
c© 2010 by Nitish John Korula. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4825202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

APPROXIMATION ALGORITHMS FOR
NETWORK DESIGN AND ORIENTEERING

BY

NITISH JOHN KORULA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Associate Professor Chandra Chekuri, Chair
Associate Professor Jeff Erickson
Associate Professor Sariel Har-Peled
Associate Professor Anupam Gupta, Carnegie Mellon University

Abstract

This thesis presents approximation algorithms for some NP-Hard combinatorial optimization prob-

lems on graphs and networks; in particular, we study problems related to Network Design. Under

the widely-believed complexity-theoretic assumption that P 6= NP, there are no efficient (i.e.,

polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient al-

gorithms for such problems, it is necessary to consider approximate solutions: An approximation

algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the

problem, finds a solution whose value is guaranteed to be within a multiplicative factor ρ of the

value of an optimal solution to that instance. We attempt to design algorithms for which this factor

ρ, referred to as the approximation ratio of the algorithm, is as small as possible.

The field of Network Design comprises a large class of problems that deal with constructing

networks of low cost and/or high capacity, routing data through existing networks, and many

related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices

u, v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and

v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or

edges leaves u and v connected. We focus on building networks that are highly connected, meaning

that even if a small number of edges and nodes fail, the remaining nodes will still be able to

communicate. A brief description of some of our results is given below.

We study the problem of building 2-vertex-connected networks that are large and have low

cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k)

approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing

at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the

number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total

ii

cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected

graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the

input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains.

This pruning algorithm is simple and efficient, and is likely to find additional applications.

Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity

problems. We develop an algorithm that, given a graph with some vertices marked as terminals,

significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals;

in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will

be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many

trees that each span a given terminal set, while being disjoint on edges and non-terminal ver-

tices; such problems have applications in VLSI design and other areas. We also use this reduction

algorithm to analyze simple algorithms for single-sink network design problems with high vertex-

connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a

given set of terminals to a common sink. We study similar problems in which different types of

links, of varying capacities and costs, can be used to connect nodes; assuming there are economies

of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth

to simultaneously support flow from each terminal to the common sink along many vertex-disjoint

paths.

We further investigate capacitated network design, where edges may have arbitrary costs and

capacities. Given a connectivity requirement Ruv for each pair of vertices u, v, the goal is to find

a low-cost network which, for each uv, can support a flow of Ruv units of traffic between u and v.

We study several special cases of this problem, giving both algorithmic and hardness results.

In addition to Network Design, we consider certain Traveling Salesperson-like problems, where

the goal is to find short walks that visit many distinct vertices. We give a (2+ε)-approximation for

Orienteering in undirected graphs, achieving the best known approximation ratio, and the first

approximation algorithm for Orienteering in directed graphs. We also give improved algorithms

for Orienteering with time windows, in which vertices must be visited between specified release

times and deadlines, and other related problems. These problems are motivated by applications in

the fields of vehicle routing, delivery and transportation of goods, and robot path planning.

iii

To my parents, for more reasons than I can list.

iv

Acknowledgments

This thesis would not have been possible without the support of many people. Most of all, I would

like to thank my advisor, Chandra Chekuri; I was extremely fortunate that he joined the University

of Illinois at the perfect time. Chandra’s advice and encouragement have been invaluable to me over

the last four years. The door to his office was always open to me, and I rarely left the office without

feeling that I had learned something new or gained an interesting perspective. I am more grateful

than I can express for all that I learned from him about research, teaching and communicating,

and everything else.

Thanks to Jeff Erickson, Sariel Har-Peled and Manoj Prabhakaran for advice, support, and

four years worth of jokes over lunch; I learned an incredible amount from their wonderful classes

and seminars, and from any number of random conversations. Thanks in particular to Sariel for

working with me when I was a beginning graduate student, and for having more confidence in my

abilities than I did myself. Also thanks to Anupam Gupta, for his encouragement and perhaps the

single most valuable comment at my preliminary proposal defense. Two other faculty members

at UIUC I am particularly grateful to are Lenny Pitt and Doug West: I was lucky to be Lenny’s

Teaching Assistant for three semesters, and to have the privilege — and pleasure — of designing

an introductory course with him. His passion for education is both contagious and inspiring. Doug

has been a great mentor to me, and to almost all the graduate students he met; his comments

and suggestions have made me a better writer and speaker. Doug always found time to discuss

problems and conjectures related to my research, and invariably gave me good advice and pointers;

his suggestions helped with algorithms in both Chapters 3 and 4 of this thesis.

I am most grateful to my sister Nisha, who taught me how to read and how to enjoy reading;

she set the stage for what I hope will be a lifetime of learning. Thanks to my whole family for their

love and support, and for encouraging me to pursue everything I was interested in.

v

I have to thank so many of my friends, at UIUC and elsewhere, and for so many reasons: Ditch

and Beep, for being great neighbors and friends. Amit and Nitish, for three years of sharing an

apartment, cooking, and weekly trips to Bombay Grill. Sanketh and Ruchika, for arguments, rants,

quiet conversations and good friendship. Jayabrata and Komal, for laughter and good food (at

least most of the time). Lachu, you kept me sane and happy through some difficult times; thanks

for always being such a big part of my life. Madhu, for teaching me so much about myself and

everything else, and for making me so happy; reading your old emails always makes me smile.

Ranji, your remarkable gift for quiet good friendship made so much of a difference to my four years

at BITS and all the time after.

Life and research at UIUC would have been much less interesting and enjoyable without the

wonderful theory grad students, some of whom I was fortunate enough to collaborate with: Thanks

to Erin, Dan Cranston, Kevin, and Mike for being good friends and great mentors. And thanks to

Maji, Ben, Sungjin, Alina, Amir, Kyle, Dan Schreiber, and Nirman, for making the last few years

as much fun as the first.

I would like to thank Prof. Sundar S Balasubramaniam of BITS, Pilani, for introducing me to

the beautiful world of algorithms, and supervising my first research projects. I had two productive

and fascinating internships with the Market Algorithms research group at Google; thanks to Martin,

Jon, Vahab, Muthu, Cliff and Monika for the great experience. I am grateful to Nikhil Bansal and

Viswanath Nagarajan for inviting me to visit IBM Research, and for the successful collaborations

that followed; I also thank Sanjeev Khanna and Deeparnab Chakrabarty for the collaborations

on Capacitated Network Design that led to Chapter 6 of this thesis. Finally, I am grateful for

financial support from Chandra Chekuri’s NSF Grant CCF 07-28782 and a Dissertation Completion

Fellowship awarded by the University of Illinois Graduate College.

vi

Table of Contents

List of Tables . x

List of Figures . xi

List of Symbols . xii

Chapter 1 Introduction . 1
1.1 Connectivity and Network Design . 2
1.2 Preliminaries: Approximation Algorithms . 5

1.2.1 Optimization Problems and Approximation Algorithms 7
1.3 Thesis Contributions and Organization . 9

1.3.1 Orienteering and Related Problems . 10
1.3.2 Constructing and Pruning 2-Connected Graphs 12
1.3.3 A Graph Reduction Step Preserving Element-Connectivity 13
1.3.4 Single Sink Network Design with Vertex-Connectivity Requirements 14
1.3.5 Capacitated Network Design . 16

Chapter 2 The Orienteering Problem . 18
2.1 Introduction . 18

2.1.1 Related Work . 24
2.2 Preliminaries and Notation . 26

2.2.1 From k-Stroll to Orienteering, via Min-Excess: 28
2.3 A (2 + ε)-Approximation for Undirected Orienteering 32

2.3.1 From k-Stroll to Min-Excess . 33
2.3.2 The Proof of Theorem 2.12 . 34

2.4 Orienteering in Directed Graphs . 42
2.5 Orienteering with Time Windows . 47

2.5.1 The General Framework . 48
2.5.2 The Algorithms . 51
2.5.3 Towards a Better Approximation, and Arbitrary Endpoints 54

2.6 Concluding Remarks . 56

Chapter 3 Finding 2-Connected Subgraphs of a Prescribed Size 59
3.1 Introduction . 59

3.1.1 Overview of Technical Ideas . 63
3.2 An O(log `)-Approximation for the Dens-2VC Problem 65
3.3 Finding Low-Density Non-Trivial Cycles . 67

vii

3.3.1 An Algorithm to Find Cycles of Average Density 68
3.3.2 A Strongly Polynomial-Time Algorithm to Find Cycles of Average Density . 71

3.4 Pruning 2-Connected Graphs of Good Density . 75
3.5 The Algorithms for the k-2VC and Budget-2VC Problems 84
3.6 Concluding Remarks . 87

Chapter 4 Element-Connectivity and Packing Disjoint Steiner Trees and Forests 88
4.1 Introduction . 88

4.1.1 A Graph Reduction Step Preserving Element-Connectivity 91
4.1.2 Overview of Results and Technical Ideas . 92
4.1.3 Related Work . 94

4.2 The Reduction Lemma . 96
4.3 Packing Steiner Trees and Forests in General Graphs 99
4.4 Packing Steiner Trees and Forests in Planar Graphs 105

4.4.1 The Proof of Lemma 4.10 . 107
4.4.2 Packing Steiner Forests in Planar Graphs . 110

4.5 Packing Trees in Graphs of Bounded Treewidth . 114
4.6 Concluding Remarks . 118

Chapter 5 Single-Sink Network Design with Vertex-Connectivity Requirements 120
5.1 Introduction . 120

5.1.1 Related Work . 122
5.1.2 Overview of Results and Algorithmic Techniques: 125

5.2 Connectivity . 129
5.2.1 An Element-Connectivity Based Proof of Lemma 5.2 131
5.2.2 An LP-Based Bound on Augmentation Costs 136

5.3 Rent-or-Buy . 146
5.3.1 The Augmentation Cost . 150
5.3.2 The Proof of Lemma 5.24 . 152
5.3.3 The Proof of Lemma 5.23 . 158

5.4 Buy-at-Bulk Network Design . 164
5.4.1 Non-Uniform Buy-at-Bulk . 170

5.5 Concluding Remarks . 175

Chapter 6 Capacitated Network Design . 177
6.1 Introduction . 177

6.1.1 Overview of Results . 179
6.1.2 Related Work . 182

6.2 The Cap-R-Connected Subgraph problem . 184
6.2.1 The Standard LP Relaxation and Knapsack-Cover Inequalities 185
6.2.2 The Rounding and Analysis . 188
6.2.3 Capacitated-SNDP with Nearly Uniform Requirements 190
6.2.4 The k-Way–R-Connected Subgraph Problem 190

6.3 Hardness of Approximation for Capacitated-SNDP 193
6.3.1 Integrality Gap with KC Inequalities . 193
6.3.2 Hardness of Approximation for Capacitated-SNDP in Undirected Graphs . 194
6.3.3 Hardness of Approximation in Directed Graphs 195

6.4 Capacitated-SNDP with Multiple Copies of Edges 199

viii

6.4.1 An O(log k)-Approximation . 199
6.4.2 An O(logRmax)-Approximation . 206

6.5 Concluding Remarks . 208

Chapter 7 Conclusions . 210

References . 213

ix

List of Tables

2.1 The best currrently known polynomial-time approximation ratios for Orienteering
and Orient-TW. 22

x

List of Figures

2.1 A breakdown of a path P into Type-1 and Type-2 intervals. 29
2.2 A Tree T with a path-like piece C of degree 2. 37
2.3 Two consecutive segments. 39
2.4 The partitioning of 2 intervals into sub-intervals. 52
2.5 All time-windows start at an integer and have length at most 1. 53

3.1 An earring of G, with its clasps. 72
3.2 The various cases of Theorem 3.12 are illustrated in the order presented. 73
3.3 A part of the Tree TY corresponding to Y , a large cluster of type i. 82

4.1 The vertex tri-partitions (S,M, T) and (X,N, Y), with possible locations of the
terminals s, t, x, y. 98

4.2 On the left, the graph H4. On the right, inserting it along a single edge pq. 103
4.3 The construction of G3. 104
4.4 Terminals lose at least as much charge under the new rules. 109
4.5 Replacing a terminal by a grid of white vertices. 112
4.6 A graph of treewidth 4 with many terminals, but no “parallel edges”. 118

5.1 An example which shows that there may not be a ball of radius Ω(α) that is centered
at terminal t and is disjoint from other terminals. 138

5.2 An instance of SS-2-Buy-at-Bulk which shows that it is necessary to balance
aggregated flow. 169

6.1 An example with integrality gap Ω(n) for the strengthened LP. 193

xi

List of Symbols

G(V,E) A graph G, with vertex set V and edge set E.

n,m Typically the number of vertices and edges in a graph, respectively. That is, given a
graph G(V,E), we use n to denote |V | and m to denote |E|.

OPT The value of an optimal solution to the problem instance being considered.

λG(u, v) The edge-connectivity between vertices u and v in a given graph G.

κG(u, v) The vertex-connectivity between vertices u and v in a given graph G.

κ′G(u, v) The element-connectivity between two terminal vertices u and v in a given graph G.

xii

Chapter 1

Introduction

This thesis describes approximation algorithms for certain NP-Hard combinatorial optimization

problems on graphs and networks. In an optimization problem, the goal is to find a best (or

optimal) solution from a set of feasible solutions to the problem; for instance, one may wish to

find a solution of minimum cost or maximum profit. In discrete or combinatorial optimization

problems, the set of potential solutions is finite; however, the set may be of exponential size or

larger, and it is impractical and inefficient to examine each solution in turn in order to find the

best. Thus, there is a need for efficient methods or algorithms to solve such problems.

An optimization problem is in the complexity class P (for polynomial time) if there is an

algorithm to solve it (i.e., find an optimal solution) whose running time grows polynomially with

the size of the input.1 It is generally accepted that the class P corresponds to the set of problems

that can be effectively solved in practice [70, 74]; among the great successes of theoretical computer

science have been finding polynomial-time algorithms for problems such as solving linear programs,

primality testing, and computing shortest paths, maximum matchings, and minimum-cost flows in

graphs.

Many natural problems, however, are not known to be in P; in this thesis, we consider problems

in the class NP, which contains P. Informally, an optimization problem is in NP if there is a

non-deterministic algorithm to solve it whose running time grows polynomially with the input

size.2 Some of the most difficult problems in NP arise in a variety of contexts and have numerous

applications. It is widely believed that P 6= NP; if this is true, there are no efficient algorithms to

find optimal solutions to such NP-Hard problems. This gives rise to an extremely interesting set of
1Typically, the set of feasible solutions is represented implicitly ; as the set of solutions may be exponentially large,

an algorithm that examines each possible solution may not run in polynomial time. See Section 1.2.1 for a more
formal definition of the complexity class PO of optimization problems.

2See Section 1.2.1 for a precise definition of NP-Optimization problems.

1

questions: Given the fundamental nature and wide range of applications of these problems, solving

them is of both significant theoretical and practical interest. However, assuming P 6= NP, there

are no polynomial-time algorithms that are guaranteed to find optimal solutions to all instances of

these problem.

To solve such problems, then, we must either use algorithms with super-polynomial running

times, or relax the requirement that we always find optimal solutions. Both approaches have been

studied extensively and have had numerous successes. For some problems, algorithms that have

exponential running time can be used to solve instances that are not too large. More often, though,

there is a need for efficient algorithms, even if they are not guaranteed to find optimal solutions.

In practice, heuristic algorithms are frequently used; these algorithms commonly have low running

times, and perform well on many inputs/instances. They may not be entirely satisfactory from

a theoretical perspective, though, as there are rarely formal guarantees on their performance,

and there may be instances on which their performance is very poor. In this thesis, we design

approximation algorithms, which are polynomial-time algorithms guaranteed to return solutions

that are “close” to optimal; we elaborate on this in Section 1.2.

In Section 1.1 below, we describe some of the motivating applications and background for

problems considered in this thesis, and in Section 1.2, we review some basic definitions related to

approximation algorithms. Finally, we describe the contributions and organization of this thesis in

Section 1.3.

1.1 Connectivity and Network Design

This thesis focuses on Network Design and related problems in graphs.3 Graphs naturally model a

large number of systems/environments, with weight functions on edges encoding distances, costs,

capacities, or other relevant parameters. In particular, for Network Design problems, vertices often

represent nodes in a computer or communications network, with edges representing existing or

potential links between these nodes. A common goal of problems in this class is to find a small/low-

cost set of edges that satisfies a certain connectivity or other structural requirement. For example,
3See [153] for a summary of basic graph theory and associated terminology. We consider problems on both directed

and undirected graphs, though the latter are our primary focus in this thesis.

2

the well-known Minimum Spanning Tree problem asks one to find a minimum-cost set of edges

that connects all vertices of a given graph. More generally, Network Design encompasses a large

class of problems that deal with building low-cost networks, routing data or traffic through existing

networks, and other related questions.

Connectivity and Network Design problems play an important role in combinatorial optimiza-

tion and algorithms both for their theoretical appeal and their usefulness in real-world applications.

Many of these problems, such as the well-known Steiner Tree problem, are NP-hard and there

has been a large and rich literature on approximation algorithms to solve them. A number of

elegant and powerful techniques and results have been developed over the years (see [73, 152]). In

particular, the primal-dual method [3, 92] and iterated rounding [109] have led to some remarkable

results.

In most of the Network Design problems considered in this thesis, the goal is to construct

networks that are fault-tolerant, or have some redundancy. Both edges and nodes of a network can

fail, and this is not uncommon; on several occasions in recent years, accidental cuts of undersea

cables due to earthquakes and damage from ships led to significant loss of Internet connectivity in

the Middle East, India, and East Asia. Power outages are another common cause of the failure

of network components. More mundane considerations, such as high latency due to congestion,

may also make an edge or node effectively unusable for a short time. Thus, it is desirable to build

networks which allow users to communicate even in the presence of edge or vertex failures. This

goal can sometimes be achieved by duplicating large parts of the network, but such a solution may

incur significant expense; instead, we give efficient algorithms to design low-cost networks with the

desired robustness.

Two vertices of a graph are said to be k-edge-connected if the failure of any k − 1 edges leaves

them still connected, and k-vertex-connected if the failure of any k − 1 other vertices or edges

leaves them connected.4 Note that if two vertices are k-vertex-connected, they must also be k-

edge-connected. It is easier to design networks that tolerate only edge-failures; there has been

much work [90, 91, 154, 109] on such problems, which are now well understood. In this thesis, we

explore two directions where fewer results were previously known: First, we construct networks
4As is standard in the literature, we use k-connected to mean k-vertex-connected. Where there is any possible

ambiguity, however, we explicitly use k-vertex-connected.

3

resilient to both edge and vertex failures, and second, we consider problems where edges may have

widely differing capacities, measuring (for instance) the amount of network traffic the edges can

support. We discuss these directions in turn below.

Problems requiring the construction of graphs with high vertex-connectivity (that is, resilient

to vertex failures) are typically more difficult than their edge-connectivity counterparts, as vertex-

connectivity exhibits less structure than edge-connectivity. Algorithmic techniques that are suc-

cessful for edge-connectivity problems often do not apply to their vertex-connectivity variants, and

until recently, few results were known for vertex-connectivity problems. To help bridge the gap

between edge- and vertex-connectivity, Jain et al. [111] introduced the intermediate notion of el-

ement connectivity. Given a graph G(V,E) with the vertex set partitioned into a set of terminals

T ⊆ V and non-terminals V \T , the element-connectivity between a pair of terminals u, v is defined

to be the minimum number of edges or non-terminal vertices that must be deleted to separate u

from v. (An element is an edge or a non-terminal vertex. Thus, the element-connectivity between

terminals u and v could be equivalently defined as the maximum number of element-disjoint paths

between u and v.) That is, to determine the edge-connectivity of a pair of terminals, one is only

allowed to delete edges, and to determine the vertex connectivity, one can delete edges or ver-

tices. To determine the intermediate element-connectivity, one can delete edges or non-terminal

vertices. Following the work of Chuzhoy and Khanna [68, 69], and the concurrent work described

in Chapters 4 and 5 of this thesis, it was realized that understanding element-connectivity was

extremely useful in solving vertex-connectivity problems; this has led to many new algorithms for

constructing networks with high vertex-connectivity.

In the construction of real networks, one may often have available equipment with different

discrete capacities. In addition to connecting nodes, one may wish to allow a large amount of

traffic between them. Thus, when building a link between two nodes, one must decide how much

bandwidth it should provide; high-capacity optical fiber links are more expensive than low-capacity

cables, but there are often economies of scale. Network designers typically wish to build low-cost

networks that can route the desired amount of traffic between various pairs of nodes. There are two

classes of capacitated network design problems commonly studied in the literature: In both cases,

it is assumed that for each pair of nodes u, v, a traffic requirement Ruv is specified. In the first class

4

of multi-commodity flow -type problems, the goal is to create a network that can simultaneously

send Ruv units of traffic between every pair of nodes u, v. In the second class of problems, related

to the connectivity questions described above, the goal is to construct a network such that, for any

pair of vertices u, v, the network can send Ruv units of traffic between u and v. We extend our

results of Chapter 5 to provide the first approximation algorithms for certain fault-tolerant multi-

commodity flow problems, assuming the cost of constructing high-capacity links exhibits economies

of scale5. In Chapter 6, we consider the second class of problems, with no assumptions on costs

and capacities. We give both algorithms and hardness results for various special cases, yielding

new insights into the approximability of these problems.

Besides the Network Design problems discussed above, we consider certain path planning/vehicle

routing problems related to the well-known Traveling Salesperson Problem (TSP). Here, the vertices

of a graph represent locations in a (usually metric) space, with the length of an edge representing

the distance between its endpoints, or the time it takes to travel between them; we typically wish to

find a short path/tour for a vehicle that visits many locations. Though the motivating applications

are different from those of the Network Design problems we consider, there are several underlying

similarities between the problems: Finding a low-cost set of edges that connects many vertices and

forms a path resembles finding a low-cost network connecting many vertices, and there are many

algorithmic techniques and ideas common to both sets of problems. We discuss this connection

futher in Chapter 3.

1.2 Preliminaries: Approximation Algorithms

An approximation algorithm for an optimization problem may not return an optimal solution,

but is guaranteed to return a feasible solution that is near-optimal; we measure the quality of

an approximation algorithm A by the (worst-case) ratio between the value of an optimal solution

and that of the solution returned by A.6 For a minimization problem, we say that algorithm

A is a ρ-approximation algorithm if, for any instance of the problem, the value of the solution
5More precisely, assuming the cost vs. capacity function is concave/sub-additive.
6For all problems considered in this thesis, the objective value of any feasible solution is non-negative; hence, this

ratio is always positive.

5

returned by A is at most ρ times the value of an optimal solution to that instance. Similarly, for a

maximization problem, algorithm A is said to be a ρ-approximation algorithm if, for any instance,

A returns a solution of value at least 1/α times that of an optimal solution. A ρ-approximation

algorithm is said to have approximation ratio ρ. Note that an optimal algorithm for a problem has

approximation ratio equal to 1; any algorithm that does not always return optimal solutions has

approximation ratio greater than 1. See Section 1.2.1 for more precise definitions of optimization

problems, approximation ratios, etc. Throughout this thesis, we use OPT to denote the value of

an optimal solution to the given problem instance.

Some optimization problems, such as Knapsack, have Fully Polynomial Time Approximation

Schemes (polynomial-time algorithms with approximation ratio 1 + ε, for any ε > 0); by contrast,

unless P = NP, the Max-Clique problem cannot be approximated within a ratio of |V |1−ε, for

any ε > 0. In between these two extremes – the one problem very easy to solve, both theoretically

and practically, and the other essentially inapproximable – lies a vast landscape of optimization

problems. The problems we study in this thesis similarly exhibit varying degrees of approximabil-

ity: some admit algorithms of small constant approximation ratios, while others are inapproximable

to within poly-logarithmic or higher factors. A rich and extensive mathematical theory has been

developed to understand and classify such optimization problems, to devise approximation algo-

rithms and prove intractability. For an overview of the field of approximation algorithms, see the

recent books [152, 73, 18].

In addition to their theoretical interest, approximation algorithms have immense practical ap-

plicability. Though a constant-factor (or logarithmic, or even worse) approximation ratio may

seem of limited use, this ratio is only a worst-case guarantee. Often, we merely prove weak upper

bounds on an approximation ratio, and the actual performance of the algorithm may be consid-

erably better than this ratio. Even when the bound is tight, this may be due to contrived or

pathological examples that are unlikely to arise in real applications. In practice, these approxi-

mation algorithms may produce solutions within a few percentage points of the optimal solution.

Perhaps more importantly, though, approximation algorithms frequently provide significant insight

into the combinatorial structure of a problem, or a class of problems; this insight helps one design

algorithms and heuristics tuned to specific applications.

6

1.2.1 Optimization Problems and Approximation Algorithms

An optimization problem Π is formally defined by a quadruple (IΠ,SΠ,mΠ, goalΠ) such that:

• IΠ is the (usually infinite) set of instances of problem Π.

• SΠ is a function that, for each instance I ∈ IΠ, defines a set of feasible solutions SΠ(I) for I.

• mΠ is an objective/measure function that for each instance I ∈ IΠ and for each feasible

solution S ∈ SΠ(I), defines the (non-negative) value mΠ(I, S) of this solution.

• goalΠ is either min or max, specifying whether the problem Π is a minimization or a maxi-

mization problem.

An optimization problem Π is said to be an NPO (for NP Optimization) problem if it satisfies

the following conditions:

• For any instance I and any feasible solution S ∈ SΠ(I), the solution S is polynomially

bounded in the size of I. That is, there exists a polynomial p such that |S| ≤ p(|I|). (Here,

|I|, |S| denote the lengths of descriptions of I and S respectively.)

• There is a polynomial-time algorithm to determine if S ∈ SΠ(I). That is, there exists a

polynomial-time computable boolean function f such that f(I, S) is true if S ∈ SΠ(I) and

false otherwise.

• The measure function mΠ is computable in polynomial time.

An algorithm to (exactly) solve a minimization (respectively, maximization) problem Π is one

that, for any instance I ∈ IΠ, returns a solution S ∈ SΠ(I) minimizing (respectively, maximizing)

the value mΠ(I, S). (That is, for any S′ ∈ SΠ(I), we have mΠ(I, S) ≤ mΠ(I, S′) for a minimization

problem, and mΠ(I, S) ≥ mΠ(I, S′) for a maximization problem.) We use OPT(I) to denote such

an optimal solution S. An algorithm A is said to be a polynomial-time algorithm for a problem Π

if there exists a constant c > 0 such that, for any instance I ∈ IΠ, A runs in time O(|I|c), where

|I| denotes the size of the representation of I.

7

A problem Π ∈ NPO is in the class PO if there is a polynomial-time algorithm to solve it

exactly.

For any optimization problem Π, an algorithm A is a polynomial-time approximation algorithm

for Π if it is a polynomial-time algorithm that, for any instance I ∈ IΠ, returns a solution S ∈ SΠ(I)

which is “close” to the optimal solution OPT(I) in SΠ(I). We say that an algorithm A for a

minimization problem Π has approximation ratio (at most) ρ if, for any instance I ∈ IΠ, A returns

a solution S ∈ SΠ(I) such that for any other feasible solution S′, we have mΠ(I, S) ≤ ρ ·mΠ(I, S′).

Equivalently, A returns a solution S such that mΠ(I, S) ≤ ρ ·mΠ(OPT(I). Similarly, algorithm

A for a maximization problem Π has approximation ratio (at most) ρ if, for any instance I ∈ IΠ,

A returns a solution S ∈ SΠ(I) such that for any other feasible solution S′, we have mΠ(I, S) ≥
1
ρ ·mΠ(I, S′). An algorithm with approximation ratio ρ is said to be a ρ-approximation algorithm.

Hardness of Approximation

Informally, an NPO problem Π is said to be ρ-hard to approximate if, under a suitable complexity-

theoretic assumption (typically, assuming P 6= NP), there is no polynomial-time approximation

algorithm with approximation ratio at most ρ. A seminal such result is that of Arora et al.

[16], which proved constant-factor hardness of approximation for the Max-3-SAT problem. In

particular, [16] showed that it is NP-Hard to distinguish between instances of Max-3-SAT for

which there exists an assignment satisfying all clauses, and instances for which no assignment

satisfies more then δ fraction of the clauses, for some constant δ < 1. Many remarkable results on

hardness of approximation followed this line of work.

Typically, a problem is shown to be hard to approximate in one of two ways, briefly described

below.

1. Using a reduction from an NP-Complete problem: For a minimization problem Π, suppose

there exists an NP-Complete decision problem D, a polynomial-time computable function f

mapping instances of D to instances of Π, and two constants c1 and c2 > c1 such that the

following conditions hold.

• The function f maps any YES instances of D to an instance of Π with optimal value at

most c1.

8

• The function f maps NO instances of D to instances of Π with optimal value at least

c2.

Then, it follows that unless P = NP, there is no approximation algorithm for Π with ap-

proximation ratio better than c2/c1. (If there were such an algorithm for Π, one could use it

with the function f to obtain a polyomial-time algorithm to solve the NP-Complete problem

D.) Note that if c1 and c2 are functions of the input size instead of constants, one can obtain

a non-constant hardness of approximation for Π.

2. Using an approximation-preserving reduction from an NPO problem that is known to be

hard to approximate: For example, suppose there exist two NPO minimization problems Π

and Π′, polynomial-time computable functions f and g, and two constants c1, c2 such that

the following conditions hold.

• The function f maps each instance I ∈ IΠ to an instance I ′ ∈ IΠ′ , and for each instance

I ∈ IΠ, OPT(f(I)) ≤ c1OPT(I).

• For each instance I ′ ∈ IΠ′ such that I ′ = f(I) for some I ∈ IΠ, the function g maps

each feasible solution in SΠ′(I ′) to a feasible solution in SΠ(I). Further, for each solution

S′ ∈ SΠ′(I ′), we have mΠ(g(S′))−mΠ(OPT(I)) ≤ c2 [mΠ′(S′)−mΠ′(OPT(I ′))].

Then, it follows that if there is no polynomial-time ρ-approximation algorithm for Π, there

is no polynomial-time
(

1 + ρ−1
c1·c2

)
-approximation algorithm for Π′. (If there were such an

algorithm for Π′, one could use it with the functions f and g to obtain a polynomial-time ρ-

approximation for Π.) A reduction as described above is known as an L-reduction; one can use

this or other approximation-preserving reductions for both minimization and maximization

problems to prove a desired hardness of approximation result.

See [12, 103, 18] for definitions, several inapproximability results and discussion of related work.

1.3 Thesis Contributions and Organization

As described above, this thesis focuses on Network Design problems and on certain related TSP-

like vehicle routing problems. In particular, we deal with constructing fault-tolerant networks; we

9

also consider issues pertinent to practical networks such as budget constraints, links of differing

capacities, etc.

In Chapter 2, we consider Orienteering and related problems, where the goal is to find short

paths that visit many locations in a given metric space; there are obvious applications to various

vehicle routing and delivery problems, robot path planning, etc. In Chapter 3, we begin our study

of fault-tolerant network design, giving algorithms to design large, low-cost, 2-connected graphs

(that is, graphs that allow communication even after the failure of a single edge or vertex). Going

beyond 2-connectivity (that is, allowing more failures) requires several new technical ideas; among

these is the concept of element-connectivity [79].7 In Chapter 4, we give an algorithm to drastically

simplify graphs while preserving the element-connectivity between pairs of terminal vertices. We

demonstrate the usefulness of this algorithm by showing how to find many element-disjoint trees in

a graph; each such tree can route traffic between its terminal vertices, and hence even if some trees

fail, the terminals can communicate through the remaining trees. In Chapter 5, we give a simple

and efficient algorithm to k-vertex-connect terminals to a common root vertex, meaning that the

deletion of any k − 1 vertices or edges still leaves the remaining terminals connected to the root.

We also describe how the algorithm can be generalized to construct a low-cost network that can

simultaneously support a fault-tolerant flow of traffic from each terminal to the root. Finally, in

Chapter 6, we consider more general Capacitated Network Design problems.

Though there are several ideas and techniques common to many of the problems we consider,

the chapters are largely self-contained, and so can, for the most part, be read in any order. The

reader may wish to read the Reduction Lemma of Chapter 4 (in particular, Sections 4.1 and 4.2)

before Chapter 5 on vertex-connectivity. Certain technical sections which may be skipped on first

reading are indicated as such in the text.

1.3.1 Orienteering and Related Problems

In the Orienteering problem, defined by [93], the input is an edge-weighted (directed or undi-

rected) graph G(V,E), with given start and end vertices s, t ∈ V , and a non-negative time limit

B. The weight on an edge represents its length, or the time taken to travel between its endpoints.
7See Section 1.1 or Section 1.3.3 for a definition of element-connectivity.

10

The goal is to find an s− t walk of total length at most B that maximizes the number of distinct

vertices visited by the walk. We also study the related k-Stroll problem, in which the input

is similar, but we are given an integer k instead of the time limit B; the goal in this problem is

to find the shortest s − t walk that visits at least k distinct vertices. These problems are closely

related to each other (the constraint and objective are interchanged), and related to other well

known problems such as the Traveling Salesperson Problem (TSP), which asks for the shortest

tour that visits all vertices and returns to the start vertex. In fact, TSP is the special case of

k-Stroll when k = |V | and s = t. TSP, Orienteering, k-Stroll and related problems have a

large number of applications related to vehicle routing, transportation and distribution of goods,

etc.; see [150] for a detailed discussion of vehicle routing and applications. Other motivations come

from robot path planning, or the scheduling of jobs performed at different locations. Given the

numerous applications for the natural problems of Orienteering and k-Stroll, they have been

studied extensively [93, 11, 60, 31, 25, 88, 42, 57, 135].

In Chapter 2, we describe approximation algorithms for Orienteering in both directed and

undirected graphs. For undirected graphs, we give a (2 + ε)-approximation algorithm; this is the

best approximation ratio currently known. In directed graphs, the problem is significantly harder;

we gave an O(log2 OPT)-approximation, where OPT denotes the value of an optimal solution.

This was the first non-trivial approximation algorithm for Orienteering in directed graphs. Our

algorithmic techniques also apply to k-Stroll and other related problems, which we discuss briefly

in Chapter 2.

In addition to the basic Orienteering problem, we consider the more general problem of

Orienteering with Time Windows (Orient-TW). In this problem, one is additionally given a

time window [R(v), D(v)] for each vertex v; as before, one has to find an s−t walk of length at most

the given time limit B, but now the goal is to maximize the number of vertices visited within their

time windows. This problem also has several applications in the field of vehicle routing, particularly

related to the delivery of goods and scheduling of work. Various special cases of Orient-TW have

been studied [151, 26, 25, 56, 57, 85], and it was known that in both directed and undirected graphs,

an α-approximation for the basic Orienteering problem yields an O(α log2 OPT)-approximation

for Orient-TW [25]. It is natural to conjecture that an O(log OPT)-approximation is possible, as

11

this can be achieved in quasi-polynomial time. We make progress towards resolving this conjecture

by showing that there is an O(αmax{log OPT, logL})-approximation, where L denotes the ratio

between the lengths of the longest and shortest time windows.

1.3.2 Constructing and Pruning 2-Connected Graphs

In the k-MST problem, one is given an edge-weighted graph G and an integer k, abd the goal

is to find a minimum-cost connected subgraph of G that contains at least k vertices. (Without

loss of generality, this subgraph is a tree; hence the name k-MST.) There is an approximation-

preserving reduction from the well-known Steiner Tree problem to k-MST. In another closely

related problem, referred to as Max-Prize Tree, one is given the edge-weighted graph and a

budget B; the goal is to find a connected subgraph of cost at most B that contains as many

vertices as possible. Problems such as k-MST and Max-Prize Tree that are related to finding

large, cheap, connected graphs arise naturally in several applications. Algorithms for these problems

also find many other uses, such as in the algorithms for Orienteering and k-Stroll described

in Chapter 2 and [42, 31]. Hence, there has been a long sequence of results on k-MST, Max-Prize

Tree and applications [20, 32, 87, 15, 88, 42, 112, 31].

Algorithms for k-MST and Max-Prize Tree are useful in Network Design applications where

one may want to build low-cost networks that provide connectivity to many clients, but there are

constraints such as a budget on the network cost, or a minimum quota on the number of clients.

However, networks with a tree structure are very vulnerable to failure; the loss of any single edge

will break the network into disconnected pieces that cannot communicate. Thus in Chapter 3, we

consider the natural generalization of k-MST to higher connectivity: In the k-2VC problem, we

are given an edge-weighted graph G and an integer k; the goal is to find a minimum cost k-vertex

subgraph of G that is 2-vertex-connected. We give the first approximation algorithm for the k-

2VC problem in Chapter 3, an O(log n log k)-approximation. We also consider the Budget-2VC

problem, in which we are given an edge-weighted graph G and a budget B; the goal is to find a

2-vertex-connected subgraph H of G with total edge cost at most B that maximizes the number of

vertices in H. We describe a bi-criteria approximation for Budget-2VC that gives an O(1
ε log2 n)

approximation, while violating the budget by a factor of at most 3 + ε.

12

Our algorithms for k-2VC and Budget-2VC both use the main technical tool of Chapter 3,

an algorithm to prune 2-connected graphs while (approximately) preserving their density, defined

as the ratio of the cost of a subgraph to the number of vertices it contains. Roughly speaking,

given a 2-connected graph H, this algorithm finds a 2-connected subgraph of any desired size, at

the cost of only a logarithmic increase in density. This algorithm and other technical results on

2-connected graphs we prove in Chapter 3 are independently interesting, and likely to find other

applications beyond k-2VC and Budget-2VC.

1.3.3 A Graph Reduction Step Preserving Element-Connectivity

In a number of graph problems, one focuses on a specified subset of the vertices, often called

terminals. For instance, in the well-known Steiner Tree problem, the input is an edge-weighted

graph G(V,E), together with a set of terminals T ⊆ V ; the goal is to find a minimum-cost tree that

connects all the terminals. Such a tree (referred to as a Steiner tree) may use some non-terminal

vertices, but these vertices are not required to be in the tree. In Network Design applications,

some nodes (such as communication hubs, military command centers, or offices of government

and emergency service departments) may be more important than others; hence, one may wish

to construct networks in which a given set of terminals are highly connected, but non-terminals

are not. Thus, if a few network components fail, non-terminals may lose connectivity, but the

important terminal vertices will remain able to communicate.

Recall the definition of element-connectivity from Section 1.1: Given a graph G(V,E) with

terminal set T ⊆ V and non-terminals V \ T , the element-connectivity between terminals u, v is

the minimum number of edges or non-terminal vertices that must be deleted to separate u from v.

Thus, in a graph with high element-connectivity, the terminals can communicate even if edges or

non-terminals fail. Element-connectivity problems are of interest both because they are natural,

and because algorithms for them (such as in [79]) are useful building blocks: Chuzhoy and Khanna

[68, 69] recently gave the first non-trivial algorithms for natural vertex-connectivity problems by

reducing them to element-connectivity problems.

In Chapter 4, we give an algorithm for simplifying (also called reducing) graphs while preserving

the pairwise element-connectivity of all terminals. Repeated applications of this simplification

13

step yield a bipartite graph, with partite sets T and V \ T . As bipartite graphs have highly

restricted structure, it is often easy to design algorithms or prove theorems for this setting; the

reduction step implies that such results typically extend easily to general graphs. Thus, we obtain

a general template for problems such as finding element-disjoint structures in arbitrary graphs:

Begin by applying the simplification step repeatedly, and obtain a bipartite graph. Find the desired

structures in this bipartite graph, and this automatically yields the corresponding structures in the

original graph.

A similar reduction step for preserving edge-connectivity in graphs due to Mader has seen a

very large number of applications; see [129, 81, 123, 110, 59, 125, 124, 114] for a list of pointers.

We believe that our reduction step preserving element-connectivity, which has already found ap-

plications in [63, 114], will also find many uses. In Chapter 4, we show an application to packing

element-disjoint Steiner trees and forests. We also use this reduction step to give an extremely

short and simple proof of the main result of Chapter 5; our previous proof, and that of a similar

result in [68], both required several pages of technically involved work.

1.3.4 Single Sink Network Design with Vertex-Connectivity Requirements

In the Survivable Network Design Problem, the input is an undirected graph G(V,E) with

edge costs, and an integer connectivity requirement Ruv for every pair of vertices u, v. The goal is

to find a minimum-cost subgraph H ⊆ G satisfying the connectivity requirements, meaning that

there should be Ruv disjoint paths between u and v for each pair uv. In the EC-SNDP problem,

the requirement is that the paths must be edge-disjoint, while in the harder VC-SNDP problem,

the paths are required to be vertex-disjoint. Equivalently, a feasible solution H for EC-SNDP has

the property that for any pair u, v, deleting any Ruv−1 edges cannot separate u from v; similarly, a

feasible solution for VC-SNDP has the property that deleting any Ruv − 1 vertices or edges cannot

separate u from v.

SNDP captures a large number of natural and interesting problems: The special case when

Ruv = 1 for all pairs uv is simply the well known Minimum Spanning Tree problem, that can

be solved optimally in near-linear time. On the other hand, if there is a set of terminals T such

that Ruv = 1 for any pair of terminals uv and 0 otherwise, we obtain the APX -Hard Steiner

14

Tree problem. SNDP with connectivity requirements greater than 1 has obvious applications to

designing robust networks, and this is our focus in Chapter 5.

As we have discussed already, edge-connectivity problems tend to be easier than their vertex-

connectivity counterparts; the EC-SNDP problem has been well studied, with a series of papers

[90, 91, 154, 109] culminating in the seminal 2-approximation of Jain [109]. Until recently, however,

the only non-trivial algorithms known for the VC-SNDP problem were for the case when the highest

connectivity requirement maxuv{Ruv} is at most 2. Thus, when studying higher connectivity

requirements (to construct networks resilient to more than one failure), it is natural to focus first

on special cases of the problem.

In Chapter 5, we study Single Sink vertex-connectivity problems. Our main focus is the SS-

k-Connectivity problem: Here, instead of dealing with arbitrary pairwise connectivity require-

ments, we assume that there is a specified sink/root vertex r, and a given collection of terminals;

the goal is to find a minimum-cost subgraph in which each terminal is k-vertex-connected to the

sink. (Equivalently, this is a subgraph in which each terminal can send flow along k vertex-disjoint

paths to the root.) This problem was first introduced by Chakraborty, Chuzhoy and Khanna [39],

who gave an O(kO(k2) log4 n)-approximation for the problem, for any k ≥ 1. We give an extremely

simple and efficient O(k log n)-approximation for the SS-k-Connectivity problem8; our proof is

based on the graph reduction step described in Chapter 4. We also include an earlier direct proof

of a slightly weaker approximation ratio for this algorithm; this proof is interesting in its own right,

and forms the basis for some subsequent work.

Besides the basic SS-k-Connectivity problem, we consider some more general capacitated

single-sink Network Design problems in Chapter 5. Here, potential edges one can select have discrete

capacities and costs; high capacity edges cost more than low-capacity ones, though economies of

scale apply. Now, the goal is to build a low-cost network with enough capacity to simultaneously

support flow from each terminal to the root along k disjoint paths. Such problems, referred to by

the names Rent-or-Buy and Buy-at-Bulk, were previously studied only in the case when k = 1

[146, 7, 43, 9, 99]. We give a poly-logarithmic approximation for the single-sink Buy-at-Bulk

problem when k = 2; we also show that an algorithm of Charikar and Karagiazova [40] proposed
8This follows a similar result due to Chuzhoy and Khanna [68]; see Chapter 5 for further discussion.

15

for the k = 1 case gives an O(2O(
√

logn))-approximation for any fixed k ≥ 1. These are the first

approximation algorithms for Buy-at-Bulk and related problems with connectivity requirement

greater than 1, and they have not yet been improved upon. For more precise details of the various

different Buy-at-Bulk models and accurate statements of our results, we refer the reader to

Chapter 5.

1.3.5 Capacitated Network Design

In the Capacitated version of the Survivable Network Design Problem, the input is a graph

G(V,E) with an integer capacity u(e) and cost c(e) for each edge e ∈ E, along with a connectivity

requirement Ruv for each pair of vertices uv. The goal is to find a minimum-cost subgraph H ⊆ G in

which, for each pair uv, Ruv units of flow can be sent between u and v. (Equivalently, the capacity

of a minimum cut in H between u and v should be at least Ruv. Note that the subgraph H does

not need to simultaneously support traffic between every pair of nodes, unlike the requirements for

the Rent-or-Buy and Buy-at-Bulk problems described above.) It is easy to see that the special

case of Capacitated-SNDP in which all edges have the same capacity is equivalent to the basic

Survivable Network Design Problem described in Section 1.3.4. However, Capacitated-

SNDP more accurately captures design problems that arise in constructing real fault-tolerant

networks, as it is fairly common to have equipment with different discrete capacities.

Though Jain [109] gave a 2-approximation for EC-SNDP, the capacitated version is much harder

to approximate. The approximation algorithms literature on this problem has been very limited

[91, 37]; even the best algorithms previously known have very weak approximation ratios in general.

In Chapter 6, we give new results for several special cases of the problem, shedding light on its

approximability. We show that when all requirements Ruv are uniform, or nearly uniform, there is

an O(log n)-approximation; we obtain this bound by rounding a strengthened LP for the problem.

We also consider the problem when one can buy multiple copies of edges: That is, for any integer

k > 0, one can pay k · c(e) for edge e and obtain capacity k · u(e) between its endpoints. We

show an O(log n)-approximation in this setting, and prove that the problem is Ω(log log n)-hard to

approximate even in the single-sink case.

Without the ability to buy copies of edges, however, Capacitated-SNDP appears to be very

16

difficult to approximate, and we prove several hardness results. In fact, even in the case when

just a single pair uv has requirement Ruv > 0, it appears hard to obtain good approximations.

This is in stark contrast to the unit-capacity case, where the single-pair problem can be solved

optimally even in directed graphs via minimum-cost flow algorithms in polynomial time. We prove

that the capacitated version of this single-pair problem is essentially inapproximable in directed

graphs; there is no 2log(1−δ) n-approximation for any δ > 0 unless NP ⊆ DTIME(npolylog(n)). For

undirected graphs, we show that even the strengthened LP referred to earlier has integrality gap

Ω(n) for the single-pair problem; we also show that the single-pair problem is Ω(log log n)-hard to

approximate.

17

Chapter 2

The Orienteering Problem

2.1 Introduction 1

The Traveling Salesperson Problem (TSP) and its variants have been an important driving force

for the development of new algorithmic and optimization techniques. This is due to several reasons.

First, the problems have many practical applications. Second, they are often simple to state and

intuitively appealing. Third, for historical reasons, TSP has been a focus for trying new ideas. See

[128, 100] for detailed discussion on various aspects of TSP. In this chapter, we consider some TSP

variants in which the goal is to find a tour or a walk that maximizes the number of nodes visited,

subject to a strict time limit (also called budget) requirement. The main problem of interest is

the Orienteering problem, introduced by [93]2, which we define formally below. The input to

the problem consists of an edge-weighted graph G = (V,E) (directed or undirected), two vertices

s, t ∈ V and a non-negative time limit B. The goal is to find an s-t walk of total length at

most B so as to maximize the number of distinct vertices visited by the walk. Note that a vertex

may be visited multiple times by the walk, but is only counted once in the objective function.

(Alternatively, we could work with the metric completion of the given graph.) One could consider

weighted versions of Orienteering, where the goal is to maximize the sum of the weights of

visited vertices; using standard scaling techniques (see Section 2.2), one can reduce the weighted

version to the unweighted problem at the loss of a factor of (1 + o(1)) in the approximation ratio.

Hence, we focus on the unweighted version throughout this chapter. We use OPT to denote the

number of distinct vertices visited by an optimal solution; OPT can be as large as n, the number
1This chapter is based on joint work with Chandra Chekuri and Martin Pál, and has appeared in [55, 51]. Copy-

rights to the conference and journal versions of [55] are held by the Society for Industrial and Applied Mathematics
(SIAM) and the Association for Computing Machinery (ACM) respectively.

2The problems we describe are referred to by several different names in the literature, one of which is prize-
collecting TSP.

18

of vertices in the graph, but may be much smaller.

We also study a more general problem, referred to as Orienteering with time-windows. In

this problem, we are additionally given a time-window (or interval) [R(v), D(v)] for each vertex

v. A vertex is counted as visited only if the walk visits v at some time t ∈ [R(v), D(v)]. (If a

vertex v is reached before R(v), we may choose to “wait” at v until R(v), so the walk can obtain

credit for v, and then resume the walk. The time spent “waiting” is included in the length of

the walk.) For ease of notation, we use Orient-TW to refer to the problem of Orienteering

with time-windows. A problem of intermediate complexity is the one in which R(v) = 0 for all v.

We refer to this problem as Orienteering with deadlines (Orient-Deadline); it has also been

called the Deadline-TSP problem by [25]. The problem where vertices have release times but not

deadlines (that is, D(v) =∞ for all v) is equivalent to Orient-Deadline.3

One of the main motivations for budgeted/time-limited TSP problems comes from real world

applications under the umbrella of vehicle routing; a large amount of literature on this topic can be

found in operations research. Problems in this area arise in transportation, distribution of goods,

scheduling of work, etc.; the book [150] discusses various aspects of vehicle routing. Another

motivation for these problems comes from robot motion planning where typically, the planning

problem is modeled as a Markov decision process. However there are situations where this does not

capture the desired behaviour and it is more appropriate to consider Orienteering-type objective

functions in which the reward at a site expires after the first visit; see [31], which discussed this

issue and introduced the discounted-reward TSP problem. In addition to the practical motivation,

budgeted TSP problems are of theoretical interest.

Orienteering is NP-hard via a straightforward reduction from TSP and we focus on approx-

imation algorithms; it is also known to be APX-hard to approximate [31]. The first non-trivial

approximation algorithm for Orienteering was due to Arkin, Mitchell and Narasimhan [11], who

gave a (2 + ε) approximation for points in the Euclidean plane. For Orienteering in arbitrary

metric spaces (this is equivalent to Orienteering in undirected graphs), Blum et al. [31] gave

the first approximation algorithm with a ratio of 4; this was shortly improved to a ratio of 3 by
3To see that these problems are equivalent, note that an s− t walk of length at most B that visits vertex v in the

time window [R(v),∞] for vertex v is the reversal of a t− s walk of length at most B that visits v in [0, B − R(v)],
and vice versa. See [25] for the formal reduction between the two problems.

19

Bansal et al. [25]. Subsequently, Chen and Har-Peled [60] obtained a PTAS for Orienteering

in fixed-dimensional Euclidean space. The basic insights for approximating Orienteering were

obtained by Blum et al. in [31], where a related problem called the Minimum-Excess problem

was defined. It was shown in [31] that an approximation for the Min-Excess problem implies an

approximation for Orienteering. Further, the Min-Excess problem can be approximated using

algorithms for the k-Stroll problem. In the k-Stroll problem, the goal is to find a minimum

length walk from s to t that visits at least k vertices. Note that the k-Stroll problem and the

Orienteering problem are equivalent in terms of exact solvability but an approximation for one

does not immediately imply an approximation for the other. Still, the clever reduction of [31] (via

the intermediate Min-Excess problem) shows that an approximation algorithm for k-Stroll im-

plies a corresponding approximation algorithm (losing a small constant factor in the approximation

ratio) for Orienteering. The results in [31, 25] are based on existing approximation algorithms

for k-Stroll [88, 42] in undirected graphs. In directed graphs, no non-trivial algorithm was known

for the k-Stroll problem4 and the best previously known approximation ratio for Orienteer-

ing was O(
√

OPT). A different approach was taken for the directed Orienteering problem

by Chekuri and Pál [57]; the authors use a recursive greedy algorithm to obtain a O(log OPT)

approximation for Orienteering and for several generalizations, but unfortunately the running

time is quasi-polynomial in the input size.

In this chapter, we obtain improved algorithms for Orienteering and related problems in both

undirected and directed graphs. Our main results are encapsulated by the following theorems.

Theorem 2.1. For any fixed ε > 0, there is an algorithm with running time nO(1/ε2) achieving a

(2 + ε)-approximation for Orienteering in undirected graphs.

Theorem 2.2. There is an O(log2 OPT)-approximation for Orienteering in directed graphs.5

Orienteering with Time Windows: Orient-Deadline and Orient-TW are more difficult

problems than Orienteering; in fact Orient-TW is NP-hard even on the line [151]. The recur-

sive greedy algorithm of [57] mentioned previously applies to Orienteering even when the reward
4Very recently, a poly-logarithmic approximation was given by [27] for k-Stroll in directed graphs; see the

discussion of related work at the end of this section.
5A similar result was obtained concurrently and independently by [135]. See related work for more details.

20

function is a given monotone submodular set function6 f on V , and the objective is to maximize

f(S) where S is the set of vertices visited by the walk. Several non-trivial problems, including

Orient-TW, can be captured by using different submodular functions. Thus, the algorithm from

[57] provides an O(log OPT) approximation for Orient-TW in directed graphs, but it runs in

quasi-polynomial time. We make the following natural conjecture:

Conjecture 2.3. There is a polynomial time O(log OPT) approximation for Orient-TW in

directed (and undirected) graphs.

Even in undirected graphs the best ratio known previously for Orient-TW was O(log2 OPT).

Our primary motivation is to close the gap between the ratios achievable in polynomial and quasi-

polynomial time respectively. We remark that the quasi-polynomial time algorithm in [57] is quite

different from all the other polynomial time algorithms for Orient-TW, which use algorithms for

Orienteering as a black box; it does not appear easy to find a polynomial time equivalent to

this quasi-polynomial time algorithm. In this chapter we make some progress in closing the gap,

while also obtaining some new insights. An important aspect of our approach is to understand

the complexity of the problem in terms of the maximum and minimum time-window lengths.

Let L(v) = D(v) − R(v) be the length of the time-window of v. Let Lmax = maxv L(v) and

Lmin = minv L(v). Our results depend on the ratio L = Lmax/Lmin
7; our main result in this setting

is the following theorem:

Theorem 2.4. In directed and undirected graphs, there is an O(αmax{log OPT, logL}) approxi-

mation for Orient-TW, where α denotes the approximation ratio for Orienteering.

Our results for Orient-TW are stated in more detail in Section 2.5; note that for polynomially-

bounded instances, Theorem 2.4 implies an O(log n) approximation. We define the parameter L

following the work of Frederickson and Wittman [85]; they showed that a constant factor approx-

imation is achievable in undirected graphs if all time-windows are of the same length (that is,

L = 1) and the end points of the walk are not specified. We believe that L is a natural parameter

6A function f : 2V → R+ is a montone submodular set function if f satisfies the following properties: (i) f(∅) = 0,
f(A) ≤ f(B) for all A ⊆ B and (ii) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊆ V .

7If Lmin = 0, consider the set of vertices which have zero-length time-windows. If this includes a significant
fraction of the vertices of an optimal solution, use dynamic programming to get a O(1)-approximation. Otherwise,
we can ignore these vertices and assume Lmin > 0 without losing a significant fraction of the optimal reward.

21

Rd Undirected Graphs Directed Graphs
Orienteering 1 + ε 2 + ε O(log2 OPT)

Orient-Deadline ∗ O(log OPT)† O(log3 OPT)
Orient-TW ∗ O(log2 OPT)† O(log4 OPT)

O(max{log OPT, logL}) O(log2 OPT ·max{log OPT, logL})

Table 2.1: The best currrently known polynomial-time approximation ratios for Orienteering
and Orient-TW. The 1 + ε-approximation for Orienteering in Euclidean Space (Rd for fixed
dimension d) is due to [60]; the other entries for Euclidean space marked ‘∗’ have the same
approximation ratio as the more general undirected graph problems. The two entries marked ‘†’ in
undirected graphs are due to [25]; all remaining entries are from this thesis. The quasi-polynomial
time algorithm of [57] gives an O(log OPT)-approximation for all problems in this table.

to consider in the context of time-windows. In many practical settings L is likely to be small, and

hence, algorithms whose performance depends on L may be better than those that depend on other

parameters. In [25] an O(logDmax) approximation is given for Orient-TW in undirected graphs

where Dmax = maxvD(v) and only the start vertex s is specified (here it is assumed that all the

input is integer valued). We believe that Lmax is a better measure than Dmax for Orient-TW;

Lmax ≤ Dmax for all instances, and Lmax is considerably smaller in many instances. Further, our

algorithm applies to directed graphs while the algorithm in [25] is applicable only for undirected

graphs. Finally, our algorithm is for the point-to-point version while the one in [25] does not

guarantee that the walk ends at t.

We believe that our results for Orient-TW, though obtained using relatively simple ideas,

are interesting, useful and shed more light on the complexity of the problem. In particular, some

of these ideas may lead to an O(log n) approximation for the time-window problem in undirected

graphs even when L is not poly-bounded.

Table 2.1 above summarizes the best known approximation ratios for Orienteering and

Orient-TW. We now give a high level description of our technical ideas.

Overview of Algorithmic Ideas: For Orienteering we follow the basic framework of [31],

which reduces Orienteering to k-Stroll via the Min-Excess problem (formally defined in

Section 2.2). We thus focus on the k-Stroll problem.

In undirected graphs, Chaudhuri et al. [42] give a (2 + ε)-approximation for the k-Stroll

problem. To improve the 3-approximation for Orienteering via the method of [31], one needs a

22

2-approximation for the k-Stroll problem with some additional properties. Unfortunately it does

not appear that even current advanced techniques can be adapted to obtain such a result (see [88]

for a more technical discussion of this issue). We get around this difficulty by giving a bi-criteria

approximation for k-Stroll. For k-Stroll, let L be the length of an optimal path, and D be the

shortest path in the graph from s to t. (Thus, the excess of the optimal path is L−D.) Our main

technical result for k-Stroll is a polynomial-time algorithm that, for any given ε ≥ 0, finds an

s-t walk of length at most max{1.5D, 2L−D} that contains at least (1− ε)k vertices. For this, we

prove various structural properties of near optimal k-Stroll solutions via the algorithm of [42],

which in turn relies on the algorithm of [15] for k-MST. We also obtain a bi-criteria algorithm for

Min-Excess.

For directed graphs, no non-trivial approximation algorithm was known for the k-Stroll prob-

lem. In [57] the O(log OPT) approximation for Orienteering is used to obtain an O(log2 k)

approximation for the k-TSP problem in quasi-polynomial time: In the k-TSP problem, the goal is

to find a walk containing at least k vertices that begins and ends at a given vertex s; that is, k-TSP

is the special case of k-Stroll where t = s. Once again we focus on a bi-criteria approximation for

k-Stroll and obtain a solution of length 3OPT that visits Ω(k/ log2 k) nodes. Our algorithm for

k-Stroll is based on an algorithm for k-TSP for which we give an O(log3 k) approximation — for

this we use simple ideas inspired by the algorithms for asymmetric traveling salesperson problem

(ATSP) [86, 116] and an earlier poly-logarithmic approximation algorithm for k-MST [20].

For Orient-TW, we scale time window lengths so Lmin = 1; our main insight is that (with

a constant-factor loss in approximation ratio), the problem can be reduced to either a collection

of Orient-Deadline instances (for which we use an O(log OPT)-approximation), or an instance

in which all release times and deadlines are integral and in which the longest window has length

L = Lmax/Lmin. In the latter case, we note that windows of length at most L can be partitioned

into O(logL) smaller windows whose lengths are powers of 2, such that a window of length 2i begins

and ends at a multiple of 2i. This allows us to decompose the instance into O(logL) instances of

Orienteering.

23

2.1.1 Related Work

We have already mentioned several papers on Orienteering and similar problems; we now de-

scribe some related work not previously discussed. We first consider undirected graphs. The

Orienteering problem was formally defined by Golden, Levy and Vohra in [93]. Goemans and

Willimson [90] considered the Prize-Collecting Steiner Tree and TSP problems (these are

special cases of the more general version defined in [24]); in these problems the objective is to

minimize the cost of the tree (or tour) plus a penalty for not visiting nodes. They used primal-dual

methods to obtain a 2-approximation. This influential algorithm was used to obtain constant fac-

tor approximation algorithms for the k-MST, k-TSP and k-Stroll problems [32, 87, 15, 88, 42],

improving upon an earlier poly-logarithmic approximation [20]. As we mentioned already, the al-

gorithms for k-Stroll yield algorithms for Orienteering [31]. Orient-TW was shown to be

NP-hard even when the graph is a path [151]; for the path, Bar-Yehuda, Even and Shahar [26] give

an O(log OPT) approximation. The best known approximation for general undirected graphs is

O(log2 OPT), given by [25]; the ratio improves to O(log OPT) for the case of deadlines only [25].

A constant factor approximation can be obtained if the number of distinct time windows is fixed

[56].

In directed graphs, the problems are less understood. For example, though the k-Stroll

problem is only known to be APX-hard, no non-trivial approximation was known until a few

years subsequent to the work described in this chapter; recently, Bateni and Chuzhoy [27] gave a

min{O(log2 n log k/ log logn), O(log4 k)}-approximation for k-Stroll in directed graphs. In [57],

Chekuri and Pál showed that a simple recursive greedy algorithm that runs in quasi-polynomial

time gives an O(log OPT) approximation for Orienteering and for Orient-TW. The algorithm

also applies to the problem where the objective function is any given submodular function on the

vertices visited by the walk; several more complex problems can be captured by this generalization.

Motivated by the lack of algorithms for the k-Stroll problem, Chekuri and Pál [58] also studied

the Asymmetric Traveling Salesperson Path problem (ATSPP). ATSPP is the special case of k-

Stroll with k = n. Although closely related to the well studied ATSP problem, an approximation

algorithm for ATSPP does not follow directly from that for ATSP. Chekuri and Pál [58] give

an O(log n) approximation for ATSPP, matching the best ratio that was known for ATSP until

24

very recently, when Asadpour et al. [17] gave an O(log n/ log log n)-approximation for ATSP by

improving the upper bound on the integrality gap of the well-known Held-Karp LP relaxation for

ATSP [104].

