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Abstract

Decision rules are popular form of knowledge representation. From this point of view, length of such rules is an
important factor since it influences on data understanding by experts. Unfortunately, the problem of construction
of short rules is NP-hard, so different heuristics are discussed in the literature. The paper presents comparison of
two selected methods for decision rules construction. The first one is connected with a new algorithm based on EAV
model, the second one - with construction of rules based on reduct. Decision rules were induced for data sets from
UCI ML Repository and compared from the point of view of length and support, and from the point of view of
classification accuracy. Results of Wilcoxon test are also included.
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1. Introduction

Data mining is a fast developing discipline of science mainly because of the constantly growing need
to select, classify and deal with large amounts of data from different domains [16, 35]. The amounts are
constantly growing, especially referring to switching a lot of disciplines of human activity to online mode
recently. As the mentioned growth is practically uncontrollable and unclassifiable, new or improved data
mining algorithms and methods are demanded.

Rough set theory is an extension within the classical set theory, suitable for describing concepts in the
case of incomplete and uncertain data [22]. It has a variety of applications, e.g., bioinformatics, business
and finance, decision analysis and systems, medicine, transport and many others. Methods and algorithms
of rough sets are linked and used in other domains as machine learning, pattern recognition, data mining
and knowledge discovery, feature selection and others [2, 5, 28, 32].
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Abstract

Decision rules are popular form of knowledge representation. From this point of view, length of such rules is an
important factor since it influences on data understanding by experts. Unfortunately, the problem of construction
of short rules is NP-hard, so different heuristics are discussed in the literature. The paper presents comparison of
two selected methods for decision rules construction. The first one is connected with a new algorithm based on EAV
model, the second one - with construction of rules based on reduct. Decision rules were induced for data sets from
UCI ML Repository and compared from the point of view of length and support, and from the point of view of
classification accuracy. Results of Wilcoxon test are also included.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

Keywords: Rough sets; Decision rules; Length; Reduct; Classification; EAV model

1. Introduction

Data mining is a fast developing discipline of science mainly because of the constantly growing need
to select, classify and deal with large amounts of data from different domains [16, 35]. The amounts are
constantly growing, especially referring to switching a lot of disciplines of human activity to online mode
recently. As the mentioned growth is practically uncontrollable and unclassifiable, new or improved data
mining algorithms and methods are demanded.

Rough set theory is an extension within the classical set theory, suitable for describing concepts in the
case of incomplete and uncertain data [22]. It has a variety of applications, e.g., bioinformatics, business
and finance, decision analysis and systems, medicine, transport and many others. Methods and algorithms
of rough sets are linked and used in other domains as machine learning, pattern recognition, data mining
and knowledge discovery, feature selection and others [2, 5, 28, 32].

∗ Corresponding author
E-mail address: beata.zielosko@us.edu.pl

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the KES International.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.09.140&domain=pdf


3668 Beata Zielosko  et al. / Procedia Computer Science 192 (2021) 3667–3676

Decision rules are popular and useful form of knowledge representation, mainly because of their simple
form and easy interpretation by humans. From this point of view, length of such rules is an important
evaluation measure studied in this paper. Decision rules can be induced directly from a data set or based
on another object, which is called a reduct, in the rough sets. Reduct is a minimal subset of attributes
that has the same classification power as the entire set of features. So, it allows to obtain the most relevant
attributes from the whole set and is popular and useful tool for feature selection and knowledge discovery
from data. Reduct cardinality is important evaluation measure, also from the point of view of knowledge
representation.

Unfortunately, the problem of construction of rules and reducts with minimal length is NP-hard [18, 21].
In the paper, for decision rules construction, two approaches based on rough set theory are presented.
The first one is based on greedy algorithm for partial reduct construction [17], the second one allows to
construct decision rules directly from decision table [39] and can be considered as heuristic based on dynamic
programming approach for decision rules minimization relative to length [1]. In [18] it was shown that under
some natural assumptions on the class NP, considered greedy algorithm is close to the best polynomial
approximate algorithms for the problem of partial reducts minimization. The aim of the paper is to compare
length of decision rules constructed by the algorithm based on EAV (ang. Entity-Attribute-Value) model
with decision rules constructed based on partial reduct. Results for classification accuracy for data sets from
UCI Machine Learning Repository [8] are also provided.

