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Abstract

This paper proposes a method for diagnosing Parkinson’s disease using ensemble classification of patient voice samples. Conducted
research concerned testing the parameters of the ensemble of classifiers, in terms of types and numbers of classifiers included in
it. More than a dozen popular classifiers were considered in the study. Additionally, for each of the tested classifiers, a set of
features of voice samples were selected, for which a given classifier showed the highest classification efficiency. The Sequential
Backward Selection (SBS), which belongs to the wrapper methods, was used for feature selection. The ensemble of classifiers was
then tested in two cases, with all features considered and including only those indicated by the SBS method. The obtained results
were compared with each other.

All experiments were performed on a publicly available database containing voice samples of Parkinson’s patients and healthy
patients. This database can be found in the UCI archives.
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1. Introduction

Parkinson’s disease (PD) is a disease of the central nervous system. It develops when there is a decrease in brain’s
nerve cells that produce dopamine. Dopamine is a chemical messenger that transmits impulses between nerve cells to
control body movements and balance. Thus, PD is a neurological condition whose main symptoms are tremors that
occur, slowed movements, and difficulty in movement [1, 2].
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The risk of developing PD increases with age, and the first symptoms of the disease can occur at almost any age
[3]. It is therefore important to detect Parkinson’s disease as early as possible to initiate immediate therapy to stop or
slow the disease process.

Parkinson’s disease also affects other areas of activity, such as speaking. Common problems include a weak, mono-
tone, or nasal voice, slow speech, difficulty in starting speech, rhythm or accent disorders, and stuttering [4, 5]. It is
therefore possible to diagnose Parkinson’s disease using human voice analysis [6]. The advantage of this method is
that it is non-invasive and non-contact. Voice samples can be pre-recorded and properly prepared, then analysed at any
time, without the use of specialized, and often expensive, medical equipment. Recording of samples does not have to
take place in specialized hospital departments but can be done at home, and the samples can be sent for testing, e.g.,
via e-mail [7]. The registration and diagnosis process can also be done online via the Internet [8]. From the recorded
sample, appropriate voice characteristics can be extracted and subjected to a classification process. As a result, it is
possible to determine whether the analyzed sample comes from a sick or healthy person.

With the emergence of the COVID-19 virus pandemic, non-contact voice recording has become particularly im-
portant, and is an additional advantage of the method. The lack of contact with the recording device means that the
likelihood of a sick person transmitting the virus to such a device is reduced, and in the case of healthy people,
infection with the virus is limited. This prevents the spread of the pandemic.

The above-presented advantages were motivation for developing a method that would effectively diagnose Parkin-
son’s disease using patients’ voice samples. The proposed method uses an ensemble of classifiers [9, 10, 11] and a
feature reduction method [12, 13, 14] to minimize the number of features. In the following section, it is shown that
a properly configured ensemble of classifiers along with a reduced set of voice sample features enables the correct
diagnosis of Parkinson’s disease.

This paper is organized as follows: Section 2 presents the theoretical background related to the classification of
patient voice samples, using both a single classifier and an ensemble of classifiers. Section 3 focuses on the feature
selection method, Sequential Backward Selection. For each classifier, the voice features for which it shows the highest
classification performance are indicated using this method. Section 4 outlines the tests performed, and the analysis of
the results obtained. And Section 5 sums up the conclusions and provides a summary of the work and further possible
directions for development.

2. Theoretical background

Let a set of m patients P = {P1, P2, ..., Pm} be given. For each patient Pi, where i = 1, ...,m, a set of n samples
of his voice Pi = {S 1, S 2, ..., S n} is given. Each sample S j, where j = 1, ..., n, is described by a set of r features
S j = { f1, f2, ..., fr}. Based on the analysis of the set of voice samples of patient Pi and the features of these samples,
the task is to diagnose whether patient Pi is healthy or has Parkinson’s disease.