Concurrently with and independent from the work described in this chapter, Nagarajan and

Ravi [135] obtained an O(log2 n) approximation for Orienteering in directed graphs. They also

use a bi-criteria approach for the k-Stroll problem and obtain results essentially similar to those in

this chapter for directed graph problems, including rooted k-TSP. However their algorithm for (bi-

criteria) k-Stroll is based on an LP approach while we use a simple combinatorial greedy merging

algorithm. Our ratios depend only on OPT or k while theirs depend also on n. On the other hand,

the LP approach has some interesting features; in particular, following the recent improved upper

bound on the integrality gap of the Held-Karp LP relaxation [17], the approximation ratio of their

algorithm improved to O(log2 n/ log log n). (See [135] for more details.)

Chapter Outline

We begin by presenting some useful technical results and notation in Section 2.2: We first show

that using standard scaling techniques, one can reduce a weighted version of Orienteering to

the unweighted version we focus on subsequently, at a small loss in the approximation ratio. We

then describe a reduction from Orienteering to k-Stroll, originally due to [31]; we modify this

reduction so that bi-criteria approximations for k-Stroll can be used to obtain approximation

algorithms for Orienteering, and generalize it to also apply to directed graphs.

In Section 2.3, we give a bi-criteria approximation algorithm for k-Stroll in undirected graphs,

with some additional guarantees on the solution returned; this, combined with the reduction of

Section 2.2, yields a (2 + ε) approximation for undirected Orienteering. Next, in Section 2.4,

we give a bi-criteria approximation algorithm for k-Stroll in directed graphs. This gives an

O(log2 OPT)-approximation for directed Orienteering, along with similar results for related

problems.

Finally, in Section 2.5, we reduce Orient-TW to Orienteering: We show that in both

undirected and directed graphs, an α-approximation algorithm for Orienteering can be used to

obtain an O(αmax{log OPT, logL})-approximation for Orient-TW, where L denotes the ratio

25

between the minimum and maximum time-window lengths. For instances in which L is polynomially

bounded, this reduction, combined with our results from Sections 2.3 and 2.4, yields an O(log n)-

approximation for Orient-TW in undirected graphs, and an O(log3 n)-approximation for Orient-

TW in directed graphs.

2.2 Preliminaries and Notation

In the weighted version of Orienteering, the input consists of a graph G with a length on each

edge, two vertices s, t ∈ V , a non-negative time-limit B, and a weight w(v) on every vertex v. The

goal is to find an s− t walk of length at most B that maximizes the sum of the weights of vertices

visited by the walk. (If a vertex is visited multiple times, its weight is only counted once towards the

objective function.) We show below that the weighted version of Orienteering can be effectively

reduced to the unweighted version. This uses standard scaling and rounding techniques; we include

the proof here for completeness.

Lemma 2.5. If there is a polynomial-time ρ-approximation algorithm for Orienteering, there

is a polynomial-time algorithm which returns a ρ-approximate solution to instances of weighted

Orienteering when all vertex weights are integers between 1 and n2.

Proof. Given an input graph G, for each vertex v ∈ V (G), let w(v) denote the weight of v.

Construct a new graph G′ by replacing each vertex v ∈ V (G) with a clique of w(v) copies of v, and

setting the length of the edges connecting copies of v to be 0. It is easy to see that for any vertices

s, t ∈ V (G) and any time limit B, there is an s− t walk in G of length B and total weight W if and

only if there is a walk in G′ from a copy of s to a copy of t that visits W distinct vertices and has

length B. The total number of vertices in G′ is at most n3, and we can thus use a polynomial-time

ρ-approximation for Orienteering to find a ρ-approximate solution to the original instance of

weighted Orienteering in G.

Lemma 2.6. If there is a polynomial-time ρ-approximation for Orienteering, then there is a

polynomial-time ρ(1 + o(1))-approximation for weighted Orienteering.

Proof. We assume without loss of generality that the input graph G is complete, and that the

edge lengths satisfy the triangle inequality; if not, we can ensure this by working with the metric

26

completion of G. For any path P , we use w(P) to denote the total weight of vertices visited by P .

We use OPT to denote the optimal walk in G, and w(OPT) to denote the total weight of vertices

it visits.

We now describe an algorithm that effectively reduces the input to an instance of weighted

Orienteering in which all weights are integers between 1 and n2. Guess (that is, try each of the

n possibilities for) the maximum-weight vertex u visited by the optimal walk. Let G′ denote the

graph in which we delete from G all vertices of weight greater than w(u) and all vertices of weight

less than w(u)
n2 . Consider the walk OPT′ in G′ obtained by shortcutting OPT to skip over deleted

vertices. Its length is at most the specified time limit B, and the weight w(OPT′) of vertices it

visits is at least w(OPT)− nw(u)
n2 = w(OPT)− w(u)

n ≥ (1− 1/n)w(OPT).

Now, for each vertex v, set w′(v) = b n2

w(u) ·w(v)c; note that w′(v) is an integer between 1 and n2.

Consider the path OPT′; its modified weight w′(OPT′) is at least
(

n2

w(u)

(
1− 1

n

)
· w(OPT)

)
− n;

the former term comes from multiplying the weights by n2/w(u), and the latter from the floor

operation, as OPT′ visits at most n vertices. As w(OPT) ≥ w(u), this modified weight is at least(
n2

w(u)

(
1− 1

n

)
· w(OPT)

)
− nOPT

w(u) =
(

n2

w(u)

(
1− 2

n

)
· w(OPT)

)
.

From Lemma 2.5 above, we can obtain a ρ-approximate solution P to the instance of weighted

Orienteering on the graph G′ with vertex weights w′. That is, we find a walk P such that

w′(P) ≥ 1
ρw
′(OPT′) ≥ 1

ρ

(
n2

w(u)

(
1− 2

n

)
· w(OPT)

)
. But for each vertex v, w(v) ≥ w(u)

n2 · w′(v).

Therefore, w(P) ≥ 1
ρ

(
1− 2

n

)
w(OPT); this gives the desired result.

In [31], Orienteering was reduced to the k-Stroll problem; for completeness, we provide a

brief description of this reduction. We adapt some of their technical lemmas for our setting. Recall

that in the k-Stroll problem, we are given a graph G(V,E), two vertices s, t ∈ V , and a target

integer k; the goal is to find a minimum-length walk from s to t that visits at least k vertices.

Given a (directed or undirected) graph G, for any path P that visits vertices u, v (with u

occurring before v on the path), we define dP (u, v) to be the distance along the path from u to v,

and d(u, v) to be the shortest distance in G from u to v. We define excessP (u, v) (the excess of P

from u to v) to be dP (u, v)− d(u, v). We simplify notation in the case that u = s, the start vertex

of the path P : we write dP (v) = dP (s, v), d(v) = d(s, v), and excessP (v) = excessP (s, v).

27

If P is a path from s to t, the excess of path P is defined to be excessP (t). That is, the

excess of a path is the difference between the length of the path and the distance between its

endpoints. (Equivalently, length(P) = d(t) + excessP (t).) In the Min-Excess path problem, we

are given a graph G = (V,E), two vertices s, t ∈ V , and an integer k; our goal is to find an s-t

path of minimum excess that visits at least k vertices. The path that minimizes excess clearly

also has minimum total length, but the situation is slightly different for approximation. If x is

the excess of the optimal path, an α-approximation for the minimum-excess problem has length at

most d(t) + αx ≤ α(d(t) + x), and so it gives us an α-approximation for the minimum-length (i.e.

the k-Stroll) problem; the converse is not necessarily true. Below, we reduce the Min-Excess

problem to k-Stroll, and then reduce Orienteering to Min-Excess.

2.2.1 From k-Stroll to Orienteering, via Min-Excess:

We first describe the algorithm due to [31] for the Min-Excess problem, given one for the k-

Stroll problem. If an optimal path P visits vertices in increasing order of their distance from s,

we say that it is monotonic. The best monotonic path can be found via dynamic programming.

In general, however, P may be far from monotonic; in this case, we break it up into continuous

segments that are either monotonic, or have large excess. An optimal path in monotonic sections

can be found by dynamic programming, and we use an algorithm for k-Stroll in the large-excess

sections. Intuitively, in these large-excess sections, the length of the path is comparable to its excess;

therefore, a good approximation for k-Stroll in these sections yields a good approximation for

the Min-Excess problem. We formalize this intuition below.

For each real r, define f(r) as the number of edges on the optimal path P with one endpoint

at distance from s less than r, and the other endpoint at distance at least r from s. We partition

the real line into maximal intervals such that in each interval, either f(r) = 1 or f(r) > 1. (See

Figure 2.1 below, essentially similar to that of [31].) Let bi denote the left endpoint of the ith

interval: An interval from bi to bi+1 is of Type 1 (corresponding to a monotonic segment) if, for

each r between bi and bi+1, f(r) = 1. The remaining intervals are of Type 2 (corresponding to

segments with large excess).

For each interval i, from vertex u (at distance bi from s) to vertex v (at distance bi+1 from

28

Distance from s→
b1 b2 b3 b4 b5dt

s t

Type 1 Type 2 Type 1 Type 2

Figure 2.1: A breakdown of a path P into Type-1 (monotonic) and Type-2 (large-excess)
intervals. The solid vertical lines indicate segment boundaries, with dots corresponding to s and
t, and the first and last vertex of each segment.

s), we define ex(i) as the increase in excess that P incurs while going from u to v. (That is,

ex(i) = excessP (v)− excessP (u).) Also, we let `i be the length of P contained in interval i, and di

be the length of the shortest path from u to v contained entirely in interval i. From our definitions,

the overall excess of the optimal path P is given by excessP (t) =
∑

i ex(i). In [31], it is shown

that in undirected graphs, for any Type-2 interval i, `i ≥ 3(bi+1 − bi). (For the last interval, we

instead obtain `i ≥ 3(d(t) − bi).) To see that this is true, note from Figure 2.1 that `i is at least

the integral of f(d) for each d between bi and bi+1. Since i is an interval of Type 2, f(d) ≥ 2;

further, one can observe using a parity argument that f(d) ≥ 3, since if P crosses distance d only

twice, it must end at distance less than d. For the results of [31], it suffices to prove that the global

excess, excess(P), is at least 2
3

∑
i of Type 2 `i, which follows from the previous argument. We need

to refine this slightly in the following lemma by bounding the local excess in each interval, instead

of the global excess.

Lemma 2.7. For any Type-2 interval i of path P in an undirected graph, ex(i) ≥ max{`i−di, 2`i
3 }.

Proof. We have:

ex(i) =
(
dP (v)− d(v)

)
−
(
dP (u)− d(u)

)
=

(
dP (v)− dP (u)

)
− (d(v)− d(u))

= `i − (bi+1 − bi).

(In the case of the last segment, containing t, the last equality should be `i − (d(t)− bi).) For any

Type-2 segment, `i ≥ 3(bi+1 − bi) (or 3(dt − bi)), so we have ex(i) ≥ 2`i
3 . Also, the shortest-path

29

distance di from u to v contained in interval i is at least bi+1 − bi. Therefore, ex(i) ≥ `i − di.

We now briefly describe the dynamic-programming algorithm of [31] for Min-Excess: A vertex

v belongs to interval i if its distance from s is greater than bi and at most bi+1. (Note that v may

be any vertex of G, not necessarily one on an optimal path P .) For each interval that might be in

an optimal solution, and for each reward that might be collected in this interval, find a short path

using vertices of this interval that collects at least the desired reward. For each interval, find paths

assuming that it is both a Type-1 interval and a Type-2 interval. In the former case, the optimal

path is monotonic, so we can easily find it using a dynamic programming subroutine. In the latter

case, we use an approximation algorithm for k-Stroll to find a short path that collects at least

the desired reward. Having found a good solution for each possible interval, one can “guess” the

intervals of the optimal solution and stitch them together using a master dynamic program. Thus,

the following lemma is proved in [31]; we provide a proof here for completeness.

Lemma 2.8 ([31]). In undirected graphs, a β-approximation to the k-Stroll problem implies a

(3β
2 −

1
2)-approximation to the Min-Excess problem.

Proof. Let L denote the total length of an optimal path P , L1 denote the total length of P in

Type-1 intervals, and L2 the total length in Type-2 intervals. Recall that for every Type-1 interval,

we can find the optimal path using dynamic programming, and for every Type-2 interval, we use

our approximation algorithm for k-Stroll to find a short path that collects the reward we desire.

The path P ′ we find has total length at most L1 + βL2. The excess of the optimal path P is

L− d(t), while the excess of our path P ′ is at most L1 + βL2 − d(t) = L− d(t) + (β − 1)L2. From

Lemma 2.7, 2L2
3 ≤ excess(P). Hence, the excess of P ′ is at most excess(P)+ 3

2(β−1)excess(P).

Using very similar arguments, we can prove an analogous result for directed graphs. First, we

need the equivalent of Lemma 2.7. In directed graphs, for each real r, we let f(r) be the number of

arcs a on the optimal path P such that the tail of a is at distance less than r from s, and the head

of a is at distance at least r from s. All other definitions are identical to those in the undirected

case. Now, we can only observe that f(d) is at least 2 for all d in Type 2 intervals. (As before, a

parity argument implies that path P must cross distance d at least 3 times, but on one of these

30

occasions, the tail of the arc will have distance at least d from s, while the head has distance less

than d. Hence, this does not contribute to f(d).) It is now easy to prove the required lemma:

Lemma 2.9. For any Type-2 interval i of path P in a directed graph, ex(i) ≥ max{`i − di, `i2 }.

Proof. Exactly as in Lemma 2.7, we obtain ex(i) = li − (bi+1 − bi). Again, the shortest path

distance di from the first vertex of the interval to the last is at least bi+1− bi, and so ex(i) ≥ li−di.

However, we can now only conclude that li ≥ 2(bi+1 − bi). Therefore, ex(i) ≥ li/2.

We now reduce Min-Excess to k-Stroll in directed graphs; the proof is similar to that of

Lemma 2.8 in undirected graphs.

Lemma 2.10. In directed graphs, a β-approximation to the k-Stroll problem implies a (2β− 1)-

approximation to the Min-Excess problem.

Proof. Let L denote the total length of an optimal path P , L1 denote the total length of P in

Type-1 intervals, and L2 the total length in Type-2 intervals. The path P ′ we find has total length

at most L1 + βL2. The excess of the optimal path P is L − d(t), while the excess of our path P ′

is at most L1 + βL2 − d(t) = L− d(t) + (β − 1)L2. From Lemma 2.7, L2
2 ≤ excess(P). Hence, the

excess of P ′ is at most excess(P) + 2(β − 1)excess(P).

We now reduce Orienteering to the Min-Excess problem. The following lemma, due to [25],

applies to both directed and undirected graphs.

Lemma 2.11 ([25]). A γ-approximation to the Min-Excess problem implies a dγe-approximation

for Orienteering.

Proof. Consider an optimal path P that visist OPT vertices, and break it into h = dγe consecutive

segments P1, P2, . . . Ph, each containing OPT/h vertices. Guess (that is, try all possible choices

for) the first and last vertex of each segment. For each i, let si, ti be the first and last vertices of

segment Pi, and let exi, the local excess of Pi, be the difference between the length of Pi and the

shortest-path distance from si to ti. Let Pj be the segment with least excess; h · exj ≤
∑h

i=1 exi =

dP (s, t) −
∑h

i=1 d(si, ti). Now, use the Min-Excess approximation algorithm to find a new sj-tj

path P ′j that visits at least OPT/h vertices, and with excess at most γ ≤ h times that of Pj .

31

Finally, construct a path P ′ by going directly from s to sj , follow P ′j from sj to tj , and then go

directly from tj to t. The total length of this path is at most
∑h

i=1 d(si, ti) + h · exj ≤ dP (s, t) =

length(P). Therefore, we have an s− t path of length at most the given time limit, that visits at

least OPT/dγe vertices.

The way in which our algorithms differ from those of [31] and [25] is that we use bi-criteria

approximations for k-Stroll. We say that an algorithm is an (α, β)-approximation to the k-

Stroll problem if, given a graph G, vertices s, t ∈ V (G), and a target integer k, it finds a path

which visits at least k/α vertices, and has length at most β times the length of an optimal path

that visits k vertices.

Lemmas 2.10 and 2.11 can be easily extended to show that an (α, β)-approximation to the k-

Stroll algorithm for directed graphs gives an (αd2β − 1e)-approximation for the Orienteering

problem in directed graphs. In Section 2.4, we use this fact, with a (O(log2 k), 3)-approximation

for the k-Stroll problem in directed graphs, to get an O(log2 OPT)-approximation for directed

Orienteering.8 For undirected graphs, one might try to use Lemmas 2.8 and 2.11 with a (1+ε, 2)-

approximation for the k-Stroll problem, but this leads to a ((1+ε)×d2.5e) = (3+ε) approximation

for Orienteering. To obtain the desired ratio of (2 + ε), we need a refined analysis to take

advantage of the particular bi-criteria algorithm that we develop for k-Stroll; the details are

explained in Section 2.3.

2.3 A (2 + ε)-Approximation for Undirected Orienteering

In the k-Stroll problem, given a metric graph G, with 2 specified vertices s and t, and a target

integer k, we wish to find an s-t path of minimum length that visits at least k vertices. Let L be the

length of an optimal such path, and D the shortest-path distance in G from s to t. In this section,

we describe a bi-criteria approximation algorithm for the k-Stroll problem, as guaranteed by the

following theorem:

Theorem 2.12. For any ε > 0, there is an algorithm with running time O(nO(1/ε2)) that, given

a graph G, two vertices s and t and a target integer k, finds an s-t walk of length at most
8When we use the k-Stroll algorithm as a subroutine, we call it with k ≤ OPT, where OPT is the number of

vertices visited by an optimum Orienteering solution.

32

max{1.5D, 2L − D} that visits at least (1 − ε)k vertices, where L is the length of the optimal

s-t path that visits k vertices and D is the shortest-path distance from s to t.

We prove Theorem 2.12 in Section 2.3.2; first, in Section 2.3.1, we describe the desired (2 + ε)-

approximation for Orienteering in undirected graphs, assuming Theorem 2.12.

2.3.1 From k-Stroll to Min-Excess

We solve the Minimum-Excess problem using essentially the algorithm of [31]; as explained in

Section 2.2.1, the key difference is that instead of calling the k-Stroll algorithm of [42] as a

subroutine, we use the algorithm of Theorem 2.12 that returns a bi-criteria approximation. In

addition, the analysis is slightly different, making use of the fact that our algorithm returns a path

of length at most max{1.5D, 2L −D}. In the arguments below, we fix an optimum path P , and

chiefly follow the notation of [31].

Theorem 2.13. For any fixed ε > 0, there is a polynomial-time algorithm to find an s-t path

visiting at least (1 − ε)k vertices, with excess at most twice that of an optimal path P visiting k

vertices.

Proof. As described in Section 2.2, the algorithm uses dynamic programming similar to that in [31]

with our bi-criteria k-Stroll algorithm of Theorem 2.12 in place of an approximate k-Stroll

algorithm. Let P ′ be the path returned by our algorithm. Roughly speaking, P ′ will be at least

as good as a path obtained by replacing the segment of P in each of its intervals by a path that

the algorithm finds in that interval. In Type-1 intervals the algorithm finds an optimum path

because it is monotonic. In Type-2 intervals we have a bi-criteria approximation that gives a

(1 − ε) approximation for the number of vertices visited. This implies that P ′ contains at least

33

(1− ε)k vertices. To bound the excess, we sum up the lengths of the replacement paths to obtain:

length(P ′) ≤
∑

i of Type 1

`i +
∑

i of Type 2

max{1.5di, 2`i − di}

≤
∑
i

`i +
∑

i of Type 2

max{0.5`i, `i − di}

≤
∑
i

`i +
∑

i of Type 2

ex(i)

≤ length(P) + excessP (t)

= d(t) + 2excessP (t)

where the second inequality comes from rearranging terms and the fact that di ≤ `i, and the third

inequality follows from Lemma 2.7. Therefore, the excess of P ′ is at most twice that of P , the

optimal path.

For completeness, we restate Lemma 2.11, modified for a bi-criteria excess approximation: An

(α, β)-approximation to the Min-Excess problem gives an αdβe-approximation to the Orien-

teering problem.

Proof of Theorem 2.1. For any constant ε > 0, to obtain a (2 + ε)-approximation for the

undirected Orienteering problem, first find ε′ such that 2 + ε = 2
1−ε′ . Theorem 2.13 implies that

there is a (1
1−ε′ , 2)-bi-criteria approximation algorithm for the Min-Excess problem that runs

in nO(1/ε2) time. Now, we use (the bi-criteria version of) Lemma 2.11 to get a 2
1−ε′ = (2 + ε)-

approximation for Orienteering in undirected graphs. �

It now remains only to prove Theorem 2.12, to which we devote the rest of this section.

2.3.2 The Proof of Theorem 2.12

Given graph G, vertices s, t, and integer k, for any fixed ε > 0, we wish to find an s-t path that

visits at least (1−O(ε))k vertices, and has total length at most max{1.5D, 2L−D}. Our starting

point is the following theorem on k-Stroll, proved by [42]:

Theorem 2.14 ([42]). Given a graph G,two vertices s and t and a target integer k, let L be the

length of an optimal path from s to t visiting k vertices. For any δ > 0, there is a polynomial-time

34

algorithm to find a tree of length at most (1 + δ)L and containing at least k vertices, including both

s and t.

The algorithm of [42] guesses O(1/δ) vertices s = w1, w2, w3, . . . , wm−1, wm = t such that an

optimal path P visits the guessed vertices in this order, and for any i, the distance from wi to wi+1

along P is ≤ δL. It then uses the k-MST algorithm of [15] with the given set of guessed vertices

to obtain a tree satisfying Theorem 2.14; this tree is also guaranteed to contain all the guessed

vertices. We can assume that all edges of the tree have length at most δL; longer edges can be

subdivided without adding more than O(1/δ) vertices.

Our bi-criteria approximation algorithm for k-Stroll begins by setting δ = ε2, and using the

algorithm of Theorem 2.14 to obtain a k-vertex tree T containing s and t. We are guaranteed that

length(T) ≤ (1 + δ)L (recall that L is the length of a shortest s-t path P visiting k vertices). Let

P Ts,t be the path in T from s to t; we can double all edges of T not on P Ts,t to obtain a path PT

from s to t that visits at least k vertices. The length of the path PT is 2length(T)− length(P Ts,t) ≤

2length(T)−D.

If either of the following conditions holds, the path PT visits k vertices and has length at most

max{1.5D, 2L−D}, which is the desired result:

• The total length of T is at most 5D/4. (In this case, PT has length at most 3D/2.)

• length(P Ts,t) ≥ D+2δL. (In this case, PT has length at most 2(1+δ)L−(D+2δL) = 2L−D.)

We refer to these as the easy doubling conditions. Our aim will be to show that if neither of the

easy doubling conditions applies, we can use T to find a new tree T ′ containing s and t, with length

at most L, and with at least (1−O(ε))k vertices. Then, by doubling the edges of T ′ that are not

on the s-t path (in T ′), we obtain a path of length at most 2L−D that visits at least (1−O(ε))k

vertices.

Below, we describe the structure the tree T must have if neither of the easy doubling conditions

holds, and in the following subsection, how to use this information to obtain the tree T ′.

35

Structure of the Tree

If neither of the easy doubling conditions holds, then since D is at most 4/5 of the length of T ,

and the length of P Ts,t is less than D + 2δL, the total length of the edges of T \ P Ts,t is greater than

(1/5− 2δ)L. In this section, we describe how to construct the desired tree T ′ by removing a small

piece of T \ P Ts,t.

Say that a set of edges S in T \P Ts,t is an isolated component if the total length of S is less than

εL, and S is a connected component of T \ P Ts,t.

Proposition 2.15. We can greedily decompose the edge set of T \ P Ts,t into Ω(1/ε) disjoint pieces

such that:

• Each piece is either a connected subgraph of or the union of isolated components of T \ P Ts,t.

• Each piece has length in [εL, 3εL), unless it is the union of all isolated components of T \P Ts,t

and has length less than εL.

Proof. Consider the following greedy algorithm: root T at s, and consider a deepest node v in

T \ P Ts,t such that the total length of edges in the subtree rooted at v is at least εL. If the total

length of all edges in the subtree is at most 2εL, this forms a piece that is connected and has the

desired size. Otherwise, (arbitrarily) select enough children of v such that the total size of all their

subtrees, together with their edges to v, is between εL and 2εL. (Since the subtree rooted at each

child has size < εL and each edge has length ≤ δL � εL, this is always possible.) Again, this

forms a piece that is connected and has the required size.

Now delete the edges of the piece just found from T , and recurse. When no more such pieces

can be found, we may be left with parts of length < εL hanging off the s-t path. For any such part

that has a further piece hanging off it, connect it to that piece, increasing its length to less than

3εL. The remaining parts are isolated components, and unless their total size is less than εL, it is

easy to combine them arbitrarily into groups with total length in [εL, 3εL].

Let T be the tree formed as follows: We have one vertex s′ for P Ts,t and one vertex for each of

the pieces of Proposition 2.15. (Thus, T has Ω(1/ε) vertices.) There is an edge between vertices

v1, v2 ∈ V (T) corresponding to edge sets S1, S2 iff S1 contains the parent edge in T of a minimum-

depth edge in S2, or vice versa. (In the special case that v1 = s′, and the minimum-depth edge in

36

s t

C

T2

T1

y

x

x

y

wa
wq

wa+1

wq−1
wa+2

wb−1 wp+1

Figure 2.2: To the left is the tree T ; a constant fraction of its length is not on P Ts,t. We break
these parts into pieces; the path-like piece C of degree 2, with fewer than 32εk vertices, is shown
in the box with the dashed lines. The right shows C in more detail, with vertices x and y at the
head and foot of the spine, and guessed vertices shown as diamonds.

S2 is incident in T to s, we add the edge between v1 = s′ and v2.) Note that any piece containing

isolated components becomes a leaf of T adjacent to s′.

Proposition 2.16. The tree T contains a vertex of degree 1 or 2 that corresponds to a piece

with length in [εL, 3εL), and containing at most 32εk vertices of the original tree T that are not

contained in other pieces.

Proof. The number of vertices in T (not including s′), is at least (1/5−2δ)L
3εL = 1

15ε −
2ε
3 ≥

1
16ε . At

least one more than half these vertices have degree 1 or 2, since T is a tree. If the union of all

isolated components has size less than εL, we discard the vertex corresponding to this piece; we

are left with at least 1/(32ε) vertices of degree 1 or 2. If each of them corresponds to a piece that

has more than 32εk vertices not in other pieces, the total number of vertices they contain is more

than k, which is a contradiction.

If T has a leaf that corresponds to a piece with at most 32εk vertices, we delete this piece from

T , giving us a tree T ′ with length at most (1 + δ)L − εL < L, with at least (1 − 32ε)k vertices.

Doubling the edges of T ′ not on its s-t path, we obtain an s-t walk that visits (1− 32ε)k vertices

and has length at most 2L−D, and we are done.

If there does not exist such a leaf, we can find a vertex of degree 2 in T , corresponding to

37

a connected subgraph/piece C of T \ P Ts,t, with length ` in [εL, 3εL), and at most 32εk vertices.

Deleting C from T gives us two trees T1 and T2; let T1 be the tree containing s and t. We can

reconnect the trees using the shortest path between them. If the length of this path is at most

` − δL, we have a new tree T ′ with length at most L, and containing at least (1 − 32ε)k vertices.

In this case, as before, we are done.

Therefore, we now assume that the shortest path in G that connects T1 and T2 has length

greater than `− δL, and use this fact repeatedly. (Recall that the total length of piece C is `.) One

consequence of this fact is that the piece C is path-like. That is, if x and y are the two vertices of

T − C with edges to C, the length of the path in C from x to y is more than ` − δL; we refer to

this path from x to y as the spine of the piece. (See Figure 2.2.) It follows that the total length of

edges in C that are not on the spine is less than δL. We also refer to the vertex x ∈ T1 adjacent

to C as the head of the spine, and y ∈ T2 adjacent to C as the foot of the spine. Finally, we say

that for any vertices p, q ∈ C, the distance along the spine between vertices p and q is the length

of those edges on the path between p and q that lie on the spine.

We assume for the moment that T2 contains at least one vertex that was guessed by the

algorithm of Theorem 2.14. Consider the highest-numbered guessed vertex wp in T2; where is the

next guessed vertex wp+1? It is not in T2 by definition, nor in T1 because the shortest path from T2

to T1 has length at least `− δL, and the edge wpwp+1 has length ≤ δL. Therefore, it must be in C.

Similarly, since δL� l−δL, the guessed vertices wp+2, wp+3, . . . must be in C. (In fact, there must

be at least `−δL
δL = Ω(1/ε) such consecutive guessed vertices in C.) Let wq be the highest-numbered

of these consecutive guessed vertices in C.

By an identical argument, if wb is the lowest-numbered guessed vertex in T2, wb−1, wb−2, . . .

must be in C. Let wa be the lowest-numbered of these consecutive guessed vertices, so that the

vertices wa, wa+1, . . . wb−2, wb−1 are all in C.

Remark 2.17. If T2 does not contain any guessed vertices, the procedure above is to be modified by

finding the guessed vertex w nearest the foot of the spine. Remove from C the path from w to the

foot, and those branches off the spine adjacent to this path; add these edges to the tree T2. Now, T2

contains a guessed vertex and we may continue; this does not change our proof in any significant

detail.

38

segment i

segment i+ 1

vlowi vhighi

vlowi+1 vhighi+1

Figure 2.3: Two consecutive segments.

We now break up the piece C into segments as follows: Starting from x, the head of the spine,

we cut C at distance 10δL along the spine from x. We repeat this process until the foot of the

spine, obtaining at least `−δL
10δL ≥

1
10ε −

1
10 segments. We discard the segment nearest x and the two

segments nearest y, and number the remaining segments from 1 to r consecutively from the head;

we have at least 1
10ε −

1
10 − 3 ≥ 1

15ε segments remaining. For each segment, we refer to the end

nearer x (the head of the spine) as the top of the segment, and the end nearer y as the bottom of

the segment.

We now restrict our attention to guessed vertices in the range wa to wb−1 and wp+1 through wq.

For each segment i, define vlowi to be the lowest-numbered guessed vertex in segments i through

r, and vhighi to be the highest-numbered guessed vertex in segments i through r. (See Figure 2.3

above.)

Lemma 2.18. For each i:

1. vlowi occurs before vlowi+1 in the optimal path, and vhighi occurs after vhighi+1 in the optimal path.

2. the distance along the spine from the top of segment i to each of vlowi and vhighi is at most

2δL.

3. the distance between vlowi and vlowi+1, is at least 7δL; the distance between vhighi and vhighi+1 is at

least 7δL.

Proof. We prove the statements for vlowi and vlowi+1; those for vhighi and vhighi+1 are symmetric. Our

proofs repeatedly use the fact (referred to earlier) that the shortest path from x to y does not save

more than δL over `, the length of C.

First, we claim that each segment contains some guessed vertex between wa and wb−1. Suppose

some segment i did not; let c be the first index greater than or equal to a such that wc is not above

39

segment i in the tree. (Since wa is above segment i, and wb below it, we can always find such an

index c.) Therefore, wc−1 is above segment i, and wc below it. We can now delete segment i, and

connect the tree up using the edge between wc−1 and wc; this edge has length at most δL. But

this gives us a path from x to y of length at most `− 10δL+ δL, which is a contradiction.

Now, let vlowi be the guessed vertex wj ; we claim that it is in segment i. Consider the location

of the guessed vertex wj−1. By definition, it is not in segments i through r; it must then be in

segments 1 through i − 1. If wj were not in segment i, we could delete segment i (decreasing the

length by 10δL) and connect x and y again via the edge between wj and wj−1, which has length

at most δL. Again, this gives us a path that is shorter by at least 9δL, leading to a contradiction.

Therefore, for all i, vlowi is in segment i.

Because the lowest-numbered guessed vertex in segments i through r is in segment i, it has a

lower number than the lowest-numbered guessed vertex in segments i+ 1 through r. That is, vlowi

occurs before vlowi+1 on the optimal path, which is the first part of the lemma.

We next prove that for all i, the distance along the spine from vlowi to the top of segment i is at

most 2δL. If this is not true, we could delete the edges of the spine from vlowi to the top of segment

i, and connect vlowi to the previous guessed vertex, which must be in segment i− 1. The deletion

decreases the length by at least 2δL, and the newly added edge costs at most δL, giving us a net

saving of at least δL; as before, this is a contradiction.

The final part of the lemma now follows, because we can delete the edges of the spine from vlowi

to the bottom of the segment (decreasing our length by at least 8δL), and if the distance from vlowi

to vlowi+1 were less than 7δL, we would save at least δL, giving a contradiction.

Now, for each segment i, define gain(i) to be the sum of the reward collected by the optimal

path between vlowi and vlowi+1 and the reward collected by the optimal path between vhighi+1 and vhighi .

Since these parts of the path are disjoint,
∑

i gain(i) ≤ k, and there are at least 1
15ε such segments,

there must exist some i such that gain(i) ≤ 15εk. By enumerating over all possibilities, we can

find such an i.

40

Contracting the Graph

We assume we have found a segment numbered i such that gain(i) ≤ 15εk. Consider the new

graph H formed from G by contracting together the 4 vertices vlowi , vhighi , vlowi+1 and vhighi+1 of G to

form a new vertex v′; we prove the following proposition.

Proposition 2.19. The graph H has a path of length at most L−14δL that visits at least (1−15ε)k

vertices.

Proof. Consider the optimal path P in G, and modify it to find a path PH in H by shortcutting

the portion of the path between vlowi and vlowi+1, and the portion of the path between vhighi+1 and

vhighi . Since gain(i) ≤ 15εk, the new path PH visits at least (1 − 15ε)k vertices. Further, since

the shortest-path distance from vlowi to vlowi+1 and the shortest-path distance from vhighi to vhighi+1 are

each ≥ 7δL, path PH has length at most L− 14δL.

Using the algorithm of [15], we can find a tree TH in H of total length at most L− 13δL with

at least (1 − 15ε)k vertices. This tree TH may not correspond to a tree of G (if it uses the new

vertex v′). However, we claim that we can find a tree Ti in G of length at most 13δL, that includes

each of vlowi , vhighi , vlowi+1, vhighi+1 . We can combine the two trees TH and Ti to form a tree T ′ of G,

with total length L.

Proposition 2.20. There is a tree Ti in G containing vlowi , vhighi , vlowi+1 and vhighi+1 , of total length

at most 13δL.

Proof. We use all of segment i, and enough of segment i+ 1 to reach vlowi+1 and vhighi+1 . The edges of

segment i along the spine have length ≤ 10δL, vlowi+1 and vhighi+1 each have distance along the spine

at most 2δL from the top of segment i + 1 (by Lemma 2.18). Finally, the total length of all the

edges in the piece C not on the spine is at most δL. Therefore, to connect all of vlowi , vhighi , vlowi+1

and vhighi+1 , we must use edges of total length at most (10 + 2 + 1)δL = 13δL.

We can now complete the proof of Theorem 2.12:

Proof of Theorem 2.12. Set ε′ = ε/32 and run the algorithm of [42] with δ = ε′2 to obtain

a k-vertex tree T of length at most (1 + δ)L. If either of the easy doubling conditions holds, we

41

can double all the edges of T not on its s-t path to obtain a new s-t walk visiting k vertices, with

length at most max{1.5D, 2L−D}.

If neither of the easy doubling conditions holds, use T to obtain T ′ containing s and t, with

length at most L and at least (1− 32ε′)k vertices. Doubling edges of T ′ not on its s-t path, we find

a new s-t path visiting (1− 32ε′)k = (1− ε)k vertices, of length at most 2L−D. �

2.4 Orienteering in Directed Graphs

We give an algorithm for Orienteering in directed graphs, based on a bi-criteria approximation

for the (rooted) k-TSP problem: Given a graph G, a start vertex s, and an integer k, find a cycle

in G of minimum length that contains s and visits k vertices. We assume that G always contains

such a cycle; let OPT be the length of a shortest such cycle. We assume knowledge of the value of

OPT, and that G is complete, with the arc lengths satisfying the asymmetric triangle inequality.

Our algorithm finds a cycle in G containing s that visits at least k/2 vertices, and has length

at most O(log2 k) · OPT. The algorithm gradually builds up a collection of strongly connected

components. Each vertex starts as a separate component, and subsequently components are merged

to form larger components. The main idea of the algorithm is to find low density cycles that visit

multiple components, and use such cycles to merge components. (The density of a cycle C is

defined as its length divided by the number of vertices that it visits; there is a polynomial-time

algorithm to find a minimum-density cycle in directed graphs.) While merging components, we

keep the invariant that each component is strongly connected and Eulerian, that is, each arc of the

component can be visited exactly once by a single closed walk.

We note that this technique is similar to the algorithms of [86, 116] for ATSP; however, the

difficulty is that a k-TSP solution need not visit all vertices of G and the algorithm is unaware of

the vertices to visit. We deal with this using two tricks. First, we force progress by only merging

components of similar size, hence ensuring that each vertex only participates in a logarithmic

number of merges — when merging two trees or lists, one can charge the cost of merging to the

smaller side, however when merging multiple components via a cycle, there is no useful notion of a

smaller side. Second, we are more careful about picking representatives for each component; picking

an arbitrary representative vertex from a component does not work. A variant that does work is to

42

BuildComponents:
for (each i in {0, 1, . . . , blog2(k/4 log2 k)c}) do:

For each component in tier i
(Arbitrarily) assign each vertex a distinct color in {1, . . . , 2i+1 − 1}.

Let {V ij | j = 1, . . . , 2i+1 − 1} be the resulting color classes.
Let H i

j be the subgraph of G induced by the vertex set V ij .
While (there is a cycle C of density at most α · 2i in some graph H i

j)
Let v1, . . . , vl be the vertices of H i

j visited by C
Let vp belong to component Cp, 1 ≤ p ≤ l
(Two vertices of H i

j never share a component, so C1, . . . , Cl are distinct.)
Form a new component C by merging C1, . . . , Cl using C
(C must belong to a higher tier)
Remove all vertices of C from the graphs H i

j′ for j′ ∈ {1, . . . , 2i+1 − 1}.

contract each component to a single vertex, however, this loses an additional logarithmic factor in

the approximation ratio since an edge in a contracted vertex may have to be traversed a logarithmic

number of times in creating a cycle in the original graph. To avoid this, our algorithm ensures

components are Eulerian. One option is to pick a representative from a component randomly and

one can view our coloring scheme described below as a derandomization.

We begin by pre-processing the graph to remove any vertex v such that the sum of the distances

from s to v and v to s is greater than OPT; such a vertex v obviously cannot be in an optimum

solution. Each remaining vertex initially forms a component of size 1. As components combine,

their sizes increase; we use |X| to denote the size of a component X, i.e. the number of vertices

in it. We assign the components into tiers by size; components of size |X| will be assigned to tier

blog2 |X|c. Thus, a tier i component has at least 2i and fewer than 2i+1 vertices; initially, each

vertex is a component of tier 0. For ease of notation, we use α to denote the quantity 4 log k·OPT/k.

In the main phase of the algorithm, we will iteratively push components into higher tiers, until

we have enough vertices in large components, that is, components of size at least k/4 log k. The

procedure BuildComponents (above) implements this phase. Once we have amassed at least

k/2 vertices belonging to large components, we finish by attaching a number of these components

to the root s via direct arcs. Before providing the details of the final phase of the algorithm, we

establish some properties of the algorithm BuildComponents.

Lemma 2.21. Throughout the algorithm, all components are strongly connected and Eulerian. If

43

any component X was formed by combining components of tier i, the sum of the lengths of arcs in

X is at most (i+ 1)α|X|.

Proof. Whenever a component is formed, the newly added arcs form a cycle in G. It follows

immediately that every component is strongly connected and Eulerian. We prove the bound on arc

lengths by induction.

Let C be the low-density cycle found on vertices v1, v2, . . . vl that connects components of tier

i to form the new component X. Let C1, C2, . . . Cl be the components of tier i that are combined

to form X. Because the density of C is at most α2i, the total length of the arcs in C is at most

α2il. However, each tier i component has at least 2i vertices, and so |X| ≥ 2il. Therefore, the total

length of arcs in C is at most α|X|.

Now, consider any component Ch of tier i; it was formed by combining components of tier at

most i− 1, and so, by the induction hypothesis, the total length of all arcs in component Ch is at

most iα|Ch|. Therefore, the total length of all arcs in all the components combined to form X is

iα
∑l

h=1 |Ch| = iα|X|. Together with the newly added arcs of C, which have weight at most α|X|,

the total weight of all arcs in component X is at most (i+ 1)α|X|.

Let O be a fixed optimum cycle, and let o1, . . . , ok be the vertices it visits.

Lemma 2.22. At the end of iteration i of BuildComponents, at most k
2 log k vertices of O remain

in components of tier i.

Proof. Suppose that more than k
2 log k vertices of O remain in tier i at the end of the ith iteration.

We show a low-density cycle in one of the graphs H i
j , contradicting the fact that the while loop

terminated because it could not find any low-density cycle: Consider the color classes V ij for

j ∈ {1, . . . , 2i+1 − 1}. By the pigeonhole principle, one of these classes has to contain more than

k/(2 log k · 2i+1) vertices of O.9 We can “shortcut” the cycle O by visiting only these vertices; this

new cycle has cost at most OPT and visits at least two vertices. Therefore, it has density less than

(2i+2 ·OPT log k)/k, which is 2i · α. Hence, the while loop would not have terminated.

We call a component large, if it has at least k/4 log k vertices. Since we lose at most k
2 log k

9The largest value of i used is such that k/2 log k · 2i+1 ≥ 1, so there are always at least 2 vertices in this color
class.

44

vertices of O in each iteration, and there are fewer than log k iterations, we must have at least k/2

vertices of O in large components after the final iteration.

Theorem 2.23. There is an O(n4)-time algorithm that, given a directed graph G and a vertex s,

finds a cycle with k/2 vertices rooted at s, of length O(log2 k)OPT, where OPT is the length of an

optimum k-TSP tour rooted at s.

Proof. Run the algorithm BuildComponents, and consider the large components; at least k/2

vertices are contained in these components. Greedily select large components until their total

size is at least k/2; we have selected at most 2b(log k)c components. For each component, pick

a representative vertex v arbitrarily, and add arcs from s to v and v to s; because of our pre-

processing step (deleting vertices far from s), the sum of the lengths of newly added arcs for

each representative is at most OPT. Therefore, the total length of newly added arcs (over all

components) is at most 2 log k · OPT. The large components selected, together with the newly

added arcs, form a connected Eulerian component H, containing s. Let k′ ≥ k/2 be the number of

vertices of H. From Lemma 2.21, we know that the sum of the lengths of arcs in H (not counting

the newly added arcs) is at most (log k− 1)αk′. With the newly aded arcs, the total length of arcs

of H is at most 4 log2 k ·OPT× k′/k. Since H is Eulerian, there is a cycle of at most this length

that visits each of the k′ vertices of H.

If, from this cycle, we pick a segment of k/2 consecutive vertices uniformly at random, the

expected length of this segment will be 2 log2 kOPT. Hence, the shortest segment containing k/2

vertices has length at most 2 log2 k ·OPT. Concatenate this with the arc from s to the first vertex

of this segment (paying at most OPT), and the arc (again of cost ≤ OPT) from the last vertex to

s; this gives us a cycle that visits at least k/2 vertices, and has cost less than 3 log2 k ·OPT.

The running time of this algorithm is dominated by the time to find minimum-density cycles,

each of which takes O(nm) time [4], where n and m are the number of vertices and edges respec-

tively. The algorithm makes O(n) calls to the cycle-finding algorithm which implies the desired

O(n4) bound.

By using the algorithm from Theorem 2.23 greedily log k times, we obtain the following corollary.

Corollary 2.24. There is an O(log3 k) approximation for the rooted k-TSP problem in directed

45

graphs.

Theorem 2.25. There is an O(n4)-time algorithm that, given a directed graph G and nodes s, t,

finds an s-t path of length 3OPT containing Ω(k/ log2 k) vertices, where OPT is the length of an

optimal k-Stroll from s to t.

Proof. We pre-process the graph as before, deleting any vertex v if the sum of the distance from s

to v and the distance from v to t is greater than OPT. In the remaining graph, we consider two

cases: If the distance from t to s is at most OPT, we leave the graph unmodified. Otherwise, we

add a ‘dummy’ arc from t to s of length OPT. Now, there is a cycle through s that visits at least

k vertices, and has length at most 2OPT. We use the previous theorem to find a cycle through

s that visits k/2 vertices and has length less than 6 log2 kOPT. Now, break this cycle up into

consecutive segments, each containing bk/(12 log2 k)c vertices (except possibly the last, which may

contain more). One of these segments has length less than OPT; it follows that this part cannot

use the newly added dummy arc. We obtain a path from s to t by beginning at s and taking the

shortest path to the first vertex in this segment; this has length at most OPT. We then follow the

cycle until the last vertex of this segment (again paying at most OPT), and then take the shortest

path from the last vertex of the segment to t. The total length of this path is at most 3OPT, and

it visits at least bk/(12 log2 k)c vertices.

We can now complete the proof of Theorem 2.2, showing that there is an O(log2 OPT) approxi-

mation for Orienteering in directed graphs.

Proof of Theorem 2.2. As mentioned in Section 2.2, Lemmas 2.10 and 2.11 can be extended to

show that an (α, β)-bi-criteria approximation to the directed k-Stroll problem can be used to get

an (α · d2β − 1e)-approximation to the Orienteering problem on directed graphs. Theorem 2.25

gives us a (O(log2 k, 3)-approximation to the the directed k-Stroll problem, which implies that

there is a polynomial-time O(log2 OPT)-approximation algorithm for the directed Orienteering

problem. �

46

2.5 Orienteering with Time Windows

Much of the prior work on Orient-TW, following [25], can be cast in the following general frame-

work: Use combinatorial methods to reduce the problem to a collection of sub-problems where the

time-windows can be ignored. Each sub-problem has a subset of vertices V ′, start and end vertices

s′, t′ ∈ V ′, and a time-interval I in which we must travel from s′ to t′, visiting as many vertices of

V ′ within their time windows as possible. However, the sub-problem is constructed such that the

time-window for every vertex in V ′ entirely contains the interval I. Therefore, the sub-problem

is really an instance of Orienteering (without time-windows). An approximation algorithm for

Orienteering can be used to solve each sub-problem, and these solutions can be pasted together

using dynamic programming. The next subsection describes this framework in more detail.

We use the same general framework; as a consequence, our results apply to both directed and

undirected graphs; while solving a sub-problem we use either the algorithm for Orienteering

on directed graphs, or the algorithm for undirected graphs. Better algorithms for either of these

problems would immediately translate into better algorithms for Orient-TW.

Subsequently, we use α to denote the approximation ratio for Orienteering, and state our

results in terms of α; from the previous sections, α is O(1) for undirected graphs and O(log2 OPT)

for directed graphs.

Recall that Lmax and Lmin are the lengths of the longest and shortest time time-windows

respectively, and L is the ratio Lmax
Lmin

. We first provide two algorithms with the following guarantees:

• O(α logLmax), if the release time and deadline of every vertex are integers.

• O(α log OPT), if L ≤ 2.

We note that the first algorithm is already an improvement over the O(logDmax)-approximation

of [25], and as mentioned in the introduction, our algorithm has the advantages that it can also be

used in directed graphs, and is for the point-to-point version of the problem. The second algorithm

immediately leads to an O(α·log OPT×logL)-approximation for the general time-window problem,

which is already an improvement on O(α log2 OPT) when the ratio L is small. However, we can

combine the first and second algorithms to obtain an O(αmax{log OPT, logL})-approximation for

Orient-TW.

47

Throughout this section, we use R(v) and D(v) to denote (respectively) the release time and

deadline of a vertex v. We also use the word interval to denote a time window; I(v) denotes the

interval [R(v), D(v)]. Typically, we use ‘time-window’ when we are interested in the start and end

points of a window, and ‘interval’ when we think of a window as an interval along the ‘time axis’.

For any instance X of Orient-TW, we let OPT(X) denote the reward collected by an optimal

solution for X. When the instance is clear from context, we use OPT to denote this optimal

reward.

2.5.1 The General Framework

As described at the beginning of this section, the general method to solve Orient-TW is to reduce

the problem to a set of sub-problems without time-windows. Given an instance of Orient-TW on

a graph G(V,E), suppose {V1, V2, . . . Vm} partition V , and we can associate times Ri and Di with

each Vi such that each of the following conditions holds:

• For each v ∈ Vi, R(v) ≤ Ri and D(v) ≥ Di.

• For 1 ≤ i < m, Di < Ri+1.

• An optimal solution visits any vertex in Vi during [Ri, Di].

Then, we can solve an instance of Orienteering in each Vi separately, and combine the solutions

using dynamic programming. The approximation ratio for such “composite” solutions would be the

same as the approximation ratio for Orienteering. We refer to an instance of Orient-TW in

which we can construct such a partition of the vertex set (and solve the sub-problems separately)

as a modular instance. Later, we describe a dynamic program that can solve modular instances.

Unfortunately, given an arbitrary instance of Orient-TW, it is unlikely to be a modular

instance. Therefore, we define restricted versions of a given instance:

Definition 2.26. Let A and B be instances of Orient-TW on the same underlying graph (with

the same edge-weights), and let IA(v) and IB(v) denote the intervals for vertex v in instances A

and B respectively. We say that B is a restricted version of A if, for every vertex v, IB(v) is a

sub-interval of IA(v).

48

Clearly, a walk that gathers a certain reward in a restricted version of an instance will gather

at least that reward in the original instance. We attempt to solve Orient-TW by constructing a

set of restricted versions that are easier to work with. Typically, the construction is such that the

reward of an optimal solution in at least one of the restricted versions is a significant fraction of

the reward of an optimal solution in the original instance. Hence, an approximation to the optimal

solution in the ‘best’ restricted version leads us to an approximation for the original instance.

This idea leads us to the next proposition, the proof of which is straightforward, and hence

omitted.

Proposition 2.27. Let A be an instance of Orient-TW on a graph G(V,E). If B1, B2, . . . Bβ

are restricted versions of A, and for all vertices v ∈ V , IA(v) =
⋃

1≤i≤β IBi(v), there is some Bj

such that OPT(Bj) ≥ OPT(A)
β .

The restricted versions we construct will usually be modular instances of Orient-TW. There-

fore, the general algorithm for Orient-TW is:

1. Construct a set of β restricted versions of the given instance; each restricted version is a

modular instance.

2. Pick the best restricted version (enumerate over all choices), find an appropriate partition,

and use an α-approximation for Orienteering together with dynamic programming to solve

that instance.

It follows from the previous discussion that this gives a (α × β)-approximation for Orient-TW.

We next describe how to solve modular instances of Orient-TW.

A dynamic program for modular instances

Recall that a modular instance is an instance of Orient-TW on a graph G(V,E) in which the

vertex set V can be partitioned into V1, V2, . . . Vm, such that an optimal solution visits vertices of

Vi after time Ri and before Di. For any vertex v ∈ Vi, R(v) ≤ Ri and D(v) ≥ Di. Further, vertices

of Vi are visited before vertices of Vj , for all j > i.

To solve a modular instance, for each Vi we could ‘guess’ the first and last vertex visited by an

optimal solution, and guess the times at which this solution visits the first and last vertex. If α is

49

the approximation ratio of an algorithm for orienteering, we find a path in each Vi that collects an

α-fraction of the optimal reward, and combine these solutions.

More formally, one could use the following dynamic program: For any u, v ∈ Vi, consider the

graph induced by Vi, and let OPT(u, v, t) denote the optimal reward collected by any walk from u

to v of length at most t (ignoring time-windows). Now, define Πi(v, T) for v ∈ Vi, Ri ≤ T ≤ Di as

the optimal reward collected by any walk in G that begins at s at time 0, and ends at v by time

T . Given OPT(u, v, t), the following recurrence allows us to easily compute Πi(v, T):

Πi(v, T) = max
u∈Vi,w∈Vi−1,t≤T−Ri

OPT(u, v, t) + Πi−1(w, T − t− d(w, u)).

Of course, we cannot exactly compute OPT(u, v, t); instead, we use an α-approximation algo-

rithm for Orienteering to compute an approximation to OPT(u, v, t) for all u, v ∈ Vi, t ≤ Di−Ri.

This gives an α-approximation to Πi(v, T) using the recurrence above.

Unfortunately, the running time of this algorithm depends polynomially on T ; this leads to a

pseudo-polynomial algorithm. To obtain a polynomial-time algorithm, we use a standard technique

of dynamic programming based on reward instead of time (see [31, 57]). Using standard scaling

tricks for maximization problems, one can reduce the problem with arbitrary rewards on the vertices

to the problem where the reward on each vertex is 1; the resulting loss in approximation can be

made (1 + o(1)). Thus, the maximum reward is n.

To construct a dynamic program based on reward instead of time, we wish to find, for each

u, v ∈ Vi and each ki ∈ [0, |Vi|], an optimal (shortest) walk from u to v that collects reward at least

ki. However, we cannot do this exactly. One could try to find an approximately shortest u − v

walk collecting reward ki, but this does not lead to a good solution overall: taking slightly too

much time early on can have bad consequences for later groups Vj . Instead, we “guess” the length

(using binary search over the maximum walk length in G) of an optimal walk that obtains reward

ki, and for each guess use the α-approximate Orienteering algorithm. This guarantees that if

there is a u-v walk of length B that collects reward ki, then we find a u-v walk of length at most

B that collects reward at least ki/α. Finally, to obtain the desired approximation for the entire

instance, we stitch together the solutions from each Vi using a dynamic program very similar to

the one described above based on time.

50

2.5.2 The Algorithms

Using the framework described above, we now develop algorithms which achieve approximation

ratios depending on the lengths of the time-windows. We first consider instances where all time-

windows have integral end-points, and then instances for which the ratio L = Lmax
Lmin

is bounded.

Finally, we combine these ideas to obtain an O(αmax{log OPT, logL})-approximation for all in-

stances of Orient-TW.

An O(α logLmax)-approximation when Interval Endpoints are Integral

We now focus on instances of Orient-TW in which, for all vertices v, R(v) and D(v) are integers.

Our algorithm is based on the following simple lemma:

Lemma 2.28. Any interval of length M > 1 with integral endpoints can be partitioned into at

most 2blogMc disjoint sub-intervals, such that the length of any sub-interval is a power of 2, and

any sub-interval of length 2i begins at a multiple of 2i. Further, there are at most 2 sub-intervals

of each length.

Proof. Use induction on the length of the interval. The lemma is clearly true for intervals of length

2 or 3. Otherwise, use at most 2 sub-intervals of length 1 at the beginning and end of the given

interval, so that the residual interval (after the sub-intervals of size 1 are deleted) begins and ends

at an even integer. To cover the residual interval, divide all integers in the (residual) problem by

2, and apply the induction hypothesis; we use at most 2 + (2blogM/2c) ≤ 2blogMc sub-intervals

in total. It is easy to see that we use at most 2 sub-intervals of each length; intervals of length 2i

are used at the (i+ 1)th level of recursion.

For ease of notation, we let ` denote blogLmaxc for the rest of this sub-section, and assume

for ease of exposition that Lmax ≥ 2. Given an instance of Orient-TW, for each vertex v with

interval I(v), we use Lemma 2.28 to partition I(v) into at most 2` sub-intervals. We label the

sub-intervals of I(v) as follows: For each 1 ≤ i ≤ `, the first sub-interval of length 2i is labeled

I1
i (v) and the second sub-interval I2

i (v). (Note that there may be no sub-intervals of length 2i.)

We now construct a set of at most 2` restricted versions of the given instance. We call these

restricted versions B1
1 , B

1
2 , . . . B

1
` and B2

1 , B
2
2 , . . . B

2
` , such that the interval for vertex v in Bb

i is

51

Ibi (v). If Ibi (v) was not an interval used in the partition of I(v), v is not present in the restricted

version. (Equivalently, it has reward 0 or an empty time-window.)

Consider an arbitrary restricted instance Bb
i . All vertices in this instance of Orient-TW have

intervals of length 2i, and all time-windows begin at an integer that is a multiple of 2i. Hence,

any 2 vertices either have time-windows that are identical, or entirely disjoint. This means that

Bb
i is a modular instance, so we can break it into sub-problems, and use an α-approximation to

Orienteering in the sub-problems to obtain an α-approximation for the restricted instance.

By Proposition 2.27, one of the restricted versions has an optimal solution that collects reward at

least OPT
2` . Using an α-approximation for this restricted version gives us an α×2` = O(α logLmax)-

approximation for Orient-TW when all interval endpoints are integers.

An O(α log OPT)-approximation when L ≤ 2

For an instance of Orient-TW when L = Lmax
Lmin

≤ 2, we begin by scaling all release times,

deadlines, and edge lengths so that Lmin = 1 (and so Lmax ≤ 2). Note that even if all release

times and deadlines were integral prior to scaling, they may not be integral in the scaled version;

after scaling, all interval lengths are in [1, 2].

For each vertex v, we partition I(v) = [R(v), D(v)] into 3 sub-intervals: I1(v) = [R(v), a],

I2(v) = [a, b], and I3(v) = [b,D(v)], where a = bR(v) + 1c (that is, the next integer strictly greater

than the release time) and b = dD(v) − 1e (the greatest integer strictly less than the deadline).

The figure below illustrates the partitioning of intervals. Note that I2(v) may be a point, and in

this case, we ignore such a sub-interval.

0 1 2 3 4 5 6

I1(u) I2(u) I3(u) I1(v) I3(v)

Figure 2.4: The partitioning of 2 intervals into sub-intervals. Note that on the right, I2(v) is
empty.

We now construct 3 restricted versions of the given instance — B1, B2, and B3 — such that

the interval for any vertex v in Bi is simply Ii(v). By Proposition 2.27, one of these has an optimal

52

solution that collects at least a third of the reward collected by an optimal solution to the original

instance. Suppose this is B2. All time-windows have length exactly 1, and start and end-points are

integers. Therefore, B2 is a modular instance, and we can get an α-approximation to the optimal

solution in B2; this gives a 3α-approximation to the original instance.

Dealing with B1 and B3 is not nearly as easy; they are not quite modular. Every interval in B1

has length at most 1, and ends at an integer; for B3, intervals have length at most 1 and start at

an integer. We illustrate how to approximate a solution for B3 within a factor of O(α log OPT);

the algorithm for B1 is identical except that release times and deadlines are to be interchanged.

For B3, we can partition the vertex set into V1, V2, . . . Vm, such that all vertices in Vi have the

same (integral) release time, and any vertex in Vi is visited before any vertex in Vj for j > i.

Figure 2.5 shows such a partition. The deadlines for vertices in Vi may be all distinct. However, we

can solve an instance of Orient-Deadline in each Vi separately, and paste the solutions together

using dynamic programming. The solution we obtain will collect at least Ω(1/α log OPT) of the

reward of an optimal solution for B3, since there is a O(log OPT)-approximation for Orient-

Deadline ([25]). Therefore, this gives us a 3×O(α log OPT) = O(α log OPT)-approximation to

the original instance.

0 1 2 3 4 5

V1

V2
V3

Figure 2.5: In B3, all time-windows start at an integer and have length at most 1. Each setof
vertices whose windows have a common beginning corresponds to a sub-problem that is an
instance of orienteering with deadlines.

Similarly, we can use the O(log OPT)-approximation for Orienteering with release times to

obtain an O(α log OPT)-approximation for B1 . Therefore, when L ≤ 2, we have an O(α log OPT)-

approximation for Orient-TW.

53

Putting the pieces together

An arbitrary instance of Orient-TW may have L > 2, and interval end-points may not be

integers. However, we can combine the algorithms from the two preceding sections to deal with such

instances. We begin by scaling release times, deadlines, and edge lengths such that the shortest

interval has length 1; the longest interval now has length L = Lmax
Lmin

, where Lmax and Lmin are the

lengths of the longest and shortest intervals in the original instance.

We now construct 3 restricted versions of the scaled instance: B1, B2, and B3. For any vertex

v with interval [R(v), D(v)] in the scaled instance, we construct 3 sub-intervals. If the interval

for v has length less than 2, we set I1(v) = [R(v), D(v)], and I2(v) = I3(v) = ∅. Otherwise,

I1(v) = [R(v), a], I2(v) = [a, b], and I3(v) = [b,D(v)], where a = dR(v) + 1e and b = bD(v) − 1c.

As before, the interval for v in the instance Bi is Ii(v).

One of the restricted versions collects at least a third of the reward of the original instance.

Suppose this is B1 or B3. All intervals in B1 and B3 have length between 1 and 2 by our con-

struction. Therefore, we can use the O(α log OPT)-approximation algorithm from section 2.5.2 to

collect at least Ω(1/α log OPT) of the reward of an optimal solution to the original instance. It

now remains only to consider the case that B2 collects more than a third of the reward. In B2, the

end-points of all time-windows are integral, and the longest interval has length less than L. We

can now use the algorithm of section 2.5.2 to obtain an O(α logL)-approximation.

Therefore, our combined algorithm is an O(αmax{log OPT, logL})-approximation for Orient-

TW, proving Theorem 2.4.

2.5.3 Towards a Better Approximation, and Arbitrary Endpoints

In the previous sub-section, we obtained an approximation ratio of O(αmax{log OPT, logL}); we

would like to improve this ratio to O(α log OPT). Unfortunately, it does not seem easy to do

this directly. A natural question, then, would be to obtain a ratio of O(α logL); this is equivalent

to an O(α) approximation for the case when L ≤ 2. However, this is is no easier than finding

an O(α log OPT)-approximation for arbitrary instances of Orient-TW, as we show in the next

proposition.

