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Abstract 

Background

 

: Ovarian cancer has the highest mortality of all the gynecological cancers in women. 

It is the fifth leading cause of cancer death among women due to late stage clinical diagnosis 

when treatment options are less effective. An important limiting factor in the development of 

new and effective treatments is identification of a suitable animal model. Ovarian 

adenocarcinoma (OAC) occurs spontaneously in hens, as in women, and increases in prevalence 

with age. Ovarian adenocarcinoma in women and hens have similar histologic features, 

biomarker staining and epidemiological characteristics. Recently, human endogenous 

retroviruses (HERVs) have been shown to be associated with ovarian cancer in women. Hens 

also have endogenous retroviruses, notably Avian Leukosis Virus E (ALV-E). The link between 

ALV-E and OAC in hens has not been adequately investigated. ALV infection in hens can be 

diagnosed by detecting ALV antigen in serum using an antigen-capture ELISA. However, this 

test does not distinguish endogenous ALV-E from exogenous ALV subgroups. ALV-E can be 

specifically identified by detecting expression of Eenv in RNA isolated from tissues.  

Hypotheses: 1.The prevalence of ALV, Eenv mRNA expression, and OAC in aged birds in the 

University of Illinois Urbana-Champaign (UIUC) Poultry Research Laboratory laying flock is > 

5%. 2. Birds that have OAC are at increased risk of being positive for ALV by antigen capture 

ELISA than those that do not have OAC. 3. Birds that have OAC are at increased risk of 

manifesting expression of Eenv mRNA in their spleen than those that do not have OAC. 

Animals: 177 White Leghorn hens of three different age groups: 104 weeks old, 130 weeks old 

and ≥ 165 weeks old 

Methods: Hens were stratified by age and then randomly selected. Blood was withdrawn via 

jugular or cardiac venipuncture and the hens were humanely euthanized in a carbon dioxide 
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chamber and immediately necropsied. Tissues harvested included ovaries, spleens and any gross 

lesions. Tissues were fixed in 10% buffered formalin for histopathology. Serum was used to 

conduct the ALV ELISA and the spleen was used to extract RNA and perform RT-PCR to detect 

ALV-Eenv mRNA expression. 

Results: The overall prevalence of OAC was 22.6% with significant associations between OAC 

and age, and ALV and age. Hens with OAC were 5.2 times more likely to be ALV positive than 

hens without OAC, and hens with OAC in the 165-week age stratum were also 5.2 times more 

likely to be ALV positive then hens without OAC in this age stratum. ALV-Eenv mRNA 

expression was not uniformly expressed across the three age strata; there was a tendency for 

older hens and hens with OAC to be more likely to express ALV-Eenv mRNA. ALV-Eenv 

mRNA expression was associated with an increased risk of being ALV positive. Older hens and 

hens with OAC were more likely to express ALV-Eenv mRNA. 

Conclusions: This is the first time a viral infection has been associated with OAC in hens. 

Endogenous ALV-E in hens may be analogous to the HERV’s, which have been associated with 

OAC in women.  Since the risk of ALV, Eenv mRNA expression, and OAC all increased with 

age, additional studies are needed to determine causal relationships.  
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Chapter 1.  Introduction 

Ovarian cancer has had a devastating effect on women. In 2009, ovarian cancer 

was responsible for approximately 14,600 deaths and 21,550 new cases1 in the United 

States of America (USA). It is estimated that one in every 71 women will develop ovarian 

cancer with an overall lifetime risk of 1.5%2. Although ovarian cancer accounts for only 

5% of all cancers in women in the USA3, it has the highest mortality of all cancers of the 

female reproductive system4, and is the 5th leading cause of cancer death among 

women3, with a case fatality rate of approximately 68%3. Annual treatment costs for 

ovarian cancer in the USA are estimated to be $ 2.2 billion1.  

An important limiting factor in the development of new and effective treatments 

for ovarian cancer is the identification of a suitable animal model.  Women develop 

ovarian adenocarcinoma (OAC) spontaneously, which rarely occurs in most species 

except for rodents and chickens.  Various strains of mice and rats will spontaneously 

develop ovarian tumors of a wide variety of histological subtypes5, but do so at a very 

low prevalence and late in life. For this reason, these species are most often induced to 

develop OAC for research5. The laying hen develops OAC at a much higher prevalence 

with similar histologic features, biomarker staining and epidemiological characteristics to 

OAC in women and therefore can be used as a practical model without a need for 

artificial induction of the tumor. Recently, human endogenous retroviruses (HERVs) 

have been shown to be associated with ovarian cancer in women6. No viral risk factor 

thus far has been shown in hens to cause OAC. Avian Leukosis Virus subgroup E (ALV-

E) is an endogenous retrovirus of chickens that is considered to be non-pathogenic. 

However, with the discoveries of HERV’s and their association with OAC in women, we 
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hypothesize that ALV-E may be analogous to HERVs, in that HERVs can be considered 

potential risk factors for ovarian oncogenesis. The Avian Leukosis group of viruses is 

well documented as being associated with a variety of oncogenic disorders, such as B-cell 

lymphoma/leukemia, erythroleukemia (erythroblastosis), myeloid leukemia 

(myeloblastosis or myelocytomatosis) and connective tissue tumors (fibrosarcoma, 

nephroblastoma, etc.)7-9. Recently, the emergence of exogenous infectious ALV-J has 

been shown to actually be a re-emergence of an endogenous strain of ALV-J (ev/J 4.1 

Rb)10. These findings, coupled with the finding that 2% of the chicken’s genome is 

comprised of endogenous retroviral DNA, with 11 new families of these viruses recently 

discovered11, indicates that  further investigation is needed  to determine the relationship 

between ALV-E  (and other ERV) and OAC. If there is a relationship, then this 

relationship will further augment the application of the hen as a model for OAC in 

humans. 

 The specific objectives of this thesis research project were: 

1. To determine the prevalence of OAC in aged birds in the UIUC poultry 

research laboratory laying flock. 

2. To determine the association between ALV and OAC in aged birds in the 

UIUC poultry research laboratory laying flock 

3. To determine the association between expression of ALV-E encoded mRNA 

and OAC in aged birds in the UIUC poultry research laboratory laying flock. 

1. The prevalence of ALV, ALV-Eenv mRNA expression, and OAC in aged 

birds in the UIUC poultry research laboratory laying flock is > 5%. 

Hypotheses 
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2. Birds with OAC are at increased risk of being positive for ALV  

3. Birds with OAC are at increased risk of manifesting expression of ALV- Eenv 

mRNA in their spleen than those that do not have OAC. 
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Chapter 2.  Literature Review 

Introduction  

 Ovarian cancer has had a devastating effect on women. The National Cancer 

Institute estimated that in the USA in 2009 there were 21,550 new cases of ovarian 

cancer diagnosed and 14,600 deaths due to ovarian cancer1.  One in every 71 women will 

develop ovarian cancer during their lifetime2. Although ovarian cancer accounts for only 

5% of all cancers in women in the USA3, it has the highest mortality of all cancers of the 

female reproductive system4.   With a case fatality rate of approximately 68%3, ovarian 

cancer is the 5th leading cause of cancer death among women3.  Annual treatment costs 

for ovarian cancer in the US are estimated to be $ 2.2 billion1.   

One important limitation for the development of new and effective treatments for 

ovarian cancer is the identification of a suitable animal model.  Spontaneous occurrence 

of OAC is rarely seen in most species.  Various strains of mice and rats will 

spontaneously develop ovarian tumors of a wide variety of histological subtypes5. 

Spontaneous onset of OAC in rodents typically begins at a later age and the rate of 

occurrence is very low5 making them suboptimal as models for experimental study of 

ovarian cancer in humans. One proposed explanation for this stems from the fact that 

ovarian carcinoma is associated with frequent ovulation12.  Adult female animals of most 

species, whether domestic or wild, are either persistently pregnant, lactating or seasonally 

anestrus.  These physiological states are not associated with ovulation and ovarian 

cancer13.   The domestic hen is an exception. 
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Hens show many similarities to humans related to the development of OAC. 

Hens, like women, are persistent ovulators and ovulate repeatedly for many years.  

Previous researchers have reported a 4% prevalence of spontaneous development of OAC 

in 2-yr-old hens14.  This prevalence increases with age15-17. Both women and hens 

normally have simple, squamous to cuboidal epithelium covering the ovarian surface, 

with epithelial cells demonstrating nuclear staining for progesterone receptors (PR)13. In 

both species, cells of ovarian tumors stain strongly for cytokeratin (marker for epithelial 

cells) and proliferating cell nuclear antigen (PCNA) (an indicator of mitotic activity)13. 

Epidemiologic data suggest that progesterone may confer some protection from ovarian 

cancer in women18, and treatment with progestin in hens has been correlated with a 

reduced incidence of the disease14. 

It is because of these similarities to women that several studies have used 

domestic hens as a research model for human OAC13,15,17,19,20. Human endogenous 

retroviruses have recently been associated with OAC in women6 and raise the possibility 

that endogenous retroviruses may also be associated with OAC in hens.  This literature 

review will compare and contrast the pathology and pathogenesis of OAC in women and 

hens, with particular attention to the current literature on the potential role of reverse 

transcribing retroviruses in OAC in both women and hens. 

 

Ovarian Adenocarcinoma: Pathology and Pathogenesis in Hens: Laying hens possess 

only one functional ovary – the left ovary (Figure 1), with the right ovary and oviduct 

regressing during embryonic development. In the normal laying hen, the ovary contains a 

hierarchy of pre-ovulatory follicles with the largest yolk- filled follicle (F1) destined to 
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ovulate first, and the second largest (F2) to ovulate the following day22.  Also observed 

on the normal ovary will be a number of small white and large yellow follicles.  

A normal healthy hen’s ovary has a layer of squamous to cuboidal epithelial cells 

on the surface13. The earliest histologically detectable structures of OAC, according to 

Fredrickson15, are small groups of cells forming round acini, either in the ovarian stroma 

or growing near or within the theca externa. In some cases, early acini somewhat 

resemble thecal gland cells. Individual acini often enlarge to line slit-like spaces, or a 

cribriform pattern may predominate.  In some tumors, individual acini are separated by 

wide bands of dense fibrous connective tissue. A characteristic of all forms of OAC is a 

single layer of low columnar or cuboidal cells surrounding lumens. Giles19 reported that 

ovarian tumors in hens were often composed of columnar or high cuboidal epithelial cells 

with basally situated nuclei and abundant eosinophilic cytoplasm. The nuclei were 

vesicular with prominent nucleoli in some areas. These cells tended to form nests as well 

as glands of various sizes, often accompanied by a desmoplastic reaction.  There were 

also atypical cells resembling squamous epithelial cells.  

  Ultrastructurally, the layer of cells surrounding the lumens of tubules and acini 

forms a tight adherent ring of cells joined along their apical borders by prominent 

desmosomes.  A prominent feature is the presence of short microvilli projecting into the 

acinar lumen, which contains a variable amount of moderately electron-dense material. 

The tumor may also contain groups of darkly staining cells within the ovarian stroma or 

loose clusters of cells attached to the cortical surface. Such cells appear to have 

undergone degeneration, with formation of cytoplasmic vacuoles and densely osmophilic, 

irregularly shaped cytoplasmic inclusions. Glandular forms of the tumor are also seen. 
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Infrequently nests of cells appear to have undergone some degree of squamous 

metaplasia, with intervening areas containing structures similar to acini with transitional 

forms in adjacent areas15.  Hens may also develop granulosa cell tumors and Sertoli cell 

tumors, but these occur less commonly.  