The paper consists of six sections. Section 2 is devoted to the rough set theory, greedy algorithm for
partial reduct construction and approaches for decision rules induction are presented. The algorithm which
allows to construct decision rules directly from decision table and is based on EAV model was described in
Section 3. Section 4 presents experimental results according to length, support and classification accuracy
of rule-based models, for data sets from UCI ML Repository. Section 5 contains conclusions.

2. Rough sets

The rough set theory was developed by prof. Pawlak as a tool for dealing with incomplete and uncertain
data [22]. A basic information unit for the rough sets is defined using indiscernibility relation defined relative
to a given set of attributes. Objects characterized by the same values of attributes are indiscernible in view of
the available knowledge about them. Sets of such indiscernible objects indicated by the same label (decision
class) can be aggregated to form information granules about the universe and such sets are crisp. Otherwise,
if sets of indiscernible objects are indicated by different decision classes, they are rough and such concepts
cannot be characterized in the framework of knowledge available about their elements. So, in the rough sets
theory there are used approximations of the rough concepts.

The lower approximation consists of all objects which surely belong to the concept and the upper approx-
imation contains all objects which possibly belong to the concept. The difference between the upper and the
lower approximation constitutes the boundary region of the rough concept. If the boundary region of a set
is nonempty, it means that our knowledge about the set is not sufficient to define the concept precisely. So,
rough set theory expresses imprecision by employing a boundary region of a set.

2.1. Reducts

In this section, some notions related to decision reduct will be introduced.
Data are presented in a tabular form which is defined as T = (U, A

⋃
{d}), where U is a nonempty, finite

set of of objects and A = {a1, . . . , am} is a nonempty, finite set of attributes, i.e., ai : U → Va, where Va is
the set of values of attribute ai called the domain of ai. Attributes from the set A are called conditional.
d � A is a distinguished attribute called a decision.

For any subset of attributes B ⊂ A and objects x, y ∈ U , an indiscernibility relation IND(B) is defined
as follows: xIND(B)y ⇐⇒ ∀a ∈ Ba(x) = a(y).

Based on indiscernibility relation, a notion of decision reduct can be defined: B ⊂ A is a decision reduct
if it is irreducible subset of attributes such that IND(B) ⊂ IND(d). So, decision reduct is a minimal subset
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Based on indiscernibility relation, a notion of decision reduct can be defined: B ⊂ A is a decision reduct
if it is irreducible subset of attributes such that IND(B) ⊂ IND(d). So, decision reduct is a minimal subset

of attributes which is sufficient to discern objects with different decision values. However, exact reducts can
be overfitted, i.e., depend essentially on the noise or adjusted too much to the existing examples. In such
situation, instead of an exact reduct with many attributes, it is more appropriate to work with a partial reduct
containing smaller number of attributes which separate almost all pairs of rows with different decisions. Last
years various kinds of reducts and their approximations are studied in rough set theory [10, 12, 17].

The popular evaluation measure connected with reduct is length, i.e., the number of attributes it contains.
If reducts are considered as a way of knowledge representation, shorter ones are more preferable.

2.1.1. Partial reducts
There are different approaches for reduct construction. Since exact algorithms do not always allow to

obtain reducts in reasonable time, especially for bigger data sets, approximate methods and different heuris-
tics are very often used. Among others, we can distinguish genetic algorithms [29], heuristics based on
discernibility matrix [15], construction of reducts based on sampling data from decision table [38], and many
others [7, 20].

In [18, 21] it was shown that the problem of construcion of reduct with minimum cardinality is NP-hard.
In the paper, greedy algorithm for partial reduct construction is presented [40]. It is based on the algorithm
for partial cover construction. It was shown that there exist simple reduction of the problem of construction
of an exact cover with minimal cardinality to the problem of construction of an exact reduct with minimal
cardinality, the opposite reduction exists also. Similar situation is with approximate covers and reducts.
Thus it was possible to use important results obtained for the set cover problem [27] for analysis of partial
reducts. It was shown, that under some natural assumptions on the class NP, greedy algorithms are close to
the best polynomial approximate algorithms for the problem of partial reducts minimization.

Algorithm 1 presents pseudo-code of a greedy algorithm for approximate test (super-reduct) construction.
By P (T ) a set of unordered pairs of different rows of T with different values of decision attribute, is denoted.
An attribute ai separates a pair of rows from P(T) if they have different values at the intersection with the
column ai.

