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Abstract

One of the long-standing puzzles in neutrino physics concerns the number of neu-
trino flavours in nature. So far the existence of three types of active neutrinos has
been established. However, it is crucial to ascertain if more neutrino flavour states
exist. Such neutrinos are dubbed sterile as their weak interaction with ordinary matter
is below available detection limits. Nonetheless, sterile neutrinos can mix with active
neutrinos leaving visible imprints in the form of a deviation from the unitarity of the
Standard Model neutrino mixing matrix. Thus, studies of non-unitarity of the mixing
matrix are crucial in understanding neutrino physics.

We develop a novel approach of studying neutrino mixing matrices based on matrix
theory. It has been built on quantities known as singular values and the notion of
contractions. Based on that we define a region of physically admissible mixing matri-
ces as a convex hull over experimentally determined three-dimensional unitary mixing
matrices. We study the geometrical properties of this physical region by measuring its
volume expressed by the Haar measure of the singular value decomposition and explor-
ing its internal structure corresponding to a different number of sterile neutrinos.

We show how to identify unitarity-breaking cases based on singular values and
construct their unitary extensions yielding a complete theory of minimal dimensionality
larger than three through the theory of unitary matrix dilations. Using that we find
stringent constraints on active-sterile neutrino mixings in models with three active and
one sterile neutrino states.

v





Streszczenie

Jeden z kluczowych problemów współczesnej fizyki cząstek elementarnych doty-
czy liczby zapachów neutrin występujących w naturze. Do tej pory udało się ustalić,
że istnieją trzy rodzaje neutrin aktywnych. Istotnym problemem jest ustalenie, czy
istnieją inne dodatkowe stany neutrinowe. Neutrina takie nazywamy sterylnymi ze
względu na fakt, że ich oddziaływanie słabe ze znaną materią jest jak do tej pory
poniżej eksperymentalnego progu detekcji. Niemniej jednak neutrina sterylne mogą się
mieszać z neutrinami aktywnymi pozostawiając tym samym ślady swojego istnienia na
poziomie Modelu Standardowego w postaci nieunitarności macierzy mieszania neutrin.
Z tego powodu badanie nieunitarności macierzy mieszania jest tak istotne dla pełnego
zrozumienia fizyki neutrin.

W rozprawie przedstawiamy nową metodę analizy macierzy mieszania neutrin opartą
na teorii macierzy. Fundament naszego podejścia do badania macierzy mieszania neu-
trin stanowią pojęcia wartości osobliwych oraz kontrakcji. Dzięki tym pojęciom zdefin-
iowaliśmy obszar fizycznie dopuszczalnych macierzy mieszania jako powłokę wypukłą
rozpiętą na trójwymiarowych unitarnych macierzach mieszania wyznaczonych na pod-
stawie danych eksperymentalnych. W rozprawie badamy geometryczne własności tego
obszaru wyznaczając jego objętość wyrażoną poprzez miarę Haara rozkładu na warto-
ści osobliwe oraz studiując jego strukturę wewnętrzną zależną od minimalnej liczby
dodatkowych sterylnych neutrin.

Stosując teorię unitarnej dylatacji pokazujemy jak wartości osobliwe pozwalają zi-
dentyfikować nieunitarne macierze mieszania oraz jak tworzyć ich rozszerzenia do pełnej
macierzy unitarnej wymiaru większego niż trzy, opisującej kompletną teorię zawiera-
jącą neutrina sterylne. Na tej podstawie wyznaczamy nowe ograniczenia w modelach
gdzie aktywne neutrina mieszają się z jednym dodatkowym neutrinem sterylnym.
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1 Introduction

Since its earliest history, neutrino physics has stimulated discoveries that break the
paradigms of particle physics. Even today, when we know much more about neutrinos,
there are still many unsolved problems. Solutions to them could change the physics
we know today drastically. Among them is the question concerning the number of
neutrino types in nature. At the moment three types of neutrinos are known, each one
corresponding to the different type1 of the charged lepton (electron, muon, tau). That
there are three types of neutrinos has been known since the LEP era. The central value
for the effective number of light neutrinos Nν was determined by analyzing around 17
million Z-boson decays, yieldingNν = 2.9840±0.0082 [1,2]. It is worth mentioning that
the recent reevaluation of the data [3,4], including higher-order QED corrections to the
Bhabha process, constrains further the value of Nν , which is now Nν = 2.9963±0.0074.
Moreover, from oscillation experiments it is known that neutrinos are massive particles
[5, 6]. Massive neutrinos can be either self-conjugate Majorana particles or of Dirac
type. In the second case left-handed neutrino fields are accompanying by right-handed
neutrino states. These additional right-handed states do not couple directly with the
Standard Model (SM) W and Z bosons. Such non-weakly interacting neutrinos are
known as "sterile" and are in the limelight of modern particle physics research. However,
they may influence the Standard Model physics, as they can mix with active Standard
Model left-handed states. As a result, new neutrino states modify the mixing matrix,
so that it is no longer unitary, and the mixing between extended flavour and mass
states is described by a matrix of dimension larger than three. This extended matrix
should, in general, itself be unitary, meaning completeness of the active-sterile mixing
is restored.

The concept of sterile neutrinos is very appealing. They can explain important
physical phenomena such as small masses of active neutrinos, e.g. by the seesaw mech-
anism [7–10]. Interestingly, some recent experiments and experimental signals suggest
that the fourth type of neutrino may exist. Namely, measurements of the ν̄e flux at
small distances from nuclear reactors give 6% fewer events than expected [11]. Such
a deficit referenced as a "Reactor Antineutrino Anomaly" can be explained as active-
sterile antineutrino oscillations at very short baselines [12]. The recent results of Daya
Bay [13], NEOS [14], RENO [15] and Double Chooz [16] experiments confirm this re-
actor antineutrino anomaly. Moreover, the NEUTRINO-4 reactor experiment claims
to detect an electron antineutrino to sterile neutrino oscillation at the 3σ significance

1Various lepton types are also often named flavours or species.
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level [17–19]. However, there are some controversies concerning this result and a more
refined analysis of the data shows that claimed results are rather doubtful [20–22]. Gal-
lium solar neutrinos experiments also observe fewer events than predicted. A deficit in
data is reported by GALEX and SAGE collaborations [23]. Statistical significance for
such "Gallium Anomalies" in terms of neutrino oscillations was recently estimated at
the level of 2.3σ [24] which decreases the previous estimation of 3σ level [25].

Clues for sterile neutrino oscillations exist also in the long-baseline experiments.
The first reported abnormalities were reported by the LSND collaboration in 1995.
More efficient analysis from 1996 showed an excess of electron antineutrinos events
from the muon antineutrino beam [26]. Recent results from the MiniBooNE exper-
iment [27] show a massive excess of electron (anti)neutrino events from the muon
(anti)neutrino beam. There also exist some hints towards two additional sterile neutri-
nos with eV scale masses [28–31]. However, they contradict the latest muon neutrino
disappearance results from MINOS/MINOS+ and IceCube [32, 33]. So, the situation is
not clear concerning scales and the number of additional neutrino states in general,
and further scrutinized studies are needed, both on experimental and theoretical sides.
Hence, studies of the violation of unitarity of the SM mixing matrix are crucial for
finding hints for new neutrino states.