The normal ovulatory cycle consists of a follicular phase compressed into a 25-

27-hr period. During this brief period, subtle and stringently regulated release of 

gonadotropins (follicle stimulating hormone (FSH) and luteinizing hormone (LH))   

promote follicular development and maturation which culminate in ovulation22. During 

this period there is a decrease in FSH receptors in the ovarian granulosa cells with a 

concomitant increase of LH responsiveness of these cells. Many commercial strains of 

laying hens will ovulate almost daily through 1 or 2 years of egg production.   

Fredrickson15 classified ovarian tumors in the hen into 4 stages depending on their 

gross characteristics. In stage 1, the growths are nodular, very firm, white and closely 

resemble atretic follicles. Ovarian adenocarcinomas tend to be less symmetric than atretic 

follicles and may be buried within the ovarian stroma or growing on the surface of 

follicles (Figure 2). In stage 2, the growths increase in size and coalesce so that the ovary 

takes on the appearance of a cauliflower, and loses its maturing follicles. It is these 

ovaries that seed the abdominal cavity with tumor cells. When large numbers of 

individual foci grow on serosal surfaces of the oviduct, mesentery, intestines, and 

pancreas, the patient is at stage 3. In stage 4, growth of implanted cells appears to be 

rapid, with pronounced reaction of the muscularis of the oviduct and intestine.  The 

sequelae are contraction of the mesentery, bowel wall thickening, and ascites. As much as 

500mL of fluid may be present in the coelomic cavity. Cystic structures, filled with clear 



 8 

to translucent, amber-colored fluid can project from the surface of the ovary. 

Fredrickson15 reported that these cysts are not tumorigenic but are associated with the 

development of OAC. 

More recently, Barua23 applied the tumor staging system used in women in 

accordance with the International Federation of Gynecology and Obstetrics (FIGO, Rio 

de Janeiro, 1988) to ovarian tumors of the hen. In stage I, the tumors were confined to the 

ovary, firm, and resembled cauliflower-like nodules with no or minimal accompanying 

ascites. In stage II, tumors had metastasized to the oviduct with occasional seeding of the 

pelvic sidewall and moderate ascites, and in stage III, tumors had metastasized to both 

abdominal and peritoneal organs including the small and large intestine, mesentery, 

abdominal undersurface of the diaphragm, and surface of the liver and there was 

moderate to profuse ascites. Lastly, in stage IV, there was evidence of carcinomatosis and 

massive ascites, and tumors had metastasized to most of the pelvic, abdominal, and 

thoracic organs including liver, spleen, and lung.  

 

Ovarian Adenocarcinoma: Pathology and Pathogenesis in Humans. The ovaries in 

women are paired, and the surface is generally smooth in early reproductive life, 

becoming more convoluted as the person ages1. In women, ovarian surface epithelium 

(OSE) covers the entire ovarian surface and varies morphologically from simple 

squamous to cuboidal to low pseudostratified columnar24. Embryologically derived from 

the mesodermal epithelium of the gonadal ridges, OSE cells are continuous with the 

flattened mesothelium of the peritoneum25 and are separated from the underlying stromal 

compartment of the ovary by a basement membrane. 
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 The process of ovulation is controlled by the hypothalamus through the release of 

gonadotropin releasing hormone (GnRH) from the hypothalamus, which stimulates the 

anterior lobe of the pituitary gland to secrete LH and FSH. In the follicular (pre-

ovulatory) phase of the menstrual cycle, the ovarian follicle undergoes a series of 

transformations that is stimulated by the secretion of FSH. Ovulation is triggered by a 

spike in the amount of LH released from the pituitary gland. Ovulation occurs during the 

follicular phase of the menstrual cycle, and is the transitionary period from the follicular 

phase into the luteal phase. This process (menstrual cycle) is 28 days in women.   

There are three major groups of ovarian tumors that occur in women.  The most 

commonly occurring type is epithelial derived tumors (85-90% of cases)26,  with germ 

cell and stromal tumors being less common. Stromal tumors tend to occur in younger 

women. Invaginations of the epithelium result in crypts or gland-like structures that can 

become pinched off to form epithelial inclusion cysts within the underlying stromal 

compartment27. This process may occur following the postovulatory proliferation of OSE, 

during follicular attrition, and/or as a result of inflammation caused by carcinogens or 

chemical irritants like talcum powder28. The incidence of inclusion cysts increases with 

advancing age and is common in postmenopausal women. Although generally benign in 

nature, these epithelial rearrangements are widely thought to be the potential origin of 

many epithelial cancers. The more frequent appearance of epithelial invaginations and 

inclusion cysts in women with a hereditary risk of ovarian cancer has strengthened this 

hypothesis29. In addition, some microscopic borderline malignant and malignant tumors 

have been observed to arise directly within these sites of epithelial rearrangements, and 

are often associated with dysplasia in the same or contralateral ovary30-31.  
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According to the "incessant ovulation hypothesis", continuous ovulation, with its 

repeated rounds of surface rupture and OSE cell mitosis to repair the wound, renders the 

cells susceptible to malignant transformation12. Godwin et al32and Roby et al33 

demonstrated evidence supporting this theory by illustrating the susceptibility of OSE 

cells to mutagenic events during mitosis in primary cultures of normal rat and mouse 

OSE cells which had been repeatedly subcultured to maintain continued proliferation. 

These cells acquired features associated with malignant transformation, including loss of 

substrate-independent growth, loss of contact inhibition, and the ability to form tumors in 

nude mice. Epidemiologic studies support the hypothesis by revealing that a decrease in 

the number of ovulations reduces the risk of ovarian cancer 18,34-35.   

Kurman and Shih36 proposed a new model for the pathogenesis of OAC based on 

clinical, pathological and molecular genetics by dividing ovarian tumors into two broad 

groups, designated Type I and Type II. Type I tumors are slow growing and generally 

confined to the ovary at diagnosis. They develop from well established precursor lesions 

that are termed “borderline” tumors. Type I tumors include serous carcinoma, mucinous, 

endometrioid, clear cell, and low-grade micropapillary carcinomas. They are genetically 

stable tumors and are characterized by mutations in a number of different genes including 

KRAS, BRAF, PTEN, and beta-catenin. In contrast, Type II tumors are rapidly growing, 

highly aggressive neoplasms for which well defined precursor lesions have not been 

described. The vast majority of what is considered “ovarian cancer” belongs to the Type 

II category. Tumors in this category include high-grade serous carcinoma, malignant 

mixed mesodermal tumors (carcinosarcomas), and undifferentiated carcinomas.  
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Recent development of molecular biomarkers has enhanced detection and 

prognosis of ovarian cancers in women. The following biomarkers are present in human 

OAC and also stained OAC in hens. These biomarkers include antibodies that detect 

cytokeratins (AE1/AE3, pan cytokeratin), growth factor receptors (EGFR, erbB-2) and 

oncofetal tumor markers (Lewis Y, CEA and Tag 72). More specifically, epidermal 

growth factors (EGFR, erbB-2) and p185 (a product of a proto-oncogene) stained tumor 

cells diffusely, while cytokeratins AE1/AE3 and pan cytokeratin and the onco-fetal tumor 

markers were focally positive in the tumor. Antibodies against proliferating cell nuclear 

antigen (PCNA- a proliferation marker), transforming growth factor alpha (TGF-α- an 

activating ligand present on the epidermal growth factor receptor), and p27 (a cell cycle 

inhibitor) have stained hen OAC and have been useful as surrogate endpoints in 

chemoprevention trials in women17. Biomarker antibodies for OAC in women that were 

not cross-reactive in the hen included CA 125, Ki-67, and Muc 117. 

CA 125 (cancer antigen or carbohydrate 125), also known as MUC16, is a protein 

that is most commonly expressed by the female reproductive tract (ovaries, endometrium, 

fallopian tubes), lungs, breast and gastrointestinal tract. Elevated levels of CA125 in the 

blood of some patients have been associated with specific types of cancers, but it is best 

known as a biomarker for ovarian cancer. However, its elevation is not exclusive to 

tumors as it can also be elevated in benign conditions such as endometriosis37 and 

pregnancy38. Up to 20% of OAC cases do not express CA 12539.  Ki-67 is a marker 

strictly for cell proliferation, but it is also found in normal tissues. However, the fraction 

of Ki-67 positive tumor cells (known as the Ki-67 labelling index) is mostly associated 

with carcinomas of the prostate and breast. Lastly, Muc 1 is a mucin that penetrates 
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membranes of epithelial cells, and protects the body from infection by binding to 

pathogens.  Over-expression, aberrant intracellular localization and changes in 

glycosylation of Muc1 have been associated with carcinomas especially of the colon40.     

Another protein of interest is ovalbumin, which is the major protein formed in 

normal oviductal tissue of hens. Giles et.al19 found that hens diagnosed with 

adenocarcinoma of the ovaries expressed ovalbumin in the ovary.  They reported the 

presence of ovalbumin in 100% of hen ovaries with OAC in the absence of any oviductal 

involvement. This finding suggests that ovarian tumors may de-differentiate during the 

disease process and acquire characteristics of Mullerian duct-derived epithelia, a 

phenomenon that has also been described in women41. Thus, in this respect, ovarian 

tumors in the hen, and epithelial derived OAC in women show similar behavior, further 

supporting the claim that the laying hen is a good model for OAC in women. 

 

Epidemiology of Ovarian Adenocarcinoma. Several specific risk factors have been 

identified for OAC in women. Inherited gene mutations, such as mutations of BRCA1 

and BRCA2, were originally identified in families with multiple cases of breast cancer. 

However, women with these mutations also have a significantly increased risk of 

developing OAC.  Other risk factors include a family history of OAC not due to any 

known gene alterations, and a personal history of breast cancer. Age has also proven to 

be a significant risk factor, in that OAC develops most often in postmenopausal women, 

with the risk increasing with age into the late 70’s. Women who have had at least one 

pregnancy or have used oral contraceptives have lower risks of developing OAC. 

Infertility increases the risk of OAC, whether due to the pathology that led to infertility or 
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due to the use of fertility drugs. Hormone replacement therapy (HRT) in postmenopausal 

women, especially with estrogen-only therapies42, increases the risk of OAC. Being obese 

also increases both the risk of OAC and the aggressiveness of the tumors. The use of 

androgens, such as danazol43 which is used to treat endometriosis, may be linked to an 

increased risk of OAC.    

Limited work has been done, however to identify risk factors for OAC in hens.  

One OAC risk factor that hens have in common with women is age.  Previous reports 

indicate that the prevalence of OAC in hens increases with bird age14-17. Chickens with 

higher plasma estradiol concentrations and larger ovaries were at significantly increased 

risk for OAC44.  In addition to the known risk factors for OAC in hens, genetics, flock 

husbandry and management practices, and history of exposure to pathogens should all be 

explored as potential risk factors. If additional risk factors are identified for hens, related 

factors could be investigated for women. These may be important determinants of the 

appropriateness of the hen as a human OAC research model. 

