd(bα,β(k), bα,β(k + 1), bα,β(k + 2))

= gcd(bα,β(2n+ 1), bα,β(2n+ 2), bα,β(2n+ 3))

= gcd(bα,β(n), bα,β(n+ 1) + bα,β(n+ 2), bα,β(n+ 2))

= gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2))

= gcd(α, β).

Case 2: k = 2n, with n < k. Then,

gcd(bα,β(k), bα,β(k + 1), bα,β(k + 2))

= gcd(bα,β(2n), bα,β(2n+ 1), bα,β(2n+ 2))

= gcd(bα,β(n) + bα,β(n+ 1), bα,β(n), bα,β(n+ 1) + bα,β(n+ 2))

= gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2))

= gcd(α, β).

Thus gcd(bα,β(n), bα,β(n + 1), bα,β(n + 2)) = gcd(α, β) for all {α, β} and

n > 0. !

Surprisingly, Theorem 2.3.1 has implications for pairs. Although we have

seen that pairs frequently share common factors, when the pairs

(b0(n), b0(n+ 1)), and (b1(n), b1(n+ 1))

are taken together, the resulting quadruple does not have a common factor.

Theorem 2.3.2. For n ≥ 0, gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1.

Proof. Suppose p is prime, and let

p | gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)).

Then, p must necessarily divide b0(n) and b0(n + 1), so we know by Theo-

rem 2.3.1 that p ! b0(n+ 2). Similarly, p ! b1(n+ 2). So let

b0(n+ 2) ≡ r (mod p) and b1(n+ 2) ≡ s (mod p),

where 1 ≤ r, s ≤ p− 1.

11



Consider bs,−r(n) = sb1(n)−rb0(n). Thus p | bs,−r(n), and p | bs,−r(n+1).

Then, since

bs,−r(n+ 2) ≡ sr + (−r)s ≡ 0 (mod p),

we know that p | bs,−r(n + 2). But this implies that p | gcd(r, s), which is a

contradiction. Thus gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1. !

Remark. Note that Theorem 2.3.2 fails if we consider only three of the four

terms. For example, consider n = 2149948. Then we have

(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = (2070, 1815, 1430, 1254).

When we consider the triples, we find that

gcd(b0(n), b0(n+ 1), b1(n)) = 5,

gcd(b0(n), b0(n+ 1), b1(n+ 1)) = 3,

gcd(b0(n), b1(n), b1(n+ 1)) = 2,

gcd(b0(n+ 1), b1(n), b1(n+ 1)) = 11.

However, clearly gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1.

Similarly, we have the following theorem.

Theorem 2.3.3. For n ≥ 0, gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)) = 1.

Proof. Suppose p is prime, and let

p | gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)).

Then, p must necessarily divide b0(n) and b0(n + 2), so we know by Theo-

rem 2.3.1 that p ! b0(n+ 1). Similarly, p ! b1(n+ 1). So let

b0(n+ 1) ≡ r (mod p) and b1(n+ 1) ≡ s (mod p),

where 1 ≤ r, s ≤ p− 1.

Consider bs,−r(n) = sb1(n)−rb0(n). Thus p | bs,−r(n), and p | bs,−r(n+2).

Then, since

bs,−r(n+ 1) ≡ sr + (−r)s ≡ 0 (mod p),

12



we know that p | bs,−r(n + 1). But this implies that p | gcd(r, s), which is a

contradiction. Thus gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)) = 1. !

For the next theorem, we will need the Fibonacci numbers, defined as

usual by

F0 = 0, F1 = 1;

Fn = Fn−1 + Fn−2, for n ≥ 2.

Theorem 2.3.4. For r ≥ 1,

bα,β(2
r) = αFr−1 + βFr. (2.11)

In particular, for r ≥ 1,

b0(2
r) = Fr, b1(2

r) = Fr−1, and b1,1(2
r) = Fr+1.

Proof. First, note that by applying (2.9) we find

bα,β(2
r) = bα,β(2

r−1) + bα,β(2
r−2).

Secondly, recall by (2.4) that

bα,β(2
r) = αb1(2

r) + βb0(2
r).

Thus we consider only these two cases. All that remains is to check the initial

conditions. We find that

(b0(2), b0(4)) = (0, 1) = (F0, F1),

and

(b1(2), b1(4)) = (1, 1) = (F1, F2).

Thus the initial conditions are satisfied. !

Next, we estimate the size of bα,β(n). Let Ir = (2r−1, 2r] ∩ Z. To be

13



specific,

Ir = {2r−1 + 1, · · · , 2r}.

Note that

Ir = (2Ir−1 − 1) ∪ 2Ir−1.

We have the following upper bound.

Theorem 2.3.5. For r ≥ 1,

max
n∈Ir

|bα,β(n)| ≤ max {|α|, |β|}Fr+1. (2.12)

Moreover, for β ≥ α ≥ 0,

max
n∈Ir

|bα,β(n)| = bα,β(2
r) = αFr−1 + βFr. (2.13)

Proof. Since bα,β(n) ≥ 0 for α, β ≥ 0, |bα,β(n)| ≤ b|α|,|β|(n), and we may

assume that α, β ≥ 0. Observe that for α, β ≥ 0 and γ = max{α, β},

bα,β(n) ≤ bγ,γ(n) = γb1,1(n)

= γ (b0(n) + b1(n)) .

For r = 1, 2, it is easy to see that maxn∈Ir b1,1(n) is Fr+1. Now assume

that this holds for all r < k. Let r = k. Then

max
n∈Ik

b1,1(n) = max
n∈Ik−1

{b1,1(2n), b1,1(2n− 1)}

= max
n∈Ik−1

{b1,1(n) + b1,1(n+ 1), b1,1(n− 1)}.
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However, one of n or n+ 1 is odd. Thus, if n, n+ 1 ∈ Ik−1, then

max
n∈Ik−1

{b1,1(n) + b1,1(n+ 1), b1,1(n− 1)} ≤ max{Fk + Fk−1, Fk}

= max{Fk+1, Fk}

= Fk+1.

The previous argument fails if n+ 1 is not in Ik−1. However, then

n+ 1 = 2k−1 + 1,

and

b1,1(2
k−1 + 1) = b1,1(2

k−2) = Fk−1

by Theorem 2.3.4.

Thus we have shown that

max
n∈Ik

bγ,γ(n) ≤ γFk+1.

Now we will show that maxn∈Ir b0(n) ≤ Fr. For r = 1, 2, it is easy to see

that maxn∈Ir b0(n) = Fr. Now assume that this statement also holds for all

r < k. Let r = k. Then

max
n∈Ik

b0(n) = max
n∈Ik−1

{b0(2n), b0(2n− 1)}

= max
n∈Ik−1

{b0(n) + b0(n+ 1), b0(n− 1)}.

Similarly, one of n or n+1 is odd, with the same result if n+1 = 2k−1+1.

Thus, if n, n+ 1 ∈ Ik−1, then

max
n∈Ik−1

{b0(n) + b0(n+ 1), b0(n− 1)} ≤ max{Fk−1 + Fk−2, Fk−1}

= max{Fk, Fk−1}

= Fk.

With δ > 0 and b0,δ(n) = δb0(n), we have maxn∈Ir b0,δ(n) ≤ δFr.
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Now we shall show that the maximum occurs at n = 2r. Let β ≥ α ≥ 0.

Then, by setting γ = α and δ = β − α in the previous results above, we find

bα,β(2
r) = αb1,1(2

r) + (β − α)b0(2
r)

≤ αFr+1 + (β − α)Fr

= αFr−1 + βFr.

However, by Theorem 2.3.4 we know that bα,β(2r) = αFr−1 + βFr, thus

the maximum occurs at n = 2r. !

2.4 Formulas for bα,β(2rn + k)

Here are some results on bα,β(2rn+ k) for fixed values of k.

Theorem 2.4.1. The following formulas hold for the general bow sequence.

(1). bα,β(2rn− 4) = Fr−1bα,β(n) + Fr−2bα,β(n+ 1) + 2bα,β(n− 1), for r ≥ 2,

n ≥ 2.

(2). bα,β(2rn− 3) = Fr−1bα,β(n) + Fr−2bα,β(n + 1) + bα,β(n− 1), for r ≥ 2,

n ≥ 2.

(3). bα,β(2rn − 2) = Frbα,β(n) + Fr−1bα,β(n + 1) + bα,β(n − 1), for r ≥ 1,

n ≥ 2.

(4). bα,β(2rn− 1) = bα,β(n− 1), for r ≥ 0, n ≥ 1.

(5). bα,β(2rn) = Fr+1bα,β(n) + Frbα,β(n+ 1), for r ≥ 0, n ≥ 2.

(6). bα,β(2rn+ 1) = Frbα,β(n) + Fr−1bα,β(n+ 1), for r ≥ 1, n ≥ 2.

(7). bα,β(2rn+2) = (Fr+1−1)bα,β(n)+Frbα,β(n+1)+bα,β(n+2), for r ≥ 1,

n ≥ 2.

(8). bα,β(2rn+ 3) = Fr−1bα,β(n) + Fr−2bα,β(n+ 1), for r ≥ 2, n ≥ 2.

(9). bα,β(2rn + 4) = (Fr + Fr−2 − 1)bα,β(n) + (Fr−1 + Fr−3)bα,β(n + 1) +

bα,β(n+ 2), for r ≥ 3, n ≥ 2.
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Proof. To prove (4) we apply the recurrence repeatedly and obtain

bα,β(2
rn− 1) = bα,β(2

r−1n− 1) = · · · = bα,β(n− 1).

We show (5) by induction on r. First note by (2.9) that

bα,β(2
r+2n) = bα,β(2

r+1n) + bα,β(2
rn).

So all we need to do is to verify the base cases r = 0, and 1:

bα,β(n) = F1bα,β(n) + F0bα,β(n+ 1),

bα,β(2n) = F2bα,β(n) + F1bα,β(n+ 1).

Since F0 = 0, and F1 = F2 = 1, these are immediate.

Property (6) is due to property (5) along with the recursion. We show

(7) by induction on r. First note that for r = 1, 2 the assertion is that

bα,β(2n+ 2) = (F2 − 1)bα,β(n) + F1bα,β(n+ 1) + bα,β(n+ 2),

bα,β(4n+ 2) = (F3 − 1)bα,β(n) + F2bα,β(n+ 1) + bα,β(n+ 2).

Since F1 = F2 = 1, and F3 = 2, these are immediate. Assuming that this

holds for r < k, we now let r = k:

bα,β(2
kn+ 2) = bα,β(2

k−1n+ 1) + bα,β(2
k−1n+ 2)

= Fk−1bα,β(n) + Fk−2bα,β(n+ 1) + (Fk − 1)bα,β(n)

+ Fk−1bα,β(n+ 1) + bα,β(n+ 2)

= (Fk+1 − 1)bα,β(n) + Fkbα,β(n+ 1) + bα,β(n+ 2).

Property (8) is due to property (6). Property (9) is due to (7) and (8).

Property (3) is due to (4) and (5). Property (2) is due to property (3).

Lastly, property (1) is due to properties (3) and (4). !

We get the following corollary for b0(n) and b1(n).

Corollary 2.4.2. For r ≥ 1, the following are true for b0(n) and b1(n):

(1). b0(3 ·2r) = Fr, b0(5 ·2r) = Fr+2, b0(7 ·2r) = 2Fr, b0(9 ·2r) = 2Fr+Fr+1,

b0(11 · 2r) = 2Fr+2, b0(13 · 2r) = 2Fr + Fr+1, and b0(15 · 2r) = 3Fr.
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(2). b1(3·2r) = Fr+2, b1(5·2r) = 2Fr, b1(7·2r) = Fr+2, b1(9·2r) = 2Fr+Fr+1,

b1(11 · 2r) = 3Fr, b1(13 · 2r) = 2Fr+2, and b1(15 · 2r) = 2Fr + Fr+1.

Proof. These properties can be verified by letting n = 3, 5, 7, 9, 11, 13, and

15 in Theorem 2.4.1(5). !

Remark. It is interesting to note that the second property in (2) implies

that b1(5 · 2r) is always even. Then, by the recurrence, we also know that

b1(5 · 2r + 1) is also always even. This gives an infinite number of even

pairs {b1(5 · 2r), b1(5 · 2r + 1)}. Also, the third property in (1) implies that

b0(7 · 2r) is always even. Hence, we have an infinite number of even pairs

{b0(7 · 2r), b0(7 · 2r + 1)}. Similarly, we also have an infinite number of pairs

{b0(15 ·2r), b0(15 ·2r+1)} and {b1(11 ·2r), b1(11 ·2r+1)} which are multiples

of three.

Remark. Note that

b0(5 · 2r) = Fr+2 = b1(7 · 2r), and b1(5 · 2r) = 2Fr = b0(7 · 2r).

Additionally, we note that

b0(9 · 2r) = b1(9 · 2r),

which we will use in Chapter 7.

Lemma 2.4.3. b0(n) = 0 ⇐⇒ n = 2r − 1, for r ≥ 0.

Proof. Theorem 2.4.1 shows that if n = 2r − 1, then b0(n) = 0. Suppose

b0(n) = 0. If n is even, then b0(2k) = 0 means b0(k) + b0(k + 1) = 0, and

the only time this happens is when k = 0, as we can see from Table 2.3.

Otherwise, n must be odd, which means that the other zeroes come from the

recursion, and thus n = 2r − 1. !

Lemma 2.4.4. b1(n) = 0 ⇐⇒ n = 0 or n = 3 · 2r − 1, for r ≥ 0.