Theoretical approach to the deviation from unitarity of the mixing matrix is based
on η and α parametrizations [34–39]. The use of these parametrizations is mostly phe-
nomenological, focused mainly on the estimation of this deviation without touching the
nature of the mixing mechanism. However, there are great possibilities for formal stud-
ies of neutrino mixing. On the one hand, the structure of the neutrino mixing matrix
can be studied in terms of group theory using additional symmetries (A4, S3, etc., [40]).
On the other hand, matrix theory opens new insight to the neutrino mixing studies. In
this work, we will develop the latter approach which allows for a unified treatment of
both the Standard Model and beyond the Standard Model (BSM) scenarios by focusing
on the 3 × 3 mixing matrices available from oscillation experiments. The crucial step
in the development of this method is the recognition of the significance of the singular
values in studies of mixing matrices [41]. They underlie the notion of contractions
which impose a strong restriction on the mixing matrices allowing to sift the physically
meaningful mixing matrices from those non-physical. Following this idea, all physically
admissible mixing matrices form a geometric region whose structure reflects important
physical properties. It appears that the minimal number of additional sterile neutrinos
is not arbitrary, but is encoded in singular values. This property is inscribed in the
internal structure of the geometric region of physically meaningful mixing matrices.
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The study of complete unitary matrices of some BSM scenarios agreeing with experi-
mental results is possible by a procedure called a unitary dilation. Besides its formal
insight, the matrix theory approach to mixing studies enables also to make quantitative
predictions of the physical effects of sterile neutrinos.

The dissertation has the following structure. In the next chapter, we present details
of the theory of massive neutrinos important for further studies. Chapter three contains
the basic notation of matrix theory presented from the neutrino mixing perspective.
In chapter four, we define and study geometrical properties of the region of physically
admissible mixing matrices. Chapter five is devoted to the study of phenomenological
predictions of effects of sterile neutrinos by singular values. In the final chapter formal
aspects of the connection between masses and mixing are presented, focusing on the
seesaw family. The work ends with a summary and discussion of the possible directions
of further studies.
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2 Theory of neutrino masses and mixing

2.1 Basic framework

The history of neutrinos has been inseparably connected to the β-decay and develop-
ment of weak interactions. The β-decay possesses the continuous energy spectrum of
the decaying particle which cannot be reconciled with a discrete energy spectrum of
directly detectable particles seen in a two-body decay, A

ZX → A
Z+1X + e, unless the

energy conservation law is broken. On the other hand, if an additional neutral particle
takes part in this process, AZX → A

Z+1X + e + ν, the continuous spectrum of the elec-
tron can be obtained. Such a postulate was made by Wolfgang Pauli and announced
in 1930 during the nuclear conference in Tübingen. In his original statement, Pauli
names the new particle ν a neutron and assumes that its spin is 1/2, and mass must
be about the same as the electron mass and certainly not larger than one percent of
the proton mass. After the discovery of the neutron, as it is known today, in 1932 [42],
Fermi changed the name of Pauli’s particle to the neutrino. Further development of the
neutrino theory was driven by the necessity of the description of experimental results
of the β-decay. The first step in this direction was undertaken by Fermi in 1934 [43]
who constructed a suitable Hamiltonian assuming that the neutron decays to the pro-
ton and electron-neutrino pair, n → p + e + ν, and the interaction is similar to the
electromagnetic one

Hβ(x) = GF p̄(x)γµn(x)ē(x)γµν(x) +H.c., (2.1)

where GF is the interaction constant, p(x), n(x), e(x) and ν(x) are proton, neutron,
electron and neutrino fields, respectively. Further experimental discoveries, such as the
discovery of the parity violation in the β-decay [44], were followed by the development
of the theory [45–47] in which the two-component neutrinos are massless particles. In
this framework, fermion fields are the sum of the left-handed and right-handed chiral
components

ν(x) = νL(x) + νR(x), (2.2)

where

νL,R(x) = I ∓ γ5

2 ν(x) ≡ PL,Rν(x), (2.3)

with I being the identity matrix and γ5 = iγ0γ1γ2γ3 (gammas are defined along with
the Dirac equation). The PL,R are called chirality projectors and satisfies the following
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properties

PL + PR = I − γ5 + I + γ5

2 = I,

PLPR = PRPL = 0.
(2.4)

In the two-component theory, it is assumed that the neutrino fields exist only in one
chiral state νL or νR. Let us express the neutrino mass Lagrangian in terms of chiral
fields

L = −mν̄(x)ν(x) = −m(ν̄L(x) + ν̄R(x))(νL(x) + νR(x))
= −m(ν̄L(x)νL(x) + ν̄L(x)νR(x) + ν̄R(x)νL(x) + ν̄R(x)νR(x)),

(2.5)

where ν̄ = ν†γ0. By using the fact that ν̄R = ν̄PL and ν̄L = ν̄PR and applying the
second identity of (2.4), we end up with

L = −m(ν̄L(x)νR(x) + ν̄R(x)νL(x)), (2.6)

which is a standard form for a fermion mass term. However, in the two-component
neutrino theory, one of the fields does not exist and as a result, neutrinos must be
massless particles. Experimental confirmation of the two-component neutrino theory
was given in 1958 [48], showing that neutrinos are left-handed particles. If we assume
that the Standard Model is based on the two-component neutrino theory, where only
left-handed neutrino fields νL are present in the SM Lagrangian, then neutrinos are
massless particles. However, there is experimental evidence that neutrinos are massive
particles [5,6]. That being said, massive neutrinos can be easily accommodated within
the SM by introducing right-handed neutrino fields ν ′R which are singlets of the SU(2)L
gauge group. Then, the Yukawa Lagrangian reads

LνY = −
√

2
v

∑
l′,l

ψ̄l′LM
′
l′lν

′

lRφ̃+H.c. (2.7)

where ψL = (ν ′L, l′L)T for l = e, µ, τ , M ′ is a complex matrix and φ̃ is a conjugated
Higgs doublet with the vacuum expectation value v. After the spontaneous symmetry
breaking we get

LνY = −ν̄ ′LM ′ν ′R

(
1 + H

v

)
+H.c. (2.8)

with

ν ′L = (ν ′eL, ν ′µL, ν ′τL)T ,
ν ′R = (ν ′eR, ν ′µR, ν ′τR)T .