Let 0 ≤ α < 1. A set of attributes Q is called an α − test (α − super − reduct) for T if attributes from
Q separate at least (1 − α)|P (T )| pairs of rows from the set P (T ). An α − test is called an α − reduct (or
partial reduct) if each proper subset of the considered α − test is not an α − test. Each α − test contains
at least one α − reduct as a subset. For example, 0.01 − test means that at least 99% of pairs of rows from
P (T ) should be separated by attributes from this partial test. If α is equal to 0 we have an exact test.

Algorithm 1 Greedy algorithm for partial test construction
Input: Decision table T with conditional attributes a1, . . . , am, and real number α, 0 ≤ α < 1.
Output: α-test for T .

Q ←− ∅;
while Q is not an α-test for T do

select ai ∈ {a1, . . . , am} with minimal index i such that ai separates the maximal number of pairs from P (T ) unseparated
by attributes from Q
Q ←− Q ∪ {ai};

end while
return Q;

2.2. Decision rules

In this section, popular approaches for decision rules construction are presented.
Decision rules, considered in this paper, are induced directly or indirectly from decision table and are

presented in the form:

(ai1 = v1) ∧ . . . ∧ (aik
= vk) → d = vd,
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where ai1 , . . . , aik
∈ {a1, . . . , am}, vi ∈ Vai , vd ∈ Vd. Pairs (ai1 = v1) are called descriptors or simply

conditions. The number of conditions in a premise part of rule is its length.
There are many methods for construction of decision rules encountered in the literature. They can be

divided into two groups taking into account type of the algorithm used for their construction: exact or
approximate ones. Approximate ones do not perfectly suit the learning data set whilst the exact ones do.
On the other side, obtaining an exact solution within a reasonable time by using exact algorithms is not
always achievable, especially for bigger data sets, so approximate algorithms are desirable.

In the first group we can distinguish brute-force approach applicable to relatively small decision tables,
Boolean reasoning [23] and dynamic programming approach [1]. The second group consists of many different
heuristics and modifications based on exact methods as based on Boolean reasoning [20], heuristics based
on dynamic programming approach [39, 41], different kinds of greedy algorithms [19, 36], approaches based
on sequential covering [6, 26] and many others [3, 9, 31].

There should be mentioned one more approach, which is used in rough set theory and allows for con-
struction of decision rules based on reduct. In this case each rule has the same length equal to cardinality
of reduct and each object from a decision table has assigned values corresponding to conditional attributes
included in reduct only.

There are many measures for assessment of decision rules [4, 14, 37], which come from statistic, information
theory and others domains, depending on the goal for which the rules are constructed. Two main perspectives
are knowledge representation and knowledge discovery [33].

From the point of view of the first perspective length and support are important measures. According to
length, the Minimum Description Length principle [24] states that:“the best hypothesis for a given set of
data is the one that leads to the largest compression of data”. Support allows to discover major patterns in
data. It is a number of object from decision table such their attribute values satisfy the premise part of the
rule and they have the same decision as the one attached to the rule.

From the point of view of the second perspective, classification accuracy is used. It is a number of object
properly classified divided by the whole number of objects in test part of decision table.

3. Algorithm based on EAV model

The algorithm for construction of decision rules based on converting decision table to the entity-attribute-
value form (EAV) has been introduced in [39]. It’s general idea is to gather an attribute ranking basing on
their distinguishability level. This level is determined by the attributes’ standard deviation among decision
classes. So, the mentioned approach allows to add feature selection step to the rule generation process.
Described algorithm belongs to the group of heuristics as it constitutes approximate rules, but it grows from
the dynamic programming approach for decision rules optimization relative to length [1].

The idea of dynamic programming approach for decision rules optimization is based on partitioning of
a decision table into subtables which are created for each value of each conditional attribute. A directed
acyclic graph is obtained which nodes correspond to subtables and edges are labeled by values of attributes.
Based on the graph, it is possible to described decision rules with minimal length. However, if the number of
attributes and their values is large, the size of the graph (the number of rows and edges) is huge. Therefore,
obtaining an exact solution within a reasonable time is not always possible.

Thus, the algorithm based on EAV model was proposed. It uses the idea of partitioning of decision table
into subtables, but only for the values of selected attributes. The process of partitioning subtables is finished
when all rows in a given subtable have the same class label or all values of selected attributes were considered.
Then, decision rules are created basing on corresponding values of selected attributes. Components of this
new approach as transformation of decision table into EAV form and construction of ranking of attributes,
turns out to simplify the process of generation of decision rules.