Proof. First, we know by Theorem 2.4.1(4) that for r ≥ 0,

b1(3 · 2r − 1) = b1(2) = 0.
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Now, suppose b1(n) = 0. If n was even, then b1(2k) = 0 means n = 2 or

b1(k)+ b1(k+1) = 0, which never happens, as we can see from Table 2.4. So

n must be either 2 or odd. Thus all the other zeroes come from the recursion,

and n = 3 · 2r − 1. !

For r ≥ 1, there exist infinitely many n and infinitely many m such that

Fr | gcd(b0(n), b0(n+ 1)), and Fr | gcd(b1(m), b1(m+ 1)).

In fact, if we let

Pr = {n | n = (2r − 1)2j, j ≥ 1} and Qr = {n | n = (3 · 2r − 1)2j, j ≥ 1},

then we have the following theorem.

Theorem 2.4.5. For r ≥ 1, if n ∈ Pr, then Fr | gcd(b0(n), b0(n + 1)), and

if r ≥ 2 and m ∈ Qr−2, then Fr | gcd(b1(m), b1(m+ 1)).

Proof. By Theorem 2.4.1(5) we know that

bα,β(2
r(2k + 1)) = Fr+1bα,β(2k + 1) + Frbα,β(2k + 2)

= Fr+1bα,β(k) + Fr(bα,β(k + 1) + bα,β(k + 2)).

By Lemmas 2.4.3 and 2.4.4,

k = 2r − 1 =⇒ b0(k) = 0, and k = 3 · 2r − 1 =⇒ b1(k) = 0.

So if we choose n = (2r − 1)2j for r ≥ 2, j ≥ 1, and m = (3 · 2r − 1)2j for

r, j ≥ 1, then Fr | gcd(b0(n), b0(n + 1)), and Fr+2 | gcd(b1(m), b1(m + 1)).

!

Lemma 2.4.6. For any integer r, there exists m such that r|Fm.

Proof. For d ≥ 2, let Sd denote the set {u, v} of pairs of residue classes

modulo d. Then the (invertible) map h on Sd defined by h(u, v) = (v, u+ v)

has the property that h(F n, F n+1) = (F n+1, F n+2). Since h induces a per-

mutation on Sd, (0, 1) belongs to a cycle of length r, and it follows that

hr(0, 1) = (0, 1). In particular, for every integer k, hkr(0, 1) = (0, 1), so that

F kr = 0; that is Fkr ≡ 0 (mod d) or d | Fkr. !
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Theorem 2.4.5 and Lemma 2.4.6 imply the following theorem.

Theorem 2.4.7. For all d > 0, there exist infinitely many n and infinitely

many m such that

d | gcd(b0(n), b0(n+ 1)) and d | gcd(b1(m), b1(m+ 1)).

Proof. Given d, there exists r so that d | Fkr for each k, and it follows that

b0(n) and b0(n+1) are both multiples of d for n ∈ Pkr. Similarly, b1(m) and

b1(m+ 1) are both multiples of d for m ∈ Qkr. !

2.5 Properties of the Summatory Function

Next, we consider the function which is the sum of the rth row of the

triatomic array,

Fα,β(r) :=
∑

n∈Ir+1

bα,β(n) =
2r+1∑

n=2r+1

bα,β(n).

Lemma 2.5.1. For r ≥ 5,

Fα,β(r) = 3Fα,β(r − 1)− αFr−5 − βFr−4. (2.14)

Proof. Starting with the definition of Fα,β(r) and applying the recurrence,
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we find

Fα,β(r) =
∑

n∈Ir+1

bα,β(n)

=
∑

n∈Ir

bα,β(2n) + bα,β(2n− 1)

=
∑

n∈Ir

bα,β(n) + bα,β(n+ 1) + bα,β(n− 1)

=

(
∑

n∈Ir

3bα,β(n)

)
+ bα,β(2

r + 1)− bα,β(2
r−1 + 1) + bα,β(2

r−1)− bα,β(2
r)

= 3Fα,β(r − 1) + bα,β(2
r−1)− bα,β(2

r−2) + bα,β(2
r−1)− bα,β(2

r).

Then, by applying Theorem 2.3.4 and simplifying we get

Fα,β(r) = 3Fα,β(r − 1) + 2(αFr−2 + βFr−1)− αFr−3 − βFr−2 − αFr−1 − βFr

= 3Fα,β(r − 1) + α (Fr−1 − 3Fr−3) + β (Fr − 3Fr−2)

= 3Fα,β(r − 1) + α (Fr−2 − 2Fr−3) + β (Fr−1 − 2Fr−2)

= 3Fα,β(r − 1) + α (Fr−4 − Fr−3) + β (Fr−3 − Fr−2)

= 3Fα,β(r − 1)− αFr−5 − βFr−4.

!

This lemma suggests a relationship of the following form.

Theorem 2.5.2. For r ≥ 1,

Fα,β(r) = α

(
7

5
· 3r−1 +

3

5
· Fr −

4

5
· Fr−1

)
+ β

(
2

5
· 3r − 1

5
· Fr +

3

5
· Fr−1

)
.

Proof. By considering Table 2.1, we check that this holds for small r. Sup-
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pose that the formula holds for r < k. Then by Lemma 2.5.1,

Fα,β(k) = 3α

(
7

5
· 3k−2 +

3

5
· Fk−1 −

4

5
· Fk−2

)
+ 3β

(
2

5
· 3k−1 − 1

5
· Fk−1 +

3

5
· Fk−2

)

+ αFk−1 − 3αFk−3 + βFk − 3βFk−2

= α

(
7

5
· 3k−1 +

9

5
· Fk−1 −

12

5
· Fk−2 + Fk−1 − 3Fk−3

)

+ β

(
2

5
· 3k − 3

5
· Fk−1 +

9

5
· Fk−2 + Fk − 3Fk−2

)

= α

(
7

5
· 3k−1 +

3

5
· Fk −

4

5
· Fk−1

)
+ β

(
2

5
· 3k − 1

5
· Fk +

3

5
· Fk−1

)
.

Thus the theorem holds for r ≥ 1. !

Remark. Theorem 2.5.2 implies that

Fα,β(r)

3r
=

7α + 6β

15
+O

((
φ

3

)r)
=

7α + 6β

15
+ o(1).

Remark. Interestingly, the sum of the rth row of the diatomic array for the

Stern sequence is 3r + 1.

Remark. Note that F−6,7(r) = −5Fr + 9Fr−1, which means that the average

value of b−6,7(n) → 0 as n → ∞.

Now suppose we sum all the terms of the general bow sequence up to the

N th term. Define a new function as follows:

Definition. Eα,β(N) is defined as the finite sum of the first N terms of the

bow sequence

Eα,β(N) :=
N∑

k=1

bα,β(k). (2.15)

Theorem 2.5.3. For N ≥ 1 we have the following

Eα,β(2N) = 3Eα,β(N)− α− bα,β(N) + bα,β(N + 1). (2.16)

Proof. One can calculate quickly that this formula holds for N < 4. Let

N ≥ 4. We start with the definition, separate terms and apply the recursion
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to find

Eα,β(2N) =
2N∑

k=1

bα,β(k)

= bα,β(1) + bα,β(2) + bα,β(3) +
2N∑

k=4

bα,β(k)

= bα,β(1) + bα,β(2) + bα,β(3) +
N∑

k=2

(bα,β(2k) + bα,β(2k + 1))− bα,β(2N + 1)

= bα,β(1) + bα,β(2) + bα,β(3) +
N∑

k=2

(2bα,β(k) + bα,β(k + 1))− bα,β(2N + 1).

Using Table 2.1 we see that

Eα,β(2N) = 2α + β +
N∑

k=2

(2bα,β(k) + bα,β(k + 1))− bα,β(2N + 1)

=
N∑

k=1

2bα,β(k) +
N∑

k=1

bα,β(k + 1)− bα,β(2N + 1).

We reindex the second sum and apply (2.15) to obtain

Eα,β(2N) = 2Eα,β(N) +
N+1∑

k=2

bα,β(k)− bα,β(2N + 1)

= 2Eα,β(N) + Eα,β(N)− α + bα,β(N + 1)− bα,β(2N + 1).

Then by applying the recursion we get the desired result

Eα,β(2N) = 3Eα,β(N)− α− bα,β(N) + bα,β(N + 1).

!

Corollary 2.5.4. For r ≥ 3 and N = 2r we have

Eα,β(2N) = 3Eα,β(N)− α(Fr−3 + 1)− βFr−2. (2.17)
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Proof. By Theorem 2.5.3 we have

Eα,β(2N) = 3Eα,β(N)− α− bα,β(2
r) + bα,β(2

r + 1).

By applying Theorem 2.4.1 and simplifying we obtain

Eα,β(2N) = 3Eα,β(N)− α− (αFr−1 + βFr) + (αFr−2 + βFr−1)

= 3Eα,β(N)− α− αFr−3 − βFr−2

= 3Eα,β(N)− α(Fr−3 + 1)− βFr−2.

!

Corollary 2.5.4 suggests the following relationship.

Theorem 2.5.5. For r ≥ 2 we have

Eα,β(2
r+1) = α

(
7

10
· 3r−1 − 1

5
· Fr +

3

5
· Fr−1 +

1

2

)
+ β

(
1

5
· 3r + 2

5
· Fr −

1

5
· Fr−1

)
.

(2.18)

Proof. By considering Table 2.1, we check that this holds for small r ≥ 2.

Suppose that the formula holds for r < k. Then, by Corollary 2.5.4,

Eα,β(2
r) = 3α

(
7

10
· 3r−2 − 1

5
· Fr−1 +

3

5
· Fr−2 +

1

2

)

+ 3β

(
1

5
· 3r−1 +

2

5
· Fr−1 −

1

5
· Fr−2

)
− α(Fr−4 + 1)− βFr−3

= α

(
7

10
· 3r−1 − 3

5
· Fr−1 +

9

5
· Fr−2 +

3

2
− Fr−4 − 1

)

+ β

(
1

5
· 3r + 6

5
· Fr−1 −

3

5
· Fr−2 − Fr−3

)
.

Then, by simplifying the Fibonacci terms, we find

Eα,β(2
r) = α

(
7

10
· 3r−1 − 3

5
· Fr−1 +

4

5
· Fr−2 + Fr−3 +

1

2

)

+ β

(
1

5
· 3r + 1

5
· Fr−1 +

2

5
· Fr−2

)

= α

(
7

10
· 3r−1 − 1

5
· Fr +

3

5
· Fr−1 +

1

2

)
+ β

(
1

5
· 3r + 2

5
· Fr −

1

5
· Fr−1

)
.
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Thus the theorem holds for r ≥ 2. !

Remark. Theorem 2.5.5 implies that

Eα,β(2r)

3r
=

7α + 6β

30
+O

((
φ

3

)r)
=

7α + 6β

30
+ o(1).

Remark. By comparison, the sum of the first 2r terms of the Stern sequence

is

1

2
(3r + 1) .
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Chapter 3

Generating Functions

We use the following notation for generating functions:

Ga1,a2,a3,...,am(x) := x
∞∏

j=0

(1 + xa1·2j + xa2·2j + · · ·+ xam·2j) (3.1)

:=
∞∑

n=1

ca1,a2,a3,...,am(n)xn. (3.2)

Combinatorially, this means that ca1,a2,a3,...,am(n) is the number of ways

of writing n− 1 as the sum
∑

i≥0 γi2
i where γi ∈ {0, a1, a2, a3, . . . , am}.

First consider

1

x
G1(x) =

∞∏

n=0

(1 + x2j) =
1

1− x
=

∞∑

k=0

xk. (3.3)

Thus we recover the fact that every integer n > 0 has a unique representation

n =
∞∑

i=0

γi2
i, (3.4)

where γi ∈ {0, 1}. In this chapter we examine G1,2(x), G1,3(x), and G2,3(x).
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3.1 The Generating Function for the Stern

Sequence

The generating function for the Stern sequence, s(n), is defined by

S(x) :=
∞∑

n=0

s(n)xn. (3.5)

Separating into even and odd terms as in [14] and [15] we find

S(x) =
∞∑

n=0

s(2n)x2n +
∞∑

n=0

s(2n+ 1)x2n+1

=
∞∑

n=0

s(n)x2n +
∞∑

n=0

s(n)x2n+1 +
∞∑

n=0

s(n+ 1)x2n+1

=

(
1 + x+

1

x

)
S(x2).

Since s(0) = 0 we can write S(x) = xT (x).

T (x) =
∞∑

n=0

s(n+ 1)xn (3.6)

and

xT (x) =

(
1 + x+

1

x

)
x2T (x2),

thus

T (x) = (1 + x+ x2)T (x2). (3.7)

Since 1 ≤ s(n) ≤ n, we know that limn→∞(s(n))1/n = 1. Thus S(x)

has radius of convergence 1, is analytic on the open unit disk, and S(xr) is

defined for |x| < 1.
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Iterating (3.7) N times we obtain

T (x) =

(
N−1∏

j=0

(1 + x2j + x2j+1
)

)
T
(
x2N

)
.

We find that for |x| < 1,

lim
N→∞

T
(
x2N

)
= T (0) = s(1) = 1.

Thus we find, as in [15], that

S(x) = xT (x) = x
∞∏

j=0

(1 + x2j + x2·2j). (3.8)

By equation (3.1) we see that S(x) = G1,2(x).

Remark. Combinatorially, the generating function tells us that s(n) = c1,2(n).