54

Proposition 2.29. An O(α) approximation algorithm for Orient-TW with L ≤ 2 implies an

O(α log OPT)-approximation for general instances of Orient-TW.

Proof. We show that an O(α) approximation when L ≤ 2 implies an O(α) approximation for

Orient-Deadline. It follows from an algorithm of [25] that we can then obtain an O(α log OPT)-

approximation for Orient-TW.

Given an arbitrary instance of Orient-Deadline on graph G(V,E), we add a new start vertex

s′ to G. Connect s′ to s with an edge of length Dmax = maxvD(v). The release time of every

vertex is 0, but all deadlines are increased by Dmax. Observe that all vertices have time-windows

of length between Dmax and 2Dmax, so L ≤ 2. It is easy to see that given any walk beginning at

s in the original instance, we can find an equivalent walk beginning at s′ in the modified instance

that visits a vertex in its time-window iff the original walk visited a vertex before its deadline in

the given instance, and vice versa. Therefore, an O(α) approximation for the modified instance of

Orient-TW gives an O(α) approximation for the original instance of Orient-Deadline.

We can, however, obtain an O(α)-approximation for Orient-TW when L ≤ 2 if we remove

the restriction that the walk must start and end at s and t, the specified endpoints. The algorithm

of [85] for the case of L = 1 can be adapted relatively easily to give an O(α) approximation for

L ≤ 2. For completeness, we sketch the algorithm here.

We construct 5 restricted versions B1, . . . B5, of a given instance A. For every vertex v, we

create at most 5 sub-intervals of I(v) by breaking it at every multiple of 0.5. (For instance [3.7, 5.6]

would be broken up into [3.7, 4], [4, 4.5], [4.5, 5], [5, 5.5], [5.5, 5.6]. Note that some intervals may have

fewer than 5 sub-intervals.) The interval for v in B1(v) is the first sub-interval, and the interval in

B5(v) is the last sub-interval, regardless of whether I(v) has 5 sub-intervals. B2, B3, and B4 each

use one of any remaining sub-intervals.

B2, B3, and B4 are modular instances, so if one of them is the best restricted version of A,

we can use an α-approximation for orienteering to get reward at least OPT(A)
5α . Exactly as in

Section 2.5.2, B1 and B5 are not quite modular instances; in B1, all deadlines are half-integral but

release times are arbitrary, and in B5, all release times are half-integral, but deadlines are arbitrary.

Suppose that B1 is the best restricted version. The key insight is that if the optimal walk in B1

collects a certain reward starting at s at time 0, there is a walk in B2 starting at s at time 0.5 that

55

collects the same reward. (This is the substance of Theorem 1 of [85].) Therefore, if B1 is the best

restricted version, we find an α-approximation to the best walk in B2 starting at s at time 0.5; we

are guaranteed that this walk collects reward at least OPT(A)
5α . Note that this walk may not reach

the destination vertex t by the time limit, since we start 0.5 time units late. Similarly, if B5 is the

best restricted version, we can find a walk in B4 that collects reward OPT(A)
5α while beginning at s

at time −0.5. (To avoid negative times, we can begin the walk at s′ at time 0, where s′ is the first

vertex visited by the original walk after time 0.) This walk is guaranteed to reach t by the time

limit, but does not necessarily begin at s.

Therefore, this algorithm is anO(α)-approximation when L ≤ 2, or anO(α logL)-approximation

for general instances of Orient-TW. We note that one cannot use this with Proposition 2.29 to get

an O(α log OPT)-approximation for the variant of Orient-TW where start/end vertices are not

specified: The dynamic program for modular instances crucially uses the fact that we can specify

both endpoints for the sub-problems.

2.6 Concluding Remarks

In this chapter, we gave an improved constant-factor approximation algorithm for Orienteering

in undirected graphs, and the first polynomial-time approximation algorithm for Orienteering in

directed graphs. These results were based on new algorithms for related problems such as k-Stroll

and k-TSP. Also, the algorithms presented in this chapter can be combined with previously known

techniques [31, 25, 56] to obtain the following results:

• A (4+ε) approximation for the Max-Prize Tree problem in undirected graphs: Find a tree

rooted at a given vertex s of total length at most B that maximizes the number of vertices

in the tree. This improves the 6-approximation in [31, 25].

• A (3 + ε) approximation for Orient-TW when there are a fixed number of time windows;

this improves a ratio of 4 from [56].

We also considered Orient-TW, and gave an O(αmax{log OPT, logL}) approximation in

both directed and undirected graphs, where α denotes the approximation ratio for Orienteering.

Particularly in undirected graphs, this goes some way to proving Conjecture 2.3, that there is an

56

O(log OPT)-approximation for Orient-TW. Specifically, our results imply that for hard instances

of Orient-TW, any near-optimal solution must visit many vertices of widely differing time lengths.

We believe that our insights will aid in resolving the conjecture.

One problem with most current approaches to Orient-TW is that the algorithms for Orient-

TW use the Orienteering algorithm in a black-box fashion. For directed graphs the current

ratio for Orienteering is O(log2 OPT) and hence the ratio for Orient-TW is worse by addi-

tional logarithmic factors. Can one avoid using Orienteering as a black-box? We note that the

quasi-polynomial time algorithm of [57] deals with time windows directly, and hence has the same

approximation ratio of O(log OPT) for both the basic orienteering and time-window problems in

directed graphs.

Besides obtaining improved algorithms, it would be of interest to show that Orienteering

and related problems are hard to approximate. Blum et al. [31] showed that Orienteering is

APX -Hard; in particular, they proved that it is NP-Hard to obtain an approximation ratio better

than 1481/1480 ≈ 1.0007. Few additional hardness of approximation results are known. In fact, no

super-constant hardness is known even for Orient-TW in directed graphs, where the best current

approximation ratio is O(log4 OPT)! We believe it should be possible to narrow this large gap

between the upper and lower bounds on the approximability of Orient-TW.

Finally, we list a few additional open problems:

1. Is there a 2-approximation for Orienteering in undirected graphs? In addition to matching

the known ratios for k-MST and k-TSP [88], this may lead to a more efficient algorithm than

the one presented in this chapter.

2. Is there an O(1) approximation for Orienteering in directed graphs?

3. What is the approximability of k-Stroll in directed graphs? Until this year, when Bateni and

Chuzhoy [27] gave a min{O(log2 n log k/ log logn), O(log4 k)}-approximation, only bi-criteria

approximation algorithms were known. A natural question is whether their techniques or

others can be extended to obtain an O(log2 n) or O(log2 k)-approximation, matching the

approximation ratio for Orienteering.

57

4. Our (2 + ε) approximation for Orienteering gives a (4 + ε) approximation to the Max-

Prize Tree problem defined above ; a 3 approximation for the unrooted version follows from

[42]. Can the approximation factor for the rooted version be improved to 3, or (2 + ε)?

5. For many applications, each vertex has multiple disjoint time-windows, and we receive credit

for a vertex if we visit it within any of its windows. If each vertex has at most k windows, a

näıve algorithm loses an extra factor of k beyond the ratio for Orient-TW, but no better

approximation is known. Any non-trivial result would be of interest. We note that the quasi-

polynomial time O(log OPT)-approximation of [57] obtains this same approximation ratio

even for the problem where each vertex has multiple disjoint time windows.

58

Chapter 3

Finding 2-Connnected Subgraphs
of a Prescribed Size

3.1 Introduction 1

Problems related to finding low-cost connected subgraphs containing many vertices arise naturally

in connectivity and network design, and have numerous applications. Perhaps the best known ex-

ample is Minimum Spanning Tree, where the goal is to find a minimum-cost connected subgraph

containing all the vertices of a given graph. Another such problem is the k-MST problem, intro-

duced by Ravi et al. [142]: Given an edge-weighted graph G and an integer k, the goal is to find a

minimum-cost subgraph (without loss of generality, a tree) of G that contains at least k vertices. It

is not hard to see that the k-MST problem is at least as hard as the Steiner Tree problem; more-

over an α-approximation for the k-MST problem implies an α-approximation for Steiner Tree.

The k-MST problem has attracted considerable attention in the approximation algorithms litera-

ture and its study has led to several new algorithmic ideas and applications [20, 87, 15, 88, 42, 31].

Closely related to the k-MST problem is the budgeted or Max-Prize Tree problem [112, 31];

here we are given G and a budget B, and the goal is to find a subgraph H of G of total cost no

more than B, that maximizes the number of vertices (or terminals) in H. Interestingly, it is only

recently that the rooted version of Max-Prize Tree was shown to have an O(1)-approximation

[31], although an O(1) approximation was known for the k-MST problem much earlier [32].

Algorithms for k-MST and Max-Prize Tree are extremely useful in the design of algorithms

for more complex problems. As merely one example, the best algorithms for the k-Stroll problem,

defined in Chapter 2, are derived from approximation algorithms for k-MST. (See Theorem 2.14 in

Section 2.3.2, for instance.) This approach also leads to improved algorithms for the Min-Excess

and Orienteering problems, as discussed in Chapter 2. In addition to their theoretical interest,
1This chapter is based on joint work with Chandra Chekuri, and has appeared in [54].

59

problems such as k-MST and Max-Prize Tree are partly motivated by applications in network

design and related areas where one may want to build low-cost networks including (or servicing)

many clients, but there are constraints such as a budget on the network cost, or a minimum quota

on the number of clients. However, a network with a tree-like topology is far from robust; the

failure of any edge will leave it disconnected. Thus, if fault-tolerance is desired, there is a need for

large, low-cost networks with higher connectivity.

Recently, Lau et al. [126] considered the natural generalization of k-MST to higher connectivity.

In particular they defined the (k, λ)-Subgraph problem to be the following: Find a minimum-cost

subgraph of the given graph G that contains at least k vertices and is λ-edge connected. We use

the notation k-λEC to refer to this problem. In [126, 127] a poly-logarithmic approximation was

derived for the k-2EC problem. In this chapter, we consider the vertex-connectivity generalizations

of the k-MST and Max-Prize Tree problems. We define the k-λVC problem as follows: Given

an integer k and a graph G with edge costs, find the minimum-cost λ-vertex-connected subgraph

of G that contains at least k vertices. Similarly, in the Budget-λVC problem, given a budget

B and a graph G with edge costs, the goal is to find a λ-vertex-connected subgraph of G of cost

at most B, that maximizes the number of vertices it contains. In particular we focus on λ = 2

and develop approximation algorithms for both the k-2VC and Budget-2VC problems. We note

that the k-λEC problem reduces to the k-λVC problem in an approximation preserving fashion,

though the opposite reduction is not known. The k-λEC and k-λVC problems are NP-hard and

also APX-hard for any λ ≥ 1. Moreover, Lau et al. [126] give evidence that, for large λ, the k-λEC

problem is likely to be harder to approximate by relating it to the approximability of the Dense

k-Subgraph problem [77].

How do we solve these problems? The k-MST problem required several algorithmic innovations

which eventally led to the current best approximation ratio of 2 [88]. The main technical tool

which underlies O(1) approximations for k-MST [32, 87, 66, 88] is a special property that holds

for a LP relaxation of the Prize-Collecting Steiner Tree problem [92] which is a Lagrangian

relaxation of the k-MST problem. Unfortunately, one cannot use these ideas (at least directly)

for more general problems such as k-2VC (or the k-Steiner Forest problem [101]) since the LP

relaxation for the prize-collecting variant is not known to satisfy the above mentioned property.

60

We therefore rely on alternative techniques that take a more basic approach.

Our algorithms for k-2VC and Budget-2VC use the same high-level idea and rely on the notion

of density: the density of a subgraph is the ratio of its cost to the number of vertices it contains.

The algorithms greedily combine subgraphs of low density until the union of these subgraphs has

the desired number of vertices or has cost equal to the budget. They fail only if we find a subgraph

H of good density, but that is far too large. One needs, then, a way to prune H to find a smaller

subgraph of comparable density. Our main structural result for pruning 2-connected graphs is the

following2:

Theorem 3.1. Let G be a 2-connected edge-weighted graph with density ρ, and a designated vertex

r ∈ V (G) such that every vertex of G has 2 vertex-disjoint paths to r of total weight/cost at most

L. There is a polynomial-time algorithm that, given any integer k ≤ |V (G)|, finds a 2-connected

k-vertex subgraph H of G containing r, of total cost at most O(log k)ρk + 2L.

Intuitively, the algorithm of Theorem 3.1 allows us to find a subgraph of any desired size, at

the cost of only a logarithmic increase in density. Further, it allows us to require any vertex r to be

in the subgraph, and also applies if we are given a terminal set S, and the output subgraph must

contain k terminals. (In this case, the density of a subgraph is the ratio of its cost to the number

of terminals it contains.) In addition, it applies if the terminals/vertices have arbitrary weights,

and the density of a subgraph is the ratio of its cost to the sum of the weights of its terminals. All

our algorithms apply to these weighted instances, but for simplicity of exposition, we discuss the

more restricted unweighted versions throughout. We observe that pruning a tree (a 1-connected

graph) is easy and one loses only a constant factor in the density; the theorem above allows one

to prune 2-connected graphs. A technical ingredient that we develop is the following theorem: we

believe that Theorems 3.1 and 3.2 are interesting in their own right and will find other applications

besides algorithms for k-2VC and Budget-2VC.

Theorem 3.2. Let G be a 2-vertex-connected graph with edge costs and let S ⊆ V be a set of

terminals. Then, there is a simple cycle C containing at least 2 terminals (a non-trivial cycle)

such that the density of C is at most the density of G. Moreover, such a cycle can be found in

polynomial time.
2In fact, we prove the slightly stronger Theorem 3.13; see Section 3.4.

61

Using the above theorem and an LP approach we obtain the following.

Corollary 3.3. Given a graph G(V,E) with edge costs and a set of ` terminals S ⊆ V , there is an

O(log `) approximation for the problem of finding a minimum-density non-trivial cycle.

Note that Theorem 3.2 and Corollary 3.3 are of interest because we seek a cycle with at least

two terminals. A minimum-density cycle containing only one terminal can be found by using the

well-known min-mean cycle algorithm in directed graphs [4]. We remark, however, that although we

suspect that the problem of finding a minimum-density non-trivial cycle is NP-hard, we currently

do not have a proof. Theorem 3.2 shows that the problem is equivalent to the Dens-2VC problem,

defined in the next section.

Armed with these useful structural results, we give approximation algorithms for both the k-

2VC and Budget-2VC problems. Our results in fact hold for the more general versions of these

problems where the input also specifies a subset S ⊆ V of terminals and the goal is to find subgraphs

with the desired number of terminals, or to maximize the number of terminals.3

Theorem 3.4. There is an O(log ` · log k) approximation for the k-2VC problem, where ` is the

number of terminals.

Corollary 3.5. There is an O(log ` · log k) approximation for the k-2EC problem, where ` is the

number of terminals.

Theorem 3.6. There is a polynomial time bi-criteria approximation algorithm for Budget-2VC

that, for any 0 < ε ≤ 1, outputs a subgraph of edge-weight (3 + ε)B containing Ω(ε·OPT
logn log OPT)

terminals, where OPT is the number of terminals in an optimum solution of cost B.4

As mentioned before, the k-2EC problem was introduced by Lau et al. and an O(log3 k)

approximation was claimed for this problem in [126]. However, the algorithm and proof in [126] are

incorrect. In independent work from ours, the authors of [126] later obtained a different algorithm

for k-2EC that yields an O(log n log k) approximation [127]; however, their algorithm does not
3For k-2EC and k-λEC, the problem with specified terminal set S can be reduced to the problem where every

vertex in V is a terminal. Such a reduction does not seem possible for the k-2VC and k-λVC, so we work directly
with the terminal version.

4For the rooted version of Budget-2VC (see Section 3.5), we obtain a subgraph of weight (2 + ε)B with this
number of terminals.

62

generalize to k-2VC. We give a more detailed comparison of the differences between their approach

and ours in the next subsection. Subsequent to the work described in this chapter, Salavatipour

and Safari [145] gave a constant-factor approximation for the k-λEC problem when the input graph

is complete, with metric edge costs. More recently, Gupta, Krishnaswamy and Ravi [98] gave a

weaker O(log3 n) approximation algorithm for k-2EC based on tree-embedding techniques; this

algorithm also does not appear to generalize to k-2VC.

3.1.1 Overview of Technical Ideas

For this section, we focus on the rooted version of k-2VC: the goal is to find a min-cost subgraph that

2-connects at least k terminals to a specified root vertex r. It is relatively straightforward to reduce

k-2VC to its rooted version (see Section 3.5 for details). We draw inspiration from algorithmic

ideas that led to poly-logarithmic approximations for the k-MST problem. As described above, our

approach focuses on the idea of low-density subgraphs.

For a subgraph H that contains r, let k(H) be the number of terminals that are 2-connected to r

in H. Then the density of H is simply the ratio of the cost of H to k(H). The Dens-2VC problem is

to find a 2-connected subgraph of minimum density. An O(log `) approximation for the Dens-2VC

problem (where ` is the number of terminals) can be derived in a somewhat standard way by using

a bucketing and scaling trick on a linear programming relaxation for the problem. We exploit the

known bound of 2 on the integrality gap of a natural LP for the Survivable Network Design

Problem with vertex connectivity requirements in {0, 1, 2} [79]. The bucketing and scaling trick

has seen several uses in the past and has recently been highlighted in several applications [48, 47, 46].

Our algorithm for k-2VC uses a greedy approach at the high level. We start with an empty

subgraph G′ and use the approximation algorithm for Dens-2VC in an iterative fashion to greedily

add terminals to G′ until at least k′ ≥ k terminals are in G′. This approach would yield an

O(log ` log k) approximation if k′ = O(k). However, the last iteration of the Dens-2VC algorithm

may add many more terminals than desired with the result that k′ � k. In this case we cannot

bound the cost of the solution obtained by the algorithm. To overcome this problem, one can try

to prune the subgraph H added in the last iteration to only have the desired number of terminals.

For the k-MST problem, H is a tree and pruning is quite easy. We remark that this yields a

63

rather straightforward O(log n log k) approximation for k-MST and could have been discovered

much before a more clever analysis given in [20].

Our main technical contribution is Theorem 3.1, to give a pruning step for the k-2VC problem.

To accomplish this, we use two algorithmic ideas. The first is encapsulated in the cycle finding

algorithm of Theorem 3.2. Second, we use this cycle finding algorithm to repeatedly merge sub-

graphs until we get the desired number of terminals in one subgraph; this latter step requires care.

The cycle merging scheme is inspired by a similar approach from the work of Lau et al. [126]

on the k-2EC problem and in our previous work [55] on directed Orienteering. These ideas

yield an O(log ` · log2 k) approximation. We give a modified cycle-merging algorithm with a more

sophisticated and non-trivial analysis to obtain an improved O(log ` · log k) approximation.

Some remarks are in order to compare our work to that of [126] on the k-2EC problem. The

combinatorial algorithm in [126] is based on finding a low-density cycle or a related structure

called a bi-cycle. The algorithm in [126] to find such a structure is incorrect. Further, the cycles

are contracted along the way which limits the approach to the k-2EC problem (contracting a cycle

in a 2-vertex-connected graph may make the resulting graph no longer 2-vertex-connected). In

our algorithm we do not contract cycles and instead introduce dummy terminals with weights to

capture the number of terminals in an already formed component. This requires us to address the

minimum-density non-trivial simple cycle problem which we do via Theorem 3.2 and Corollary 3.3.

In independent work, Lau et al. [127] obtain a new and correct O(log n log k)-approximation for

k-2EC. They also follow the same approach that we do in using the LP for finding dense subgraphs

followed by the pruning step. However, in the pruning step they use a very different approach; they

use the sophisticated idea of nowhere-zero 6-flows [147]. Although the use of this idea is elegant,

the approach works only for the k-2EC problem, while our approach is less complex and leads to

an algorithm for the more general k-2VC problem.

Chapter Outline

We begin in Section 3.2 by giving an O(log `)-approximation for the Dens-2VC problem, in which

the goal is to find a minimum-density 2-connected subgraph of a given graph. Then, in Section 3.3,

we prove Theorem 3.2 and Corollary 3.3 on finding good-density cycles; we first show the existence

64

of such cycles, and then give an efficient algorithm to find them. Using Theorem 3.2, we can prove

our main technical result on pruning, Theorem 3.1, in Section 3.4. Finally, in Section 3.5, we show

how to combine the pruning algorithm of Theorem 3.1 with the algorithm for Dens-2VC to obtain

good algorithms for k-2VC and Budget-2VC.

3.2 An O(log `)-Approximation for the Dens-2VC Problem

Recall that the Dens-2VC problem was defined as follows: Given a graph G(V,E) with edge-costs,

a set T ⊆ V of terminals, and a root r ∈ V (G), find a subgraph H of minimum density, in which

every terminal of H is 2-connected to r. (Here, the density of H is defined as the cost of H divided

by the number of terminals it contains, not including r.) In this section, we prove the following

lemma:

Lemma 3.7. There is an O(log `)-approximation algorithm for the Dens-2VC problem, where `

is the number of terminals in the given instance.

Our proof of this lemma uses an LP based approach and a bucketing and scaling trick (see

[46, 48, 47] for applications of this idea), and a constant-factor bound on the integrality gap of

an LP for SNDP with vertex-connectivity requirements in {0, 1, 2} due to Fleischer, Jain and

Williamson [79].

We define LP-dens as the following LP relaxation of Dens-2VC. For each terminal t, the

variable yt indicates whether or not t is chosen in the solution. (By normalizing
∑

t yt to 1, and

minimizing the sum of edge costs, we minimize the density.) Ct is the set of all simple cycles

containing t and the root r; for any C ∈ Ct, fC indicates how much ‘flow’ is sent from v to r

through C. (Note that a pair of vertex-disjoint paths is a cycle; the flow along a cycle is 1 if we

can 2-connect t to r using the edges of the cycle.) The variable xe indicates whether the edge e is

used by the solution.

65

min
∑
e∈E

c(e)xe

∑
t∈T

yt = 1

∑
C∈Ct

fC ≥ yt (∀t ∈ T)

∑
C∈Ct|e∈C

fC ≤ xe (∀t ∈ T, e ∈ E)

xe, fC , yt ≥ 0 (∀e ∈ E, t ∈ T,C ∈ Ct)

It is not hard to see that an optimal solution to LP-dens has cost at most the density of

an optimal solution to Dens-2VC: Given a feasible solution H to Dens-2VC in which a set of

terminals T ′ ⊆ T is connected to the root, set yt = 1/|T ′| for each terminal t ∈ T ′, set xe = 1/|T ′|

for each edge e in E(H), and for each t ∈ T ′, pick two disjoint paths from t to the root and set

fC = 1/|T ′| on the cycle C formed by these two paths. We now show how to obtain an integral

solution of density at most O(log `)OPTLP , where OPTLP is the cost of an optimal solution

to LP-dens. The linear program LP-dens has an exponential number of variables but only a

polynomial number of non-trivial constraints; hence, it can be solved in polynomial time. Fix an

optimal solution to LP-dens of cost OPTLP , and for each 0 ≤ i < 2 log ` (for ease of notation,

assume log ` is an integer), let Yi be the set of terminals t such that 2−(i+1) < yt ≤ 2−i. Since∑
t∈T yt = 1, there is some index i such that

∑
t∈Yi yt ≥

1
2 log ` . Since every terminal t ∈ Yi has

yt ≤ 2−i, the number of terminals in Yi is at least 2i−1

log ` . We claim that there is a subgraph H of G

with cost at most O(2i+2OPTLP), in which every terminal of Yi is 2-connected to the root. If this

is true, the density of H is at most O(log ` ·OPTLP), and hence we have an O(log `)-approximation

for the Dens-2VC problem.

To prove our claim about the cost of the subgraph H in which every terminal of Yi is 2-connected

to r, consider scaling up the given optimum solution of LP-dens by a factor of 2i+1. For each

terminal t ∈ Yi, the flow from t to r in this scaled solution5 is at least 1, and the cost of the scaled
5This is a mild abuse of the term ‘solution’, since after scaling,

P
t∈T yt = 2i+1.

66

solution is 2i+1OPTLP .

In [79], the authors describe a linear program LP1 to find a minimum-cost subgraph in which a

given set of terminals is 2-connected to the root, and show that this linear program has an integrality

gap of 2. The variables xe in the ‘scaled solution’ to LP-dens correspond to a feasible solution of

LP1 with Yi as the set of terminals; the integrality gap of 2 implies that there is a subgraph H in

which every terminal of Yi is 2-connected to the root, with cost at most 2i+2OPTLP .

Therefore, the algorithm for Dens-2VC is:

1. Find an optimal fractional solution to LP-dens.

2. Find a set of terminals Yi such that
∑

t∈Yi yt ≥
1

2 log ` .

3. Find a min-cost subgraph H in which every terminal in Yi is 2-connected to r using the

algorithm of [79]. H has density at most O(log `) times the optimal solution to Dens-2VC.

3.3 Finding Low-Density Non-Trivial Cycles

A cycle C ⊆ G is non-trivial if it contains at least 2 terminals. We define the min-density non-

trivial cycle problem: Given a graph G(V,E), with S ⊆ V marked as terminals, edge costs and

terminal weights, find a minimum-density cycle that contains at least 2 terminals. Note that if we

remove the requirement that the cycle be non-trivial (that is, it contains at least 2 terminals), the

problem reduces to the min-mean cycle problem in directed graphs, and can be solved exactly in

polynomial time (see [4]). Algorithms for the min-density non-trivial cycle problem are a useful

tool for solving the k-2VC and k-2EC problems. In this section, we give an O(log `)-approximation

algorithm for the minimum-density non-trivial cycle problem.

First, we prove Theorem 3.2, that a 2-connected graph with edge costs and terminal weights

contains a simple non-trivial cycle, with density no more than the average density of the graph.

We give two algorithms to find such a cycle; the first, described in Section 3.3.1, is simpler, but the

running time is not polynomial. A more technical proof that leads to a strongly polynomial-time

algorithm is described in Section 3.3.2; we recommend this proof be skipped on a first reading.

67

3.3.1 An Algorithm to Find Cycles of Average Density

To find a non-trivial cycle of density at most that of the 2-connected input graph G, we will start

with an arbitrary non-trivial cycle, and successively find cycles of better density until we obtain a

cycle with density at most Density(G). The following lemma shows that if a cycle C has an ear

with density less than Density(C), we can use this ear to find a cycle of lower density.

Lemma 3.8. Let C be a non-trivial cycle, and H an ear incident to C at u and v, such that
cost(H)

weight(H−{u,v}) < Density(C). Let S1 and S2 be the two internally disjoint paths between u and v in

C. Then H ∪ S1 and H ∪ S2 are both simple cycles and one of these is non-trivial and has density

less than Density(C).

Proof. C has at least 2 terminals, so it has finite density; H must then have at least 1 terminal.

Let c1, c2 and cH be, respectively, the sum of the costs of the edges in S1, S2 and H, and let w1,

w2 and wH be the sum of the weights of the terminals in S1, S2 and H − {u, v}.

Assume without loss of generality that S1 has density at most that of S2. (That is, c1/w1 ≤

c2/w2.)6 S1 must contain at least one terminal, and so H ∪ S1 is a simple non-trivial cycle. The

statement Density(H ∪S1) < Density(C) is equivalent to (cH + c1)(w1 +w2) < (c1 + c2)(wH +w1).

(cH + c1)(w1 + w2) = c1w1 + c1w2 + cH(w1 + w2)

≤ c1w1 + c2w1 + cH(w1 + w2) (Density(S1) ≤ Density(S2))

< c1w1 + c2w1 + (c1 + c2)wH (cH/wH < Density(C))

= (c1 + c2)(wH + w1)

Therefore, H ∪S1 is a simple cycle containing at least 2 terminals of density less than Density(C).

Lemma 3.9. Given a cycle C in a 2-connected graph G, let G′ be the graph formed from G by

contracting C to a single vertex v. If H is a connected component of G′−v, H ∪{v} is 2-connected

in G′.
6It is possible that one of S1 and S2 has cost 0 and weight 0. In this case, let S1 be the component with non-zero

weight.

68

Proof. Let H be an arbitrary connected component of G′ − v, and let H ′ = H ∪ {v}. To prove

that H ′ is 2-connected, we first observe that v is 2-connected to any vertex x ∈ H. (Any set that

separates x from v in H ′ separates x from the cycle C in G.)

It now follows that for all vertices x, y ∈ V (H), x and y are 2-connected in H ′. Suppose deleting

some vertex u separates x from y. The vertex u cannot be v, since H is a connected component of

G′ − v. But if u 6= v, v and x are in the same component of H ′ − u, since v is 2-connected to x in

H ′. Similarly, v and y are in the same component of H ′ − u, and so deleting u does not separate

x from y.

We now show that given any 2-connected graph G, we can find a non-trivial cycle of density no

more than that of G.

Theorem 3.10. Let G be a 2-connected graph with at least 2 terminals. G contains a simple

non-trivial cycle X such that Density(X) ≤ Density(G).

Proof. Let C be an arbitrary non-trivial simple cycle; such a cycle always exists since G is 2-

connected and has at least 2 terminals. If Density(C) > Density(G), we give an algorithm that

finds a new non-trivial cycle C ′ such that Density(C ′) < Density(C). Repeating this process, we

obtain cycles of successively better densities until eventually finding a non-trivial cycle X of density

at most Density(G).

Let G′ be the graph formed by contracting the given cycle C to a single vertex v. In G′, v is

not a terminal, and so has weight 0. Consider the 2-connected components of G′ (from Lemma 3.9,

each such component is formed by adding v to a connected component of G′− v), and pick the one

of minimum density. If H is this component, Density(H) < Density(G) by an averaging argument.

H contains at least 1 terminal. If it contains 2 or more terminals, recursively find a non-trivial

cycle C ′ in H such that Density(C ′) ≤ Density(H) < Density(C). If C ′ exists in the given graph

G, it has the desired properties, and we are done. Otherwise, C ′ contains v, and the edges of C ′

form an ear of C in the original graph G. The density of this ear is less than the density of C, so

we can apply Lemma 3.8 to obtain a non-trivial cycle in G that has density less than Density(C).

Finally, if H has exactly 1 terminal u, find any 2 vertex-disjoint paths using edges of H from

u to distinct vertices in the cycle C. (Since G is 2-connected, there always exist such paths.) The

69

cost of these paths is at most cost(H), and concatenating these 2 paths corresponds to an ear of C

in G. The density of this ear is less than Density(C); again, we use Lemma 3.8 to obtain a cycle

in G with the desired properties.

We remark again that the algorithm of Theorem 3.10 does not lead to a polynomial-time

algorithm, even if all edge costs and terminal weights are polynomially bounded. In Section 3.3.2,

we describe a strongly polynomial-time algorithm that, given a graph G, finds a non-trivial cycle

of density at most that of G. Note that neither of these algorithms may directly give a good

approximation to the min-density non-trivial cycle problem, because the optimal non-trivial cycle

may have density much less than that of G. However, we can use Theorem 3.10 to prove the

following theorem:

Theorem 3.11. There is an α-approximation to the (unrooted) Dens-2VC problem if and only if

there is an α-approximation to the problem of finding a minimum-density non-trivial cycle.

Proof. Assume we have a γ(`)-approximation for the Dens-2VC problem; we use it to find a low-

density non-trivial cycle. Solve the Dens-2VC problem on the given graph; since the optimal cycle

is a 2-connected graph, our solution H to the Dens-2VC problem has density at most γ(`) times

the density of this cycle. Find a non-trivial cycle in H of density at most that of H; it has density

at most γ(`) times that of an optimal non-trivial cycle.

Note that any instance of the (unrooted) Dens-2VC problem has an optimal solution that

is a non-trivial cycle. (Consider any optimal solution H of density ρ; by Theorem 3.2, H con-

tains a non-trivial cycle of density at most ρ. This cycle is a valid solution to the Dens-2VC

problem.) Therefore, a β(`)-approximation for the min-density non-trivial cycle problem gives a

β(`)-approximation for the Dens-2VC problem.

Theorem 3.11 and Lemma 3.7 imply an O(log `)-approximation for the minimum-density non-

trivial cycle problem; this proves Corollary 3.3.

We say that a graph G(V,E) is minimally 2-connected on its terminals if for every edge e ∈ E,

some pair of terminals is not 2-connected in the graph G − e. Section 3.3.2 shows that in any

graph which is minimally 2-connected on its terminals, every cycle is non-trivial. Therefore, the

problem of finding a minimum-density non-trivial cycle in such graphs is just that of finding a

70

minimum-density cycle, which can be solved exactly in polynomial time. However, as we explain

at the end of the section, this does not directly lead to an efficient algorithm for arbitrary graphs.

3.3.2 A Strongly Polynomial-Time Algorithm to Find Cycles of Average

Density

In this section, we describe a strongly polynomial-time algorithm which, given a 2-connected graph

G(V,E) with edge costs and terminal weights, finds a non-trivial cycle of density at most that of

G.

We begin with several definitions: Let C be a cycle in a graph G, and G′ be the graph formed

by deleting C from G. Let H1, H2, . . . Hm be the connected components of G′; we refer to these

as earrings of C.7 For each Hi, let the vertices of C incident to it be called its clasps. From the

definition of an earring, for any pair of clasps of Hi, there is a path between them whose internal

vertices are all in Hi.

We say that a vertex of C is an anchor if it is the clasp of some earring. (An anchor may be a

clasp of multiple earrings.) A segment S of C is a path contained in C, such that the endpoints of S

are both anchors, and no internal vertex of S is an anchor. (Note that the endpoints of S might be

clasps of the same earring, or of distinct earrings.) It is easy to see that the segments partition the

edge set of C. By deleting a segment, we refer to deleting its edges and internal vertices. Observe

that if S is deleted from G, the only vertices of G− S that lose an edge are the endpoints of S. A

segment is safe if the graph G− S is 2-connected.

Arbitrarily pick a vertex o of C as the origin, and consecutively number the vertices of C

clockwise around the cycle as o = c0, c1, c2, . . . , cr = o. The first clasp of an earring H is its lowest

numbered clasp, and the last clasp is its highest numbered clasp. (If the origin is a clasp of H, it

is considered the first clasp, not the last.) The arc of an earring is the subgraph of C found by

traversing clockwise from its first clasp cp to its last clasp cq; the length of this arc is q − p. (That

is, the length of an arc is the number of edges it contains.) Note that if an arc contains the origin,

it must be the first vertex of the arc. Figure 3.1 illustrates several of these definitions.

Theorem 3.12. Let H be an earring of minimum arc length. Every segment contained in the arc
7If Hi were simply a path, it would be an ear of C, but Hi may be more complex.

71

C

c4

c6

c9

c0

H

Figure 3.1: H is an earring of G, with clasps c4, c6, c9; c4 is its first clasp, and c9 its last clasp.
The arrow indicates the arc of H.

of H is safe.

Proof. Let H be the set of earrings with arc identical to that of H. Since they have the same arc,

we refer to this as the arc of H, or the critical arc. Let the first clasp of every earring in H be ca,

and the last clasp of each earring in H be cb. Because the earrings in H have arcs of minimum

length, any earring H ′ /∈ H has a clasp cx that is not in the critical arc. (That is, cx < ca or

cx > cb.)

We must show that every segment contained in the critical arc is safe; recall that a segment S

is safe if the graph G − S is 2-connected. Given an arbitrary segment S in the critical arc, let cp

and cq (p < q) be the anchors that are its endpoints. We prove that there are always 2 internally

vertex-disjoint paths between cp and cq in G− S; this suffices to show 2-connectivity.

We consider several cases, depending on the earrings that contain cp and cq. Figure 3.2 il-

lustrates these cases. If cp and cq are contained in the same earring H ′, it is easy to find two

vertex-disjoint paths between them in G − S. The first path is clockwise from q to p in the cycle

C. The second path is entirely contained in the earring H ′ (an earring is connected in G − C, so

we can always find such a path.)

Otherwise, cp and cq are clasps of distinct earrings. We consider three cases: Both cp and cq

are clasps of earrings in H, one is (but not both), or neither is.

1. We first consider that both cp and cq are clasps of earrings in H. Let cp be a clasp of H1, and

cq a clasp of H2. The first path is from cq to ca through H2, and then clockwise along the

critical arc from ca to cp. The second path is from cq to cb clockwise along the critical path,

72

C

ca

cb

H ∈ H

cp

cq

c0

C

ca

cb

H1

cp

cq

H2
c0

C

ca

cb

H ∈ H

cp

cq
H1

H2

c0

C

ca

cb

H1 ∈ H

cp

cq

H2

c0

C

ca

cb

H1 ∈ H

cp

cq

H2

c0

Figure 3.2: The various cases of Theorem 3.12 are illustrated in the order presented. In each case,
one of the 2 vertex-disjoint paths from cp to cq is indicated with dashed lines, and the other with
dotted lines.

and then cb to cp through H1. It is easy to see that these paths are internally vertex-disjoint.

2. Now, suppose neither cp nor cq is a clasp of an earring in H. Let cp be a clasp of H1, and cq

be a clasp of H2. The first path we find follows the critical arc clockwise from cq to cb (the

last clasp of the critical arc), from cb to ca through H ∈ H, and again clockwise through the

critical arc from ca to cp. Internal vertices of this path are all in H or on the critical arc. Let

cp′ be a clasp of H1 not on the critical arc, and cq′ be a last clasp of H2 not on the critical arc.

The second path goes from cp to cp′ through H1, from p′ to q′ through the cycle C outside

the critical arc, and from cq′ to cq through H2. Internal vertices of this path are in H1, H2,

or in C, but not part of the critical arc (since each of cp′ and cq′ are outside the critical arc).

Therefore, we have 2 vertex-disjoint paths from cp to cq.

3. Finally, we consider the case that exactly one of cp, cq is a clasp of an earring in H. Suppose

cp is a clasp of H1 ∈ H, and cq is a clasp of H2 /∈ H; the other case (where H1 /∈ H and

73

H2 ∈ H is symmetric, and omitted, though figure 3.2 illustrates the paths.) Let q′ be the

index of a clasp of H2 outside the critical arc. The first path is from cq to cb through the

critical arc, and then from cb to cp through H1. The second path is from cq to cq′ through

H2, and from cq′ to cp clockwise through C. Note that the last part of this path enters the

critical arc at ca, and continues through the arc until cp. Internal vertices of the first path

that are in C are on the critical arc, but have index greater than q. Internal vertices of the

second path that belong to C are either not in the critical arc, or have index between ca and

cp. Therefore, the two paths are internally vertex-disjoint.

We now describe our algorithm to find a non-trivial cycle of good density, proving Theorem 3.2:

Let G be a 2-connected graph with edge-costs and terminal weights, and at least 2 terminals. There is

a polynomial-time algorithm to find a non-trivial cycle X in G such that Density(X) ≤ Density(G).

Proof of Theorem 3.2. Let G be a graph with ` terminals and density ρ; we describe a

polynomial-time algorithm that either finds a cycle in G of density less than ρ, or a proper subgraph

G′ of G that contains all ` terminals. In the latter case, we can recurse on G′ until we eventually

find a cycle of density at most ρ.

We first find, in O(n3) time, a minimum-density cycle C in G. By Theorem 3.10, C has density

at most ρ, because the minimum-density non-trivial cycle has at most this density. If C contains

at least 2 terminals, we are done. Otherwise, C contains exactly one terminal v. Since G contains

at least 2 terminals, there must exist at least one earring of C.

Let v be the origin of this cycle C, and H an earring of minimum arc length. By Theorem 3.12,

every segment in the arc of H is safe. Let S be such a segment; since v was selected as the origin,

v is not an internal vertex of S. As v is the only terminal of C, S contains no terminals, and

therefore, the graph G′ = G− S is 2-connected, and contains all ` terminals of G. �

The proof above also shows that if G is minimally 2-connected on its terminals (that is, G has

no 2-connected proper subgraph containing all its terminals), every cycle of G is non-trivial. (If a

cycle contains 0 or 1 terminals, it has a safe segment containing no terminals, which can be deleted;

this gives a contradiction.) Therefore, given a graph that is minimally 2-connected on its terminals,

74

finding a minimum-density non-trivial cycle is equivalent to finding a minimum-density cycle, and

so can be solved exactly in polynomial time. This suggests a natural algorithm for the problem:

Given a graph that is not minimally 2-connected on its terminals, delete edges and vertices until

the graph is minimally 2-connected on the terminals, and then find a minimum-density cycle. As

shown above, this gives a cycle of density no more than that of the input graph, but this may not

be the minimum-density cycle of the original graph. For instance, there exist instances where the

minimum-density cycle uses edges of a safe segment S that might be deleted by this algorithm.

3.4 Pruning 2-Connected Graphs of Good Density

In this section, we prove Theorem 3.13. Theorem 3.1, stated in Section 3.1, is simply the special

case of this theorem with H = G, and in which every vertex is a terminal.

Theorem 3.13. Let G be a 2-connected edge-weighted graph with a designated vertex r ∈ V (G) such

that every vertex of G has 2 vertex-disjoint paths to r of total weight/cost at most L. Let H ⊆ G

be a 2-connected subgraph of G, with a given set S ⊆ V (H) of terminals; let ρ = cost(H)/|S| be

the density of H. There is a polynomial-time algorithm that, given any integer k ≤ |V (H)|, finds

a 2-connected k-vertex subgraph H ′ of G containing r, of total cost at most O(log k)ρk + 2L.

Let ` = |S| be the number of terminals in H, and cost(H) its total cost; ρ = cost(H)
` is the density

of H. We describe an algorithm that finds a subgraph H ′ of G containing at least k terminals,

each of which is 2-connected to the root, and of total edge cost O(log k)ρk + 2L. (Note that H ′

may not be a subgraph of H, as we are not even guaranteed that the root is in H.)

We can assume ` > (8 log k) · k, or the following trivial solution suffices: Take the entire graph

H, pick two distinct vertices u, v ∈ V (H), and connect each of u and v to the root using 2 disjoint

paths. The main phase of our algorithm proceeds by maintaining a set of 2-connected subgraphs

that we call clusters, and repeatedly finding low-density cycles that merge clusters of similar weight

to form larger clusters. (The weight of a cluster X, denoted by wX , is (roughly) the number of

terminals it contains.) Clusters are grouped into tiers by weight; tier i contains clusters with weight

at least 2i and less than 2i+1. Initially, each terminal is a separate cluster in tier 0. We say a cluster

is large if it has weight at least k, and small otherwise. The algorithm stops when most terminals

75

are in large clusters.

We now describe the algorithm MergeClusters (see below). To simplify notation, let α be

the quantity 2dlog keρ. We say that a cycle is good if it has density at most α; that is, good cycles

have density at most O(log k) times the density of the input graph H.

MergeClusters:
For (each i in {0, 1, . . . , (dlog2 ke − 1)}) do:

If (i = 0):
Every terminal has weight 1

Else:
Mark all vertices as non-terminals
For (each small 2-connected cluster X in tier i) do:

Add a (dummy) terminal vX to H of weight wX
Add (dummy) edges of cost 0 from vX to two (arbitrary) distinct vertices of X

While (H has a non-trivial cycle C of density at most α in H):
Let X1, X2, . . . Xq be the small clusters that contain a terminal or an edge of C.
(Note that the terminals in C belong to a subset of {X1, . . . Xq}.)
Form a new cluster Y (of a higher tier) by merging the clusters X1, . . . Xq

wY ←
∑q

j=1wXj
If (i = 0):

Mark all terminals in Y as non-terminals
Else:

Delete all (dummy) terminals in Y and the associated (dummy) edges.

We briefly remark on some salient features of this algorithm and our analysis before presenting

the details of the proofs.

1. In iteration i, the terminals correspond to tier i clusters. Clusters are 2-connected subgraphs

of H, and by using cycles to merge clusters, we preserve 2-connectivity as the clusters become

larger.

2. When a cycle C is used to merge clusters, all small clusters that contain an edge of C

(regardless of their tier) are merged to form the new cluster. Therefore, at any stage of the

algorithm, all currently small clusters are edge-disjoint. Large clusters, on the other hand,

are frozen; even if they intersect a good cycle C, they are not merged with other clusters on

C. Thus, at any time, an edge may be in multiple large clusters and up to one small cluster.

3. In iteration i of MergeClusters, the density of a cycle C is only determined by its cost

and the weight of terminals in C corresponding to tier i clusters. Though small clusters of

76

other (lower or higher) tiers might be merged using C, we do not use their weight to pay for

the edges of C.

4. The ith iteration terminates when no good cycles can be found using the remaining tier i

clusters. At this point, there may be some terminals remaining that correspond to clusters

which are not merged to form clusters of higher tiers. However, our choice of α (which defines

the density of good cycles) is such that we can bound the number of terminals that are “left

behind” in this fashion. Therefore, when the algorithm terminates, most terminals are in

large clusters.

By bounding the density of large clusters, we can find a solution to the rooted k-2VC problem of

bounded density. Because we always use cycles of low density to merge clusters, an analysis similar

to that presented in Chapter 2 for directed Orienteering (see also the work of [126]) shows that

every large cluster has density at most O(log2 k)ρ. (Note the similarity between MergeClusters

and the algorithm BuildComponents of Section 2.4, between Lemmas 2.22 and 3.17, and be-

tween Lemmas 2.21 and 3.20.) We first present this analysis, though it does not suffice to prove

Theorem 3.1. A more careful analysis shows that there is at least one large cluster of density at

most O(log k)ρ; this allows us to prove the desired theorem.

We now formally prove that MergeClusters has the desired behavior. First, we present a

series of claims which, together, show that when the algorithm terminates, most terminals are in

large clusters, and all clusters are 2-connected.

Remark 3.14. Throughout the algorithm, the graph H is always 2-connected. The weight of a

cluster is at most the number of terminals it contains.

Proof. The only structural changes to H are when new vertices are added as terminals; they are

added with edges to two distinct vertices of H. This preserves 2-connectivity, as does deleting these

terminals with the associated edges.

To see that the second claim is true, observe that if a terminal contributes weight to a cluster,

it is contained in that cluster. A terminal can be in multiple clusters, but it contributes to the

weight of exactly one cluster.

77

We use the following simple proposition in proofs of 2-connectivity; the proof is straightforward,

and hence omitted.

Proposition 3.15. Let H1 = (V1, E1) and H2 = (V2, E2) be 2-connected subgraphs of a graph

G(V,E) such that |V1 ∩ V2| ≥ 2. Then the graph H1 ∪H2 = (V1 ∪ V2, E1 ∪ E2) is 2-connected.

Lemma 3.16. The clusters formed by MergeClusters are all 2-connected.

Proof. Let Y be a cluster formed by using a cycle C to merge clusters X1, X2, . . . Xq. The edges

of the cycle C form a 2-connected subgraph of H, and we assume that each Xj is 2-connected by

induction. Further, C contains at least 2 vertices of each Xj : if C contains an edge of Xj , this

follows immediately, and if it contains a (dummy) terminal, it must contain at least the two vertices

of Xj incident to this terminal.8 Therefore, we can use induction and Proposition 3.15 above: We

assume C ∪{Xl}jl=1 is 2-connected by induction, and C contains 2 vertices of Xj+1, so C ∪{Xl}j+1
l=1

is 2-connected.

Note that we have shown Y = C ∪{Xj}qj=1 is 2-connected, but C (and hence Y) might contain

dummy terminals and the corresponding dummy edges. However, each such terminal with the 2

associated edges is a ear of Y ; deleting them leaves Y 2-connected. More formally, if u, v are the

other endpoints of the edges incident to the dummy terminal in Xj , there are at least 2 disjoint

paths remaining between u and v even after deleting the dummy edges, as Xj was 2-connected

prior to the introduction of the dummy terminal.

Lemma 3.17. The total weight of small clusters in tier i that are not merged to form clusters of

higher tiers is at most `
2dlog ke .

Proof. Assume this were not true; this means that MergeClusters could find no more cycles

of density at most α using the remaining small tier i clusters. But the total cost of all the edges

is at most cost(H), and the sum of terminal weights is at least `
2dlog ke ; this implies that the

density of the graph (using the remaining terminals) is at most 2dlog ke · cost(H)
` = α. But by

Theorem 3.10, the graph must then contain a good non-trivial cycle, and so the while loop would

not have terminated.
8A cluster Xj may be a singleton vertex (for instance, if we are in tier 0), but such a vertex does not affect

2-connectivity.

78

Corollary 3.18. When the algorithm MergeClusters terminates, the total weight of large clus-

ters is at least `/2 > (4 log k) · k.

Proof. Each terminal not in a large cluster contributes to the weight of a cluster that was not

merged with others to form a cluster of a higher tier. The previous lemma shows that the total

weight of such clusters in any tier is at most `
2dlog ke ; since there are dlog ke tiers, the total number

of terminals not in large clusters is less than dlog ke · `
2dlog ke = `/2.

So far, we have shown that most terminals reach large clusters, all of which are 2-connected,

but we have not argued about the density of these clusters. The next lemma says that if we can

find a large cluster of good density, we can find a solution to the k-2VC problem of good density.

Lemma 3.19. Let Y be a large cluster formed by MergeClusters. If Y has density at most δ,

we can find a 2-connected graph H ′ with at least k terminals and containing the root, of total cost

at most 2δk + 2L.

Proof. Let X1, X2, . . . Xq be the clusters merged to form Y in order around the cycle C that merged

them; each Xj was a small cluster, of weight at most k. A simple averaging argument shows that

there is a consecutive segment of Xjs with total weight between k and 2k, such that the cost of the

edges of C connecting these clusters, together with the costs of the clusters themselves, is at most

2δk. Let Xa be the “first” cluster of this segment, and Xb the “last”. Let v and w be arbitrary

terminals of Xa and Xb respectively. Connect each of v and w to the root r using 2 vertex-disjoint

paths; the cost of this step is at most 2L. (We assumed that every terminal could be 2-connected to

r using disjoint paths of cost at most L.) The graph H ′ thus constructed has at least k terminals,

and total cost at most 2δk + 2L.

We show that every vertex z of H ′ is 2-connected to r; this, together with the straightforward

fact that r is not a cut-vertex of H ′, completes our proof. Let z be an arbitrary vertex of H ′;

suppose there is a cut-vertex x which, when deleted, separates z from r. Both v and w are 2-

connected to r, and therefore neither is in the same component as z in H ′ − x. However, we

describe 2 vertex-disjoint paths Pv and Pw in Y ′ from z to v and w respectively; deleting x cannot

separate z from both v and w, which gives a contradiction. The paths Pv and Pw are easy to find;

let Xj be the cluster containing z. The cycle C contains a path from vertex z1 ∈ Xj to v′ ∈ Xa,

79

and another (vertex-disjoint) path from z2 ∈ Xj to w′ ∈ Xb. Concatenating these paths with paths

from v′ to v in Xa and w′ to w in Xb gives us vertex-disjoint paths P1 from z1 to v and P2 from z2

to w. Since Xj is 2-connected, we can find vertex-disjoint paths from z to z1 and z2, which gives

us the desired paths Pv and Pw.9

We now present the two analyses of density referred to earlier. The key difference between the

weaker and tighter analysis is in the way we bound edge costs. In the former, each large cluster

pays for its edges separately, using the fact that all cycles used have density at most α = O(log k)ρ.

In the latter, we crucially use the fact that small clusters which share edges are merged. Roughly

speaking, because small clusters are edge-disjoint, the average density of small clusters must be

comparable to the density of the input graph H. Once an edge is in a large cluster, we can no

longer use the edge-disjointness argument. We must pay for these edges separately, but we can

bound this cost.

First, the following lemma allows us to show that every large cluster has density at most

O(log2 k)ρ. Note that the intuition behind this proof is extremely similar to that of Lemma 2.21,

bounding the length of a solution to k-Stroll in directed graphs.

Lemma 3.20. For any cluster Y formed by MergeClusters during iteration i, the total cost of

edges in Y is at most (i+ 1) · αwY .

Proof. We prove this lemma by induction on the number of vertices in a cluster. Let S be the set

of clusters merged using a cycle C to form Y . Let S1 be the set of clusters in S of tier i, and S2 be

S − S1. (S2 contains clusters of tiers less or greater than i that contained an edge of C.)

The cost of edges in Y is at most the sum of: the cost of C, the cost of S1, and the cost of

S2. Since all clusters in S2 have been formed during iteration i or earlier, and are smaller than

Y , we can use induction to show that the cost of edges in S2 is at most (i + 1)α
∑

X∈S2 wX . All

clusters in S1 are of tier i, and so must have been formed before iteration i (any cluster formed

during iteration i is of a strictly greater tier), so we use induction to bound the cost of edges in S1

by iα
∑

X∈S1 wX .

9The vertex z may not be in any cluster Xj . In this case, Pv is formed by using edges of C from z to v′ ∈ Xa,
and then a path from v′ to v; Pw is formed similarly.

80

Finally, because C was a good-density cycle, and only clusters of tier i contribute to calculating

the density of C, the cost of C is at most α
∑

X∈S1 wX . Therefore, the total cost of edges in Y is

at most (i+ 1)α
∑

X∈S wX = (i+ 1)αwY .

Let Y be an arbitrary large cluster; since we have only dlog ke tiers, the previous lemma implies

that the cost of Y is at most dlog ke · αwY = O(log2 k)ρwY . That is, the density of Y is at most

O(log2 k)ρ, and we can use this fact together with Lemma 3.19 to find a solution to the rooted

k-2VC problem of cost at most O(log2 k)ρk + 2L. This completes the ‘weaker’ analysis, but this

does not suffice to prove Theorem 3.1; to prove the theorem, we would need to use a large cluster

Y of density O(log k)ρ, instead of O(log2 k)ρ.

For the purpose of the more careful analysis, implicitly construct a forest F on the clusters

formed by MergeClusters. Initially, the vertex set of F is just S, the set of terminals, and F

has no edges. Every time a cluster Y is formed by merging X1, X2, . . . Xq , we add a corresponding

vertex Y to the forest F , and add edges from Y to each of X1, . . . Xq; Y is the parent of X1, . . . Xq.

We also associate a cost with each vertex in F ; the cost of the vertex Y is the cost of the cycle

used to form Y from X1, . . . Xq. We thus build up trees as the algorithm proceeds; the root of any

tree corresponds to a cluster that has not yet become part of a bigger cluster. The leaves of the

trees correspond to vertices of H; they all have cost 0. Also, any large cluster Y formed by the

algorithm is at the root of its tree; we refer to this tree as TY .

For each large cluster Y after MergeClusters terminates, say that Y is of type i if Y was

formed during iteration i of MergeClusters. We now define the final-stage clusters of Y : They are

the clusters formed during iteration i that became part of Y . (We include Y itself in the list of

final-stage clusters; even though Y was formed in iteration i of MergeClusters, it may contain

other final-stage clusters. For instance, during iteration i, we may merge several tier i clusters to

form a cluster X of tier j > i. Then, if we find a good-density cycle C that contains an edge of X,

X will merge with the other clusters of C.) The penultimate clusters of Y are those clusters that

exist just before the beginning of iteration i and become a part of Y . Equivalently, the penultimate

clusters are those formed before iteration i that are the immediate children in TY of final-stage

clusters. Figure 3.3 illustrates the definitions of final-stage and penultimate clusters. Such a tree

could be formed if, in iteration i − 1, 4 clusters of this tier merged to form D, a cluster of tier

81

i+ 1. Subsequently, in iteration i, clusters H and J merge to form F . We next find a good cycle

containing E and G; F contains an edge of this cycle, so these three clusters are merged to form

B. Note that the cost of this cycle is paid for by the weights of E and G only; F is a tier i + 1

cluster, and so its weight is not included in the density calculation. Finally, we find a good cycle

paid for by A and C; since B and D share edges with this cycle, they all merge to form the large

cluster Y .

Y

i i + 2 i i + 1A B C D

i i + 1 i
E F G

i i
H J

Figure 3.3: A part of the Tree TY corresponding to Y , a large cluster of type i. The number in
each vertex indicates the tier of the corresponding cluster. Only final-stage and penultimate
clusters are shown: final-stage clusters are indicated with a double circle; all other clusters are
penultimate.

An edge of a large cluster Y is said to be a final edge if it is used in a cycle C that produces a

final-stage cluster of Y . All other edges of Y are called penultimate edges; note that any penultimate

edge is in some penultimate cluster of Y . We define the final cost of Y to be the sum of the costs

of its final edges, and its penultimate cost to be the sum of the costs of its penultimate edges;

clearly, the cost of Y is the sum of its final and penultimate costs. We bound the final costs and

penultimate costs separately.

Recall that an edge is a final edge of a large cluster Y if it is used by MergeClusters to form

a cycle C in the final iteration during which Y is formed. The reason we can bound the cost of

final edges is that the cost of any such cycle is at most α times the weight of clusters contained in

the cycle, and a cluster does not contribute to the weight of more than one cycle in an iteration.

(This is also the essence of Lemma 3.20.) We formalize this intuition in the next lemma.

Lemma 3.21. The final cost of any large cluster Y is at most αwY , where wY is the weight of Y .

Proof. Let Y be an arbitrary large cluster. In the construction of the tree TY , we associated with

each vertex of TY the cost of the cycle used to form the corresponding cluster. To bound the total

82

final cost of Y , we must bound the sum of the costs of vertices of TY associated with final-stage

clusters. The weight of Y , wY is at least the sum of the weights of the penultimate tier i clusters

that become a part of Y . Therefore, it suffices to show that the sum of the costs of vertices of TY

associated with final-stage clusters is at most α times the sum of the weights of Y ’s penultimate

tier i clusters. (Note that a tier i cluster must have been formed prior to iteration i, and hence it

cannot itself be a final-stage cluster.)

A cycle was used to construct a final-stage cluster X only if its cost was at most α times the

sum of weights of the penultimate tier i clusters that become a part of X. (Larger clusters may

become a part of X, but they do not contribute weight to the density calculation.) Therefore, if X

is a vertex of TY corresponding to a final-stage cluster, the cost of X is at most α times the sum of

the weights of its tier i immediate children in TY . But TY is a tree, and so no vertex corresponding

to an penultimate tier i cluster has more than one parent. That is, the weight of a penultimate

cluster pays for only one final-stage cluster. Therefore, the sum of the costs of vertices associated

with final-stage clusters is at most α times the sum of the weights of Y ’s penultimate tier i clusters,

and so the final cost of Y is at most αwY .

Lemma 3.22. If Y1 and Y2 are distinct large clusters of the same type, no edge is a penultimate

edge of both Y1 and Y2.

Proof. Suppose, by way of contradiction, that some edge e is a penultimate edge of both Y1 and Y2,

which are large clusters of type i. Let X1 (respectively X2) be a penultimate cluster of Y1 (resp.

Y2) containing e. As penultimate clusters, both X1 and X2 are formed before iteration i. But until

iteration i, neither is part of a large cluster, and two small clusters cannot share an edge without

being merged. Therefore, X1 and X2 must have been merged, so they cannot belong to distinct

large clusters, giving the desired contradiction.

Theorem 3.23. After MergeClusters terminates, at least one large cluster has density at most

O(log k)ρ.

Proof. We define the penultimate density of a large cluster to be the ratio of its penultimate cost

to its weight.

83

Consider the total penultimate costs of all large clusters: For any i, each edge e ∈ E(H)

can be a penultimate edge of at most 1 large cluster of type i. This implies that each edge

can be a penultimate edge of at most dlog ke clusters. Therefore, the sum of penultimate costs

of all large clusters is at most dlog kecost(H). Further, the total weight of all large clusters is

at least `/2. Therefore, the (weighted) average penultimate density of large clusters is at most

2dlog ke cost(H)
` = 2dlog keρ, and hence there exists a large cluster Y of penultimate density at most

2dlog keρ.

The penultimate cost of Y is, therefore, at most 2dlog keρwY , and from Lemma 3.21, the final

cost of Y is at most αwY . Therefore, the density of Y is at most α+ 2dlog keρ = O(log k)ρ.

Theorem 3.23 and Lemma 3.19 together imply that we can find a graph H ′ ⊆ G with at least

k terminals and containing the root, of cost at most O(log k)ρk + 2L. This completes our proof of

Theorem 3.13.

3.5 The Algorithms for the k-2VC and Budget-2VC Problems

We work with graphs in which some vertices are designated as terminals. Recall that the goal of

the k-2VC problem is to find a minimum-cost 2-connected subgraph on at least k terminals. In the

rooted k-2VC problem, we wish to find a min-cost subgraph on at least k terminals in which every

terminal is 2-connected to the specified root r. The (unrooted) k-2VC problem can be reduced

to the rooted version by guessing 2 vertices u, v that are in an optimal solution, creating a new

root vertex r, and connecting it with 0-cost edges to u and v. It is not hard to show that any

solution to the rooted problem in the modified graph can be converted to a solution to the unrooted

problem by adding 2 minimum-cost vertex-disjoint paths between u and v. (Since u and v are in

the optimal solution, the cost of these added paths cannot be more than OPT.) Similarly, one

can reduce Budget-2VC to its rooted version. However, note that adding a min-cost set of paths

between the guessed vertices u and v might require us to pay an additional amount of B, so to

obtain a solution for the unrooted problem of cost (3 + ε)B, we must find a solution for the rooted

instance of cost (2 + ε)B.

Note that the relationship between k-2VC and Budget-2VC is similar to that between k-

84

Stroll and Orienteering, defined in Chapter 2; they are equivalent from the viewpoint of exact

optimization, but this is not true from an approximation perspective. Still, we solve both k-2VC

and Budget-2VC via the O(log `)-approximation for the Dens-2VC problem, given in Lemma 3.7.

We first describe our algorithm for the k-2VC problem. Let OPT be the cost of an optimal solution

to the k-2VC instance. We assume knowledge of OPT; this can be dispensed with using standard

methods. We pre-process the graph by deleting any terminal that does not have 2 vertex-disjoint

paths to the root r of total cost at most OPT. The high-level description of the algorithm for the

rooted k-2VC problem is given below.

k′ ← k, G′ is the empty graph.
While (k′ > 0):

Use the approximation algorithm for Dens-2VC to find a subgraph H in G.
If (k(H) ≤ k′):

G′ ← G′ ∪H, k′ ← k′ − k(H).
Mark all terminals in H as non-terminals.