(2.9)
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The left-handed fields ν ′L can be transformed to the flavour basis by a transformation

νfL = U †Lν
′
L = (νeL, νµL, ντL)T , (2.10)

where UL is a unitary matrix used to diagonalize a charged leptons mass matrix. This
gives

LνY = −ν̄fLMDν
′
R

(
1 + H

v

)
+H.c. (2.11)

where MD = U †LM
′. The first part represents the neutrino mass term

LD = −ν̄fLMDν
′
R +H.c. (2.12)

The complex mass matrixMD can be diagonalized by the singular value decomposition
MD = UmV †, where U and V are unitary matrices and m = diag(m1,m2,m3). After
the diagonalization we obtain

LD = −ν̄LmνR +H.c. (2.13)

where

νL = U †νfL = U †U †Lν
′
L,

νR = V †ν ′R.
(2.14)

The left- and right-handed fields can be combined into neutrino fields with a definite
mass

LD(x) = −ν̄(x)mν(x), (2.15)

where ν = νL + νR and ν = (ν1, ν2, ν3)T and νi are neutrino fields with definite mass
mi for i = 1, 2, 3. This mass term is called the Dirac mass term. The relation (2.14)
is known as the neutrino mixing and the matrix UPMNS = ULU is called the PMNS
(Pontecorvo-Maki-Nagawa-Sakata) mixing matrix [49, 50]. This relation describes the
fact that neutrino fields with definite flavour differ from the fields with definite mass,
but are related as the linear combinations of each other. Experimental data shows
that for charged leptons the flavour fields are physically measurable fields, i.e fields
with definite mass. Thus, for charged leptons, flavour and massive fields coincide
within experimental accuracy. This implies that the charged lepton mass matrix is
already in a diagonal form, hence the unitary UL matrix is the identity matrix and the
PMNS mixing matrix is equal to the neutrino mixing matrix U .

However, as neutrinos are neutral particles, there is another possibility to construct
a mass term involving only one chiral type of the field, namely the Majorana field. For

7



neutral particles the charge conjugation of left-handed fields (νlL)C = Cν̄TlL, where C is
a charge conjugate unitary operator satisfying CγTµ C−1 = −γµ and CT = −C, behave
as right-handed fields and, conversely, the charge conjugation of right-handed fields
(νlR)C are left-handed fields. To construct a mass term we need a combination of right-
and left-handed fields, thus in the case of Majorana particles, we can build a mass
term only from one type of neutrino fields. It is called a Majorana mass term and for
left-handed neutrino fields its matrix form can be written as

LML = −1
2 ν̄LMLν

C
L +H.c. (2.16)

where νL = (νeL, νµL, ντL)T and ML is a complex symmetric matrix. Such a matrix
can be diagonalized by the congruence transformation

ML = UmUT , (2.17)

where U is a unitary matrix and m = diag(m1,m2,m3). After the diagonalization we
get

LML = −1
2 ν̄

MmνM , (2.18)

where we defined

νM = U †νL + (U †νL)C = (ν1, ν2, ν3)T = νML + νMR . (2.19)

The νi are Majorana neutrino fields with mass mi for i = 1, 2, 3. The Majorana fields
are invariant under the charge conjugation

(νM)C = νM or for individual fields νCi = νi. (2.20)

This is the so-called Majorana condition and physically it means that Majorana parti-
cles are their own antiparticles. The mixing between flavour and massive fields is given
by

νL = UνML . (2.21)

A similar mass term can be constructed for the right-handed neutrino fields

LMR = −1
2(νR)CMR(νR) +H.c. (2.22)

Finally, the most general neutrino mass term consists of all three types of mass terms,
i.e. Dirac, left- and right-handed Majorana mass terms

Lm = −1
2 ν̄LML(νL)C − ν̄LMDνR −

1
2(νR)CMR(νR) +H.c. (2.23)
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where ML is a complex 3 × 3 matrix, MD is a complex 3 × NR matrix and MR is a
complex NR ×NR matrix. This term can be written in the following compact form

Lm = −1
2(nL)CMnL +H.c. (2.24)

where nL = (νL, (νR)C)T , and

M =
 ML MD

MT
D MR

 . (2.25)

TheM matrix is a (3+NR)×(3+NR) complex symmetric matrix. As in the case of the
Majorana mass matrix, the M can be diagonalized by the congruence transformation

M = UmUT , (2.26)

where U is (3 +NR)× (3 +NR) unitary matrix and m = diag(m1, . . . ,m3+NR).

2.2 Modelling the neutrino sector

The introduction of neutrino masses requires abandoning the two-component neutrino
theory and accepting either the existence of right-handed neutrino fields or the Majo-
rana nature of neutrinos. The theory of massive neutrinos is in the limelight of particle
physics research and there is a variety of models trying to explain the origin of neutrino
masses. We will focus on the models based on the Dirac-Majorana mass term (2.24)
as an interesting, general framework. Two main classes of possible extensions of the
neutrino sector dictated by the renormalizability and gauge symmetries of the SM will
be discussed. Apart from Dirac or Majorana neutrino types, there are also pseudo-
Dirac (or quasi-Dirac) [51], schizophrenic [52], or vanilla [53] neutrinos, to name some
of them. Popular seesaw mechanisms give a possibility for a dynamical explanation
of why the known active neutrino states are so light. They appear to be of Majorana
type (recently, a dynamical explanation for Dirac light neutrinos was proposed [54]).
By including more types of new fields we can approach neutrino masses by inverse or
linear seesaw models [55–58].

2.2.1 Minimal extension of the Standard Model

To stay within the SM framework, i.e. keeping the Lagrangian invariant under the
SU(2)L × U(1) gauge group with the SM fields, we must abandon the left-handed
Majorana mass term in (2.23) since it does not leave the Lagrangian invariant under the

9



SM gauge symmetry. This imposes that ML = 0. On the other hand, as right-handed
neutrino fields are singlets of the SM gauge symmetry, the right-handed Majorana mass
term is allowed. This setup we call the minimal extension of the SM. Thus, the most
general neutrino mass term compatible with the SM is given by

Lm = −ν̄LMDνR −
1
2(νR)CMR(νR) +H.c. (2.27)

This Lagrangian can be written in a compact form as

Lm = −1
2(nL)CMnL +H.c. (2.28)

where

nL = (νL, (νR)C)T ,

M =
 0 MD

MT
D MR

 . (2.29)

The complex symmetric mass matrix M can be diagonalized by the congruence
transformation UTMU = m, where m = diag(m1,m2,m3, ...,m3+NR). The unitary
matrix U is responsible for the transition between flavour and massive neutrino bases,
i.e. the mixing mechanism for neutrinos

nL = UñL with ñL = (ñ1L, ñ1L, ..., ñ3+NRL). (2.30)

The fields ñiL are neutrino fields with definite mass mi for i = 1, 2, . . . , 3 + Nr. The
current experimental data [59] ensures that at least two standard neutrinos must be
massive

∆m2
21 = (7.53± 0.18)× 10−5eV 2,

∆m2
32 = (2.453± 0.034)× 10−3eV 2.