The first experimental results showed that the length of the rules constructed using proposed approach is
not far from the optimal values obtained based on dynamic programming approach [39]. In the paper, the
proposed algorithm will be compared with the reduct-based approach, from the point of view of knowledge
representation and classification.
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proposed algorithm will be compared with the reduct-based approach, from the point of view of knowledge
representation and classification.

3.1. EAV Model

EAV model is a different way to represent the decision table. It has been proposed in [13]. The idea is
that every attribute with its value forms a separate row in the EAV table. Moreover, the newly formed row
is supplied with the row number and decision from the original form of input decision table.

The idea to convert to EAV form is to make the analysis more comfortable from the point of view of
utilization of RDBMS (Relational Database Management System) for data processing. RDBMS engines are
more optimized for dealing with large categorized data sets than standard programming languages. It allows
to significantly decrease the computational time, especially for sets of numerous multi-valued attributes.
The idea of applying SQL for rule generation is not new and has already been studied, for instance, for
construction of association rules [25] and decision rules [34].

The example below demonstrates how an EAV table can be defined in RDBMS - PostgreSQL in this
case:
Listing 1. EAV table
CREATE TABLE eav
(

id s e r i a l primary key ,
a t t r i b u t e character varying ,
value character varying ,
d e c i s i o n character varying ,
row b i g i n t

) ;

3.2. Selection of attributes

The idea behind the EAV-based rule generation algorithm is to use standard deviation as a level of
distinguishability. The standard deviation is calculated for each attribute value and grouped per decision
classes, it is based on Bayesian data analysis [30]. In order to calculate standard deviation of non-numerical
attributes, their values’ numerical equivalents are considered. The equivalents are typically just ordinal
numbers.

With the growth of the standard deviation obtained, the distinguishability level of attributes also in-
creases. It leads to the conclusion that the attributes with the highest values of the mentioned standard
deviation are in the highest places in attributes ranking. This directly implies to the utilization of the feature
selection in terms of rule generation.

3.3. Construction of decision rules

Before the algorithm will be presented, some notions are introduced.
A table obtained from T by the removal of some rows is called a subtable of the table T . Let T be

nonempty, ai1 , . . . , aik
∈ {a1, . . . , am} and b1, . . . , ak be values of attributes. The subtable of the table T

that contains only rows that have values a1, . . . , ak at the intersection with columns ai1 , . . . , aik
is denoted

by T ′ = T (ai1 , a1) . . . (aik
, ak). Such nonempty subtable (including the table T ) is called separable subtable

of T .
A minimum decision value that is attached to the maximum number of rows in T is called the most

common decision for T .
The table T is called degenerate if T is empty or all rows of T are labeled with the same decision’s value,

or all rows have the same values of conditional attributes.
Algorithm 2 presents pseudo-code of the algorithm for construction of decision rules based on EAV model.
Notation of symbols are the following: T is a decision table; p is the ceiling of then number of percentage

of the selected best attributes in the formed ranking; R is the set of generated rules; v is the unique set of
values from the T in EAV form grouped per rows of input table T ; vi and v′

i are temporary subsets of v
for the sake of rule generating iteration, based on the values included in the set v and its subsets separable
subtables are created.
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Algorithm 2 Pseudo-code of algorithm generating decision rules for a decision table T .
Input: Input decision table T , number p of best attributes to be taken into consideration.
Output: Set of decision rules R

represent T as entity–attribute–value (EAV) form with separate decision;
represent each attribute’s value in a discrete numerical form;
obtain attributes’ standard deviation per decision class.
take p number of attributes of largest STD—in a descending order;
from T in EAV form select sets v of unique values (including decision) of attributes grouped per decision table’s rows;
while there exist sets vi in v not marked as processed do

generate one-item v′
i set with initial value from vi which corresponds to creation of separable subtable T ′ = T (fi, ai);

set vi is not processed;
while iterations number < sizeof(vi) OR separable subtable is not degenerate do

extend v′
i by supplying it with the subsequent element from vi which corresponds to next partition of T ′;

end while
generate decision rule basing on the values of attributes from v′

i (consequent is the most common decision for T ′ corre-
sponding to v′

i);
supply the set R with the newly created rule;
set vi being processed.

end while

The Algorithm 2 starts its operation with choosing the attributes for rule generation. It is based on
the idea of selection of attributes described in the previous section (taking into account standard deviation
of attributes). The percentage of attributes taken into consideration should be empirically chosen as it is
related to the training set’s structure.