Remark. Consider the generating function modulo 2. Proceeding as in [13]

we find the following

S(x) = x
∞∏

j=0

(1 + x2j + x2·2j)

= x
∞∏

j=0

1− x3·2j

1− x2j

≡ x
∞∏

j=0

1 + x3·2j

1 + x2j
(mod 2)

≡ x
1

1− x3
(1− x) (mod 2)

≡ x+ x2

1− x3
(mod 2). (3.9)

Thus we can clearly see that s(n) is even precisely when 3 | n. We obtain

similar results for the bow sequences.
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3.2 The Generating Function for the

General Bow Sequence

We can now consider the generating function for the general bow se-

quence. First, let

Bα,β(x) =
∑

n≥0

bα,β(n)x
n = αB1,0(x) + βB0,1(x). (3.10)

It follows from (2.12) that B1,0(x) and B0,1(x) have radius of convergence 1.

By repeatedly applying the recursion and tweaking the limits, we have

Bα,β(x) = αx+ βx2 +
∑

n≥3

bα,β(n)x
n

= αx+ βx2 +
∑

n≥1

bα,β(2n+ 1)x2n+1 +
∑

n≥2

bα,β(2n)x
2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

(bα,β(n) + bα,β(n+ 1))x2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

bα,β(n)x
2n +

∑

n≥2

bα,β(n+ 1)x2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

bα,β(n)x
2n +

∑

n≥3

bα,β(n)x
2n−2

= αx+ βx2 + x
∑

n≥1

bα,β(n)x
2n +

∑

n≥2

bα,β(n)x
2n +

1

x2

∑

n≥3

bα,β(n)x
2n

= αx+ βx2 + x
∑

n≥1

bα,β(n)x
2n +

∑

n≥1

bα,β(n)x
2n − αx2

+
1

x2

∑

n≥1

bα,β(n)x
2n − α− βx2

= −α + αx− αx2 +

(
1

x2
+ 1 + x

)
Bα,β(x

2)

= −α(1− x+ x2) +
1

x2
(1 + x2 + x3)Bα,β(x

2).

Since bα,β(0) = 0 and bα,β(1) = α, we can write Bα,β(x) = αx+x2Cα,β(x),

with Cα,β(0) = β, so Bα,β(x2) = αx2 + x4Cα,β(x2). Thus we have
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Bα,β(x) = αx+ x2Cα,β(x)

=
1

x2
(1 + x2 + x3)(αx2 + x4Cα,β(x

2))− α(1− x+ x2).

Solving for Cα,β(x), we find

Cα,β(x) =
1

x2

(
α(1− x+ x2 + x3) + x2Cα,β(x

2)(1 + x2 + x3)− α(1− x+ x2)
)

= αx+ Cα,β(x
2)(1 + x2 + x3).

We can feed this identity back into the equation to get

Cα,β(x) = αx+ (1 + x2 + x3)(αx2 + Cα,β(x
4)(1 + x4 + x6))

= αx+ (1 + x2 + x3)αx2 + (1 + x2 + x3)(1 + x4 + x6)Cα,β(x
4).

After N steps,

Cα,β(x) = αx+ α
N∑

k=0

x2·2k
k∏

j=0

(1 + x2·2j + x3·2j) +
N+1∏

k=0

(1 + x2·2k + x3·2k)Cα,β(x
2N+2

).

Since, Cα,β(x) = β+x·P (x) for some P (x), Cα,β(x2N+2
)−β = x2N+2

P (x2N+2
).

Thus for |x| < 1, Cα,β(x2N+2
)− β → 0 as N → ∞; hence we have

Cα,β(x) = αx+ α
∞∑

k=0

x2·2k
k∏

j=0

(1 + x2·2j + x3·2j) + β
∞∏

k=0

(1 + x2·2k + x3·2k).

Thus we have the following theorem.
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Theorem 3.2.1. The generating function for the general bow sequence is:

Bα,β(x) = αx+ αx3 + αx2
∞∑

k=0

x2·2k
k∏

j=0

(1 + x2·2j + x3·2j) (3.11)

+ βx2
∞∏

k=0

(1 + x2·2k + x3·2k).

Since Bα,β(x) = αB1,0(x) + βB0,1(x), we can state two combinatorial

implications. First, we have

B0,1(x) :=
∞∑

n=0

b0(n)x
n = x2

∞∏

k=0

(1 + x2·2k + x3·2k) = xG2,3(x) (3.12)

for the case when α = 0, β = 1. We interpret this statement as:

Corollary 3.2.2. Combinatorially, b0(n) = c2,3(n−1) is the number of ways

of writing n− 2 as the sum
∑

i ci2
i where ci ∈ {0, 2, 3}.

We also have

B1,0(x) :=
∞∑

n=0

b1(n)x
n = x+ x3 + x2

∞∑

k=0

x2·2k
k∏

j=0

(1 + x2·2j + x3·2j) (3.13)

for the case when α = 1, β = 0. We interpret this statement as:

Corollary 3.2.3. Combinatorially, b1(n) is the number of ways of writing

n− 2− 2k+1 as the sum
∑k

i=0 ci2
i where ci ∈ {0, 2, 3} and k ∈ N.

Remark. By rearranging, we find that b1(n) is also the number of ways of

writing n − 2 as the sum
∑k

i=0 ci2
i where k ∈ N, ci ∈ {0, 2, 3} for i ≤ k − 1

and ck ∈ {2, 4, 5}.

Alternatively, since
∑k

i=0 2
i = 2k+1 − 1, we get the following formula

B1,0(x) = x+ x3 + x3
∞∑

k=0

k∏

j=0

(x1·2j + x3·2j + x4·2j), (3.14)

which means that b1(n) is the number of ways of writing n − 3 as a finite

sum
∑k

i=0 ci2
i where ci ∈ {1, 3, 4}.
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3.3 A Relative of the Bow Sequences

After considering the generating functions G1,2(x) and G2,3(x), one might

be curious about the sequence that has the following generating function

Y (x) := G1,3(x) (3.15)

= x
∞∏

k=0

(1 + x2k + x3·2k) =
∞∑

n=0

y(n)xn. (3.16)

We see that y(n) = c1,3(n) is the number of ways of writing n− 1 as the

sum
∑

i≥0 ci2
i where ci ∈ {0, 1, 3}. We can define y(n) recursively as follows:

y(0) = 0, y(1) = 1; (3.17)

y(2n+ 1) = y(n+ 1), for n ≥ 1; (3.18)

y(2n) = y(n) + y(n− 1), for n ≥ 1. (3.19)

By analogy with bα,β(n), we can define the general sequence by:

yα,β(0) = α, yα,β(1) = β; (3.20)

yα,β(2n+ 1) = yα,β(n+ 1), for n ≥ 1; (3.21)

yα,β(2n) = yα,β(n) + yα,β(n− 1), for n ≥ 1. (3.22)

In particular, y(n) = y0,1(n). We can find the generating function of

yα,β(n) using the techniques of this chapter. Let the generating function be

defined as

Yα,β(x) :=
∑

n≥0

yα,β(n)x
n.
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Then

Yα,β(x) = α + βx+
∑

n≥2

yα,β(n)x
n

= α + βx+
∑

n≥1

yα,β(2n)x
2n +

∑

n≥1

yα,β(2n+ 1)x2n+1

= α + βx+
∑

n≥1

(yα,β(n) + yα,β(n− 1))x2n +
∑

n≥1

yα,β(n+ 1)x2n+1

= α + βx+
∑

n≥0

yα,β(n)x
2n − α +

∑

n≥0

yα,β(n)x
2n+2 +

∑

n≥2

yα,β(n)x
2n−1

= βx+ Yα,β(x
2) + x2Yα,β(x

2) +
∑

n≥0

yα,β(n)x
2n−1 − α

x
− βx

= −α

x
+

1

x
Yα,β(x

2) + Yα,β(x
2) + x2Yα,β(x

2)

= −α

x
+

1

x
Yα,β(x

2)(1 + x+ x3).

Now, let Yα,β(x) = α + xDα,β(x). So Yα,β(x2) = α + x2Dα,β(x2). Substi-

tuting this into our equation for Yα,β(x) we get

Yα,β(x) = −α

x
+

1

x
Yα,β(x

2)(1 + x+ x3)

= −α

x
+

1

x
(α + x2Dα,β(x

2))(1 + x+ x3).

Then we solve for Dα,β(x) as follows

xDα,β(x) = −α

x
+

1

x
(α + x2Dα,β(x

2))(1 + x+ x3)

= −α

x
− α + (

α

x
+ xDα,β(x

2))(1 + x+ x3)

= −α

x
− α +

α

x
+ α + αx2 = xDα,β(x

2) + x2Dα,β(x
2) + x4Dα,β(x

2)

= αx2 +Dα,β(x
2)(x+ x2 + x4).

Dividing each side by x we find

Dα,β(x) = αx+Dα,β(x
2)(1 + x+ x3).

Next, we shall substitute this equation into itself repeatedly to obtain the
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following equation after N iterations

Dα,β(x) = αx+ α
N∑

k=0

x2·2k
k∏

j=0

(1 + x2j + x3·2j) +Dα,β(x
2N+1

)
N∏

j=0

(1 + x2j + x3·2j).

Let N → ∞. By the definition of Dα,β(x) we see that for |x| < 1,

Dα,β(x2N+1
) → β as N → ∞. Now we get the following formula

Dα,β(x) = αx+ α
∞∑

k=0

x2·2k
k∏

j=0

(1 + x2j + x3·2j) + β
∞∏

j=0

(1 + x2j + x3·2j).

Thus we obtain the following theorem.

Theorem 3.3.1. For yα,β(n),

Yα,β(x) = α + αx2 + αx
∞∑

k=0

x2·2k
k∏

j=0

(1 + x2j + x3·2j) (3.23)

+ βx
∞∏

j=0

(1 + x2j + x3·2j).

Since Yα,β(x) = αY1,0(x) + βY0,1(x), we can state another combinatorial

implication. First, we have

Y1,0(x) = 1 + x2 + x
∞∑

k=0

x2·2k
k∏

j=0

(1 + x2j + x3·2j) (3.24)

for the case where α = 1, β = 0. We interpret this statement as:

Corollary 3.3.2. Combinatorially, y1,0(n) is the number of ways of writing

n− 1− 2k+1 as the sum
∑k

i=0 ci2
i where k ∈ N, ci ∈ {0, 1, 3}.

Remark. By rearranging, we find that y1,0(n) is also the number of ways of

writing n− 1 as the sum
∑k

i=0 ci2
i, where k ∈ N, ci ∈ {0, 1, 3} for i ≤ k − 1,

and ck ∈ {2, 3, 5}.

Alternatively, since
∑k

i=0 2
i = 2k+1 − 1, we get the following formula

Y1,0(x) = 1 + x2 + x2
∞∑

k=0

k∏

j=0

(x1·2j + x2·2j + x4·2j), (3.25)
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which means that y1,0(n) is the number of ways of writing n − 2 as a finite

sum
∑k

i=0 ci2
i, where ci ∈ {1, 2, 4}.

Let

Yn(x) := x
n∏

k=0

(
1 + x2k + x3·2k

)
, (3.26)

and define

Bn(x) := x2
n∏

k=0

(
1 + x2·2k + x3·2k

)
. (3.27)

Then we know that Yn(x) = Y (x) up to x2n+1
, and Bn(x) = B0,1(x) up to

x2n+2
. Consider

Yn

(
1

x

)
=

1

x

n∏

k=0

(
1 +

1

x2k
+

1

x3·2k

)
.

If we multiply by

x3
n∏

k=0

x3·2k ,

we find

x3·(2n+1−1)+3Yn

(
1

x

)
= x2

n∏

k=0

(
x3·2k + x2·2k + 1

)

= Bn(x).

Thus,

Theorem 3.3.3.

x3·2n+1
Yn

(
1

x

)
= Bn(x).

Theorem 3.3.3 can be used to find a “weak” relationship between y(n)

and b0(m), but first we need the following definition.
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Definition. For an integer N ≥ 1, we say that

∞∑

n=0

a(n)xn ≡
∞∑

n=0

b(n)xn (mod xN)

if a(n) = b(n) for n < N .

Remark. No information is assumed about a(n) and b(n) for n ≥ N .

Now, consider the following generating functions:

V (x) :=
∞∑

n=0

v(n)xn =
∞∏

k=0

(
1 + x2k + x3·2k

)
,

W (x) :=
∞∑

n=0

w(n)xn =
∞∏

k=0

(
1 + x2·2k + x3·2k

)
.

For an integer r ≥ 0, let

Vr(x) =
∞∑

n=0

vr(n)x
n =

r∏

k=0

(
1 + x2k + x3·2k

)
,

Wr(x) =
∞∑

n=0

wr(n)x
n =

r∏

k=0

(
1 + x2·2k + x3·2k

)
.

As in our work towards Theorem 3.3.3, observe that

Wr

(
1

x

)
=

r∏

k=0

(
1 +

1

x2·2k +
1

x3·2k

)

=

(
r∏

k=0

1

x3·2k

)
r∏

k=0

(
x3·2k + x2k + 1

)
,

so that Vr(x) = x3(2r+1−1)Wr(
1
x). We can see that Vr(x) is a polynomial of

degree Mr := 3(2r+1 − 1). So we have

Mr∑

n=0

vr(n)x
n =

Mr∑

n=0

wr(n)x
Mr−n,

hence

vr(n) = wr(Mr − n). (3.28)
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Now we consider V (x) up to xMr . We see that

V (x) = Vr(x)
(
1 + x2r+1

+ x3·2r+1
)(

1 + x2r+2
+ x3·2r+2

)
· · ·

≡ Vr(x)
(
1 + x2r+1

)(
1 + x2r+2

)
(mod xMr)

≡ Vr(x)
(
1 + x2r+1

+ x2r+2
)

(mod xMr).