(2.31)

This data restricts the minimal number of additional sterile neutrinos allowed in the
minimal extension of the SM. If we add only one right-handed neutrino the mass matrix
(2.29) takes the form

M =


0 0 0 m14

0 0 0 m24

0 0 0 m34

m14 m24 m34 m44

 . (2.32)

Such a matrix has two eigenvalues equal to zero. It is easily seen by solving the
eigenvalue problem for the M matrix, Mx = λx, which gives

λ4−(m2
14λ

2 +m2
24λ

2 +m2
34λ

2 +m44λ
3) = −λ2(m2

14 +m2
24 +m2

34 +m44λ−λ2) = 0, (2.33)
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which is true only if λ2 = 0 orm2
14+m2

24+m2
34+m44λ−λ2 = 0. From the first condition,

we see that two eigenvalues are equal to zero which contradicts experimental results
(2.31). The same is true in the general setting, where masses are taken to be singular
values. Thus, the minimally extended SM defined here excludes the possibility that
only one additional right-handed neutrino exists and the allowed minimal number of
sterile neutrinos is two. The fact that theML submatrix is equal to zero in the minimal
extension restricts also the structure of the mixing matrix.

2.2.2 Beyond the minimal SM extension

In order to allow the most general structure of the neutrino mass matrix (2.25), i.e.
ML 6= 0, it is necessary to go beyond the SM framework. The simplest way to do
this is by introducing a weak isospin triplet ∆ = (∆++,∆+,∆0) into the model. The
effects of interaction between new fields such as the isospin triplet and SM fields can
be incorporated into a model by an effective Lagrangian of dimension 5 consisting only
of SM fields [60]

L5 = − 1
Λ
∑
l′l

yl′l(ψTl′Lσ2φ)C†(φTσ2ψlL) +H.c. (2.34)

where ψlL = (νlL, lL)T and φ = (φ+, φ0)T are lepton and Higgs doublets, respec-
tively. The L5 operator is invariant under the SM symmetries, however, it is also
non-renormalizable. It can be treated as an effective low-energy Lagrangian of the
high-energy physics, which can be generated by integrating out heavy fields. At the
tree level, this can be done in only three ways, one of them involves heavy-scalar triplet
∆. After the symmetry breaking L5 gives

LM = −1
2
∑
l′l

(νl′L)CMl′lνlL +H.c. (2.35)

where Ml′l = yl′lv
2

Λ , which is exactly the Majorana mass term for neutrinos. Thus, by
adding such a term to the Dirac mass term and right-handed Majorana mass term, we
recover the complete mass matrix (2.25). In that way, we can consider scenarios with
only one sterile right-handed neutrino (three active and one sterile neutrinos) which
are not allowed in the minimal extension of the SM. The 3+1 scenario is promoted
by some oscillation experiments [61]. As mentioned the L5 operator can be realized
in three different ways by involving only one type of new heavy fields. The one way
has been discussed above and it involves heavy scalar triplet ∆. All these realizations
provide the small mass spectrum of the known neutrinos. The realization involving
the ∆ is known as the seesaw type II mechanism [10, 62]. The other two are known
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as seesaw type I [7–10] and III [63]. Seesaw type I is generated by the introduction of
heavy-sterile neutrino fields νR, whereas the seesaw type III is generated by the heavy
fermion triplet Σ = (Σ+,Σ0,Σ−). A hybrid mechanism is also possible [64].

2.3 Neutrino mixing matrix

Neutrino flavour fields are (linear) combinations of the massive fields

νfl =
∑
i=1

Uliν
m
i (2.36)

This property of neutrino fields is called the neutrino mixing mechanism. The mixing
of neutrinos occurs regardless if they are Dirac or Majorana particles. As the massive
and flavour fields form two orthogonal bases in the state space, the transition from one
base to another can be done by the unitary matrix. This restricts coefficients of the
linear combination, the sum of squares of their absolute values must equal one

νfl =
∑
i=1

Uliν
m
i with

∑
i=1
|Uli|2 = 1. (2.37)

This unitary matrix is a major object of study in the theory of massive neutrinos. In
the Standard Model, it is known as the PMNS mixing matrix.

It is useful to study the neutrino mixing matrix via a specific parametrization.
The general n× n complex matrix has n2 complex parameters or equivalently 2n2 real
parameters. The unitarity condition UU † = I imposes n2 additional constraints on
the elements. It can be seen from the UU † which is a Hermitian matrix and has n
independent diagonal elements and n2 − n independent off-diagonal elements which
together give n2 independent elements or conditions imposed on the unitary matrix.
Thus, the n × n unitary matrix has 2n2 − n2 = n2 independent real parameters. An
alternative way to see this is by writing a unitary matrix as the matrix exponent
of the Hermitian matrix U = eiH , where the H matrix is Hermitian and thus has
n2 independent real parameters which implies that U also has n2 independent real
parameters. These parameters can be split into two categories: rotation angles and
complex phases. The number of angles corresponds to the number of parameters of
the orthogonal matrix which has n(n−1)

2 independent real parameters. The remaining
parameters correspond to phases. Thus, the n2 independent real parameters of the
unitary matrix split into

angles: n(n− 1)
2 ,

phases: n(n+ 1)
2 .

(2.38)
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However, not all phases are physical observables. The charged leptons and neutrino
fields can be redefined as

νi → eiαiνi and l→ eiβll. (2.39)

The αi and βl phases can be chosen in such a way that they eliminate 2n − 1 phases
from the mixing matrix leaving the Lagrangian invariant. This reduces the number
of phases of the mixing matrix. The number of remaining free parameters is (n − 1)2

which divides into

angles: n(n− 1)
2 ,

phases: (n− 1)(n− 2)
2 .

(2.40)

These are the numbers under consideration when neutrinos are of the Dirac type.
However, we know already that neutrinos can also be particles of the Majorana type.
Then the Majorana condition (2.20) fixes phases of the neutrino fields, which no longer
can be chosen to eliminate phases in the mixing matrix. On the other hand, the phases
of charged leptons are still arbitrary and can be chosen in such a way as to eliminate
phases from the mixing matrix. Thus, from all n(n+1)

2 phases of the unitary matrix,
n phases can be eliminated. Finally, for the Majorana neutrinos, the number of free
parameters of the mixing matrix is as follows

angles: n(n− 1)
2 ,

phases: n(n− 1)
2 .

(2.41)

Knowing the number of parameters necessary to describe the mixing matrix, we can
find its explicit form by invoking a particular parametrization. In the SM, the mixing
matrix is a 3× 3 matrix and thus for the Dirac case we have three mixing angles and
one complex phase. The standard way of parametrizing the PMNS mixing matrix is as
the product of three rotation matrices with additional complex phase in one of them,
i.e. in terms of Euler angles θ12, θ13, θ23 and complex phase δ

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13




c12 s12 0
−s12 c12 0

0 0 1



≡


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 uτ3

 .

(2.42)
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In the case of Majorana neutrinos we must include additional phases, which is done
typically by multiplying the PMNS mixing matrix from the right-hand side by the
diagonal matrix of phases PM . For the 3 × 3 mixing matrix, we must add two more
complex phases. The Majorana neutrino mixing matrix is then given by

UM
PMNS = UPMNSP

M , (2.43)

where PM = diag(eiγ1 , eiγ2 , 1).