Else:
Prune H to obtain H ′ that contains k′ terminals.
G′ = G′ ∪H ′, k′ ← 0.

Output G′.

At the beginning of any iteration of the while loop, the graph contains a solution to the Dens-

2VC problem of density at most OPT
k′ . Therefore, from Lemma 3.7, the graph H returned always

has density at most O(log `)OPT
k′ . If k(H) ≤ k′, we add H to G′ and decrement k′; we refer to

this as the augmentation step. Otherwise, we have a graph H of good density, but with too many

terminals. In this case, we prune H to find a graph with the required number of terminals; this is

the pruning step. A simple set-cover type argument shows the following lemma:

Lemma 3.24. If, at every augmentation step, we add a graph of density at most O(log `)OPT
k′

(where k′ is the number of additional terminals that must be selected), the total cost of all the

augmentation steps is at most O(log ` · log k)OPT.

Therefore, it remains only to bound the cost of the graph H ′ added in the pruning step, and

Theorem 3.13, proved in Section 3.4, is precisely what is needed. We can now prove our main result

for the k-2VC problem, Theorem 3.4.

Proof of Theorem 3.4. Let OPT be the cost of an optimal solution to the (rooted) k-2VC

85

problem on an graph G. By Lemma 3.24, the total cost of the augmentation steps of our greedy

algorithm is O(log ` · log k)OPT. To bound the cost of the pruning step, let k′ be the number of

additional terminals that must be covered just prior to this step. The algorithm for the Dens-2VC

problem returns a graph H ⊆ G with k(H) > k′ terminals, and density at most O(log `)OPT
k′ . As

a result of our pre-processing step, every vertex has 2 vertex-disjoint paths in G to r of total cost

at most OPT. Now, we use Theorem 3.13 to prune H and find a graph H ′ ⊆ G with k′ terminals

and cost at most O(log k)Density(H)k′ + 2OPT ≤ O(log ` · log k)OPT + 2OPT. Therefore, the

total cost of our solution is O(log ` · log k)OPT. �

We now describe the similar algorithm for the Budget-2VC problem. Given budget B, pre-

process the graph as before by deleting vertices that do not have 2 vertex-disjoint paths to r

of total cost at most B. Let OPT denote the number of vertices in the optimal solution, and

k = OPT/c log ` log OPT, for some constant c = O(1/ε). We run the same greedy algorithm,

using the O(log `)-approximation for the Dens-2VC problem. Note that at each stage, the graph

contains a solution to Dens-2VC of density at most B/(OPT − k) < 2B/OPT. Therefore, we

have the following lemma:

Lemma 3.25. If, at every augmentation step of the algorithm for Budget-2VC, we add a

graph of density at most O(log `)(2B/OPT), the total cost of all augmentation steps is at most

O(B/ log OPT) ≤ εB.

Again, to prove Theorem 3.6, giving a bi-criteria approximation for Budget-2VC, we only

have to bound the cost of the pruning step.

Proof of Theorem 3.6. From the previous lemma, the total cost of the augmentation steps is at

most εB. The graphH returned by the Dens-2VC algorithm has density at most O(log `·B/OPT),

and k(H) > k′ terminals. Now, from Theorem 3.1, we can prune H to find a graph H ′ containing k′

terminals and cost at most O(log k′ log ` ·B/OPT) · k′ + 2B. As k′ ≤ k = OPT/(c log ` log OPT),

a suitable choice of c ensures that the total cost of the pruning step is at most εB + 2B. �

86

3.6 Concluding Remarks

In this chapter, we considered problems related to building large, low-cost, 2-connected graphs.

These problems have applications to building low-cost fault-tolerant networks, and are generaliza-

tions of well-known problems such as k-MST that have numerous theoretical and practical uses.

In particular, we gave an O(log ` log k)-approximation for the k-2VC problem, and a bi-criteria

approximation for Budget-2VC that 2-connects Ω(OPT/ log k log `) vertices while violating the

cost by a constant factor.

We also showed that any 2-connected graph of density ρ with some vertices marked as terminals

contains a non-trivial cycle with density at most ρ, and gave an algorithm to find such a cycle.

Further, we found an O(log `)-approximation for the problem of finding a minimum-density non-

trivial cycle. However, we do not know the complexity of this problem; it may be possible to find a

minimum-density non-trivial cycle exactly in polynomial time! If not, it should be possible to show

that the problem is NP-Hard, and it would be of interest to find a constant-factor approximation.

We list two additional open problems:

• Can the approximation ratio for the k-2VC problem be improved from the currentO(log ` log k)

to O(log n) or better? Removing the dependence on ` to obtain even O(log2 k) could be in-

teresting. If not, can one improve the approximation ratio for the easier k-2EC problem?

• In some applications, it may be of interest to design networks resilient to more than one failure,

i.e., networks that are more than 2-connected. Can we obtain approximation algorithms

for the k-λVC or k-λEC problems for λ > 2? Until recently, few results were known for

problems where vertex-connectivity is required to be greater than 2, but there has been more

progress with higher edge-connectivity requirements. Lau et al. [126] showed that for large λ,

these problems are related to Dense k-Subgraph, and hence there are unlikely to be poly-

logarithmic approximations. However, it may be possible to obtain approximation ratios that

are polynomial in both λ and log n.

87

Chapter 4

Element-Connectivity and Packing
Disjoint Steiner Trees and Forests

4.1 Introduction 1

Menger [132] proved the following fundamental min-max relation on vertex-connectivity: Given an

undirected graph G(V,E) and two nodes u, v, the maximum number of vertex-disjoint paths in G

between u and v is equal to the minimum number of vertices and edges whose deletion separates

u from v. Similarly, the maximum number of edge-disjoint paths between u and v is equal to

the minimum number of edges whose deletion separates u from v; this is a special case of the

well-known Max-flow/Min-cut theorem.

Hind and Oellermann [105] considered the natural generalization of Menger’s theorem to more

than two vertices: Given a graph G(V,E) and a set of vertices T ⊆ V , what is the maximum

number of vertex-disjoint trees connecting all vertices of T? As all trees are required to connect T ,

this question is meaningful if one asks for trees that share no edges or vertices of V \ T . For ease

of notation, we use the single term elements to refer to the edges of E and vertices of V \T . Thus,

the question of Hind and Oellermann can be rephrased as follows: What is the maximum number

of element-disjoint trees connecting T? Here, the natural upper bound is the minimum number of

elements whose deletion separates T ; analogous to the definitions of vertex-connectivity and edge-

connectivity, this number is referred to as the element-connectivity of T . One might conjecture that

a min-max relation analogous to Menger’s theorem holds, i.e., that the number of element-disjoint

trees spanning T is equal to the element-connectivity of T . Similarly, one might conjecture that

the maximum number of edge-disjoint trees spanning T is equal to the edge-connectivity of T .

However, neither of these conjectures is true even when |T | = 3: Consider K4, the complete
1This chapter is based on joint work with Chandra Chekuri, and has appeared in [53]. The original publication is

available at www.springerlink.com, and the copyright is held by Springer-Verlag.

88

http://www.springerlink.com/content/v86261412871m277/

graph on four vertices, and let T be any set of 3 vertices. It is easy to see that the edge-connectivity

and element-connectivity of T are 3, but there are only 2 edge-disjoint or element-disjoint trees

connecting T .

Though the conjectures are not true when |T | > 2, Hind and Oellermann [105] showed that when

|T | is small, the number of element-disjoint trees spanning T is close to the element-connectivity of

T ; they used a graph reduction step to obtain this result. Subsequently, Cheriyan and Salavatipour

[63] independently studied this question, calling this the problem of packing element-disjoint Steiner

trees2; crucially using the graph reduction step, they showed that if k is the element-connectivity

of T , there always exist Ω(k/ log |T |) element-disjoint Steiner trees. Moreover, this bound is tight

(up to constant factors) in the worst case. In contrast, if we seek edge-disjoint Steiner trees then

Lau [125] has shown that if T is 24k edge-connected in G, there are k edge-disjoint trees each

of which spans T . Recently, Wu and West [156] improved this result to show that if T is 6.5k

edge-connected, there are k edge-disjoint trees spanning T .

Element-Connectivity and Network Design

Motivated by problems independent from the question of Hind and Oellermann discussed above,

Jain et al. [111] reintroduced element-connectivity as a connectivity measure intermediate to edge

and vertex connectivities. Formally, given a graph G(V,E), with its vertex set partitioned into a

set T of terminals and a set V \ T of non-terminals, we define the element-connectivity between

two terminals u, v, denoted by κ′G(u, v), as the minimum number of elements (i.e. edges and non-

terminals) whose deletion separates u from v. Note that one could equivalently define κ′G(u, v) as

the maximum number of element-disjoint paths between u and v. We use κ′G(T) to denote the

minimum number of elements whose deletion separates some terminals from others. It is easy to

see that the element-connectivity between two terminals is at least their vertex connectivity and

at most their edge-connectivity; that is, for any u, v ∈ T , we have κG(u, v) ≤ κ′G(u, v) ≤ λG(u, v),

where κG(u, v) and λG(u, v) denote the vertex- and edge-connectivities between u and v in G re-

spectively. Element-connectivity is also intermediate between edge- and vertex-connectivity more

generally; in some respects it resembles the former, and in other ways resembles the latter. For
2A Steiner tree is simply a tree connecting all vertices of T .

89

example, κ′(u,w) ≥ min(κ′(u, v), κ′(v, w)) for any three terminals u, v, w; this triangle inequal-

ity holds for edge-connectivity but does not for vertex-connectivity. As discussed in Chapter 1,

edge-connectivity problems in undirected graphs often appear to be “easier” than their vertex-

connectivity counterparts. Vertex-connectivity exhibits less structure than edge-connectivity and

this often translates into significant differences in the algorithmic and computational difficulty of

the corresponding problems. Element-connectivity was introduced to help bridge this gap.

In particular, a problem of interest to Jain et al. [111] was the Survivable Network Design

Problem (referred to as SNDP; see Section 1.3.4 for a description of this problem), a central prob-

lem in the design of robust networks. The edge-connectivity version of SNDP (EC-SNDP) was well

understood, while the vertex-connectivity version (VC-SNDP) appeared intractable. Algorithmic

techniques that had been used for EC-SNDP were successfully applied to the element-connectivity

version [111, 79], leading to a 2-approximation for this problem, matching the best result known

for EC-SNDP. These element-connectivity problems were partly motivated by applications: In

designing some networks, there may be some important nodes (the terminals) which are highly

reliable and must be able to communicate between themselves, and other nodes which are less

reliable. Networks with high element-connectivity are robust against failure of the unreliable non-

terminals and edges. In addition to the practical applications, Network Design problems with

element-connectivity requirements were of interest because it was hoped that solving them would

lead to new ideas that would be useful in understanding the harder vertex-connectivity problems.

This approach has since proved very successful, with recent breakthroughs on VC-SNDP [68, 53, 69]

being based on algorithms and ideas for the corresponding element-connectivity problems.

The preceding discussion above suggests that it is fruitful to study element-connectivity as a

way to generalize edge-connectivity and attack problems on vertex-connectivity. We begin this

chapter with a structural result on element-connectivity, generalizing the graph reduction step

introduced by Hind and Oellermann [105] (and rediscovered by Cheriyan and Salavatipour [63]).

We then use this result to obtain algorithms for finding element-disjoint Steiner trees and forests.

Later, in Chapter 5, we use this reduction step to give a simple and elegant analysis of certain

single-sink network design problems with vertex -connectivity requirements.

90

4.1.1 A Graph Reduction Step Preserving Element-Connectivity

The well-known splitting-off operation introduced by Lovász [129] is a standard tool in the study

of (primarily) edge-connectivity problems. Given an undirected multi-graph G and two edges su

and sv incident to s, the splitting-off operation replaces su and sv by the single edge uv. Lovász

proved the following theorem on splitting-off to preserve global edge-connectivity.

Theorem 4.1 (Lovász). Let G = (V ∪ {s}, E) be an undirected multi-graph in which V is k-edge-

connected for some k ≥ 2 and degree of s is even. Then for every edge su there is another edge sv

such that V is k-edge-connected after splitting-off su and sv.

Mader strengthened the above theorem to show the existence of a pair of edges incident to s

that when split-off preserve the local edge-connectivity of the graph.

Theorem 4.2 (Mader [130]). Let G = (V ∪{s}, E) be an undirected multi-graph, where deg(s) 6= 3

and s is not incident to a cut edge of G. Then s has two neighbours u and v such that the graph G′

obtained from G by replacing su and sv by uv satisfies λG′(x, y) = λG(x, y) for all x, y ∈ V \ {s}.

Generalization to directed graphs are also known [130, 80, 108]. The splitting-off theorems

have numerous applications in graph theory and combinatorial optimization; see [129, 81, 123, 110,

59, 125, 124, 114] for various pointers. Although splitting-off techniques can sometimes be used

in the study of vertex-connectivity, their use is limited and no generally applicable theorem akin

to Theorem 4.2 is known. On the other hand, Hind and Oellermann [105] proved an analogous

reduction theorem on preserving global element connectivity. Below, we use κ′G(S) to denote

minu,v∈S κ′G(u, v) and G/pq to denote the graph obtained from G by contracting vertices p, q.

Theorem 4.3 (Hind & Oellermann [105]). Let G = (V,E) be an undirected graph and T ⊆ V be

a terminal-set such that κ′G(T) ≥ k. Let (p, q) be any edge where p, q ∈ V \ T . Then κ′G1
(T) ≥ k

or κ′G2
(T) ≥ k where G1 = G− pq and G2 = G/pq.

We generalize this theorem to show that either deleting an edge or contracting its endpoints

preserves the local element-connectivity of every pair of terminals.

Reduction Lemma. Let G = (V,E) be an undirected graph and T ⊆ V be a terminal-set. Let

(p, q) be any edge where p, q ∈ V \T and let G1 = G−pq and G2 = G/pq. Then one of the following

holds: (i) ∀u, v ∈ T , κ′G1
(u, v) = κ′G(u, v) (ii) ∀u, v ∈ T , κ′G2

(u, v) = κ′G(u, v).

91

It is easy to see that there is a polynomial-time algorithm to determine whether deleting or

contracting an edge pq preserves the element-connectivity of every pair of terminals: First delete

the edge pq to obtain the graph G1 = G − pq, and test whether κ′G1
(u, v) = κ′G(u, v) for every

pair of terminals u, v. This requires
(|T |

2

)
min-cut computations. If the element-connectivity of

every pair is preserved, we are done; if not, the Reduction Lemma guarantees that contracting the

edge pq preserves each pairwise element-connectivity. One can design a more efficient algorithm

that requires only |T | − 1 min-cut computations by exploiting the “triangle inequality” κ′(u,w) ≥

min(κ′(u, v), κ′(v, w)); we omit details from this thesis. It would be interesting to determine if still

more efficient algorithms are possible.

Remark 4.4. The Reduction Lemma, applied repeatedly, transforms a graph into another graph in

which the non-terminals form a stable set. Moreover, the reduced graph is a minor of the original

graph.

Remark 4.5. In studying element-connectivity, we often assume without loss of generality that

there are no edges between terminals (by subdividing each such edge) and hence κ′(u, v) is the

maximum number of non-terminal disjoint u-v paths. Using the Reduction Lemma as described in

the previous remark, we can thus obtain graphs in which both the terminals and non-terminals are

stable sets; hence, these graphs are bipartite.

Theorem 4.3 has been useful in the study of element-connectivity, and found applications in [63,

114]. The stronger Reduction Lemma, which preserves local connectivity, increases its applicability;

as described above, we demonstrate applications in this chapter and the next to packing Steiner

trees and forests, and to network design.

4.1.2 Overview of Results and Technical Ideas

Our main technical result is the Reduction Lemma, which simplifies graphs while preserving the

element-connectivity of every pair of terminals. As remarked above, repeated applications yield a

bipartite graph while preserving element connectivity. As bipartite graphs have highly restricted

structure, it is often easier to design algorithms in this setting. We believe the Reduction Lemma

will find additional applications besides those listed here, and will be a useful tool in simplifying

92

existing proofs, as shown by the following example: Chuzhoy and Khanna [68] gave a beautiful

decomposition result for k-connectivity which is independently interesting from a graph theoretic

point of view. The proof in [68] that such a decomposition exists is long and complicated, although

it is based on only elementary operations. In Chapter 5, we use the Reduction Lemma to give an

alternate proof which is both simple and extremely short.

In this chapter, we consider applications of the Reduction Lemma to packing element-disjoint

Steiner trees and forests. In the element-disjoint Steiner forest packing problem, the input consists

of a graph G = (V,E) and disjoint terminal sets T1, T2, . . . , Th, and the goal is to find a maximum

number of element-disjoint forests such that in each forest, Ti is connected for every 1 ≤ i ≤ h.

(Each such forest is referred to as a Steiner forest.) Clearly, an upper bound on the number of such

forests is mini{κ′G(Ti)}. It is natural to conjecture that if each κ′G(Ti) ≥ k, there exist Ω(k/ log |T |)

element-disjoint Steiner forests, where T =
⋃
i Ti; this would match the bound of Cheriyan and

Salavatipour [63] for packing element-disjoint Steiner trees. However, previously known techniques

do not seem to apply to the problem of packing forests, and [63] posed this as an open question.

Our extension of the Reduction Lemma to preserve the local element-connectivity of every pair

of terminals was primarily motivated by this question. For general graphs, we prove that there

exist Ω(k/(log |T | log h)) element disjoint forests; this can also be viewed as an O(log |T | log h)

approximation for the problem. Our algorithm begins by applying the Reduction Lemma to obtain

a bipartite graph. Cheriyan and Salavatipour [63] took a similar approach for the problem of packing

Steiner trees, using Theorem 4.3. Once they find a bipartite graph, they use a random coloring

approach. To pack Steiner forests, however, one cannot apply the random coloring approach directly

— in fact, we give an example at the end of Section 4.3 to show that it does not work. Instead

we decompose the graph into highly connected subgraphs and then apply the random coloring

approach in each subgraph separately.

We also study the packing problem in planar graphs and graphs of fixed genus, and prove

substantially stronger results. Here too, the first step is to use the Reduction Lemma (recall that

the reduced graph is a minor of the original graph and hence is also planar). After the reduction

step, we employ a very different approach from the one for general graphs. Our main insight is

that planarity restricts the ability of non-terminals to provide high element-connectivity to the

93

terminals. We formalize this intuition by showing that there are some two terminals u, v that

have Ω(k) parallel edges between them which allows us to contract them and recurse. Using these

ideas, for planar graphs we prove that there exist dk/5e − 1 disjoint forests. Our method also

extends to give an Ω(k) bound for graphs of a fixed genus, and we conjecture that one can find

Ω(k) disjoint forests in graphs excluding a fixed minor; we give evidence for this by proving it for

packing Steiner trees in graphs of fixed treewidth. Note that these bounds also imply corresponding

approximation algorithms for maximizing the number of disjoint forests. These are the first non-

trivial bounds for packing element-disjoint Steiner forests in general graphs or planar graphs. We

note that a ρ-approximation for packing element-disjoint Steiner forests in planar graphs yields a 2ρ-

approximation for the problem of packing edge-disjoint Steiner forests in planar graphs; see the end

of Section 4.4 for details. Thus, it follows that we can find dk/10e− 1 edge-disjoint Steiner forests;

previously, the only algorithm known for packing edge-disjoint Steiner forests in planar graphs

was the 32-approximation of Lau [125, 124].3 Our proof is also simple; this simplicity comes from

thinking about element-connectivity (using the Reduction Lemma) instead of edge-connectivity!

Our proof further gives the strong property that for any planar graph, all the non-terminals in each

forest have degree 2.

4.1.3 Related Work

There has been much interest in the recent past on algorithms for (integer) packing of disjoint

Steiner trees in both the edge and element-connectivity settings [123, 110, 125, 124, 62, 63, 59].

See [94] for applications of Steiner tree packing to VLSI design. An outstanding open problem is

Kriesell’s conjecture which states that if the terminal set T is 2k-edge-connected then there are

k-edge-disjoint Steiner trees each of which spans T ; this would generalize a classical theorem of

Nash-Williams and Tutte on edge-disjoint spanning trees. Lau made substantial progress [125]

and proved that 24k-edge-connectivity suffices for k edge-disjoint Steiner trees; this was recently

improved by Wu and West [156] to show that 6.5k-edge-connectivity suffices. Recall that given

several terminal sets T1, T2, . . . Th ⊆ V (G), a Steiner forest is a forest such that each Ti (1 ≤ i ≤ h)

is contained in a single component of the forest. Lau extended his results in [124] to show that if
3Note that the algorithms of [125, 124] do not use planarity, and hence apply to general graphs.

94

each set Ti is 32k edge-connected in the graph G, then G contains k edge-disjoint Steiner forests.

We remark that Mader’s splitting-off theorem plays an important role in Lau’s work. The element-

disjoint Steiner tree packing problem was first considered by Hind and Oellermann. As mentioned

earlier, Cheriyan and Salavatipour [63] gave a nearly tight bound for this problem: They gave an

O(log n) approximation algorithm, and had previously shown that the problem of packing element-

disjoint Steiner trees is hard to approximate to within a factor of Ω(log n) [62]. The algorithm

of [63] relies crucially on Theorem 4.3 followed by a simple randomized coloring algorithm whose

analysis extends a similar algorithm for computing the domatic number of a graph [76]. In [71]

the random coloring idea was shown to apply more generally in the context of packing bases of an

arbitrary monotone submodular function; in addition, a derandomization was provided in [71] via

the use of min-wise independent permutations.

Our work on packing Steiner forests in planar graphs was inspired by a question by Joseph

Cheriyan [61]. Independent of our work, Aazami, Cheriyan and Jampani [1] proved that if a

terminal set T is k-element-connected in a planar graph then there exist k/2 − 1 element-disjoint

Steiner trees, and moreover this is tight. They also prove that it is NP-hard to obtain a (1/2 + ε)

approximation for this problem. Our bound for packing Steiner trees in planar graphs is slightly

weaker than theirs; however, our algorithms and proofs are simple and intuitive, and generalize to

packing Steiner forests. Their algorithm uses Theorem 4.3, followed by a reduction to a theorem

of Frank, Király and Kriesell [83] that uses Edmonds’ matroid partition theorem. One could

attempt to pack Steiner forests using their approach (with the stronger Reduction Lemma in place

of Theorem 4.3), but the theorem of [83] does not have a natural generalization for Steiner forests.

The techniques of both [1] and this chapter extend to graphs of small genus or treewidth, and

the ideas of [1] further apply to packing element-disjoint Steiner trees in graphs excluding a fixed

minor; we discuss this in more detail in Section 4.4.

The problems of packing disjoint Steiner trees and forests (or other combinatorial structures) can

be generalized to their capacitated variants. For example, each non-terminal could have a capacity,

and the goal is to find a largest set of Steiner trees or forests such that the number of trees or forests

containing a non-terminal is at most its capacity. Thus, the problem of packing element-disjoint

Steiner trees or forests is simply the special case when the capacity of each non-terminal is 1. A

95

slightly different problem is obtained when one tries to to find a fractional packing: Now, one must

assign a non-negative weight to each Steiner tree or forest such that the total weight of the trees or

forests containing a non-terminal is at most its capacity; the goal is to maximize the total weight

of all the trees or forests. Such fractional packing problems are of interest both as relaxations

of the standard (integer) packing problems and in their own right; for instance, the fractional

Steiner tree packing problem has applications in broadcasting over networks. Carr and Vempala

[38] and Jain, Mahdian and Salavatipour [110] studied the connection between fractionally packing

combinatorial structures and finding a minimum-cost such structure. Specifically, [110] showed

that there is a ρ-approximation for fractionally packing Steiner trees iff there is a ρ-approximation

for finding a minimum-cost Steiner tree. Călinescu, Chekuri, and Vondrák [71] state this result

more generally: There is a ρ-approximation for fractionally packing a combinatorial structure iff

there is a ρ-approximation for finding a minimum-cost structure. This follows from strong duality

and the equivalence of separation and optimization, as the separation oracle for the dual of the

fractional packing problem is the problem of finding a minimum-cost structure. See [71] for a clear

presentation of these results.

Chapter Outline

In Section 4.2, we prove the Reduction Lemma. We then use it to obtain a polylogarithmic

approximation for packing element-disjoint Steiner forests in Section 4.3. In Section 4.4, we obtain

improved approximations for packing Steiner trees and forests in planar graphs and graphs of low

genus. We conjecture that these results should extend to graphs excluding a fixed minor, and

provide evidence for this by giving algorithms for graphs of low treewidth in Section 4.5.

4.2 The Reduction Lemma

Let G(V,E) be a graph, with a given set T ⊆ V (G) of terminals. For ease of notation, we

subsequently refer to terminals as black vertices, and non-terminals (also called Steiner vertices) as

white. The elements of G are white vertices and edges; two paths are element-disjoint if they have

no white vertices or edges in common. Recall that the element-connectivity of two black vertices u

96

and v, denoted by κ′G(u, v), is the maximum number of element-disjoint (that is, disjoint in edges

and white vertices) paths between u and v in G. We omit the subscript G when it is clear from

the context.

For this section, to simplify the proof, we will assume that G has no edges between black

vertices; any such edge can be subdivided, with a white vertex inserted between the two black

vertices. It is easy to see that two paths are element-disjoint in the original graph iff they are

element-disjoint in the modified graph. Thus, we can say that paths are element disjoint if they

share no white vertices, or that u and v are k-element-connected if the smallest set of white vertices

whose deletion separates u from v has size k.

Recall that our lemma generalizes Theorem 4.3 on preserving global connectivity. We remark

that our proof is based on a cutset argument unlike the path-based proofs in [105, 63] for the global

case.

Reduction Lemma. Given G(V,E) and T , let pq ∈ E(G) be any edge such that p and q are both

white. Let G1 = G − pq and G2 = G/pq be the graphs formed from G by deleting and contracting

pq respectively. Then, (i) ∀u, v ∈ T, κ′G1
(u, v) = κ′G(u, v) or (ii) ∀u, v ∈ T, κ′G2

(u, v) = κ′G(u, v).

Proof. Consider an arbitrary edge pq. Deleting or contracting an edge can reduce the element-

connectivity of a pair by at most 1. Suppose the lemma were not true; there must be pairs s, t

and x, y of black vertices such that κ′G1
(s, t) = κ′G(s, t)− 1 and κ′G2

(x, y) = κ′G(x, y)− 1. The pairs

have to be distinct since it cannot be the case that κ′G1
(u, v) = κ′G2

(u, v) = κ′G(u, v) − 1 for any

pair u, v. (To see this, if one of the κ′G(u, v) u-v paths uses pq, contracting the edge will not affect

that path, and will leave the other paths untouched. Otherwise, no path uses pq, and so it can

be deleted.). Note that one of s, t could be the same vertex as one of x, y; for simplicity we will

assume that {s, t} ∩ {x, y} = ∅, but this does not change our proof in any detail. We show that

our assumption on the existence of s, t and x, y with the above properties leads to a contradiction.

Let κ′G(s, t) = k1 and κ′G(x, y) = k2. We use the following facts several times.

1. Any cutset of size less than k1 that separates s and t in G1 cannot include p or q. (If it did,

it would also separate s and t in G.)

97

2. κ′G1
(x, y) = k2 since κ′G2

(x, y) = k2 − 1.

We define a vertex tri-partition of a graph G as follows: (A,B,C) is a vertex tri-partition of G

if A,B, and C partition V (G), B contains only white vertices, and there are no edges between A

and C. (That is, removing the white vertices in B disconnects A and C.)

Since κ′G1
(s, t) = k1 − 1, there is a vertex-tri-partition (S,M, T) such that |M | = k1 − 1 and

s ∈ S and t ∈ T . From Fact 1 above, M cannot contain p or q. For the same reason, it is also

easy to see that p and q cannot be both in S (or both in T); otherwise M would be a cutset of size

k1 − 1 in G. Therefore, assume without loss of generality that p ∈ S, q ∈ T .

Similarly, since κ′G2
(x, y) = k2 − 1, there is a vertex-tri-partition (X,N ′, Y) in G2 with |N ′| =

k2− 1 and x ∈ X and y ∈ Y . We claim that N ′ contains the contracted vertex pq for otherwise N ′

would be a cutset of size k2−1 inG. Therefore, it follows that (X,N, Y) whereN = N ′∪{p, q}−{pq}

is a vertex-tri-partition in G that separates x from y. Note that |N | = k2 and N includes both p

and q. For the latter reason we note that (X,N, Y) is a vertex-tri-partition also in G1.

Subsequently, we work with the two vertex tri-partitions (S,M, T) and (X,N, Y) in G1 (we

stress that we work in G1 and not in G or G2). Recall that s, p ∈ S, and t, q ∈ T , and that M

has size k1 − 1; also, N separates x from y, and p, q ∈ N . Fig. 1 (a) below shows these vertex

tri-partitions. Since M and N contain only white vertices, all terminals are in S or T , and in X

or Y . We say that S ∩X is diagonally opposite from T ∩ Y , and S ∩ Y is diagonally opposite from

T ∩X. Let A,B,C,D denote S∩N,X ∩M,T ∩N and Y ∩M respectively, with I denoting N ∩M ;

note that A,B,C,D, I partition M ∪N .

S M T

X

N

Y

A

B

C

D

Ip q

(a)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

y t

(b)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

s y

t

(c)

Figure 4.1: Part (a) illustrates the vertex tri-partitions (S,M, T) and (X,N, Y).
In parts (b) and (c), we consider possible locations of the terminals s, t, x, y.

98

We assume without loss of generality that x ∈ S. If we also have y ∈ S, then x ∈ S ∩ X

and y ∈ S ∩ Y ; therefore, one of x, y is diagonally opposite from t, suppose this is x. Fig. 1 (b)

illustrates this case. Observe that A ∪ I ∪ B separates x from y; since x and y are k2-connected

and |N = A ∪ I ∪ C| = k2, it follows that |B| ≥ |C|. Similarly, C ∪ I ∪D separates t from s, and

since C contains q, Fact 1 implies that |C ∪ I ∪D| ≥ k1 > |B ∪ I ∪D = M | = k1 − 1. Therefore,

|C| > |B|, and we have a contradiction.

Hence, it must be that y /∈ S; so y ∈ T ∩Y . The argument above shows that x and t cannot be

diagonally opposite, so t must be in T ∩X. Similarly, s and y cannot be diagonally opposite, so

s ∈ S ∩ Y . Fig. 1 (c) shows the required positions of the vertices. Now, N separates s from t and

contains p, q; therefore, from fact 1, |N | ≥ k1 > |M |. But M separates x from y, and fact 2 implies

that x, y are k2-connected in G1; therefore, |M | ≥ k2 = |N |, and we have a contradiction.

4.3 Packing Steiner Trees and Forests in General Graphs

Consider a graph G(V,E), with its vertex set V partitioned into T1, T2, . . . Th,W . We refer to each

Ti as a group of terminals, and W as the set of Steiner or white vertices; we use T =
⋃
i Ti to

denote the set of all terminals. A Steiner forest for this graph is a forest that is a subgraph of G,

such that each Ti is entirely contained in a single tree of this forest. (Note that Ti and Tj can be

in the same tree.) For any group Ti of terminals, we define κ′(Ti), the element-connectivity of Ti,

as the largest k such that for every u, v ∈ Ti, the element-connectivity of u and v in the graph G

is at least k.

We say two Steiner forests for G are element-disjoint if they share no edges or Steiner vertices.

(Every Steiner forest must contain all the terminals.) The Steiner forest packing problem is to find

as many element-disjoint Steiner forests for G as possible. By inserting a Steiner vertex between

any pair of adjacent terminals, we can assume that there are no edges between terminals, and then

the problem of finding element-disjoint Steiner forests is simply that of finding Steiner forests that

do not share any Steiner vertices. A special case is when h = 1 in which case we seek a maximum

number of element-disjoint Steiner trees.

Proposition 4.6. If k = mini κ′G(Ti), there are at most k element-disjoint Steiner forests in G.

99

Proof. Let S be a set of k white vertices that separates vertices u and v in Ti. Any tree that

contains both u and v must contain a vertex of S. Hence, we can pack at most k trees that contain

all of Ti.

Cheriyan and Salavatipour [63] proved that if there is a single group T of terminals, with

κ′(T) = k, then there always exist Ω(k/ log |T |) Steiner trees. Their algorithm proceeds by us-

ing Theorem 4.3, the global element-connectivity reduction of [105], to delete and contract edges

between Steiner vertices, while preserving κ′(T) = k. Then, once we obtain a bipartite graph

G′ with terminals on one side and Steiner vertices on the other side, randomly color the Steiner

vertices using k/6 log |T | colors; they show that with high probability, each color class connects the

terminal set T , giving k/6 log |T | trees. The bipartite case can be cast as a special case of packing

bases of a polymatroid and a variant of the random coloring idea is applicable in this more general

setting [71]; a derandomization is also provided in [71], thus yielding a deterministic polynomial

time algorithm to find Ω(k/ log |T |) element-disjoint Steiner trees.

In this section, we give algorithms for packing element-disjoint Steiner forests, where we are

given h groups of terminals T1, T2, . . . Th. The approach of [63] encounters two difficulties. First, we

cannot reduce to a bipartite instance, using only the global-connectivity version of the Reduction

Lemma. In fact, our strengthening of the Reduction Lemma to preserve local connectivity was

motivated by this; using it allows us once again assume that we have a bipartite graph G′(T ∪W,E).

Second, we cannot apply the random coloring algorithm on the bipartite graph G′ directly; we give

an example at the end of this section to show that this approach does not work. One reason for

this is that, unlike the Steiner tree case, it is no longer a problem of packing bases of a submodular

function. To overcome this second difficulty we use a decomposition technique followed by the

random coloring algorithm to prove that there always exist Ω(k/(log |T | log h)) element-disjoint

forests. We believe that the bound can be improved to Ω(k/ log |T |).

In order to pack element-disjoint Steiner forests we borrow the basic idea from [59] in the edge-

connectivity setting for Eulerian graphs; this idea was later used by Lau [124] in the much more

difficult non-Eulerian case. The idea at a high level is as follows: If all the terminals are k-connected

then we can treat the terminals as forming one group and reduce the problem to that of packing

Steiner trees. Otherwise, we can find a cut (S, V \ S) that separates some groups from others. If

100

the cut is chosen appropriately we may be able to treat one side, say S, as containing a single

group of terminals and pack Steiner trees in them without using the edges crossing the cut. Then

we can shrink S and find Steiner forests in the reduced graph; unshrinking of S is possible since

we have many trees on S. In [59, 124] this scheme works to give Ω(k) edge-disjoint Steiner forests.

However, the approach relies strongly on properties of edge-connectivity as well as the properties

of the packing algorithm for Steiner trees. These do not generalize easily for element-connectivity.

Nevertheless, we show that the basic idea can be applied in a slightly weaker way (resulting in the

loss of an O(log h) factor over the Steiner tree packing factor). We remark that the reduction to a

bipartite instance using the Reduction Lemma plays a critical role. A key definition is the notion

of a good separator given below.

Definition 4.7. Given an graph G(V,E) with terminal sets T1, T2, . . . Th, such that for all i,

κ′(Ti) ≥ k, we say that a set S of white vertices is a good separator if (i) |S| ≤ k/2 and (ii)

there is a component of G− S in which all terminals are k/2 log h-element-connected.

Note that the empty set is a good separator if all terminals are k/2 log h-element-connected.

Lemma 4.8. For any instance of the Steiner forest Packing problem, there is a polynomial-time

algorithm that finds a good separator.

Proof. Let G(V,E) be an instance of the Steiner forest packing problem, with terminal sets

T1, T2, . . . Th such that each Ti is k-element-connected. If T is k
2 log h -element connected, the empty

set S is a good separator.

Otherwise, there is some set of white vertices of size less than k
2 log h that separates some of the

terminals from others. Let S1 be a minimal such set, and consider the two or more components

of G − S1. Note that each Ti is entirely contained in a single component, since Ti is at least k-

element-connected, and |S1| < k. Among the components of G−S1 that contain terminals, consider

a component G1 with the fewest sets of terminals; G1 must have at most h/2 sets from T1, . . . Th.

If the set of all terminals in G1 is k
2 log h connected, we stop, otherwise, find in G1 a set of white

vertices S2 with size less than k
2 log h that separates terminals of G1. Again, find a component G2

of G1 − S2 with fewest sets of terminals, and repeat this procedure until we obtain some subgraph

G` in which all the terminals are k
2 log h -connected. We can always find such a subgraph, since the

101

number of sets of terminals is decreasing by a factor of 2 or more at each stage, so we find at most

log h separating sets Sj . Now, we observe that the set S =
⋃`
j=1 Sj is a good separator. It separates

the terminals in G` from the rest of T , and its size is at most log h × k
2 log h = k/2; it follows that

each set of terminals Ti is entirely within G`, or entirely outside it. By construction, all terminals

in G` are k
2 log h connected. To see that this algorithm runs in polynomial time, it suffices to observe

that if the sets of white vertices S1, S2, . . . exist, they can be found in polynomial time via min-cut

algorithms. Once no such set S` exists in G`−1, we have found the desired separator.

We can now prove our main result of this section, that we can always find a packing of

Ω(k
log |T | log h) Steiner forests.

Theorem 4.9. Given a graph G(V,E), with terminal sets T1, T2, . . . Th, such that for all i, κ′(Ti) ≥

k, there is a polynomial-time algorithm to pack Ω(k/ log |T | log h) element-disjoint Steiner forests

in G.

Proof. The proof is by induction on h. The base case of h = 1, follows from [63, 71]; G contains at

least k
6 log |T | element-disjoint Steiner trees, and we are done.

We may assume G is bipartite by using the Reduction Lemma. Find a good separator S, and

a component G` of G− S in which all terminals are k
2 log h -connected. Now, since the terminals in

G` are k
2 log h -connected, use the algorithm of [63] to find k

12 log h log |T | element-disjoint Steiner trees

containing all the terminals in G`; none of these trees uses vertices of S. Number these trees from

1 to k
12 log h log |T | ; let Tj denote the jth tree.

The set S separates G` from the terminals in G − G`. If S is not a minimal such set, discard

vertices until it is. If we delete G` from G, and add a clique between the white vertices in S to form

a new graph G′, it is clear that the element-connectivity between any pair of terminals in G′ is at

least the element-connectivity they had in G. The graph G′ has h′ ≤ h− 1 groups of terminals; by

induction, we can find k
12 log |T | log h <

k
12 log |T | log h′ element-disjoint Steiner forests for the terminals

in G′. As before, number the forests from 1 to k
12 log h log |T | ; we use Fj to refer to the jth forest.

These Steiner forests may use the newly added edges between the vertices of S; these edges do not

exist in G. However, we claim that the Steiner forest Fj of G′, together with the Steiner tree Tj in

G` gives a Steiner forest of G. The only way this might not be true is if Fj uses some edge added

102

between vertices u, v ∈ S. However, every vertex in S is adjacent to a terminal in G`, and all the

terminals of G` are in every one of the Steiner trees we generated. Therefore, there is a path from

u to v in Tj . Hence, deleting the edge between u and v from Fj still leaves each component of

Fj ∪ Tj connected.

Therefore, for each 1 ≤ j ≤ k
12 log h log |T | , the vertices in Fj ∪ Tj induce a Steiner forest for G.

To see that this algorithm runs in polynomial-time, note that we can find a good separator S in

polynomial time, and we then recurse on the graph G′. As G′ has h′ ≤ h− 1 groups of terminals,

there are at most h ≤ n levels of recursion.

A Counterexample to the Random Coloring Algorithm for Packing Steiner Forests.

We first define a graph Hk, which we use subsequently. Hk has two black vertices x and y, and k

white vertices, each incident to both x and y. (That is, there are k disjoint paths of white vertices

from x to y.) Given a graph G, we define the operation of inserting Hk along an edge pq ∈ E(G)

as follows: Add the vertices and edges of Hk to G, delete the edge pq, and add edges from p to x

and q to y. (If we collapsed Hk to a single vertex, we would have subdivided the edge pq.) Figure

2 below shows H4 and the effect of inserting H4 along an edge.

x y
p q p qx y

Figure 4.2: On the left, the graph H4. On the right, inserting it along a single edge pq.

We now describe the construction of our counterexample. We begin with 2 black vertices s and

t, and k vertex-disjoint paths between them, each of length k + 1; there are no edges besides the

ones just described. Each of the k2 vertices besides s and t is white. It is obvious that s and t

are k-element-connected in this graph. Now, to form our final graph Gk, insert a copy of Hk along

each of the k(k − 1) edges between a pair of white vertices. Fig. 4.3 below shows the construction

of G3.

The following claims are immediate:

• The vertices s and t are k-element-connected in Gk.

103

s t s t

H3

H3

H3

H3

H3

H3

Figure 4.3: The construction of G3.

• For every copy of Hk, the vertices x and y are k-white connected in Gk.

• The graph Gk is bipartite, with the white vertices and the black vertices forming the two

parts.

We use Gk as an instance of the Steiner-forest packing problem; s and t form one group of

terminals, and for each copy of Hk, the vertices x and y of that copy form a group. From our

claims above, each group is k-element-connected.

If we use the algorithm of Cheriyan and Salavatipour, there are no edges between white vertices

to be deleted or contracted, so we move directly to the coloring phase. If colors are assigned to the

white vertices randomly, it is easy to see that no color class is likely to connect up s and t. The

probability that a white vertex is given color i is c log |T |
k , for some constant c. The vertices s and t

can be connected iff the same color is assigned to all the white vertices on one of the k paths from

s to t in the graph formed from Gk by contracting each Hk to a single vertex. The probability that

every vertex on such a path will receive the same color is
(
c log |T |

k

)k
; using the union bound over

the k paths gives us the desired result.

104

4.4 Packing Steiner Trees and Forests in Planar Graphs

We now prove much improved results for restricted classes of graphs, in particular planar graphs.

If G is planar, we show the existence of dk/5e − 1 element-disjoint Steiner forests.4 The (simple)

technique extends to graphs of fixed genus to prove the existence of Ω(k) Steiner forests where

the constant depends mildly on the genus. We believe that there exist Ω(k) Steiner forests in any

H-minor-free graph where H is fixed; it is shown in [1] that there exist Ω(k) Steiner trees in H-

minor-free graphs. Our technique for planar graphs does not extend directly, but generalizing this

technique allows us to make partial progress; by using our general graph result and some related

ideas, in Section 4.5 we prove that in graphs of any fixed treewidth, there exist Ω(k) element-disjoint

Steiner trees if the terminal set is k-element-connected.

The intuition and algorithm for planar graphs are easier to describe for the Steiner tree packing

problem and we do this first; we later discuss the algorithm for packing Steiner forests in Sec-

tion 4.4.2. We achieve the improved bound by observing that planarity restricts the use of many

white vertices as “branch points” (that is, vertices of degree ≥ 3) in forests. Intuitively, even in

the case of packing trees, if there are terminals t1, t2, t3, . . . that must be in every tree, and white

vertices w1, w2, w3 . . . that all have degree 3, it is difficult to avoid a K3,3 minor.5 Note, however,

that degree 2 white vertices behave like edges and do not form an obstruction. We capture this

intuition more precisely by showing that there must be a pair of terminals t1, t2 that are connected

by Ω(k) degree-2 white vertices; we can contract these “parallel edges”, and recurse.

We describe below an algorithm for packing Steiner trees. Through the rest of the section, we

assume k > 10; otherwise, dk/5e − 1 ≤ 1, and we can always find 1 Steiner tree in a connected

graph.

Given an instance of the Steiner tree packing problem in planar graphs, we construct a reduced

instance as follows: Use the Reduction Lemma to delete and contract edges between white vertices

to obtain a planar graph with vertex set T ∪W , such that W is a stable set. Now, for each vertex

w ∈ W of degree 2, connect the two terminals that are its endpoints directly with an edge, and

delete w. (All edges have unit capacity.) We now have a planar multigraph, though the only parallel
4Note that in the special case of packing Steiner trees, the paper of Aazami et al. [1] shows that there are bk/2c−1

element-disjoint Steiner trees.
5Strictly speaking, this is not true, though the intuition is helpful.

105

edges are between terminals, as these were the only edges added while deleting degree-2 vertices in

W . Note that this reduction preserves the element-connectivity of each pair of terminals; further,

any set of element-disjoint trees in this reduced instance corresponds to a set of element-disjoint

trees in the original instance.

Lemma 4.10. In a reduced instance of the planar Steiner tree packing problem, if T is k-element-

connected, there are two terminals t1, t2 with at least dk/5e − 1 parallel edges between them.

The proof of this lemma is rather intricate, and we defer a complete proof to Section 4.4.1.

First, though, we show that Lemma 4.10 allows us to pack dk/5e − 1 disjoint trees.

Theorem 4.11. Given an instance of the Steiner tree packing problem on a planar graph G with

terminal set T , if κ′(T) ≥ k, there is a polynomial-time algorithm to find at least dk/5e−1 element-

disjoint Steiner trees in G. Moreover, in each tree, the white (non-terminal) vertices all have degree

2.

Proof. We prove this theorem by induction on |T |; if |T | = 2, there are k disjoint paths in G from

one terminal to the other, so we are done (including the guarantee of degree 2 for white vertices).

Otherwise, apply the Reduction Lemma to construct a reduced instance G′, preserving the

element-connectivity of T . Now, from Lemma 4.10, there exist a pair of terminals t1, t2 that have

dk/5e − 1 parallel edges between them (Note that the parallel edges between t1 and t2 may have

non-terminals on them in the original graph but they have degree 2.). Contract t1, t2 into a single

terminal t, and consider the new instance of the Steiner tree packing problem with terminal set

T ′ = T ∪ {t} − {t1, t2}. It is easy to see that the element-connectivity of the terminal set is still at

least k; by induction, we can find dk/5e − 1 Steiner trees containing all the terminals of T ′, with

the property that all non-terminals have degree 2. Taking these trees together with dk/5e−1 edges

between t1 and t2 gives dk/5e − 1 trees in G′ that span the original terminal set T .

It remains only to prove Lemma 4.10, which we now do. As this involves some technical

arguments about the structure of planar graphs, we recommend Section 4.4.1 be skipped on a first

reading.

106

4.4.1 The Proof of Lemma 4.10

The following structural result is key to the proof of Lemma 4.10.

Lemma 4.12. Let G(T ∪W,E) be a planar graph with minimum degree 3, in which W is a stable

set. There exists a vertex t ∈ T of degree at most 10, with at most 5 neighbors in T .

Proof. Our proof uses the discharging technique. Assume, for the sake of contradiction, that every

vertex t ∈ T has degree at least 11, or has at least 6 neighbors in T . By multiplying Euler’s formula

by 4, we observe that for a planar graph G(V,E) with face set F , (2|E|−4|V |)+(2|E|−4|F |) = −8.

We rewrite this as
∑

v∈V (d(v)− 4)+
∑

f∈F (l(f)− 4) = −8, where d(v) and l(f) denote the degree

of vertex v and length of face f respectively.

Now, in our given graph G, assign d(v) − 4 units of charge to each vertex v ∈ T ∪W , and

assign l(f) − 4 units of charge to each face f : Note that the net charge on the graph is negative.

(It is equal to −8.) We describe rules for redistributing the charge through the graph such that

after redistribution, if every vertex t ∈ T has degree at least 11 or has at least 6 neighbors in T ,

the charge at each vertex and face will be non-negative. But no charge is added or removed (it is

merely rearranged), and so we obtain a contradiction.

We use the following rules for distributing charge:

1. Every terminal t ∈ T distributes 1/3 unit of charge to each of its neighbors in W .

2. Every terminal t ∈ T distributes 1/2 unit of charge to each triangular face f it is incident to,

unless the face contains 3 terminals. In this case, it distributes 1/3 unit of charge to the face.

We now observe that every vertex of W and every face has non-negative charge. Each vertex

u ∈ W has degree at least 3 (the graph has minimum degree 3), so its initial charge was at least

−1. It did not give up any charge, and rule 1 implies that it received 1/3 from each of its (at least

3) neighbors, all of which are in T . Therefore, u has non-negative charge after redistribution. If

a face f has length 4 or more, it already had non-negative charge, and it did not give up any. If

f is a triangle, it starts with charge −1. It is incident to at least 2 terminals, since W is a stable

set; we argue that it gains 1 unit of charge, to end with charge 0. From rule 2, if f is incident to

107

2 terminals, it gains 1/2 unit from each of them, and if it is adjacent to 3 terminals, it gains 1/3

unit from each of them.

It remains only to argue that each terminal t ∈ T has non-negative charge after redistribution.

For ease of analysis, we describe a slightly modified version of the discharging in which each

terminal loses at least as much charge as under the original rules, and show that each terminal has

non-negative charge under the new discharging rules, listed below:

1. Every terminal t gives 1/3 unit of charge to every neighbor.

2. Every terminal t ∈ T gives 1/3 unit of charge to each adjacent triangle.

3. Every terminal t gets back 1/3 unit of charge from each face f such that both t’s neighbors

on f are black.

We first prove that every terminal t loses at least as much charge as under the original rules;

see also Fig. 4.4. The terminal t is now giving 1/3 unit of charge to all its black neighbors, besides

giving this charge to its white neighbors. It is giving less charge (1/3 instead of 1/2) to some

triangular neighbors, but every triangle is incident to a black vertex t′ besides t; this neighbor of t

received an extra 1/3 unit of charge from t, and it can give 1/6 = 1/2− 1/3 to each face incident

to the edge t − t′. That is, the extra charge of 1/3 given by t to t′ is enough to compensate for

the fact that t may give 1/6 units less charge to the two faces incident to t− t′. Finally, note that

if both t’s neighbors on some face f are black, the original rules require t to give only 1/3 unit to

f , which it also does under the new rules. However, it has given 1/3 unit of charge to these two

black neighbors, and they do not need to use this to compensate for t giving too little charge to f ;

therefore, they may each return 1/6 unit of charge to t.

We now argue that every terminal has non-negative charge under the new rules. Let t ∈ T have

degree d; we consider three cases:

1. If d ≥ 12, t gives away 1/3 to each of its d neighbors and d incident faces, so the total charge

it gives away is 2d/3. (It may also receive some charge, but we ignore this.) Therefore, the

net charge on t is (d− 4)− 2d/3 = (d/3)− 4; as d ≥ 12, this cannot be negative.

108

1/3 1/3

1/2 1/2

(a): Old Rules.

1/3 1/3

1/6 1/6
1/3 1/3

(b): Equivalence of the rules

1/3 1/3

1/3

1/3 1/3

(c): New Rules.

1/3

1/2 1/2

1/3 1/3

(d): Old Rules.

1/3 1/3

1/3 1/3

1/6
1/6

1/6
1/6

(e): Equivalence of the rules

1/3 1/3

1/3 1/3

1/3 1/3

(f): New Rules.

Figure 4.4: Terminals lose at least as much charge under the new rules.
Part (a) shows the charge given away by a terminal under the original rules, while part (c) shows the
charge given away under the new rules; the triangles now receive less charge. Part (b) shows that the
extra 1/3 unit of charge given to the black neighbor under the new rules can be split equally among the
two triangles, which has the same effect as giving 1/2 unit to the triangles. Similarly, part (d) shows
the charge given away by a terminal under the original rules, while part (f) shows the charge under
the new rule 3: The central triangular face receives 1/3 unit of charge, but also returns 1/3 charge to
the terminal as both its neighbors on this face are black. Part (e) shows that the extra 1/3 unit of
charge given to each black neighbor under the new rules can be split among the triangles, so the ef-
fect is the same as giving 1/3 unit of charge to the central face, and 1/2 to each of the other faces.

2. If d = 11, we count the number of triangles incident to t. If there are 10 or fewer, t gives away

1/3 unit of charge to each of its 11 neighbors, and at most 10/3 to its adjacent triangles, so

the net charge on t is at least (11 − 4) − 11/3 − 10/3 = 0. If t is incident to 11 triangles, it

must be adjacent to at least 6 black vertices, as each triangle incident to t must be adjacent

to a black neighbor of t, and no more than 2 triangles incident to t can share a neighbor of

t. Since t has degree 11 and at least 6 black neighbors, some pair of black neighbors of t are

on a common face, and t must receive 1/3 unit of charge from this face. It follows that the

charge on t is at least (11− 4)− 11/3− 11/3 + 1/3 = 0.

3. If d ≤ 10, t has at least 6 black neighbors by hypothesis. It has at most d−6 white neighbors,

so there are at least 6− (d− 6) = 12− d faces f such that both t’s neighbors on f are black.

(Delete the white neighbors; there are at least 6 faces incident to t on which both its neighbors

are black. When each white vertex is added back, it can only decrease the number of such

faces by 1.) The terminal t gives away 1/3 unit of charge to each of its d neighbors and at

most d incident triangles, and receives 1/3 unit of charge from each face on which both its

109

neighbors are black. Therefore, the net charge on t is at least (d−4)−2d/3 + (12−d)/3 = 0.

Proof of Lemma 4.10. Let G be the planar multigraph of the reduced instance. Since T is

k-element-connected in G, every terminal has degree at least k in G. Construct a planar graph G′

from G by keeping only a single copy of each edge; from Lemma 4.12 above, some terminal t has

degree at most 10, and at most 5 black neighbors. Let w denote the number of white neighbors of

t, and b the number of black neighbors. Since each white vertex is incident to only a single copy

of each edge in G, there must be at least d(k − w)/be copies in G of some edge between t and a

black neighbor. But b ≤ 5 and b+w ≤ 10. Therefore, it is easy to verify since k ≥ 10, the smallest

possible value of d(k − w)/be is d(k − 5)/5e = dk/5e − 1; this completes the proof. �

4.4.2 Packing Steiner Forests in Planar Graphs

For the Planar Steiner forest Packing problem, we use an algorithm very similar to that for packing

Steiner trees above. Now, as input, we are given sets T1, . . . Th of terminals that are each internally

k-connected, but some Ti and Tj may be poorly connected. The algorithm described above for

packing Steiner trees encounters a technical difficulty when we try to extend it to Steiner forests.

Lemma 4.10 can be used at the start to merge some two terminals. Precisely as before, as long as

each Ti contains at least 2 terminals, Lemma 4.10 is true, so we can contract some pair of terminals

t1, t2 that have dk/5e − 1 parallel edges between them. Note that if t1, t2 are in the same Ti, after

contraction, we have an instance in which Ti contains fewer terminals, and we can apply induction.

If t1, t2 are in different sets Ti, Tj , then after contracting, all terminals in Ti and Tj are pairwise

k-connected, so we can merge these two groups into a single set.

However, as the algorithm proceeds it may get stuck in the following situation: it merges all

terminals from some group Ti into a single terminal. Now this terminal does not require any more

connectivity to other terminals although other groups are not yet merged together. In this case we

term this terminal as dead. In proving the crucial Lemma 4.10, we argued that in the multigraph

G of the reduced instance, every terminal has degree at least k (since it is k-element-connected

to other terminals), and in the graph G′ in which we keep only a single copy of each edge, some

110

terminal has degree at most 10; therefore, there are dk/10e copies of some edge. However, in the

Steiner forest problem, some Ti may contain only a single dead terminal t (after several contraction

steps). The terminal t may be poorly connected to the remaining terminals; therefore, it may have

degree less than k in the multigraph G. If t is the unique low-degree terminal in G′, we may not be

able to find a pair of terminals with a large number of edges between them. Thus, in the presence

of dead terminals, Lemma 4.10 no longer applies; we illustrate this with a concrete example at the

end of Section 4.4.

We solve this problem by eliminating a set Ti when it has only a single dead terminal t. One

cannot simply delete this terminal or replace it by a single white vertex, as several paths connecting

other terminals may pass through t. Instead, we replace the dead terminal t with a “well-linked”

collection of white vertices so that distinct paths through t can now use disjoint white vertices from

this collection. It might be most natural to replace t by a clique of white vertices, but this would

not preserve planarity; instead, we replace a dead terminal t with a grid of white vertices, which

ensures that the resulting graph is still planar. We then apply the Reduction Lemma to remove

edges between the newly added white vertices and proceed with the merging process. We formalize

this intuition in the following lemma:

Lemma 4.13. Let G(V,E) with a given T ⊆ V be a planar graph, and t ∈ T be an arbitrary

terminal of degree d. Let G′ be the graph constructed from G by deleting t, and inserting a d × d

grid of white vertices, with the edges incident to t in G made incident to distinct vertices on one

side of the new grid in G′. Then:

1. G′ is planar.

2. For every pair u, v of terminals in G′, κ′G′(u, v) = κ′G(u, v).

3. Any set of element-disjoint subgraphs of G′ corresponds to a set of element-disjoint subgraphs

of G.

Proof. See Figure 4.5 showing this operation; it is easy to observe that given a planar embedding

of G, one can construct a planar embedding of G′. It is also clear that a set of element-disjoint

subgraphs in G′ correspond to such a set in G; every subgraph that uses a vertex of the grid can

contain the terminal t.

111

t t

Figure 4.5: Replacing a terminal by a grid of white vertices preserves planarity and
element-connectivity.

It remains only to argue that the element-connectivity of every other pair of terminals is pre-

served. Let u, v be an arbitrary pair of terminals; we show that their element-connectivity in G′ is

at least their connectivity κ′(u, v) in G. Fix a set of κ′(u, v) paths in G from u to v; let P be the

paths that use the terminal t, and let ` = |P|. We locally modify these ` ≤ d paths in P by routing

them through the grid, so we obtain κ′(u, v) element-disjoint paths in G′.

Let Pu denote the set of prefixes from u to t of the ` paths in P, and let Pv denote the suffixes

from t to v of these paths. Let H denote the d × d grid that replaces t in G′; we use P ′u and

P ′v to denote the corresponding paths in G′ from u to vertices of H, and from vertices in H to

v respectively. Let I and O denote the vertices of H incident to paths in P ′u and P ′v. It is not

difficult to see that there are a set of disjoint paths in the grid H connecting the ` distinct vertices

in I to those in O; using the paths of P ′u, together with the paths through H and the paths of P ′v

gives us a set of disjoint paths in G′ from u to v.

A Counterexample to Lemma 4.10 for Planar Steiner Forest: Recall that in Section 4.4.2,

we pointed out that in the presence of dead terminals (after all terminals in some Ti have been

contracted to a single vertex), Lemma 4.10 may no longer apply. As a concrete example, consider

the graph Gk defined at the end of Section 4.3. (See also Fig. 4.3, and note that Gk is planar.) We

have one terminal set T1 = {s, t}, and other sets Ti containing the two terminals of each copy of

Hk. After several contraction steps, each copy of Hk may have been contracted together to form

a single terminal; each such terminal is only 2-connected to the rest of the graph. In the reduced

instance, there is only a single copy of each edge, and Lemma 4.10 does not hold.

Extensions: Our result for planar graphs can be generalized to graphs of fixed genus; Ivanco [107]

112

generalized a similar result of Borodin [33] on planar graphs to show that a graph G of genus g

has an edge such that the sum of the degrees of its endpoints is at most 2g + 13 if 0 ≤ g ≤ 3 and

4g + 7 otherwise. As the non-terminals have degree at least 3 and form a stable set, this implies

that there is a terminal of degree at most 2g + 10 (if g ≤ 3) or 4g + 4 (if g > 3). Using this result

instead of Lemma 4.12, one can prove a result similar to Lemma 4.10, arguing that there are two

terminals with dk/ce parallel edges between them, where c ≤ 4g + 8; we have not attempted to

optimize this constant c. Thus, we obtain an algorithm for packing dk/ce Steiner forests.

Aazami et al. [1] also give algorithms for packing Steiner trees in graphs of fixed genus, and

graphs excluding a fixed minor. We thus make the following natural conjecture:

Conjecture 4.14. Let G = (V,E) be a H-minor-free graph, with terminal sets T1, T2, . . . Th, such

that for all i, κ′(Ti) ≥ k. There exist Ω(k/c) element-disjoint Steiner forests in G, where c depends

only on the size of H.

We note that Lemma 4.10 fails to hold for H-minor-free graphs, and in fact fails even for

bounded treewidth graphs. Thus, our approach cannot be directly generalized. However, instead

of attempting to contract together just two terminals connected by many parallel edges, we may

be able contract together a constant number of terminals that are “internally” highly connected.

Using Theorem 4.9 and other ideas, we prove in Section 4.5 that this approach suffices to pack

many trees in graphs with small treewidth. We believe that these ideas together with the structural

characterization of H-minor-free graphs by Robertson and Seymour [144] should lead to a positive

resolution of Conjecture 4.14.

Finally, we note that our algorithms can be applied to the problem of packing edge-disjoint

Steiner forests in planar graphs. See [1] for details; we provide a sketch here. Given a planar graph

G and disjoint terminal sets T1, T2, . . . Th that are each internally k-edge-connected, we begin by

replacing each non-terminal of degree greater than 4 with a grid, precisely as in Lemma 4.13. This

preserves planarity and edge-connectivity; thus, we have a planar graph G′ in which each Ti is

k-edge-connected, and all non-terminals have degree at most 4. But it now follows that each Ti is

at least k/2-element-connected in G′; if this were not true, suppose that X is a set of non-terminals

such that |X| < k/2 and deleting X separates terminals of some Ti. Now, as each vertex of X has

113

degree at most 4, there are fewer than 2k edges incident to X; this implies that some component of

G′−X is incident to fewer than k edges, and contains some (but not all) terminals of Ti. But this

contradicts the fact that Ti is k-edge-connected in G′. Hence each Ti must be at least k/2-element-

connected. Now, we can find dk/10e − 1 element-disjoint Steiner forests in G′; these correspond to

a set of dk/10e − 1 edge-disjoint forests in G.