After choosing the attributes, the Algorithm 2 proceeds to the rule formulation step. To begin with, unique
combinations of attributes with values from the training set are collected. The set of combinations consists
of only the attributes selected in the previous step. The attributes order in the subsequent combinations is
dependent on the place in the attributes ranking. As for now, the decision is not considered.

Next, for every of the attribute combination, the separable subtables of the input training table are
formed. For every combination, the rule formulation begins with choosing the highest ranked attribute and
its value. Separable subtable gets generated for this attribute. Then, it needs to be checked if this subtable
is degenerate. If it is degenerate, then the rule can be already formed (from the chosen attribute and its
value). It also contains degenerate subtable’s decision. If it is not degenerate, the next attribute from the
ranking is taken and the next separable subtable is created. If it is degenerate, the rule can be formed from
these two mentioned attributes. The process is repeated iteratively, the stop criterion is either a degenerate
table or all attributes already utilized. If all attributes are utilized and the subtable is not degenerate, the
rule is formed from all the attributes and the most common decision from the separable subtable is taken
as the decision. This feature allows the algorithm to be applied to inconsistent data sets.

4. Experimental results

Experiments were performed on data sets from UCI Machine Learning Repository [8]. Attributes of unique
value for each row were removed. As for missing values, they were replaced with the most common values
for a given attribute for which such a situation appears. When, in some of the decision tables, there were
equal values of conditional attributes but different decisions, then each group of identical rows was replaced
with a single row from the group with the most common decision for this group.

The goal of the conducted experiments was to compare decision rules generated by the EAV model-based
algorithm and the approach based on partial reduct. Decision rules were assessed taking into account:

• length and support which are important from the point of view of knowledge representation,
• classification accuracy which is important from the point of view of knowledge discovery.
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Algorithm 2 Pseudo-code of algorithm generating decision rules for a decision table T .
Input: Input decision table T , number p of best attributes to be taken into consideration.
Output: Set of decision rules R

represent T as entity–attribute–value (EAV) form with separate decision;
represent each attribute’s value in a discrete numerical form;
obtain attributes’ standard deviation per decision class.
take p number of attributes of largest STD—in a descending order;
from T in EAV form select sets v of unique values (including decision) of attributes grouped per decision table’s rows;
while there exist sets vi in v not marked as processed do

generate one-item v′
i set with initial value from vi which corresponds to creation of separable subtable T ′ = T (fi, ai);

set vi is not processed;
while iterations number < sizeof(vi) OR separable subtable is not degenerate do

extend v′
i by supplying it with the subsequent element from vi which corresponds to next partition of T ′;

end while
generate decision rule basing on the values of attributes from v′

i (consequent is the most common decision for T ′ corre-
sponding to v′

i);
supply the set R with the newly created rule;
set vi being processed.

end while

The Algorithm 2 starts its operation with choosing the attributes for rule generation. It is based on
the idea of selection of attributes described in the previous section (taking into account standard deviation
of attributes). The percentage of attributes taken into consideration should be empirically chosen as it is
related to the training set’s structure.

After choosing the attributes, the Algorithm 2 proceeds to the rule formulation step. To begin with, unique
combinations of attributes with values from the training set are collected. The set of combinations consists
of only the attributes selected in the previous step. The attributes order in the subsequent combinations is
dependent on the place in the attributes ranking. As for now, the decision is not considered.

Next, for every of the attribute combination, the separable subtables of the input training table are
formed. For every combination, the rule formulation begins with choosing the highest ranked attribute and
its value. Separable subtable gets generated for this attribute. Then, it needs to be checked if this subtable
is degenerate. If it is degenerate, then the rule can be already formed (from the chosen attribute and its
value). It also contains degenerate subtable’s decision. If it is not degenerate, the next attribute from the
ranking is taken and the next separable subtable is created. If it is degenerate, the rule can be formed from
these two mentioned attributes. The process is repeated iteratively, the stop criterion is either a degenerate
table or all attributes already utilized. If all attributes are utilized and the subtable is not degenerate, the
rule is formed from all the attributes and the most common decision from the separable subtable is taken
as the decision. This feature allows the algorithm to be applied to inconsistent data sets.