Let us introduce the class C = {0, 1} to which patient Pi belongs. Class 0 indicates that the patient is healthy, while
class 1 indicates Parkinson’s disease. Additionally, let ci j ∈ C denote the class of a single sample j of patient i. Let us
denote the decision that the sample S i j to belongs to class ci j ∈ C as:

di j = Ψ(S i j), (1)

where Ψ denotes the classifier model, and S i j, the j-th sample, from the i-th patient.
N samples of patient Pi are analyzed, and each sample is classified separately. The final decision d f inal

i ∈ C whether
patient Pi has Parkinson’s disease or is healthy is made based on majority voting:

d f inal
i =

{
0, if d0

i j ≥ d1
i j

1, if d1
i j > d0

i j
, (2)

where:
d1

i j =
∑n

j=0 di j - is the decision that the sample is from a patient with Parkinson’s disease,
d0

i j = n − d1
i j - is the decision that the sample is from a healthy patient.
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2.1. A single classifier approach

In this approach, the decision of whether a patient is healthy or has Parkinson’s disease is made using a single
classifier. First, a single classifier Ψ is trained on a set of voice samples present in the database but from patients other
than the diagnosed patient Pi. Then, the classifier is tested on a set of n voice samples S of patient Pi. Each sample
S j, where j = 1, ..., n, is classified separately. And finally, a decision is made as to whether the diagnosed patient is
healthy or has Parkinson’s disease. This is determined by using a majority voting system. The flow chart of the single
classifier approach is shown in Figure 1.
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Fig. 1. The flow chart of decision determination in a single classifier approach.

The presented approach can be extended to the feature selection method. For this part of the test, the popular
Sequential Backward Selection (SBS) method was used, which is described in detail in Section 3. The feature selection
was performed on both the voice samples from the training set and the samples from the test set. This process leaves
only selected features of voice samples in both the training and test sets for the further classification process.

2.2. The proposed ensemble approach

In the proposed approach, the ensemble of classifier is built based on different types of Ψ classifiers. Each classifier
Ψ was trained by use of the same learning set. Such a situation is shown in Figure 2, where k classification blocks are
given. In each of these k blocks, there was a classifier Ψi, where i = 1, . . . , k. Furthermore, Ψ1 � Ψ2 � ... � Ψk, where
Ψ1,Ψ2, ...,Ψk are the classifiers located in blocks 1, 2, ..., k respectively.
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Fig. 2. The flow chart of decision determination in the proposed ensemble approach.
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Each of the classification blocks generates a dC decision. So, an ensemble of k classification blocks will generate
dC1 , ..., dCk decisions. Having these data, the final decision D is determined from the following formula:

D =
{

0, if
∑k

i=1 dCi ≤ t
1, if

∑k
i=1 dCi > t

, (3)

where:
dCi - is the decision generated by the i-th classification block,
t = [k/2, . . . , k − 1] - is a parameter that determines how many classification blocks determine whether a patient has
Parkinson’s disease or is healthy.
The value of parameter t was examined in the Experiments and results section.

3. Feature selection

The Sequential Backward Selection (SBS) algorithm was used for feature selection. Its choice was dictated by its
simple implementation and speed. However, it should be noted that this algorithm searches only a subset of combi-
nations of all features, smaller than all possibilities, which does not ensure the selection of optimal features [13, 15].
this method proved to be sufficient.

The SBS algorithm belongs to the group of wrapper methods. It means that to find the set of optimal features it
uses a specific machine learning algorithm [14]. It belongs to the family of greedy feature space search algorithms and
is used to reduce the initial d-dimensional feature space S to its r-dimensional subspace S r, where r < d. The input
parameter of the method is a given number of features contained in the new subspace.

The working of the SBS algorithm is explained using an example. Subspace S r is initially set as the full feature
space S . Then, in each iteration step, a feature is eliminated, whose removal results in the highest classification
accuracy. Completion of the algorithm occurs when a set number of output features is reached. An example of an SBS
algorithm, for five input features and two output features, is presented in Figure 3.

Ψ(f , f , f , f , f ) = 87.2%1 2 3 4 5

Ψ(f , f , f , f ) = 87.6%     Ψ(f , f , f , f ) = 73.4%     Ψ(f , f , f , f ) = 91.5%     Ψ(f , f , f , f ) = 52.3%     Ψ(f , f , f , f ) = 61.2%1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

Ψ(f , f , f ) = 83.1%     Ψ(f , f , f ) = 86.4%     Ψ(f , f , f ) = 85.3%     Ψ(f , f , f ) = 81.7%1 2 4 1 2 5 1 4 5 2 4 5

Ψ(f , f ) = 89.6%     Ψ(f , f ) = 89.7%     Ψ(f , f ) = 89.4%1 2 1 5 2 5

S  = {f , f }r 1 5

S = S = {f , f , f , f , f }r 1 2 3 4 5

Fig. 3. The principle of operation of the SBS algorithm.