4.5 Packing Trees in Graphs of Bounded Treewidth

Let G(V,E) be a graph of treewidth ≤ r − 1, with terminal set T ⊆ V such that κ′(T) ≥ k. In

this section, we give an algorithm to find, for any fixed r, Ω(k) element-disjoint Steiner trees in

G. Our approach is similar to that for packing Steiner trees in planar graphs, where we argued

in Lemma 4.10 that there exist two terminals t1, t2 with Ω(k) parallel edges between them, so we

could contract them together and recurse on a smaller instance. In graphs of bounded treewidth,

this is no longer the case; see the end of this section for an example in which no pair of terminals

is connected by many parallel edges. However, we argue that there exists a small set of terminals

T ′ ⊂ T that is highly “internally connected”, so we can find Ω(k) disjoint trees connecting all

terminals in T ′, without affecting the connectivity of terminals in T − T ′. We can then contract

together T ′ and the white vertices used in these trees to form a single new terminal t, and again

recurse on a smaller instance. The following lemma captures this intuition:

Lemma 4.15. If G(V,E) is a bipartite graph of treewidth at most r − 1, with terminal set T ⊂ V

such that T ≥ 2r, κ′(T) ≥ k, there exists a set S ⊆ V − T such that there is a component G′ of

G− S containing k/12r2 log(3r) element-disjoint Steiner trees for the (at least 2) terminals in G′.

Moreover, these trees in G′ can be found in polynomial time.

Given this lemma, we prove below that for any fixed r, we can pack Ω(k) element-disjoint trees

in graphs of treewidth at most r− 1. The proof combines ideas of Theorem 4.11 and Theorem 4.9.

Theorem 4.16. Let G = (V,E) be a graph of treewidth at most r−1. For any terminal set T ⊆ V

with κ′G(T) ≥ k, there exist Ω(k/12r2 log(3r)) element-disjoint Steiner trees on T .

Proof. As for Theorem 4.11, we prove this theorem by induction. Let G be a graph of treewidth

at most r − 1, with terminal set T . If |T | ≤ 2r, we have k/6 log |T | ≥ k/6r element-disjoint trees

114

from the tree-packing algorithm of Cheriyan and Salavatipour [63] in arbitrary graphs.

Otherwise, we use the Reduction Lemma to ensure that G is bipartite. Let S be a set of white

vertices guaranteed to exist from Lemma 4.15. If S is not a minimal such set, discard vertices until

it is. Now, find k/12r2 log(3r) element-disjoint trees containing all terminals in some component

G′ of G−S; note that each vertex of S is incident to some terminal in G′, and hence to every tree.

(This follows from the minimality of S and the fact that G is bipartite.) Modify G by contracting

all of G′ to a single terminal t, and make it incident to every vertex of S. It is easy to see that

all terminals in the new graph are k-element-connected; therefore, we now have an instance of the

Steiner tree packing problem on a graph with fewer terminals. The new graph has treewidth at

most r− 1, so by induction, we have k/12r2 log(3r) element-disjoint trees for the terminals in this

new graph; taking these trees together with the k/12r2 log(3r) trees of G′ gives k/12r2 log(3r) trees

of the original graph G.

We devote the rest of this section to proving the crucial Lemma 4.15. Subsequently, we may

assume without loss of generality (after using the Reduction Lemma), that the graph G is bipartite;

we may further assume that k ≥ 12r2 log(3r) and |T | ≥ 2r. First, observe that G has a small cutset

that separates a few terminals from the rest.

Proposition 4.17. G has a cutset C of size at most r such that the union of some components of

G− C contains between r and 2r terminals.

Proof. Fix a (rooted) tree-decomposition T of G. Every non-leaf node of T corresponds to a cutset,

and each node of T contains at most r vertices of G. Let v be a deepest node in T such that the

the subtree rooted at each child of v has no more than 2r terminals. The nodes of G contained in

v clearly form a cutset C of size at most r. If any subtree of T rooted at a child of v contains at

least r terminals not contained in C, we are done. Otherwise, greedily select children of v until the

total number of terminals in the associated subtrees not contained in C is between r and 2r.

We find the set S and component of G − S in which we contract together a small number of

terminals by focusing on the cutset C and components of G−C that are guaranteed to exist from

the previous proposition. We introduce some notation before proceeding with the proof:

115

1. Let C be a cutset of size at most r, and let V ′ be the vertices of the union of some components

of G− C containing between r and 2r terminals in total.

2. Since terminals in V ′ are k-connected to the terminals in the rest of the graph, and |C| ≤

r � k, C contains at least one black vertex. Let C ′ be the set of black vertices in C.

3. Let G′ = G[V ′ ∪ C ′] be the graph induced by V ′ and C ′.

We omit a proof of the following straightforward proposition; the second part of the statement

follows from the fact that each terminal in V ′ is k-connected to terminals outside G′, and these

paths to terminals outside G′ must go through the cutset C of size at most r.

Proposition 4.18. The graph G′ contains between r and 3r terminals (as C ′ may contain up to

r terminals), and each terminal in V ′ is at least k/r-connected to some terminal in C ′.

Let T ′ be the set of terminals in G′. If κ′G′(T
′) ≥ k/2r2, we can easily find a set of white vertices

satisfying Lemma 4.15: Let S be the set of vertices of G that are adjacent (in G) to vertices of G′.

It is obvious that S separates G′ from the rest of G, and all terminals in T ′ are highly connected;

from the tree packing result of [63], we can find the desired disjoint trees in G′. Finally, note that

all vertices of S are white, as the only neighbors of G′ are either white vertices of the cutset C or

the neighbors of the black vertices in C, all of which are white as G is bipartite.

However, it may not be the case that all terminals of T ′ are highly connected in G′. In this

event, we use the following simple algorithm (very similar to that in the proof of Lemma 4.8) to

find a highly-connected subset of T ′: Begin by finding a set S1 of at most k/2r2 white vertices in

G′ that separates terminals of T ′. Among the components of G′ − S1, pick a component G1 with

at least one terminal of V ′. If all terminals of G1 are k/2r2 connected, stop; otherwise, find in

G1 a set S2 of at most k/2r2 white vertices that separates terminals of G1, pick a component G2

of G1 − S2 that contains at least one terminal of V ′, and proceed in this manner until finding a

component G` in which all terminals are k/2r2 connected.

Claim 4.19. We perform at most r iterations of this procedure before we stop, having found some

subgraph G` in which all the (at least 2) terminals are k/2r2 connected.

116

Proof. At least one terminal of C ′ must be lost every time we find such a set Si; if this is true, the

claim follows. To see that this is true, observe that when we find a cutset Si+1 in Gi, there is a

component that we do not pick that contains a terminal t. If this terminal t is in C ′, we are done;

otherwise, it must be in V ′. But from Proposition 4.18 all terminals in V ′ are k/r connected to

some terminal in C ′, and so some terminal of C ′ must be in the same component as t. When we

stop with the subgraph G`, it contains at least one terminal t′ ∈ V ′, and at least one terminal of

C ′ to which t′ is highly connected; therefore, G` contains at least 2 terminals.

All terminals in the subgraph G` are k/2r2-connected, and there are at most 3r of them, so we

can find k/12r2 log(3r) disjoint trees in G` that connect them, using the tree-packing result of [63].

Let S be the set of vertices of G that are adjacent (in G) to vertices of G`; obviously, S separates

G` from the rest of G, and to satisfy Lemma 4.15, it merely remains to verify that S only contains

white vertices. Every terminal in G′−G` was separated from G` by white vertices in some Si, and

terminals in G−G′ can only be incident to white vertices of the cutset C, which are not in G′, let

alone G`. This completes the proof of Lemma 4.15.

A Counterexample to the Existence of 2 Terminals Connected by Ω(k) “Parallel

Edges”

Recall that in the case of planar graphs (or graphs of bounded genus), we argued that there must

be two terminals t1, t2 with Ω(k) “parallel edges” between them. (That is, there are Ω(k) degree-2

white vertices adjacent to t1 and t2.) This is not necessarily the case even in graphs of treewidth

3: The graph K3,k, the complete bipartite graph with 3 vertices on one side and k on the other,

has treewidth 3. If the three vertices on one side are the terminal set T and the k vertices of the

other side are non-terminals, it is easy to see that κ′(T) = k, but every white vertex has degree 3.

In this example, there are only 3 terminals, so the tree-packing algorithm of Cheriyan and

Salavatipour [63] would allow us to find Ω(k/ log |T |) = Ω(k) trees connecting them. Adding

more terminals incident to all the white vertices would raise the treewidth, so this example does

not immediately give us a low-treewidth graph with a large terminal set such that there are few

parallel edges between any pair of terminals. However, we can easily extend the example by defining

a graph Gh as follows: Let T1, T2, . . . Th be sets of 2 terminals each, let W1,W2, . . .Wm−1 each be

117

sets of k white vertices, and let all the vertices in each Wi be adjacent to both terminals in Ti

and both terminals in Ti+1. (See Fig. 4.6 below.) The graph Gh has 2h terminals, T =
⋃
i Ti is

k-element-connected, and it is easy to verify that Gh has treewidth 4. However, every white vertex

has degree 4, so there are no “parallel edges” between terminals. (One can modify this example

to construct a counterexample graph Gh with treewidth 3 by removing one terminal from each

alternate Ti.)

T1 W1 T2 W2 T3 W3 T4 W4 T5

Figure 4.6: A graph of treewidth 4 with many terminals, but no “parallel edges”.

4.6 Concluding Remarks

In this chapter, we generalized the reduction step of Hind and Oellermann [105] to handle local

element connectivity. In this chapter, we demonstrated applications of our Reduction Lemma to

packing disjoint Steiner trees and forests, and in the next, we give an application to network design.

We believe that the ability to obtain bipartite graphs while preserving the element-connectivity of

all pairs of terminals is very useful, and that the Reduction Lemma will find many applications in

the future.

There are a few natural questions on packing element-disjoint Steiner forests that remain to be

answered. First, we believe that our bound on the number of element-disjoint Steiner forests in a

general graph can be improved from Ω(k/(log |T | log h)) to Ω(k/ log |T |); an algorithm to achieve

this would be of interest.

Second, it should be possible to prove Conjecture 4.14, on packing disjoint Steiner forests in

graphs excluding a fixed minor. Chekuri and Ene [44] extended the techniques of this chapter

to show that one can pack Ω(k) element-disjoint Steiner forests in graphs of fixed treewidth (in

118

Section 4.5, we only gave algorithms for packing Steiner trees), providing further evidence for the

conjecture.

Finally, in a natural generalization of the Steiner forest packing problem, each non-terminal/

white vertex has a capacity, and the goal is to pack element-disjoint forests subject to these capacity

constraints. In general graphs, it is easy to reduce this problem to the uncapacitated/unit-capacity

version (for example, by replacing a white vertex of capacity c by a clique of size c), but this is not

necessarily the case for restricted classes of graphs. In particular, it would be of interest to show

that it is possible to pack Ω(k) forests for this capacitated planar Steiner forest packing problem.

An obvious first step is to prove this for packing element-disjoint Steiner trees in planar graphs.

It is likely that this is possible, as one can fractionally pack Ω(k) element-disjoint Steiner trees in

capacitated planar graphs; this follows from the recent work of Demaine et al. [72], showing that

there is an O(1)-approximation for node-weighted Steiner Tree in planar graphs.

119

Chapter 5

Single-Sink Network Design with
Vertex-Connectivity Requirements

5.1 Introduction 1

In the Survivable Network Design Problem, the input is an undirected graph G(V,E) with

edge costs, and an integer connectivity requirement Ruv > 0 for each pair of vertices u, v. The

goal is to find a minimum-cost subgraph H such that, for each pair u, v, there are Ruv disjoint

paths between u and v. If these paths are required to be edge-disjoint, the problem is referred to

as EC-SNDP, while if the paths must be vertex-disjoint, we refer to the problem as VC-SNDP.

SNDP already captures as special cases a variety of fundamental connectivity problems in

combinatorial optimization such as:

• Minimum Spanning Tree, which is the special case when Ruv = 1 for all u, v.

• Steiner Tree, the special case when there is a set T ⊆ V and Ruv=1 iff u, v ∈ T .

• Steiner Forest, the special case when Ruv ∈ {0, 1} for all u, v.

• λ-Edge-Connected Spanning Subgraph, which is the special case of EC-SNDP when

Ruv = λ for all u, v.

Each of these problems has been extensively studied on its own, along with many other special

cases of SNDP, and all but the first are NP-hard and APX-hard to approximate. Besides its

theoretical interest, SNDP has obvious applications to the design of robust networks. A feasible

solution to an EC-SNDP instance guarantees that each pair of vertices u and v will be able to

communicate even if Ruv − 1 edges fail; similarly, a feasible solution to a VC-SNDP instance

guarantees that u and v will be connected even if Ruv − 1 other vertices or edges fail.
1This chapter is based on joint work with Chandra Chekuri; portions have previously appeared in [52, 53]. The

original version of [53] is available at www.springerlink.com.

120

http://www.springerlink.com/content/v86261412871m277/

The EC-SNDP problem is well understood: Jain’s [109] seminal work on iterated rounding

showed a 2-approximation for EC-SNDP, improving previous results [91, 154]. This was extended

by Fleischer et al. and Cheriyan et al. [79, 64] to Element-Connectivity-SNDP, which is the

variant in which there is a set of terminals T ⊆ V , Ruv > 0 iff u, v ∈ T , and the goal is to find a

min-cost subgraph in which there are Ruv element-disjoint paths. (See Chapter 4 for a definition

of element-connectivity and related discussion.) These techniques also extend to VC-SNDP when

each Ruv ∈ {0, 1, 2} via the setpair relaxation [82]. An important question that was open for many

years2 was to understand the approximability of VC-SNDP when the connectivity requirements

exceed 2.

In this chapter we consider several single-sink network design problems with vertex connectivity

requirements. Let G = (V,E) be a given undirected graph on n nodes with a specified sink/root

vertex r and a subset of terminals T ⊆ V , with |T | = h. Each terminal t has a demand dt > 0 that

needs to be routed to the root along each of k vertex-disjoint paths. In the following discussion,

we assume for simplicity that dt = 1 for each terminal t. The goal in all the problems is to find a

routing (a selection of paths) for the terminals so as to minimize the cost of the routing. We obtain

problems of increasing generality and complexity based on the cost function on the edges. In the

basic SS-k-Connectivity problem, each edge e has a non-negative cost ce, and the objective is to

find a minimum-cost subgraph H of G that contains the desired disjoint paths for each terminal.

Thus, this is the special case of VC-SNDP in which there is a set of terminals T ⊆ V and a root

t; Rtr = k for each t ∈ T , and Ruv = 0 for all other pairs u, v. (Note that when k = 1, this is the

well-known Steiner Tree problem, which has a 1.388 approximation [36].)

We then consider generalizations of SS-k-Connectivity to single-sink network design prob-

lems where the cost of an edge depends on the amount of demand/traffic that is routed along

it. In the SS-k-Rent-or-Buy problem there is a parameter M with the following interpretation:

An edge e can either be bought for a cost of ce ·M , in which case any number of terminals can

use it, or e can be rented at the cost of ce per terminal. In other words, the cost of an edge e

is ce · min{M, |Te|} where Te is the set of terminals whose paths use e. In the Uniform-SS-k-

Buy-at-Bulk problem, the cost of an edge e is ce · f(|Te|) for some given sub-additive function
2There have been many recent developments, subsequent to our work discussed in this chapter; see the description

of related work for details.

121

f : R+ → R+. In the Non-Uniform-SS-k-Buy-at-Bulk problem the cost of an edge e is fe(|Te|)

for some edge-dependent sub-additive function fe : R+ → R+.

All of the three problems SS-k-Connectivity, SS-k-Rent-or-Buy and SS-k-Buy-at-Bulk

described above are NP-hard and also APX-hard to approximate even for k = 1. In this chapter

we focus on polynomial-time approximation algorithms for these network design problems when

k > 1.

The more general problems SS-k-Rent-or-Buy and SS-k-Buy-at-Bulk are motivated by

general Buy-at-Bulk type network design problems which arise naturally in the design of telecom-

munication networks [146, 7, 43]. Economies of scale imply that in practice, bandwidth on a link

can be purchased/provisioned in integer units of different cable-types; that is, there are some b

cable-types with capacities u1 < u2 < . . . < ub and costs w1 < w2 < . . . < wb such that

w1/u1 > . . . > wb/ub. This naturally leads to sub-additive edge-cost cost functions. For an

overview of real-world fault-tolerant models in optical network design similar to SS-k-Buy-at-

Bulk with k = 2, see [43, 141, 148].

5.1.1 Related Work

We have already mentioned several papers on the edge-connectivity and element-connectivity ver-

sions of SNDP [91, 154, 109, 79, 65]. Few algorithmic results were known for VC-SNDP with

Rmax = maxuv Ruv > 2 until recently. One special case that had received significant attention is

the k-Connected-Subgraph problem, where the goal is to find a min-cost k-connected subgraph

spanning the entire input graph G. Cheriyan, Vempala and Vetta [64] gave an O(log k) approxi-

mation when k <
√
n/6 and an

√
n/ε approximation for k < (1− ε)n. Kortsarz and Nutov [120]

improved this for large k; their algorithm had a ratio of O(ln k ·min{
√
k, n

n−k ln k}). Fakcharoen-

phol and Laekhanukit [75] further improved this to an O(log2 k)-approximation for all k. These

results use an algorithm of Frank and Tardos [84] for finding k-outconnected subgraphs in directed

graphs.

Kortsarz, Krauthgamer and Lee [119] showed that for the general VC-SNDP, even when Ruv ∈

{0, k} for each pair of vertices (u, v), there is no 2log1−ε n-approximation for any ε > 0 unless

NP ⊆ DTIME(npolylog(n)). However, their hardness result requires k to be nδ for some constant

122

δ > 0; in this same setting they show that SS-k-Connectivity is hard to approximate to within

an Ω(log n) factor. A natural question to ask is whether SS-k-Connectivity, and more generally

VC-SNDP, admits a good approximation when the maximum requirement Rmax is small; this

question is relevant from both practical and theoretical perspectives. In fact, no counterexample

is known to the possibility of iterated rounding yielding a ratio of Rmax for VC-SNDP; see [79] for

a discussion of this subject. For SS-k-Connectivity in particular, no non-trivial (that is, o(|T |))

approximation was known until recently even when k = 3! Chakraborty, Chuzhoy and Khanna

[39] developed some fundamental new insights and showed an O(kO(k2) log4 n)-approximation for

SS-k-Connectivity via the setpair relaxation; we discuss connections between our work and that

of [39] in Section 5.1.2. Chakraborty et al. [39] also improved the hardness results of [119]; they

proved that VC-SNDP with Ruv ∈ {0, k} does not admit a kδ approximation for all k > k0 for

some constants δ, k0. Further, they showed that the set pair relaxation has an integrality gap of

Ω̃(k1/3).

Subsequent to [39], we obtained our initial results for SS-k-Connectivity, SS-k-Rent-or-

Buy and SS-k-Buy-at-Bulk; using different techniques, we gave a simple reverse-greedy algo-

rithm for SS-k-Connectivity that achieves an approximation ratio of O(3kk! · k2 log |T |), an

improvement over the O(kO(k2) log4 n) ratio from [39]. (The problems SS-k-Rent-or-Buy and

SS-k-Buy-at-Bulk were not considered in [39].) Independently, Chuzhoy and Khanna [68] gave

an alternate analysis of a randomized variant of a similar greedy algorithm, showing that it achieved

an approximation ratio of O(k log |T |) for SS-k-Connectivity. Their analysis used an element-

connectivity based approach; shortly thereafter, we realized that the Reduction Lemma from Chap-

ter 4 could be used to considerably simplify the proof of the main technical result in [68]. We

discuss these approaches in more detail below; this chapter contains both our original analysis (in

Section 5.2.2), and the improved element-connectivity based proof (in Section 5.2.1).

There have been several very recent developments on SS-k-Connectivity and, more gener-

ally, VC-SNDP. In addition to the O(k log |T |) approximation for SS-k-Connectivity, Chuzhoy

and Khanna [68] gave an O(k7 log2 |T |)-approximation for the more general variant of SS-k-

Connectivity with costs on vertices, instead of edges. Nutov [137] studied the same problems,

obtaining ratios of O(k2 log |T |) and O(k2 log2 |T |) for SS-k-Connectivity and its vertex-cost

123

variant; his approach used uncrossing arguments for the problem of connectivity augmentation

(i.e., increasing the connectivity between each t ∈ T and r from k − 1 to k). Using more ideas

related to edge-covers of crossing families of sets, Nutov also improved the approximation ratio

for k-Connected-Subgraph to O(log k · log n
n−k) [138]. In a significant breakthrough, Chuzhoy

and Khanna [69] obtained the first non-trivial approximation algorithms for the general VC-SNDP;

their techniques were based on existing element-connectivity algorithms, and yielded an O(k3 log n)-

approximation. Shortly thereafter, Nutov [139] gave algorithms for finding minimum-cost covers

of so-called “uncrossable bifamilies”, using these to obtain improved results for several problems,

including an O(k2)-approximation for SS-k-Connectivity and an O(k2 log |T |)-approximation

for its vertex-cost variant3, and an O(k4 log2 |T |)-approximation for general VC-SNDP with vertex

costs.

In addition to the basic connectivity problems such as VC-SNDP, there has been much work on

Buy-at-Bulk and related problems. Until recently, almost all results were for the case of k = 1,

though both the single sink and more general multi-commodity problems were considered. Our

starting point for Buy-at-Bulk is the Rent-or-Buy cost function which can be modeled with

two cable-types, one with unit capacity and the other with essentially infinite capacity. Gupta et

al. [99]gave a constant-factor approximation for both the single-sink and multi-commodity variants

of Rent-or-Buy. This simple cost function, in addition to its inherent interest, has played an

important role in the development of algorithms for several problems [99]; in particular, results for

Buy-at-Bulk have built on insights developed for Rent-or-Buy. Constant-factor approxima-

tions for Uniform-SS-k-Buy-at-Bulk when k = 1 were given by [99, 95, 149]; Awerbuch and

Azar [19] gave an O(log n)-approximation for the more general multi-commodity variant, using

embeddings into tree metrics.

For Non-Uniform-SS-k-Buy-at-Bulk with k = 1, a randomized O(log n) approximation was

given by Meyerson, Munagal and Plotkin [133]; this was later derandomized by Chekuri, Khanna

and Naor [49]. Charikar and Karagiazova [40] gave the first approximation algorithm for the multi-

commodity variant, obtaining an approximation ratio of 2O(
√

log h log log h).4 Chekuri et al. [48]
3In fact, the algorithms of [139] obtain these approximation ratios even for the more general problems in which

terminals have differing connectivity requirements in {1, . . . , k}.
4This result assumes that each demand is for one unit of traffic.

124

gave a poly-logarithmic approximation for the multi-commodity version, and later improved and

extended this to obtain an O(log4 h)-approximation for the variant with vertex costs [47], where

h is the number of pairs with non-zero demand. Recently, Kortsarz and Nutov [122] obtained an

O(log3 n)-approximation for Non-Uniform-Buy-at-Bulk.5

There have been fewer results for Buy-at-Bulk and related problems when k > 1. Anton-

akapoulos et al. [9], motivated by problems in fault-tolerant optical network design, introduced

the Protected-Buy-at-Bulk network design problem. In this problem, there are h terminal

pairs (s1, t1), . . . , (sh, th), and each pair (si, ti) needs to route its demand along two vertex-disjoint

paths. The cost of the paths/routing is given by
∑

e cef(xe) where xe is the total traffic on edge

e induced by the paths; here f is a concave/sub-additive function induced by the cable-types in

question. In [9] this problem was reduced to the corresponding single-sink problem at the expense

of a poly-logarithmic increase in the approximation ratio. An O(1) approximation for the single-

sink problem was derived in [9] for the special case of Protected-Buy-at-Bulk when there is

only a single cable type. An open question raised in [9] is whether one can find a good approxi-

mation for the single-sink problem even for the case of two cable-types; we answer this question

affirmatively in this chapter, giving a poly-logarithmic approximation for any fixed number of cable

types. Subsequent to the work described here, Gupta, Krishnaswamy and Ravi [97, 98] considered

Rent-or-Buy and Buy-at-Bulk when terminal pairs must route their flow along edge-disjoint

paths; they gave algorithms for the multi-commodity versions of Rent-or-Buy with k > 1, and

for Uniform-Buy-at-Bulk when k = 2.

For further references on the large literature on related network design problems, we refer

the reader to [121] for a recent survey, to [73, 152, 39, 98] for various pointers to approximation

algorithms on connectivity problems, and to [146, 99, 5, 48, 9, 98] for pointers to algorithms on

Buy-at-Bulk network design and related problems.

5.1.2 Overview of Results and Algorithmic Techniques:

We analyze simple combinatorial algorithms for the three single-sink vertex-connectivity network

design problems described earlier; our algorithms are natural extensions of known combinatorial
5This ratio is obtained when the total amount of traffic to be supported by the network is polynomially bounded.

125

algorithms for the k = 1 case. We prove bounds on the approximation ratio of the algorithms

using two techniques: one based on element-connectivity, and the second based on the duals of

natural LP relaxations. (The LP relaxations are used only for the analyses of our combinatorial

algorithms.) This leads to the following results:

• An O(k log |T |) approximation for SS-k-Connectivity.

• An O(k log |T |) approximation for SS-k-Rent-or-Buy.

• An O((log |T |)O(b)) approximation for the SS-k-Buy-at-Bulk with b cable-types when k = 2.

• A 2O(
√

log h) approximation for Non-Uniform-SS-k-Buy-at-Bulk for each fixed k.

As mentioned above, our initial analyses used the LP-based approach, obtaining weaker bounds

of O(kO(k) log |T |); for SS-k-Connectivity, this improved the ratio of O(kO(k2) log4 n) from [39].

The algorithm of [39] was based on solving an LP relaxation; the authors used an optimal fractional

solution to argue about the costs of connecting a terminal t to other terminals via disjoint paths.

We give a simple combinatorial algorithm and analyze the dual of a natural linear programming

relaxation. For SS-k-Connectivity, a (online) greedy algorithm is to order the terminals arbi-

trarily and add terminals one by one while maintaining a feasible solution for the current set of

terminals. When k = 1, (that is, for Steiner Tree), this greedy algorithm gives an O(log |T |)

approximation. However, it can be shown easily that even for k = 2, this same algorithm (and

in fact any deterministic online algorithm), can return solutions of value Ω(|T |)OPT. Interest-

ingly, our algorithm for SS-k-Connectivity applies the greedy strategy in reverse and has a good

approximation ratio!

The LP dual-based analysis we present is inspired by the dual-packing arguments that have been

used earlier for the node-weighted Steiner Tree problem [96] and the single-sink Buy-at-Bulk

problems [49, 47]. These prior arguments were for k = 1, where distance-based arguments via balls

grown around terminals can be used. For k ≥ 2 these arguments do not apply. Nevertheless, we

show the effectiveness of the dual-packing approach by using non-uniform balls. These non-uniform

balls are derived in a natural fashion by solving an auxiliary min-cost flow problem for each terminal

and interpreting the dual of the min-cost flow LP. We believe that this interpretation is of technical

126

interest. We also use this dual based analysis to analyze algorithms for the Rent-or-Buy and

Buy-at-Bulk problems, although we require more sophisticated machinery.

Chuzhoy and Khanna [68] obtained results for SS-k-Connectivity independently and con-

currently; their algorithm is essentially the same as ours, but their analysis relies on an important

structural decomposition of a feasible integral solution to the problem. They proved that this

algorithm is an O(k log |T |)-approximation for SS-k-Connectivity, significantly improving the

dependence on k we obtain via the dual-based approach. The heart of their structural result is

that any optimal solution to SS-k-Connectivity can be (approximately) decomposed into a col-

lection of k element-disjoint paths from each terminal to other terminals. Using the Reduction

Lemma from Chapter 4, we give an extremely simple proof of this decomposition result; thus, we

show that our algorithm has an approximation ratio of O(k log |T |) in Section 5.2.1. Note that the

hardness results of [119, 39] imply that the approximation ratio of any algorithm has to depend on

k in some form, but it may be possible to obtain an O(k)-approximation.

Thus, we obtain two bounds on the approximation ratio of our SS-k-Connectivity algorithm;

one based on element-connectivity, and the other based on the dual of a natural LP relaxation.

Though the approximation ratio it yields is weaker, we believe that our dual-based analysis is of

independent technical value. The exponential dependence on k is an artifact of a combinatorial

lemma we prove on intersecting path systems. If a natural conjecture regarding our dual packing

of the non-uniform balls is true, this would imply that the dual-based analysis could also yield

an approximation ratio with a polynomial dependence on k. Further, this dual-based analysis is

crucial to our algorithms for SS-k-Buy-at-Bulk, which is not considered in [68].

Before we discuss the more general SS-k-Rent-or-Buy and SS-k-Buy-at-Bulk problems,

we note that [39] observed that the SS-k-Connectivity approximation ratio applies also to the

Subset-k-Connectivity problem; here the objective is to find a min-cost subgraph such that T

is k-connected. It is also easy to see that the approximation ratio for the single-sink version only

worsens by a factor of k if the terminals have different connectivity requirements in {1, 2, . . . , k}.

For the SS-k-Rent-or-Buy problem, ours is the first non-trivial result for any k ≥ 2. Our

algorithm is a straightforward generalization of the simple random-sampling algorithm of Gupta et

al. [99] for k = 1. Again we give two analyses: the first, using the element-connectivity approach

127

and the strict cost-sharing framework of [99] gives an O(k log |T |) approximation ratio. The second

extends the dual-based analysis used for SS-k-Connectivity, and again obtains a ratio with

exponential dependence on k.

The only non-trivial algorithm previously known for the SS-k-Buy-at-Bulk problem with

k > 1 was due to [9]; they gave an O(1) approximation for k = 2 in the single-cable setting, and

certain other results that can be derived from it. Our algorithm for Uniform-SS-k-Buy-at-Bulk

uses ideas from [9] together with a natural clustering strategy previously used for k = 1. This is

where the dual-based analyses of SS-k-Connectivity and SS-k-Rent-or-Buy are useful: The

algorithm for SS-k-Rent-or-Buy randomly samples some terminals, and buys (infinite-capacity)

edges connecting them to the route. It then rents edges to k-connect each unsampled terminal to

sampled terminals that are near it. For the Buy-at-Bulk clustering application we need an extra

balance condition which ensures that the number of unsampled terminals connected to any sampled

terminal is no more than βM , where β ≥ 1 is not too large. The dual-based analysis allows us

to guarantee precisely this condition, and hence we obtain an O(log |T |)O(b)-approximation when

k = 2. We believe that our algorithm and analysis for SS-k-Buy-at-Bulk can be extended to

k > 2; this is discussed further in Section 5.4. Using additional ideas from [9], our algorithms for

SS-k-Rent-or-Buy and SS-k-Buy-at-Bulk when k = 2 can be extended to the multi-commodity

(as opposed to the single-sink) setting.

For Non-Uniform-SS-k-Buy-at-Bulk, we analyze a simple randomized greedy inflation algo-

rithm (suggested by Charikar and Kargiazova [40] for k = 1), and show that it achieves a non-trivial

approximation for each fixed k; see Section 5.4.1 for intuition and details.

Chapter Outline

In Section 5.2, we consider SS-k-Connectivity, and give an O(k log |T |)-approximation. We

also provide our more complex original LP-based analysis of the weaker approximation ratio

O(f(k)k2 log |T |) in Section 5.2.2 ; this analysis is of independent interest, and unlike the sim-

pler proof for SS-k-Connectivity, it extends to the more general SS-k-Buy-at-Bulk. The

reader who does not wish to focus on SS-k-Buy-at-Bulk may safely skip Section 5.2.2 on first

reading.

128

We consider SS-k-Rent-or-Buy in Section 5.3. Using techniques of Gupta et al. [99], we

show that our simpler analysis for SS-k-Connectivity extends to SS-k-Rent-or-Buy, yielding

an O(k log |T |)-approximation ratio for this problem as well. However, we also extend the LP-based

analysis to this problem in Sections 5.3.1 to 5.3.3 in order to ensure a certain balance condition;

these sections may also be skipped.

In Section 5.4, we consider the uniform and non-uniform problems separately. For Uniform-

SS-k-Buy-at-Bulk, we combine ideas from the LP-based analysis for SS-k-Rent-or-Buy and

[9] to give an approximation algorithm for k = 2. We study the harder Non-Uniform-SS-k-Buy-

at-Bulk in Section 5.4.1, and describe an algorithm achieving the weaker approximation ratio of

O(k · 2O(
√

logn)).

5.2 Connectivity

In this section we analyze a simple reverse-greedy algorithm for SS-k-Connectivity. Formally,

the input to the problem is an edge-weighted graph G = (V,E), an integer k, a specified root vertex

r, and a set of terminals T ⊆ V . (Throughout this chapter, we use h to denote |T |.) The goal is to

find a min-cost edge-induced subgraph H of G such that H contains k vertex-disjoint paths from

each terminal t to r.

The key concept is that of augmentation. Let T ′ ⊆ T be a subset of terminals and let H ′ be a

subgraph of G that is feasible for T ′. For a terminal t ∈ T \ T ′, a set of k paths p1, . . . , pk is said

to be an augmentation for t with respect to T ′ if (i) pi is a path from t to some vertex in T ′ ∪ {r}

(ii) the paths are internally vertex disjoint and (iii) a terminal t′ ∈ T ′ is the endpoint of at most

one of the k paths. Note that the root is allowed to be the endpoint of more than one path. The

following proposition is easy to show via a simple min-cut argument.

Proposition 5.1. If p1, p2, . . . , pk is an augmentation for t with respect to T ′ and H ′ is a feasible

solution to T ′ then H ∪ (
⋃
i pi) is a feasible solution for T ′ ∪ {t}.

Given T ′ and t, the augmentation cost of t with respect to T ′ is the cost of a min-cost set of

paths that augment t wrt to T ′. (Thus, one can find the augmentation cost of t in polynomial time

using, for instance, algorithms for min-cost flow.) If T ′ is not mentioned, we implicitly assume that

129

T ′ = T \ {t}. With this terminology and Proposition 5.1, it is easy to see that the algorithm below

finds a feasible solution.

Reverse-Greedy:
Let t ∈ T be a terminal of minimum augmentation cost.
Recursively solve the instance of SS-k-Connectivity on G, with terminal set T ′ = T − {t}.
Augment t wrt T ′, paying (at most) its augmentation cost.

The rest of the section is devoted to showing that Reverse-Greedy achieves a good approx-

imation. The key step in the analysis of the algorithm is to bound the augmentation cost of

terminals, as shown in the following lemma:

Lemma 5.2. Given an instance of SS-k-Connectivity, let OPT denote the cost of an opti-

mal solution. For each terminal t, let AugCost(t) denote the augmentation cost of t. Then,∑
tAugCost(t) ≤ 8k ·OPT.

In our initial proof of Lemma 5.2, we obtained a weaker bound on the augmentation cost of

terminals; see Section 5.2.2. Chuzhoy and Khanna [68] then proved Lemma 5.2, with a weaker

constant (18k+ 3 instead of 8k); as mentioned previously, their proof was technically involved. We

give a simple proof of this lemma, but first show that it suffices to obtain the desired approximation

ratio.

Given Lemma 5.2, it is easy to see that the minimum augmentation cost of a terminal (and

hence the cost paid by Reverse-Greedy in the last step) is at most 8kOPT/h. In fact, since

the average augmentation cost of a terminal is also bounded by this value, the lemma also allows

one to prove that a greedy algorithm with a random ordering of terminals suffices to obtain an

O(k log |T |)-approximation.

Random-Greedy:
Permute the terminals randomly.
Let tj denote the jth terminal in the permutation and let Tj = {t1, . . . , tj}.
Subgraph H ← ∅
For i = 1 to |T |.

Add to H a min-cost augmentation of ti with respect to Ti−1.
Output the subgraph H.

Note that this is a greedy algorithm except for the initial randomization. This randomization

130

is crucial; as mentioned previously, even for k = 2 there exist permutations that yield a solution of

cost Ω(|T | ·OPT). Thus the order of terminals is of considerable importance in the performance

of the greedy algorithm. This is in contrast to the case of k = 1, namely Steiner Tree, for which

the greedy online algorithm does have a performance ratio of O(log |T |).

Lemma 5.2 and a simple inductive proof give the following theorem.

Theorem 5.3. Algorithm Reverse-Greedy is an O(k log h)-approximation algorithms for SS-

k-Connectivity. Algorithm Random-Greedy obtains an approximation ratio of O(k log h) in

expectation.

Proof. A straightforward induction on h shows that the cost of the solution returned by Reverse-

Greedy is at most 8kHhOPT, where Hh denotes the hth harmonic number. In the base case of

h = 1, we obtain an optimal solution. For h > 1, let t be the terminal of minimum augmentation

cost. The induction hypothesis implies that the solution returned by the recursive call on T ′ =

T \ {t} has cost at most 8kHh−1OPT, as an optimal soluion on T ′ clearly has cost at most OPT.

Together with the augmentation cost of t, we pay at most 8kHhOPT.

To see that the same bound on the expected cost of the solution returned by Random-Greedy,

we simply use the fact that the expected augmentation cost of a random terminal is at most

8kOPT/h.

We prove the crucial Lemma 5.2 in Section 5.2.1; the proof is combinatorial, and uses ideas

from Chapter 4 together with some ideas from [68]. We also give a proof of a weaker bound

in Section 5.2.2. This latter proof may be of independent interest, and extends to more general

problems that we consider later.

5.2.1 An Element-Connectivity Based Proof of Lemma 5.2

The main ingredient in the proof of Lemma 5.2, as shown by [68], is the following weaker statement

involving paths that are element-disjoint, as opposed to vertex-disjoint.

Lemma 5.4 (Element-Connectivity, [68]). Given an instance of SS-k-Connectivity let OPT

denote the cost of an optimal solution. For each terminal t, let ElemCost(t) denote the minimum

131

cost of a set of k internally vertex-disjoint paths from any terminal t to T ∪ {r} − t. Then,∑
t∈T ElemCost(t) ≤ 2OPT.

It is shown in [68] that one can prove Lemma 5.2 by repeatedly invoking Lemma 5.4 to obtain a

large collection of paths from each t ∈ T to other terminals, and applying a flow-scaling argument.

The heart of the proof of the crucial Lemma 5.4, is a structural theorem of [68] on spiders: A

spider is a tree containing at most a single vertex of degree greater than 2. If such a vertex exists,

it is referred to as the head of the spider, and each leaf is referred to as a foot. Thus, a spider

may be viewed as a collection of disjoint paths (called legs) from its feet to its head. If the spider

has no vertex of degree 3 or more, any vertex of the spider may be considered its head. Vertices

that are not the head or feet are called intermediate vertices of the spider. Our Reduction Lemma

from Chapter 4 allows us to give an extremely easy inductive proof of the Spider Decomposition

Theorem below,6 greatly simplifying the proof of [68].

Theorem 5.5 ([68]). Let G(V,E) be a graph with a set B ⊆ V of black vertices such that every pair

of black vertices is k-element connected. There is a subgraph H of G whose edges can be partitioned

into spiders such that:

1. For each spider, its feet are distinct black vertices, and all intermediate vertices are white.

2. Each black vertex is a foot of exactly k spiders, and each white vertex appears in at most one

spider.

3. If a white vertex is the head of a spider, the spider has at least two feet.

Before giving the formal short proof we remark that if the graph is bipartite then the collection

of spiders is trivial to see: they are simply the edges between the black vertices and the stars rooted

at each white vertex! Thus the Reduction Lemma effectively allows us to reduce the problem to a

trivial case.

Proof. We prove this theorem by induction on the number of edges between white vertices in G.

As the base case, we have a graph G with no edges between white vertices; therefore, G is bipartite.

(Recall that there are no edges between black vertices.) Each pair of black vertices is k-element
6In the decomposition theorem of [68], the spiders satisfy a certain additional technical condition; the proof of

Lemma 5.2 in [68] relies on this condition. We give a modified proof of Lemma 5.2 that does not require the condition.

132

connected, and hence every black vertex has at least k white neighbors. Let every b ∈ B mark k of

its (white) neighbors arbitrarily. Every white vertex w that is marked at least twice becomes the

head of a spider, the feet of which are the black vertices that marked w. For each white vertex w

marked only once, let b be its neighbor that marked it, and b′ be another neighbor. We let b−w−b′

be a spider with foot b and head b′. It is easy to see that the spiders are disjoint, and that they

satisfy all the other desired conditions.

For the inductive step, consider a graph G with an edge pq between white vertices. If all black

vertices are k-element connected in G1 = G−pq, then we can apply induction, and find the desired

subgraph of G1 and hence of G. Otherwise, by Theorem 4.1.1, we can find the desired set of spiders

in G2 = G/pq. If the new vertex v = pq is not in any spider, this set of spiders exists in G, and

we are done. Otherwise, let S be the spider containing v. If v is not the head of S, let x, y be its

neighbors in S. Either x and y are both adjacent to p, or both adjacent to q, or (without loss of

generality) x is adjacent to p and y to q. Therefore, we can replace the path x − v − y in S with

one of x−p−y, x− q−y, or x−p− q−y. If v is the head of S, we know that it has at least 2 feet.

If at least 2 legs of S are incident to each of p and q, we can create two new spiders Sp and Sq,

with heads p and q respectively; Sp contains the legs of S incident to p, and Sq the legs incident to

q. If all the legs of S are incident to p, we let p be the head of the spider in G; the case in which

all legs are incident to q is symmetric. If neither of these cases holds, it follows that (without loss

of generality) exactly one leg ` of S is incident to p, with the remaining legs being incident to q.

We let q be the head of the new spider, and add p to the leg `.

The authors of [68] showed that, once we have the Spider Decomposition Theorem, it is very

easy to prove Lemma 5.4.

Proof of Lemma 5.4.([68]) In an optimal solution H to an instance of SS-k-Connectivity,

every terminal is k-vertex-connected to the root. Let the terminals be black vertices, and non-

terminals be white; it follows that all the terminals are k-element connected to the root in H, and

hence to each other. Therefore, we can find a subgraph of H of total cost at most OPT which can

be partitioned into spiders as in Theorem 5.5. For each spider S and every terminal t that is a foot

of S, we find a path entirely contained within S from t to another terminal. Each edge of S is in

at most two such paths; since the spiders are disjoint and each terminal is a foot of k spiders, we

133

obtain the desired result.

If the head of S is a terminal, the path for each foot is simply the leg of S from that foot to

the head. Each edge of S is in a single path. If the head of S is a white vertex, it has at least two

feet. Fix an arbitrary ordering of the feet of S; the path for foot i follows leg i from the foot to the

head, and then leg i + 1 from the head to foot i + 1. (The path for the last foot follows the last

leg, and then leg 1 from the head to the foot.) It is easy to see that each edge of S is in exactly

two paths; this completes the proof. �

Finally, we give a proof of Lemma 5.2 that relies only on the statement of Lemma 5.4. Our

proof is a technical modification of the one in [68] and as previously remarked, does not need to

rely on the additional condition on the spiders that [68] guarantees. Our proof also gives a slightly

stronger bound on
∑

tAugCost(t) than that of [68].

Proof of Lemma 5.2. We give an algorithm to find an augmentation for each terminal that

proceeds in 4k2 iterations: In each iteration, for every terminal t, it finds a set of k internally

vertex-disjoint paths from t to other terminals or the root. Let Pi(t) denote the set of paths found

for terminal t in iteration i. These paths have the following properties:

1. For each terminal t, every other terminal is an end-point of fewer than 4k2 + 2k paths in⋃
i Pi(t).

2. In each iteration i,
∑

tCost(Pi(t)) ≤ 4kOPT.

Given these two properties, we can prove the theorem as follows: Separately for each terminal

t, send 1 unit of flow along each of the paths in
⋃
i Pi(t); we thus have a flow of 4k2 · k units from

t to other terminals. Scale this flow down by 4k2 · (k + 1
2)/k, to obtain a flow of k2

k+1/2 > k − 1/2

from t to other terminals. After the scaling step, the net flow through any vertex (terminal or

non-terminal) is at most 1, since the maximum flow through a vertex before scaling was 4k2 + 2k.

Let FlowCost(t) denote the cost of this scaled flow for terminal t; if we now scale the flow up by a

factor of 2, we obtain a flow of value greater than 2k−1 from t to other terminals, in which the flow

through any vertex besides t is at most 2. Therefore, by the integrality of min-cost flow, we can

find an integral flow of 2k − 1 units from t to other terminals, of total cost at most 2FlowCost(t).

Let Et be the set of edges used in this integral flow; it follows that cost(Et) ≤ 2FlowCost(t). It is

134

also easy to see that Et contains k disjoint paths from t to k distinct terminals, by observing that

a hypothetical cutset of size k− 1 contradicts the existence of the flow of value 2k− 1 in which the

flow through a vertex is at most 2.

Therefore, we have found k disjoint paths from t to k other terminals, of total cost 2FlowCost(t).

To bound the cost over all terminals, we note that from the second property above, we have∑
t FlowCost(t) ≤ 4k2 · 4kOPT/

(
4k2 k+1/2

k

)
, which is less than 4kOPT. It follows that the total

cost of the set of paths is at most 2
∑

t FlowCost(t) < 8kOPT.

It remains only to show that we can find a set of paths for each terminal in every iteration that

satisfies the two desired properties. The proof below uses induction on the number of iterations i

to prove property 1: After i iterations, for each terminal t, every other terminal is an end-point of

fewer than i+ 2k paths in
⋃
i Pi(t).

In iteration i, for each terminal t, let Blocked(t) denote the set of terminals in T − t that

have been the endpoints of at least (i − 1) + k paths in
⋃i−1
j=1 Pj(t). (Note that the root r is

never in any Blocked(t).) Since the total number of paths that have been found so far is (i− 1)k,

|Blocked(t)| < k. Construct a directed graph D on the set of terminals, with edges from each

terminal t to the terminals in Blocked(t). Since the out-degree of each vertex in D is at most k−1,

there is a vertex of in-degree at most k−1; therefore, the digraph D is 2k−2 degenerate and so can

be colored using 2k− 1 colors. Let C1, C2, . . . C2k−1 denote the color classes in a proper coloring of

D; if t1, t2 ∈ Cj , then in iteration i, t1 /∈ Blocked(t2) and t2 /∈ Blocked(t1). For each color class Cj

in turn, consider the terminals of Cj as black, and the non-terminals and terminals of other classes

as white. There is a graph of cost OPT in which every terminal of Cj is k-vertex-connected to the

root, so Cj is k-element-connected to the root in this graph even if terminals not in Cj are regarded

as white vertices. From Lemma 5.4, for every Cj , we can find a set of internally disjoint paths from

each t ∈ Cj to Cj ∪ {r} − {t} of total cost at most 2OPT. If these paths contain other terminals

in T − Cj as intermediate vertices, trim them at the first terminal they intersect. It follows that∑
j

∑
t∈Cj Cost(Pi(t)) < 4kOPT, establishing property 2 above.

To conclude, we show that for each terminal t, after iteration i, every other terminal is an

end-point of fewer than i + 2k paths in
⋃i
j=1 Pj(t). Let C be the color class containing t; if

t′ ∈ Blocked(t), at most one new path in Pi(t) ends in t′, as the paths for t are disjoint except at

135

terminals in C, and t′ /∈ C. By induction, before this iteration t′ was the endpoint of fewer than

(i− 1) + 2k paths for t, and so after this iteration, it cannot be the endpoint of i+ 2k paths for t.

If t′ /∈ Blocked(t), it was the endpoint of at most (i − 1) + k − 1 paths for t before this iteration;

even if all the k paths for t in this iteration ended at t′, it is the endpoint of at most i + 2k − 2

paths for t after the iteration. This gives us the desired property 1, completing the proof. �

Lemma 5.2 and Lemma 5.4 have applications to more general problems including the node-

weighted version of SS-k-Connectivity [68], which we do not discuss in this thesis, and rent-or-

buy and buy-at-bulk network design [52]. (See Sections 5.3 and 5.4.)

5.2.2 An LP-Based Bound on Augmentation Costs

In this section, we give a weaker bound on the augmentation cost of the terminals than that of

Lemma 5.2; we prove the following lemma:

Lemma 5.6. Given an instance of SS-k-Connectivity on h terminals, let OPT denote the

cost of an optimal solution, and let AugCost(t) denote the augmentation cost of terminal t.

Then, mintAugCost(t) ≤ 2f(k)k2 · OPT
h where f(k) ≤ 3kk!. It also follows that

∑
tAugCostt ≤

2f(k)k2 log h ·OPT.

Our proof proceeds by constructing a natural linear program for the problem and using a dual-

based argument. We will describe a feasible dual solution of cost at least hmint AugCost(t)
2f(k)k2 . As this

is a lower bound on OPT, we obtain the lemma. The primal and its dual linear programs for

SS-k-Connectivity are shown below. We remark that our linear program is based on a path-

formulation unlike the standard cut-based (setpair) formulation for VC-SNDP [82, 79]. However,

the optimal solution values of the two relaxations are the same. The path-formulation is more

appropriate for our analysis; this is inspired by a similar approach in [49, 47].

In the primal linear program below, and throughout the chapter, we let Pkt denote the collection

of all sets of k vertex-disjoint paths from t to the root r. We use the notation ~P to abbreviate

{p1, p2, . . . pk}, an unordered set of k disjoint paths in Pkt . Finally, we say that an edge e ∈ ~P if

there is some pj ∈ ~P such that e ∈ pj . In the LP, the variable xe indicates whether or not the edge

e is in the solution. For each ~P ∈ Pkt , the variable f~P is 1 if terminal t selects the k paths of ~P to

connect to the root, and 0 otherwise.

136

Primal-Conn min
∑
e∈E

cexe∑
~P∈Pkt

f~P ≥ 1 (∀t ∈ T)

∑
~P∈Pkt |e∈~P

f~P ≤ xe (∀t ∈ T, e ∈ E)

xe, f~P ∈ [0, 1]

Dual-Conn max
∑
t∈T

αt∑
t

βte ≤ ce (∀e ∈ E)

αt ≤
∑
e∈~P

βte

(
∀~P ∈ Pkt

)
αt, β

e
t ≥ 0

The value f~P can be thought of as the amount of “flow” sent from t to the root along the set of

paths in ~P . The first constraint requires that for each terminal, a total flow of at least 1 unit must

be sent along various sets of k disjoint paths.

Overview of the Dual-Packing Analysis

We prove Lemma 5.6 based on a dual-packing argument. In order to do this we first interpret the

variables and constraints in Dual-Conn. There is a dual variable αt for each t ∈ T . We interpret

αt as the total cost that t is willing to pay to connect to the root. In addition there is a variable

βte which is the amount that t is willing to pay on edge e. The dual constraint
∑

t β
t
e ≤ ce requires

that the total payments on an edge from all terminals is at most ce. In addition, for each terminal

t, the total payment αt should not exceed the min-cost k-disjoint paths to the root with costs given

by the βte payments of t on the edges.

Let α = mintAugCost(t). To prove Lemma 5.6 it is sufficient to exhibit a feasible setting for

the dual variables in which αt ≥ α/(f(k)k2) for each terminal t. How do we do this? To understand

the overall plan and intuition, we first consider the Steiner Tree problem (the case of k = 1).

In this case, α = mintAugCost(t) is the shortest distance between any two terminals. For each t

consider the ball of radius α/2 centered around t; these balls are disjoint. Hence, setting αt = α/2

and βte = ce for each e in t’s ball (and βte = 0 for other edges) yields a feasible dual solution.

This interpretation is well-known and underlies the O(log |T |) bound on the competitiveness of the

greedy algorithm for online Steiner Tree problem.

Extending the above intuition to k > 1 is substantially more complicated. We again to wish to

137

t v
e

P

e′

Figure 5.1: An example which shows that there may not be a ball of radius Ω(α) that is centered
at terminal t and is disjoint from other terminals.

define balls of radius Ω(α) that are disjoint. As we remarked earlier, for k = 1 one can work with

distances in the graph and the ball of radius α/2 is well defined. For k > 1, there may be multiple

terminals at close distance d from a terminal t, but nevertheless AugCost(t) could be much larger

than d. The reason for this is that t needs to reach k terminals via vertex disjoint paths and there

may be a vertex v whose removal disconnects t from all the nearby terminals. Consider the example

in Figure 5.1 above, where filled circles denote other terminals: The terminal t is willing to pay for

e and edges on P but not e′. There does not appear to be a natural notion of a ball; however, we

show that one can define some auxiliary costs on the edges (that vary based on t) which can then

be used to define a ball for t. The complexity of the analysis comes from the fact that the balls for

different terminals t are defined by different auxiliary edge costs. Now we show how the auxiliary

costs can be defined.

We can obtain the augmentation cost of a terminal t via a min-cost flow computation in an

associated directed graph Gt(Vt, Et) constructed from G in the following standard way: make

2 copies v+ and v− of each vertex v 6= t, with a single edge/arc between them, and for each

undirected edge uv in G, edges from u+ to v− and v+ to u−. Further, we add a new vertex rt

as sink, and for each terminal t̂ other than t, add a 0-cost edge from t̂+ to rt. Recall that an

augmentation for t is a set of k disjoint paths from t that end at distinct terminals in T \ {t}, or

the root. While constructing Gt, then, the root is also considered a terminal, and we make k copies

of it to account for the fact that multiple paths in the augmentation can end at the root; each

such copy is also connected to the sink rt. We now ask for a minimum cost set of k disjoint paths

138

from t to rt7; these correspond to a minimum-cost augmentation for t. It is useful to use a linear

programming formulation for the min-cost flow computation. The linear program for computing

the augmentation cost of t, and its dual are shown below. We refer to these as Primal-Aug(t)

and Dual-Aug(t) respectively.

Primal-Aug(t) min
∑
e∈Et

cefe∑
e∈δ−(rt)

fe ≥ k

∑
e∈δ−(v)

fe =
∑

e=δ+(v) fe (∀v 6= t, rt)

fe ≤ 1 (∀e ∈ Et)

fe ≥ 0 (∀e ∈ Et)

Dual-Aug(t) max k ·Π−
∑
e

zte

Π− πt(u) ≤ ce + zte (∀e = (u, rt))

πt(v)− πt(u) ≤ ce + zte (∀e = (u, v), u 6= t, v 6= rt)

πt(v) ≤ ce + zte (∀e = (t, v) ∈ Et)

zte ≥ 0 (∀e ∈ Et)

Note that the cost of an optimal solution to Primal-Aug(t) is equal to AugCost(t). The

interesting aspect is the interpretation of the dual variables. The variables zte are auxiliary costs on

the edges. One can then interpret the dual Dual-Aug(t) as setting zte values such that the distance

from t, with modified cost of each edge e set to ce + zte, is equal to Π for every other terminal t′.

Thus the modified costs create a ball around t in which all terminals are at equal distance!

Thus, the overall game plan of the proof is the following. For each t solve Primal-Aug(t) and

find an appropriate solution to Dual-Aug(t) (this requires some care). Use these dual variables

to define a notion of a non-uniform ball around t in the original graph G. This leads to a feasible

setting of variables in Dual-Conn (with the balls being approximately disjoint). Although the

scheme at a high level is fairly natural, the technical details are non-trivial and somewhat long. In

particular, one requires an important combinatorial lemma on intersecting path systems that was

formulated in [39] — here we give an improved proof of a slight variant that we need. The use of

this lemma leads to the exponential dependence on k in Lemma 5.6. A certain natural conjecture

regarding the non-uniform balls, if true, would lead to a polynomial dependence on k.
7Note that we do not make two copies of t, as we will never use an incoming edge to t in a min-cost set of paths.

All edges are directed out of the unique copy of t.

139

Details of the Proof

We first give a combinatorial way to obtain optimal solutions to Primal-Aug(t) and Dual-Aug(t).

This allows us to interpret the variable settings in a useful way. For each i ≤ k, we let AugCosti(t)

denote the minimum cost of a set of i disjoint paths from t to rt; AugCost(t), the augmentation

cost of t, is precisely AugCostk(t). A minimum cost set of k paths can be found in several ways;

we focus on the (combinatorial) successive-shortest-paths algorithm [4, 118]. In this algorithm, we

start with the graph Gt, find a shortest path from t to rt, and then construct the residual graph.

Iterating k times, we obtain a min-cost set of k paths, by repeatedly finding shortest t-to-rt paths

in the appropriate residual graphs. Let Gt(i) be the residual graph obtained after i iterations of the

successive shortest paths algorithm, and let Qi be the set of i disjoint paths found after i iterations.

If `i is the length of the shortest path found in Gt(i− 1), then by the properties of the algorithm,

`i = AugCosti(t)−AugCosti−1(t). This gives us an integral optimal solution to Primal-Aug(t).

Also, note that an augmenting path found in iteration i may not be one of the final set of k paths

found by the algorithm since the paths are found in residual graphs.

We construct an optimal feasible solution to Dual-Aug(t) as follows. For each vertex v, πt(v),

the potential of v, is set to the shortest-path distance from t to v in the residual graph Gt(k − 1)

(the final residual graph). The potential of rt, set to Π, is given by the shortest-path distance of rt

from t in the graph Gt(k − 1). Note that Π = AugCostk(t)−AugCostk−1(t). With potentials set

according to this rule, there may be edges e = (u, v) such that πt(v)−πt(u) > ce; on these edges, we

set zte = πt(v)−πt(u)− ce, satisfying the constraints (with equality). It is not hard to see that this

is an optimal solution for Dual-Aug(t); see [118] for a discussion of the successive-shortest-path

algorithm and the associated potentials, using slightly different notation. Here, we merely observe

that these settings satisfy the complementary slackness conditions. In particular, we characterize

the edges with zte > 0 in the following claim, and then prove a few more properties of the dual

variables set by this process.

Claim 5.7. For all e ∈ Et, zte > 0 only if e ∈ Qk−1 ∩ Qk, where Qi denotes the set of i disjoint

paths found by the successive shortest paths algorithm after i iterations.

Proof. If zte > 0 for e = (u, v), the shortest-path distance from t to v in Gt(k − 1) must be greater

than the sum of ce and the shortest-path distance from t to u. This implies that e = (u, v) cannot

140

exist in the residual graph Gt(k − 1), and so it must be an edge in Qk−1. Further, it must be in

Qk, the final set of min-cost k paths; if not, it would need to be in Qk−1 but not Qk. This means

that the shortest path from t to rt would have to use the edge (v, u), with cost −ce (as (u, v) does

not exist in the residual graph). This implies that the shortest path to u in Gt(k− 1) goes through

v, and hence πt(v) = πt(u) + ce, contradicting the fact that zte > 0.

Proposition 5.8. Π, the shortest-path distance from t to rt in Gt(k− 1), is at least 1
kAugCost(t).

Proof. Let p be a longest path in a set of k disjoint t − rt paths in Gt of total cost AugCost(t);

the length of p is at least AugCost(t)
k . The length of the remaining k − 1 paths is, then, at most

(1 − 1/k)AugCost(t); this implies that AugCostk−1(t), the cost of a minimum-cost set of k − 1

paths, is also at most this value. Therefore, the shortest-path distance from t to rt in Gt(k − 1),

which is precisely AugCostk(t)−AugCostk−1(t), is at least AugCost(t)
k .

For each terminal v, let Π(t) denote the value of Π in the linear program Dual-Aug(t). From

Proposition 5.8, we have AugCost(t)
k ≤ Π(t) ≤ AugCost(t). (Note that for k = 1, Π(t) is precisely the

distance between t and its closest terminal.) For each edge e, we think of ce + zte as an “adjusted”

length/cost `te for e. Let dt(v) be the the shortest-path distance from t to v in Gt, under the distance

function `te. Recall that we set πt(v), the potential of v, to be the shortest-path distance from t to

v in the residual graph Gt(k − 1); the constraints of Dual-Aug(t) enforce that dt(v) ≥ πt(v).

Claim 5.9. Under the distance function `te = ce + zte, any path from t to rt in Gt has length at

least Π(t).

Proof. Note that Π(t) is the the potential of rt in our solution to Dual-Aug(t). The shortest-path

distance dt(rt) from t to rt is at least this potential.

Claim 5.10.
∑

e z
t
e ≤ (k − 1)Π.

Proof. If this were not true, our solution to Dual-Aug(t) would have value less than Π, and hence

less than AugCost(t). But this is an optimal solution, with value equal to the minimum-cost set

of k paths from t to rt, giving a contradiction.

Using the settings from the Dual-Aug(t) programs, we now describe a feasible setting for the

dual program Dual-Conn. Note that Dual-Conn refers to the original (undirected) graph G,

141

while for each Dual-Aug(t), we worked with a directed graph Gt which contained 2 copies of each

vertex and an additional sink rt. For ease of notation, we subsequently describe, for each terminal

t, how βte should be set in the appropriate graph Gt. In G, for every undirected edge e = uv we set

βte to be max{βt−→e , β
t←−e }, where −→e ,←−e correspond to the directed edges (u, v) and (v, u) respectively.

Let Πmin = mint Π(t). For each terminal t, set αt = α = Πmin/2k; we must now give a setting

for the βte variables, for which we use the dual program Dual-Aug(t). Consider the (directed)

edge e = (u, v): If dt(u) ≥ α, set βte = 0; otherwise, set βte = min{ce, α− dt(u)}. We interpret this

as setting βte = ce on edges e within the ball of radius α using the edge costs `te. If e is outside the

ball, βte = 0, and on the border, we set βte depending on the portion of e within the ball. This is

the ball referred to earlier (in the overview of the proof) with auxiliary costs; it is a ball of radius

α using the distance metric `te, as opposed to the “ordinary”costs ce.

The following two lemmas prove the (approximate) feasibility of the variable settings for Dual-

Conn. Lemma 5.11 is the more difficult of the two, and we temporarily defer its proof.