4. Experimental results

Experiments were performed on data sets from UCI Machine Learning Repository [8]. Attributes of unique
value for each row were removed. As for missing values, they were replaced with the most common values
for a given attribute for which such a situation appears. When, in some of the decision tables, there were
equal values of conditional attributes but different decisions, then each group of identical rows was replaced
with a single row from the group with the most common decision for this group.

The goal of the conducted experiments was to compare decision rules generated by the EAV model-based
algorithm and the approach based on partial reduct. Decision rules were assessed taking into account:

• length and support which are important from the point of view of knowledge representation,
• classification accuracy which is important from the point of view of knowledge discovery.

Table 1 presents length of decision rules created based on partial reducts, for α ∈ {0.001, 0.01, 0.1}, and
minimum, average and maximum length of decision rules constructed based on EAV model, for 100%, 80%
and 60% of attributes from the whole set of features.

Table 1. Length of decision rules created based on partial reducts and EAV model-based algorithm

data set rows attr α 100% 80% 60%
0.0 0.001 0.01 0.1 min avg max min avg max min avg max

breast-cancer 266 9 8 6 3 2 1 4.42 8 1 4.39 7 1 4.09 5
cars 1728 6 6 5 4 2 2 3.91 5 2 3.31 4 2 2.67 3
house-votes 279 16 11 7 4 2 2 5.61 15 2 5.56 12 2 5.38 9
kr-vs-kp 3196 36 29 10 6 3 2 7.28 34 2 7.17 27 2 6.86 20
mushroom 8124 22 4 3 2 1 1 1.98 7 1 1.98 7 1 1.98 7
soybean-small 47 35 2 2 2 1 1 3.40 8 1 3.40 8 1 3.40 8
spect-test 169 22 11 11 7 3 2 6.38 21 2 6.26 17 2 5.88 13
tic-tac-toe 958 9 8 6 5 3 2 4.71 7 2 4.71 7 2 4.29 5

As for rule lengths, the statistical analysis by means of the Wilcoxon two-tailed test [11] has been per-
formed (comparison of results for α = 0 and percentage of best attributes=100%). The average values of
rule’s length obtained for the EAV model-based algorithm for 100% attributes are significantly smaller than
length of rules formed from reducts, for α equal to 0. It is graphically presented on the Figure 1. Taking the

Figure 1. Length of decision rules constructed for the whole set of attributes in decision table, for both approaches

results into consideration, it can be seen, that reduct-based approach for rule generation, for small values of
α constructs, on average, longer rules than the EAV model-based algorithm. When increasing α values, the
results become comparable.

Tables 2 and 3 present minimum, average and maximum support of rules, for reduct-based approach and
EAV model-based algorithm, respectively.

Table 2. Support of rules formed from reducts

data set rows attr α=0.0 α=0.001 α=0.01 α=0.1
min avg max min avg max min avg max min avg max

breast-cancer 266 9 1 1.04 2 1 1.06 2 1 2.59 6 1 6.71 15
cars 1728 6 1 1.00 1 1 3.81 4 1 10.52 12 10 64.21 108
house-votes 279 16 1 1.85 5 1 7.60 16 1 39.31 68 3 73.52 95
kr-vs-kp 3196 36 1 1.11 4 1 14.96 49 2 139.80 374 28 452.27 950
mushroom 8124 22 8 208.49 432 8 378.79 864 24 927.43 1584 36 2139.55 3408
soybean-small 47 35 4 7.51 10 4 7.51 10 4 7.51 10 4 11.51 17
spect-test 169 22 1 1.67 6 1 1.53 4 1 3.46 9 1 22.28 34
tic-tac-toe 958 9 1 1.00 1 1 2.53 7 1 5.38 17 2 32.08 78
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Table 3. Support of rules generated by EAV model-based algorithm

data set rows attr 100% 80% 60%
min avg max min avg max min avg max

breast-cancer 266 9 1 3.73 22 1 3.73 22 1 4.14 22
cars 1728 6 1 22.52 64 2 23.32 64 6 27.69 64
house-votes 279 16 1 30.73 82 1 30.73 82 1 30.99 82
kr-vs-kp 3196 36 1 12.31 53 1 13.43 53 1 15.21 53
mushroom 8124 22 4 241.27 528 4 241.27 528 4 241.27 528
soybean-small 47 35 1 2.79 5 1 2.79 5 1 2.79 5
spect-test 169 22 1 14.22 35 1 14.20 35 1 14.30 35
tic-tac-toe 958 9 1 6.43 38 1 6.43 38 1 6.73 38

As for average values of rule support, the statistical analysis by means of the Wilcoxon two-tailed test has
also been performed (comparison of results for α = 0 and percentage of best attributes=100%). The values
of rule support obtained for the EAV model-based algorithm for 100% attributes are significantly greater
than values of support for rules formed from 0-reducts. However, for α = 0.1 it can be observe in Tables 2
and 3 that results for reduct based-approach outperform results obtained for EAV model-based algorithm
for 60% of best attributes.