2.4 CP transformation in the neutrino sector

The decays of neutral kaons show that CP symmetry is violated by weak interactions in
the quark sector of elementary particles. In principle, strong interactions could violate
CP symmetry, but the size of the CP violation found there is insufficient to explain
the matter- antimatter imbalance. However, leptogenesis with hypothetical heavy Ma-
jorana neutrinos and their matter-antimatter asymmetric decays can produce desired
effects. Thus, it is very important to study possible CP effects in the neutrino sec-
tor. As we will see, CP transformations affect possible parametrization of the neutrino
mixing and mass matrices.

2.4.1 C, P and CP transformations

The C charge conjugation transformation is responsible for the particle to anti-particle
transition. The spinor field ψ(x) under the C transformation changes as follows

ψ(x) C−→ ψC(x) = ζCCψ
T (x) = ζCCγT0 ψ∗(x) = −ζCγ0Cψ∗(x), (2.44)

where C is a charge conjugation matrix satisfying

CγTµ C−1 = −γµ,
C† = C−1,

CT = −C.
(2.45)

The coefficient ζC, which is a phase, is restricted by the fact that two consecutive charge
conjugation transformations must leave the field unchanged

ψ(x) C−→ ζCCψ
T (x) C−→ ζCC(−ζ∗CψTC†(x))T = −|ζC|2CC∗ψ(x) = |ζC|2ψ(x). (2.46)

Thus, ζC must satisfy |ζC|2 = 1.
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The P transformation or parity transformation is responsible for the spatial reflec-
tion

xµ = (x0, x) P−→ x′µ = (x0,−x) = xµ. (2.47)

The spinor field ψ(x) under the P transformation is transformed as

ψ(x) P−→ ψP(x′) = ζPγ
0ψ(x′). (2.48)

The phase ζP is constrained by the fact that two parity transformations must reproduce
the initial state of the field

ψ(x) P−→ ζPγ
0ψ(x′) P−→ ζ2

Pγ
0γ0ψ(x) = ζ2

Pψ(x), (2.49)

which gives ζ2 = 1. However, as the sign of fermion field changes with the rotation by
2π, the values of ζ2 are ±1 which gives ζP = ±1,±i.

The combination of C and P transformations is called the CP transformation. The
fermion field under the CP transformation changes as follows

ψ(x) CP−→ ζCζPγ
0CψT (x′). (2.50)

We will call the product of coefficients ζC and ζP the CP phase and denote it by ζCP ,
i.e. ζCP = ζCζP . From the already established restrictions on ζC and ζP , the CP phase
must satisfy

|ζCP |2 = 1. (2.51)

To check if it is true, we use the fact that two successive CP transformations must
reproduce the initial field

ψ(x) CP−→ ζCPγ
0CψT (x′) CP−→ −|ζCP |2ψ(x). (2.52)

Since the sign of the field has no physical meaning, we get |ζCP |2 = 1.

2.4.2 CP conservation

Let us discuss conditions for the CP invariance of the neutrino sector by investigating
the charged-current (CC) Lagrangian

LCCL = − g√
2

( ∑
α=e,µ,τ

ν̄αLγ
µlαLWµ +

∑
α=e,µ,τ

l̄αLγ
µναLW

†
µ

)
. (2.53)

It is necessary to discuss the CP invariance condition for both Dirac and Majorana
type of neutrinos as the Majorana condition (2.20) imposes additional restrictions. Let
us first investigate the Dirac case.
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The CP transformation (2.50) is applied to the fermion fields by the unitary opera-
tor UCP

UCPψ(x)U−1
CP = ζCPγ

0CψT (x′). (2.54)

The conjugate field transforms then as

UCPψ(x)U−1
CP = −ζ∗CPψTC†γ0(x′). (2.55)

As the fields are the sum of left- and right-handed fields, these components transform
in the same way

UCPψL,R(x)U−1
CP = ζCPγ

0CψL,R
T (x′),

UCPψL,R(x)U−1
CP = −ζ∗CPψTL,RC†γ0(x′).

(2.56)

Thus, we require the LCCL to be invariant under the CP transformation

UCPLCCL (x)U−1
CP = LCCL (x′). (2.57)

The charged-current Lagrangian can be expressed in terms of massive neutrino fields

LCCL = − g√
2

( ∑
α=e,µ,τ

∑
i

U∗αiν̄iLγ
µlαLWµ +

∑
α=e,µ,τ

∑
i

Uαil̄αLγ
µνiLW

†
µ

)
. (2.58)

Under the CP transformation, the W boson transforms as

UCPWµ(x)U−1
CP = eiξWW µ†(x′), (2.59)

which gives the following CC current Lagrangian transformation

UCPLCCL U−1
CP =

= g√
2
∑
α,i

U∗αiη
∗
i ν

T
iLC†γ0γµζαγ

0C l̄TαLeiξWW µ† + g√
2
∑
α,i

Uαiζ
∗
αl
T
αLC†γ0γµηiγ

0Cν̄TiLe−iξWW µ

= − g√
2
∑
α,i

U∗αiη
∗
i ζαe

iξW νTiLγ
µ∗l̄TαLW

µ† − g√
2
∑
α,i

Uαiζ
∗
αηie

−iξW lTαLγ
µ∗ν̄TiLW

µ =

= g√
2
∑
α,i

U∗αiη
∗
i ζαe

iξW l̄αLγµνiLW
µ† + g√

2
∑
α,i

Uαiζ
∗
αηie

−iξW ν̄iLγµlαLW
µ,

(2.60)

where the change of the sign in the second line is due to the properties of the C matrix
(2.45), and in the last row owing to the anti-commutation of fermion fields. As the
phase eiξW of the W boson is not a physical observable and is arbitrary, we can choose
it to be equal to one, which is achieved by taking ξW = π, this gives

UCPLCCL U−1
CP = − g√

2
∑
α,i

U∗αiη
∗
i ζαl̄αLγ

µνiLW
†
µ −

g√
2
∑
α,i

Uαiζ
∗
αηiν̄iLγ

µlαLWµ. (2.61)
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Comparing this with the initial Lagrangian, we see that to maintain CP invariance the
mixing matrix must satisfy

U∗αi = ηiζ
∗
αUαi ⇔ U∗αi = e−iζαUαie

iηi . (2.62)

As the phases of lepton fields are not observable, we can set up e−iζα = eiηi = 1, this
gives

U∗αi = Uαi. (2.63)

From this condition follows that the CC Lagrangian is invariant under CP transforma-
tion if the mixing matrix is a real orthogonal matrix

U∗αi = Uαi = Oαi. (2.64)

For the Majorana neutrinos situation is slightly different. The neutrino field with
definite mass transforms under the CP transformation as

UCPν(x)U−1
CP = ζCPγ

0Cν̄T (x′) (2.65)

Then, the charge conjugated neutrino field ν(x)C = Cν̄T (x) transforms as

UCPν
C(x)U−1

CP = −ζ∗CPγ0ν(x′). (2.66)

If ν(x) is a Majorana field, i.e. ν(x) = νC(x) from (2.65) and (2.66) we have

UCPν(x)U−1
CP = ζCPγ

0νC(x′) = ζCPγ
0ν(x′),

UCPν
C(x)U−1

CP = UCPν(x)U−1
CP = −ζ∗CPγ0ν(x′).