Lemma 5.11. Let f(k) = 3k · k!. For each edge e,
∑

t β
t
e ≤ f(k)ce.

Lemma 5.12. For all ~P ∈ Pkt , αt ≤
∑

e∈~P β
t
e.

Proof. Consider any set of k paths ~P ∈ Pkt . We focus on the corresponding set of k directed paths

~P ′ in the directed graph Gt, and showing that
∑

e∈ ~P ′ β
t
e ≥ αt. Since for each edge e = uv in G, we

set βte = max{βt(u,v), β
t
(v,u)}, this shows that

∑
e∈~P β

t
e ≥ αt.

Since all the paths of ~P ′ end in a terminal (the root), they must each leave the ball of `te radius

αt centered at t. Let E′ be the set of edges in the ball of radius αt; note that an edge e = (u, v) is

entirely in the ball if dt(u) + `te ≤ αt, and e may be partially in the ball if dt(u) < αt < dt(u) + `te.

Without loss of generality, we assume that no edges are partially in the ball; such an edge can be

subdivided into two pieces, one inside the ball, and the other outside.

For each path p ∈ ~P ′, the length of p inside the ball is at least αt; that is,
∑

e∈p∩E′ `
t
e ≥ αt.

Since the k paths in ~P ′ are disjoint,
∑

e∈ ~P ′∩E′ `
t
e ≥ kαt. As `te = ce + zte, and inside this ball,

βte = ce, we have
∑

e∈ ~P ′∩E′ β
t
e +

∑
e∈ ~P ′∩E′ z

t
e ≥ kαt.

We claim that
∑

e∈E′ z
t
e ≤ (k− 1)αt; this implies that

∑
e∈ ~P ′∩E′ β

t
e ≥ αt, completing the proof.

142

It remains only to prove the claim that
∑

e∈E′ z
t
e ≤ (k − 1)αt; consider any edge e in the ball

of radius αt with zte > 0. From Claim 5.7, such an edge must be in Qk−1, the first set of k − 1

minimum-cost paths from t to rt. Further, for any edge (u, v) ∈ Qk−1, since (v, u) is a negative-cost

edge in Gt(k − 1), πt(v) > πt(u). Consider any path q ∈ Qk−1; we show that
∑

e∈q∩E′ z
t
e ≤ αt,

which will prove the desired claim.

If x is the last vertex of q within the ball of radius αt, let q′ be the sub-path of q from t to x.

For an edge e = (u, v) ∈ q′, zte ≤ πt(v) − πt(u). Therefore,
∑

e∈q′ z
t
e ≤ πt(x) − πt(t) = πt(x). But

πt(x) ≤ dt(x) ≤ αt, and hence
∑

e∈q′ z
t
e ≤ αt.

Given Lemmas 5.11 and 5.12, we can now prove Lemma 5.6, bounding the minimum augmen-

tation cost of a terminal. This completes the proof of Theorem 5.3.

Proof of Lemma 5.6. Using the settings for αt and βte as described above, we have a solution for

Dual-Conn, in which one set of constraints is violated by a factor of f(k). With these settings,∑
t αt = hΠmin

2k . Further, Πmin ≥ mintAugCost(t)/k. Therefore, mintAugCost(t) ≤ 2k2

h

∑
t αt.

Shrinking all values of αt and βte by a factor of f(k), we obtain a feasible solution for Dual-Conn,

which must have cost at most OPT. Therefore, mintAugCost(t) ≤ 2f(k)k2 · OPT
h . �

In order to complete our proof of Lemma 5.6, we now need only to prove Lemma 5.11; first, we

give some intuition underlying our proof. Suppose that (u, v) is an edge such that
∑

t β
t
e > f(k)ce.

Since each βte ≤ ce, there must exist more than f(k) terminals t such that βte > 0; let S be the set

of such terminals. Informally, for each terminal in S, u must be in its ball of radius α, and so each

terminal must be fairly close to u. The essential idea, then, is that if all the terminals in S are so

close to u, and hence to each other, one of them would have been able to find disjoint paths to k

other terminals without going as far as Πmin. In order to analyze this formally we need a definition

and a combinatorial lemma on intersecting paths in a graph.

Definition 5.13. Given a graph G = (V,E) a triple (X,P, v) is an intersecting path system for a

set X ⊂ V if P is a collection of (simple) paths such that |P | = |X| and for each t ∈ X there is a

path pt ∈ P that connects t to v ∈ V . The vertex v is referred to as the root of the system and for

t, u ∈ X, prefixt(u) denotes the subpath of pu from u to its first intersection with pt.

143

In [39] a useful combinatorial lemma on intersecting path systems was crucially used in the

analysis. Below we give a similar lemma with slightly improved bounds on the parameters as well

as a different proof.

Lemma 5.14. Let (X,P, v) be an intersecting path system in graph G(V,E) and let f(k) be the

function 3k · k!. If |X| ≥ f(k), there exists k + 1 distinct vertices t, u1, u2, . . . uk in X such that

for 1 ≤ i < j ≤ k, prefixt(ui) and prefixt(uj) are vertex-disjoint, except perhaps at the point of

intersection with pt.

As observed by the authors of [39], a perfect binary tree with 2k−1 leaves as vertices of X

shows that f(k) has to be larger than 2k−1 for the above lemma to be true. We believe that

f(k) = 2k−1 + 1 suffices; in particular, one can verify that this holds for k = 2, 3.

Proof of Lemma 5.14. Given an intersecting path system, let pi be the path from xi ∈ X to v;

we abuse notation and use prefixi(j) instead of prefixxi(xj) to denote the subpath of pj from xj to

its first intersection with pi.

Suppose pi is a first path that pj intersects. (Note that pj may intersect other paths simulta-

neously with pi.) Then, prefixi(j) is entirely disjoint from any other path in the system, except

perhaps at the point of intersection with pi. If this prefix intersected some path pi′ , that would

contradict the choice of pi as the first path intersected by pj .

Construct a directed graph H(X,EH), with edge set EH described as follows: For each xj ∈ X,

if pi is a first path intersected by pj , insert an edge from xj to xi. (In the event of ties, they

may be broken arbitrarily.) Note that |EH | = |X|, and by applying Proposition 5.15 below to

each connected component, H has a proper 3-coloring. Let X1 be a color class such that the total

in-degree of X1 is at least |X|/3. Let X ′ ⊆ X1 be the set of vertices in X1 with in-degree at least

1. We consider two cases:

If |X ′| ≤ |X|3k , there is a vertex t ∈ X ′ with in-degree at least k. This vertex t, together with its

in-neighbors, satisfy the lemma.

If |X ′| > |X|
3k , consider the intersecting path system obtained from (X,P, v) by considering only

the paths beginning at terminals in X ′. Since X ′ > f(k − 1), by induction, we obtain a terminal

t, and k − 1 other terminals (without loss of generality, by renumbering) x1, x2, . . . xk−1 such that

for each 1 ≤ i < j ≤ k − 1, prefixt(xi) and prefixt(xj) are disjoint. These terminals, together with

144

an in-neighbor xk of t (as X ′ is an independent set, xk 6∈ X ′), satisfy the lemma, as prefixt(xk) is

disjoint from every other path in (X,P, v). �

Proposition 5.15. If H(V,E) is a connected graph such that |V | = |E|, H has a proper 3-coloring.

Proof of Lemma 5.11. If
∑

t β
t
e > f(k)ce, we have a set S of more than f(k) terminals that all

have βte > 0 on edge e = (u, v). Each terminal t ∈ S has a path pt of length at most α (under the `te

distances); these paths form an intersecting path system. From Lemma 5.14, we can find a terminal

t, and k distinct terminals x1, x2, . . . , xk such that for each xi, xj , prefixt(xi) and prefixt(xj) are

vertex-disjoint, except perhaps at the point of intersection with pt.

Note that since each path from a terminal to u has length at most α, we can find short paths

from t to each of x1, . . . , xk by following pt until yi, the point of intersection with prefixt(xi), and

then following prefixt(xi) “backwards” until xi. Consider any such path from t to xi; recall that in

Gt, dt(rt) was at least Π(t), where rt was the added “sink” vertex. One might conclude that since

the path from t to yi has length less than α, and the same is true for the path from yi to xi, we

have a path from t to a terminal of length less than 2α = Πmin/k, contradicting Claim 5.9. This is

incorrect, because for an edge e different terminals may have distinct values for `te. In particular,

dxi(yi) ≤ α; that is, the distance from xi to yi is short using edge costs lxie . This does not imply

that the length of the path from yi to xi is necessarily low using edge costs `te.

However, a similar argument using the multiple disjoint path prefixes suffices to complete our

proof. Consider the path from t to yi; dt(yi) ≤ α. That is, this path is short using edge costs

`te = ce + zte. The path from yi to rt using prefixt(xi) has ce length less than α (since we know

that its length is less than α using edge costs lxie = ce + zxie). But since dt(rt) ≥ Π(t), the

length of this path from yi to rt using edge costs zte must be greater than Π(t) − 2α. But since

α ≤ Πmin/2k, the zte length of this path must be greater than Π(t)(1 − 1
k). This is true for each

path prefixt(xi), 1 ≤ i ≤ k, and these paths are entirely disjoint. Therefore,
∑

e z
t
e is greater than

k
(
Π(t)(1− 1

k)
)

= (k − 1)Π(t). But this contradicts Claim 5.10, completing the proof. �

145

5.3 Rent-or-Buy

In this section we describe and analyze a simple algorithm for the SS-k-Rent-or-Buy problem.

Recall that the input to this problem is the same as that for SS-k-Connectivity, with an addi-

tional parameter M . As before, the goal is to connect terminals to the root using k disjoint paths,

but now we wish to construct networks with sufficient capacity to simultaneously support traffic

from each terminal to the root; in contrast, the requirement in SS-k-Connectivity was merely

that each terminal be highly connected to the root. More formally, for each terminal t ∈ T , we

must find k vertex-disjoint paths to the root r. The objective is to minimize the total cost of the

chosen paths, where the cost of an edge e is ce ·min{M, |Te|} and Te is the set of terminals whose

paths contain e. In other words, an edge can either be bought at a price of Mce in which case any

number of terminals can use it or an edge can be rented at a cost of ce per terminal. Our algorithm

given below is essentially the same as the random marking algorithm that has been shown to give

an O(1) approximation for the case of k = 1 [99].

Rent-Or-Buy-Sample:

1. Sample each terminal independently with probability 1/M to form a set T ′ ⊆ T .

2.1 Let H be a solution to SS-k-Connectivity on G with terminal set T ′.

〈〈Each terminal in T ′ is k-connected in H to the root.〉〉

2.2 Buy the edges of H, paying Mce for each edge e ∈ H.

3. For each non-sampled terminal t:

Greedily rent disjoint paths to connect t to k distinct sampled terminals or the root.

It is easy to see that the algorithm is correct. Note that a non-sampled terminal can always

find feasible paths since the root can be the endpoint of all k paths. We can easily generalize the

algorithm and analysis to the case where each terminal t has a demand dt to be routed to the root.

It is straightforward to bound the expected cost of the edges bought in Step 2.2.

Lemma 5.16. Let OPT be the cost of an optimal solution to the given instance of SS-k-Rent-

or-Buy. If we use algorithm Reverse-Greedy to find the graph H in Step 2.1 of Rent-Or-

Buy-Sample, the expected cost of edges bought in Step 2.2 is at most O(k log |T |) ·OPT.

146

Proof. For each set of terminals T ′ sampled in Step 1, we show the existence of a solution H ′

to the SS-k-Connectivity instance defined on T ′ such that the expected cost of buying edges

in H ′ is precisely OPT. Since we find the graph H by using the O(k log |T |)-approximation for

SS-k-Connectivity from Section 5.2, we obtain the lemma.

Before we describe the soution H ′ on the sampled terminals T ′, consider a fixed optimal solution

with cost OPT to the original SS-k-Rent-or-Buy instance, and let B be the set of bought edges

in this solution. Construct a graph G′ from G by reducing the cost of edges in B to 0. It is easy

to see that in the given optimal solution to SS-k-Rent-or-Buy, every terminal routes flow to the

root along k disjoint paths of minimum cost in G′. Let ~Pt denote the k disjoint paths used by

terminal t, and let rent(t) be the cost in G′ of the paths in ~Pt. (This is how much the terminal t

pays to rent edges.) Clearly, OPT = Mcost(B) +
∑

t∈T rent(t).

We now describe H ′: Simply use B, together with
⋃
t∈T ′

~Pt. (Note that though we do not

know the optimal B or any ~Pt, we are only proving the existence of H ′.) The cost of H ′ is

Mcost(B) + M
∑

t∈T ′ rent(t); the expected cost is Mcost(B) + M
∑

t∈T Pr[t ∈ T ′] · rent(t). But

since each vertex is sampled with probability 1/M , we conclude that the expected cost of H ′ is

Mcost(B) +
∑

t∈T rent(t) = OPT.

To analyze the cost of the edges rented in Step 3 of Rent-Or-Buy-Sample, one can use the

elegant strict cost-shares framework of Gupta et al. [99] for sampling algorithms for rent-or-buy

and related problems. If one uses the algorithm Reverse-Greedy to find the subgraph H in Step

2.1, we obtain an O(k log h)-approximation, as Reverse-Greedy is an O(k log h)-approximation

to SS-k-Connectivity that is also O(k log h)-strict. (See Definition 5.19 and Lemma 5.22 below

for details.) That is, we obtain the following lemma:

Lemma 5.17. Let OPT be the cost of an optimal solution to the given instance of SS-k-Rent-

or-Buy. If we use algorithm Reverse-Greedy to find the graph H in Step 2.1 of Rent-Or-

Buy-Sample, the expected cost of edges rented in Step 3 is at most O(k log |T |) ·OPT.

Before proving this lemma, we note that one can bound the approximation ratio of Rent-or-

Buy-Sample as an immediate corollary of Lemmas 5.16 and 5.17.

147

Theorem 5.18. Algorithm Rent-Or-Buy-Sample is a randomized O(k log |T |)-approximation

for SS-k-Rent-or-Buy.

It remains only to prove Lemma 5.17. The following definition and lemmas were given by

Gupta et al. [99] for analysis of Rent-or-Buy and related problems when k = 1, but they extend

completely to our setting.

Definition 5.19 ([99]). Let A be a deterministic algorithm for SS-k-Connectivity. Let I be

any instance of SS-k-Connectivity on a graph G(V,E), with edge cost function c : E → R+, and

with terminal set T ⊆ V . Let OPT(I) denote the cost of an optimal solution to I, and for any

terminal t, let I−t denote the instance of SS-k-Connectivity on G with the same cost function

c, but with terminal set T −{t}. Let H(I−t) denote the solution returned by A on the instance I−t,

and let Aug(I, t) denote the minimum cost of a set of k vertex-disjoint paths from t to k distinct

terminals or the root when the cost of edges in H(I−t) has been reduced to 0.

Let χ be a function that, for any such instance I of SS-k-Connectivity, assigns a non-

negative real value χ(I, t) to each terminal t ∈ T . The function χ is a β-strict cost-sharing method

for A if, for each instance I:

•
∑

t∈T χ(I, t) ≤ OPT.

• For all t ∈ T , Aug(t) ≤ β · χ(I, t).

Definition 5.20 ([99]). An algorithm A for SS-k-Connectivity is β-strict if there exists a β-

strict cost sharing function χ for A.

Lemma 5.21. The algorithm Reverse-Greedy is O(k log |T |)-strict for SS-k-Connectivity.

Proof. Let t1, t2, . . . t|T | be the order in which the terminals are connected to the root by Reverse-

Greedy, and let Ti = {t1, . . . ti−1}. Recall from Section 5.2 that the augmentation cost of a

terminal t with respect to terminal set T ′ ⊆ T − t is the minimum-cost set of k vertex-disjoint

paths from t to k distinct terminals in T ′ or the root. Let AugRG(ti) be the augmentation cost of

ti with respect to Ti. It is easy to see that the function χ(I, ti) = AugRG(ti)/(8k log |T |) satisfies

the second condition of Definition 5.19 with β = 8k log |T |. From Theorem 5.3, it follows that the

first condition is also satisfied.

148

Lemma 5.22 ([99]). If, in Step 2.1 of algorithm Rent-Or-Buy-Sample for SS-k-Rent-or-

Buy, one uses a β-strict α-approximation algorithm for SS-k-Connectivity to find the graph H,

the cost of edges rented in Step 3 is at most O(α+ β)OPT.

Lemma 5.17 is now an immediate consequence of the two lemmas above. This completes our

analysis of Rent-Or-Buy-Sample.

In the rest of this section, we give another direct and somewhat complex analysis of Rent-or-

Buy-Sample that proves a slightly weaker bound than the above for reasons that we discuss now.

One of our motivations to understand SS-k-Rent-or-Buy is for its use in obtaining algorithms

for the SS-k-Buy-at-Bulk problem. For k = 1, previous algorithms for SS-k-Buy-at-Bulk

[95, 99] could use an algorithm for SS-k-Rent-or-Buy essentially as a black box. However, for

k ≥ 2 there are important technical differences and challenges that we outline in Section 5.4. We

cannot, therefore, use an algorithm for SS-k-Rent-or-Buy as a black box. In a nutshell, the extra

property that we need is the following. In the sampling algorithm Rent-Or-Buy-Sample, there

is no bound on the number of unsampled terminals that may route flow to any specific sampled

terminal. In the Buy-at-Bulk application we need an extra balance condition which ensures that

unsampled terminals route to sampled terminals in such a way that no sampled terminal receives

more than βM demand where β ≥ 1 is not too large. We prove the following technical lemma that

shows that β can be chosen to be O(f(k)k log2 h).

Lemma 5.23. Consider an instance of Rent-or-Buy and let OPT be the value of an optimal

fractional solution to the given instance. Then for each terminal t we can find paths P t1, P
t
2, . . . , P

t
o

with the following properties: (i) o ≥ (k − 1/2)M , (ii) the paths originate at t and end at distinct

terminals or the root, and (iii) no edge e is contained in more than M paths for any terminal t.

Moreover the total rental cost of the paths is O(f(k)eO(k2) · k5 log h) ·M ·OPT and no terminal is

the end point of more than O(f(k)k log2 h ·M) paths.

The proof of the above lemma is non-trivial. We are able to prove it by first analyzing the

sampling based algorithm directly via the natural LP relaxation for SS-k-Rent-or-Buy. Although

the underlying ideas are inspired by the ones for SS-k-Connectivity, the proof itself is long and

technical; the reader may skip the rest of this section (that is, Sections 5.3.1 to 5.3.3) on first

149

reading; the statement of Lemma 5.23 above is all that is needed for our SS-k-Buy-at-Bulk

algorithms and analysis.

For technical reasons we analyze a slight variant of the algorithm where in the first step we sam-

ple each terminal with probability 4k log k/M instead of 1/M . A trivial modification to the proof

of Lemma 5.16 bounds the expected cost of edges bought in Step 2.2 by O(k2 log k log |T |)OPT.

It remains to bound the cost of step 3, in which we rent edges from every non-sampled terminal

using k disjoint paths to sampled terminals. In the next subsection, we prove the following lemma

which is at the heart of the analysis.

Lemma 5.24. The expected cost of the augmentation in step 3 of the algorithm is O(f(k)k6 log h) ·

OPT, where OPT is the cost of an optimal fractional solution .

Lemmas 5.16 and 5.24 together imply the theorem below.

Theorem 5.25. There is a O(f(k)k6 log h)-approximation for the SS-k-Rent-or-Buy problem.

In the rest of the section we assume, for technical reasons, that M is an integer, and that

h/M = Ω(log h); otherwise, one can greedily rent paths for each terminal t separately to give an

O(log h) approximation.

5.3.1 The Augmentation Cost

As we did for k-Connectivity, we bound the expected augmentation cost in terms of the value

of a linear programming relaxation ROB-Primal for the SS-k-Rent-or-Buy problem. (Note

that the augmentation cost now depends on the set of sampled terminals.) We use similar notation

here, with Pkt denoting the collection of all sets of k disjoint paths from a terminal t to the root r,

and ~P denoting {p1, p2, . . . pk}, a set of k disjoint paths in Pkt . In the LP, the variable xe indicates

whether or not the edge e is bought in the solution, and the variable yte indicates whether edge e is

rented by terminal t. For each ~P ∈ Pkt , the variable f~P denotes how much “flow” is sent by t along

the paths in ~P . We also give the dual of ROB-Primal that we call ROB-Dual.

150

ROB-Primal ROB-Dual

min
∑
e∈E

M · cexe +
∑
e∈E

∑
t∈T

cey
t
e∑

~P∈Pkt

f~P ≥ 1 (∀t ∈ T)

∑
~P∈Pkt |e∈~P

f~P ≤ xe + yte (∀t ∈ T, e ∈ E)

xe, f~P , y
t
e ≥ 0

max
∑
t∈T

αt

βte ≤ ce (∀t ∈ T, e ∈ E)∑
t∈T

βte ≤ M · ce (∀e ∈ E)

αt ≤
∑
e∈~P

βte

(
∀~P ∈ Pkt

)
αt, β

t
e ≥ 0

As before, we construct a feasible solution to the dual program, with αt for terminal t closely

related to augmentation costs. Again, we pay βte = ce on edges within a “ball” of radius αt, using

edge costs modified by zte variables. Note that, in contrast to the dual for k-Connectivity, here

we are allowed to have M terminals paying for an edge. We again use a dual-packing argument.

However, the proof for the SS-k-Rent-or-Buy problem requires more intricate analysis in order

to deal with the added complexity that arises from bought and rented edges. The analysis is

also somewhat different because the algorithm has one sampling stage followed by simultaneous

augmentation for all non-sampled terminals. This means that for each terminal t, αt will have to be

roughly the augmentation cost of t, unlike the SS-k-Connectivity case, where we set αt to be the

minimum augmentation cost of any terminal. Further, the augmentation cost for a non-sampled

terminal depends on the set of sampled terminals, so we work with expected augmentation costs.

For each terminal t, we construct the directed graph Gt(Vt, Et) precisely as before, making two

copies of each vertex other than t, and a new sink rt. However, we now ask for a set of kM paths

in Gt from t to rt through kM distinct terminals, with no more than M of these paths sharing

an edge. The intuition here is that once we have paths to kM terminals, sampling terminals with

probability proportional to 1/M will give us about k sampled terminals, and we will find disjoint

paths to them with reasonable probability — this requires that no more than M of the kM paths

use any edge. More formally, we use the natural linear program ROB-Primal-Aug(t), shown

below.

151

min
∑
e∈Et

cefe

fe ≤ 1 (∀e = (y, rt) ∈ Et)

fe ≤ M (∀e 6= (y, rt) ∈ Et)∑
e=δ−(v)

fe =
∑

e=δ+(v)

fe (∀v 6= t, rt)

∑
e=δ−(rt)

fe ≥ kM

fe ≥ 0 (∀e ∈ Et)

The linear program ROB-Primal-Aug(t) has an integral optimal solution since all capacities

are integer valued (recall that M is an integer). Let OPTAug(t) denote the cost of an optimum

solution.

Lemma 5.26. With probability at least 1−1/k, the augmentation cost of t is at most 2kOPTAug(t)/M .

With Lemma 5.26 in place, we proceed to show a setting of feasible dual variables in ROB-Dual

to prove the following lemma.

Lemma 5.27. There exists a feasible setting of variables to ROB-Dual such that
∑

t αt ≥

Ω(1
f(k)k5 log h

)
∑

tOPTAug(t)/M .

Lemmas 5.26 and 5.27 do not quite suffice to prove Lemma 5.24. This is because Lemma 5.26

does not guarantee a bound on the expected augmentation cost of t. To prove Lemma 5.24 we

need somewhat more general versions of the above lemmas. We state and prove these in the next

subsection.

5.3.2 The Proof of Lemma 5.24

We prove Lemma 5.24, using more general versions of Lemmas 5.26 and 5.27.

First, we wish to bound the probability that the augmentation cost of t is more than 2kOPTAug(t)
M .

Given an optimal solution to ROB-Primal-Aug(t) on the graph Gt(Vt, Et), let E1
t be the set of

152

edges with fe > 0, the support of this solution. Consider the directed graph G1
t (Vt, E

1
t), with flow

given by the fe values; there is a flow of kM from t to rt. While there exists a t-to-rt path with

non-zero flow in G1
t of length at least 2OPTAug(t)/M , decrement flow along this path by 1 unit,

and delete any edges with 0 flow. This decreases the cost of the flow by at least 2OPTAug(t)/M ,

so at most M/2 such paths can be found. Let G2
t (Vt, E

2
t) be the graph with edges with remaining

non-zero flow. There is a flow of at least (k − 1/2)M from t to rt in G2
t (Vt, E

2
t), and there is no

directed t to rt path of length at least 2OPTAug(t)/M . We will argue that in the graph G2
t , the

probability that we cannot find k disjoint paths to sampled terminals is low; since all paths in G2
t

to terminals have length at most 2OPTAug(t)/M , the total length of these paths will be no more

than 2kOPTAug(t)/M .

Lemma 5.28. Let T ′ be the set of at least (k − 1/2)M terminals through which t sends flow to rt

in G2
t . Let U = {u1, ut, . . . , ui} ⊂ T ′ be any set of i < k terminals from T ′ such that there are i

disjoint paths from t to U , one to each uj. A terminal x ∈ T ′ − U is said to be bad for U if G2
t

does not contain i + 1 disjoint paths from t to U ∪ {x}, one to each of these terminals. For any

such set U , the number of terminals that are bad for U is at most iM .

Proof. If we cannot find such a set of i + 1 paths to x and U , there must be a cut-set of i edges

whose deletion separates t from x and U . Let C be a cut-set of i edges nearest t that separates t

from U : More precisely, let Ht be the graph containing edges of E2
t , but with all capacities reduced

to 1. In the residual graph after finding i paths from t to U in Ht, C is the cut-set induced by the

set of vertices reachable from t, and those unreachable from t. If x is reachable from t in Ht − C,

we have i + 1 disjoint paths from t to x and U . If it is not reachable, any path from t to x in Ht

must go through one of the i edges in C. But each edge of C carries at most M units of flow in

G2
t , and therefore there are at most iM such terminals x that are bad for U . Equivalently, at least

(k − 1/2− i)M ≥M/2 terminals are good for U .

Now, we can prove the following more general version of Lemma 5.26:

Lemma 5.29. Suppose each terminal is sampled with probability ρ·4k log k/M for an integer ρ ≥ 1.

The probability that the augmentation cost of t is more than 2kOPTAug(t)/M is at most 1/k2ρ−1.

153

Proof. We give an algorithm to construct a set of k disjoint paths using edges of G2
t , and bound

the failure probability of this algorithm. For the purpose of this analysis, suppose that terminals

were sampled in k phases; in each phase, a terminal is selected independently with probability

4ρ log k/M , and a terminal is considered available if it is sampled in any phase. It is easy to see

that the probability a terminal is sampled under this model is less than the probability it is sampled

if we perform “single-stage” sampling with probability 4ρk log k/M .

Our algorithm attempts, in each phase, to increase the number of disjoint paths it can find to

sampled terminals; if it cannot do this, we say that it has failed. At the end of phase i, assuming

the algorithm has not failed so far, it has i disjoint paths to i sampled terminals. We bound the

probability that it cannot find another disjoint path to a sampled terminal during phase i + 1 by

1/(k2ρ):

Let U be the set of i terminals found during the first i phases, such that we have i disjoint

paths from t to each of the terminals of U . From Lemma 5.28, at least (k − 1/2 − i)M > M/2

terminals are not bad for U ; if any of these terminals is sampled during phase i+ 1, the algorithm

will succeed in this phase. Since terminals are sampled with probability 4ρ log k/M in each phase,

the probability that the algorithm will fail in this phase is at most
(

1− 4ρ log k
M

)M/2
, which is at

most 1/k2ρ.

Therefore, the probability that the algorithm fails overall, using the union bound, is at most

1/k2ρ−1.

To obtain the feasible setting for ROB-Dual, we use the dual to the augmentation LP ROB-

Primal-Aug(t), as we did for k-Connectivity:

max kM ·Π−

M ∑
e6=(u,rt)

zte

−
 ∑
e=(u,rt)

zte

Π− πt(u) ≤ ce + zte (∀e = (u, rt) ∈ Et)

πt(v)− πt(u) ≤ ce + zte (∀e = (u, v) ∈ Et, u 6= t, v 6= rt)

πt(v) ≤ ce + zte (∀e = (t, v) ∈ Et)

zte ≥ 0 (∀e ∈ Et)

154

As we did for k-Connectivity, we describe an optimal solution to ROB-Dual-Aug(t) based

on the residual graph Gt(kM − 1) after a minimum-cost kM − 1 units of flow have been sent from

t to the sink rt. The potential πt(v) for a vertex v is the distance from t to v in Gt(kM −1), and zte

values are set to satisfy all the constraints. Again, the complementary slackness conditions allow

one to verify that this is an optimal solution. As before, we think of ce+zte as a “modified” length `te

for edge e, with dt(v) being the shortest-path distance from t to v in Gt under this modified length;

as for k-Connectivity, note that the ROB-Dual-Aug(t) constraints imply that dt(v) ≥ πt(v).

Note that Π(t) = Π is the potential of rt in the residual graph. In our construction of a feasible

solution to ROB-Dual, we use the following technical claims:

Proposition 5.30. For each terminal t, Π(t) ≥ OPTAug(t)/kM . Under the distance function `te,

any path from t to rt in Gt has length at least Π(t). Finally,
∑

e 6=(u,rt)
zte ≤ kΠ(t).

Proof. Similar to the proofs of Proposition 5.8, and Claims 5.9 and 5.10.

We now use the dual variables from ROB-Dual-Aug(t) to set the corresponding variables

for ROB-Dual. Let Πmax = maxt Π(t). If Π(t) < Πmax/h
2, set αt = 0, and βte = 0 for all e.

Otherwise, set αt = 2blog(Π(t)/2k)c, and βte = ce within the `te ball of radius αt. Note that there

are now only 2 log h distinct values of αt, and Π(t)
4k < αt ≤ Π(t)

2k . We show that these settings are

“nearly” feasible for ROB-Dual.

Lemma 5.31. For each edge e,
∑

t β
t
e ≤ O(k log h · f(k + 2) ·Mce)

Proof. Recall that there are only 2 log h distinct non-zero values of αt. Let Ti denote the set of

terminals with the ith value of αt; we show that for all i,
∑

t∈Ti β
t
e ≤ 2kf(k + 2)Mce, proving the

lemma.

Suppose, by way of contradiction, there were some edge e = (u, v) and some set of terminals

Ti such that this were not true. Draw a directed graph on Ti, with edges from each terminal t to

the (at most) kM other terminals in Ti that it routes flow to in G2
t . (Note that some of the kM

terminals that t routes flow to may not be in Ti.) Since |Ti| > 2kf(k + 2)M , and each vertex in

this graph has out-degree at most kM , the graph has an independent set I of size f(k + 2).

The paths from each terminal in I to u form an intersecting path system; from Lemma 5.14,

there exists a terminal t and u1, u2, . . . uk+2 in I, such that prefixt(ui) and prefixt(uj) are disjoint

155

for all i 6= j. Since I was an independent set, t does not route flow through any ui in Gt, and

hence zte = 0 on the edges in Gt from each ui to rt. Exactly as we argued for Lemma 5.11,∑
e∈prefixt(ui)

zte must be at least Π(t)(1− 1/k), and these k+ 2 prefixes are all disjoint. Therefore,∑
e∈Et,e6=(u,rt)

zte > kΠ(t). But this contradicts Proposition 5.30, completing the proof.

Lemma 5.32. For all ~P ∈ Pkt , αt ≤
∑

e∈~P β
t
e.

Proof. If αt = 0, the lemma is clearly true. Suppose the lemma is not true; consider ~P ∈ Pkt , a

set of k paths that witness this. Since all the paths end in the root (also a terminal), they must

each leave the ball of `te radius α centered at t. Let E′ be the set of edges of ~P in this ball8; by

definition,
∑

e∈E′ `
t
e = kα. We show that

∑
e∈E′ z

t
e ≤ (k − 1)α. As `te = ce + zte, and for each edge

in the ball of radius α, βte = ce it follows directly that
∑

e∈E′ β
t
e ≥ α, giving a contradiction.

For each edge e = (u, v) ∈ E′, with zte > 0, charge it to the interval [πt(u), πt(v)), the length of

which is at least zte. For every vertex v in the ball of radius α, πt(v) ≤ dt(v) ≤ α. By Lemma 5.33

immediately below, no point in the interval [0, α] gets charged more than k−1 times, which implies

that
∑

e∈E′ z
t
e ≤ (k − 1)α.

Lemma 5.33. For any potential γ, there are at most k − 1 edges e = (u, v) such that zte > 0 and

π(u) ≤ γ < π(v):

Proof. First, note that for any edge e = (u, v) with zte > 0, it must be the case that π(u) < π(v),

and if zte > 0 on edge e, e does not exist in Gt(kM − 1), so it must be carrying M units of the

minimum-cost kM − 1 total flow from t to rt. Consider the set of vertices U within distance γ of t

in Gt(kM − 1); for each edge e = (u, v) whose endpoints bracket potential γ, it must be the case

that u ∈ U, v 6∈ U . Note that there is no edge e′ = (v′, u′) with v′ 6∈ U, u′ ∈ U that is carrying any

of the kM − 1 units of flow; if there were such an edge carrying flow, the edge (u′, v′) would have

negative cost in Gt(kM − 1), and hence π(v′) < γ, contradicting the fact that v′ 6∈ U . Therefore,

the total flow on edges from U to Vt − U is at most kM − 1. But any edge e = (u, v) with zte > 0

such that π(u) ≤ γ < π(v) must be carrying M units of this flow, and so there can be at most

k − 1 such edges.
8For ease of notation, we ignore edges partially contained in the ball of radius α; this does not affect the proof in

any detail.

156

Proof of Lemma 5.27. There is a feasible setting of variables to ROB-Dual such that:

∑
t

αt ≥ Ω(
1

f(k)k5 log h
)
∑
t

OPTAug(t)/M

For each terminal t, Π(t) ≥ OPTAug(t)/kM , and so
∑

tOPTAug(t)/kM ≤
∑

t Π(t). For each

terminal t with αt > 0, Π(t) ≤ 4kαt, and for each terminal with αt = 0, Π(t) ≤ 1/h2Πmax.

Therefore,
∑

tOPTAug(t)/kM ≤ 4k(1 + 1/h)
∑

t αt.

However, using the values of αt and βte for ROB-Dual as described above, we do not have

a feasible solution; instead, from Lemma 5.31, one constraint is violated by a factor of at most

O(k log h · f(k + 2)) = O(k3f(k) log h). Therefore, we shrink all values of αt and βte by this factor,

and obtain a feasible solution such that
∑

t αt ≥ Ω(1
f(k)k5 log h

)
∑

tOPTAug(t)/M . �

Lemma 5.29 strengthened Lemma 5.26, but this still does not suffice to prove Lemma 5.24,

which requires a bound on the expected augmentation cost. We now present a proof of this bound.

Given an instance I of Rent-or-Buy, let Ii denote the instance in which the parameter M is

replaced by i ·M . (With this notation, I1 denotes the original instance.) We use OPTi to denote

the cost of an optimal solution to Ii; it is easy to see that OPTi ≤ i ·OPT, where OPT — which

is the same as OPT1 — denotes the cost of an optimal solution to the original instance. (Given an

optimal solution to I1, use the same solution on Ii (that is the same set of paths for the terminals),

paying i times as much to “buy” any edge bought in the original solution.)

For each instance Ii and terminal t, we can construct a corresponding Augmentation Linear

Program ROB-Primal-Aug(t)i, finding paths to k · iM terminals, with no more than iM paths

sharing a vertex; let OPTi
Aug(t) denote the cost of an optimal solution to ROB-Primal-Aug(t)i.

The following claim is a consequence of Lemma 5.27:

Claim 5.34.
∑

tOPTi
Aug(t)/iM ≤ O(f(k)k5 log h) ·OPTi.

Let ρi denote the probability that the augmentation cost of t is more than 2kOPTi
Aug(t)/iM

when terminals are sampled with probability 4k log k/M .

Lemma 5.35. The probability ρi is at most 1/k2i−1.

157

Proof. From Lemma 5.29, it follows directly that if terminals are sampled with probability i· 4k log k
iM ,

the probability that the augmentation cost of t is more than
2kOPTiAug(t)

iM is at most 1/k2i−1.

Intuitively, this lemma says that the probability the augmentation cost of a terminal is much

larger than OPTi
Aug(t)/iM is decreasing geometrically with i; while Claim 5.34 shows that (on

average) OPTi
Aug(t)/iM is only increasing linearly with i. This allows us to easily bound the

expected augmentation costs of terminals.

An upper bound on the expected augmentation cost of t, denoted by E[AugCost(t)], is given

by the following sum:

2kOPT1
Aug(t)/M +

∑
i>1

ρi−1 · 2kOPTi
Aug/iM

We can now prove Lemma 5.24: The expected cost of the augmentation in Step 3 of the algorithm

Rent-or-Buy-Sample is O(f(k)k6 log h) ·OPT.

Proof of Lemma 5.24.

∑
t

E[AugCost(t)] ≤ 2k

(∑
t

OPT1
Aug(t)
M

+
∑
i>1

(
ρi−1

∑
t

OPTi
Aug(t)
iM

))

≤ 2k

(∑
t

O(f(k)k5 log h) ·OPT1 +
∑
i>1

ρi−1O(f(k)k5 log h) ·OPTi

)

= O(f(k)k6 log h)

(
OPT +

∑
i>1

1
k2i−3

i ·OPT

)
= O(f(k)k6 log h) ·OPT. (since k ≥ 2)

�

5.3.3 The Proof of Lemma 5.23

Given an instance of Rent-or-Buy, an optimal solution to the linear program ROB-Primal-

Aug(t) gives, for each terminal t, a set of kM paths P t1, P
2
2 , . . . , P

t
kM from t to kM distinct

terminals9, such that no more than M paths use any edge, and the total length of these paths

is OPTAug(t). For terminal t, let Sinks(t) denote the set of endpoints of these kM paths;

we say that t routes flow to each terminal in Sinks(t). From Lemma 5.27,
∑

tOPTAug(t) ≤
9The root may appear as the end vertex of more than 1 path.

158

f(k)k5 log h ·M · OPT, where OPT is the cost of an optimal solution to the Rent-or-Buy in-

stance.

These paths satisfy Lemma 5.23, except for the balance condition, that no terminal v be the

endpoint of more than O(f(k)k log2 h ·M) paths. We say that a terminal is overloaded if it is the

endpoint of more than this number of paths. That is, v is overloaded if the number of terminals

t such that v ∈ Sink(t) is more than O(f(k)k log2 h ·M). In this section, we argue that one can

reroute some of the paths to ensure this balance, without increasing their length significantly. We

say that a terminal t can safely reroute flow from v to u if v ∈ Sink(t), u 6∈ Sink(t), and after

deleting the t − v path, we can add a path from t to u such that no more than M paths of t use

any edge.

Lemma 5.36. Let X ∪ {v} be a set of terminals, such that for each x ∈ X, v ∈ Sink(x). The

paths from each terminal x ∈ X to v form an intersecting path system (X,P, v); let p(x) denote

the path from x to v. If |X| ≥ 2kf(k)M , there exist terminals t, u1, u2, . . . uk in X such that for

each 1 ≤ i ≤ k, uk 6∈ Sink(t), and for each i 6= j, prefixt(ui) and prefixt(uj) are disjoint, except

perhaps at the point of intersection with p(t). Then, t can safely reroute flow from v to some ui.

Proof. All the claims in the lemma except the last follow directly from the proof of Lemma 5.32. It

remains to show that t can safely reroute flow from v to some ui. We refer to {prefixt(ui) : 1 ≤ i ≤ k}

as the set of candidate paths for t, and use yi to denote the vertex where p(t) intersects prefixt(ui).

Let Gt(Vt, Et) denote the directed graph used in ROB-Primal-Aug(t), with E1
t being the set

of edges with non-zero flow. In the directed graph G1
t (VT , E

1
t), there is a flow of kM from t to rt,

including a flow of 1 unit from t to rt through the path from t to v. The current capacity of each

edge in E1
t is M ; consider a modified max-flow instance G2

t (Vt, E
2
t) in which:

1. The capacity of every edge e not on one of the candidate paths is reduced to fe, the current

flow through that edge.

2. The edge from every terminal in T \Sinks(t) to rt is deleted, the edge from v to rt is deleted,

and 0-cost directed edges of capacity 1 are added from each ui to rt.

We argue that there are kM paths in G2
t from t to rt via distinct terminals. The terminal v

will no longer be in Sinks(t); in its place, some ui will be added. No more than M paths will share

159

any edge, and the total cost of these paths will increase only by the total length of the candidate

paths.

Note that of the kM paths originally used by t, all but the path to rt through v still exist in G2
t .

Consider the residual graph Grt after sending flow through the remaining kM − 1 paths (excluding

the path through v). The path p(t) from t to v still exists in the residual graph. Therefore, each

yi is still reachable from t in Grt . Further, each ui is not originally in Sinks(t), the edge from ui

to rt still exists in Grt . Finally, we show that ∃1 ≤ i, j ≤ k such that ui is reachable from yj ; this

implies that there is a path from t to rt in the graph Grt , and hence we find a set of kM paths as

desired, showing that t can safely reroute flow from t to ui.

Suppose this were not true; let S be the set of vertices reachable from t in Grt . As argued above,

the set S must include each yj , but not any ui. Consider the cut induced by [S, Vt − S], as there

are k disjoint paths from each yi to ui, each of capacity M , the capacity of this cut is at least kM .

But the total flow out of S is at most kM − 1, and hence some vertex in Vt − S is reachable from

t, giving a contradiction.

Corollary 5.37. If a terminal t routes flow to kM other terminals, using paths of total length L,

and we perform a reroute operation for t such that each candidate path for t has length at most `,

the total length of the kM paths obtained after this step is at most L+ kl.

In order to obtain a set of paths that satisfies Lemma 5.23, we repeatedly find a large set of

terminals X that share a common sink v, and find one terminal t ∈ X that can safely reroute to

another terminal u ∈ X. We refer to this operation as a reroute for t, or as a reroute at v.

We now give an algorithm to reroute flow from terminals, at the end of which, no terminal

receives more than O(f(k)k log2 h ·M) flow. This is the missing balance condition of Lemma 5.23.

Note that re-routing may increase the length of the kM paths found by each terminal (though from

Corollary 5.37, the increase will not be very much); for ease of exposition, we ignore this increase

in lengths for the moment. After proving that we can achieve the desired balance, we present a

very slight modification to the algorithm that accounts for the increase in lengths. The following

lemma describes this recursive algorithm.

Lemma 5.38. There is an algorithm to safely reroute flow such that no terminal is an endpoint

of more than O(f(k)k log h ·M) paths.

160

Proof. Construct a directed graph H on the terminals by adding an edge from each terminal t to the

kM terminals in Sinks(t). The out-degree of each terminal is kM , and hence the average in-degree

of a terminal is kM ; observe that an overloaded terminal has in-degree at least O(f(k)k log h ·M),

which is significantly above the average. Let T1 be the set of terminals with in-degree greater than

k2M and T2 = T \ T1; note that |T1| < |T |
k = h/k. All overloaded terminals are in T1, and further,

each terminal in T2 is far from being overloaded. Now, assuming that the only terminals are in

T1, recursively reroute flow safely so that no terminal in T1 is overloaded. That is, we reroute flow

for terminals in T1, such that no terminal in T1 is a sink for more than O(f(k)k log(h/k)M) other

terminals in T1.

After re-routing flow at terminals in T1, each of those terminals is no longer a sink for many

other terminals in T1; however, such terminals may still be overloaded due to terminals in T2. Note

that terminals in T2 are currently far from overloaded. Finally, in our induction step, we show

how terminals in T2 can reroute most of their flow from terminals in T1 to other terminals in T2.

At the end of this step, each terminal in T1 will receive at most O(f(k)k log k ·M) flow from T2;

together with at most O(f(k)k log(h/k) ·M) flow it received from T1, it receives a total flow of at

most O(f(k)k log h ·M).

We process each overloaded terminal in T1 in turn. Consider v, such a terminal; we process

v in phases until it is no longer overloaded. At the beginning of a phase, since v is overloaded,

it must be receiving more than O(f(k)k log k ·M) flow from terminals in T2; let S be the set of

such terminals routing flow to v. Pick an arbitrary set S′ ⊆ S of 2kf(k)M such terminals in

T2; from Lemma 5.36, there exist terminals t, u ∈ S′ such that t can safely reroute to u, and set

S = S \ {t, u}. Repeat this process until |S| < 2kf(k)M . At this point, almost half the terminals

originally routing flow to v have been safely rerouted, and no terminal has received more than one

unit of flow from another of these terminals. This completes a single phase. By the end of O(log h)

phases, v can no longer be overloaded (as the number of terminals routing flow to v is falling by a

constant factor in successive phases), and no terminal in T2 receives more than one unit of flow in

each phase.

Clearly, after each overloaded terminal in T1 is processed, none of them is receiving too much

flow. As for terminals in T2, each such terminal t receives at most O(log h) additional flow for each

161

of the kM terminals in Sinks(t), and since t ∈ T \ T1, it originally received at most k2M flow.

Therefore, the total flow received by t is at most k2M +O(log h)kM = O(f(k)k log h ·M).

Lemma 5.38 gives a set of paths from each terminal t to kM distinct terminals, such that

no more than M paths for t share any vertex, and no terminal is the endpoint of more than

O(f(k)k2 log h · M) paths. This still does not suffice for Lemma 5.23, since even though the

original set of kM paths for each terminal t has length OPTAug(t), the balancing algorithm of

Lemma 5.38 may increase these path lengths significantly. In the next lemma, we give a revised

version of the algorithm that does not significantly increase path lengths.

Lemma 5.39. Given a set of terminals T , and, for each t ∈ T , paths of total length Lt from t

to kM distinct terminals in T , there is an algorithm to find a set of paths from t to (k − 1/2)M

distinct terminals, of total length no more than O(eO(k2)Lt), and such that no terminal v is the

endpoint of more than O(f(k)k log h log n ·M) paths.

Proof. We assume, for this lemma, that the length of each edge in the graph is an integer in the

range [1, n3]; it is easy to achieve this by pre-processing the graph, at the cost of an additional

factor of 1 + o(1) in the approximation ratio.10

As before, we let T1 denote the set of terminals with degree greater than k2M , and recursively

solve the subproblem with terminal set T1. Note that we never again reroute flow for terminals in

T1, and so the total path length for v ∈ T1 does not increase in the inductive step.

Now, it remains only to process terminals in T1 that receive more than O(f(k)k log n log k ·M)

flow from T2. Again, we will try to repeatedly reroute flow from a terminal t ∈ T2 to another ter-

minal u ∈ T2, but now we have to be careful not to increase the total path length for t significantly.

Therefore, we distinguish between short and long paths for t. Each of of the kM paths from t to

other terminals is said to be short if its length is at most 4k times the average, and long otherwise.

More precisely, if L currently denotes the total path length for t, a path from t to some other termi-

nal is short if its length is at most 4L/M , and long otherwise. Note that at most M/4 of the paths

for t can be long. As we reroute flow for t, its total path length will change, and so a path that is

long at one time may be short at another. The total path length for t can change only when we
10As we discuss later, this can be avoided.

162

reroute for t; let Lit denote this total length after we have performed i reroutes for t. L0
t = Lt is the

original total length for t. Every time we reroute for t ∈ T2, we decrease the number of paths that

end in T1, and increase the number that end in T2. Therefore, the total number of reroutes for t is

at most kM . We ensure that when we perform the ith reroute, Lit ≤ (1 + 8k/M)Li−1
t . Therefore,

when the algorithm concludes, the total path length for t is at most L0
t (1 + 8k/M)kM ≈ e8k2

Lt.

Thus, we achieve the desired bound on path lengths.

We can now describe the algorithm more precisely: As before, we process terminals in turn, and

in phases. Let v be a terminal receiving more than O(f(k)k log n log k ·M) flow from T2, and such

that more than half of these paths ending at v are short for their respective sources. That is, if we

use S to denote the set of terminals t ∈ T2 such that v ∈ Sinks(t), and the path from t to v is short

for t, the set S contains more than half the terminals in T2 currently routing flow to v. Partition S

into groups S1, S2, . . . S5 logn, such that t ∈ Si if the path from t to v has length at least 2i and less

than 2i+1. While some group Si has more than 2kf(k)M terminals, apply the balancing algorithm

from Lemma 5.38 to process v for group Si; this ensures that no terminal t ∈ Si receives more than

O(log h) additional flow. Observe that each reroute for a terminal t only changes the path length

for t, and after t is rerouted, v is no longer in Sinks(t), so no terminal moves from Si to Sj in the

course of processing v. Further, when t is rerouted, if its path to v has length `, all the candidate

paths for t have length at most 2`, and by Corollary 5.37, the total increase in its path lengths is

at most 2k`. If this is the ith reroute for t, ` ≤ 4Li−1
t /M , and hence Lit ≤ (1 + 8k/M)Li−1

t .

After running this procedure for each Si, the total flow into v from short paths is at most

2kf(k) · 5 log nM . Initially, more than half the flow into v was from short paths, so we have

decreased the flow into v by at least a third. Note that after we have completed processing v, it

may still be overloaded due to flow from long paths. If it is no longer overloaded, we may implicitly

remove it from T1.

After processing v, we move on to another overloaded vertex w ∈ T1 such that at least than

half the flow it receives from T2 is along short paths. If there is no such vertex w, more than half

the paths from T2 to T1 must be long. In particular, it follows that there is some vertex t ∈ T2

such that more than half the paths from t to T1 are long. Delete all paths from t to T1; since there

are at most M/4 long paths, we have deleted at most M/2 paths in total, and so t has at least

163

(k − 1/2)M paths remaining. The terminal t no longer contributes to overloading any terminal in

T1, so we can remove it from consideration. After all such terminals t ∈ T2 have been deleted, some

overloaded vertex in T1 must receive more than half its flow from T2, and hence we can process it.

At the end of this algorithm, each vertex in T1 is no longer overloaded, and the total path length

for each terminal t is at most eO(k2)Lt. We only need to ensure that no vertex in T2 is overloaded;

this is straightforward. A terminal in t ∈ T2 receives at most O(log h) flow every time a terminal

from T1 in Sinks(t) is processed. Every time v ∈ T1 is processed, it loses at least a third of the flow

it received, and hence v is processed O(log h) times. Finally, there are at most kM terminals of T1

in Sinks(t), and hence the total additional flow received by t ∈ T2 is at most O(log2 h · kM).

As
∑

t Lt ≤ O(k5f(k) · log h)M ·OPT from Lemma 5.27, and after rerouting, we increase Lt

only by a factor of eO(k2), Lemma 5.39 shows that we can obtain a set of at least (k− 1/2)M paths

from t to distinct terminals, no more than M of which share a vertex, and such that each terminal

is an endpoint of at most O(f(k)k log h log n ·M) paths. These almost satisfy the requirements of

Lemma 5.23; the factor of log n should be replaced with log h. We briefly sketch how to achieve this,

but omit the details, which are very similar to those presented above: When processing a terminal

v ∈ T1, group terminals into 2 log h groups instead of O(log n) groups based on the lengths of their

paths to t. Terminals with paths of lengths significantly less than (less than 1/h2 times as long as)

the longest paths can be grouped with each other; as their path lengths are so small, they do not

significantly contribute to the total.

5.4 Buy-at-Bulk Network Design

In this section we consider the SS-k-Buy-at-Bulk problem. In Section 5.4.1, we give an algorithm

for non-uniform SS-k-Buy-at-Bulk that works for any k. First, though, we consider the special

case of uniform SS-k-Buy-at-Bulk when k = 2, and obtain a better approximation ratio when

the number of cable types is not too large.

We begin by briefly summarizing the algorithm and sketching its analysis, before providing

details of the proofs. Each terminal t ∈ T wishes to route one unit of demand to the root along

k vertex disjoint paths. More generally, terminals may have different demands, but we focus on

164

the unit-demand case for ease of exposition. There are b cable-types; the ith cable has capacity

ui and cost wi per unit length. Let f̂ : R+ → R+ be a sub-additive function11 where f̂(x) is the

minimum-cost set of cables whose total capacity is at least x. The goal is to find a routing for the

terminals so that
∑

e ce · f̂(xe) is minimized where xe is the total flow on edge e. One can assume

that the cables exhibit economy of scale; that is, wi/ui > wi+1/ui+1 for each i. Therefore, there is

some parameter gi+1, with ui < gi+1 < ui+1, such that if the flow on an edge is at least gi+1, it is

more cost-effective to use a single cable of type i+ 1 than gi+1/ui cables of type i. Consistent with

this notation, we set g1 = 1; since all our cables have capacity at least u1, if an edge has non-zero

flow, it must use a cable of type at least 1.

Our overall algorithm follows the same high-level approach as that of the previous single-sink

algorithms for the k = 1 problem [95, 99]. The basic idea is as follows: Given an instance in which

the demand at each terminal is of value at least gi, it is clear that cable types 1 to i − 1 can be

effectively ignored.12 The goal is now to aggregate or cluster the demand from the terminals to some

cluster centers such that the aggregated demand at the cluster centers is at least gi+1. Suppose

we can argue the following two properties of the aggregation process: (i) the cost of sending the

demand from the current terminals to the cluster centers is comparable to that of OPT and (ii)

there exists a solution on the cluster centers of cost not much more than OPT. Then we have

effectively reduced the problem to one with fewer cables, since the demand at the cluster centers is

at least gi+1. We can thus recurse on this problem. For k = 1 this outline can be effectively used

to obtain an O(1) approximation independent of the number of cable types.

There are several obstacles to using this approach for k > 1: The most significant of these is

that it is difficult to argue that there is a solution on the new cluster centers of cost not much

more than OPT. In the case of k = 1, this is fairly easy, as the new cluster centers can pretend

to randomly send the demand back to the original terminals; for higher k, since centers need to

send demand along k disjoint paths, this is no longer straightforward. In particular, the approach

involves terminals routing their demand via other terminals selected as cluster centers. Suppose

k = 2 and t routes its demand to the cluster centers t′ and t′′; then t′ and t′′ route t’s demand via

11Any sub-additive f̂ can conversely be approximated by a collection of cable-types.
12Cables of type j < i might be useful, but they can be removed at the expense of a small increase in the

approximation ratio.

165

two separate disjoint paths each; thus the clustering and rerouting leads to an exponential increase

in the amount of demand being routed. Further, when k = 1, one can exploit in several ways the

fact that there is a near optimal solution which is a tree.

To deal with these issues, we perform a 2-stage aggregation process that is more complex than

previous methods: First, given centers with demand gi, we cluster demand to produce a new set of

centers with demand ui, using a result of [9]. Second, given centers with demand ui, we use some

ideas from Section 5.3 for Rent-or-Buy to produce a new set of centers with demand gi+1. The

algorithm of [9] that we use in the first stage applies only for k = 2; our ideas for the second stage

can be extended to arbitrary k. We describe the two-stage aggregation process to go from a set of

centers with demand gi to a new set of centers with demand gi+1 below; we can then recurse.

Lemma 5.40 ([9]). Given an instance of SS-2-Buy-at-Bulk with center set T in which all

demands are at least gi, let OPTi denote the cost of an optimal solution to the instance, and let H

denote an feasible solution to the SS-2-Connectivity instance on the terminal set T where the

cost of edge e is wice. Then, there is a polynomial time algorithm to find a set of terminals T ′ ⊆ T

such that

1. Every t ∈ T can route gi units of flow to 2 centers in T ′ via disjoint paths in H.

2. The total flow on any edge in H is O(1)ui.

3. The demand at each t′ ∈ T ′ is at least ui and at most 7ui.13

4. There is a solution to the new buy-at-bulk instance on T ′ of expected cost at most O(1)OPTi.

We briefly describe how this lemma is used: Given an instance of SS-2-Buy-at-Bulk with

in which all demands are at least gi, we can effectively assume that an optimal solution only uses

cables of type i to b; let OPTi denote the cost of an optimal solution to this instance. As the

new SS-2-Buy-at-Bulk instance on T ′ has good expected cost, we can apply recursion. Thus,

it remains to argue that the cost of routing flow from T \ T ′ to T ′ is O(1)OPTi, but this is

straightforward: Consider a solution of cost OPTi to the original instance; the set of edges with
13The algorithm as described in [9] enforces a weaker version of condition 3; the demand at each t′ ∈ T ′ is at least

ui, and at many centers, the demand is at most 7ui. The centers of so-called star-like jumbo clusters may have higher
demand, but the algorithm can be easily extended so that such high demand centers have their demand split into
smaller units.

166

installed cables k-connects T to the root, and the cost on each edge e is at least wice, as we only

use cables of type i or higher. Thus, the cost of an optimal solution H to the SS-2-Connectivity

instance on T is at most OPTi; if we find a 2-approximate solution using the algorithm of [79]

(one could also use our algorithm for arbitrary k from Section 5.2, obtaining a slightly weaker

approximation ratio), the cost of H is at most 2OPTi. But in rerouting demand from T \T ′ to T ′,

there is only O(1)ui flow on any edge e in H, so we only need to buy a constant number of copies

of cable i, paying O(1)wice. This completes the first aggregation stage.

We now have an instance of SS-2-Buy-at-Bulk with center set T in which each center has

demand ≈ ui, and with an optimal solution of cost at most OPT′i = O(1)OPTi. Consider a

modified instance in which all demands are set equal to ui, the cable capacity ui+1 is set to infinity

and the cable-types i+2 to ` are eliminated. Clearly, the cost of an optimal solution to this modified

instance is no more than OPT′i; simply replace each cable of higher capacity with a single cable of

type i+ 1. However, we now have an instance of Rent-or-Buy with M = gi+1/ui. We can thus

perform our second stage of aggregation; the key idea here is to use Lemma 5.23 from Section 5.3

which guarantees a desired balance condition. In the standard rent-or-buy problem and analysis, we

do not care how many unsampled terminals route to a sampled terminal since a sampled terminal

would essentially have infinite capacity to the root. In SS-k-Buy-at-Bulk we aggregate demand

to the next cable type; to argue that there is a solution on the sampled terminals of cost not much

more than OPT′i, we ensure that the total worst-case demand that can be routed to a sampled

terminal is not much more than the capacity of the next cable-type. We give an example at the end

of this section which illustrates that the balancing is really necessary; a naive strategy of sampling

terminals with probability proportional to ui/gi+1 and routing each unsampled terminal to the k

nearest sampled terminals, and recursing, can lead to bad performance.

Lemma 5.41. Given an instance of SS-k-Buy-at-Bulk with center set T in which all demands

are at least ui, let OPT′i denote the cost of an optimal solution to the instance. There is a random-

ized polynomial-time algorithm to find a set T ′ ⊆ T and route flow from each terminal t ∈ T \ T ′

to k centers in T ′ along disjoint paths such that:

1. The total demand at any center in T ′ is at most O(f(k)k log2 h · gi+1).

2. The total cost of routing flow from T \ T ′ to T ′ is at most O(f(k)k6eO(k2) log h)OPT with

167

high probability.

3. The expected cost of the optimal solution to the new SS-k-Buy-at-Bulk instance on T ′ is

at most O(f(k)k2 log k log3 h)OPT′i.

Proof. We developed Lemma 5.23 so that we could implement the second stage of aggregation;

the balance condition there allows us to enforce condition 1 of this lemma. Given the instance

of SS-k-Buy-at-Bulk on T in which all demands are at least ui, set M = ui/gi+1 and sample

terminals with probability O(k log k log h/M) to form the set T ′. From Lemmas 5.28 and 5.29 for

Rent-or-Buy, each non-sampled terminal will be able to route its demand of ui along k disjoint

paths to sampled terminals using a subset of its (k − 1/2)M paths from Lemma 5.23 with high

probability . Further, the total cost of the k paths for each terminal is O(f(k)k6eO(k2) log h)OPT.

It remains only to argue that there is a good solution on the sampled terminals T ′ forming

the new centers. First, we observe that Lemma 5.23 ensures that the demand at each sampled

vertex is O(f(k)k log2 h)M ·ui = O(f(k)k log2 h ·gi+1), and terminals are sampled with probability

O(k log k log h/M). Therefore, the expected demand at any terminal is O(f(k)k2 log k log3 h)ui.

From the subadditivity of the function f̂ (that is, the economies of scale exhibited by the cable

types), the expected cost of a solution on the sampled terminals is O(f(k)k2 log k log3 h)·OPT′i.

After Lemma 5.41, we now have an instance in which all demands are at least gi+1; we have

thus successfully eliminated cable type i. Theorem 5.42 completes the proof of our main result for

SS-k-Buy-at-Bulk.

Theorem 5.42. There is an (O(log h))3b-approximation for SS-2-Buy-at-Bulk with b cable-

types.

Proof. We prove a ratio of (O(log3 h))b for k = 2; note that terms depending on k (such as f(2) = 3

are absorbed into the O(·) notation.

Let OPT denote the cost of an optimal solution to the given instance I; initially, the demand

at each terminal is 1. Now, cluster demand into centers with demand between u1 and 7u1 using

the first aggregation step to produce a new instance I1. From Lemma 5.40 and the subsequent

discussion, the cost of rerouting demand to these new centers is O(1)OPT, and there is a solution

168

to I1 of cost OPT1 = O(1)OPT. Consider the modified instance I ′1 in which the demand at all

the new centers is reduced to exactly u1; clearly, the new instance I ′1 has a solution of cost at most

OPT1. We will solve I ′1 and scale up our solution by a factor of 7 to obtain a feasible solution to

I1.