Experiments connected with accuracy of rule-based classifiers were performed. Each set has been randomly
divided into 10 equally-sized subsets then 10-fold cross validation procedure was applied. Tables 4 and 5
present average classification accuracy and standard deviation, for reduct-based approach and EAV model-
based algorithm, respectively. Classification accuracy is the number of objects (rows) from the test part of
decision table which are correctly classified divided by the number of all rows in the test part of decision
table. In the case of conflicts a standard voting strategy was used, in which every rule votes with the weight
proportional to the objects supporting it.

Table 4. Classification accuracy for rules formed from reducts

data set α=0.0 α=0.001 α=0.01 α=0.1
accuracy std accuracy std accuracy std accuracy std

breast-cancer 0.80 0.35 0.82 0.33 0.83 0.35 0.84 0.36
cars 0.73 0.05 0.75 0.07 0.77 0.08 0.76 0.05
house-votes 0.67 0.04 0.66 0.02 0.69 0.01 0.67 0.07
kr-vs-kp 0.60 0.40 0.61 0.38 0.57 0.41 0.57 0.41
mushroom 0.74 0.05 0.79 0.05 0.79 0.02 0.79 0.02
soybean-small 0.81 0.34 0.84 0.35 0.85 0.32 0.80 0.34
spect-test 0.99 0.02 0.99 0.02 0.99 0.02 0.99 0.02
tic-tac-toe 0.74 0.37 0.74 0.37 0.74 0.37 0.74 0.37

Table 5. Classification accuracy for rules generated by EAV model-based algorithm

data set 100% 80% 60%
accuracy std accuracy std accuracy std

breast-cancer 0.78 0.32 0.79 0.34 0.81 0.34
cars 0.79 0.06 0.80 0.02 0.81 0.03
house-votes 0.74 0.07 0.77 0.10 0.78 0.10
kr-vs-kp 0.66 0.32 0.70 0.28 0.74 0.25
mushroom 0.87 0.13 0.87 0.12 0.87 0.12
soybean-small 0.81 0.31 0.82 0.31 0.84 0.32
spect-test 0.88 0.09 0.90 0.11 0.92 0.13
tic-tac-toe 0.71 0.39 0.75 0.39 0.77 0.39

As for classification results, the statistical analysis by means of the Wilcoxon two-tailed test has been
performed, to verify the null hypothesis that there are none differences in the assessment of classifiers.

For Table 4 the analysis shows that min(W+, W−) > Wcrit (for all α values), so it can be concluded that
there is no significant difference between classification results collected for different values of α. The null
hypothesis has been confirmed.
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Table 3. Support of rules generated by EAV model-based algorithm

data set rows attr 100% 80% 60%
min avg max min avg max min avg max

breast-cancer 266 9 1 3.73 22 1 3.73 22 1 4.14 22
cars 1728 6 1 22.52 64 2 23.32 64 6 27.69 64
house-votes 279 16 1 30.73 82 1 30.73 82 1 30.99 82
kr-vs-kp 3196 36 1 12.31 53 1 13.43 53 1 15.21 53
mushroom 8124 22 4 241.27 528 4 241.27 528 4 241.27 528
soybean-small 47 35 1 2.79 5 1 2.79 5 1 2.79 5
spect-test 169 22 1 14.22 35 1 14.20 35 1 14.30 35
tic-tac-toe 958 9 1 6.43 38 1 6.43 38 1 6.73 38

As for average values of rule support, the statistical analysis by means of the Wilcoxon two-tailed test has
also been performed (comparison of results for α = 0 and percentage of best attributes=100%). The values
of rule support obtained for the EAV model-based algorithm for 100% attributes are significantly greater
than values of support for rules formed from 0-reducts. However, for α = 0.1 it can be observe in Tables 2
and 3 that results for reduct based-approach outperform results obtained for EAV model-based algorithm
for 60% of best attributes.