 

Oncogenic Viruses. The occurrence of a viral infection and the subsequent development 

of cancer is not new.  There are several examples in medicine of viral infections that 

induce cancer.    Examples include: Bovine and Feline Leukemia Viruses, Rous Sarcoma 

Virus, Marek’s Disease Virus, and Avian Leukosis Virus (ALV). In people, Human 

Papilloma Virus, Hepatitis Virus, Epstein-Barr Virus, Human Immunodeficiency Virus-1, 

and Human T-cell Lymphotropic Virus are all associated with the development of cancer.   

 Recently, human endogenous retroviruses (HERVs) have been identified as being 

associated with OAC.  Wang-Johanning and colleagues6 reported that the expression of 
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HERV-K env mRNA was greater in ovarian epithelial tumors than in normal ovarian 

tissues.  In addition, other classes of HERVs were also detected in the same ovarian 

cancer tissues.   

 Viruses, particularly retroviruses, can contribute to oncogenesis by transduction 

of oncogenes, Cis and Trans activation of host genes, direct stimulation of cell growth by 

viral envelope proteins or retrovirus-mediated immunosuppression9. The polymerase 

(pol) region of the retrovirus is responsible for encoding the viral enzymes required for 

replication, e.g. reverse transcriptase for  transcription of viral RNA into DNA, RNAse 

for removal of the RNA strand from the RNA-DNA double strand, integrase for 

integration of the virus into the host cell genome, and protease for proteolytic cleavage of 

the primary translation products9.  The specific pathogenesis of several viral induced 

cancers has been described in detail in the literature.  

 Bovine Leukemia Virus (BLV) is a C-type oncogenic retrovirus belonging to the 

deltaretrovirus genus. It affects cattle and sheep and leads to a neoplastic proliferation of 

polyclonal B lymphocytes in a disease known as bovine enzootic leukosis. It is mainly 

horizontally transmitted via mechanical blood transfer. It is thought to induce 

oncogenesis by way of the viral Tax protein, which functions as a transcription factor 

regulating the expressions of both viral and host genes. 

 Feline Leukemia Virus (FeLV) belongs to the gammaretrovirus genus and 

includes three genotypes: FeLV A, B, and C. It affects cats and is spread by both vertical 

and horizontal transmission. It causes aplastic anemia, immunodeficiency syndrome, T-

cell lymphoma and myeloid leukemia. The determinants of oncogenicity have been 

mapped to the U3 region of the long terminal repeat (LTR)9. 
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  Rous Sarcoma Virus belongs to the alpharetrovirus genus and affects chickens. 

The Rous Sarcoma Virus (RSV) genome has terminal repeats enabling its integration into 

the host genome and also over-expression of its genes69. The src gene is oncogenic and it 

triggers uncontrolled growth in abnormal host cells. It is an acquired gene, found to be 

present throughout the animal kingdom with high levels of conservation among species69. 

The src gene is taken up by RSV and incorporated into its genome conferring it with the 

advantage of being able to stimulate uncontrolled mitosis of host cells, providing 

abundant cells for fresh infection. The src gene is not essential for RSV proliferation but 

it greatly increases virulence when present69. 

 Viral hepatitis-induced hepatic cancer in humans is caused by chronic infection 

with hepatitis B and C, which are horizontally transmitted. Hepatitis B is caused by a 

hepdna virus (a DNA virus), and Hepatitis C is caused by a hepacivirus (an RNA virus)70.  

Both viruses induce cancer by causing mutations in the p53 gene70.  

 Like BLV, human T-cell lymphotropic virus (HTLV-1, Adult T-cell Leukemia, 

tropical spastic paraparesis) belongs to the deltaretrovirus genus. It affects humans and is 

transmitted by breast feeding, sexual contact, and transfusion of contaminated blood71. 

There are three main subtypes: acute, which has a poor prognosis, and chronic and 

smoldering, both of which have guarded prognoses. Its oncogenicity is primarily 

attributed to the action of the viral Tax protein, which regulates viral gene transcription 

by interacting with enhancer elements of the U3 region of the viral 5’ LTR45. Tax is also 

responsible for regulating other cellular genes, thus impairing cellular homeostasis 46-47. 

 It has been theorized that endogenous retroviruses, were once harmful, infectious 

retroviruses that became established in the genome. Endogenous retro viruses have a 
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similar structure to infectious retroviruses. The Murine Leukemia Virus (MLV) for 

example has the typical genome structure of simple retroviruses, of which there are 4 

genes: gag - encodes the viral core structural proteins; pro - encodes the viral protease; 

pol - encodes the viral enzymes including reverse transcriptase; and env which encodes 

the glycoproteins of the viral envelope.  

The retroviral genome is bounded at each end by long terminal repeats (LTRs) 

that regulate viral gene transcription. Each LTR contains unique 3’ (U3), repeat (R) and 

unique 5’ (U5) elements. ‘Unique’ refers to the sequences being only at one end (3’ or 5’) 

of viral genomic RNA, whereas U3 and U5 are present at both ends of proviral DNA. 

The repeat is a short sequence (15–250 nucleotides) repeated at the 3’ and 5’ ends of both 

viral genomic RNA and proviral DNA. The primer-binding site (PBS) is close to the 50 

LTR and is used by a specific transcription RNA (tRNA) molecule to initiate reverse 

transcription. Proviruses were disabled by mutations inhibiting the expression of proviral 

genes, causing them to evolve into harmless “junk” DNA over thousands of years48. 

Infectious retroviruses stimulate the cells in which they are expressed and enable the 

virus to evade an immune response by producing several accessory proteins that aid viral 

replication. Endogenous retroviruses possess the potential to express similar proteins and 

thus can become pathogenic. They can induce pathology in three ways. They can alter the 

immune system by suppressing it or stimulating it, by expressing accessory proteins that 

can directly affect infected cells, or they can disrupt genes at the integration sites48. 

Moyes et. al 48 proposed that genetic polymorphisms may be the answer as to how genes 

can cause disease in certain populations. They theorize that HERVs have polymorphisms 

that could affect the function of an expressed product. Insertionally polymorphic HERVs 
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are proviruses that are present only in a proportion of the human population. They are 

more likely to be pathogenic because their recent insertion might disrupt host genes, as 

the enhancer elements of retroviral LTRs can influence expression of neighboring 

cellular genes; as recent integrations, polymorphic HERVs are more likely to have 

retained functional coding sequences with the capacity to modulate cellular proliferation 

or the immune response48.  

 Denesvre10 demonstrated successfully the high sequence homologies and similar 

functional properties between endogenous ALV-J (ev/J 4.1 Rb) and ALV-J (exogenous 

infectious virus). This indicated that that the recent emergence of exogenous infectious 

ALV-J viruses is most likely due to re-combinational insertion of the ev/J endogenous 

sequences. They were also able to demonstrate that both the endogenous ev/J 4.1 Rb and 

exogenous ALV-J exhibited complete and full reciprocal interference to superinfection, 

indicating that they shared the same receptor. This may also be a possibility for ALV-E 

or other endogenous viruses in the chicken genome.  Huda11 found 11 new families of 

endogenous retroviruses in the Gallus Gallus genome. These new families occupy about 

2% of the chicken genome. These endogenous viruses can interact with any number of 

events to cause disease. ALV-E may be just one of them.   

 Although laying hens develop OAC with histologic features and epidemiological 

characteristics that are consistent with human OAC, an association with a viral risk factor 

similar to that found in humans has yet to be established in hens.  Fredrickson15 

conducted  a 3.5 year study that investigated the incidence of reproductive tract neoplasia 

in specific pathogen free (SPF) White Leghorn flocks and discovered that 32%  (149 of 

466) developed ovarian tumors, with 8% (39) being oviductal tumors and 5% (22) being 
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benign leiomyomas of the suspending ligament of the oviduct. Overall 45% of the birds 

had tumors of the reproductive tract. Occurrence was unusual in birds less than 2 years of 

age, and the dominant neoplasia type was malignant OAC (24%).   The hens used in this 

study were classified as free of ALV based upon the results of COFAL tests.  COFAL is 

a complement fixation test for detection of group specific ALV antigens49. However, 

interpretation of COFAL test results must consider that the COFAL test requires a large 

amount of antigen and may suffer from interference by other substances50.  When 

compared to other methods of ALV diagnosis, COFAL proved to be relatively insensitive 

and its findings did not correlate well with the other tests50.  These limitations in the 

validity of COFAL test results may be even more pronounced when attempting to detect 

endogenous ALV virus compared to the exogenous subtypes.  Fredrickson’s finding of a 

high prevalence of OAC in birds that were COFAL negative for ALV does not support 

the hypothesis that an endogenous ALV may be an important risk factor for OAC.  

However the validity of this conclusion is now questionable given the relative 

insensitivity of the test and its questionable ability to detect the endogenous virus.  As 

previously described, ALV has been associated with several types of sarcoma in 

chickens. 

 Avian Leukosis Virus was discovered in 1908 in Copenhagen9. The ALV are 

alpharetroviruses that are both horizontally and vertically transmitted.  The ALV env 

gene encodes a polyprotein that is processed into two glycoproteins: gp85env and 

gp37env. Variation in the nucleotide sequences of gp85env define the ALV subgroups A, 

B, C, D, and E 51-55. These subgroups cause neoplastic diseases such as B-cell 

lymphoma/leukemia, occasionally erythroleukemia (erythroblastosis) or myeloid 
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leukemia (myeloblastosis or myelocytomatosis).  Sporadically they may cause connective 

tissue tumors (fibrosarcoma, nephroblastoma, etc.)7-8. They act oncogenically through the 

mechanism of promoter/enhancer insertion or by transduction of an oncogene. Many 

currently known proto-oncogenes were first identified as parts of rapidly transforming 

ALVs (myc, myelocytoma; erb, erythroblastosis; myb, myeloblastosis; src,sarcoma, 

etc.)56. Subgroup J contains sequences homologous to both endogenous and exogenous 

viral elements56-58. ALV-J has been observed with increasing mortality in adult birds with 

myeloid leukosis and tumor infiltration and enlargement of the liver, spleen, kidneys and 

other organs13.  

  Oncogenic and exogenous Avian Leukosis/sarcoma groups A,B, C, and D are 

both horizontally and vertically transmitted in chickens,  whereas subgroup E viruses are 

described as non-oncogenic, endogenous viruses that are transmitted vertically  in  a non-

infectious form in a Mendelian fashion along with host genes 59-60. However, this 

characterization as non-oncogenic may need to be reconsidered in light of the recent 

discovery of multiple human endogenous retrovirus (HERV) envelope proteins in 

association with OAC in women6. The discovery of an analogous association between 

endogenous ALV-E and OAC in hens would further validate the chicken as a valid 

research model for human OAC. 

 The domestic hen is one of only a few species in which spontaneous OAC occurs 

at a prevalence similar to that seen in women.  Histopathologically, the tumors in hens 

and humans are very similar and similar tissue markers are expressed. Recently, Wang-

Johanning6 and colleagues reported a possible association between human endogenous 

retrovirus K (HERV-K) and OAC in women.  Expression of the HERV-K env mRNA 
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was greater in ovarian epithelial tumors than in normal ovarian tissues, and other classes 

of HERVs were also expressed in the same ovarian cancer tissues. An association was 

demonstrated, but no causal relationship has been established.  Identification of a 

retroviral etiologic agent responsible for the development of OAC would represent a 

major paradigm shift.  However, demonstration of a causal relationship between 

endogenous retroviruses and OAC will require experimental manipulation of a suitable 

animal model. It is plausible that endogenous retroviruses may be associated with OAC 

in domestic chickens, but no such association has been reported in the current literature.  