Since 3 · 2r > Mr, it is also true that

V (x) ≡ Vr(x)
(
1 + x2r+1

+ x2r+2
+ x3·2r+1

+ · · ·
)

(mod xMr).

Thus,

V (x) ≡ Vr(x)

1− x2r+1 (mod xMr),

or equivalently,

(
1− x2r+1

)
V (x) ≡ Vr(x) (mod xMr).

Thus, with the restriction that if n < 0, v(n) = 0, for m < Mr, we have

vr(m) = v(m)− v(m− 2r+1). (3.29)

Similarly, we have

W (x) = Wr(x)
(
1 + x2·2r+1

+ x3·2r+1
)(

1 + x2·2r+2
+ x3·2r+2

)
· · ·

≡ Wr(x)
(
1 + x2·2r+1

)
(mod xMr).

Since 4 · 2r+1 > Mr,

W (x) ≡ Wr(x)
1

1− x2·2r+1 (mod xMr),

or equivalently,

(
1− x2·2r+1

)
W (x) ≡ Wr(x) (mod xMr).
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Thus, with the restriction that if n < 0, w(n) = 0, for m < Mr, we have

wr(m) = w(m)− w(m− 2 · 2r+1). (3.30)

If we now limit ourselves to 0 ≤ n ≤ Mr, by (3.28), (3.29), and (3.30) we

have:

v(n)− v(n− 2r+1) = w(3 · 2r+1 − 3− n)− w(2r+1 − 3− n). (3.31)

Recalling that v(n) = y(n+1) and w(n) = b0(n+2), we substitute these

into (3.31) to find

y(n+ 1)− y(n+ 1− 2r+1) = b0(3 · 2r+1 − 1− n)− b0(2
r+1 − 1− n).

Setting m = n+ 1 we have the following theorem.

Theorem 3.3.4. For m ≤ 3 · 2r+1 − 2,

y(m)− y(m− 2r+1) = b0(3 · 2r+1 −m)− b0(2
r+1 −m), (3.32)

where y(k) = b0(k) = 0 for k < 0.

Remark. There is no m such that both m− 2r+1 > 0 and 2r+1 −m > 0.

Next, consider the generating function

G2,3(x) = x
∞∏

j=0

(1 + x2·2j + x3·2j). (3.33)

We may examine this generating function mod 2.

Theorem 3.3.5. G2,3(x) ≡ x+x3+x4+x5

1−x7 (mod 2).

Proof. We shall show that

x
k∏

j=0

(1 + x2·2j + x3·2j)− x+ x3 + x4 + x5

1− x7
(3.34)

≡ (1 + x2 + x3 + x4)x2k+2+1(1 + x2k+1
)

1− x7
(mod 2).
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For the case k = 0, (3.34) becomes

x(1 + x2·20 + x3·20)− x+ x3 + x4 + x5

1− x7
=

x5 + x8 + x10 + x11

1− x7

=
(1 + x2 + x3 + x4)x5(1 + x2)

1− x7
,

which is what we want.

Now, assuming that (3.34) holds for k, we see that for k + 1 we have

x
k+1∏

j=0

(1 + x2·2j + x3·2j)− x+ x3 + x4 + x5

1− x7

=

(
(1 + x2 + x3 + x4)x2k+2+1(1 + x2k+1

)

1− x7
+

x+ x3 + x4 + x5

1− x7

)
(1 + x2·2k+1

+ x3·2k+1
)

− x+ x3 + x4 + x5

1− x7

=
1 + x2 + x3 + x4

1− x7
·
[(

x2k+2+1
(
1 + x2k+1

)
+ x

)(
1 + x2·2k+1

+ x3·2k+1
)
− x

]

=
1 + x2 + x3 + x4

1− x7
·
[
x2·2k+1+1 + x3·2k+1+1 + x4·2k+1+1 + x5·2k+1+1 + x2·2k+1+1

+ x5·2k+1+1 + x6·2k+1+1 + x3·2k+1+1 + x− x
]
.

Then, considering this equation modulo 2, we remove terms with coefficient

2 to obtain

x
k+1∏

j=0

(1 + x2·2j + x3·2j)− x+ x3 + x4 + x5

1− x7

≡ 1 + x2 + x3 + x4

1− x7
·
(
x4·2k+1+1 + x6·2k+1+1

)
(mod 2)

≡ (1 + x2 + x3 + x4)(x2k+3+1)(1 + x2k+2
)

1− x7
(mod 2).

Thus as k → ∞ we have

x
k∏

j=0

(1 + x2·2j + x3·2j) → x+ x3 + x4 + x5

1− x7
. (3.35)

!
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From Theorem 3.3.5 it is easy to see that if

G2,3(x) =
∞∑

n=0

c2,3(n)xn,

then c2,3(n) is even exactly when n ≡ 0, 2, 6 (mod 7). Note that

c2,3(n) = b0(n+ 1).

Thus we have the following corollary.

Corollary 3.3.6. b0(n) is even precisely when n ≡ 0, 1, 3 (mod 7).

Next, consider Y (x) = G1,3(x) modulo 2.

Theorem 3.3.7. G1,3(x) ≡ x+x2+x3+x5

1−x7 (mod 2).

Proof. We shall show, to be precise, that

x
k∏

j=0

(1 + x2j + x3·2j)− x+ x2 + x3 + x5

1− x7
(3.36)

≡ (1 + x+ x2 + x4)x2k+1+1(1 + x2k+2
)

1− x7
(mod 2).

For the case k = 0, (3.36) becomes

x(1 + x20 + x3·20)− x+ x2 + x3 + x5

1− x7
=

x3 + x4 + x5 + x8 + x9 + x11

1− x7

=
(1 + x+ x2 + x4)x3(1 + x4)

1− x7
,

which is what we want.
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Now, assuming that (3.36) holds for k, we see that for k + 1 we have

x
k+1∏

j=0

(1 + x2j + x3·2j)− x+ x2 + x3 + x5

1− x7

=

(
(1 + x+ x2 + x4)x2k+1+1(1 + x2k+2

)

1− x7
+

x+ x2 + x3 + x5

1− x7

)
(1 + x2k+1

+ x3·2k+1
)

− x+ x2 + x3 + x5

1− x7

=
1 + x+ x2 + x4

1− x7
·
[(

x2k+1+1
(
1 + x2k+2

)
+ x

)(
1 + x2k+1

+ x3·2k+1
)
− x

]

=
1 + x+ x2 + x4

1− x7
·
[
x2k+1+1 + x3·2k+1+1 + x2·2k+1+1 + x4·2k+1+1 + x2·2k+1+1

+ x4·2k+1+1 + x6·2k+1+1 + x3·2k+1+1 + x− x
]
.

Then, considering this equation modulo 2, we remove terms with coefficient

2 to obtain

x
k+1∏

j=0

(1 + x2j + x3·2j)− x+ x2 + x3 + x5

1− x7

≡ 1 + x+ x2 + x4

1− x7
·
(
x2·2k+1+1 + x6·2k+1+1

)
(mod 2)

≡ (1 + x+ x2 + x4)(x2k+2+1)(1 + x2k+3
)

1− x7
(mod 2).

Thus as k → ∞ we have

x
k∏

j=0

(1 + x2j + x3·2j) → x+ x2 + x3 + x5

1− x7
. (3.37)

!

From Theorem 3.3.7 it is easy to see that ifG1,3(x) =
∑∞

n=0 c
1,3(n)xn, then

c1,3(n) is even exactly when n ≡ 0, 4, 6 (mod 7). Recall that y(n) = c1,3(n).

We have the following corollary.

Corollary 3.3.8. y(n) is even precisely when n ≡ 0, 4, 6 (mod 7).

We also observe the following theorem.

Theorem 3.3.9. G1,k−1,k(x) = x
(1−x)(1−xk−1) .
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Proof. Starting with the definition, we know that

G1,k−1,k(x) = x
∞∏

j=0

(
1 + x2j + x(k−1)·2j + xk·2j

)
.

Then, by factoring and simplifying, we find that

G1,k−1,k(x) = x
∞∏

j=0

(
1 + x2j

) ∞∏

i=0

(
1 + x(k−1)·2i

)

= x · 1

1− x
· 1

1− xk−1

=
x

(1− x)(1− xk−1)
.

!

Remark. We can write G1,k−1,k(x) as

G1,k−1,k = x(1 + x+ x2 + · · · )(1 + xk−1 + x2(k−1) + · · · )

= x(1 + x+ · · ·+ xk−2 + 2xk−1 + · · ·+ 2x2k−3 + 3x2k−2 + · · · ).

Thus a1,k−1,k =
⌊

n
k−1

⌋
+ 1.

Corollary 3.3.10. Combinatorially, a1,k−1,k(n) is the number of ways of

writing n− 1 as the sum
∑

i≥0 ci2
i where ci ∈ {0, 1, k − 1, k}.

Remark. Alternatively, if we let ci = ai + (k − 1)bi, with ai, bi ∈ {0, 1}, then
a1,k−1,k(n) is the number of ways of writing n − 1 = r + (k − 1)s, where

r =
∑

i≥0 ai2
i, and s =

∑
i≥0 bi2

i.
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Chapter 4

The General Bow Sequence
Modulo 2

We begin with a few statements about the general bow sequence modulo

2 before proceeding to consider b0(n) and b1(n) in greater detail.

4.1 The Behavior of bα,β(n) Modulo 2

Let Aα,β(m) denote the following expression:

Aα,β(m) = bα,β(m− 1) + bα,β(m) + bα,β(m+ 2). (4.1)

Then we have the following theorem.

Theorem 4.1.1. For m ≥ 2, Aα,β(m) is always even, except that for k ≥ 0,

we have Aα,β(3 · 2k) ≡ α (mod 2).

Proof. For small m and k, we use Table 2.1 to note the following:

Aα,β(2) = bα,β(1) + bα,β(2) + bα,β(4) = 2α + 2β ≡ 0 (mod 2),

Aα,β(3) = bα,β(2) + bα,β(3) + bα,β(5) = α + 2β ≡ α (mod 2).

Then, by applying (2.5) for m ≥ 2, we see that

Aα,β(2m+ 1) = bα,β(2m) + bα,β(2m+ 1) + bα,β(2m+ 3)

≡ 0 (mod 2).

Thus we know that Aα,β(3) ≡ α (mod 2), and Aα,β(2m+1) ≡ 0 (mod 2) for

m ≥ 2.

43



For even terms, by applying the recurrence, we find

Aα,β(2m) = bα,β(2m− 1) + bα,β(2m) + bα,β(2m+ 2)

= bα,β(m− 1) + bα,β(m) + 2bα,β(m+ 1) + bα,β(m+ 2)

≡ Aα,β(m) (mod 2).

Putting these together, we find that for k ≥ 0 and m ≥ 2, Aα,β(3 ·2k) ≡ α

(mod 2), and otherwise Aα,β(m) ≡ 0 (mod 2). !

Remark. Note that this implies that for m ≥ 1,

b0(m− 1) + b0(m) + b0(m+ 2) ≡ 0 (mod 2). (4.2)

We use the following theorem to prove several results about b0(n) and

b1(n).

Theorem 4.1.2. If (xn) ⊆ Z is a sequence of integers, and for all n ≥ 0

xn+3 + xn+1 + xn ≡ 0 (mod 2),

then for all n, xn+7 ≡ xn (mod 2).

Proof. We have xn+3 ≡ xn + xn+1 (mod 2), so

x3 ≡ x0 + x1 (mod 2),

x4 ≡ x1 + x2 (mod 2),

x5 ≡ x2 + x3 ≡ x0 + x1 + x2 (mod 2),

x6 ≡ x3 + x4 ≡ x0 + x2 (mod 2),

x7 ≡ x4 + x5 ≡ x0 + 2x1 + 2x2 ≡ x0 (mod 2),

x8 ≡ x5 + x6 ≡ 2x0 + x1 + 2x2 ≡ x1 (mod 2),

x9 ≡ x6 + x7 ≡ 2x0 + x2 ≡ x2 (mod 2).

So we can see that the lemma holds for small n. Suppose the lemma holds
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for n < k. Similarly, by the induction hypothesis we have

xk ≡ xk−3 + xk−2 (mod 2)

≡ xk−10 + xk−9 (mod 2)

≡ xk−7 (mod 2).

Thus for all n, xn+7 ≡ xn (mod 2). !

4.2 The Behavior of b1(n) and b0(n) Modulo 2

First, define vα,β(n) as follows:

vα,β(n) := (bα,β(7n), bα,β(7n+ 1), bα,β(7n+ 2), ..., bα,β(7n+ 6)) (mod 2).

There is only one possibility for v0,1(n). We have the following theorem.

Theorem 4.2.1. For b0(n) and all n ≥ 0,

v0,1(n) ≡ v(0)(n) := (0, 0, 1, 0, 1, 1, 1) (mod 2). (4.3)

Proof. First, we can see from Table 2.1 that the theorem holds for small n.

Then, by Theorem 4.1.1, for n ≥ 1,

b0(n− 1) + b0(n) + b0(n+ 2) ≡ 0 (mod 2).

So by Theorem 4.1.2, for all n,

v0,1(n) ≡ v(0)(n) := (0, 0, 1, 0, 1, 1, 1) (mod 2).

!

Remark. This theorem also follows immediately from Corollary 3.3.6.

Corollary 4.2.2. For n ≥ 0,

2| gcd(b0(n), b0(n+ 1)) ⇐⇒ 7|n. (4.4)
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Proof. The statement is an immediate consequence of Theorem 4.2.1. !