Experiments connected with accuracy of rule-based classifiers were performed. Each set has been randomly
divided into 10 equally-sized subsets then 10-fold cross validation procedure was applied. Tables 4 and 5
present average classification accuracy and standard deviation, for reduct-based approach and EAV model-
based algorithm, respectively. Classification accuracy is the number of objects (rows) from the test part of
decision table which are correctly classified divided by the number of all rows in the test part of decision
table. In the case of conflicts a standard voting strategy was used, in which every rule votes with the weight
proportional to the objects supporting it.

Table 4. Classification accuracy for rules formed from reducts

data set α=0.0 α=0.001 α=0.01 α=0.1
accuracy std accuracy std accuracy std accuracy std

breast-cancer 0.80 0.35 0.82 0.33 0.83 0.35 0.84 0.36
cars 0.73 0.05 0.75 0.07 0.77 0.08 0.76 0.05
house-votes 0.67 0.04 0.66 0.02 0.69 0.01 0.67 0.07
kr-vs-kp 0.60 0.40 0.61 0.38 0.57 0.41 0.57 0.41
mushroom 0.74 0.05 0.79 0.05 0.79 0.02 0.79 0.02
soybean-small 0.81 0.34 0.84 0.35 0.85 0.32 0.80 0.34
spect-test 0.99 0.02 0.99 0.02 0.99 0.02 0.99 0.02
tic-tac-toe 0.74 0.37 0.74 0.37 0.74 0.37 0.74 0.37

Table 5. Classification accuracy for rules generated by EAV model-based algorithm

data set 100% 80% 60%
accuracy std accuracy std accuracy std

breast-cancer 0.78 0.32 0.79 0.34 0.81 0.34
cars 0.79 0.06 0.80 0.02 0.81 0.03
house-votes 0.74 0.07 0.77 0.10 0.78 0.10
kr-vs-kp 0.66 0.32 0.70 0.28 0.74 0.25
mushroom 0.87 0.13 0.87 0.12 0.87 0.12
soybean-small 0.81 0.31 0.82 0.31 0.84 0.32
spect-test 0.88 0.09 0.90 0.11 0.92 0.13
tic-tac-toe 0.71 0.39 0.75 0.39 0.77 0.39

As for classification results, the statistical analysis by means of the Wilcoxon two-tailed test has been
performed, to verify the null hypothesis that there are none differences in the assessment of classifiers.

For Table 4 the analysis shows that min(W+, W−) > Wcrit (for all α values), so it can be concluded that
there is no significant difference between classification results collected for different values of α. The null
hypothesis has been confirmed.

Moreover, having repeated the Wilcoxon test for EAV model-based algorithm, it turns out that there are
also no significant differences between classification results for 100% and 80% of best attributes. They are
also comparable with the results obtained for reducts for all α values. Nevertheless, the classification results
obtained for the EAV model-based algorithm for 60% of best attributes are significantly better than both
results obtained for 100% and 80% of best attributes as well as for all α values of reduct-based approach
(min(W+, W−) < Wcrit).

It leads to the conclusion that EAV model-based algorithm can perform better from the point of view
of knowledge discovery, for 60% of selected attributes than the reduct-based approach. When reducing the
number of attributes to be taken into consideration, the experiments show that 60% of attributes is the
number to go for - it is consistent with the results presented in [39].

5. Conclusions

In the paper, two selected approaches for decision rules construction were studied. They are different
approximation methods however, both of them utilize selection of attribute idea. Besides, in the case of
approach based on reduct it was proved that greedy algorithm is close to the best approximate algorithms
for partial reduct minimization problem. It was the reason why this approach was chosen to compare the
length of the rules obtained by algorithm based on EAV model.

Experiments were performed from the point of view of knowledge representation and knowledge discov-
ery. Short rules are easier for understanding and interpreting by experts. Quality of the rule-based model
describing a given data set is important component very often considered in different applications.

Obtained results show that despite similarities from the feature selection point of view, the EAV model-
based approach allows to obtain shorter rules with greater support in the case of α = 0 for reduct-based
approach and 100% attributes for EAV-model based algorithm. For classification results it was statistically
confirmed that 60% of selected attributes outperform results obtained for reduct-based approach, for each
value of α.

Future works will be connected with improving the work of the heuristics proposed by authors, mainly
related to the automatic selection of attributes considered during decision rules construction and comparison
with other approaches.
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