(2.67)

By comparing these two relations we get

ζ∗CP = −ζCP , (2.68)

which means that ζCP in the Majorna case is purely imaginary and combining this with
(2.51) we establish that

ζCP = ±i. (2.69)

Thus, in comparison with the Dirac case (2.51), the CP phase for Majorana neutrinos
is not arbitrary.

Let us now study the CP invariance of the LCC to obtain the necessary conditions
for the invariance under the CP transformation in the case of Majorana neutrinos. The
left-handed massive Majorana field transforms as

UCPνkL(x)U−1
CP = ρkiγ

0Cν̄TkL(x′), (2.70)
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where ρk = ±1. Thus the CC interaction Lagrangian

LCCL = − g√
2

( ∑
α=e,µ,τ

∑
i

U∗αiν̄iLγ
µlαLWµ +

∑
α=e,µ,τ

∑
i

Uαil̄αLγ
µνiLW

†
µ

)
. (2.71)

is transformed into
UCPLCCL U−1

CP = − g√
2
∑
α,i

U∗αiρiiν
T
iLC†γ0γµζαγ

0C l̄TαLeiξWW µ†+

g√
2
∑
α,i

Uαiζ
∗
αl
T
αLC†γ0γµρiiγ

0Cν̄TiLe−iξWW µ
(2.72)

After similar steps as for the Dirac case, we finally obtain

UCPLCCL U−1
CP = − g√

2

∑
α,i

Uαiρiiζ
∗
αν̄iLγ

µlαLWµ −
∑
α,i

U∗αiρiiζαl̄αLγ
µνiLW

†
µ

 . (2.73)

Comparing this with the initial Lagrangian, we get the following condition imposed on
the neutrino mixing matrix providing CP conservation

iUαiρiζ
∗
α = U∗αi. (2.74)

The charged lepton CP phase ζα can be chosen arbitrary, and if we chose it to be equal
−i, we get

Uαiρi = U∗αi. (2.75)

With this choice of the leptonic CP phase, the mixing matrix can be either real for
ρi = 1 or purely imaginary for ρi = −1.

So far we have discussed the CP invariance in the neutrino sector by considering
the charged-current interaction. However, as the mixing matrix diagonalize the mass
matrix, it is important to check whether the same conditions follow from the mass
terms and what kind of restriction is imposed by the demand of the CP invariance on
the neutrino mass matrix. The Dirac mass term

LD = −
∑
l′,l

ν̄l′LMl′lνlR +H.c. (2.76)

is invariant under the CP transformation if

UCPLD(x)U−1
CP = LD(x′). (2.77)

After the CP transformation LD looks as follows
UCPLD(x)U−1

CP =−
∑
l′,l

(−ζ∗l′)νTl′LC†γ0Ml′lηlγ
0Cν̄TlR +H.c.

=
∑
l′,l

ζ∗l′ηlν
T
l′LC†γ0γ0CMl′lν̄

T
lR +H.c.

=
∑
l′,l

ζ∗l′ηlν
T
l′LMl′lν̄

T
lR +H.c. = −

∑
l′,l

ζ∗l′ηlν̄lRMll′νl′L +H.c.

(2.78)
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By comparing it with the initial mass term it is invariant under the CP transformation
if

ζ∗l′ηlMll′ = M∗
ll′ . (2.79)

The phases of the leptons are not physical observables, thus we can always set ζ∗l′ =
ηl = 1, which gives

Mll′ = M∗
ll′ . (2.80)

In other words, the CP symmetry of the Dirac mass term imposes that the mass matrix
must be a real matrix. Any real matrix can be diagonalized by the singular value
decomposition with orthogonal matrices

M = O′mOT , (2.81)

which means that if CP symmetry holds, then the mixing matrix is a real orthogonal
matrix. What follows, we came to the same conclusion as by investigating the CP
invariance of the CC Lagrangian.

Let us now consider Majorana neutrinos and suppose that the left-handed flavour
neutrino fields transform under CP as given in (2.54) with the CP phase equals to i,
i.e.

UCPναL(x)U−1
CP = iγ0Cν̄TαL(x′). (2.82)

Together with the choice of not physically observable phases of charged leptons and W
boson (equal to −i and 1, respectively) the charged-current Lagrangian, in the flavour
basis, is invariant under the CP transformation. The Majorna mass term

LM = −1
2 ν̄LMLν

C
L −

1
2(νCL)M †

LνL, (2.83)

transforms under the CP transformation as follows

UCPLMU−1
CP = −1

2iνLC
†γ0MLiγ

0νL +H.c. = 1
2νLC

†γ0γ0MLνL +H.c.

= −1
2(νCL)MLνL +H.c.

(2.84)

Comparing this result with the initial Lagrangian, we see that Majorana mass term is
CP invariant if

ML = M †
L. (2.85)

Moreover, ML is a symmetric matrix which implies that

ML = M∗
L. (2.86)
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Thus, the Majorana mass matrix is a real symmetric matrix. This type of matrices
can be diagonalized by the orthogonal similarity transformation

ML = OmOT . (2.87)

However, eigenvalues of the real symmetric matrix can be either positive or negative

mk = |mk|ρk, (2.88)

where ρk = ±1. The sign factor ρk can be incorporated into the diagonalizing ma-
trix resulting in positive masses and giving the same condition as established from
inspection of the CP invariance of the CC Lagrangian (2.75).

When sterile neutrinos are taken into account, the mixing and mass matrices have
a dimension larger than three and hence the number of complex phases increases ac-
cordingly (2.41). As the effects of CP can be visible in physical processes [65, 66] it
is crucial to provide a method of studying these extended complex mass and mixing
matrices.

2.4.3 Rephasing invariants

Let U ∈M3×3 be unitary matrix with elements Uαj α, j = 1, . . . , 3. Let us seek for the
invariants of the following phase transformation

Uαj → e−φαUαje
φj . (2.89)

It is immediate that invariants of this transformation must contain the same amount
of elements with indices i, j as their complex conjugate. Thus, the simplest of such
invariants is the square of the absolute value of the element Uαj

|Uαj|2 = UijU
∗
ij → e−φiUije

φjeφiU∗ije
−φj = UijU

∗
ij. (2.90)

The next invariant consists of four elements and will be called a square invariant

αj�βk ≡ UαjUβkU
∗
αkU

∗
βj. (2.91)

The box (�) notation has been established in [67]. Each more complicated invariant
can be constructed from these two basic types of invariants. The square invariant
behaves in the following way under the index interchange

αj�βk =βk �αj =αk �∗βj =βj �∗αk. (2.92)
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Rephasing invariants are very useful in the study of mixing matrices since they are
parametrization independent and reveal important properties without invoking any
specific parametrization. Especially they provide information about the CP invariance.
To see this let us look at what we can take out from the unitarity relation UU † = I∑

j

UαjU
∗
βj = δαβ. (2.93)

Let us multiply this relation by U∗αkUβk for a given k∑
j

UαjU
∗
βjU

∗
αkUβk = |Uαk|2|Uβk|2 +

∑
j 6=k

UαjU
∗
βjU

∗
αkUβk = |Uαk|2δαβ (2.94)