Next, consider b1(n). By Theorem 4.1.1 we know that unless m = 3 · 2k,

b1(m+ 2) ≡ b1(m− 1) + b1(m) (mod 2),

and for m = 3 · 2k we have

b1(m+ 2) ≡ b1(m− 1) + b1(m) + 1 (mod 2).

Since 3 · 2k ≡ 3, 5, 6 (mod 7), by Theorem 4.1.2 we should have three main

cases for v1,0(n), and possibly three transition cases.

Consider the first 28 cases for v1,0(n) given below:

v1,0(0) ≡ (0, 1, 0, 1, 1, 0, 0) (mod 2),

v1,0(1) ≡ (1, 1, 1, 0, 0, 1, 0) (mod 2),

v1,0(2) ≡ (0, 1, 0, 1, 1, 1, 0) (mod 2),

v1,0(3) ≡ (0, 1, 0, 1, 1, 0, 0) (mod 2),

v1,0(4) ≡ · · · ≡ v1,0(6) ≡ (1, 0, 1, 1, 1, 0, 0) (mod 2),

v1,0(7) ≡ · · · ≡ v1,0(13) ≡ (1, 1, 1, 0, 0, 1, 0) (mod 2),

v1,0(14) ≡ · · · ≡ v1,0(26) ≡ (0, 1, 0, 1, 1, 1, 0) (mod 2),

v1,0(27) ≡ (0, 1, 0, 1, 1, 0, 0) (mod 2).

It appears that v1,0(n) cycles through 4 cases. These cases are listed

below:

v1,0(n) ≡






v(1)(n) := (0, 1, 0, 1, 1, 1, 0)

v(1∗)(n) := (0, 1, 0, 1, 1, 0, 0)

v(2)(n) := (1, 0, 1, 1, 1, 0, 0)

v(3)(n) := (1, 1, 1, 0, 0, 1, 0).

Remark. This would imply that we have the following 4 cases for v1,1(n):

v1,1(n) ≡






v(4)(n) := (0, 1, 1, 1, 0, 0, 1)

v(4∗)(n) := (0, 1, 1, 1, 0, 1, 1)

v(5)(n) := (1, 0, 0, 1, 0, 1, 1)

v(6)(n) := (1, 1, 0, 0, 1, 0, 1).
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By Theorems 4.1.1 and 4.1.2, we know that v1,0(n) = v1,0(n − 1) unless

3 · 2k ∈ {7n− 2, 7n− 1, 7n, · · · , 7n+ 3}. We consider what happens at each

of these transitions.

First, since 3 ·2k ≡ 3 (mod 7) precisely when k ≡ 0 (mod 3), we expect a

transition at v1,0(
3
7(2

3k−1)). For small k, we can see that this is exactly when

case (1) transitions to case (1∗), with case (1∗) occurring at v1,0(
3
7(2

3k − 1)).

In general, suppose v1,0(n− 1) = v(1) = (0, 1, 0, 1, 1, 1, 0), and 3 · 2k = 7n+ 3

for some k. Then, by Theorem 4.1.1 we know that

b1(7n+ 2) + b1(7n+ 3) + 1 ≡ b1(7n+ 5) (mod 2).

Otherwise b1(n− 3) + b1(n− 2) ≡ b1(n) (mod 2). Thus

v1,0(n) = (0, 1, 0, 1, 1, 0, 0) = v(1
∗) and

v1,0(n+ 1) = (1, 0, 1, 1, 1, 0, 0) = v(2).

Then, by Theorems 4.1.1 and 4.1.2, v1,0(m) = v1,0(m− 1) = v(2) until

3 · 2k ∈ {7m− 2, 7m− 1, 7m, · · · , 7m+ 3}.

Similarly, since 3 · 2k ≡ 6 (mod 7) precisely when k ≡ 1 (mod 3), we

expect a transition at v1,0(n), where n = 1
7(3 · 2

3k+1 − 6) + 1 = 3
7(2

3k+1 + 1
3).

For small k, we can see that this is exactly when case (2) transitions to

case (3), with case (3) occurring at v1,0(
3
7(2

3k+1 + 1
3)). In general, suppose

v1,0(n) = v(2) = (1, 0, 1, 1, 1, 0, 0), and 3 · 2k = 7n + 6 for some k. Then, by

Theorem 4.1.1 we know that

b1(7n+ 5) + b1(7n+ 6) + 1 ≡ b1(7n+ 8) (mod 2).

Otherwise b1(n− 3) + b1(n− 2) ≡ b1(n) (mod 2). Thus

v1,0(n+ 1) = (1, 1, 1, 0, 0, 1, 0) = v(3).

Then, by Theorems 4.1.1 and 4.1.2, v1,0(m) = v1,0(m− 1) = v(3) until

3 · 2k ∈ {7m− 2, 7m− 1, 7m, · · · , 7m+ 3}.
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Thirdly, since 3 · 2k ≡ 5 (mod 7) precisely when k ≡ 2 (mod 3), we

expect a transition at v1,0(n), where n = 1
7(3 · 2

3k+2 − 5) + 1 = 3
7(2

3k+2 + 2
3).

For small k, we can see that this is exactly when case (3) transitions to

case (1), with case (1) occurring at v1,0(
3
7(2

3k+2 + 2
3)). In general, suppose

v1,0(n) = v(3) = (1, 1, 1, 0, 0, 1, 0), and 3 · 2k = 7n + 5 for some k. Then, by

Theorem 4.1.1 we know that

b1(7n+ 4) + b1(7n+ 5) + 1 ≡ b1(7n+ 7) (mod 2).

Otherwise b1(n− 3) + b1(n− 2) ≡ b1(n) (mod 2). Thus

v1,0(n+ 1) = (0, 1, 0, 1, 1, 1, 0) = v(1).

Then, by Theorems 4.1.1 and 4.1.2, v1,0(m) = v1,0(m− 1) = v(1) until

3 · 2k ∈ {7m− 2, 7m− 1, 7m, · · · , 7m+ 3}.

We use the following definition to describe the intervals on which cases

(1), (2), and (3) occur more precisely.

Define Jm as follows:

Jm :=

(
3

7
(2m − 1),

3

7
(2m+1 − 1)

]
∩ Z. (4.5)

Then cases (1), (2), and (3) occur on the following intervals:

Theorem 4.2.3. For b1(n) the following are true:

(1). Case (1) occurs on J3r+2 \
{

3
7(2

3r+3 − 1)
}
, for r ≥ 0.

(2). Case (2) occurs on J3r, for r ≥ 1.

(3). Case (3) occurs on J3r+1, for r ≥ 0.

We have also shown that case (1∗) occurs as given below:

Theorem 4.2.4. For b1(n) and r ≥ 0, case (1*) occurs exactly when

n =
3

7

(
23r − 1

)
. (4.6)
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Remark. Thus, the case (1*) occurs for the 7-tuple

(
b1(3(2

3r − 1)), b1(3(2
3r − 1) + 1), · · · , b1(3(23r − 1) + 6)

)
.

Remark. Theorems 4.2.1 and 4.2.3 imply that the following are true for all

n:

(1). bα,β(7n+ 6) ≡ β (mod 2).

(2). bα,β(7n+ 3) + bα,β(7n+ 4) ≡ β (mod 2).

(3). bα,β(7n) + bα,β(7n+ 2) ≡ β (mod 2).

(4). bα,β(7n+ 1) + bα,β(7n+ 2) + bα,β(7n+ 3) ≡ β (mod 2).

Note that exactly three of the seven terms are even for v(k)(n), with

k = 0, 1, · · · , 6.
Theorems 4.2.1 and 4.2.3 imply the following theorem.

Theorem 4.2.5. If at least one of {α, β} is odd, then the set of n for which

bα,β(n) is even has density 3
7 , and the set for which bα,β(n) is odd has density

4
7 .

Definition. Define m to be purely even if b0(m) and b1(m) are both even.

We can show that 1
7 of the terms are purely even. Moreover, we have the

following theorem.

Theorem 4.2.6. Each 7-tuple (7n, 7n+1, ..., 7n+6) contains exactly one

purely even term.

Proof. We know by Theorem 4.2.1 that for all n,

v0,1(n) ≡ (0, 0, 1, 0, 1, 1, 1) (mod 2).

This means that any purely even terms must occur at either 7n, 7n + 1 or

7n+ 3. We also know that for b1(n) we have exactly four cases for v1,0(n):

v1,0(n) ≡






v(1)(n) = (0, 1, 0, 1, 1, 1, 0)

v(1∗)(n) = (0, 1, 0, 1, 1, 0, 0)

v(2)(n) = (1, 0, 1, 1, 1, 0, 0)

v(3)(n) = (1, 1, 1, 0, 0, 1, 0).
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In each of these four cases exactly one of 7n, 7n+ 1 and 7n+ 3 is even.

Thus each 7-tuple (7n, 7n+ 1, ..., 7n+ 6) contains exactly one purely even

term. !

Combining Theorem 4.2.4, Theorem 4.2.3, and Theorem 4.2.6 we state

the result more explicitly in the following remark.

Remark. For n ≥ 0, 7n+ εn is purely even, where

εn =






0, if n ∈ J3r+2 for r ≥ 0

1, if n ∈ J3r for r ≥ 1

3, if n ∈ J3r+1 for r ≥ 0.

50



Chapter 5

Higher Moduli

In Chapter 4 we discussed properties of the general bow sequence modulo

2. In this chapter we will use graph theory to prove several properties of the

general bow sequence modulo 3, and a conjecture will be given for higher

moduli.

5.1 Background

We need some definitions before we can begin. Let G = G(V,E) be a di-

rected graph with vertices V = {v1, v2, · · · , vm} and edges E = {e1, e2, · · · , et},
where ej = (xi, yi) with xi, yi ∈ V . Loops are allowed, but there are no re-

peated edges. The following definitions are taken from [18].

Definition. The out-degree of v ∈ V is the number of edges ej so that xj = v.

The in-degree of v ∈ V is the number of edges ej so that yj = v.

 

 v

v
1

v
2 3

v
4

v
5

v
7

v
6

Figure 5.1: An example of a directed graph, G0
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Definition. We say that G is k-diregular if each vertex has in-degree and

out-degree equal to k.

For example, in Figure 5.1, G0 is a 2-diregular directed graph with vertices

V = {v1, v2, · · · , v7}, and 14 edgesE = {(v1, v2), (v1, v5), (v2, v3), · · · , (v7, v6)}.

Definition. A walk W in G of length n from v to v′ is a sequence of n edges

ej = (xj, yj) so that x1 = v, yj = xj+1 for 1 ≤ j ≤ n− 1 and yn = v′.

Vertices and edges may be repeated in a walk.

Definition. The adjacency matrix of G is defined to be the m ×m matrix

AG = [aij] in which aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise.

Lemma 5.1.1. [14], [18] Let G be a directed graph with adjacency matrix

AG, and write An
G =

[
a(n)ij

]
. Then

[
a(n)ij

]
is the number of walks of length n

in G from vi to vj.

Consider the directed graph, G0, with vertices vk, 1 ≤ k ≤ 7, in Figure

5.1. The adjacency matrix is as follows:

AG0 =





0 1 0 0 1 0 0

0 1 1 0 0 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1

0 0 0 1 1 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0





Since (AG0)
3 is as given below, we know that there is exactly one walk

of length 3 from v1 to v2. We can also see that since all entries are positive,

there is at least one walk of length three between each pair of vertices in G0.

(AG0)
3 =





2 1 1 1 1 1 1

1 2 1 1 1 1 1

1 1 2 1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 1 1

1 1 1 1 1 2 1

1 1 1 1 1 1 2




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Definition. For a fixed d, let Gd be the directed graph whose vertices consist

of triples in Z/dZ:

V d := {{i (mod d), j (mod d), k (mod d)} : gcd(i, j, k, d) = 1} ,

and whose edges consist of

Ed := {((i, j, k), (i+ j, i, j + k)) , ((i, j, k), (i, j + k, j))} .

That is, the edges are defined by a triple and its images by applying the

recursion of the general bow sequence. In particular, if we fix α, β, and d

and define

w(n) = (bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) (mod d), (5.1)

and w(n) is a vertex in V d, then we have edges

(w(n), w(2n)) and (w(n), w(2n+ 1)).

Thus, if Uk is the unit vector (0, · · · , 1, 0, · · · , 0)T , where the 1 is in the

place corresponding to w(k) ∈ V d, then the entries of

(
Gd

)r
Uk

count the number of times each v ∈ V d appears in the set

{w(2rk), w(2rk + 1), · · · , w(2rk + 2r − 1)}.

Theorem 5.1.2. Gd is 2-diregular for d ≥ 2.

Proof. Clearly, all vertices v have out-degree 2 by definition. Consider a

vertex {i, j, k}. Then the preimages are {j, i− j, k− i+ j}, and {i, k, j− k}.
If {j, i − j, k − i + j} ≡ {i, k, j − k} (mod d), then i = j = k = 0. Then,

since gcd(i, j, k, d) = 1, we know that gcd(j, i − j, k − i + j, d) = 1, and

gcd(i, k, j − k, d) = 1. Thus {i, j, k} has in-degree 2 and Gd is 2-diregular.

!

The directed graph G2 is given in Figure 5.2. Since G2 is a relabeling of

the vertices of G0, we can clearly see that G2 is 2-diregular, and has adjacency
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Figure 5.2: The directed graph G2

matrix AG2 = AG0 . Since (AG0)
3 has all positive entries, we can see that for

every vi, vj ∈ V , there is a walk from vi to vj, and a walk from vj to vi.