 Thus, the next logical step would be to identify a relationship between a viral risk 

factor, endogenous or otherwise, with OAC in hens. The current study examines the 

presence of ALV and expression of a partial gp85env for ALV-E as risk factors for OAC 

in hens.  
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Chapter 3.  Avian Leukosis Virus and Ovarian 

Adenocarcinoma in Hens 

Introduction 

 Laying hens spontaneously develop OAC with histologic features, biomarker 

staining and epidemiological characteristics similar to those seen in women.  These 

similarities have resulted in the hen being proposed as a suitable animal model for human 

OAC.  Recently, HERVs have been found to be associated with ovarian cancer in 

women6.  However, no viral risk factor has yet been identified in association with OAC 

in laying hens.  ALV-E is an endogenous retrovirus of chickens that maybe analogous to 

HERV’s in humans.  The identification of an association between OAC in hens and an 

endogenous retrovirus risk factor would further validate the use of the hen as a model for 

human OAC and facilitate research into the pathogenesis of OAC.  The goal of this study 

is to assess the association between OAC in laying hens and ALV infection in general 

and ALV subgroup E in particular. 

 
Materials and Methods  

Study Population: The study population was composed of 177 hens of > 100 weeks of 

age obtained from the UIUC Poultry Research Laboratory. This flock of laying hens 

consists of White Leghorn laying hens being reared in standard commercial caged-layer 

conditions.  There are three age strata of caged laying hens in the subset of the flock that 

is above 100 weeks of age: 104 weeks, 130 weeks and 165 weeks or older.  A pilot study 

was conducted to determine the prevalence of OAC and ALV in the flock.  Serology, 

bacteriology, necropsies, and histopathology were conducted on a sample of thirty 165 
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week old birds that had been selected to be culled from the flock.  The data obtained from 

the pilot study were used to establish the final sample size for the overall project.   

 Preliminary analysis of the data from the pilot study indicated that a total of 160 

birds would be required to detect an association between ALV seropositivity and OAC at 

80% power with 95% confidence.  Therefore, 147 hens from the UIUC Poultry Research 

Laboratory were obtained to supplement data from the 30 hens in the pilot study (total of 

177 hens). To ensure a representative sample of each age stratum, hens were selected 

using a random sampling technique. Laying hens at the UIUC Poultry Research 

Laboratory are housed in sections of cages with each section housing hens of the same 

age stratum. A random number list was generated in Microsoft Excel® that corresponded 

to the cage numbers. Each cage contained 4-6 hens of the same age. One hen was 

removed per cage.   A new random list was created for each sample collection session.  

Hens were transported to an on-farm necropsy room just prior to sampling. Blood was 

obtained via jugular or cardiac venipuncture. The blood was collected into anti-coagulant 

free glass tubes, using a 19- or 20-gauge 1-inch needle. Hens were then humanely 

euthanized in a carbon dioxide (CO2) chamber. Birds undergoing cardiac venipuncture 

were placed in the CO2 chamber for 1 min until unconscious before obtaining blood.  

Once euthanized, the hens were necropsied within 5 min. Birds were examined for gross 

lesions of the coelomic organs. The coelomic cavity was examined for excess fluid and 

the spleen was either placed in a cellophane bag on ice, or snap frozen with liquid 

nitrogen. Spleens were stored at -800 C, within 2 hrs of being harvested.  The ovaries and 

reproductive tract were examined grossly for tumors and placed in 10% buffered 

formalin. Other abdominal organs (liver, intestinal tract and kidneys) were examined for 
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evidence of metastasis. All tissues that appeared to be associated with tumors were 

harvested and placed in 10% buffered formalin.   

 Variables recorded for each hen included: age stratum (104 weeks, 130 weeks or 

165 weeks old); presence or absence of gross lesions; ALV ELISA test status; and  

presence or absence of OAC, based on histologic examination.  Data were stored in a 

Microsoft Excel®. Fisher’s Exact test, Χ2 analyses and multivariate logistic regression 

were used to determine associations between age stratum, ALV seropositive status, ALV-

Eenv mRNA expression and histologic confirmation of OAC. Odds ratios were used to 

describe the strength of these associations.  The statistical significance level was set at a p 

value of ≤0.05. 

 

Antigen Capture ELISA: Blood was allowed to clot, centrifuged at 8,000 x g for 15 min 

and the serum was pipetted into 5 ml polypropylene tubes (BD Falcon™A). Tubes were 

stored at -800 C. Serologic testing was conducted using a commercially-available antigen 

capture ELISA test to screen for ALV (IDEXX Flockchek LL Antigen test ®B

                                                 
A BD Falcon™. New Jersey USA 

) according 

to the manufacturer’s directions. The test detects antigen p27 which is common to all 

subgroups of ALV (A, B, C, D, E and J) and can be conducted on cloacal swabs, egg 

albumen, and serum. Serum samples are much more likely to detect endogenous ALV-E, 

while cloacal swabs tested with the antigen capture ELISA are more likely to detect 

exogenous ALV subgroups (A,B, C, D, and J)63. The tests were conducted using positive 

and negative controls provided by the manufacturer (contained in the test kit), and ELISA 

B IDEXX FLOCKCHEK Avian Leukosis Antigen Test Kit manual. Idexx Laboratories 
Maine USA 
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plates were read with a spectrophotometer (FLUOStar Optima microplate readerC

 

) at the 

absorbance value of 650 nm. The results were interpreted by the sample to positive (S/P) 

ratio, where an S/P ratio of ≤ 0.20 was considered negative.  An S/P ratio of > 0.20 

indicated presence of p27 antigen and was considered positive.  

Histopathology: The formalin-fixed tissues were trimmed, processed and stained with 

hematoxylin and eosin and examined for histologic evidence of OAC. Histologic 

classification of OAC was determined by the presence of numerous clumps or nests of 

dark staining epithelial cells supported by an underlying stroma of spindyloid cells. The 

epithelial cells may arrange themselves to form acini or tubules with round eosinophilic 

globules (ovalbumin) being present.  All tumors were examined histologically and 

classified according to their anatomical features as ovarian, oviductal or infundibular.  

 

RNA Extraction: The spleens were numbered according to the date and bird in the order 

that they were collected. Whole frozen spleens were broken at -800 C into pieces 

weighing 40 – 400mg (whole spleen weighed ~1.5 g). One piece from each spleen was 

placed into a 15 ml polypropylene tube of which 1 ml of Trizol®D was added per 100 mg 

of spleen. The suspension was then homogenized using a mechanical homogenizer 

(ULTRA-TURRAX T25 IKA®E

                                                 
C FLUOStar Optima microplate reader. Georgia USA. 

) until it was homogenous. Once the sample was 

homogenized, it was allowed to stand on the bench for 10 min at room temperature to 

allow Trizol® to digest the tissue at a maximum rate4. The homogenizer was washed 

D TRIzol® manual. Invitrogen products California USA  
E IKA®. Janke and Kunkel Staufen Germany 
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between samples with alcohol and water. After 10 min had elapsed, the sample was 

centrifuged at 4,500 x g for 5 min. After the centrifugation was complete, the sample was 

immediately placed on ice and 1.0 ml of the supernatant was transferred into a 1.5 ml 

polypropylene tube. Two hundred microliters of chloroform was then added to the tube. 

The suspension with the added chloroform  was then vortexed for 6 seconds (secs) 

followed by centrifugation at 16,000 x g at 40 C  for 20 min using an Eppendorf  5415 R 

centrifuge®F

 Centrifugation caused the sample to separate into 3 layers. The top layer 

contained RNA (clear), the middle layer protein (white) and the bottom layer DNA 

(sanguineous). Four hundred microliters of the supernatant containing the RNA was 

removed and placed into a new 1.5 ml polypropylene tube.  The remaining RNA 

supernatant along with some of the interface was removed and placed into a 0.5 ml 

polypropylene tube and centrifuged at 16,000 x g at 40 C for 10 min. Once centrifugation 

was complete, RNA (200µl) supernatant was again removed and added to the 

corresponding polypropylene tube to increase the quantity of RNA available.  

. 

 Nucleic acids were then precipitated with two hundred and fifty microliters of 

isopropanol.  The tubes were then inverted to mix the samples and the mixture was then 

stored overnight at -200 C. The Qiagen RNeasy RNA Clean up mini kit™G

  The 1.5 ml polypropylene tubes containing the RNA precipitate and isopropanol, 

were placed on ice and allowed to thaw on ice for ~ 30 min. Once thawed to liquid phase 

the samples were centrifuged at 16,000 x g at 4 0C for 30 min. The tubes, which now 

 was used to 

complete the RNA extraction procedure.  

                                                 
F  Eppendorf  5415 R® centrifuge. Eppendorf®  Hamburg  Germany 
G The Qiagen RNeasy RNA Clean up mini kit™.  Qiagen Products  California USA 
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contained pellets of RNA in a clear suspension then placed again on ice. Five hundred 

microliters of the supernatant was removed at a time with filter tipped pipettes.  Five 

hundred microliters of 100% ethanol was then added to the pellet and the tube was 

centrifuged placed at 40 C at 16,000 x g for 10 min. The liquid fraction comprised of 

water and alcohol was removed via a pipette. The tubes were then left to dry open on its 

side on the bench for 10 min.  One hundred microliters of diethylpyrocarbonate (DEPC) 

water was added to the dried RNA pellets. The mixture was then vortexed for 6 secs and 

placed in a water bath at 650 C for 5 min, vortexed again and re-placed in the water bath. 

This step was repeated for up to 20 min in the water bath to facilitate dissolving the RNA 

pellet.  

 Once dissolved, 350 µl of RLT Buffer™H was added. Once mixed, 250 µl of 

100% ethanol were added and mixed. Up to 700 µl of liquid mixture were then added to a 

spin column. The spin column was then centrifuged at 16,000 x g for 15 sec in a 

microcentrifuge (210 A Denville Scientific Inc.™I

 Five hundred microliters of RPE Buffer™8 (containing 100% ethanol) were added 

to the spin column, followed by centrifugation for 15 secs at 16,000 x g. The elute in the 

bottom tube was discarded. This step was repeated for a total of two washes. The spin 

column was then centrifuged at 16,000 x g for 2 min and the bottom collection tube was 

) The fluid in the bottom tube was 

discarded. Up to 700 µl of the liquid mixture were added again to the spin column, and 

the centrifugation and discard steps were repeated until the entire same sample was 

processed.   

                                                 
H The Qiagen RNeasy RNA Clean up mini kit™.  Qiagen Products  California USA 
I 210 A Denville Scientific Inc.™ New Jersey USA 
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removed and discarded altogether. The spin column was then placed into a new 1.5 ml 

polypropylene tube.  

 RNA was then eluted from the column by adding 150 μl of RNase free waterJ

 After priming the filter pipette tip, 4 µl of RNA-enriched fluid were added to 156 

µl of distilled water in a separate 1.5 ml polypropylene tube and mixed by pipetting.  The 

filter from the spin column was retained in the event that the amount of RNA was 

insufficient.  These RNA samples were diluted in distilled water were moved quickly to a 

spectrophotometer (Bio Rad Smart Spec™ 3000

  

were added, drop-by-drop, to each spin column just above the filter. The mixture was left 

to stand for 10 min on the bench and then centrifuged at 16,000 x g for 1 min in the 

microcentrifuge. The filtered fluid containing the RNA was transferred to a 1.5 ml 

polypropylene tube and placed on ice.  