Given the instance I ′1, we use Lemma 5.41 to construct a new instance I2 with sampled ter-

minals, such that all demands are at most O(log2 h)g2. Again, we construct a reduced version I ′2

in which all demands at sampled terminals are exactly g2; we scale this solution up by a factor of

O(log2 h) to obtain a feasible solution for I2. The expected cost of I ′2 is OPT2 = O(log h)OPT1,

since terminals are sampled with probability O(log h)u1/g2, and, if sampled, have demand g2. Now,

as all demands are at least g2, we can remove cable 1, and by induction, solve the instance I ′2 and

obtain a solution of cost at most (O(log3 h))b−1 · OPT2. Paying at most O(log2 h) times this

amount, we obtain a solution to I2 of cost at most (O(log3 h))b−1 · O(log2 h)OPT2. Now, each

terminal of I ′1 that was not sampled must route flow to 2 sampled terminals using disjoint paths;

from Lemma 5.23, the total cost of these paths is O(log h)OPT1. Therefore, we have a solution

to I ′1 of cost (O(log3 h))b−1 · O(log3 h)OPT1 + O(log h)OPT1. A feasible solution for I1 can be

obtained by scaling this up by a factor of 7, and the rerouting cost to convert the instance I into

I1 was at most O(1)OPT. Therefore, we have found a solution to the original instance I of cost

at most (O(log3 h))b−1 ·O(log3 h)OPT1 +O(log h)OPT1 +O(1)OPT = (O(log3 h))bOPT.

Lemma 5.23 is crucial to the second stage of aggregation in our algorithm for SS-k-Buy-at-

Bulk. The following example shows that balancing is really necessary.

v rt
1− ε

h

Figure 5.2: An instance of SS-2-Buy-at-Bulk which shows that it is necessary to balance
aggregated flow.

In the figure above, the vertex r denotes the root, and t, together with h other terminals (the

filled circles) must each be 2-connected to the root. Let each terminal have demand 1, and suppose

169

we have a cable of capacity 1 and cost 1, and a cable of capacity 2
√
h with cost

√
h. All edge costs

are 1, except for the edge from t to v, with cost 1− ε, and the edge from t to r, with cost h. There

is a simple solution of cost O(h), in which we install 2 cables of capacity 1 on each edge. On the

other hand, if we sample terminals with probability 1/
√
h and t is sampled, the 2 shortest paths

from every non-sampled terminal will be to t and r. Therefore, if t is sampled, its expected demand

is roughly h−
√
h = h · (1− o(1)). To route its demand to the root along 2 disjoint paths, t must

use the edge of cost h, and even using the higher-capacity cable, must pay cost O(h2). Further,

t is sampled with probability 1/
√
h, so the expected cost of the solution on sampled terminals is

Ω(h3/2), which is a factor of
√
h more than optimal.

In this situation, the balance condition of Lemma 5.23 is precisely what is needed. Instead of

accumulating Ω(h) demand at t, we observe that
√
h other terminals have been sampled. Therefore,

non-sampled terminals should send demand to these other sampled terminals in a balanced manner,

even at the expense of slightly increasing the cost of routing their demand. Once this is done, each

sampled terminal has not much more than
√
h demand, and hence we can argue that there is a

good solution on the sampled terminals.

5.4.1 Non-Uniform Buy-at-Bulk

We now consider the non-uniform version of SS-k-Buy-at-Bulk. In this version, for each edge

e of the graph G there is a given sub-additive cost function fe and routing x units of demand on

e results in a cost of fe(x). The uniform version is a special case where fe = ce · f for a single

sub-additive function f . The non-uniform buy-at-bulk problem is considerably harder than its

uniform variant and we refer the reader to [133, 49, 40, 48] for prior work and related pointers.

We have already mentioned that prior to this work, for k ≥ 2 the SS-k-Buy-at-Bulk problem

did not admit a non-trivial approximation even for the (uniform) 2-cable problem. For the non-

uniform single-sink problem there are essentially two approximation algorithms known for k = 1,

one from [133] and the other from [40]. The algorithm of Charikar and Kargiazova [40] admits a

natural generalization for k ≥ 2. We are able to analyze this algorithm using our result for SS-k-

Connectivity to show that it has an approximation ratio of 2O(
√

log h). Note that this bound is

essentially the same as the one shown in [40] for the multi-commodity problem since the recurrence

170

that we obtain is analyzed in a similar fashion. We remark that the [40] proves a bound of O(log2 h)

for the single-sink problem. However, for k ≥ 2 the analysis of the recurrence changes dramatically

from that for k = 1. Although the bound we show is not impressive, the randomized inflated

greedy algorithm of [40] is extremely simple and elegant. It is easy to implement and amenable to

heuristic improvement and has shown to be effective in some empirical evaluation [10]. The bound

also suggests that a poly-logarithmic approximation may be possible.

We now describe the algorithm of [40] adapted to SS-k-Buy-at-Bulk. We assume that each

terminal has unit demand to begin with.

Random-Inflated-Greedy:

1. Pick a random permutation π of the terminals in T .

Let t1, . . . , th be the order of terminals according to π.

2. For i = 1 to h in that order:

Greedily route h/i units of demand from ti to the root r along k disjoint paths

using the cheapest cost paths in the network built by the previous i− 1 terminals.

Note that the algorithm routes h/i units of demand for ti although only one unit of demand

is required to be routed. We refer the reader to [40] for the background and intuition behind the

design of the above algorithm. Each terminal is routed greedily but the cost of routing on an edge

depends on the routing of the previous terminals. More precisely, if xi−1
e is the amount of demand

routed on an edge e by the first i− 1 terminals then the cost of routing an additional h/i units for

terminal i on e is given by cie = fe(xi−1
e +h/i)−fe(xi−1

e). One can use a min-cost flow computation

with costs cie to find the cheapest k disjoint paths from ti to r. It is easy to see that the algorithm

is correct; in the case of k = 1, it is known to have an approximation ratio of O(log2 h) for k = 1

[40]. However, for k ≥ 2 we are able to establish the following theorem.

Theorem 5.43. For any fixed k, Random-Inflated-Greedy is a 2O(
√

log h)-approximation for

the non-uniform version of SS-k-Buy-at-Bulk with unit-demands. For arbitrary demands there

is a logD · 2O(
√

log h) approximation algorithm where D is the ratio of the maximum to minimum

demands.

171

It may seem surprising that the analysis of the algorithm changes dramatically from k = 1 to

k = 2; in fact, this is for some of the same reasons that we described for the uniform version of

SS-k-Buy-at-Bulk. The analysis of Theorem 5.43 also involves terminals routing their demand

via other terminals. Suppose k = 2 and t routes its demand to t′ and t′′; then t′ and t′′ route t’s

demand via two separate disjoint paths each; thus the rerouting leads to an exponential increase

in the amount of demand being routed.

We now give a proof of the above theorem which follows the analysis from [40], pointing out

the place where we rely on our analysis for SS-k-Connectivity. Let OPT denote the cost of an

optimum solution to the problem.

Throughout the analysis below, the expectations of various quantities are with respect to the

randomness in picking π. Let Ci denote the expected cost of the algorithm in routing the ith

terminal in the permutation, and let C =
∑h

i=1Ci be an upper bound on the expected total cost

of the paths found by the algorithm.

Lemma 5.44. Let E′ be a set of edges such that G[E′] contains k disjoint paths from each of the

first i terminals to the root, and minimizing the quantity Xi =
∑

e∈E′ fe(h/i). That is, Xi denotes

the optimal cost of routing h/i flow on each edge of a set E′ ⊆ E such that G[E′] contains k disjoint

paths from each of the first i terminals to the root. The expected cost of Xi is at most OPT.

Proof. We describe a feasible set of edges E′ on which to route h/i flow such that E′ contains k

disjoint paths from each of the first i terminals to the root, and in expectation,
∑

e∈E′ fe(h/i) ≤

OPT. Clearly, this implies that for an optimal choice of edges, the expected cost is at most OPT.

Fix a given optimal solution O of cost OPT for the entire SS-k-Buy-at-Bulk instance. The

feasible solution E′ we construct is just the union of the sets of k paths that O uses to connect

each of the first i terminals to the root. We simply show that for each edge e, the expected cost

we pay for it is at most the cost paid by O.

For any edge e, if O sends at least h/i flow along e, then regardless of the choice of the first i

terminals, we pay no more for e than O does. Now suppose O sends j < h/i units of flow for some

j terminals along e. The edge e will be selected for E′ iff one of these j terminals is among the

first i; the probability of this is at most ji/h < 1. Therefore, the expected cost we pay for e is at

most ji
h fe(h/i) ≤ f(jih ·

h
i) = fe(j). (The first inequality follows from the sub-additivity of each fe.)

172

Therefore, again our payment for e is at most as much as that of O. Hence, E[cost(E′)] ≤ OPT,

and so E[Xi] ≤ OPT.

Corollary 5.45. For 1 ≤ i ≤ h, Ci ≤ OPT.

Lemma 5.46. For any i′, i such that i′ < i, we have Ci ≤ 8k·OPT
i′ + k

i′
∑

1≤j≤i′
jCj
i .

The above two bounds on Ci lead to a proof of Theorem 5.43. Before providing a formal proof,

which analyzes the above recurrence with i′ = i/2O(
√

log i), we give a proof of Lemma 5.46.

Proof. First, consider the case that i′ = i − 1. To upper bound Ci it is sufficient to route the

demand of ti to k distinct terminals in {t1, . . . , ti−1} via disjoint paths and then piggyback on their

paths to the root. (We ignore, for simplicity of description, the case that some of the k paths may

terminate directly at the root.) Let Ai be the expected cost of routing h/i demand from ti to k

distinct terminals, and Bi the expected cost of piggybacking onto the paths of those terminals. We

bound these separately and use the fact that Ci ≤ Ai +Bi.

Let R be the set of the first i terminals. Let Xi denote the optimum cost of routing h/i flow

on each edge in a set E′ such that there are k disjoint paths in E′ from each terminal in R to

the root. Consider the graph H = G[E′] where the cost of each edge e ∈ E′ is fe(h/i). For

j ≤ i, let AugCost(tj) be the cost of connecting terminal tj to k other distinct terminals in R (or

the root) via disjoint paths in the graph H. From our main lemma in Section 5.2, Lemma 5.2,∑
1≤j≤iAugCost(tj) ≤ 8k · Xi. Since the ith terminal is equally likely to be any of the first i

terminals, the expected cost of AugCost(ti) is at most 8k ·Xi/i. From Lemma 5.44, the expected

cost of Xi is at most OPT. Therefore Ai ≤ 8k ·OPT/i.

Now we bound Bi. Let tj with j ≤ i − 1 be one of the k terminals that ti routes to and

piggybacks on. Recall that tj has already routed h/j demand on k disjoint paths to the root and

paid Cj . What is the incremental cost of ti using the paths of tj to route its h/i demand? Due to

the sub-additivity of the cost functions fe, we claim that the expected cost of this piggybacking is at

most (h/i)/(h/j) ·Cj ≤ j/i ·Cj . We omit the proof of this simple claim (see [40]). The k terminals

that ti routes to are equally likely to be in any of the first i − 1 positions in the permutation.

Therefore, Bi ≤ k
i−1

∑
1≤j≤i−1

jCj
i and this yields the recurrence for Ci when i′ = i− 1.

173

Now consider some i′ < i. Since π is a random permutation, the first i′ terminals together with

the ith terminal are equally likely to be any set of i′ + 1 terminals; therefore the above arguments

can be easily adapated to give the desired recurrence on Ci.

In [40], for k = 1, the recurrence Ci ≤ 2OPT/i + 1
i−1

∑i−1
j=1

jCj
i is derived and analyzed. For

the first term which corresponds to Ai, one can use a simple argument since an optimum solution

can be assumed to be a tree-like. For k ≥ 2 we need to use the much more complex argument

given by Lemma 5.6. However, the main change is in the second term in the recurrence where

the multiplicative factor of k makes the recurrence behave very differently for k ≥ 2. In order to

bound the ratio, we use a trick inspired by the ideas in [40] for the multicommodity case. In terms

of the algorithm, this corresponds to making ti piggyback only via terminals t1, . . . , ti′ for some i′

that is sufficiently small compared to i. This helps since the terminals t1, . . . , ti′ route much larger

demand than ti and hence the piggybacking cost of ti is a smaller factor. This counterbalances the

effect of the rerouted demand using more and more paths in the case of k ≥ 2.

Proof of Theorem 5.43. In Lemma 5.46, we derived a recurrence for Ci, the expected cost of

the algorithm in the ith step. Let γ denote the quantity 8k ·OPT. Recall that Ci ≤ OPT for all

1 ≤ i ≤ h, and

Ci ≤
1
i′
γ +

k

i′

i′∑
j=1

j

i
Cj

for i′ < i which implies that

iCi ≤
i

i′
γ +

k

i′

i′∑
j=1

jCj .

Let Di = iCi. We show by induction on i that Di ≤ 2
√

4 log i log(k+1) ·γ. Since Ci ≤ OPT for all

i, it follows that Di ≤ 2
√

4 log i log(k+1) ·γ for i ≤ 2
√

4 log i log(k+1) ·(8k). Hence, it is sufficient to prove

the induction hypothesis for i larger than 2
√

4 log i log(k+1) · (8k). Choosing i′ = i/2
√

log i log(k+1), we

obtain:

174

Di ≤
i

i′
γ +

k

i′

i′∑
j=1

Dj ≤
i

i′
γ +

k

i′
(i′Di′) ≤

i

i′
γ + kDi′

≤ 2
√

log i log(k+1) · γ + k · 2
√

4 log i′ log(k+1) · γ

≤ 2
√

2 log i′ log(k+1) · γ + k · 2
√

4 log i′ log(k+1) · γ (since i′ ≥
√
i)

= (k + 1) · 2
√

4 log i′ log(k+1) · γ

≤ (k + 1)γ · 2

r
4 log(k+1)

“
log i−

√
log i log(k+1)

”

= γ · 2
log(k+1)+

s
4 log(k+1) log i

„
1−
√

log i log(k+1)

log i

«

= γ · 2
√

4 log i log(k+1)

log(k+1)√

4 log i log(k+1)
+

„
1−
√

log i log(k+1)

log i

«1/2
!

≤ γ · 2
√

4 log i log(k+1)

„
log(k+1)√

4 log i log(k+1)
+1−

√
log i log(k+1)

2 log i

«

≤ γ · 2
√

4 log i log(k+1)

„
1+

log(k+1)√
4 log i log(k+1)

−
√

log(k+1)

2
√

log i

«

= γ · 2
√

4 log i log(k+1).

Therefore the total cost C is upper bounded as:

C ≤
h∑
i=1

Ci ≤
h∑
i=1

Di/i ≤
h∑
i=1

2
√

4 log i log(k+1) · γ/i

≤ 2
√

4 log h log(k+1) · γ
h∑
i=1

1/i

= O(2
√

4 log h log(k+1) · γ · log h)

= O(2
√

4 log h log(k+1)8k log h) ·OPT.

�

5.5 Concluding Remarks

In this chapter we demonstrated that simple and natural extensions of algorithms developed for

single-sink connectivity problems when k = 1 extend to the case of fixed k > 1. In particular,

we gave O(k log |T |)-approximations for SS-k-Connectivity and SS-k-Rent-or-Buy. We also

studied Uniform-SS-k-Buy-at-Bulk, giving an O(log |T |)O(b) approximation when k = 2, and

175

Non-Uniform-SS-k-Buy-at-Bulk, giving an O(2O(
√

log h))-approximation for any fixed k. In

addition to our dual-based proofs, we also gave simpler analyses for SS-k-Connectivity and

SS-k-Rent-or-Buy based on the structural decomposition of [68].

Recently, many new insights have been obtained into the structure of VC-SNDP and related

problems from the work of Chuzhoy and Khanna [68, 69] and Nutov [137, 138, 139]; these have

opened up many directions for further exploration. One question of interest is whether there exist

algorithms for these problems with approximation ratios that are purely functions of k (and not

of n, or |T |). Nutov recently showed an O(k2)-approximation for SS-k-Connectivity; it may be

possible to extend this result to more general problems. Another potential approach is to use Jain’s

iterated rounding technique [109]; a first step would be to prove the following conjecture: In any

(fractionally optimal) extreme point solution to a natural LP relaxation, there is a variable with

value Ω(1/k). If the conjecture were true, one could round such a variable up to 1, and “recurse”

on the remaining problem.14 No counterexample to this conjecture is known; in the worst instances

that have been constructed [2], there are variables with value Ω(1/
√
k).

For SS-k-Buy-at-Bulk, we believe that our results can be extended to k > 2 to achieve an

approximation of (kk log h)O(b). We further conjecture that a kO(b)polylog(n)-approximation exists.

For the non-uniform buy-at-bulk problem, the analysis in Section 5.4.1 hints at the existence of a

poly-logarithmic approximation ratio.

14There are additional technical details we do not discuss here.

176

Chapter 6

Capacitated Network Design

6.1 Introduction 1

Recall that in the basic Survivable Network Design Problem, as described in Chapter 5,

the input is a graph G(V,E) with a cost on each edge, and an integer requirement Ruv for each

unordered pair of nodes (u, v). The goal is to find a minimum-cost subgraph in which there are Ruv

disjoint paths from u to v, or equivalently a minimum-cost subgraph such that the minimum cut

separating u from v has size at least Ruv. One may require that either the minimum edge-cut or

minimum vertex-cut separating u and v be large; the corresponding problems are referred to as EC-

SNDP and VC-SNDP respectively. Jain, in an influential paper [109], obtained a 2-approximation

for EC-SNDP via the standard cut-based LP relaxation using the iterated rounding technique. In

contrast, the VC-SNDP problem is harder; see Chapter 5 for a full discussion.

In this chapter we consider the capacitated Survivable Network Design Problem, referred

to as Capacitated-SNDP, which is the following generalization of EC-SNDP: The input consists

of an undirected n-vertex multi-graph G(V,E) and an integer requirement Ruv for each unordered

pair of nodes (u, v). Each edge e of G has both a cost ce and an integer capacity ue. The goal is

to find a minimum-cost subgraph H of G such that for each pair of nodes u, v, the capacity of the

minimum-cut between u and v in H is at least Ruv.

Although the 2-approximation for EC-SNDP mentioned above has been known since 1998, the

approximability of Capacitated-SNDP has essentially been wide open even in very restricted

special cases. Similar to SNDP, Capacitated-SNDP is motivated by both practial and theoreti-

cal considerations. These problems find applications in the design of resilient networks such as in

telecommunication infrastructure. In such networks it is often quite common to have equipment
1This chapter is based on joint work with Deeparnab Chakrabarty, Chandra Chekuri, and Sanjeev Khanna.

177

with different discrete capacities; this leads naturally to design problems such as Capacitated-

SNDP. We note that a different and somewhat related problem is also referred to by the same

name, especially in the operations research literature. In this version the subgraph H has to

simultaneously support a flow of Ruv between each pair of nodes (u, v); this is more closely re-

lated to multicommodity flows and Buy-at-Bulk network design. Our version is more related to

connectivity problems such as SNDP.

As far as we are aware, the version of Capacitated-SNDP that we study was introduced (in

the approximation algorithms literature) by Goemans et al. [91] in conjunction with their work

on SNDP. They made several observations on Capacitated-SNDP: (i) Capacitated-SNDP re-

duces to SNDP if all capacities are the same, (ii) there is an O(min{m,Rmax}) approximation where

m is the number of edges in G and Rmax = maxuv Ruv is the maximum requirement, and (iii) if

multiple copies of an edge are allowed then there is an O(logRmax)-approximation.2 We note that

in the capacitated case Rmax can be exponentially large in n, the number of nodes of the graph.

Carr et al. [37] observed that the natural cut-based LP relaxation has an unbounded integrality

gap even for the graph consisting of only two nodes s, t connected by parallel edges with different

capacities. Motivated by this observation and the goal of obtaining improved approximation ra-

tio for Capacitated-SNDP, [37] strengthened the basic cut-based LP by using Knapsack-Cover

inequalities. (Several subsequent papers in approximation algorithms have fruitfully used these

inequalities.) Using these inequalities, [37] obtained a β(G) + 1 approximation for Capacitated-

SNDP where β(G) is the maximum cardinality of a bond in the underlying simple graph: a bond

is a minimal set of edges that separates some pair of vertices with positive demand. Although β(G)

could be Θ(n2) in general, for certain topologies — for instance, if the underlying graph is a line

or a cycle — this gives a constant factor approximation.

The results described above naturally lead to several questions. What is the approximability

of Capacitated-SNDP? Should we expect a poly-logarithmic approximation or even a constant

factor approximation? If not, what are interesting and useful special cases to consider? Do the

Knapsack-Cover inequalities guarantee LP relaxations of small integrality gap in the worst case?

What is the approximability of Capacitated-SNDP if one allows multiple copies? Does this
2See the discussion in Section 6.1.1 below for a definition of “multiple copies”.

178

relaxed version of the problem allow a constant factor approximation?

In this chapter we make some progress towards answering the above questions by obtaining

positive as well as negative results. Our approach is to consider some simple yet illuminating

special cases, which yield considerable insight into these questions.

6.1.1 Overview of Results

We first discuss results for Capacitated-SNDP where multiple copies are not allowed. We initiate

our study by considering the global connectivity version of Capacitated-SNDP, where we want a

min-cost subgraph with global min-cut at least R; in other words, there is a “uniform” requirement

Rij = R for all pairs (i, j). We refer to this as the Cap-R-Connected Subgraph problem;

the special case when all capacities are unit corresponds to the classical minimum cost λ-Edge-

Connected Spanning Subgraph problem, which is known to be APX-hard [78]. We show the

following positive result for arbitrary capacities.

Theorem 6.1. There is a randomized O(log n)-approximation algorithm for the Cap-R-Connected

Subgraph problem.

The same techniques give an algorithm for a slightly more general problem, Capacitated-

SNDP when requirements are “nearly uniform”.

Theorem 6.2. There is a randomized algorithm with running time nO(γ) that obtains an O(γ log n)

approximation for Capacitated-SNDP when Ruv ∈ [R, γR] for all u, v.

To prove Theorems 6.1 and 6.2, we begin with a natural LP relaxation for the problem. Almost

all positive results previously obtained for the unit capacity case are based on this relaxation.

As remarked already, this LP has an unbounded integrality gap even for a graph with two nodes

(and hence for Cap-R-Connected Subgraph). We strengthen the relaxation by adding the valid

Knapsack-Cover inequalities. Although we do not know of a polynomial time algorithm to separate

over these inequalities, following [37], we find a violated inequality only if the current fractional

solution does not satisfy certain useful properties. Our main technical tool both for finding a

violated inequality and subsequently rounding the fractional solution is Karger’s theorem on the

number of small cuts in undirected graphs [113].

179

We believe the approach outlined above may be useful in other network design applications.

As a concrete illustration, we use it to solve an interesting and natural generalization of Cap-R-

Connected Subgraph, namely, the k-Way–R-Connected Subgraph problem. In addition to

costs and capacities on the edges, the input consists of (k − 1) integer requirements R1, . . . , Rk−1,

such that R1 ≤ R2 ≤ . . . ≤ Rk−1. The goal is to find a minimum-cost subgraph H of G such

that for each 1 ≤ i ≤ k − 1, the capacity of any (i + 1)-way cut of G is at least Ri.3 It is easy to

see that Cap-R-Connected Subgraph is precisely the k-Way–R-Connected Subgraph, with

k = 2. Note that the k-Way–R-Connected Subgraph problem is not a special case of the general

Capacitated-SNDP as the cut requirements for the former problem are not expressible as pairwise

connectivity constraints. Interestingly, our techniques for Cap-R-Connected Subgraph can be

naturally extended to handle the multiway cut requirements, yielding the following generalization

of Theorem 6.1.

Theorem 6.3. There is a randomized O(k log n)-approximation algorithm with running time nO(k)

for the k-Way–R-Connected Subgraph problem.

We remark that even for the unit-capacity case of this problem, it is not clear how to obtain a

better ratio than that guaranteed by the above theorem. We discuss this further in Section 6.2.4.

Once the pairwise connectivity requirements are allowed to vary arbitrarily, the Capacitated-

SNDP problem seems to become distinctly harder. Surprisingly, the difficulty of the general case

starts to manifest even for the simplest representative problem in this setting, where there is only

one pair (s, t) with Rst > 0; we refer to this as the single pair problem. The only known positive

result for this seemingly restricted case is a polynomial-factor approximation that follows from the

results in [91, 37] for general Capacitated-SNDP. We give several negative results to suggest

that this special case may capture the essential difficulty of Capacitated-SNDP. In particular,

we start by observing that the LP with knapsack cover inequalities has an Ω(n) integrality gap

even for the single-pair problem.4 Next we show that the single pair problem is Ω(log logn)-hard

to approximate.
3An i-way cut C of a graph G(V,E) is a partition of its vertices into i non-empty sets V1, . . . , Vi; we use δ(C) to

denote the set of edges with endpoints in different sets of the partition C. The capacity of an i-way cut C is the total
capacity of edges in δ(C).

4In [37] it is mentioned that there is a series-parallel graph instance of Capacitated-SNDP such that the LP
with knapsack-cover inequalities has an integrality gap of at least bβ(G)/2c+ 1. However, no example is given; it is
not clear if the gap applied to a single pair instance or if β(G) could be as large as n in the construction.

180

Theorem 6.4. The single pair Capacitated-SNDP problem cannot be approximated to a factor

better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn).

The above theorem is a corollary of the results in Chuzhoy et al.’s work on the hardness of

related network design problems [67]. We state it as a theorem to highlight the status of the

problem, and give a complete proof in Section 6.3.2. We further discuss this connection at the end

of this section. We prove a much stronger negative result for the single pair problem in directed

graphs. Since in the unit-capacity case, polynomial-time minimum-cost flow algorithms solve the

single-pair problem exactly even in directed graphs, the hardness result below shows a stark contrast

between the unit-capacity and the non-unit capacity cases.

Theorem 6.5. In directed graphs, the single pair Capacitated-SNDP cannot be approximated

to a factor better than 2log(1−δ) n for any 0 < δ < 1, unless NP ⊆ DTIME(npolylog(n)). Moreover,

this hardness holds for instances in which there are only two distinct edge capacities.

Allowing Multiple Copies

Given the negative results above for even the special case of the single-pair Capacitated-SNDP,

it is natural to consider the relaxed version of the problem where multiple copies of an edge can be

chosen. Specifically, for any integer ı ≥ 0, i copies of e can be bought at a cost of i · c(e) to obtain a

capacity i · u(e). In some applications, such as in telecommunication networks, this is a reasonable

model. As we discussed, this model was considered by Goemans et al. [91] who gave an O(logRmax)

approximation for Capacitated-SNDP. This follows from a simple O(1) approximation for the

case when all requirements are in {0, R}. The advantage of allowing multiple copies is that one can

group request pairs into classes and separately solve the problem for each class while losing only the

number of classes in the approximation ratio. For instance, one easily obtains a 2-approximation

for the single pair problem even in directed graphs, in contrast to the difficulty of the problem when

multiple copies are not allowed. Note that this also implies an easy 2k approximation where k is

the number of pairs (u, v) with Ruv > 0. We address the approximability of Capacitated-SNDP

with multiple copies of edges allowed. When Rmax is large, we improve the min{2k,O(logRmax)}-

approximation discussed above via the following.

181

Theorem 6.6. In undirected graphs, there is an O(log k)-approximation algorithm for Capacitated-

SNDP with multiple copies, where k is the number of pairs (u, v) with Ruv > 0.

Both our algorithm and analysis are inspired by the O(log k)-competitive online algorithm for

the Steiner Forest problem by Berman and Coulston [30], and the subsequent adaptation of

these ideas for the Priority Steiner Forest problem by Charikar et al. [41]. However, we

believe the analysis of our algorithm is more transparent (although it gets weaker constants) than

the original analysis of [30].

We complement our algorithmic result by showing that the multiple copy version is Ω(log log n)-

hard to approximate. This hardness holds even for the single-source Capacitated-SNDP where

we are given a source node s ∈ V , and a set of terminals T ⊆ V , such that Rij > 0 iff i = s and

j ∈ T . Observe that single-source Capacitated-SNDP is a simultaneous generalization of the

classical Steiner Tree problem (Rij ∈ {0, 1}) as well as both Cap-R-Connected Subgraph

and single-pair Capacitated-SNDP.

Theorem 6.7. In undirected graphs, single source Capacitated-SNDP with multiple copies can-

not be approximated to a factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn).

The above theorem, like Theorem 6.4, also follows easily from the results of [67]; we provide a

proof in Section 6.3.2. We note that the hardness reduction above creates instances with super-

polynomially large capacities. For such instances, our O(log k)-approximation strongly improves

on the previously known approximation guarantees.

6.1.2 Related Work

Network design has a large literature in a variety of areas including computer science and operations

research. Practical and theoretical considerations have resulted in numerous models and results. We

briefly mention some work that allows the reader to compare the model we consider here to related

models. As we mentioned earlier, our version of Capacitated-SNDP is a direct generalization

of SNDP and hence is concerned with (capacitated) connectivity between request node pairs. We

refer the reader to Chapter 5, the survey [121], and some recent and previous papers [91, 109, 79,

68, 69, 139] for pointers to literature on network design for connectivity. A different model arises

182

if one wishes to find a min-cost subgraph that supports multicommodity flow for the request pairs;

in this model each node pair (u, v) needs to routes a flow of Ruv in the chosen graph and these

flows simultaneously share the capacity of the graph. We observe that if multiple copies of an edge

are allowed then this problem is essentially equivalent to the non-uniform Buy-at-Bulk network

design problem that has received substantial recent attention [133, 40, 48, 5]; see also Chapter 5.

We refer the reader to [48] for an overview of related work on Buy-at-Bulk network design. If

multiple copies are not allowed, the approximability of this flow version is not well-understood;

for example if the flow for each pair is only allowed to be routed on a single path then even

checking feasibility of a given subgraph is NP-Hard since the problem captures the well-known

Edge-Disjoint Paths and Unsplittable Flow problems [117, 50, 6, 21]. Andrews and Zhang

[8] have recently considered special cases of this problem with uniform capacities while allowing

some congestion on the chosen edges.

The single pair Capacitated-SNDP is a special case of the Fixed Charge Network Flow

(FCNF) problem. In this problem, each edge of the graph has a capacity ue, a fixed cost ce and

a per-unit-flow cost `e, and each vertex of the graph has a demand for the net flow through it.

Given flow xe on an edge e, the cost incurred on the edge is (ce + `(e) · xe). The goal is to find the

cheapest flow satisfying the demands. Note that if `(e) is 0, and the only vertices with non-zero

demands are s and t, we get the single pair Capacitated-SNDP. The FCNF problem has been

intensively studied in the OR-literature (see for instance, [131, 106, 140]; we point the reader to

[136] for a survey), however, to our knowledge, no non-trivial approximation algorithm5 is known

for the problem. For undirected graphs, Chuzhoy et al. [67] show that the single commodity FCNF

problem is hard to approximate to a factor better than O(log log n); as mentioned above, their

hardness also holds for the special case of single pair Capacitated-SNDP. (See Section 6.3.2.)

No better hardness of approximation is known for the Capacitated-SNDP problem with multiple

demand pairs.

The Knapsack-Cover inequalities with which we strengthen the linear programming relaxations

for Capacitated-SNDP were first used to design approximation algorithms by Carr et al. [37].
5Carr et al. [37] observe that the case of FCNF with exactly two non-zero demands can be essentially reduced to

Capacitated-SNDP, thus they get a (β(G) + 1) factor approximation for this case, where β(G) ≤
`
n
2

´
is the size of

the largest bond separating s from t.

183

However, these inequalities were previously studied extensively in the OR literature [23, 102, 155].

The k-Way–R-Connected Subgraph problem that we consider does not appear to have

been considered previously even in the unit-capacity case.

Chapter Outline

We begin with an O(log n)-approximation for the Cap-R-Connected Subgraph problem in

Section 6.2; we also prove that one can obtain a similar approximation ratio if the requirements are

“nearly uniform”. We show that these techniques can be extended to the k-Way–R-Connected

Subgraph problem, proving Theorem 6.3 in Section 6.2.4.

We then present several hardness results even for special cases in Section 6.3: First, in Sec-

tion 6.3.1 we show that the natural LP has integrality gap Ω(n), even when strengthened with

the Knapsack-Cover inequalities which are useful when requirements are uniform. Then, in Sec-

tion 6.3.2, we show that Capacitated-SNDP is Ω(log log n)-hard to approximate in undirected

graphs, even when multiple copies of edges are allowed. (As discussed above, this follows from the

work of [67].) In Section 6.3.3, we show that in directed graphs, even the single-pair special case

of Capacitated-SNDP is 2log(1−δ) n hard to approximate.

Finally, in Section 6.4, we give an O(log k)-approximation algorithm for Capacitated-SNDP

in undirected graphs when multiple copies are allowed, where k ≤
(
n
2

)
denotes the number of vertex

pairs (u, v) such that Ruv > 0.

6.2 The Cap-R-Connected Subgraph problem

In this section, we prove Theorem 6.1, giving an O(log n)-approximation for Cap-R-Connected

Subgraph. We start by writing a natural linear programming relaxation for the problem; the

integrality gap of this LP can be arbitrarily large. To deal with this, we introduce additional valid

inequalities, called the Knapsack-Cover inequalities, that must be satisfied by any integral solution.

We show how to round this strengthened LP, obtaining an O(log n)-approximation.

Having described a good algorithm for Cap-R-Connected Subgraph (when all pairwise

requirements Ruv are equal) we then prove Theorem 6.2 for Capacitated-SNDP with nearly

uniform requirements, giving an O(γ log n) approximation when all requirements are in [R, γR] for

184

some fixed R. We also extend Theorem 6.1 to prove Theorem 6.3, giving an O(k log n) approxima-

tion for k-Way–R-Connected Subgraph.

6.2.1 The Standard LP Relaxation and Knapsack-Cover Inequalities

We assume without any loss of generality that the capacity of any edge is at most R. For each

subset S ⊆ 2V , we use δ(S) to denote the set of edges with exactly one endpoint in S. For a set of

edges A, we use u(A) to denote
∑

e∈A ue. We say that a set of edges A satisfies (the cut induced

by) S if u(A∩ δ(S)) ≥ R. Note that we wish to find the cheapest set of edges which satisfies every

subset ∅ 6= S ⊂ V . The following is the LP relaxation of the standard integer program capturing

the problem.

min
∑
e∈E

cexe (Std LP)

∑
e∈δ(S)

uexe ≥ R (∀S ⊆ V)

0 ≤ xe ≤ 1 (∀e ∈ E)

The following example shows that (Std LP) can have integrality gap as bad as R.

Example 1: Consider a graph G on three vertices p, q, r. Edge pq has cost 0 and capacity R; edge

qr has cost 0 and capacity R − 1; and edge pr has cost C and capacity R. To achieve a global

min-cut of size at least R, any integral solution must include edge pr, and hence must have cost

C. In contrast, in (Std LP) one can set xpr = 1/R, and obtain a total cost of C/R.

In the previous example, any integral solution in which the mincut separating r from {p, q}

has size at least R must include edge pr, even if qr is selected. The following valid inequalities

are introduced precisely to enforce this condition. More generally, let S be a set of vertices, and

A be an arbitrary set of edges. Define R(S,A) = max{0, R − u(A ∩ δ(S))} to be the residual

requirement of S that must be satisfied by edges in δ(S) \ A. That is, any feasible solution has∑
e∈δ(S)\A uexe ≥ R(S,A). However, any integral solution also satisfies the following stronger

requirement ∑
e∈δ(S)\A

min{R(S,A), ue}xe ≥ R(S,A)

185

and thus these inequalities can be added to the LP to strengthen it. These additional inequalities

are referred to as Knapsack-Cover inequalities, or simply KC inequalities, and were used by [37]

in design of approximation algorithms for Capacitated-SNDP.

Below, we write a LP relaxation, (KC LP), strengthened with the Knapsack- Cover inequalities.

Note that the original constraints correspond to KC inequalities with A = ∅; we simply write them

explicitly for clarity.

min
∑
e∈E

cexe (KC LP)

∑
e∈δ(S)

uexe ≥ R (∀S ⊆ V) (Original Constraints)

∑
e∈δ(S)\A

min(ue, R(S,A))xe ≥ R(S,A) (∀A ⊆ E,∀S ⊆ V) (KC inequalities)

0 ≤ xe ≤ 1 (∀e ∈ E)

The Linear Program (KC LP), like the original (Std LP), has exponential size. However, unlike

(Std LP), we do not know of the existence of an efficient separation oracle for (KC LP). Neverthe-

less, as we show below, we do not need to solve (KC LP); it suffices to get to what we call a good

fractional solution.

Definition 6.8. Given a fractional solution x, we say an edge e is nearly integral if xe ≥ 1
40 logn ,

and we say e is highly fractional otherwise.

Definition 6.9. For any α ≥ 1, a cut in a graph G with capacities on edges, is an α-mincut if its

capacity is within a factor α of the minimum cut of G.

Theorem 6.10. [Theorems 4.7.6 and 4.7.7 of [113]] The number of α-mincuts in an n-vertex graph

is at most n2α. Moreover, the set of all α-mincuts can be found in O(n2α log2 n) time with high

probability.

Given a fractional solution x to the edges, we let Ax denote the set of nearly integral edges,

that is, Ax := {e ∈ E : xe ≥ 1
40 logn}. Define û(e) = uexe to be the fractional capacity on the edges.

Let S := {S ⊆ V : û(δ(S)) ≤ 2R}. The solution x is said to be good if it satisfies the following

three conditions:

186

(a) The global mincut in G with capacity û is at least R; equivalently x satisfies the original

constraints.

(b) The KC inequalities are satisfied for the set Ax and the sets in S. Note that if (a) is satisfied,

then by Theorem 6.10, |S| ≤ n4.

(c)
∑

e∈E cexe is at most the value of the optimum solution to (KC LP).

Note that a good solution need not be feasible for (KC LP) as it is required to satisfy only a

subset of KC inequalities. We use the ellipsoid method to get such a solution; such a method was

also used in [37].

Lemma 6.11. There is a randomized algorithm that computes a good fractional solution with high

probability.

Proof. We start by guessing the optimum value M of (KC LP) and add the constraint
∑

e∈E cexe ≤

M to the constraints of (KC LP). If the guessed value is too small, a good solution may not exist;

however, a simple binary search suffices to identify the smallest feasible value of M . With this

constraint in place, we will use the ellipsoid method to compute a solution that satisfies (a), (b),

and (c) with high probability. Since we do not know of a polynomial-time separation oracle for

KC inequalities, we will simulate a separation oracle that verifies condition (b), a subset of KC

inequalities, in polynomial time. Specifically, we give a randomized polynomial time algorithm

such that given a solution x that violates condition (b), the algorithm detects the violation with

high probability and outputs a violated KC inequality. We now describe the entire process.

Given a solution x we first check if condition (a) is satisfied. This can be done in polynomial

time by O(n) max-flow computations. If (a) is not satisfied, we have found a violated constraint.

Once we have a solution that satisfies (a), we know that |S| ≤ n4. By Theorem 6.10, the set S

can be computed in polynomial-time with high probability. Thus we can check condition (b) in

polynomial-time, and with high probability find a violating constraint for (b) if one exists. Once

we have a solution that satisfies both (a) and (b), we check if
∑

e∈E cexe ≤ M . If not, we have

once again found a violated constraint for input to the ellipsoid algorithm. Thus in polynomially

many rounds, where each round runs in polynomial time, the ellipsoid algorithm combined with the

simulated separation oracle, either returns a solution x that satisfies (a), (b), and
∑

e∈E cexe ≤M ,

187

with high probability, or proves that the system is infeasible. Using binary search, we find the

smallest M for which a solution x is returned satisfying conditions (a), (b) and
∑

e∈E cexe ≤ M .

Since M is less than the optimum value of (KC LP), we get that the returned x is a good fractional

solution with high probability.

6.2.2 The Rounding and Analysis

Given a good fractional solution x, we now round it to get a O(log n) approximation to Cap-R-

Connected Subgraph. A useful tool for our analysis is the following Chernoff bound (see, for

instance, [134]):

Lemma 6.12. Let X1, X2, . . . Xk be a collection of independent random variables in [0, 1], let

X =
∑k

i=1Xi, and let µ = E[X]. The probability that X ≤ (1− δ)µ is at most e−µδ
2/2.

We start by selecting Ax, the set of all nearly integral edges. Henceforth, we lose the subscript

and denote the set as simply A. Let F = E \ A denote the set of all highly fractional edges; for

each edge e ∈ F , select it with probability (40 log n · xe). Let F ∗ ⊆ F denote the set of selected

highly fractional edges. The algorithm returns the set of edges EA := A ∪ F ∗.

It is easy to see that the expected cost of this solution EA is O(log n)
∑

e∈E cexe, and hence

by condition (c) above, within O(log n) times that of the optimal integral solution. Thus, to prove

Theorem 6.1, it suffices to prove that with high probability, EA satisfies every cut in the graph

G; we devote the rest of the section to this proof. We do this by separately considering cuts of

different capacities, where the capacities are with respect to û (recall that ûe = uexe). Let L be

the set of cuts of capacity at least 2R, that is, L := {S ⊆ V : û(δ(S)) > 2R}.

Lemma 6.13. Pr[∀S ∈ L : u(EA ∩ δ(S)) ≥ R] ≥ 1− 1
2n10 .

Proof. We partition L into sets L2,L3, . . . where Lj := {S ⊆ V : jR < û(δ(S)) ≤ (j + 1)R}. Note

that Theorem 6.10 implies |Lj | ≤ n2(j+1) by condition (a) above. Fix j, and consider an arbitrary

cut S ∈ Lj . If u(A ∩ δ(S)) ≥ R, then S is clearly satisfied by EA. Otherwise, since the total

û-capacity of S is at least jR, we have û(F ∩ δ(S)) ≥ û(δ(S))− u(A ∩ δ(S)) ≥ (j − 1)R. Thus

∑
e∈F∩δ(S)

ue
R
xe ≥ (j − 1)

188

Recall that an edge e ∈ F is selected in F ∗ with probability (40 log n · xe). Thus, for the cut S,

the expected value of
∑

e∈F ∗∩δ(S)
ue
R ≥ 40(j − 1) log n. Since ue/R ≤ 1, we can apply Lemma 6.12

to get that the probability that S is not satisfied is at most e−16 logn(j−1) = 1/n16(j−1). Applying

the union bound, the probability that there exists a cut in Lj not satisfied by EA is at most

n2(j+1)/n16(j−1) = n18−14j . Thus probability that some cut in L is not satisfied is bounded by∑
j≥2 n

18−14j ≤ 2n−10 if n ≥ 2. Hence with probability at least 1− 1/2n10, A∪F ∗ satisfies all cuts

in L.

One might naturally attempt the same approach for the cuts in S (recall that S = {S ⊆ V :

û(δ(S)) ≤ 2R}) modified as follows. Consider any cut S, which is partly satisfied by the nearly

integral edges A. The fractional edges contribute to the residual requirement of S, and since xe is

scaled up for fractional edges by a factor of 40 log n, one might expect that F ∗ satisfies the residual

requirement, with the log n factor providing a high-probability guarantee. This intuition is correct,

but the KC inequalities are crucial. Consider Example 1; edge pr is unlikely to be selected, even

after scaling. In the statement of Lemma 6.12, it is important that each random variable takes

values in [0, 1]; thus, to use this lemma, we need the expected capacity from fractional edges to be

large compared to the maximum capacity of an individual edge. But the KC inequalities, in which

edge capacities are “reduced”, enforce precisely this condition. Thus we get the following lemma

using an analysis similar to the one above.

Lemma 6.14. Pr[∀S ∈ S : u(δ(EA ∪ δ(S))) ≥ R] ≥ 1− 1
n12 .

Proof. By Theorem 6.10, the number of cuts in S is at most n4; it thus suffices to show that for

any S ∈ S, the probability it is not satisified by EA is at most n−16. Assume S is not satisfied by

A, otherwise we are done.

Since x is good, by condition (b) above, we have
∑

e∈δ(S)∩F min{ue, R(S,A)}xe ≥ R(S,A).

Thus: ∑
e∈δ(S)∩F

min{ue, R(S,A)}
R(S,A)

xe ≥ 1

Once again since the coefficient of xe is at most 1, as in the proof of Lemma 6.13, we get that the

probability S is not satisfied by F ∗ is at most e−16 logn ≤ n−16, and we are done.

Theorem 6.1 follows from the two previous lemmas.

189

6.2.3 Capacitated-SNDP with Nearly Uniform Requirements

The algorithm described above can be extended to the case where requirements are nearly uniform,

that is, if Ruv ∈ [R, γR] for all pairs (u, v) ∈ V ×V . We obtain an O(γ log n)-approximation, while

increasing the running time by a factor of O(n4γ). We work with a similar LP relaxation; for each

set S ⊆ 2V , we use R(S) = maxu∈S,v 6∈S{Ruv} to denote the requirement of S. Now, the original

constraints are of the form ∑
e∈δ(S)

uexe ≥ R(S)

for each set S, and we define the residual requirement for a set as R(S,A) = min{0, R(S)− u(A ∩

δ(S))}. The KC inequalities use this new definition of R(S,A).

Given a fractional solution x to the KC LP, we modify the definitions of highly fractional and

nearly integral edges: An edge e is said to be nearly integral if xe ≥ 1
40γ logn , and highly fractional

otherwise. Again, for a fractional solution x, we let Ax denote the set of nearly integral edges; the

set S of small cuts is now {S ⊆ V : û(δ(S)) ≤ 2γR}. From the cut-counting theorem, |S| ≤ n4γ .

We use L to denote the set of large cuts, the sets {S ⊆ V : û(δ(S)) > 2γR}.

As before, a fractional solution x is good if the original constraints are satisfied, and the KC

Inequalities are satisfied for the set of edges Ax and the sets in S. These constraints can be checked

in time O(n4γ+2 log2 n), so following the proof of Lemma 6.11, for constant γ, we can find a good

fractional solution in polynomial time.

The rounding and analysis proceed precisely as before: For each highly fractional edge e, we

select it for the final solution with probability 40γ log n · xe. The expected cost of this solution is

at most O(γ log n) times that of the optimal integral solution, and analogously to the proofs of

Lemmas 6.13 and 6.14, one can show that the solution satisfies all cuts with high probability. This

completes the proof of Theorem 6.2.

6.2.4 The k-Way–R-Connected Subgraph Problem

The k-Way–R-Connected Subgraph problem that we define is a natural generalization of the

well-studied min-cost λ-Edge-Connected Spanning Subgraph problem. The latter problem

is motivated by applications to fault-tolerant network design where any λ− 1 edge failures should

190

not disconnect the graph. However, there may be situations in which global λ-connectivity may

be too expensive or infeasible. For example, the underlying graph G may have a single cut-edge

but we still wish a subgraph that is as close to 2-edge-connected as possible. We could model the

requirement by k-Way–R-Connected Subgraph (in the unit-capacity case) by setting R1 = 1

and R2 = 3; that is, at least 3 edges have to be removed to partition the graph into 3 disconnected

pieces.

Our proof of Theorem 6.3 is similar to that of Theorem 6.1, but we use the following lemma on

counting k-way cuts in place of Theorem 6.10.

Lemma 6.15 (Lemma 11.2.1 of [113]). In an n-vertex graph, the number of k-way cuts with

capacity at most α times that of a minimum k-way cut is at most n2α(k−1).

To prove Theorem 6.3, we work with the generalization of (KC LP) given below. For any i-way

cut C and for any set of edges A, we use R(C, A) to be max{0, Ri − u(A ∩ δ(C)}.6

min
∑
e∈E

cexe (k-way KC LP)

∑
e∈δ(C)

u(e)xe ≥ Ri (∀i,∀i-way cuts C) (Original Constraints)

∑
e∈δ(C)\A

min{u(e), R(C, A)}xe ≥ R(C, A) (∀A ⊆ E,∀i,∀i-way cuts C) (KC inequalities)

0 ≤ xe ≥ 1 (∀e ∈ E)

As before, given a fractional solution x to this LP, we define Ax (the set of nearly integral edges)

to be {e ∈ E : xe ≥ 1
40k logn}. Define û(e) = u(e)xe to be the fractional capacity on the edges.

Let Si := {C : C is an (i+ 1)-way cut and û(δ(C)) ≤ 2Ri}. The solution x is said to be good if it

satisfies the following three conditions:

(a) If the capacity of e is û(e), the capacity of any (i+1)-way cut in G is at least Ri; equivalently

x satisfies the original constraints.
6For ease of notation, we assume that for any edge e, u(e) ≤ R1. This is not without loss of generality, but the

proof can be trivially generalized: In the constraint for each (i + 1)-way cut C such that e ∈ δ(C), simply use the
minimum of u(e) and Ri.

191

(b) The KC inequalities are satisfied for the set Ax and the sets in Si, for each 1 ≤ i ≤ k − 1.

Note that if (a) is satisfied, then by Lemma 6.15, |Si| ≤ n4i.

(c)
∑

e∈E c(e)xe is at most the value of the optimum solution to the linear program (k-way KC

LP).

Following the proof of Lemma 6.11, it is completely straightforward to verify that there is a

randomized algorithm that computes a good fractional solution with high probability in nO(k) time.

Once we have a good fractional solution, our algorithm is to select Ax, the set of nearly integral

edges, and to select each highly fractional edge e ∈ E \ Ax with probability 40k log n · xe. If F ∗

denotes the highly fractional edges that were selected, we return the solution Ax ∪ F ∗. As before,

it is trivial to see that the expected cost of this solution is O(k log n) times that of the optimal

integral solution. We show below that for any i ≤ k − 1, we satisfy all (i + 1)-way cuts with high

probability; taking the union bound over the k − 1 choices of i yields the theorem.

As in Lemmas 6.13 and 6.14, we separately consider the “large” and “small” (i+ 1)-way cuts.

First, consider any small cut C in Si. From the Chernoff bound (Lemma 6.12) and the KC inequality

for C and Ax, it follows that the probability we fail to satisfy C is at most 1/n19k. From the cut-

counting Lemma 6.15, there are at most n4i < n4k such small cuts, so we satisfy all the small

(i+ 1)-way cuts with probability at least 1− 1
n15k .

For the large (i+1)-way cuts L, we separately consider cuts of differing capacities. For each j ≥

2, let L(j) denote the (i+1)-way cuts C such that jRi ≤ û(C) ≤ (j+1)Ri. Consider any cut C ∈ Lj ;

if u(Ax ∩ δ(C)) ≥ Ri, then the cut C is clearly satisfied. Otherwise, û(δ(C) \Ax) ≥ (j − 1)Ri. But

since we selected each edge e in δ(C) \Ax for F ∗ with probability 40k log n ·xe, the Chernoff bound

implies that we do not satisfy C with probability at most 1
n19k(j−1) . The cut-counting Lemma 6.15

implies there are most n2i(j+1) < n2k(j+1) such cuts, so we fail to satisfy any cut in L(j) with

probability at most n21−17j . Taking the union bound over all j, the failure probability is at most

2n−13.

192

6.3 Hardness of Approximation for Capacitated-SNDP

In this section we show that the integrality gap with KC inequalities is Ω(n) even for single-pair

Capacitated-SNDP in undirected graphs. Moreover, when the underlying graph is directed, we

prove that the single-pair problem is hard to approximate to within a factor of 2log(1−δ) n for any

δ > 0.

6.3.1 Integrality Gap with KC Inequalities

s t

v1

v2

vR

(2,1) (R,R)

(2,1) (R,R)

(2,1) (R,R)

Figure 6.1: An example with integrality gap Ω(n) for the strengthened LP. Label (u, c) on an
edge denotes a capacity of u and cost of c for that edge.

We show that for any positive integerR, there exists a single-pair Capacitated-SNDP instance

G with (R + 2) vertices such that the integrality gap of the natural LP relaxation strengthened

with KC inequalities is Ω(R). The instance G consists of a source vertex s, a sink vertex t, and

R other vertices v1, v2, . . . , vR. There is an edge of capacity 2 and cost 1 (call these small edges)

between s and each vi, and an edge of capacity R and cost R between each vi and t (large edges).

We have Rst = R. Clearly, an optimal integral solution must select at least R/2 of the large edges

(in addition to small edges), and hence has cost greater than R2/2. The instance is depicted in

Figure 6.1: Label (u, c) on an edge denotes capacity u and cost c.

We now describe a feasible LP solution: set xe = 1 on each small edge e, and xe′ = 2/R on each

large edge e′. The cost of this solution is R from the small edges, and 2R from the large edges,

for a total of 3R. This is a factor of R/6 smaller than the optimal integral solution, proving the

desired integrality gap.

It remains only to verify that this is indeed a feasible solution to (KC LP). Consider the

193

constraint corresponding to sets S,A. As edges in A \ δ(S) play no role, we may assume A ⊆ δ(S).

If A includes a large edge, or at least R/2 small edges, the residual requirement R(S,A) that must

be satisfied by the remaining edges of δ(S) is 0, and so the constraint is trivially satisfied. Let A

consist of a < R/2 small edges; the residual requirement is thus R − 2a. Let δ(S) contain i large

edges and thus R − i small edges. Now, the contribution to the left side of the constraint from

small edges in δ(S) \A is 2(R− i−a) = (R− 2a) + (R− 2i). Therefore, the residual requirement is

satisfied by small edges alone unless i > R/2. But the contribution of large edges is i · 2
R · (R− 2a)

which is greater than R−2a whenever i > R/2. Thus, we satisfy each of the added KC inequalities.

6.3.2 Hardness of Approximation for Capacitated-SNDP in Undirected

Graphs

In this section, we prove Theorem 6.7 via a reduction from the Priority Steiner Tree problem.

In Priority Steiner Tree, the input is an undirected graph G(V,E) with a cost ce and a priority

P (e) ∈ {1, 2, . . . , k} for each edge e. (We assume k is the highest and 1 the lowest priority.) We

are also given a root r and a set of terminals T ⊆ V − {r}; each terminal t ∈ T has a desired

priority P (t). The goal is to find a minimum-cost Steiner Tree in which the unique path from each

terminal t to the root consists only of edges of priority P (t) or higher.7

Chuzhoy et al. [67] showed that one cannot approximate the Priority Steiner Tree problem

within a factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn), even when all edge

costs are 0 or 1. Here, we show an approximation-preserving reduction from this problem to

Capacitated-SNDP with multiple copies; this also applies to the basic Capacitated-SNDP, as

the copies of edges do not play a significant role in the reduction.

Given an instance Ipst of Priority Steiner Tree on graph G(V,E) with edge costs in {0, 1},

we construct an instance Icap of Capacitated-SNDP defined on the graph G as the underlying

graph. Fix R to be any integer greater than 2m3 where m is the number of edges in the graph G.

We now assign a capacity of ue = Ri to each edge e with priority P (e) = i in Ipst. Each edge e of

cost 0 in Ipst has cost ce = 1 in Icap, and each edge e of cost 1 in Ipst has cost ce = m2 in Icap.

Finally, for each terminal t, set Rtr = Ri if P (t) = i; for every other pair of vertices (p, q), Rpq = 0.

7It is easy to see that a minimum-cost subgraph containing such a path for each terminal is a tree; given any
cycle, one can remove the edge of lowest priority.

194

Let C denotes the cost of an optimal solution to Ipst; note that C ≤ m; we now argue that

Ipst has an optimal solution of cost C iff Icap has an optimal solution of of cost between Cm2 and

Cm2 + m < (C + 1)m2. Given a solution E∗ to Ipst of cost C, simply select the same edges for

Icap; the cost in Icap is at most Cm2 + m since in Icap, we pay 1 for each edge in E∗ that has

cost 0 in Ipst. This is clearly a feasible solution to Icap as each terminal t has a path to r in E∗

containing only edges with priority at least P (t), which is equivalent to having capacity at least

Rtr. Conversely, given a solution E′ to Icap with cost in [Cm2, (C + 1)m2), select a single copy of

each edge in E′ as a solution to Ipst; clearly the total cost is at most C. To see that this is a feasible

solution, suppose that E′ did not contain a path from some terminal t to the root r using edges of

priority P (t) or more. Then there must be a cut separating t from r in which all edges of E′ have

capacity at most RP (t)−1. But since E′ supports a flow of RP (t) from t to r, it must use at least

R edges (counting with multiplicity); this implies that the cost of E′ is at least R ≥ (C + 1)m2, a

contradiction.

We remark that a similar reduction also proves that the single-pair Capacitated-SNDP prob-

lem without multiple copies is Ω(log log n) hard to approximate: One can effectively encode an

instance of single-source Fixed-Charge Network Flow (FCNF, [67]), very similar to single-

source Capacitated-SNDP with multiple copies, as an instance of single-pair Capacitated-

SNDP without multiple copies: Create a new sink t∗, and connect t∗ to each original terminal t

with a single edge of cost 0 and capacity Rtr. The only way to send flow
∑

t∈T Rtr flow from t∗ to

the source s is for each terminal t to send Rtr to s. Thus, Theorem 6.4 is a simple consequence of

the Ω(log log n) hardness for single-source FCNF [67].

6.3.3 Hardness of Approximation in Directed Graphs

We now prove Theorem 6.5 via a reduction from the Label Cover problem [13].

Definition 6.16 (The Label Cover Problem). The input consists of a bipartite graph G(A∪B,E)

such that the degree of every vertex in A is dA and degree of every vertex in B is dB, a set of labels

LA and a set of labels LB, and a relation π(a,b) ⊆ LA×LB for each edge (a, b) ∈ E. Given a labeling

φ : A ∪ B → LA ∪ LB, an edge e = (a, b) ∈ E is said to be consistent iff (φ(a), φ(b)) ∈ π(a,b). The

goal is to find a labeling that maximizes the fraction of consistent edges.

195

The following hardness result for Label Cover is a well-known consequence of the PCP

theorem [16] and Raz’s Parallel Repetition theorem [143].

Theorem 6.17 ([16, 143]). For any ε > 0, there does not exist a poly-time algorithm to decide if a

given instance of Label Cover has a labeling where all edges are consistent (Yes-Instance), or if

no labeling can make at least 1
γ fraction of edges to be consistent for γ = 2log1−ε n (No-Instance),

unless NP ⊆ DTIME(npolylog(n)).

We now give a reduction from Label Cover to the single-pair Capacitated-SNDP in directed

graphs. In our reduction, the only non-zero capacity values will be 1, dA, and dB. We note that

Theorem 6.17 holds even when we restrict to instances with dA = dB. Thus our hardness result

will hold on single-pair Capacitated-SNDP instances where there are only two distinct non-zero

capacity values.

Given an instance I of Label Cover with m edges, we create in polynomial-time a directed

instance I ′ of single-pair Capacitated-SNDP such that if I is a Yes-Instance then I ′ has a

solution of cost at most 2m, and otherwise, every solution to I ′ has cost Ω(mγ
1
4). This establishes

Theorem 6.5 when we choose ε = δ/2.

The underlying graph G′(V ′, E′) for the single-pair Capacitated-SNDP instance is con-

structed as follows. The set V ′ contains a vertex v for every v ∈ A ∪ B. We slightly abuse

notation and refer to these sets of vertices in V ′ as A and B as well. Furthermore, for every vertex

a ∈ A, and for every label ` ∈ LA, the set V ′ contains a vertex a(`). Similarly, for every vertex

b ∈ B, and for every label ` ∈ LB, the set V ′ contains a vertex b(`). Finally, V ′ contains a source

vertex s and a sink vertex t. The set E′ contains the following directed edges:

• For each vertex a in A, there is an edge from s to the vertex a of cost 0 and capacity dA. For

each vertex b ∈ B, there is an edge from b to t of cost 0 and capacity dB.

• For each vertex a ∈ A, and for all labels ` in LA, there is an edge from a to a(`) of cost dA

and capacity dA. For each vertex b ∈ B, and for all labels ` in LB, there is an edge from b(`)

to b of cost dB and capacity dB. These two types of edges are the only edges with non-zero

cost.

196

• For every edge (a, b) ∈ E, and for every pair of labels (`a, `b) ∈ π(a,b), there is an edge from

a(`a) to b(`b) of cost 0 and capacity 1.

This completes the description of the network G′. The requirement Rst between s and t is m, the

number of edges in the Label Cover instance. It is easy to verify that the size of the graph G′

is at most quadratic in the size of the Label Cover instance, and that G′ can be constructed in

polynomial-time.

Lemma 6.18. If the Label Cover instance is a Yes-Instance, then G′ contains a subgraph of

cost 2m which can realize a flow of value m from s to t.

Proof. Let φ be any labeling that consistently labels all edges in G(A∪B,E). Let E1 ⊆ E′ be the set

of all edges of cost 0 in E′, and let E2 ⊆ E′ be the set of edges {(a, a(φ(a))) | a ∈ A}∪{(b(φ(b)), b) :

b ∈ B}. We claim that E1 ∪ E2 is a feasible solution for the single-pair Capacitated-SNDP

instance. Note that the total cost of edges in E1 ∪ E2 is |A|dA + |B|dB = 2m. We now exhibit

a flow of value m from s to t in G′′(V ′, E1 ∪ E2). A flow of value dA is sent along the path

s→ a→ a(φ(a)) for all a ∈ A. From a(φ(a)), a unit of flow is sent to the dA vertices of the form

{b(φ(b)) | b ∈ B and (a, b) ∈ E}; this is feasible because φ consistently labels all edges in E. Thus

each vertex of the form b(φ(b)) where b ∈ B receives dB units of flow, since the degree of b is dB

in G. A flow of value dB is sent to t along the path b(φ(b)) → b → t. Thus s sends out a flow of

value |A|dA = m, or equivalently, t receives a flow of value |B|dB = m.

Lemma 6.19. If the Label Cover instance is a No-Instance, then any subgraph of G′ that

realizes a flow of m units from s to t has cost Ω(mγ
1
4).