Definition. [15] We say that G is pedestrian-friendly if there exists r > 0 so

that for every v, v′ ∈ V , there is a walk of length r from v to v′.

Remark. Equivalently, G is pedestrian-friendly if a(r)ij > 0 for 1 ≤ i, j ≤ m.

Thus we can see that G2 is pedestrian-friendly, with r = 3.

Theorem 5.1.3. [14], [15] If G is a pedestrian-friendly k-diregular directed

graph with m vertices, then the number of walks of length n from vi to vj

satisfies

a(n)ij =
1

m
· kn +O (cn) (5.2)

for some c < k.

If we let B = 1
kAG, then we know that the entries of B are either 0 or

1
k . Thus B is a doubly stochastic matrix: a non-negative matrix with row

sums and column sums equal to 1. Since B is also pedestrian-friendly, there

is some r > 0 such that a(r)ij > 0, and the entries of Br are all positive. It

follows from standard results in matrix theory (see [14], [15] pages 9-11, for

example) that b(n)ij = 1
m +O(ρn), for some ρ < 1.
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Figure 5.3: The directed graph G3

By (5.2) and an identical argument to that in [15], it follows that

lim
N→∞

|{k ≤ N : w(k) = v}|
N

=
1

|V d|

for each v ∈ V d. That is, each of the triples of allowed congruence classes is,

asymptotically, equally likely.

We say that G is ergodic if G is a pedestrian-friendly k-diregular directed

graph. We have the following theorem.

Theorem 5.1.4. Gd is ergodic for d = 2, 3.

Proof. We have shown that G2 is a pedestrian-friendly 2-diregular directed

graph; thus G2 is ergodic.
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The graph of G3 is given in Figure 5.3. We know by Theorem 5.1.2 that

G3 is a 2-diregular directed graph. Also, AG3 is a 26× 26 square matrix. By

noting that all entries in (AG3)8, given in Appendix A, are positive, we find

that G3 is pedestrian-friendly, and hence ergodic. !

Conjecture 1. Gd is ergodic for d ≥ 4.

5.2 Distributions Modulo d

We build towards a general conjecture on the density of the sets of terms

equivalent to c modulo d, when gcd(α, β) = 1.

Lemma 5.2.1. For d ≥ 2, the number of triples (i, j, k) (mod d) such that

gcd(i, j, k, d) = 1 is

d3
∏

p|d

(
1− 1

p3

)
. (5.3)

Proof. Write d in the usual prime factorization, p1 < p2 < · · · < pn, and

ei ≥ 1,

d = p1
e1p2

e2 · · · pnen . (5.4)

Let Ar = {(i, j, k) (mod d) : i ≡ j ≡ k ≡ 0 (mod pr)}. Then we want to

find the size of the set

S = Ā1 ∩ Ā2 ∩ · · · ∩ Ān.
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By the inclusion-exclusion principle, the size of S is

|S| = |U| −
n∑

s=1

|As|+
∑

1≤s<t≤n

|As ∩ At| − · · ·+ (−1)n|A1 ∩ A2 ∩ · · · ∩ An|

= d3 −
n∑

s=1

d3

ps3
+

∑

1≤s<t≤n

d3

ps3pt3
− · · ·+ (−1)n

d3

p13p23 · · · pn3

= d3
(
1−

n∑

s=1

1

ps3
+

∑

1≤s<t≤n

1

ps3pt3
− · · ·+ (−1)n

1

p13p23 · · · pn3

)

= d3
∏

p|d

(
1− 1

p3

)
.

!

We have the following conjectures.

Conjecture 2. For all triples (i, j, k) (mod d) such that

gcd(i, j, k) = gcd(α, β), there exists n ≥ 0 such that

{bα,β(n), bα,β(n+ 1), bα,β(n+ 2)} ≡ (i, j, k) (mod d). (5.5)

We have numerical evidence that this conjecture holds true for at least

d ≤ 10 for b0(n) and b1(n). In Appendix B, we have calculated the number

of different congruence classes for triples (bα,β(n), bα,β(n + 1), bα,β(n + 2))

(mod d) with (a, b) = (0, 1) and (1, 0), and their relative frequencies for

d ≤ 10.

By Lemma 5.2.1 we get the following conjectured corollaries.

Conjectured Corollary. For gcd(α, β) = 1, each of the

d3
∏

p|d

(
1− 1

p3

)

cases occur.

Conjectured Corollary. For gcd(α, β) = 1, the following would be true:

(1). The set of n for which bα,β(n) ≡ 0 (mod d) has density

∏
p|d

(
1− 1

p2

)

d
∏

p|d

(
1− 1

p3

) =
1

d

∏

p|d

p2 + p

p2 + p+ 1
.
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(2). The set of n for which bα,β(n) ≡ c (mod d), with gcd(c, d) '= 1 has

density

∏
p|gcd(c,d)

(
1− 1

p2

)

d
∏

p|d

(
1− 1

p3

) .

(3). The set of n for which bα,β(n) ≡ a (mod d), with a '= 1 and

gcd(a, d) = 1, has density

1

d
∏

p|d

(
1− 1

p3

) .

All of the results are given as a fraction of the total number of combina-

tions.

For the first conjectured result, consider the number of combinations

(0, j, k) such that gcd(d, j, k) = 1. Similarly to Lemma 5.2.1, there would be

d2
∏

p|d

(
1− 1

p2

)

combinations of this type. Thus the density of terms equivalent to 0 modulo

d would be

d2
∏

p|d

(
1− 1

p2

)

d3
∏

p|d

(
1− 1

p3

) .

For the second conjectured result, consider the number of combinations

(c, j, k) such that gcd(c, j, k) = 1. Similarly to the argument above, we find

that the number of combinations would be

d2
∏

p|gcd(c,d)

(
1− 1

p2

)
.

For the third conjectured result, since all combinations (a, j, k) would be

accounted for, we find that there would be d2 such combinations, and thus
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the fraction of terms congruent to a would be

d2

d3
∏

p|d

(
1− 1

p3

) .

Remark. We would have the following results when gcd(α, β) = 1, for exam-

ple:

1. The set of n for which bα,β(n) ≡ 0 (mod 2) has density 3
7 , and the set

of n for which bα,β(n) ≡ 1 (mod 2) has density 4
7 , which is exactly what

we have shown in Theorem 4.2.5.

2. The set of n for which bα,β(n) ≡ 0 (mod 3) has density 8
26 and the sets

of n for which bα,β(n) ≡ 1, 2 (mod 3) have density 9
26 in each case. We

proved that this was true in Theorem 5.1.4.

3. The sets of n for which bα,β(n) ≡ 0, 2 (mod 4) have density 12
56 in each

case, and the sets of n for which bα,β(n) ≡ 1, 3 (mod 4) has density 16
56 .

4. The set of n for which bα,β(n) ≡ 0 (mod 5) has density 24
124 , and the

set of n for which bα,β(n) ≡ 1, 2, 3, 4 (mod 5) have density 25
124 in each

case.

5. The set of n for which bα,β(n) ≡ 0 (mod 6) has density 24
182 , the sets

of n for which bα,β(n) ≡ 2, 4 (mod 6) have density 27
182 , the set of n for

which bα,β(n) ≡ 3 (mod 6) has density 32
182 , and the set of n for which

bα,β(n) ≡ 1, 5 (mod 6) has density 36
182 .

These assertions are all true for d = 2 by the results of Chapter 4. Not

only do the sets have the indicated densities, but the difference in cardinality

up to N and the conjectured value is O(1).

Numerical evidence suggests that the remaining statements are true. In

Appendix C, we have calculated the number of terms congruent to a modulo

d for d ≤ 10 and (α, β) = (0, 1), (1, 0), and (1, 1). Columns two through four

correspond to the size of the set

{n : bα,β(n) ≡ a (mod d), 1 ≤ n ≤ 106},

while the last column gives the conjectured density in decimal form.
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Chapter 6

Another Representation of b0(n)

In this chapter, we discuss another representation of b0(n), found inde-

pendently in unpublished work by Paul Barry [3], and referenced in Sloane’s

On-Line Encyclopedia of Integer Sequences [16]. The sequence was defined

by Barry, but was not shown to satisfy the bow recurrence. We show that

b0(n) can be determined by computing this finite sum, which is independent

of the recurrence.

6.1 Preliminaries

Before we give this new equation we must first state a few formulas which

will be necessary in the proof of our theorem. The first is dePolignac’s

formula.

DePolignac’s Formula. [8], [12] For n ≥ 1, the exponent of the highest

power of a prime p dividing n! is

sp(n) :=
∞∑

k=1

⌊
n

pk

⌋
. (6.1)

We will need the following corollary for the proof of the next theorem.

Corollary 6.1.1. For m ≥ 1,

s2(2m+ 1) = s2(2m) = s2(m) +m. (6.2)

Proof. We write (2m+ 1)! = (2m+ 1)(2m)!, thus s2(2m+ 1) = s2(2m).
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Then, pulling the first term out of the sum, we find

s2(2m) =

⌊
2m

2

⌋
+

∞∑

k=2

⌊
2m

2k

⌋

= m+ s2(m).

Thus s2(2m+ 1) = s2(2m) = s2(m) +m. !

Definition. Define ε(m) to be the smallest non-negative residue ofmmodulo

2, thus m ∈ {0, 1}.

Let

c(n) :=

)n
2 *∑

k=0

ε

((
k

n− 2k

))
. (6.3)

The terms of this sequence are 1, 0, 1, 1, 1, 0, 2, 1, 2, · · · We can see that

this looks the same as b0(n+2). In fact, we shall prove that c(n−2) = b0(n).

Let c(n− 2) = a(n). We have the following lemma.

Lemma 6.1.2.

(
2a+ 1

2b+ 1

)
≡

(
2a+ 1

2b

)
≡

(
2a

2b

)
≡

(
a

b

)
(mod 2).

Proof. To show that the first three have the same parity, we note that

(2a+ 1)!

(2b+ 1)!(2a− 2b)!
,

(2a+ 1)!

(2b)!(2a+ 1− 2b)!
, and

(2a)!

(2b)!(2a− 2b)!

share all the same even factors in both their numerator and denominator.

Thus the highest power of 2 dividing
(
2a+1
2b+1

)
,
(
2a+1
2b

)
, and

(
2a
2b

)
is the same,

and they are all congruent modulo 2.

Then, to show that
(
a
b

)
≡

(
2a
2b

)
(mod 2), we notice that if s2(a) = r, then

by Corollary 6.1.1 we know that s2(2a) = r + a. Similarly, if s2(b) = t, then

s2(2b) = t+ b. Lastly, if s2(a− b) = s, then s2(2a− 2b) = s+ (a− b).

The highest power of 2 dividing
(
a
b

)
is r− s− t, and the highest power of

2 dividing
(
2a
2b

)
is r + a− (t+ b)− s− (a− b) = r − s− t. Thus the highest

power of 2 dividing
(
a
b

)
and

(
2a
2b

)
is the same, and they are congruent modulo

2. !
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6.2 A New Formula for b0(n)

We use dePolignac’s Formula, Corollary 6.1.1, and Lemma 6.1.2 to prove

that b0(n) satisfies the following formula.

Theorem 6.2.1. For n ≥ 2, b0(n) can be described by the following formula

b0(n) = a(n) :=
)n/2−1*∑

k=0

ε

((
k

n− 2− 2k

))
. (6.4)

Proof. Clearly b0(2) = 1 = a(2). Defining a(0) = a(1) = 0, we shall show

that the bow recursion holds for a(n).

First we shall show that a(2n+ 1) = a(n), or

)(2n+1)/2−1*∑

k=0

ε

((
k

2n− 1− 2k

))
=

)n/2−1*∑

k=0

ε

((
k

n− 2− 2k

))
. (6.5)

Consider the terms in the left hand side of (6.5)

)(2n+1)/2−1*∑

k=0

ε

((
k

2n− 1− 2k

))
=

n−1∑

k=0

ε

((
k

2n− 1− 2k

))
.

In general, when k is even, the term
(

k
2a+1

)
≡ 0 mod 2. Thus we need only

consider the terms where k is odd. So let k = 2a + 1 and now consider the

sum
)n/2−1*∑

a=0

ε

((
2a+ 1

2n− 1− 2(2a+ 1)

))
.

We know that

)n/2−1*∑

k=0

ε

((
2k + 1

2n− 1− 2(2k + 1)

))
=

)n/2−1*∑

k=0

ε

((
k

n− 2− 2k

))
(6.6)

because the terms are equal, by Lemma 6.1.2 with a = k, and b = n−2−2k.

Thus, the recurrence a(2n+ 1) = a(n) holds.

Second, we must show that a(2n) = a(n) + a(n+ 1) holds, or

n−1∑

k=0

ε

((
k

2n− 2− 2k

))
=

)n/2−1*∑

k=0

ε

((
k

n− 2− 2k

))
(6.7)
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+
)(n+1)/2−1*∑

k=0

ε

((
k

n− 1− 2k

))
.

We shall first consider the right hand side.

By applying Lemma 6.1.2 with a = k and b = n− 2− 2k, we find

)n/2−1*∑

k=0

ε

((
k

n− 2− 2k

))
=

)n/2−1*∑

k=0

ε

((
2k + 1

2n− 4− 4k

))
. (6.8)

Similarly applying Lemma 6.1.2 with a = k and b = n− 1− 2k, we obtain

)(n+1)/2−1*∑

k=0

ε

((
k

n− 1− 2k

))
=

)(n+1)/2−1*∑

k=0

ε

((
2k

2n− 2− 4k

))
. (6.9)

Summing (6.8) and (6.9) together we observe that these are the odd and

even terms of the sum

n−1∑

k=0

ε

((
k

2n− 2− 2k

))
. (6.10)

Therefore (6.7) holds and we have shown that a(2n) = a(n) + a(n+ 1), and

hence b0(n) = a(n). !
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Chapter 7

Directions for Future Research

The discussions so far have suggested several questions that we hope to

study in the future. Specifically, we plan to analyze other non-standard

binary representations and their associated generating functions, as well as

continuing to study the properties of the bow sequences modulo d.