K

 A sample with an A260 (260 nm) reading < 0.15 was considered to have an 

inadequate concentration of RNA. All samples with A260 > 0.7 were diluted with 

distilled water and re-measured. The ratio of A260 /A280 at neutral pH was used to 

indicate the quality of the RNA, with >1.5 indicating acceptable quality. The RNA 

samples were stored at -800 C.  The concentration for RNA was calculated according to 

the manufacturer’s directionsJ.  

). The spectrophotometer was blanked 

with 165 µl of distilled water. The water was then discarded and the sample placed in the 

cuvette and absorbance read at 260, 280 and 320 nm.  

                                                 
J The Qiagen RNeasy RNA Clean up mini kit™.  Qiagen Products  California USA 
K Bio Rad Smart Spec™ 3000  California USA 
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Reverse Transcription: Superscript ® III Reverse Transcriptase Invitrogen™ L

deoxyribonucleotide triphosphate 

 was used 

to conduct the reverse transcription. In a 1.5 ml polypropylene  tube 1 µl of 10mM 

mix (dNTP), 1 µl of random hexamers12, and 2 µg of 

sample RNA were made up to a total volume of 13 µl with double distilled water. The 

mixture was then placed in a water bath at 650 C for 5 min, chilled on ice for 1 min, and 

centrifuged for 15 secs, before adding 4 µl of 5X first strand buffer12, 1 µl of 0.1 M 

DTT12, 1 µl of Rnase out, and 1 µl of  SuperScript III12  were added. The mixture was 

then vortexed for 6 secs to facilitate mixing, and centrifuged for 15 secs. The tube was 

then placed in a water bath at 550 C  for 50 min, after which it was placed into another 

water bath at 700 C   for 15 min. Reverse transcription was considered complete at this 

point, with the product being complementary DNA (cDNA).  One hundred and eighty 

microliters of distilled water was then added to the tube to create a 1:10 dilution (20:180), 

mixed and the tube was mixed and stored at -800 C. 

  

Polymerase Chain Reaction: See Appendix C for primers. All primers designed by the 

investigators of this study was conducted using Primer3 Output11 software applied to the 

gp 85 env of the published complete sequence for ALV-E NSAC-1 in Genbank 

(Accession number FJ93550.1). Eukaryotic elongation factor 1 alpha (EFLα)  is a highly 

conserved gene that is highly expressed and  was used to check the quality of the cDNA .  

Sample #113 was chosen to be the positive control based on gross and histological 

evidence of OAC and ALV positive status on the ALV ELISA antigen test. Sample # 93 

was chosen as our negative control because of lack of gross and histological evidence for 

                                                 
L Superscript ® III Reverse Transcriptase. Invitrogen™  California USA 

http://www.biochem.northwestern.edu/holmgren/Glossary/Definitions/Def-D/dNTP.html�
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OAC and seronegativity on the ALV ELISA antigen test.  Initially, the published 

protocols for the primers PE1, PE2, PU1 and PU21 and ALV E and ALV All were 

adhered to and conducted on the positive control (sample #113), negative control (sample 

#93) and 10 samples.  However, these reactions did not reveal consistent results.  A 

gradient protocol was then initiated to test all the primers to determine the optimum 

annealing temperatures.  The crude primers were diluted in Tris- acetate EDTA buffer 

(TAE: 40 mM Tris-acetate: 1mM EDTA) to a concentration of 0.1 nmol/µl for storage at 

-800 C, and a further 1:10 dilution was made for use as the working stock. For example, 

40 nmol of crude primer was dissolved in 400 µl of TAE buffer for storage, and 20 µl of 

that stock was further diluted in 180 µl of distilled water to be used as the working stock. 

The working stock was then stored at -800 C.  

 The PCR assay included the following reagents in each reaction tube: 2.5 µl of 

10X Blue Juice™ M

 A gradient PCR was conducted for all the primers using our positive control 

cDNA (sample # 113) as the template. First, samples were denatured at 950 C for 30 secs. 

Then, samples were cycled 40 times as follows. All samples were denatured at 950 C for 

30 secs, then aliquots of template were annealed at one of five temperatures: 54.80 C, 

57.70 C, 60.30 C, 62.10 C, and 640 C, followed by an extension cycle at 720 C for 20 secs. 

 (Gel Loading Buffer), 1.0 µl of 50mM MgCl2, 0.5 µl of dNTP’s, 1.0 

µl (50pmol) of sense primer, 1.0 µl (50 pmol) of anitsense primer, 0.3 µlof Taq 

polymerase, 5 µl of template (cDNA from sample) and 13.7 µl of distilled water for a 

total volume of 25 µl.  

                                                 
M 10X Blue Juice™ . Invitrogen™ California USA 
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The final extension during the 40th cycle was performed for an additional 10 min. 

Samples were then incubated at 40 C until gel electrophoresis was performed.    

 

Results of the gradient PCR for primers: PE1, PE2, PU1, PU2 ALV E, ALV All, DIS1, 

DIS2, DISS1 or DISS2 yielded multiple bands of varying product sizes or no product 

evidenced by the absence of a band on the electrophoresis gels. However, for the ALV-E 

env and EF1α primers, it produced a bright single band of the appropriate size (215 bp for 

ALV-E env and 258bp for EF1α) across all temperatures, with the brightest band 

occurring at temperatures >620 C.  

 The following protocol was designed based on the optimum annealing 

temperature as indicated by the gradient, and the Primer 3 Output™ for the ALV-E env 

and EF1α primers. All samples were denatured at 950 C for 3 min. The samples were then 

cycled 4 times as follows. All samples were denatured at 950 C for 30 secs, annealed at 

620 C for 30 secs, followed by an extension cycle of 720 C for 27 secs. The samples were 

then cycled 41 times as follows. All samples were denatured at 95 0 C for 30 secs and 

then annealed at 620 C for 30 secs. The final extension was at 720 C for 10 min and then 

the samples were incubated at 40 C until gel electrophoresis was performed.  

 Once the DNA was amplified, electrophoresis was conducted on the product 

using 2% agarose gels. The gels were made by mixing 6g of agarose powder in 300 ml of 

Tris-EDTA buffer (TE buffer: 10 mM tris HCl :1 mM EDTA pH 8. Fifteen microliters of 

ethidium bromide were added to the gel in solution and left to set. Once the gel was set, it 

was immersed in TE buffer. The wells were checked for any cracks, breakage, collapse or 

leakage, visually and by adding 1 µl of 10X Blue Juice™ to each well. PCR tubes (0.2 
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ml) were pre-labeled to match the sample numbers that were placed in the PCR machine, 

and 1µl of 10X Blue Juice® was added to each tube. Ten microliters of DNA product 

from the PCR was added with a filter tip pipette tip to the corresponding 0.2 ml tube 

containing the 10X Blue Juice™ and mixed. The mixture was then loaded into the wells, 

one well per sample. One well on either end and in the middle of the gel was loaded with 

5 µl of 100bp ladder (Track it™ N).  The positive and negative controls were also loaded 

in two wells on the left. The ladders were loaded as such, to facilitate interpretation of the 

bands on the gels once the electrophoresis was complete. The gels were run at 120 mV, 

until the yellow dye of the ladder had run past the edge of the gel. Photographs of the gel 

were taken using Kodak MI™ systemO

 

. The digital images were printed and stored for 

analyses. A sample was considered positive if it produced a single bright band at the 

appropriate size according to the 100 bp ladder (Figures 5 and 6). The sample results 

were recorded for further analyses.  

Results  

  In the pilot sample of 30 birds that were 165 weeks of age, 18 birds were 

identified that were OAC positive based on histologic examination of the ovaries.  Birds 

with OAC were 2.6 times more likely to test positive for ALV using the IDEXX 

FlockChek antigen capture ELISA on serum samples collected prior to euthanasia, 

however in this small pilot study this association was not statistically significant 

(p=0.068).  There were no other associations between OAC and the occurrence of any 

other gross or histopathological lesions.  Post priori power analysis revealed that the 

                                                 
N Track it™  Invitrogen™ California USA 
O Kodak Molecular Imaging Software. Care Stream Health. Connecticut USA   
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sample of 30 hens with 18 cases and 12 controls had a statistical power of .23, indicating 

that the probability of Type II error was 77%.  Sample size calculations reveal that an 

additional 130 hens was required to achieve the target 80% statistical power.”  An 

additional 147 hens > 100 weeks of age were selected from the UIUC Poultry Research 

Laboratory using a stratified random procedure. 

 The overall prevalence of OAC was 22.6% (40/177) in the birds sampled, with a 

prevalence of 3.22% (1/31) in the 104 week stratum, 10.81% (4/37) in the 130 week 

stratum and 32.11% (35/109) in the 165 week stratum (Figure 3). The overall prevalence 

of ALV was 26.4% (42/159), with a prevalence of 43.3% (13/30) among hens in the 130 

week stratum and 29% (29/100) in the 165 week stratum.  No ALV positive hens were 

identified from the 104 week stratum. The overall prevalence for ALV-E env mRNA 

expression was 86.4% (108/125), with a prevalence of 77.8% (21/27) in the 104 week 

stratum, 100% (30/30) in the 130 week stratum and 83.8% (57/68) in the 165 week 

stratum (Figure 4).  Eighteen hemolyzed samples were removed from the analyses of the 

association between OAC and ALV. The presence of OAC was associated with the 

probability of being ALV positive (p<0.0001).  OAC-positive birds were 5.2 times more 

likely to be ALV positive (95% confidence interval (C.I.) 2.3, 11.18) (Table 1). Twenty-

two samples were removed from analysis of the association between OAC and ALV-E 

env mRNA expression due to inadequate RNA. Hens with OAC were 3.86 times more 

likely to express ALV-E env mRNA, but this was not significant (p=0.303) (Table 2).  

Hens expressing ALV-E env mRNA were 9.62 times more likely to be positive for ALV 

(p=0.040) (Table 3).  
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 OAC was associated (Χ2 = 15.2, p<0.0001) with age (Fig. 3).  Age stratum was 

also associated (Χ2 = 15.2 p=0.001) with ALV (Table 4). ALV positive hens were 

significantly more likely to be older.  Among the age strata, an association (Χ2= 6.81 

p=0.033) was observed between age and ALV-E env mRNA expression (Fig. 4). Since 

age was associated with OAC, ALV and ALV-E env mRNA expression, it was a 

potential confounder. Stratified analysis was conducted to control for the potential 

confounding affect of age. Analyses conducted within each stratum for OAC and ALV 

showed that for associations between ALV seropositivity and OAC, the only significance 

was found in the 165 week old stratum (p<0.001) (Tables 5-7). Also analyses conducted 

within the age stratum for associations between OAC and ALV-E env mRNA expression, 

showed that there was a trend toward significance at the highest age stratum  where hens 

that were ≥ 165 weeks old that  had OAC were 8.86 times  more likely to express ALV-E 

env mRNA, but this was not significant (p=0.056) (Tables 8-10).  