This algorithm was used for all the classifiers tested and an optimal set of features was selected for each classifier.
The input parameter, denoting the number of features, was given a value of 1. This meant that the algorithm had to
analyze a ”path” starting from a set containing all the features to a set containing only one feature. This gave a set of
results from which the best result was chosen and the features for which it was achieved. In Figure 3, the best result
was achieved for 4 features Ψ( f1, f2, f4, f5) = 91.5%.
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4. Experiments and results

4.1. Database

The experiments used a patient database from the UCI archives, available at https://archive.ics.uci.edu/
ml/index.php [16]. The tested database contains voice samples from 32 people - 24 people were Parkinson’s pa-
tients, 8 people were healthy. For 29 of the individuals, 6 voice samples were recorded, while for 3 individuals, 7
voice samples were recorded. A total of 195 feature vectors are included in the database out of which 147 vectors are
labelled as feature vectors from diseased persons, while 48 are vectors from healthy persons. Each voice sample is
described by the features in Table 1.

Table 1. Analyzed features of voice samples.
No. Feature Description
1. MDVP:Fo(Hz) Average vocal fundamental frequency.
2. MDVP:Fhi(Hz) Maximum vocal fundamental frequency.
3. MDVP:Flo(Hz) Minimum vocal fundamental frequency.
4. MDVP:Jitter(%), Several measures of variation in fundamental frequency.
5. MDVP:Jitter(Abs),
6. MDVP:RAP,
7. MDVP:PPQ,
8. Jitter:DDP
9. MDVP:Shimmer, Several measures of variation in amplitude.
10. MDVP:Shimmer(dB),
11. Shimmer:APQ3,
12. Shimmer:APQ5,
13. MDVP:APQ,
14. Shimmer:DDA
15. NHR, Two measures of ratio of noise to tonal components in the voice.
16. HNR
17. RPDE, Two nonlinear dynamical complexity measures.
18. D2
19. DFA Signal fractal scaling exponent.
20. spread1, Three nonlinear measures of fundamental frequency variation.
21. spread2,
22. PPE

4.2. Tested classifiers and their parameters

The experiments were performed with software written in Python (version 3.8) using the Scikit-learn library (ver-
sion 0.24.1). This library contains implementations of popular and frequently used classifiers [17]. For some of the
classifiers, the classification accuracy was enhanced by the method of pre-scaling the data. The Standard Scaler class
method of the Scikit-learn library was used for scaling data. This method is described in detail in [17].

The classification performance was tested using the leave-one-out method, i.e., records belonging to one patient
were removed from the database and treated as test data. The records remaining in the database were treated as training
data. The procedure was repeated for each patient in the database.

Tested classifiers, their parameters, and whether the tested data were scaled or not are shown in Table 2.

4.3. Experiment 1

In the first conducted experiment, the classification accuracy was determined for single classifiers without feature
reduction and with feature reduction using the SBS algorithm. Table 3 shows the obtained results.
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Table 2. Tested classifiers and their parameters.
Classifier Input parameters Data scaling
Perceptron max iter=1000 Yes
Logistic Regression solver=’liblinear’ Yes
Multi-layer Perceptron max iter=1000 Yes
SVM (linear kernel) kernel=’linear’ Yes
SVM (non-linear kernel) kernel=’rbf’, gamma=’auto’ Yes
SVM (polynomial kernel) kernel=’poly’, gamma=’auto’, degree=1 Yes
Decision Tree criterion=’entropy’, max depth=5 No
k-NN n neighbors=10, metric=’euclidean’, Yes

weights=’distance’

Naive Bayes default No
Stochastic Gradient max iter=1000 No
Gaussian Process default Yes
Random Forest default Yes
Ada Boost default No
Gradient Boosting default No
Extra Trees default No
Bagging DecisionTreeClassifier No
Linear Discriminant default No
Quadratic Discriminant default No