The imaginary part of this formula gives∑
j 6=k

Im(UαjU∗βjU∗αkUβk) = 0. (2.95)

The second unitarity condition gives∑
α 6=β

Im(UαjU∗βjU∗αkUβk) = 0. (2.96)

These two relations impose that the imaginary parts of square rephasing invariants
are equal up to sign. Thus, all of them can be expressed by the so-called Jarlskog
invariant [68–70]

J ≡ Im(U12U23U
∗
13U

∗
22). (2.97)

The sign of the other square invariants is expressed by the Jarlskog invariant as

Im(UαjUβkU∗αkU∗βj) = J
∑
γ

εαβγ
∑
l

εjkl. (2.98)

2.5 Neutrino oscillations

The discovery of neutrino oscillations is one of the major achievements of particle
physics. In the core of neutrino oscillation lies the mixing mechanism. To relate the
discussed earlier theory of CP transformations and mass and mixing neutrino matri-
ces with neutrino oscillation formalism and experimental data, we will sketch now a
simplified plane wave description of the oscillation phenomenon which is sufficient for
studies undertaken in this thesis. For more refined analysis, see e.g. [71–74].

Let the neutrino of definite flavour be created via the charged-current interaction
process

LCCL = − g

2
√

2
(
jµLWµ + jµ†L W

†
µ

)
, (2.99)
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with the charged-current

jµL = 2
∑

α=e,µ,τ
ν̄αLγ

µlαL = 2
∑

α=e,µ,τ

∑
i

U∗αiν̄iLγ
µlαL. (2.100)

The field operator ν̄iL creates the neutrino with mass mi whereas lαL creates either
lepton l− or anti-lepton l+. Thus in the CC process neutrino is either created for the
lepton or in a pair with the anti-lepton. In the process, the neutrino of definite flavour
is created and is defined as

|να〉 =
∑
i

U∗αi|νi〉 for α = e, µ, τ. (2.101)

The massive neutrino states |να〉 are eigenstates of the Hamiltonian H

H|νi〉 = Ei|νi〉, (2.102)

with eigenvalues Ek =
√
p2 +m2

k. The time evolution of the massive state is governed
by the Schrödinger equation

i
d

dt
|νi(t)〉 = H|νi(t)〉 (2.103)

which gives the plane wave solution |νi(t)〉 = e−iEit|νi〉. From (2.101) we get the time
evolution of the flavour state

|να(t)〉 =
∑
i

U∗αie
−iEit|νi〉 (2.104)

with |να(t = 0)〉 = |να〉. By using the unitarity of the mixing matrix U we can express
massive states as the linear combination of the flavour states

|νi〉 =
∑
α

Uαi|να〉 (2.105)

which can be inputted into the time evolution of the flavour state

|να(t)〉 =
∑

β=e,µ,τ

∑
i

U∗αie
−iEitUβi|νβ〉. (2.106)

Thus, in the time evolution, the pure flavour state (t=0) becomes the combination of
all the flavour states. Then the transition amplitude for the evolution of a given pure
flavour state to another state is given by

Aνα→νβ(t) = 〈νβ|να(t)〉 =
∑

ρ=e,µ,τ

∑
i

U∗αie
−iEitUρi〈νβ|νρ〉 =

=
∑

ρ=e,µ,τ

∑
i

U∗αie
−iEitUρiδβρ =

∑
i

U∗αiUβie
−iEit.

(2.107)
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This gives the probability of transition from the flavour state α to β as

Pνα→νβ(L,E)(t) = |Aνα→νβ(t)|2 =
∑
i,j

U∗αiUβie
−iEitUαjU

∗
βje

iEjt =

=
∑
i,j

U∗αiUβiUαjU
∗
βje
−i(Ei−Ej)t

(2.108)

For the ultra-relativistic neutrinos when the momentum is much larger than mass,
energy eigenvalues can be approximated as

Ek ' E + m2
k

E
, (2.109)

where E = |p|. Moreover, the time t equals almost the distance travelled by the
neutrinos t ' L which gives

Pνα→νβ(L,E) =
∑
i,j

U∗αiUβiUαjU
∗
βjexp

(
−i

∆m2
ijL

2E

)
, (2.110)

where ∆m2
ij ≡ m2

i − m2
j . The probability of transition from one neutrino flavour to

another becomes a function of the travelled distance and the neutrino energy. The
probability in (2.110) can be rewritten as

Pνα→νβ(L,E) =
∑
i

|Uαi|2|Uβi|2 + 2Re
∑
i>j

U∗αiUβiUαjU
∗
βjexp

(
−i

∆m2
ijL

2E

)
. (2.111)

Further, we can use the following relation∑
i

|Uαi|2|Uβi|2 = δαβ − 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj (2.112)

which gives

Pνα→νβ(L,E) = δαβ − 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj

(
1− exp

(
−i

∆m2
ijL

2E

))
=

δαβ − 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj

(
1− cos

(
∆m2

ijL

2E

)
− i sin

(
∆m2

ijL

2E

))
=

δαβ − 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj

(
1− cos

(
2

∆m2
ijL

4E

)
− i sin

(
∆m2

ijL

2E

))
=

δαβ − 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj

(
2 sin2

(
∆m2

ijL

4E

)
− i sin

(
∆m2

ijL

2E

))
.

(2.113)

This finally can be written as

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU∗βj) sin2
(

∆m2
ijL

4E

)

+ 2
∑
i>j

Im(U∗αiUβiUαjU∗βj) sin
(

∆m2
ijL

2E

)
.

(2.114)
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The transition probability can also be written in terms of square rephasing invariants
αj�βi

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re(αj�βi) sin2
(

∆m2
ijL

4E

)

+ 2
∑
i>j

Im(αj�βi) sin
(

∆m2
ijL

2E

)
.

(2.115)

The antineutrino flavour state is defined as

|ν̄α〉 =
∑
i

Uαi|ν̄i〉 (2.116)

which gives the following transition probability for antineutrinos

Pν̄α→ν̄β(L,E) =
∑
i,j

UαiU
∗
βiU

∗
αjUβjexp

(
−i

∆m2
ijL

2E

)
. (2.117)

It differs from the neutrino probability by the complex conjugation of the square rephas-
ing invariant and thus, after the similar steps as for neutrinos, it results in

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU∗βj) sin2
(

∆m2
ijL

4E

)

− 2
∑
i>j

Im(U∗αiUβiUαjU∗βj) sin
(

∆m2
ijL

2E

)
.

(2.118)

or in terms of the rephasing invariants

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re(αj�βi) sin2
(

∆m2
ijL

4E

)

− 2
∑
i>j

Im(αj�βi) sin
(

∆m2
ijL

2E

)
.

(2.119)

Thus, we see that the CP violation is visible only through the imaginary term.

The oscillation experiments provide the major information about the structure of
the neutrino mixing matrix. The current data gives the following limits for the mixing
parameters [59,75]

θ12 ∈ [31.27◦, 35.86◦], θ23 ∈ [40.1◦, 51.7◦],
θ13 ∈ [8.20◦, 8.93◦], δ ∈ [120◦, 369◦].