 The results of the multivariate logistic regression model are summarized in Table 

11.  Age stratum, ALV test status, and ALV-E env mRNA expression were introduced to 

the model.  All possible interactions between the independent variables were evaluated 

but no significant interactions were identified.   Age stratum and ALV test status were 

significantly associated with occurrence of OAC.  Controlling for ALV test status and 

ALV-E env mRNA expression birds with OAC had a 3.6% increase in odds of being in a 

higher age stratum (95% C.I. 1.0076, 1.0563).  Controlling for age stratum and Eenv 

mRNA expression, birds with OAC were 3.3 times more likely to be ALV positive (95% 

C.I. 1.1067, 10.1193).  The odds ratio of the association between OAC and ALV-E env 
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mRNA expression was of a similar magnitude (odds ratio = 3.2) however this association 

was not statistically significant (95% C.I. 0.3837, 27.4777) (Table 11). 

 

Discussion 

 The first objective of this study was to determine the prevalence of OAC, ALV, 

and ALV-E env mRNA expression in a stratified random sample of aged laying hens 

from the UIUC Poultry Research Laboratory.  The overall prevalence of OAC was 22.6% 

in this sample of birds with a trend of increasing prevalence with increased age.  This 

finding is consistent with the current literature on the epidemiology of OAC in both hens 

and women.  Frederickson15 reported that OAC was unusual in hens less than two years 

of age, with Rodriguez-Burford17 reporting the prevalence to be 4% among two-yr-old 

hens. In Frederickson’s study, 466 layers ranging from 2-7 years of age had an overall 

OAC prevalence of 19% and a trend of increasing prevalence with age: 12% at mean age 

3.9 years, 32% at mean age 4.2 years, and 50% at mean age 6.1 years. Other studies have 

also identified this relationship.16 In 4-yr-old birds, an OAC prevalence of 39% has been 

reported.14 In women, there is an age-related increase in incidence of OAC, from 0.7 per 

100,000 in women younger than 20-yrs to 6.6 at 20-49 yrs, 26.9 in women 50-64 years, 

48.6 in women 65-74 years and as high as 55.6 in women older than 75 years.64-66  

 The prevalence of ALV in the flock was similar to the OAC prevalence (26.4%).  

The prevalence of ALV was not uniform across age strata.  ALV-E is an endogenous 

retrovirus thought to be present within the genome of most domestic poultry.  In this 

sample the prevalence of ALV-E env mRNA expression in splenic tissue was 86.4%.  

Both ALV seropositive test status and ALV-E env mRNA expression were not uniformly 
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manifest across age strata, unlike the pattern of increasing prevalence with increased age 

that was demonstrated with the prevalence of OAC.  The 130 week age stratum had the 

highest prevalence of both ALV seropositive test status and ALV-E env mRNA 

expression (43.3% and 100% respectively).  The prevalence of both of these was lower in 

the 104 (ALV prevalence = 0 and ALV-E env mRNA expression prevalence = 77.8%) 

and 165 week age strata (ALV prevalence = 29% and ALV-E env mRNA expression 

prevalence = 83.8%). 

 The second objective was to assess the association between the presence of OAC 

and ALV seropositive status.  OAC-positive birds were 5.2 times more likely to be ALV 

positive (95% confidence interval (C.I.) 2.3, 11.18) (p<0.0001).  This was the first time 

that an association between OAC and a viral risk factor has been reported.  It is 

contradictory to earlier research by Fredrickson15  who reported a prevalence of OAC of 

24% in hens that had been classified as free of ALV based on the results of the COFAL 

test. The inconsistency between the results of the present study and that by Fredrickson 

and colleagues may be due to limited sensitivity of the COFAL test.  Other investigators 

have found COFAL proved to be a relatively insensitive diagnostic test for ALV and that 

the results did not correlate well with the other tests.50 These limitations may be even 

more pronounced when attempting to detect endogenous ALV virus compared with the 

exogenous subgroups.  COFAL detects the group specific ALV antigens that require 

culture, purification, titration and dilution for analysis, and is not used clinically for 

screen purposes 49-50. Whereas the ALV ELISA test kit which has a reported 99.2% 

sensitivity and 100% specificity and a detection limit of 2 ng, can be used clinically, with 

ease for screening for ALV .61-63 
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The third objective was to assess the association between presence of OAC and 

the expression of ALV-Eenv mRNA.   Across all age strata there was no association 

between OAC and expression of ALV-E mRNA expression (Odds ratio = 3.8, p = 0.303).  

However, when assessing the association between OAC and expression of ALV-E 

mRNA expression in the 165 week age stratum alone, despite the much smaller sample 

size, the odds ratio increased to 8.86 and the p value declined to 0.056.  While ALV-E 

env mRNA expression was common in both OAC positive and negative birds (Table 4), 

only 1 OAC positive bird failed to express ALV-E env mRNA.  This suggests that 

expression of ALV-E mRNA may be necessary for OAC to occur but perhaps not 

sufficient to cause OAC.  One possible explanation for this association may be that ALV-

E expression must have  to occur in the presence of an as yet unknown risk factor to 

cause disease. An alternative explanation may be that the site of ALV-E insertion into the 

genome may be an important risk factor for whether or not its presence induces OAC.  

Hens expressing ALV-E env mRNA were 9.62 times more likely to be positive for ALV 

(p=0.040).  The significant association between ALV-E env mRNA expression and ALV 

test status and their similar patterns of age distribution within the sample are not 

surprising since the antigen capture ELISA was detecting any subgroup of ALV and the 

RT-PCR was detecting ALV-E.   

 This study has identified important risk factors associated with the presence of 

OAC in aged laying hens. However, there are limitations inherent within the study 

design.  The cross-sectional nature of the study design precludes the establishment of a 

cause and effect relationship.  Age was associated with the presence of OAC, with ALV 

test status and ALV-E env mRNA expression.  Thus it is potentially an important 
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confounding variable. A prospective cohort study would be necessary to establish a 

temporal relationship between exposure to ALV (or ALV-E) and the subsequent 

development of OAC.  However this may prove difficult if endogenous ALV-E were to 

be included because it is considered ubiquitous in the chicken genome. 

 The strength of the associations reported in this study may have been reduced due 

to potential misclassification bias.  Ovarian tissues were evaluated in the same fashion 

across age strata.  OAC was diagnosed in this study based on the aforementioned 

histological criteria. Multiple sections of the each ovary were examined histologically, 

however the entire ovary for each bird was not examined.  As a result, small nests of 

neoplastic epithelial cells or tumors may have gone unrecognized causing OAC positive 

birds to have been misclassified as OAC negative.  Ideally the entire ovary should be 

examined. The large disparity between OAC prevalence in 130 week old birds and that in 

165 week old birds may be an indicator of misclassification error. This study reported the 

prevalence of OAC in 130 week old birds was one-third that found in 165 week old birds, 

from 10.81% in the 130 week old hens to 32.11% in the 165 week stratum.  It is 

reasonable to presume that a fraction of the 130 week old birds that appeared to be OAC 

negative on both gross and histological examination were actually in an early stage of 

OAC. 

 Determination of the association with ALV-E expression was accomplished using 

a primer for ALV-E env mRNA designed by the investigators.  A limited number of 

primers for the detection of ALV-E have been published.  However, those evaluated in 

this study did not produce products or produced products that yielded multiple bands of 

various sizes. This may have been due to errors in sample handling by the investigators.  
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Spleens may not have been frozen fast enough or handled in a manner to preserve the 

RNA, therefore yielding insufficient or poor quality RNA that was unsuitable for 

conducting the RT-PCR with those primers. Investigation into the melting temperatures 

for the sense and anti-sense of the published primers, showed a disparity of up to 10o C 

between a pair of complementary primers. This disparity can lead to a variety of 

nucleotide sequences being produced during the PCR reaction as the reaction 

temperatures increase and cool during the annealing stage. Some of the published primers 

had very large intended product sizes (>1.2 kb).  Large products lend themselves to 

interference from insufficient quantity or poor quality RNA.  This may result in vast 

variations in the intended product sequence as the primers are tested across different 

samples. This study contributes another primer for the detection of ALV-E. The Eenv 

primer designed here yielded a smaller product size with little disparity in annealing 

temperatures between the sense and antisense primers. Most importantly, the Eenv primer 

appeared to reliably produce appropriate products in the face of sub-optimum tissue 

handling for RNA extraction, while the other primers did not. 
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Chapter 4.  Conclusions and Future Directions 

 There were three objectives of this study.  

1. To determine the prevalence of OAC, ALV, and ALV-E mRNA expression in 

aged birds in the UIUC Poultry Research Laboratory. 

2. To determine the association between ALV serologic test status and OAC in aged 

birds in the UIUC Poultry Research Laboratory. 

3. To determine the association between expression of ALV-E env mRNA and OAC 

in aged birds in the UIUC Poultry Research Laboratory. 

  The study determined that the prevalence of OAC in the UIUC Poultry 

Research Laboratory in hens that were > 100 weeks of age was 22.6%  and that hens 

with OAC were significantly more likely to be older.  The prevalence of ALV was 

26.4% and that of ALV-E env mRNA expression was 86.4%.  ALV and ALV-E env 

mRNA expression were not uniformly distributed across the 3 age strata that were 

examined.  Hens in the >165 age stratum were more likely to be positive for both 

ALV and ALV-E env mRNA expression.  Hens with OAC were 5.2 times more likely 

to be ALV positive (p<0.0001).   While not statistically significant 165 week old hens 

that were OAC positive were 8.9 times more likely to expression ALV-Eenv mRNA 

(p=0.056).      

The identification of seropositive test status for ALV via antigen capture 

ELISA as a potential risk factor for OAC is an important new finding obtained from 

this study. This is the first time that a viral risk factor has been implicated as being 

associated with OAC in the hen.  Further research is needed to investigate the 

association between ALV-E and OAC in hens.  The findings from this study indicate 
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that at least one subtype of ALV may play a role in the pathogenesis of OAC in the 

hen.  If ALV-E is implicated as the important subgroup in the pathogenesis, then an 

endogenous retroviral association may indeed occur in both hens and women. 

  The associations between OAC, ALV and ALV-Eenv mRNA expression 

become particularly intriguing given the recently reported association between human 

endogenous retroviruses (HERVs) and human cancers48 including: breast cancer67 

colon cancer, germ cell tumors and prostate adenocarcinoma68.  Further 

experimentation is warranted to explore possible insertion sites, functional properties, 

and receptor sites for ALV –E and to distinguish them from other ALV subgroups.  

Because Avian Leukosis Virus subgroup E is an endogenous retrovirus of chickens 

that is analogous to HERVs in humans, our findings along with the theories of 

insertional polymorphisms, re-combinational insertion, and the massively unexplored 

new families of endogenous retroviruses within the chicken genome demands further 

investigation into the ongoing quest for a model for OAC in humans.  



 41 

BIBLIOGRAPHY 
 

1. National Cancer Institute. 2009. http://www.cancer.gov/cancertopics/types/ovarian 
 
2. National Cancer Institute, 2008.  Dev Can: Probability of Developing Cancer or 

Dying of Cancer Software, Version 6.3.0 Statistical Research and Applications 
Branch, National Cancer Institute.  http://srab.cancer.gov/devcan  

 
3. American Cancer Society. 2009. 

http://www.cancer.org/docroot/PRO/content/PRO_1_1_Cancer_Statistics_2009_Pres
entation.asp 

 
4. U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2006 

Incidence and Mortality Web-based Report. Atlanta: U.S. Department of Health and 
Human Services, Centers for Disease Control and Prevention and National Cancer 
Institute; 2010. Available at: www.cdc.gov/uscs. 