Table 3. Classification accuracy for single classifier without and with feature reduction.
Classifier Without feature With feature

reduction [%] reduction [%]
Perceptron 75.0 87.5
Logistic Regression 81.2 84.4
Multi-layer Perceptron 90.6 90.6
SVM (linear kernel) 81.2 87.5
SVM (non-linear kernel) 84.4 87.5
SVM (polynomial kernel) 84.4 87.5
Decision Tree 84.4 90.6
k-NN 81.2 90.6
Naive Bayes 68.8 90.6
Stochastic Gradient 78.1 90.6
Gaussian Process 84.4 87.5
Random Forest 81.2 87.5
Ada Boost 81.2 87.5
Gradient Boosting 84.4 87.5
Extra Trees 84.4 84.4
Bagging 84.4 87.5
Linear Discriminant 81.2 90.6
Quadratic Discriminant 81.2 87.5

Analyzing Table 3 it can be observed, that practically, for each of the tested classifiers, higher accuracy was ob-
tained by a reduced set of features. The exceptions are the Multi-layer Perceptron and Extra Trees classifier, where
the same classification accuracy was obtained for the whole and reduced set of features. The best accuracy in classifi-
cation of all features was achieved using a Multi-layer Perceptron classifier and it was 90.6%. Whereas in the case of
feature reduction the best result of 90.6% was achieved for Multi-layer Perceptron, Decision tree, k-NN, Naive Bayes,
Stochastic Gradient Descent and Linear Discriminant classifiers.
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Ada Boost 81.2 87.5
Gradient Boosting 84.4 87.5
Extra Trees 84.4 84.4
Bagging 84.4 87.5
Linear Discriminant 81.2 90.6
Quadratic Discriminant 81.2 87.5

Analyzing Table 3 it can be observed, that practically, for each of the tested classifiers, higher accuracy was ob-
tained by a reduced set of features. The exceptions are the Multi-layer Perceptron and Extra Trees classifier, where
the same classification accuracy was obtained for the whole and reduced set of features. The best accuracy in classifi-
cation of all features was achieved using a Multi-layer Perceptron classifier and it was 90.6%. Whereas in the case of
feature reduction the best result of 90.6% was achieved for Multi-layer Perceptron, Decision tree, k-NN, Naive Bayes,
Stochastic Gradient Descent and Linear Discriminant classifiers.
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4.4. Experiment 2

Based on single classifiers, ensembles of classifiers were constructed in the second experiment conducted. The
ensembles contained respectively: 3, 5, and 7 different classifiers.

The number of classifier combinations in an ensemble can be calculated from the following formula:

lk =
(
n
k

)
(4)

where:
n - the pool of all classifiers. In the presented work, n = 18 classifiers were tested (see Table 2),
k - number of classifiers in the ensemble. Respectively, k = 3, 5, 7.

Similarly, to Experiment 1, tests were performed for a set of all features (without reduction) and a reduced set of
features.

By substituting the values of n = 18 and k = 3, 5, 7, into equation (4), we obtain the number of all tested combina-
tions: l3 = 816, l5 = 8568, l7 = 31824. Due to such a large number of combinations, the study shows the probability
of obtaining a certain classification accuracy for a given configuration and different parameters t, without specifying
the classifiers with which a given result was obtained.

The values of the parameter t were dependent on the number of classifiers in the ensemble. Thus, for k = 3, t = 1,2,
k = 5, t = 2,...,4, and k = 7, t = 3,...,6.

Figure 4 shows the probability of obtaining an accuracy of classification for 3 – Fig. 4(a), 5 – Fig. 4(b), and 7 –
Fig. 4(c) classifiers in the ensemble, without feature reduction. Also, the influence of the parameter t (see equation 3)
on the obtained results was investigated.
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Fig. 4. Probability of obtaining a given classification accuracy and the influence of the parameter t on the obtained results for an ensemble of (a) 3,
(b) 5, (c) 7 classifiers. Results for the case without feature reduction.
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Analyzing the presented charts, it can be observed that the highest classification accuracy was achieved for the
maximum value of the parameter t. It was 90.6% accuracy for all tested ensembles. For each ensemble, the most
probable classification accuracy was 84.4% for a minimum value of the parameter t. Thus, it can be concluded that
building an ensemble of classifiers without feature reduction does not significantly improve the classification accuracy
compared to using single classifiers with and without feature reduction. The highest classification accuracy of 90.6%
was also obtained for these cases.

Figure 5 shows the probability of obtaining the specified classification accuracy for 3 – Fig. 5(a), 5 – Fig. 5(b), and
7 – Fig. 5(c) classifiers in the ensemble with feature reduction. As in the previous case, the influence of the parameter
t on the obtained results was investigated.