Proof. Let ρ = γ1/4/2, and M = 32/15. Assume by way of contradiction, that there exists a

subgraph G′′(V ′, E′′) of G′ of cost strictly less than ρm
M that realizes m units of flow from s to t. We

say a vertex a ∈ A is light if the number of edges of the form {(a, a(`)) | ` ∈ LA} in G′′ is less than

ρ. Similarly, we say a vertex b ∈ B is light if the number of edges of the from {(b(`), b) | ` ∈ LB} in

G′′ is less than ρ. All other vertices in A ∪ B are referred to as heavy vertices. Note that at most

1/M fraction of vertices in A could be heavy, for otherwise the total cost of the edges in E′′ would

exceed |A|M · ρ · dA = ρm
M . Similarly, at most 1/M fraction of vertices in B could be heavy.

197

Now fix any integral s-t flow f of value m in G′′; an integral flow exists since all capacities are

integers. We start by deleting from G′′ all heavy vertices. Since at most 1/M fraction of either

A or B are deleted, the total residual flow in this network is at least (1 − 2
M)m = m

16 (recall that

M = 32/15) since at most dA units of flow can transit through a vertex in A, and at most dB units

of flow can transit through a vertex in B.

Let F be a decomposition of the residual flow into unit flow paths. Note that |F | = m/16. By

construction of G′, every flow path f ∈ F is of the form s → a → `a → `b → b → t where the

pair (`a, `b) ∈ π(a,b). We say that an edge (a, b) ∈ E is a good edge if there is a flow path f of the

above form, and we say f is a certificate for edge (a, b) being good. Note that every flow path f

is a certificate of exactly one edge (a, b). We claim that there are at least m
16ρ2

good edges in G.

It suffices to show that for any edge (a, b) ∈ E, at most ρ2 flow paths in F can certify that (a, b)

as a good edge. Since a and b are both light vertices, we know that |{(a, `a) | `a ∈ LA} ∩ E′′| ≤ ρ

and |{(`b, b) | `b ∈ LB} ∩ E′′| ≤ ρ. Now using the fact that each edge (`a, `b) has unit capacity, it

follows that at most ρ2 paths in F can certify (a, b) as a good edge. Hence the number of good

edges in E is at least m
16ρ2

.

We now show the existence of a labeling φ that makes at least 1
γ fraction of the edges to be

consistent, contradicting the fact that we were given a No-Instance of Label Cover. For a

vertex a ∈ A, let Γ(a) := {`a ∈ LA | (a, `a) ∈ E′′}. Similarly, we define Γ(b) for each vertex

b ∈ B. Consider the following random label assignment: each vertex a ∈ A is assigned uniformly

at random a label from Γ(a), and each vertex in B is assigned uniformly at random a label in Γ(b).

For any good edge (a, b), the probability that the random labeling makes it consistent is at least

1
ρ2

since |Γ(a)| and |Γ(b)| are both less than ρ (as a and b are light), and there exists an `a ∈ ΓA

and `b ∈ ΓB such that (`a, `b) ∈ π(a,b). Thus, in expectation, at least 1
ρ2

fraction of good edges are

made consistent by the random assignment. Hence there exists a labeling φ that m
16ρ4

= m
γ edges

in G consistent.

Since the graph G′ can be constructed from G in polynomial time, it follows that a poly-

time (γ1/4/5)-approximation algorithm for single-pair Capacitated-SNDP would give a poly-

time algorithm to decide whether a given instance of Label Cover is a Yes-Instance or a

No-Instance.

198

6.4 Capacitated-SNDP with Multiple Copies of Edges

We now consider the variant of Capacitated-SNDP when multiple copies of any edge e can be

chosen; that is, for any edge e and integer i ≥ 0, i copies of e can be bought at a cost i·ce to obtain a

capacity of i·ue between e’s endpoints. Recall that we proved Ω(log log n) hardness of approximation

for this variant in Theorem 6.7. Still, allowing multiple copies of an edge to be chosen appears

to make the problem easier, and Goemans et al. [91] give a O(logRmax)-approximation algorithm

for the problem; for completeness, we describe an algorithm achieving this ratio in Section 6.4.2.

In general, however, Rmax may be exponentially large, and hence this does not guarantee a sub-

polynomial approximation ratio. In Section 6.4.1, we give a O(log k)-approximation algorithm,

where k is the number of vertex pairs (u, v) with Ruv > 0.

6.4.1 An O(log k)-Approximation

Our algorithm for Capacitated-SNDP when multiple copies of an edge can be chosen is based

on that of Berman and Coulston [30] for online Steiner Forest; however, we believe our proof

is simpler and more illuminating than that of [30], though the constant we obtain is weaker. For

notational convenience, we rename the pairs (s1, t1), · · · , (sk, tk), and denote the requirement Rsi,ti

as Ri; the vertices si, ti are referred to as terminals. We also assume that the pairs are so ordered

that R1 ≥ R2 ≥ · · · ≥ Rk.

We first give an intuitive overview of the algorithm. The algorithm considers the pairs in

decreasing order of requirements, and maintains a forest solution connecting the pairs that have

been already been processed; that is, if we retain a single copy of each edge in the partial solution

constructed so far, we obtain a forest F . For any edge e on the path in F between sj and tj ,

the total capacity of copies of e will be at least Rj . When considering si, ti, we connect them as

cheaply as possible, assuming that edges previously selected for F have 0 cost. (Note that this can

be done since we are processing the pairs in decreasing order of requirements and for each edge

already present in F , the capacity of its copies is at least Ri.) The key step of the algorithm is that

in addition to connecting si and ti, we also connect the pair to certain other components of F that

are “nearby”. The cost of these additional connections can be bounded by the cost of the direct

connection costs between the pairs. These additional connections are useful in allowing subsequent

199

pairs of terminals to be connected cheaply. In particular, they allow us to prove a O(log k) upper

bound on the approximation factor.

We now describe the algorithm in more detail. The algorithm maintains a forest F of edges

that have already been bought; F satisfies the invariant that, after iteration i−1, for each j ≤ i−1,

F contains a unique path between sj and tj . In iteration i, we consider the pair si, ti. We define

the cost function ci(e) as ci(e) := 0 for edges e already in F , and ci(e) := c(e) + Ri
u(e)c(e), for edges

e /∈ F . Note that for an edge e /∈ F , the cost ci(e) is sufficient to buy enough copies of e to achieve

a total capacity of Ri. Thus it suffices to connect si and ti and pay cost ci(e) for each edge; in the

Cap-SNDP solution we would pay at most this cost and get a feasible solution. However, recall

that our algorithm also connects si and ti to other “close” components; to describe this process,

we introduce some notation:

We now describe the algorithm in more detail. The algorithm maintains a forest F of edges

that have already been bought; F satisfies the invariant that, after iteration i−1, for each j ≤ i−1,

F contains a unique path between sj and tj . In iteration i, we consider the pair si, ti. We define

the cost function ci(e) as ci(e) := 0 for edges e already in F , and ci(e) := c(e) + Ri
u(e)c(e), for edges

e /∈ F . Note that for an edge e /∈ F , the cost ci(e) is sufficient to buy enough copies of e to achieve

a total capacity of Ri. Thus it suffices to connect si and ti and pay cost ci(e) for each edge; in the

Cap-SNDP solution we would pay at most this cost and get a feasible solution. However, recall

that our algorithm also connects si and ti to other “close” components; to describe this process,

we introduce some notation:

For any vertices p and q, we use di(p, q) to denote the distance between p and q according to

the metric given by edge costs ci(e). We let `i := di(si, ti) be the cost required to connect si and

ti, given the current solution F . We also define the class of a pair (sj , tj), and of a component:

• For each j ≤ i, we say that pair (sj , tj) is in class h if 2h ≤ `j < 2h+1.

Equivalently, class(j) = blog `jc.

• For each connected component X of F , class(X) = max(sj ,tj)∈X class(j).

Now, the algorithm connects si (respectively ti) to component X if di(si, X) (resp. di(ti, X)) ≤

2min{class(i),class(X)}. That is, if X is close to the pair (si, ti) compared to the classes they are in,

we connect X to the pair. As we show in the analysis, this extra connection cost can be charged

200

to some pair (sj , tj) in the component X. The complete algorithm description is given below.

Capacitated-SNDP-MC:
F ← ∅ 〈〈F is the forest solution returned〉〉
For i← 1 to k

For each edge e ∈ F , ci(e)← 0
For each edge e 6∈ F , ci(e)← ce + (Ri/ue)ce
`i ← di(si, ti)
Add to F a shortest path (of length `i) from si to ti under distances ci(e)
class(i)← blog `ic
For each connected component X of F

If di(si, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting si and X
For each connected component X of F

If di(ti, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting ti and X
Buy dRi/uee copies of each edge e added during this iteration.

Note that though the forest F may change several times during a single iteration i of the outer

loop, the costs ci(e) are fixed at the beginning of each iteration. Also, the components of F may

change during the final loops; thus, these loops run over the components that have not been merged

with the component containing si and ti.

We show that this algorithm Capacitated-SNDP-MC gives an O(log k) approximation, which

proves Theorem 6.6. The structure of our proof is as follows: Recall that `i was the direct connection

cost between si and ti; in addition to paying `i to connect these vertices, the algorithm also buys

additional edges connecting si and ti to existing components. We first show (in Lemma 6.21) that

the total cost of extra edges bought can be charged to the direct connection costs; thus, it suffices

to show that
∑

i `i ≤ O(log k)OPT, where OPT is the cost of an optimal solution. To prove this

(Lemma 6.22), we bucket the pairs (si, ti) into O(log k) groups based on class(i), and show that

in each bucket h,
∑

i:class(i)=h `i ≤ O(OPT).

Proposition 6.20. Capacitated-SNDP-MC returns a feasible solution.

Proof. We prove by induction on i that after iterations 1 through i, F contains a path between sj

and tj for each j ≤ i. Further, for each edge e added in iteration i, the total capacity of the copies

of e is at least Ri.

Consider any iteration i; as we only add edges to F , the hypothesis is still satisfied for each

201

pair sj , tj with j < i. Since we add to F a shortest path between si and ti, F clearly contains

the desired path. Consider any edge e on this path: If it was added in iteration j < i, the total

capacity of its copies is at least Rj ≥ Ri; if it was added during iteration i, the total capacity of

its copies is dRiue eue ≥ Ri. Thus, the capacity of (the copies of) any edge along the path from si to

ti is at least Ri, giving a feasible solution.

Lemma 6.21. The total cost of all edges bought by Capacitated-SNDP-MC is at most 9
∑k

i=1 `i.

Proof. Let Fi denote the set of edges added to F during iteration i. First, note the total cost paid

for copies of edge e ∈ Fi is d Riu(e)ec(e) < c(e) + Ri
ue
c(e) = ci(e). Thus, it suffices to show:

k∑
i=1

∑
e∈Fi

ci(e) ≤ 9
k∑
i=1

`i

We prove that the total cost of the additional edges bought is at most 8
∑k

i=1 `i; this clearly

implies the desired inequality. It is not true that for each i, the total cost of additional edges bought

during iteration i is at most 8`i. Nonetheless, a careful charging scheme proves the needed bound

on total cost. In iteration i, suppose we connect the pair (si, ti) to the components X1, . . . , Xr. We

charge the cost of connecting (si, ti) and component Xj to the connection cost `j of a pair (sj , tj)

in Xj . This is possible since we know the additional connection cost is at most 2class(Xj). Care is

required to ensure no pair is overcharged. To do so, we introduce some notation.

At any point during the execution of the algorithm, for any current component X of F , we let

Leader(X) be a pair (si, ti) ∈ X such that class(i) = class(X). For integers h ≤ class(X),

h-Leader(X) will denote a pair (sj , tj) in X; we explain how this pair is chosen later. (Initially,

h-Leader(X) is undefined for each component X.)

Now, we have to account for additional edges bought during iteration i; these are edges on

a shortest path connecting si (or ti) to some other component X; we assume w.l.o.g. that the

path is from si to X. Consider any such path P connecting si to a component X; we have∑
e∈P ci(e) = di(si, X) ≤ 2min{class(i),class(X)}. Let h = blog di(si, X)c: Charge all edges on this

path to h-Leader(X) if it is defined; otherwise, charge all edges on the path to Leader(X). In

either case, the pair (si, ti) becomes the h-Leader of the new component just formed. Note that

a pair (si, ti) could simultaneously be the h1-Leader, h2-Leader, etc. for a component X if (si, ti)

202

connected to many components during iteration i. However, it can never be the h-Leader of

a component for h > class(i), and once it has been charged as h-Leader, it is never charged

again as h-Leader. Also observe that if a pair is in a component X whose h-Leader is defined,

subsequently, it always stays in a component in which the h-Leader is defined.

For any i, we claim that the total charge to pair (si, ti) is at most 8`i, which completes

the proof. Consider any such pair: any charges to the pair occur when it is either Leader or

h-Leader of its current component. First, consider charges to (si, ti) as Leader of a compo-

nent. Such a charge can only occur when connecting some sj (or tj) to X. Furthermore, if

h = blog dj(sj , X)c ≤ class(X) = class(i), the h-Leader(X) must be currently undefined, for

otherwise the h-Leader(X) would have been charged. Subsequently, the h-Leader of the compo-

nent containing (si, ti) is always defined, and so (si, ti) will never again be charged as a Leader(X)

by a path of length in [2h, 2h+1). Therefore, the total charge to (si, ti) as Leader of a component

is at most
∑class(i)

h=1 2h+1 < 2class(i)+2 ≤ 4`i.

Finally, consider charges to (si, ti) as h-Leader of a component. As observed above, h ≤

class(i). Also for a fixed h, a pair is charged at most once as h-Leader. Since the total cost

charged to (si, ti) as h-Leader is at most 2h+1; summing over all h ≤ class(i), the total charge is

less than 2class(i)+2 = 4`i.

Thus, the total charge to (si, ti) is at most 4`i + 4`i = 8`i, completing the proof.

Lemma 6.22. If OPT denotes the cost of an optimal solution to the instance of Capacitated-

SNDP with multiple copies, then
∑k

i=1 `i ≤ 64(dlog ke+ 1)OPT.

Proof. Let Ch denote
∑

i:class(i)=h `i. Clearly,
∑k

i=1 `i =
∑

hCh. The lemma follows from the two

sub-claims below:

Sub-Claim 1:
∑

hCh ≤ (2(dlog ke+ 1)) ·maxhCh

Sub-Claim 2: For each h, Ch ≤ 32OPT.

Proof of Sub-Claim 1. Let h′ = maxi class(i). We have Ch′ ≥ 2h
′
, and for any terminal i such

that class(i) ≤ h′ − (dlog ke + 1), we have `i ≤ 2h
′+1

2k . Thus, the total contribution from such

classes is at most 2h
′

k · k = 2h
′
, and hence:

203

h′∑
h=h′−dlog ke

Ch ≥
∑

hCh
2

, which implies

max
h′−dlog ke≤h≤h′

Ch ≥
∑

hCh
2(dlog ke+ 1)

.

�

It remains to show Sub-Claim 2, that for each h, Ch ≤ 32OPT. Fix h. Let Sh denote the

set of pairs si, ti such that class(i) = h. Our proof will go via the natural primal and dual

relaxations for the Cap-SNDP problem. In particular, we will exhibit a solution to the dual

relaxation of cost Ch/32. To do so we will require the following claim. Define ball(si, r), a

ball of radius r around si as containing the set of vertices v such that di(si, v) ≤ r and the set

of edges e = uv such that di(si, {u, v}) + ci(e) ≤ r. An edge e is partially within the ball if

di(si, {u, v}) < r < di(si, {u, v}) + ci(e). Subsequently, we assume for ease of exposition that no

edges are partially contained within the balls we consider; this can be achieved by subdividing the

edges as necessary. Similarly, we define ball(ti, r), the ball of radius r around ti. Two balls are

said to be disjoint if they contain no common vertices.

Claim 6.23. There exists a subset of pairs, S ′h ⊆ Sh, |S ′h| ≥ |Sh|/2, and a collection of |S ′h| disjoint

balls of radius 2h/4 centred around either si or ti, for every pair (si, ti) ∈ S ′h.

We prove this claim later; we now use it to complete the proof of Sub-Claim 2. First we describe

the LP. Let the variable xe denote whether or not edge e is in the Capacitated-SNDP solution.

Let Pi be the set of paths from si to ti. For each P ∈ Pi, variable fP denotes how much flow t

sends to the root along path P . We use ui(e) to refer to min{Ri, ue}, the effective capacity of edge

e for pair (si, ti).

Primal min
∑
e∈E

cexe∑
P∈Pi

fP ≥ Ri (∀i ∈ [k])

∑
P∈Pi|e∈P

fP ≤ ui(e)xe (∀i ∈ [k], e ∈ E)

xe ≥ 0 (∀e ∈ E)

fP ≥ 0 (∀i ∈ [k],∀P ∈ Pi)

Dual max
∑
t∈T

Riαi∑
i

ui(e)βi,e ≤ ce (∀e ∈ E)

αi ≤
∑
e∈P

βi,e (∀i ∈ [k], P ∈ Pi)

αi, βi,e ≥ 0 (∀e ∈ E,∀i ∈ [k])

204

We now describe a feasible dual solution of value at least Ch/32 using Claim 6.23. For (si, ti) ∈ S ′h,

if there is a ball B around si (or equivalently ti), we define βi,e = c(e)/ui(e) for each edge in the

ball. Since the balls are disjoint, the first inequality of the dual is clearly satisfied. Set αi = 2h/8Ri.

For any path P ∈ Pi, we have

∑
e∈P

βi,e =
1
Ri

∑
e∈P∩B

Ric(e)
ui(e)

≥ 1
2Ri

∑
e∈P∩B

Ric(e)
u(e)

+ c(e) ≥ 1
2Ri

∑
e∈P∩B

ci(e) ≥
1

2Ri
2h

4
= αi

where the first inequality used ui(e) ≤ Ri, the second follows from the definition of ci(e), and the

last inequality follows from the definition of ball(si, 2h/4). Thus, αi = 2h/8Ri is feasible along

with these βi,e’s. This gives a total dual value of

2h

8
· |S ′h| ≥

2h

16
· |Sh| ≥

1
32

∑
i∈Sh

`i =
Ch
32

where the last inequality follows from the fact that class(i) = h. This proves the lemma modulo

Claim 6.23, which we now prove.

Proof of Claim 6.23. We process the pairs in Sh in the order they are processed by the original

algorithm and grow the balls. We abuse notation and suppose these pairs are (s1, t1), . . . , (sp, tp).

We maintain a collection of disjoint balls of radius r = 2h/4, initially empty.

At stage i, we try to grow a ball of radius r around either si or ti. If this is not possible, the ball

around si intersects that around some previous terminal in S ′h, say sj ; similarly, the ball around ti

intersects that of a previous terminal, say t`. Let v be a vertex in ball(si, r) and ball(sj , r). We

have di(si, sj) ≤ di(si, v) + di(v, sj) ≤ di(si, v) + dj(v, sj) < 2h/2. (The second inequality follows

because for any j < i and any edge e, ci(e) ≤ cj(e).) Similarly, we have di(ti, t`) < 2h/2.

Now, we observe that sj and t` could not have been in the same component of F at the beginning

of iteration i of Cap-SNDP-MC; otherwise di(si, ti) ≤ di(si, sj) + di(ti, t`) < 2h, contradicting

that class(i) = h. But since di(si, sj) ≤ 2h/2 and class(i) = class(j) = h, we connect si to

the component of sj during iteration i; likewise, we connect ti to the component of t` during this

iteration. Hence, at the end of the iteration, si, ti, sj , t` are all in the same component. As a result,

the number of components of F containing pairs of Sh decreases by at least one during the iteration.

205

It is now easy to complete the proof: During any iteration of F corresponding to a pair (si, ti) ∈

Sh, the number of components of F containing pairs of Sh can go up by at most one. Say that

an iteration succeeds if we can grow a ball of radius r around either si or ti, and fails otherwise.

During any iteration that fails, the number of components decreases by at least one; as the number

of components is always non-negative, the number of iterations which fail is no more than the

number which succeed. That is, |S ′h| ≥ |Sh − S ′h|. �

This completes our proof of Lemma 6.22.

Theorem 6.6 is now a straightforward consequence of Lemmas 6.21 and 6.22:

Proof of Theorem 6.6. The total cost of edges bought by the algorithm is at most
∑k

i=1

∑
e∈Fi ci(e) ≤

9
∑k

i=1 `i, by Lemma 6.21. But
∑k

i=1 `i ≤ 64(dlog ke + 1)OPT, by Lemma 6.22, and hence the

total cost paid by Cap-SNDP-MC is at most O(log k)OPT. �

6.4.2 An O(log Rmax)-Approximation

We briefly describe the O(logRmax)-approximation of [154] for Capacitated-SNDP,8 obtained as

a consequence of the following theorem for the special case when all non-zero demands are identical:

Theorem 6.24 ([154]). In undirected graphs, there is a 4-approximation algorithm for Capacitated-

SNDP with multiple copies if Ruv ∈ {0, R} for each pair of vertices (u, v).

We defer the proof of this theorem, first showing how it yields the desired result:

Theorem 6.25 ([154]). In undirected graphs, there is an O(logRmax)-approximation algorithm for

Capacitated-SNDP with multiple copies, where Rmax = maxuv Ruv.

Proof. Given an arbitrary instance I1 of Capacitated-SNDP with multiple copies, let OPT

denote the cost of an optimal solution. One can create a new instance I2 by raising each requirement

Ruv to 2dlogRuve (intuitively, to the next power of 2) while increasing the cost to at most 2OPT;

simply take two copies of each edge in an optimal solution to I1. This solution is clearly feasible

for I2.

Now, for each j ∈ {0, 1, . . . dlogRmaxe} in turn, create an instance I2(j) in which we retain

only the requirements equal to 2j . (That is, if Ruv = 2j in instance I2, Ruv = 2j in instance I2(j)
8Note that the presentation of the analysis in [154] is slightly different.

206

and Ruv = 0 in each of the other dlogRmaxe − 1 newly created instances.) Each instance I2(j)

has an optimal solution of cost at most 2OPT; we solve each separately using the algorithm of

Theorem 6.24 and take the union of the dlogRmaxe solutions, each of cost at most 8OPT. Together,

these are feasible for I2, and hence I1; their total cost is at most 8dlogRmaxeOPT.

Thus, it remains only to prove Theorem 6.24, for the special case when all demands are 0 or R.

For any set S ⊆ 2V , let f(S) = 1 if S separates some pair (u, v) with Ruv = R, and let f(S) = 0

otherwise.9 We use the following natural LP relaxation for the problem:

min
∑
e∈E

c(e)xe (LP1)

∑
e∈δ(S)

u(e)xe ≥ Rf(S)
(
∀S ⊆ 2V

)
xe ≥ 0 (∀e ∈ E)

We show that this LP has integrality gap 4 via a reduction to the Steiner Forest problem. Define

an auxiliary cost function c′(e) = c(e) + R
u(e)c(e) for each edge e. Let (LP2) denote the following

linear program:

min
∑
e∈E

c′(e)ze (LP2)

∑
e∈δ(S)

ze ≥ f(S)
(
∀S ⊆ 2V

)
1 ≥ ze ≥ 0 (∀e ∈ E)

Claim 6.26. An optimal solution to (LP2) has cost at most twice that of an optimal solution to

(LP1).

Proof. Given an optimal solution x∗ to (LP1), we set ze = ue
R x
∗
e. This is clearly feasible for (LP2).

The contribution of edge e to the objective function of (LP2) is c′(e)ze = c(e)ze + R
u(e)c(e)ze ≤

c(e)ze + c(e)x∗e ≤ 2c(e)x∗e. (The last inequality follows because ze ≤ x∗e.)

Claim 6.27 ([154]). The integrality gap of (LP2) is at most 2.
9The function f is proper ; see, for instance, [92].

207

Proof. (LP2) is simply the standard LP relaxation for the Steiner Forest instance given by the

pairs (u, v) such that Ruv = R, and with edge costs c′(e). This LP is well known to have integrality

gap 2 (see the primal-dual 2-approximation in [154], for example).

Claim 6.28. Given an integral solution to (LP2), one can construct an integral solution to (LP1)

of the same cost.

Proof. Given an integral solution z to (LP2), take d R
u(e)e copies of edge e if ze = 1. This is clearly

feasible for (LP1); it has cost at most R
u(e)c(e) + c(e) = c′(e)ze.

Thus, in polynomial time, we obtain a 4-approximate integral solution to (LP1); this completes

the proof of Theorem 6.24.

6.5 Concluding Remarks

In this chapter we addressed the approximability of Capacitated-SNDP, giving new algorithms

and hardness results for several special cases of the problem. We gave an O(log n) approxima-

tion for Cap-R-Connected Subgraph, which is a capacitated generalization of the well-studied

min-cost λ-Edge-Connected Spanning Subgraph problem. A natural question for further

study is whether we can improve this to obtain an O(1) approximation, as is possible for λ-Edge-

Connected Spanning Subgraph. If not, can one prove super-constant hardness of approxima-

tion? In fact, it may be possible to show an O(1) integrality gap for (KC LP); we do not know

of any instances where the gap is super-constant. However, showing a constant integrality gap for

(KC LP) may require new rounding techniques, as our methods rely on scaling up the LP variables

by a factor of Ω(log n). Algorithms not based on an LP relaxation would also be of significant

interest, even if the approximation ratio obtained is weaker; such methods might apply to more

general problems where the integrality gap for (KC LP) is Ω(n).

We also highlight the difficulty of Capacitated-SNDP by focusing on the single pair problem,

and showing both super-constant hardness and an Ω(n) integrality gap example, even when the LP

is strengthened with Knapsack-Cover inequalities. We believe that understanding the single pair

problem is the key to understanding the general case. In particular, we do not have a non-trivial

algorithm even for instances in which the edge capacities are either 1 or Rmax = maxuv Ruv. (Note

208

that when Rmax is polynomially bounded, one can reduce any instance of Capacitated-SNDP

to an instance in which edges either have capacity 1 and cost 0, or capacity Rmax and arbitrary

cost.) We also showed that in directed graphs, even the single-pair problem is 2log1−δ n-hard to

approximate; this is a striking illustration of the fact that Capacitated-SNDP is significantly

harder than the uncapacitated version. We believe that the problem is indeed very hard to approx-

imate: In recent work, we showed that the problem is APX -Hard even when Rmax is polynomially

bounded (note that in our Ω(log log n) hardness result, we used super-polynomial requirements);

we believe that it should be possible to extend these hardness results.

Finally, we noted that allowing multiple copies of edges makes the problem easier, and gave an

O(log k)-approximation. In practice it may desirable to not allow too many copies of an edge to be

used. It is therefore of interest to examine the approximability of Capacitated-SNDP if we allow

only a small number of copies of an edge. Does the problem admit a non-trivial approximation

if we allow O(1) copies, or perhaps even O(log n) copies? This investigation may further serve to

differentiate the easy and difficult cases of Capacitated-SNDP.

209

Chapter 7

Conclusions

In this thesis, we presented algorithms for several fundamental problems related to vehicle routing

and network design. In Chapter 2, we gave improved algorithms for Orienteering and several

variants in both undirected and directed graphs. In Chapters 3 through 6, we considered several

problems in the field of fault-tolerant network design, where the goal was typically to find low-cost

networks that satisfied a certain connectivity requirement. In particular, we designed networks

resilient to vertex failures, an area which was poorly understood until recently. In Chapter 3 we gave

algorithms to find low-cost 2-vertex-connected subgraphs of any desired size, and in Chapter 5 we

gave simple combinatorial algorithms for several single-sink network design problems with vertex-

connectivity requirements. Our algorithms are simple and efficient, and we believe they will be of

use in solving such problems, which have numerous applications in the design and management

of robust telecommunications networks. For example, our randomized inflated-greedy algorithm

for Non-Uniform-SS-k-Buy-at-Bulk (based on the work of [40]) is easy to implement and

heuristically improve; it was also effective in empirical evaluation conducted by [10].

In Chapter 4, the Reduction Lemma we proved allowed us to drastically simplify graphs while

preserving the element-connectivity of all pairs of terminals. We gave applications to packing

Steiner trees and forests, and to SS-k-Connectivity. We believe that this lemma will find several

additional applications in the future, particularly in light of the recent work [68] showing further

connections between vertex-connectivity and element-connectivity.

Finally, in Chapter 6, we considered capacitated versions of the Survivable Network De-

sign Problem. We gave hardness results and the first non-trivial approximation algorithms for

several special cases of the problem. However, we still do not fully understand the approximabil-

ity of Capacitated-SNDP; there is much scope for further work. In particular, as we have few

algorithmic results for general Capacitated-SNDP, it would be interesting to obtain improved

210

algorithms when the input structure is restricted; see the discussion below.

There are several natural directions for further research on problems discussed in this thesis;

many questions of interest have been listed in the concluding remarks at the end of each chapter.

We discuss one broad area for future investigation here:

In many applications of graph problems, the instances that occur in practice have a highly

restricted structure. For example, graphs that arise in network design applications are often planar,

or nearly planar. Similarly, road networks that form the underlying graphs in vehicle routing

applications are typically nearly planar. Many well-known NP-Hard problems become significantly

easier on planar graphs; Baker [22] gave Polynomial-Time Approximation Schemes (PTASes) for

problems such as Vertex Cover and Independent Set. Subsequently, Arora et al. [14] gave

a PTAS for TSP in planar graphs; Klein extended this to the Subset-TSP problem [115]. More

recently, PTASes were obtained for the planar versions of Steiner Tree [35] and Steiner Forest

[28]. We recently extended these ideas to give a PTAS for the Prize-Collecting Steiner Tree

problem [45]; a similar result was independently achieved by Bateni et al. [29]. All these problems

are APX -Hard on general graphs, but the structure imposed by planarity makes their planar

versions more tractable. It is natural to ask whether one can obtain similarly improved ratios

for the problems considered in this thesis. In particular, is there a PTAS for Orienteering or

k-Stroll in undirected planar graphs? (Note that this is unlikely for Orient-TW, as there is no

o(log n)-approximation known even when the input graph is a line.) The techniques used to obtain

PTASes for TSP, Steiner Tree, Steiner Forest and Prize-Collecting Steiner Tree do

not appear to extend to the k-MST, k-Stroll, or Orienteering problems; new approaches may

be required.

Several of the other problems we consider are only known to admit poly-logarithmic approx-

imations, and may not have PTASes even in planar graphs. Still, it may be possible to prove

constant-factor approximations in planar settings. As merely one example of a problem where

this is possible, note that we gave O(1)-approximations for packing element-disjoint Steiner trees

and forests in planar graphs, though there is an Ω(log n) lower bound on their approximability

in general graphs. In directed planar graphs, Gharan and Saberi [89] recently showed an O(1)-

approximation for TSP; can this be extended to directed Orienteering or k-Stroll? Can we

211

obtain constant-factor approximations for k-2VC or Budget-2VC? Is this possible for VC-SNDP,

at least when Rmax = maxuv Ruv is small? Some evidence for this was given by Borradaile and

Klein [34], who gave a PTAS for a variant of EC-SNDP in which Rmax = 2. Similarly, can one

obtain improved approximations for Rent-or-Buy or Buy-at-Bulk?

Other classes of problems in which the input has restricted structure are also of interest. For

example, the input graphs could be sparse or have bounded treewidth, or edge costs could arise

from a metric in which vertices are embedded. Such problems often arise in applications, and

algorithms that exploit such restricted structure are likely to be of both significant theoretical and

practical interest.

212

References

[1] A. Aazami, J. Cheriyan, and K. Jampani. Approximation Algorithms and Hardness Re-
sults for Packing Element-Disjoint Steiner Trees in Planar Graphs. In Proceedings of the
12th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pages 1–14. Springer, 2009.

[2] A. Aazami, J. Cheriyan, and B. Laekhanukit. A Bad Example for the Iterative Rounding
Method for Mincost k-Connected Spanning Subgraphs. Manuscript, 2010.

[3] A. Agrawal, P. N. Klein, and R. Ravi. When Trees Collide: An Approximation Algorithm for
the Generalized Steiner Problem on Networks. SIAM Journal on Computing, 24(3):440–456,
1995. Preliminary version in Proceedings of the 23rd Annual ACM Symposium on the Theory
of Computing (STOC), 134–144, 1991.

[4] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Ap-
plications. Prentice Hall, Upper Saddle River, NJ, 1993.

[5] M. Andrews. Hardness of Buy-at-Bulk Network Design. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 115–124, 2004.

[6] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the Undirected Edge-Disjoint
Paths Problem with Congestion. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 226–241, 2005.

[7] M. Andrews and L. Zhang. The Access Network Design Problem. In Proceedings of the 39th
IEEE Symposium on Foundations of Computer Science, pages 40–49, 1998.

[8] M. Andrews and L. Zhang, 2009. Personal Communication.

[9] S. Antonakopoulos, C. Chekuri, B. Shepherd, and L. Zhang. Buy-at-Bulk Network Design
with Protection. In Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 634–644, 2007.

[10] S. Antonakopoulos and L. Zhang. Heuristics for Fiber Installation in Optical Network Op-
timization. In Proceedings of the 50th Annual IEEE Global Telecommunications Conference
(GLOBECOM), 2007, pages 2342–2347, 2007.

[11] E.M. Arkin, J.S.B. Mitchell, and G. Narasimhan. Resource-Constrained Geometric Net-
work Optimization. In Proceedings of the 14th Annual ACM Symposium on Computational
Geometry (SoCG), pages 307–316, 1998.

[12] S. Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems. PhD
thesis, University of California at Berkeley, 1994.

213

[13] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The Hardness of Approximate Optima in
Lattices, Codes, and Systems of Linear Equations. Journal of Computer and System Sciences,
54(2):317–331, 1997. Preliminary version in Proceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 724–733, 1993.

[14] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A Polynomial-Time Approxima-
tion Scheme for Weighted Planar Graph TSP. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 33–41, 1998.

[15] S. Arora and G. Karakostas. A (2 + ε)-Approximation Algorithm for the k-MST Problem.
Mathematical Programming A, 107(3):491–504, 2006. Preliminary version in Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 754–759, 2000.

[16] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and the
Hardness of Approximation Problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary
version in Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS),14–23,1992.

[17] A. Asadpour, M.X. Goemans, A. Madry, S.O. Gharan, and A. Saberi. An O(log n/ log logn)-
Approximation Algorithm for the Asymmetric Traveling Salesman Problem. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

[18] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and their Approxima-
bility Properties. Springer Verlag, Berlin Heidelberg, 1999.

[19] B. Awerbuch and Y. Azar. Buy-at-bulk Network Design. In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 542–547, 1997.

[20] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved Approximation Guarantees
for Minimum-Weight k-Trees and Prize-Collecting Salesmen. SIAM Journal on Computing,
28(1):254–262, 1998. Preliminary version in Proceedings of the 27th Annual ACM Symposium
on Theory of Computing (STOC), 277–283, 1995.

[21] Y. Azar and O. Regev. Combinatorial Algorithms for the Unsplittable Flow Problem. Al-
gorithmica, 44(1):49–66, 2006. Preliminary version in Proceedings of the 8th International
Conference on Integer Programming and Combinatorial Optimization (IPCO), 15–29, 2001.

[22] Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs.
Journal of the ACM (JACM), 41(1):153–180, 1994. Preliminary version in Proceedings of the
24th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 265–273,1983.

[23] E. Balas. Facets of the Knapsack Polytope. Mathematical Programming, 8(1):146–164, 1975.

[24] E. Balas. The Prize Collecting Traveling Salesman Problem. Networks, 19(6):621–636, 1989.

[25] N. Bansal, A. Blum., S. Chawla, and A. Meyerson. Approximation Algorithms for Deadline-
TSP and Vehicle Routing with Time-Windows. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC), pages 166–174. ACM New York, NY, USA,
2004.

214

[26] R. Bar-Yehuda, G. Even, and S. Shahar. On Approximating a Geometric Prize-Collecting
Traveling Salesman Problem with Time Windows. Journal of Algorithms, 55(1):76–92, 2005.
Preliminary version in Proceedings of the 11th Annual European Symposium on Algorithms
(ESA), 55–66, 2003.

[27] MH Bateni and J. Chuzhoy. Approximation Algorithms for the Directed k-Stroll and k-Tour
Problems. In Proceedings of the 13th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), page To appear, 2010.

[28] MH Bateni, MT Hajiaghayi, and D. Marx. Approximation Schemes for Steiner Forest on
Planar Graphs and Graphs of Bounded Treewidth. In Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing (STOC), pages 211–220, 2010.

[29] MH Bateni, MT Hajiaghayi, and D. Marx. Prize-Collecting Network Design on Planar
Graphs. Manuscript, 2010.

[30] P. Berman and C. Coulston. On-line Algorithms for Steiner Tree Problems. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing (STOC), pages 344–353. ACM,
1997.

[31] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
Algorithms for Orienteering and Discounted-Reward TSP. SIAM Journal on Computing,
37(2):653–670, 2007. Preliminary version in Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 46–55, 2003.

[32] A. Blum, R. Ravi, and S. Vempala. A Constant-Factor Approximation Algorithm for the k-
MST Problem. Journal of Computer and System Sciences, 58(1):101–108, 1999. Preliminary
version in Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC),
442–448, 1996.

[33] O.V. Borodin. Coupled Colorings of Graphs on a Plane. Metody Diskret. Analiz [In Russian],
45:21–27, 1987.

[34] G. Borradaile and P. Klein. The Two-Edge Connectivity Survivable Network Problem in
Planar Graphs. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming (ICALP), pages 485–501, 2008.

[35] G. Borradaile, P. Klein, and C. Mathieu. An O(n log n)-Approximation Scheme for Steiner
Tree in Planar Graphs. ACM Transactions on Algorithms, 5(3):1–31, 2009.

[36] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An Improved LP-Based Approximation for
Steiner Tree. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC), pages 583–592, 2010.

[37] R.D. Carr, L.K. Fleischer, V.J. Leung, and C.A. Phillips. Strengthening Integrality Gaps
for Capacitated Network Design and Covering Problems. In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete algorithms (SODA), pages 106–115, 2000.

[38] R.D. Carr and S. Vempala. Randomized Metarounding. Random Structures and Algorithms,
20(3):343–352, 2002. Preliminary version in Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC), 58–62, 2000.

215

[39] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network Design for Vertex Connectivity. In
Proceedings of the 40th annual ACM Symposium on Theory of Computing (STOC), pages
167–176, 2008.

[40] M. Charikar and A. Karagiozova. On Non-Uniform Multicommodity Buy-at-Bulk Net-
work Design. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 176–182, 2005.

[41] M. Charikar, J.S. Naor, and B. Schieber. Resource Optimization in QoS Multicast Routing of
Real-Time Multimedia. IEEE/ACM Transactions on Networking, 12(2):340–348, 2004. Pre-
liminary version in Proceedings of the 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), 1518–1527, 2000.

[42] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, Trees, and Minimum Latency
Tours. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 36–45. IEEE Computer Society, 2003.

[43] C. Chekuri, P. Claisse, R.J. Essiambre, S. Fortune, D.C. Kilper, W. Lee, N.K. Nithi, I. Saniee,
B. Shepherd, C.A. White, et al. Design Tools for Transparent Optical Networks. Bell Labs
Technical Journal, 11(2):129–143, 2006.

[44] C. Chekuri and A. Ene, 2009. Personal Communication.

[45] C. Chekuri, A. Ene, and N. Korula. Prize-Collecting Steiner Tree and Forest in Planar
Graphs. Manuscript, 2010.

[46] C. Chekuri, G. Even, A. Gupta, and D. Segev. Set Connectivity Problems in Undirected
Graphs and the Directed Steiner Network Problem. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 532–541, 2008.

[47] C. Chekuri, MT Hajiaghayi, G. Kortsarz, and M.R. Salavatipour. Approximation Algorithms
for Node-Weighted Buy-at-Bulk Network Design. In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1265–1274, 2007.

[48] C. Chekuri, MT Hajiaghayi, G. Kortsarz, and M.R. Salavatipour. Approximation Algorithms
for Non-Uniform Buy-at-Bulk Network Design. SIAM Journal on Computing, 39(5):1772–
1798, 2010. Preliminary version in Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 677–686, 2006.

[49] C. Chekuri, S. Khanna, and J.S. Naor. A Deterministic Algorithm for the Cost-Distance
Problem. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 232–233, 2001.

[50] C. Chekuri, S. Khanna, and F.B. Shepherd. An O(
√
n) Approximation and Integrality Gap

for Disjoint Paths and Unsplittable Flow. Theory of Computing, 2:137–146, 2006.

[51] C. Chekuri and N. Korula. Approximation Algorithms for Orienteering with Time Windows.
arXiv.org preprint. arXiv:0711.4825v1.

[52] C. Chekuri and N. Korula. Single-Sink Network Design with Vertex Connectivity Require-
ments. In Proceedings of the IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), pages 131–142, 2008.

216

[53] C. Chekuri and N. Korula. A Graph Reduction Step Preserving Element-Connectivity and
Applications. In Proceedings of the 36th International Colloquium on Automata, Languages
and Programming, pages 254–265, 2009.

[54] C. Chekuri and N. Korula. Pruning 2-Connected Graphs. Algorithmica, to appear. Prelim-
inary version in Proceedings of the IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 119–130, 2008.

[55] C. Chekuri, N. Korula, and M. Pál. Improved Algorithms for Orienteering and Related
Problems. ACM Transactions on Algorithms, to appear. Preliminary version in Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 661–670, 2008.

[56] C. Chekuri and A. Kumar. Maximum Coverage Problem with Group Budget Constraints and
Applications. In Proceedings of the 7th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 72–83. Springer, 2004.

[57] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 245–253. IEEE Computer Society, 2005.

[58] C. Chekuri and M. Pál. An O(log n) Approximation for the Asymmetric Traveling Salesman
Path Problem. Theory of Computing, 3:197–209, 2007. Preliminary version in Proceedings of
the 8th International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX), 95–103, 2005.

[59] C. Chekuri and F.B. Shepherd. Approximate Integer Decompositions for Undirected Network
Design Problems. SIAM Journal on Discrete Mathematics, 23(1):163–177, 2008.

[60] K. Chen and S. Har-Peled. The Orienteering Problem in the Plane Revisited. SIAM Journal
on Computing, 38(1):385–397, 2008. Preliminary version in Proceedings of the 22nd Annual
ACM Symposium on Computational Geometry (SoCG), 247–254, 2006.

[61] J. Cheriyan, 2008. Personal Communication.

[62] J. Cheriyan and M.R. Salavatipour. Hardness and Approximation Results for Packing Steiner
Trees. Algorithmica, 45(1):21–43, 2006. Preliminary version in Proceedings of the 12th Annual
European Symposium on Algorithms (ESA), 180–191, 2004.

[63] J. Cheriyan and M.R. Salavatipour. Packing Element-Disjoint Steiner Trees. ACM Trans-
actions on Algorithms, 3(4), 2007. Preliminary version in Proceedings of the 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), 52-61, 2005.

[64] J. Cheriyan, S. Vempala, and A. Vetta. An Approximation Algorithm for the Minimum-Cost
k-Vertex Connected Subgraph. SIAM Journal on Computing, 32(4):1050–1055, 2003. Prelim-
inary version in Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), 306–312, 2002.

[65] J. Cheriyan, S. Vempala, and A. Vetta. Network Design via Iterative Rounding of Setpair
Relaxations. Combinatorica, 26(3):255–275, 2006.

217

[66] F.A. Chudak, T. Roughgarden, and D.P. Williamson. Approximate k-MSTs and k-Steiner
Trees via the Primal-Dual Method and Lagrangean Relaxation. Mathematical Programming,
100(2):411–421, 2004. Preliminary version in Proceedings of the 8th International Conference
on Integer Programming and Combinatorial Optimization (IPCO) , 60–70, 2001.

[67] J. Chuzhoy, A. Gupta, J.S. Naor, and A. Sinha. On the Approximability of Some Network
Design Problems. ACM Transactions on Algorithms, 4(2):1–17, 2008. Preliminary version
in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
943–951, 2005.

[68] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 105–114,
2008.

[69] J. Chuzhoy and S. Khanna. AnO(k3 log n)-Approximation Algorithm for Vertex-Connectivity
Survivable Network Design. In Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 437–441, 2009.

[70] A. Cobham. The Intrinsic Computational Difficulty of Functions. In Proceedings of the 1964
Congress for Logic, Methodology and Philosophy of Science, pages 24–30. North-Holland
Publishing Company, 1964.

[71] G. Cǎlinescu, C. Chekuri, and J. Vondrák. Disjoint Bases in a Polymatroid. Random Struc-
tures and Algorithms, 35(4):418–430, 2009.

[72] E. Demaine, M.T. Hajiaghayi, and P. Klein. Node-Weighted Steiner Tree and Group Steiner
Tree in Planar Graphs. In Proceedings of the 36th International Colloquium on Automata,
Languages and Programming (ICALP), pages 328–340, 2009.

[73] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, 1996.

[74] J. Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

[75] J. Fakcharoenphol and B. Laekhanukit. An O(log2 k)-Approximation Algorithm for the k-
Vertex Connected Spanning Subgraph Problem. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC), pages 153–158. ACM, 2008.

[76] U. Feige, M.M. Halldórsson, G. Kortsarz, and A. Srinivasan. Approximating the Domatic
Number. SIAM Journal on Computing, 32(1):172–195, 2002. Preliminary version in Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), 134–143,
2000.

[77] U. Feige, D. Peleg, and G. Kortsarz. The Dense k-Subgraph Problem. Algorithmica,
29(3):410–421, 2001. Preliminary version in Proceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 692–701, 1993.

[78] C.G. Fernandes. A Better Approximation Ratio for the Minimum k-Edge-Connected Span-
ning Subgraph Problem. In Proceedings of the 8th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 629–638, 1997.

218

[79] L. Fleischer, K. Jain, and D.P. Williamson. Iterative Rounding 2-Approximation Algorithms
for Minimum-Cost Vertex Connectivity Problems. Journal of Computer and System Sciences,
72(5):838–867, 2006. Preliminary versions in Proceedings of the 8th International Conference
on Integer Programming and Combinatorial Optimization (IPCO), 115–129, 2001 and Pro-
ceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
339–347, 2001.

[80] A. Frank. On Connectivity Properties of Eulerian Digraphs. Annals of Discrete Mathematics,
41:179–194, 1989.

[81] A. Frank. Augmenting Graphs to Meet Edge-Connectivity Requirements. SIAM Journal
on Discrete Mathematics, 5(1):25–53, 1992. Preliminary version in Proceedings of the 31st
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 708–718, 1990.

[82] A. Frank and T. Jordán. Minimal Edge-Covers of Pairs of Sets. Journal of Combinatorial
Theory, Series B, 65(1):73–110, 1995.

[83] A. Frank, T. Király, and M. Kriesell. On Decomposing a Hypergraph into k Connected
Sub-Hypergraphs. Discrete Applied Mathematics, 131(2):373–383, 2003.

[84] A. Frank and É. Tardos. An Application of Submodular Flows. Linear Algebra and its
Applications, 114:329–348, 1989.

[85] G.N. Frederickson and B. Wittman. Approximation Algorithms for the Traveling Repair-
man and Speeding Deliveryman Problems with Unit-Time Windows. In Proceedings of the
10th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pages 119–133. Springer, 2007.

[86] A.M. Frieze, G. Galbiati, and F. Maffioli. On the Worst-Case Performance of Some Algo-
rithms for the Asymmetric Traveling Salesman Problem. Networks, 12(1):23–39, 1982.

[87] N. Garg. A 3-Approximation for the Minimum Tree Spanning k Vertices. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 302–309,
1996.

[88] N. Garg. Saving an Epsilon: a 2-Approximation for the k-MST Problem in Graphs. In
Proceedings of the 37th Annual ACM Symposium on Theory of computing (STOC), pages
396–402, 2005.

[89] S.O. Gharan and A. Saberi. The Asymmetric Traveling Salesman Problem on Graphs with
Bounded Genus. arXiv.org preprint arXiv:0909.2849, 2009.

[90] M. X. Goemans and D. P. Williamson. A General Approximation Technique for Constrained
Forest Problems. SIAM Journal on Computing, 24:296–317, 1995. Preliminary version in
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 307–
316, 1992.

[91] M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, E. Tardos, and D.P. Williamson.
Improved Approximation Algorithms for Network Design Problems. In Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 223–232, 1994.

219

[92] M.X. Goemans and D.P. Williamson. The Primal-Dual Method for Approximation Algo-
rithms and its Application to Network Design Problems. In D.S. Hochbaum, editor, Approx-
imation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

[93] B.L. Golden, L. Levy, and R. Vohra. The Orienteering Problem. Naval Research Logistics,
34(3):307–318, 1987.

[94] M. Grötschel, A. Martin, and R. Weismantel. The Steiner Tree Packing Problem in VLSI
Design. Mathematical Programming, 78(2):265–281, 1997.

[95] S. Guha, A. Meyerson, and K. Munagala. A Constant Factor Approximation for the Single
Sink Edge Installation Problem. SIAM Journal on Computing, 38(6):2426–2442, 2009. Pre-
liminary version in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), 383–388, 2001.

[96] S. Guha, A. Moss, J.S. Naor, and B. Schieber. Efficient Recovery from Power Outage. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pages
574–582, 1999.

[97] A. Gupta, R. Krishnaswamy, and R. Ravi. Online and Stochastic Survivable Network Design.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages
685–694, 2009.

[98] A. Gupta, R. Krishnaswamy, and R. Ravi. Tree Embeddings for Two-Edge-Connected Net-
work Design. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1521–1539, 2010.

[99] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via Cost Sharing: Simpler
and Better Approximation Algorithms for Network Design. Journal of the ACM, 54(3):11,
2007. Preliminary versions in Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC), 365–372, 2003, and Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 606–617, 2003.

[100] G. Gutin and A.P. Punnen, editors. The Traveling Salesman Problem and its Variations.
Springer, Berlin, 2002.

[101] MT Hajiaghayi and K. Jain. The Prize-Collecting Generalized Steiner Tree Problem via
a New Approach of Primal-Dual Schema. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 631–640, 2006.

[102] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facets of Regular 0–1 Polytopes. Mathematical
Programming, 8(1):179–206, 1975.

[103] J. H̊astad. Some Optimal Inapproximability Results. Journal of the ACM (JACM),
48(4):798–859, 2001. Preliminary version in Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (STOC), 1–10, 1997.

[104] M. Held and R.M. Karp. The Traveling-Salesman and Minimum Cost Spanning Trees. Op-
erations Research, 18:1138–1162, 1970.

[105] H.R. Hind and O. Oellermann. Menger-Type Results for Three or More Vertices. Congressus
Numerantium, pages 179–204, 1996.

220

[106] D.S. Hochbaum and A. Segev. Analysis of a Flow Problem with Fixed Charges. Networks,
19(3):291–312, 1989.

[107] J. Ivanco. The Weight of a Graph. Annals of Discrete Mathematics, pages 113–116, 1992.

[108] B. Jackson. Some Remarks on Arc-Connectivity, Vertex Splitting, and Orientation in Graphs
and Digraphs. Journal of Graph Theory, 12(3):429–436, 2006.

[109] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem.
Combinatorica, 21(1):39–60, 2001. Preliminary version in Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 448–457, 1998.

[110] K. Jain, M. Mahdian, and M. Salavatipour. Packing Steiner Trees. In Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 266–274, 2003.

[111] K. Jain, I. Mǎndoiu, V.V. Vazirani, and D.P. Williamson. A Primal-Dual Schema Based
Approximation Algorithm for the Element Connectivity Problem. In Proceedings of the 10th
annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 484–489, 1999.

[112] D.S. Johnson, M. Minkoff, and S. Phillips. The Prize Collecting Steiner Tree Problem:
Theory and Practice. In Proceedings of the 11th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA(, pages 760–769, 2000.

[113] D. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford Uni-
versity, 1994.

[114] T. Király and L.C. Lau. Approximate Min-Max Theorems for Steiner Rooted-Orientations of
Graphs and Hypergraphs. Journal of Combinatorial Theory, Series B, 98(6):1233–1252, 2008.
Preliminary version in Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 283–292, 2006.

[115] P. N. Klein. A Subset Spanner for Planar Graphs: With Application to Subset TSP. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pages
749–756. ACM, 2006.

[116] J. Kleinberg and D.P. Williamson, 1998. Unpublished Note.

[117] J.M. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1996.

[118] B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer
Verlag, Berlin, 3rd edition, 2008.

[119] G. Kortsarz, R. Krauthgamer, and J.R. Lee. Hardness of Approximation for Vertex-
Connectivity Network Design Problems. SIAM Journal on Computing, 33(3):704–720, 2004.
Preliminary version in Proceedings of the 5th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX), 185–199, 2002.

[120] G. Kortsarz and Z. Nutov. Approximating k-node Connected Subgraphs via Critical Graphs.
SIAM Journal on Computing, 35(1):247–257, 2005. Preliminary version in Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC), 138–145, 2004.

221

[121] G. Kortsarz and Z. Nutov. Approximating Minimum Cost Connectivity Problems. In T.F.
Gonzalez, editor, Handbook of Approximation algorithms and Metaheuristics. CRC Press,
2007.

[122] G. Kortsarz and Z. Nutov. Approximating Some Network Design Problems with Node Costs.
In Proceedings of the 12th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX), pages 231–243. Springer, 2009.

[123] M. Kriesell. Edge-Disjoint Trees Containing Some Given Vertices in a Graph. Journal of
Combinatorial Theory, Series B, 88(1):53–65, 2003.

[124] L.C. Lau. Packing Steiner Forests. In Proceedings of the 11th International Conference on
Integer Programming and Combinatorial Optimization (IPCO), pages 362–376, 2005.

[125] L.C. Lau. An Approximate Max-Steiner-Tree-Packing Min-Steiner-Cut Theorem. Combi-
natorica, 27(1):71–90, 2007. Preliminary version in Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 61–70, 2004.

[126] L.C. Lau, J.S. Naor, M.R. Salavatipour, and M. Singh. Survivable Network Design with
Degree or Order Constraints. In Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 651–660, 2007.

[127] L.C. Lau, J.S. Naor, M.R. Salavatipour, and M. Singh. Survivable Network Design with
Degree or Order Constraints. SIAM Journal on Computing, 39(3):1062–1087, 2009.

[128] E.L. Lawler, A.H.G. Rinnooy Kan, J.K. Lenstra, and D.B. Shmoys, editors. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons Inc,
1985.

[129] L. Lovász. On Some Connectivity Properties of Eulerian Graphs. Acta Mathematica Hun-
garica, 28(1):129–138, 1976.

[130] W. Mader. A Reduction Method for Edge-Connectivity in Graphs. Annals of Discrete
Mathematics, 3:145–164, 1978.

[131] T.L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and Solving the Two-Facility
Capacitated Network Loading Problem. Operations Research, 43(1):142–157, 1995.

[132] Karl Menger. Zur Allgemeinen Kurventheorie. Fundamenta Mathematicae [In German],
10:96–115, 1927.

[133] A. Meyerson, K. Munagala, and S. Plotkin. Cost-Distance: Two Metric Network Design.
SIAM Journal on Computing, 38(4):1648–1659, 2008. Preliminary version in Proceedings of
the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 383–388,
2000.

[134] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[135] V. Nagarajan and R. Ravi. Poly-logarithmic Approximation Algorithms for Directed Vehicle
Routing Problems. In Proceedings of the 10th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 257–270, 2007.

222

[136] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization, chapter Section
II.6.4. Wiley-Interscience Series In Discrete Mathematics And Optimization. John Wiley and
Sons, 1988.

[137] Z. Nutov. A Note on Rooted Survivable Networks. Information Processing Letters,
109(19):1114–1119, 2009.

[138] Z. Nutov. An Almost O(log k)-Approximation for k-Connected Subgraphs. In Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 912–921,
2009.

[139] Z. Nutov. Approximating Minimum Cost Connectivity Problems via Uncrossable Bifamilies
and Spider-Cover Decompositions. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 417–426, 2009.

[140] F. Ortega and L.A. Wolsey. A Branch-and-Cut Algorithm for the Single-Commodity, Unca-
pacitated, Fixed-Charge Network Flow Problem. Networks, 41(3):143–158, 2003.

[141] R. Ramaswami and K.N. Sivarajan. Optical Networks: A Practical Perspective. Morgan
Kaufmann, 2nd edition, 2002.

[142] R. Ravi, R. Sundaram, M. Marathe, D. Rosenkrantz, and S. Ravi. Spanning Trees: Short
or Small. SIAM Journal on Discrete Mathematics, 9(2):178–200, 1996. Preliminary version
in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
546–555, 1994.

[143] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing, 27(3):763–803, 1998.
Preliminary version in Proceedings of the 27th Annual ACM Symposium on Theory of Com-
puting (STOC), 447–456, 1995.

[144] N. Robertson and PD Seymour. Graph Minors:: XVII. Taming a Vortex. Journal of Com-
binatorial Theory, Series B, 77(1):162–210, 1999.

[145] M.A. Safari and M. Salavatipour. A Constant Factor Approximation for Minimum λ-Edge-
Connected k-Subgraph with Metric Costs. In Proceedings of the 11th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
233–246, 2008.

[146] FS Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the Single-Sink Link-
Installation Problem in Network Design. SIAM Journal on Optimization, 11(3):595–610,
2001.

[147] P.D. Seymour. Nowhere-Zero 6-flows. Journal of Combinatorial Theory, Series B, 30(2):130–
135, 1981.

[148] T.E. Stern and K. Bala. Multiwavelength Optical Networks: A Layered Approach. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[149] K. Talwar. The Single-Sink Buy-at-Bulk LP Has Constant Integrality Gap. In Proceedings of
the 9th International Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 475–486, 2002.

223

[150] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications. Society for Industrial Mathematics, Philadelphia PA, 2001.

[151] J.N. Tsitsiklis. Special Cases of Traveling Salesman and Repairman Problems with Time
Windows. Networks, 22(3):263–282, 1992.

[152] V.V. Vazirani. Approximation Algorithms. Springer Verlag, Berlin, 2001.

[153] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, 2nd
edition, 2001.

[154] D.P. Williamson, M.X. Goemans, M. Mihail, and V.V. Vazirani. A Primal-Dual Approxi-
mation Algorithm for Generalized Steiner Network Problems. Combinatorica, 15(3):435–454,
1995. Preliminary version in Proceedings of the 25th Annual ACM Symposium on Theory of
Computing (STOC), 708–717, 1993.

[155] L.A. Wolsey. Faces for a Linear Inequality in 0–1 Variables. Mathematical Programming,
8(1):165–178, 1975.

[156] Hehui Wu and Douglas B. West. Packing of Steiner Trees and S-connectors in Graphs.
Unpublished manuscript, 2010.

224

	List of Tables
	List of Figures
	List of Symbols
	Chapter 1 Introduction
	Connectivity and Network Design
	Preliminaries: Approximation Algorithms
	Optimization Problems and Approximation Algorithms

	Thesis Contributions and Organization
	Orienteering and Related Problems
	Constructing and Pruning 2-Connected Graphs
	A Graph Reduction Step Preserving Element-Connectivity
	Single Sink Network Design with Vertex-Connectivity Requirements
	Capacitated Network Design

	Chapter 2 The Orienteering Problem
	Introduction
	Related Work

	Preliminaries and Notation
	From k-Stroll to Orienteering, via Min-Excess:

	A (2+)-Approximation for Undirected Orienteering
	From k-Stroll to Min-Excess
	The Proof of Theorem 2.12

	Orienteering in Directed Graphs
	Orienteering with Time Windows
	The General Framework
	The Algorithms
	Towards a Better Approximation, and Arbitrary Endpoints

	Concluding Remarks

	Chapter 3 Finding 2-Connected Subgraphs of a Prescribed Size
	Introduction
	Overview of Technical Ideas

	An O(log)-Approximation for the Dens-2VC Problem
	Finding Low-Density Non-Trivial Cycles
	An Algorithm to Find Cycles of Average Density
	A Strongly Polynomial-Time Algorithm to Find Cycles of Average Density

	Pruning 2-Connected Graphs of Good Density
	The Algorithms for the k-2VC and Budget-2VC Problems
	Concluding Remarks

	Chapter 4 Element-Connectivity and Packing Disjoint Steiner Trees and Forests
	Introduction
	A Graph Reduction Step Preserving Element-Connectivity
	Overview of Results and Technical Ideas
	Related Work

	The Reduction Lemma
	Packing Steiner Trees and Forests in General Graphs
	Packing Steiner Trees and Forests in Planar Graphs
	The Proof of Lemma 4.10
	Packing Steiner Forests in Planar Graphs

	Packing Trees in Graphs of Bounded Treewidth
	Concluding Remarks

	Chapter 5 Single-Sink Network Design with Vertex-Connectivity Requirements
	Introduction
	Related Work
	Overview of Results and Algorithmic Techniques:

	Connectivity
	An Element-Connectivity Based Proof of Lemma 5.2
	An LP-Based Bound on Augmentation Costs

	Rent-or-Buy
	The Augmentation Cost
	The Proof of Lemma 5.24
	The Proof of Lemma 5.23

	Buy-at-Bulk Network Design
	Non-Uniform Buy-at-Bulk

	Concluding Remarks

	Chapter 6 Capacitated Network Design
	Introduction
	Overview of Results
	Related Work

	The Cap-R-Connected Subgraph problem
	The Standard LP Relaxation and Knapsack-Cover Inequalities
	The Rounding and Analysis
	Capacitated-SNDP with Nearly Uniform Requirements
	The k-Way–R-Connected Subgraph Problem

	Hardness of Approximation for Capacitated-SNDP
	Integrality Gap with KC Inequalities
	Hardness of Approximation for Capacitated-SNDP in Undirected Graphs
	Hardness of Approximation in Directed Graphs

	Capacitated-SNDP with Multiple Copies of Edges
	An O(logk)-Approximation
	An O(logRmax)-Approximation

	Concluding Remarks

	Chapter 7 Conclusions
	References