 
5. Vanderhyden, BC, Shaw TJ, Ethier J. Animal models of ovarian cancer. Reprod Biol  

Endocrinol 2003,1: 67.  
 
6. Wang-Johanning F, Liu J, Rycag K, Huang M, Tsai K, Rosen D, Chen D, Lu DW, 

Barnhart KF, Johanning GL. Expression of multiple human endogenous retrovirus 
surface envelope proteins in ovarian cancer. Int J Cancer 2006, 120: 81-90.  

 
7. Payne LN. Biology of avian retroviruses. In: The Retroviridae Vol. 1, Edited by: 

Levy JA. Plenum Press: New York. 1992, 299-404. 
 
8. Payne LN, Venugopal K. Neoplastic diseases: Marek’s disease, avian leukosis and 

reticuloendotheliosis. Rev Sci Tech Off Int Epiz 2000, 19: 544–564. 
 
9. Burnmeister T. 2001. Oncogenic retroviruses in animals and humans. Rev Med Virol 

2001, 11: 369-380 
 
10. Denesvre C, Soubieux D, Pin G, Hue D, Dambrine G. Interference between avian 

endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J Gen Virol 2003, 
84: 3233-3238 

 
11. Huda A, Polavarapu N, Jordan KI, Mc Donald JF. Endogenous retroviruses of the 

chicken genome.  Biol Direct 2008, 3: 9. 
 
12. Fathalla MF. Incessant ovulation – a factor in ovarian neoplasia? Lancet 1971, 2: 163. 
 
13. Giles J, Olson LM, Johnson PA. Characterization of ovarian surface epithelial cells 

from the hen: a unique model for ovarian cancer. Experi Biol and Med 2006, 
231:1718-1725.   

 

http://www.cancer.gov/cancertopics/types/ovarian�
http://www.cancer.org/docroot/PRO/content/PRO_1_1_Cancer_Statistics_2009_Presentation.asp�
http://www.cancer.org/docroot/PRO/content/PRO_1_1_Cancer_Statistics_2009_Presentation.asp�
http://www.cdc.gov/uscs�


 42 

14. Barnes MN, Berry WD, Straughn JM, Kirby TO, Leath CA, Huh WK, Grizzle WE, 
Patridge EE. A pilot study of ovarian cancer chemoprevention using 
medroxyprogesterone acetate in an avian model of spontaneous ovarian 
carcinogenesis. Gynecol Oncol 2002, 87: 57-63.  

 
15. Fredrickson TN. Ovarian tumors of the hen. Environ Health Perspect 1987, 73: 35-51. 
 
16. Papsolomontos P, Appleby E, Mayor O. Pathologic findings in condemned chickens: 

A survey of 1000 carcasses. The Vet Rec 1969, 85: 459–64. 
 
17. Rodriguez-Burford, C., M. N. Barnes, W. Berry, E. E. Partridge, and W. E. Grizzle. 

Immunohistochemical expression of molecular markers in an avian model: a potential 
model for preclinical evaluation of agents for ovarian cancer chemoprevention. 
Gynecol. Oncol 2001, 81: 272–279. 

 
18. Engstrom P, Meyskens F. Cancer Prevention. In: Principles and Practice of 

Gynecologic Oncology. Edited by: Hoskins W, Perez C. Young R. 1997, 197-210.  
 
19. Giles JR, Shivaprasad HL, Johnson, PA. Ovarian tumor expression of an oviductal 

protein in the hen: a model for human serous ovarian adenocarcinoma. Gynecol. 
Oncol. 2004, 95: 530–533. 

 
20. Langdon, S. P., and S. S. Lawrie. Establishment of ovarian cancer cell lines. In: 

Ovarian Cancer Methods and Protocols. Edited by Bartlett JMS. Humana Press, 
Totowa, NJ 2000, 155-159. 

 
21. http://chickscope.beckman.uiuc.edu/explore/embryology/day05/ovary.html 
 
22. Bahr JM, Johnson AL. Regulation of the follicular hierarchy and ovulation. The J of 

Experi Zool 1984, 232: 495-500. 
 
23. Barua A, Bitterman P, Abramowicz JS, Dirks AL, Bahr JM, Hales DB, Bradaric MJ, 

Edassery SL, Rotmensch J, Luborsky JL. Histopathology of ovarian tumors in laying 
hens: a preclinical model of human ovarian cancer. Int J of Gynecol Cancer 2009, 19: 
531-539 

 
24. Papadaki L and Beilby JO: The fine structure of the surface epithelium of the human 

ovary. J Cell Sci 1971, 8: 445-465. 
 
25. Moore KL.  The pelvis and perineum. In: Clinically Oriented Anatomy Edited by 

Satterfield TS, Napora L, Lumpkin K. Baltimore, Williams & Williams; 1992:281-
289. 

 
26. Mayo Clinic. http://www.mayoclinic.com/health/ovarian-cancer 
 
27. Nicosia SV: The aging ovary. Med Clin North Am 1987, 71:1-9. 

http://chickscope.beckman.uiuc.edu/explore/embryology/day05/ovary.html�
http://www.mayoclinic.com/health/ovarian-cancer�


 43 

28. Hamilton TC: Ovarian cancer, Part I: Biology. Curr Probl Cancer 1992, 16:1-57 
 
29. Salazar H, Godwin AK, Daly MB, Laub PB, Hogan WM, Rosenblum N, Boente MP, 

Lynch HT, Hamilton TC. Microscopic benign and invasive malignant neoplasms and 
a cancer-prone phenotype in prophylactic oophorectomies. J Natl Cancer Inst 1996, 
88: 1810-1820. 

 
30. Deligdisch L and Gil J: Characterization of ovarian dysplasia by interactive 

morphometry. Cancer 1989, 63: 748-755. 
 
31. Scully RE: Early de novo ovarian cancer and cancer developing in benign ovarian 

lesions. Int J Gynaecol Obstet 1995, 49 (Suppl): S9-15. 
 
32. Godwin AK, Testa JR, Handel LM, Liu Z, Vanderveer LA, Tracey PA, Hamilton TC.  

Spontaneous transformation of rat ovarian surface epithelial cells: association with 
cytogenetic changes and implications of repeated ovulation in the etiology of ovarian 
cancer. J Natl Cancer Inst 1992, 84: 592-601. 

 
33. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, 

Smith PG, Terranova PF.  Development of a syngeneic mouse model for events 
related to ovarian cancer. Carcinogenesis 2000, 21: 585-591. 

 
34. Whittemore AS, Harris R and Itnyre J.  Characteristics relating to ovarian cancer risk: 

collaborative analysis of 12 US case-control studies IV: The pathogenesis of 
epithelial ovarian cancer: Collaborative Ovarian Cancer Group. Am J Epidemiol 
1992, 136: 1212-1220. 

 
35. La Vecchia C and Franceschi S: Oral contraceptives and ovarian cancer. Eur J Cancer 

Prev 1999, 8: 297-304. 
 
36. Kurman RJ, Shih L. Pathogenesis of ovarian cancer. Lessons from morphology and 

molecular biology and their clinical implications. Int J Gynecol Pathol. 2008, 27: 
151-160. 

 
37. Bagan P, Berna P, Assouad J, Hupertan V, Le Pimpec Barthes F, Riquet M. Value of 

cancer antigen 125 for diagnosis of pleural endometriosis in females with recurrent 
pneumothorax. Eur. Respir. J. 2008, 31: 140–142. 

 
38. Sarandakou A, Protonotariou E, Rizos D. Tumor markers in biological fluids 

associated with pregnancy. Crit Rev Clin Lab Sci 2007, 44: 151–78. 
 
39. Morin PJ. Molecular markers in epithelial ovarian cancer. Curr Clin Oncol: 

Molecular Pathology of Gynecologic Cancer. Edited by Giordano A, A Bovicelli A, 
Kurman R, Humana press. 2007 pp 29-45 

 



 44 

40. Niv Y. MUC1 and colorectal cancer pathophysiology considerations. World J. 
Gastroenterol. 2008, 14: 2139–41. 

 
41. Auersperg N, Wong AST, Choi KC, Kang SK, Leung PCK. Ovarian surface 

epithelium: biology, endocrinology, and pathology. Endocr Rev 2001, 22: 255-288. 
 
42. Zhou B, et al. Hormone replacement therapy and ovarian cancer risk: A meta-

analysis. Gyn Oncol. 2008, 108: 641-651. 
 
43. Olsen CM, Green AC, Nagle CM, Jordan SJ, Whiteman DC, Bain CJ, Webb PM. 

Epithelial ovarian cancer: testing the ‘androgen hypothesis’. Endocr Relat Cancer 
2008, 15: 1061-1068 

 
44. Johnson PA, Giles JR. Use of genetic strains of chickens in studies of ovarian cancer. 

Poultry Sci 2006 85: 246-250. 
 
45. Zhao LJ, Giam CZ. Interaction of the human T-cell lymphotropic virus type I 

(HTLV-I) transcriptional activator Tax with cellular factors that bind specifically to 
the 21-base-pair repeats in the HTLV-I enhancer. Proc Natl Acad Sci USA 1992; 88: 
11445–11449. 

 
46. Grassmann R, Fleckenstein B, Desrosiers RC. Viral transformation of human T 

lymphocytes. Adv Cancer Res 1994; 63: 211–244. 
 
47. Rosenblatt JD, Miles S, Gasson JC, et al. Transactivation of cellular genes by human 

retroviruses. Curr Top Microbiol Immunol 1995, 193: 25–49. 
 
48. Moyes D, Griffiths DJ,  Venables PJ. Insertional polymorphisms: a new lease of life 

for endogenous retroviruses in human disease. Trends in genetics 2007, 23: 326-333 
 
49. Sarma PS, Turner HC, Huenber RJ. An avian leukosis group-specific complement 

fixation rection. Application for the detection and assay of non-cytopathogenic 
leukosis viruses. Virol  1964, 23: 313-321. 

 
50. Sandelin K, Estola T, Ristimaki S, Ruoslahti E, Vaheri A. Radioimmunoassay of the 

group-specific antigen in detection of avian leukosis virus. 1974. J. Gen. Virol 25: 
415-420. 

 
51. Coffin JM, Champion M, Chabot F. Nucleotide sequence relationships between the 

genomes of an endogenous and an exogenous avian tumor virus. J. Virol 1978, 28: 
972–991. 

 
52. Dorner AJ, Coffin JM. Determinants for receptor interaction and cell killing on the 

avian retrovirus glycoprotein gp85. Cell 1986, 45: 365–374. 
 



 45 

53. Bova CA, Swanstrom R. Host range determinants of avian retrovirus envelope genes. 
In: Positive Strand RNA Viruses. Alan R. Liss, New York, 1987, 509–518. 

 
54. Bova CA, Manfredi JP, Swanstrom R. en6 genes of avian retroviruses: nucleotide 

sequence and molecular recombinants define host range determinants. Virology 1986, 
52: 343–354. 