By analyzing the charts shown in Figure 5, it can be observed that the classification accuracy increases with
increasing the parameter t. For an ensemble of 3 classifiers, the maximum accuracy was 96.9%, while for ensembles
of 5 and 7 classifiers, the highest accuracy was 100%. For each ensemble, the most probable classification accuracy
was 87.5% for a minimum value of the parameter t.
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Fig. 5. Probability of obtaining a given classification accuracy and the influence of the parameter t on the obtained results for an ensemble of (a) 3,
(b) 5, (c) 7 classifiers. Results for the case with feature reduction.

This result is higher than for the case in which the feature set was not reduced. The conclusion is that building
an ensemble of classifiers with feature reduction improves the classification effectiveness over using an ensemble of
classifiers without feature reduction and single classifiers (without and with feature reduction). One hundred percent
classification accuracy was obtained when the classifiers were properly configured, and the parameter t was carefully
chosen.

Table 4 presents a summary of the study performed in this experiment. The best classification performance obtained
for each configuration is highlighted.
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Analyzing the presented charts, it can be observed that the highest classification accuracy was achieved for the
maximum value of the parameter t. It was 90.6% accuracy for all tested ensembles. For each ensemble, the most
probable classification accuracy was 84.4% for a minimum value of the parameter t. Thus, it can be concluded that
building an ensemble of classifiers without feature reduction does not significantly improve the classification accuracy
compared to using single classifiers with and without feature reduction. The highest classification accuracy of 90.6%
was also obtained for these cases.

Figure 5 shows the probability of obtaining the specified classification accuracy for 3 – Fig. 5(a), 5 – Fig. 5(b), and
7 – Fig. 5(c) classifiers in the ensemble with feature reduction. As in the previous case, the influence of the parameter
t on the obtained results was investigated.

By analyzing the charts shown in Figure 5, it can be observed that the classification accuracy increases with
increasing the parameter t. For an ensemble of 3 classifiers, the maximum accuracy was 96.9%, while for ensembles
of 5 and 7 classifiers, the highest accuracy was 100%. For each ensemble, the most probable classification accuracy
was 87.5% for a minimum value of the parameter t.
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Fig. 5. Probability of obtaining a given classification accuracy and the influence of the parameter t on the obtained results for an ensemble of (a) 3,
(b) 5, (c) 7 classifiers. Results for the case with feature reduction.

This result is higher than for the case in which the feature set was not reduced. The conclusion is that building
an ensemble of classifiers with feature reduction improves the classification effectiveness over using an ensemble of
classifiers without feature reduction and single classifiers (without and with feature reduction). One hundred percent
classification accuracy was obtained when the classifiers were properly configured, and the parameter t was carefully
chosen.

Table 4 presents a summary of the study performed in this experiment. The best classification performance obtained
for each configuration is highlighted.
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Table 4. Summary of results performed for ensembles of classifiers.

Without feature With feature
reduction reduction

Number of classifiers in The value of the Most probable The best result Most probable The best result
an ensemble parameter t result [%] obtained [%] result [%] obtained [%]

3 1 84.4 87.5 87.5 93.8
2 81.2 90.6 90.6 96.9

2 84.4 87.5 87.5 93.8
5 3 81.2 87.5 90.6 100.0

4 78.1 90.6 90.6 100.0

3 84.4 87.5 87.5 93.8
7 4 84.4 87.5 87.5 96.9

5 81.2 87.5 90.6 100.0
6 65.6 90.6 90.6 100.0

5. Conclusions

During the COVID-19 virus pandemic, non-contact recording of voice samples and their use to diagnose Parkin-
son’s patients is an important advantage. This paper proposes a method for diagnosing PD using ensemble classifica-
tion of patient voice samples.

The conducted research has shown that ensemble classification allows increasing the effectiveness of classification
in comparison to classification using a single classifier, but on the condition that features reduction has been performed.
Considering an ensemble of 5 or 7 classifiers and an appropriate choice of t parameter, it is possible to achieve
classification effectiveness equal even to 100%. However, the presented research does not indicate which classifiers
allow to obtain such a high result. The automatic selection of classifiers, using which the maximum accuracy can be
achieved, will be the subject of further research. Further work will also include testing other feature selection/reduction
methods. The research will also be conducted on other databases.
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