7.1 Non-Standard Binary Representations

We have seen that the bow sequences have interpretations in counting the

numbers of ways integers can be written in non-standard binary representa-

tions, in which the digits are sets other than {0, 1}. I would like to answer

the following question. Given A ⊂ Z, what can we say about the function

which counts the number of ways you can write

n =
k∑

i=0

ci2
i,

for ci ∈ A?

In Chapter 3 we showed that the subsets A0 = {0, 1, 2}, A1 = {0, 2, 3},
A2 = {1, 3, 4}, A3 = {0, 1, 3}, and A4 = {1, 2, 4} correspond to s(n + 1),

b0(n + 2), b1(n + 3), y(n + 1), and y1,0(n + 2), respectively. Additionally,

the sets Ad = {0, 1, · · · , d − 1} have been studied by Euler (d = 2) [6],

and Reznick [13]. I hope to prove many more such relations by considering

generating functions of the form:

Ga1,a2,a3,...,am(x) := x
∞∏

j=0

(1 + xa1·2j + xa2·2j + · · ·+ xam·2j)

:=
∞∑

n=1

ca1,a2,a3,...,am(n)xn.
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7.2 Bow Sequences Modulo d

First, we shall consider pairs modulo d.

Definition 1. For d ≥ 2, define Ad
α,β as follows:

Ad
α,β := {n : d | bα,β(n), d | bα,β(n+ 1)}.

We have the following theorem.

Theorem 7.2.1. For n ≥ 2, n ∈ Ad
α,β ⇐⇒ 2n ∈ Ad

α,β.

Proof. First, suppose n ∈ Ad
α,β. Then by definition we know that d | bα,β(n)

and d | bα,β(n + 1), thus d | bα,β(2n) and d | bα,β(2n + 1) by the recursion.

So, by definition 2n ∈ Ad
α,β.

Suppose 2n ∈ Ad
α,β. Then by definition we know that d | bα,β(2n) and

d | bα,β(2n+1). By the recursion we find that d | bα,β(2n+1) ⇐⇒ d | bα,β(n).
Since bα,β(2n) = bα,β(n) + bα,β(n+ 1) we find that d | bα,β(n) as well. Hence
n ∈ Ad

α,β. !

Question. When is 2n+ 1 ∈ Ad
α,β?

We have seen that pairs frequently share common factors, and we know

by Theorem 2.3.2 that when the pairs (b0(n), b0(n+1)), and (b1(n), b1(n+1))

are taken together, the resulting quadruple does not have a mutual factor.

Consider the quadruple

Jd(n) := (b0(n), b0(n+ 1), b1(n), b1(n+ 1)) (mod d). (7.1)

We have the following conjecture.

Conjecture 3. For d ≥ 2, every congruence class for Jd(n) occurs, except

those where all four terms share a common factor.

We have numerical evidence supporting this conjecture for d ≤ 17 in

Table 7.1. First, we note that the number of congruence classes modulo d

with no mutual factor is

d4
∏

p|d

(
1− 1

p4

)
. (7.2)
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Let A(d,N) be the number of congruence classes taken on by Jd(n) for

1 ≤ n ≤ N . The third column of the table below tells us the conjectured

number of congruence classes, as found by applying equation (7.2).

(d,N) A(d,N) conjectured classes
(2, 100) 15 15
(3, 400) 80 80
(4, 2000) 240 240
(5, 104) 624 624

(6, 2 · 104) 1200 1200
(7, 3 · 104) 2400 2400
(8, 105) 3840 3840
(9, 105) 6480 6480
(10, 106) 9360 9360
(11, 106) 14640 14640
(12, 106) 19200 19200
(13, 106) 28560 28560
(14, 106) 36000 36000
(15, 106) 49920 49920

(16, 2 · 106) 61440 61440
(17, 2 · 106) 83520 83520

Table 7.1: Congruence classes of Jd(n)

Also, as noted in Chapter 5, we have made some progress on other con-

jectures about the properties of the bow sequences modulo d, and we hope

to provide proofs of those conjectures. In the future, we want to look at

sequences in which the recurrence is defined differently for the even and the

odd terms, and we would like to consider the properties of these sequences

modulo d.

7.3 More Formulas for bα,β(2r + k)

We are still working to provide a formula for bα,β(2r + k), but we have an

interesting formula for b0(2r + k).

For the next theorem, we need two new sequences. Define C(n) and D(n)

as follows:
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C(0) = 2, C(1) = 1, C(2) = 2; (7.3)

C(2n+ 1) = D(n)− C(n), for n ≥ 1;

C(2n) = C(2n+ 1) + C(2n+ 3), for n ≥ 2.

D(0) = 3, D(1) = 2, D(2) = 3; (7.4)

D(2n+ 1) = C(n), for n ≥ 1;

D(2n) = D(2n+ 1) +D(2n+ 3), for n ≥ 2.

Theorem 7.3.1. For r ≥ 4 and k < 2r, we can compute b0(2r+k) as follows:

b0(2
r + k) = Fr−4C(k) + Fr−3D(k) (7.5)

Proof. It can be quickly verified that the theorem holds for r = 4, k ≤ 15,

since (7.5) reduces to

b0(2
4 + k) = D(k).

Assume (7.5) holds for r < N , k < 2r. Then for r = N and k < 2N−1,

b0(2
r + 2k) = b0(2

r−1 + k) + b0(2
r−1 + k + 1)

= Fr−5C(k) + Fr−4D(k) + Fr−5C(k + 1) + Fr−4D(k + 1)

= Fr−5D(2k + 1) + Fr−4(C(2k + 1) +D(2k + 1))

+ Fr−5D(2k + 3) + Fr−4(C(2k + 3) +D(2k + 3))

= Fr−5D(2k) + Fr−4(C(2k) +D(2k)).

Then by noting that Fr−5 = Fr−3 − Fr−4, we can reduce this to

b0(2
r + 2k) = Fr−3D(2k) + Fr−4C(2k).
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Similarly, for r = N and k < 2N−1 − 1,

b0(2
r + 2k + 1) = b0(2

r−1 + k)

= Fr−5C(k) + Fr−4D(k)

= Fr−5D(2k + 1) + Fr−4(C(2k + 1) +D(2k + 1)).

Then by noting that Fr−5 = Fr−3 − Fr−4, we can reduce this to

b0(2
r + 2k) = Fr−3D(2k + 1) + Fr−4C(2k + 1).

Thus for r ≥ 4 and k < 2r,

b0(2
r + k) = Fr−4C(k) + Fr−3D(k).

!

We have been working on a similar but more complicated formula for

b1(2r + k) which also involves C(n) and D(n).

We can compute values of the Stern sequence by multiplying matrices.

As in [14], let w(n) be defined by

w(n) :=

(
s(n)

s(n+ 1)

)
. (7.6)

Then for n ≥ 1,

w(2n) =

(
1 0

1 1

)
w(n), and (7.7)

w(2n+ 1) =

(
1 1

0 1

)
w(n). (7.8)
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Also,

(
1 0

1 1

)k

=

(
1 0

k 1

)
, and

(
1 1

0 1

)k

=

(
1 k

0 1

)
.

So, for example, we can find s(3 · 25), s(3 · 25 + 1) as follows:

w(3 · 25) =
(

1 0

1 1

)5

w(3), so

w(3 · 25) =
(

1 0

5 1

)(
2

1

)
=

(
2

11

)
.

We can also compute values of the bow sequence by multiplying matrices.

Although this method does not provide us with a closed form, we are able

to get a reduced form. Let wα,β(n) be defined by

wα,β(n) :=




bα,β(n)

bα,β(n+ 1)

bα,β(n+ 2)



 . (7.9)

Then

wα,β(2n) =




1 1 0

1 0 0

0 1 1



wα,β(n) for n ≥ 2, and (7.10)

wα,β(2n+ 1) =




1 0 0

0 1 1

0 1 0



wα,β(n) for n ≥ 1. (7.11)

We have the following theorems.

Theorem 7.3.2. For r ≥ 1,
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


1 1 0

1 0 0

0 1 1





r

=




Fr+1 Fr 0

Fr Fr−1 0

Fr+1 − 1 Fr 1



.

Proof. With a quick calculation, we find that



1 1 0

1 0 0

0 1 1





2

=




2 1 0

1 1 0

1 1 1



.

Assume this holds true for r < N . Let r = N . Then



1 1 0

1 0 0

0 1 1





N

=




1 1 0

1 0 0

0 1 1





N−1 


1 1 0

1 0 0

0 1 1



 .

By the induction hypothesis,




1 1 0

1 0 0

0 1 1





N

=




FN FN−1 0

FN−1 FN−2 0

FN − 1 FN−1 1








1 1 0

1 0 0

0 1 1





=




FN+1 FN 0

FN FN−1 0

FN+1 − 1 FN 1



 .

!

Example 2. We can use this formula to compute terms of the bow sequence.

For example, we can compute bα,β(3 · 25) by performing the matrix multipli-

cation



bα,β(3 · 25)

bα,β(3 · 25 + 1)

bα,β(3 · 25 + 2)



 =




1 1 0

1 0 0

0 1 1





5 


bα,β(3)

bα,β(4)

bα,β(5)



 .

By Theorem 7.3.2 we can simplify this to



bα,β(3 · 25)

bα,β(3 · 25 + 1)

bα,β(3 · 25 + 2)



 =




8 5 0

5 3 0

7 5 1








α

α + β

β



 =




13α + 5β

8α + 3β

12α + 6β



.

We verify that this is true by Theorem 2.4.1.

Similarly, we have the following theorem.
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Theorem 7.3.3. For r ≥ 1,



1 0 0

0 1 1

0 1 0





r

=




1 0 0

0 Fr+1 Fr

0 Fr Fr−1



.

Proof. With a quick calculation, we find that



1 0 0

0 1 1

0 1 0





2

=




1 0 0

0 2 1

0 1 1



.

Assume this holds true for r < N . Let r = N . Then



1 0 0

0 1 1

0 1 0





N

=




1 0 0

0 1 1

0 1 0





N−1 


1 0 0

0 1 1

0 1 0



 .

By the induction hypothesis,



1 0 0

0 1 1

0 1 0





N

=




1 0 0

0 FN FN−1

0 FN−1 FN−2








1 0 0

0 1 1

0 1 0



 =




1 0 0

0 FN+1 FN

0 FN FN−1



.

!

7.4 Primitive Values

Next we shall consider for specific values of k, which values of n will give

bα,β(n) = k. Recall that Lemmas 2.4.3 and 2.4.4 tell us that for r ≥ 0,

b0(n) = 0 ⇐⇒ n = 2r − 1, and b1(n) = 0 ⇐⇒ n = 0 or n = 3 · 2r − 1.

We can see that this means n = 2 is the only even value for which

b0(n) = 0, and likewise n = 0, 2 are the only even values for which b1(n) = 0.

Definition. Define bα,β(n) = k to be a primitive occurrence of k if n is even.

By the recurrence, bα,β(2j) = k ⇐⇒ bα,β((2j + 1)2r − 1) = k, thus all

other occurrences are for odd n. Define Pα,β(k) to be the set of primitive

occurrences of k.
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From our argument above, P0,1(0) = {2}, and P1,0(0) = {0, 2}. We

determine primitive values by applying the recurrence and examining the

terms. For example, we have the following theorem.

Theorem 7.4.1. P1,0(1) = {4, 8}.

Proof. First, recall that b1(2n) = b1(n) + b1(n + 1). So either b1(n) or

b1(n+ 1) must be zero.

Case 1. b1(n) = 0. Then, by Lemma 2.4.4 we know that n = 0 or

n = 3 · 2r − 1. Since b1(0) does not enter into the recursion, it must be the

case that n = 3 · 2r − 1. By Theorem 2.4.1(5) we know that for r ≥ 0,

b1(3 · 2r) = Fr+1b1(3) + Frb1(4) = Fr+2.

So b1(3 · 2r) = 1 only when r = 0, which means 2 ∈ P1,0(1).

Case 2. b1(n + 1) = 0. Similarly, by Lemma 2.4.4, n = 3 · 2r − 2. By

Theorem 2.4.1(3) we know that for r ≥ 1,

b1(3 · 2r − 2) = Frb1(3) + Fr−1b1(4) + b1(2) = Fr+1.

So b1(3 · 2r − 2) = 1 only when r = 1, which means 4 ∈ P1,0(1). !

In a similar way we can determine Pα,β(k) for many integers k > 0. A

few are listed below.