 
55. Bova CA, Olsen JC, Swanstrom R. The avian retrovirus en6 gene family: molecular 

analysis of host range and antigenic variants. J. Virol 1988. 62: 75–83. 
 
56. Payne LN, Brown SR, Bumstead N, Howes K, Frazier JA, Thouless ME. A novel 

subgroup of exogenous avian leukosis virus in chickens. J. Gen. Virol 1991, 72: 801–
807. 

 
57. Bai J, Howes K, Payne LN, Skinner MA. Sequence of host-range determinants in the 

env gene of a full-length, infectious proviral clone of exogenous avian leukosis virus 
HPRS-103 confirms that it represents a new subgroup (designated J).  J. Gen. Virol 
1995a, 76: 181–187. 

 
58. Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup 

J) has an en6 gene related to those of endogenous elements EAV-0 and E51 and an E 
element found previously only in sarcoma viruses. J. Virol 1995b, 69: 779–784. 

 
59. Weiss RA. In: Nakahara, W., Hirayama, T., Nishioka, K., Sugano, H. (Eds.). Analytic 

and Experimental Epidemiology of Cancer. University of Tokyo Press, Tokyo. 
Proceedings of the 3rd International Symposium of the Princess Takamatsu Cancer 
Research Fund, 1973  pp. 201–233. 

 
60. Calnek BW, Barnes HJ, Beard CW, Reid WM, Yoder HW. Diseases of Poultry, 10th 

edn. Iowa State University Press, Ames, IA.1991 pp 367-368  
 
61. Pham TD, Spencer JL, Johnson ES. Detection of avian leukosis virus in albumen of 

chicken eggs using reverse transcription polymerase chain reaction. J Virol Methods. 
1999, 78: 1-11. 

 
62. Silva RF, Fadly AM, Taylor SP. Development of a polymerase chain reaction to 

differentiate avian leukosis virus (ALV) subgroups: Detection of an ALV 
contaminant in commercial Marek’s disease vaccines. Avian Diseases 2007 51: 663-
667.    

 
63. Payne LN, Gillespie AM, Howes K. 1993. Unsuitability of chicken sera for detection 

of exogenous ALV by the group-specific antigen ELISA. Vet Rec 1993, 132: 555–
557.  

  
64. American Cancer Society. Cancer facts & figures 2008. Atlanta, Ga.:American 

Cancer Society; 2008 



 46 

65. Centers for Disease Control and Prevention. United States cancer statistics: 1999-
2005 cancer incidence and mortality data. U.S. Department of Health and Human 
Services. http://www.cdc.gov/uscs. Accessed February 26, 2009 

 
66. Ries LA, Melbert D, Krapcho M, et al., eds. SEER cancer statistics review, 1975-

2004. Bethesda, Md.: National Cancer Institute; 2007. 
http://seer.cancer.gov/csr/1975_2004. Accessed March 2, 2009 

 
67. Turbeville MA, Rhodes JC, Hyams DM, Distler CM, Steele PE. Expression of a 

putative immunosuppressive protein in human tumors and tissues. Pathobiology 
1996, 64: 233–238 

 
68. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. 

Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 
1997;387: 489–493 

 
69. Payne LN, Fadly AM. Leukosis/Sarcoma Group. In: Diseases of Poultry. Edited by 

Calnek BW, Barnes HJ, Beard CW, McDonald LR, Saif YM. Iowa State University 
Press.1991 pp 415-421 

 
70. Hsu IC, Tokiwa T, Bennett W, Metcalf RA, Welsh JA, Sun T, Harris CC. p53 gene 

mutation and integrated hepatitis B viral DNA sequences in human liver cancer cells. 
Carcinogenesis 1993 15: 987-992 

 
71. Clark J, Saxinger C, Gibbs W, Lofters W, Lagranade L, Deceulaer K, Ensroth A, 

Robert-Guroff M, Gallo R, Blattner W. Seroepidemiologic studies of human T-cell 
leukemia/lymphoma virus type I in Jamaica". Int J Cancer 1985 36: 37–41  

 
 

http://seer/�


 47 

Appendix A.  Figures 

Figure 1. Diagram of the female reproductive tract of the hen21 
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Figure 2.  Gross appearance of ovarian adenocarcinoma in a 165 week old hen obtained 
from the University of Illinois Urbana-Champaign Poultry Research Laboratory laying 

flock. 
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Figure 3.   Prevalence of ovarian adenocarcinoma diagnosed by histologic examination 
in a stratified random sample of 177 White Leghorn hens obtained from the University of 
Illinois Poultry Research Laboratory laying flock. 
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Figure 4.  Prevalence of Avian Leukosis Virus subgroup E-env mRNA expression in a 
stratified random sample of 159 White Leghorn hens obtained from the University of 
Illinois Poultry Research Laboratory laying flock. 
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Figure 5.  Detection of Eukaryotic Translation Factor 1 alpha (EF1α) using primers EF1α 
1 and 2.  Lane “a” is the positive control. Lane “b” is the 100 bp ladder. Lanes “c” 
through “t” are PCR products from spleen samples of White Leghorn hens obtained from 
the University of Illinois Poultry Research Laboratory laying flock. Lane “u” is the 100 
bp ladder.  
 
 

 

a b c d  e  f   g  h  i  j   k  l  m  n  o  p  q  r  s  t  u   

248 bp 
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Figure 6.  Detection of Avian Leukosis Virus subgroup E env mRNA using primers Eenv 
1 and 2.  Lane “a” is the positive control. Lane “b” is the 100 bp ladder. Lanes “c” 
through “t” are PCR products from spleen samples of White Leghorn hens obtained from 
the University of Illinois Poultry Research Laboratory laying flock.  
 
 

 

a b c  d  e   f  g  h   i   j   k   l  m n  o  p  q   r  s   t    

215 bp 
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Appendix B.  Tables 
 
 
Table 1. Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus (ALV) serologic test status in 159 White Leghorn hens > 100 weeks of 
age obtained from the University of Illinois Poultry Research Laboratory laying flock.  
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      19 
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   OAC         OAC   Odds 
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5.2 

Χ2 = 18.1, p<0.0001 
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Table 2. Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus-E env mRNA expression (ALV-E) in 125 White Leghorn hens > 100 
weeks of age obtained from the University of Illinois Poultry Research Laboratory laying 
flock.  
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ALV-E env 
negative 
  

21 

      1 
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16 

Fisher’s Exact p=0.303 

    OAC         OAC   Odds 
Positive     Negative   Ratio 

3.86 
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Table 3. Association between Avian Leukosis Virus-E env mRNA expression (ALV-E) 
and presence of Avian Leukosis Virus determined by antigen capture ELISA of serum 
samples from 125 White Leghorn hens > 100 weeks of age obtained from the University 
of Illinois Poultry Research Laboratory laying flock.  
 

 

 
  

Eenv - Odds Ratio 

ALV + 

ALV - 

23 

      85 

 0 

17 

Fisher’s Exact p=0.04 

Eenv + 

9.62 
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Table 4. Association between age stratum and presence of Avian Leukosis Virus 
determined by antigen capture ELISA of serum samples from 159 White Leghorn hens > 
100 weeks of age obtained from the University of Illinois Poultry Research Laboratory 
laying flock.  
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Weeks   Positive   Negative 
        

Χ2 =15.2,  p< 0.001 
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Table 5.  Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus (ALV) serologic test status in 29 White Leghorn hens in the 104 week 
age stratum obtained from the University of Illinois Poultry Research Laboratory laying 
flock.  
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Table 6. Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus (ALV) serologic test status in 30 White Leghorn hens in the 130 week 
age stratum obtained from the University of Illinois Poultry Research Laboratory laying 
flock.  
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Table 7.  Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus (ALV) serologic test status in 30 White Leghorn hens in the >165 week 
age stratum obtained from the University of Illinois Poultry Research Laboratory laying 
flock.  
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ALV 
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ALV 
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18 

      1177 

11 

54 

Χ2 =13.16 p <0.001 

OAC 
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5.2 
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Table 8. Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus subgroup E env mRNA expression (ALV-E env) PCR status in 27 White 
Leghorn hens in the 104 week age stratum obtained from the University of Illinois 
Poultry Research Laboratory laying flock.  
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Table 9. Association between presence of ovarian adenocarcinoma (OAC) and of Avian 
Leukosis Virus subgroup E env mRNA expression (ALV-E env) PCR status in 30 White 
Leghorn hens in the 130 week age stratum obtained from the University of Illinois 
Poultry Research Laboratory laying flock.  
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   OAC  
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0.17 
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Table 10.  Association between presence of ovarian adenocarcinoma (OAC) and of 
Avian Leukosis Virus subgroup E env mRNA expression (ALV-E env) PCR status in 68 
White Leghorn hens in the > 165 week age stratum obtained from the University of 
Illinois Poultry Research Laboratory laying flock.  
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Table 11.   Logistic regression model considering age Stratum, Avian leukosis virus 
(ALV), and Avian Leukosis Virus subgroup E env (ALV-E env) mRNA expression in 
125 White Leghorn hens > 100 weeks of age obtained from the University of Illinois 
Poultry Research Laboratory laying flock.  
   
 
 
Variable               df        Coefficient      Standard     Odds        95% CI 
                                                                 Error          Ratio 
 Intercept 1 -8.1406    
 Age stratum 1 0.0349 0.0140 1.0355 1.0076,  1.0643 
 ALV ELISA 1 1.2079 0.5646 3.3465 1.1067, 10.1193 
 Eenv PCR 1 1.1778 1.0896 3.2472 0.3837, 27.4777 
 
Model Statistics: 

 
   df= 3;   Χ2= 14.5509;   p=0.0022 
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Appendix C.  Primers Used for ALV-E env mRNA detection 
 
 
 
 
Target Forward Primer (5’-3’) Reverse primer (5’-3’) Product  

(bp) 
Subgroup 
detection 

PU1/PU21 CTRCARCTGYTAGGYTCCCAGT GYCAYCACTGTCGCCTRTCCG 229 All 
PE1/PE21 GYCAYCACTGTCGCCTRTCCG GCACATCTCCACAGGTGTAAAT 265 ALV-E 
ALV all2 CGAGAGTGGCTCGCGAGATGG ACACTACATTTCCCCCTCCCTAT 2400 All 
ALV E2 CGAGAGTGGCTCGCGAGATGG GGCCCCACCCGTAGACACCACTT 1250 ALV-E 
DIS  GCGAGGAATGCAGGAAATTAC GGCATATTGCTGTGTCATCG 410 ALV-E 
DISS  CGCGTAACTGAGGGACTAGG GGCATATTGCTGTGTCATCG 159 ALV-E 
Eenv  TTTGGGGTCCTACAGCAAGAAT GTGAGCCAGAAGCAAGAAGTCA  215 ALV-E 
EF1α  CCCGAAGTTCCTGAAATCTG CTGAGGTGGCAGCTGATGTA 248  
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Appendix D.  Product Sequence for ALV-E env mRNA primer 
 
AGTCCAAAAGGTAGCAGCTGCGCAAGCCTTAAGAGAAATTGAGAGACTAGC
CTGTTGGTCCGTTAAACAGGCTAACTTGACAACATCACTCCTCGGGGACTTAT
TGGATGATGTCACGAGTATTCGACACGCGGTCCTGCAGAACCGAGCGGCTAT
TGACTTCTTGCTTCTGGCTCACAAAA 
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