Theorem 7.4.2. For b0(n) we have the following,

(1). P0,1(0) = {0},

(2). P0,1(1) = {2, 4, 6, 12},

(3). P0,1(2) = {8, 10, 14, 22, 24, 28},

(4). P0,1(3) = {16, 18, 20, 26, 30, 44, 46, 48, 54, 60},

(5). P0,1(4) = {36, 38, 42, 50, 52, 56, 92, 94, 108},

(6). P0,1(5) = {32, 34, 40, 58, 62, 76, 86, 88, 90, 96, 100, 102, 110, 118, 124, 188},

(7). P0,1(6) = {70, 78, 84, 98, 106, 112, 120, 182, 190, 204, 220},
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(8). P0,1(7) = {68, 72, 74, 82, 104, 114, 116, 156, 172, 174, 180, 184, 186, 198, 214,
216, 222, 236, 380},

(9). P0,1(8) = {64, 66, 80, 122, 126, 140, 150, 176, 178, 192, 196, 206, 218, 238, 246,
252, 364, 374, 444},

(10). P0,1(9) = {142, 152, 158, 166, 170, 194, 200, 202, 212, 228, 230, 240, 348, 366,
376, 382, 396, 412, 438},

(11). P0,1(10) = {134, 148, 154, 164, 168, 210, 224, 234, 248, 316, 350, 358, 372, 378,
406, 428, 430, 476, 764}.

Theorem 7.4.3. For b1(n) we have the following,

(1). P1,0(0) = {0, 2},

(2). P1,0(1) = {4, 8},

(3). P1,0(2) = {6, 10, 14, 16, 20},

(4). P1,0(3) = {12, 18, 22, 28, 30, 32, 38, 44},

(5). P1,0(4) = {26, 34, 36, 40, 60, 62, 76},

(6). P1,0(5) = {24, 42, 46, 54, 56, 58, 64, 68, 70, 78, 86, 92, 124},

(7). P1,0(6) = {52, 66, 74, 80, 88, 118, 126, 140, 156},

(8). P1,0(7) = {50, 72, 82, 84, 108, 110, 116, 120, 122, 134, 150, 152, 158, 172, 252}.

Theorem 7.4.4. For b1,1(n) we have the following,

(1). P1,1(0) = {0},

(2). P1,1(1) = {2},

(3). P1,1(2) = {4},

(4). P1,1(3) = {6, 8},

(5). P1,1(4) = {10, 12, 14},

(6). P1,1(5) = {16, 20, 22, 28},

(7). P1,1(6) = {18, 30, 44},
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(8). P1,1(7) = {24, 26, 38, 60}.

Question. For a given pair (α, β), what are the maximum and minimum

values in Pα,β(k)? What is |Pα,β(k)|?

We can determine a bound for the minimum value of bα,β(2n), with n ∈ Ir,

and α, β ≥ 1. In fact, this value increases as r increases and we get the

following result.

Theorem 7.4.5. For 2n ∈ Ir and α, β ≥ 1, min bα,β(2n) → ∞ as r → ∞.

Proof. Consider the minimum even term on the interval Ir,

min
2n∈Ir

bα,β(2n) = min
n∈Ir−1

(bα,β(n) + bα,β(n+ 1))

≥ min
n∈Ir−1

bα,β(n) + 1.

Thus as r increases, min2n∈Ir bα,β(2n) increases, and thus as r → ∞,

min
2n∈Ir

bα,β(2n) → ∞.

!

Corollary 7.4.6. Given k ≥ 0 and α, β ≥ 1, Pα,β(k) is finite.

Theorem 7.4.7. For k ≥ 0, P0,1(k) and P1,0(k) are finite.

Proof. Consider the minimum even term on the interval Ir,

min
2n∈Ir

bα,β(2n) = min
n∈Ir−1

(bα,β(n) + bα,β(n+ 1)).

But by Lemmas 2.4.3 and 2.4.4 we know exactly which terms are 0, and with

the exception of b0(0) = b0(1) = 0, there are never two adjacent zeroes. Thus

at least one of bα,β(n) and bα,β(n+ 1) must be positive. Therefore

min
2n∈Ir

bα,β(2n) ≥ min
n∈Ir−1

{bα,β(n), bα,β(n+ 1)}+ 1.

So as r increases, min2n∈Ir bα,β(2n) increases, and thus as r → ∞,

min
2n∈Ir

bα,β(2n) → ∞.
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Thus for k ≥ 0, P0,1(k) and P1,0(k) are finite. !

Remark. If α, β ≥ 0, with at least one of {α, β} positive, then Pα,β(k) is

finite. However, this is not true when we allow α or β to be negative. In fact,

in Corollary 2.4.2 we showed that b0(9 · 2r) = b1(9 · 2r). So P1,−1(0) contains

all integers of the form 9 · 2r, and is infinite.

Surprisingly, when searching for primitive values, we find that some kinds

of pairs always occur, while other pairs never occur at all. Here is a partial

list of pairs which do not occur for b0(n).

Theorem 7.4.8. For b0(n), the following pairs (b0(n), b0(n+1)) never occur:

(1, 9), (10, 1), (8, 4), (2, 10), (1, 12), (6, 8), (12, 2),

(13, 1), (1, 14), (1, 15), (3, 13), (15, 1), and (16, 1).

We have checked that these pairs never occur by looking at the pairs

(b0(n), b0(n + 1)) for 1 ≤ n ≤ 106 with Mathematica. If n > 106, then the

even-indexed term of (b0(n), b0(n+ 1)) is greater than 16.

We have proved that the following pairs never occur.

Theorem 7.4.9. If a is not a Fibonacci number, then (b0(n), b0(n + 1)) is

never equal to (0, a) or (a, 0).

Proof. We know by Lemma 2.4.3 that b0(2r−1) = 0, and by Theorem 2.3.4,

b0(2r) = Fr. By the recursion b0(2r − 2) = b0(2r−1 − 1) + b0(2r−1). So by

Lemma 2.4.3 and Theorem 2.3.4, b0(2r − 2) = Fr−1 for r ≥ 1. Moreover, by

Lemma 2.4.3, b0(n) = 0 ⇐⇒ n = 2r − 1. Thus we can see that the pairs

(0, a) and (a, 0) always occur for a = Fj, j ≥ 0, but never occur for a '= Fj.

!

We know that some kinds of pairs always occur. Here is a partial list of

pairs that always occur for b0(n).

Theorem 7.4.10. For b0(n), the pairs {b0(n), b0(n + 1)} = {a, b} always

occur for the following values of a and b:

(1). a = Fj, b = Fj, j ≥ 1;
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(2). a = 0, b = Fj, j ≥ 1;

(3). a = Fj, b = 0, j ≥ 1.

Proof. We know by Lemma 2.4.3 that b0(2r−1) = 0, and by Theorem 2.3.4

b0(2r) = Fr. By the recursion b0(2r − 2) = b0(2r−1 − 1) + b0(2r−1). So by

Lemma 2.4.3 and Theorem 2.3.4, b0(2r − 2) = Fr−1 for r ≥ 1. Thus we can

see that the pairs (0, a) and (a, 0) always occur for a = Fj, j ≥ 0.

Given that the pair (Fj, 0) occurs, we have some n for which b0(n) = Fj

and b0(n+ 1) = 0. Thus b0(2n) = Fj and b0(2n+ 1) = Fj by the recurrence.

Thus all pairs (Fj, Fj) also occur, and we have

(b0(2
r − 4), b0(2

r − 3)) = (Fr−2, Fr−2).

!

Remark. Not only do these pairs occur, but they each always occur exactly

once, except for the first case, which occurs exactly twice.

We would like to prove the following conjecture:

Conjecture 4. For n ≥ 0, if b0(n) = b0(n+ 1) then b0(n) = Fr.

The conjecture holds for n even. Let n = 2k, then b0(2k) = b0(2k + 1).

By the recursion,

b0(k) + b0(k + 1) = b0(k).

This is only true when b0(k + 1) = 0. Thus k = 2r by Lemma 2.4.3 and

b0(k) = Fr by Theorem 2.3.4.

In fact, up to 106, the only values of n for which b0(n) = b0(n + 1) have

the form n = 3 · 24 − 11 and 3 · 2r − 4, or n = 7. The conjecture also

appears to be valid for b1(n) up to 106, where n = 2r − 11 and n = 2r − 4,

with the exception of n = 11. On the other hand, for b1,1(n), the only equal

consecutive terms up to 2 · 106 are n = 1, 2.
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Appendix B

We have calculated the number of triples

(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) ≡ (i, j, k) (mod d)

for 4 ≤ d ≤ 10, and (α, β) = (1, 0), and (0, 1). Column two corresponds to

the size of the set

T d
α,β = {n : (bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) ≡ (i, j, k) (mod d), 1 ≤ n ≤ 106},

which has the same size for b0(n) and b1(n). Column two gives the size

|T d
0,1| = |T d

1,0|. Columns three and four give the minimum and maximum

frequency for the congruence classes. Column five gives the expected density

of the congruence classes in decimal form. As we can see from the Table

below, all of the expected congruence classes occur.

d |T d
0,1| b0(n) b1(n) Expected Density

2 7 142857 → 142858 142850 → 142863 0.142857
3 26 38408 → 38504 38397 → 38504 0.038461
4 56 17716 → 17999 17739 → 18014 0.017857
5 124 7931 → 8212 7895 → 8214 0.008064
6 182 5295 → 5677 5329 → 5675 0.005494
7 342 2735 → 3058 2815 → 3035 0.002923
8 448 2007 → 2497 2037 → 2459 0.002232
9 702 1311 → 1524 1343 → 1521 0.001424
10 868 1040 → 1312 1058 → 1275 0.001152

Table B.1: Frequencies of congruence classes of triples modulo d
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Appendix C

We have calculated the number of terms of bα,β(n) congruent to a modulo

d for d ≤ 10 and (α, β) = (0, 1), (1, 0), and (1, 1). Columns two through four

correspond to the size of the sets

{n : bα,β(n) ≡ a (mod d), 1 ≤ n ≤ 106},

while the last column gives the conjectured density in decimal form.

a (mod d) b0(n) b1(n) b1,1(n) conjectured density
0 (mod 2) 428, 572 428, 578 428, 564 0.428571
1 (mod 2) 571, 428 571, 422 571, 436 0.571429
0 (mod 3) 307, 694 307, 616 307, 779 0.307692
1 (mod 3) 346, 135 346, 152 346, 192 0.346154
2 (mod 3) 346, 171 346, 232 346, 029 0.346154
0 (mod 4) 214, 589 214, 564 213, 873 0.214286
1 (mod 4) 285, 856 285, 862 285, 733 0.285714
2 (mod 4) 213, 983 214, 014 214, 691 0.214286
3 (mod 4) 285, 572 285, 560 285, 703 0.285714
0 (mod 5) 193, 804 193, 586 193, 358 0.193548
1 (mod 5) 201, 985 202, 039 201, 335 0.201613
2 (mod 5) 201, 043 201, 149 201, 632 0.201613
3 (mod 5) 201, 025 200, 852 201, 987 0.201613
4 (mod 5) 202, 143 202, 374 201, 688 0.201613
0 (mod 6) 131, 111 131, 214 131, 579 0.131868
1 (mod 6) 197, 165 197, 302 198, 042 0.197802
2 (mod 6) 148, 491 148, 514 148, 835 0.148352
3 (mod 6) 176, 583 176, 402 176, 200 0.175824
4 (mod 6) 148, 970 148, 850 148, 150 0.148352
5 (mod 6) 197, 680 197, 718 197, 194 0.197802

Table C.1: Congruence classes of bα,β(n) modulo d with d ≤ 6
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a (mod d) b0(n) b1(n) b1,1(n) conjectured density
0 (mod 7) 140, 424 140, 326 140, 504 0.140351
1 (mod 7) 142, 844 142, 903 143, 199 0.143275
2 (mod 7) 143, 721 143, 697 143, 373 0.143275
3 (mod 7) 143, 322 142, 993 143, 407 0.143275
4 (mod 7) 142, 940 143, 092 143, 030 0.143275
5 (mod 7) 143, 372 143, 287 143, 071 0.143275
6 (mod 7) 143, 377 143, 702 143, 416 0.143275
0 (mod 8) 106, 866 106, 833 107, 143 0.107143
1 (mod 8) 142, 937 143, 421 142, 909 0.142857
2 (mod 8) 107, 784 107, 709 107, 207 0.107143
3 (mod 8) 142, 648 142, 453 143, 711 0.142857
4 (mod 8) 107, 723 107, 681 106, 730 0.107143
5 (mod 8) 142, 919 142, 441 142, 824 0.142857
6 (mod 8) 106, 199 106, 305 107, 484 0.107143
7 (mod 8) 143, 107 142, 924 141, 992 0.142857
0 (mod 9) 102, 962 102, 865 102, 623 0.102564
1 (mod 9) 115, 681 115, 843 115, 903 0.115385
2 (mod 9) 115, 897 115, 821 115, 718 0.115385
3 (mod 9) 102, 366 102, 614 102, 946 0.102564
4 (mod 9) 115, 380 114, 832 115, 053 0.115385
5 (mod 9) 115, 114 115, 148 114, 923 0.115385
6 (mod 9) 102, 366 102, 137 102, 210 0.102564
7 (mod 9) 115, 074 115, 477 115, 236 0.115385
8 (mod 9) 115, 160 115, 263 115, 388 0.115385
0 (mod 10) 83, 761 83, 690 83, 166 0.082949
1 (mod 10) 115, 577 115, 559 115, 074 0.115207
2 (mod 10) 86, 186 86, 077 86, 378 0.086405
3 (mod 10) 115, 524 115, 498 115, 611 0.115207
4 (mod 10) 86, 716 86, 977 86, 383 0.086405
5 (mod 10) 110, 043 109, 896 110, 192 0.110599
6 (mod 10) 86, 408 86, 480 86, 261 0.086405
7 (mod 10) 114, 857 115, 072 115, 254 0.115207
8 (mod 10) 85, 501 85, 354 86, 376 0.086405
9 (mod 10) 115, 427 115, 397 115, 305 0.115207

Table C.2: Congruence classes of bα,β(n) modulo d with 7 ≤ d ≤ 10
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