(2.120)
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By inputting these ranges into (2.42) we get allowed ranges for the mixing matrix
elements [75] (at the 3σ confidence level)

|U |3σ =


[0.801, 0.845] [0.513, 0.579] [0.143, 0.155]
[0.243, 0.500] [0.471, 0.689] [0.637, 0.776]
[0.271, 0.525] [0.477, 0.694] [0.613, 0.756]

 . (2.121)

The exact values of the allowed ranges in the CP invariant case presented as the
interval matrix are

Uint =


[0.801, 0.845] [0.513, 0.579] [0.143, 0.155]

[−0.529,−0.417] [0.431, 0.606] [0.637, 0.776]
[0.233, 0.388] [−0.721,−0.586] [0.613, 0.756]

 , (2.122)

whereas when the non-zero CP phase δ is included, the elements of the Uint are within
the following ranges

Ue1 ∈ [0.801, 0.845] ,
Ue2 ∈ [0.513, 0.579] ,
Ue3 ∈ [−0.155− 0.155i, 0.155 + 0.134i] ,
Uµ1 ∈ [−0.528− 0.0901i,−0.218 + 0.104i] ,
Uµ2 ∈ [0.432− 0.0616i, 0.707 + 0.0711i] ,
Uµ3 ∈ [0.637, 0.776] ,
Uτ1 ∈ [0.233− 0.0878i, 0.538 + 0.101i] ,
Uτ2 ∈ [−0.721− 0.060i,−0.453 + 0.0693i] ,
Uτ3 ∈ [0.613, 0.756] .

(2.123)

2.6 Non-unitarity of the PMNS mixing matrix

If sterile neutrinos exist, they can mix with the SM neutrinos. In such case the PMNS
mixing matrix is no longer unitary, but is a part of a larger unitary matrix where the
mixing between known neutrinos is preserved νf

ν̃f

 =
 UPMNS Ulh

Uhl Uhh

 νm

ν̃m

 . (2.124)

νf and νm are SM neutrinos in the flavour and massive basis respectively, and ν̃f and
ν̃m are sterile neutrinos in both bases. So far, there is no restriction to the number of
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sterile neutrinos which will be denoted by NR. Thus, if we exclude the case where SM
and sterile neutrino sectors are decoupled νf

ν̃f

 =
 UPMNS 0

0 Uhh

 νm

ν̃m

 , (2.125)

signals of sterile neutrinos should be visible as a deviation from unitarity of the UPMNS

mixing matrix
νfα = (UPMNS)αiνmi︸ ︷︷ ︸

SM part

+ (Ulh)αj ν̃mj︸ ︷︷ ︸
BSM part

. (2.126)

Hence, the study of non-unitarity of the PMNS mixing matrix is of unprecedented
importance for particle physics. Presently there are two commonly used ways of de-
scribing the deviation from unitarity of the neutrino mixing matrix. These are known
as the η- and α-parametrization [34–39]. In these approaches the mixing matrix is
expressed by a product of a unitary matrix with the second matrix of some special
type. The η-parametrization decomposes the mixing matrix into the product of the
Hermitian and unitary matrix

UPMNS = HU = (I − η)U, (2.127)

where H is a Hermitian matrix and U is a unitary matrix. The current data shows that
such a deviation from unitarity must be very small, thus it is common to represent the
H part as I − η where η is a Hermitian matrix representing a small deviation from the
unitarity. On the other hand, the α-parametrization decomposes the mixing matrix
into the product of the lower triangular and unitary matrix

UPMNS = TU ′ = (I − α)U ′, (2.128)

where T is a lower triangular matrix and U ′ is a unitary matrix. Similarly to the
η-parametrization, it is common to write the T term as I − α, with α being lower tri-
angular and parametrizing small deviation from unitarity of the PMNS mixing matrix.
These two parametrizations can be related to each other as they decompose the same
matrix [39]. Let us calculate the Hermitian product of the PMNS mixing matrix in
(2.127)

UPMNSU
†
PMNS = (I − η)UU †(I − η)† = (I − η)(I − η) = I − 2η + η2. (2.129)

On the other hand, calculating the same product for (2.128), we get

UPMNSU
†
PMNS = (I − α)U ′(U ′)†(I − α)† = (I − α)(I − α†) = I − α− α† + αα†. (2.130)
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By comparing (2.129) with (2.130) and neglecting the square terms in η and α, we get

2η ≈ α + α†. (2.131)

Let us write this in the explicit form

2


η11 η12 η13

η∗12 η22 η23

η∗13 η∗23 η33

 ≈

α11 α∗21 α∗31

α21 α22 α∗32

α31 α32 α33

 . (2.132)

This gives us

α11 = η11, α22 = η22, α33 = η33,

α21 = 2η∗12, α31 = 2η∗13, α32 = 2η∗23.
(2.133)

Thus, η and α matrices are related as
α11 0 0
α21 α22 0
α31 α32 α33

 ≈


η11 0 0
2η∗12 η22 0
2η∗13 2η∗23 η33

 . (2.134)

The current bounds for the η matrix are as follows [39]

|ηαβ| ≤


1.3 · 10−3 1.2 · 10−5 1.4 · 10−3

1.2 · 10−5 2.2 · 10−4 6.0 · 10−4

1.4 · 10−3 6.0 · 10−4 2.8 · 10−3

 . (2.135)

From (2.134) it is clear that that knowing limits for one parametrization, we can
calculate limits for the second one.
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3 Basic notions of matrix theory in mixing
mechanism

The prominent feature of the neutrino mixing matrix (2.14) is its unitarity and it has
important consequences. The neutrino states with definite masses are orthonormal,
i.e.

〈νi|νk〉 = δik. (3.1)

The unitarity of the neutrino mixing matrix ensures that flavour neutrino states are
also orthonormal

〈νl′ |νl〉 = 〈
3∑
i=1

U∗il′νi|
3∑

k=1
Ulkνk〉 =

3∑
i=1

3∑
k=1

U∗il′Ulk〈νi|νk〉 =
3∑
i=1

3∑
k=1

U∗il′Ulkδik

=
3∑
i=1

UliU
∗
il′ = δll′ .

(3.2)

The unitary mixing matrix is also necessary to diagonalize the neutrino mass matrix
in order to obtain neutrinos with definite masses. These are mostly theoretical require-
ments of the unitarity of the mixing matrix. The last consequence of the unitarity has
important physical significance, namely, it ensures that the probability of oscillation of
a given flavour state to any other is equal to one

∑
β

Pνα→νβ = 1. (3.3)

Similarly, the probability of transition to a given neutrino flavour state from any neu-
trino state is also conserved ∑

α

Pνα→νβ = 1. (3.4)

In other words, the unitarity of the mixing matrix provides that no neutrino states
disappear during the propagation or are created out of nowhere.

If sterile neutrinos exist, exactly the same requirements must be satisfied and the
complete, extended mixing matrix (2.124) must also be unitary. Thus, the PMNS
mixing matrix is either unitary or is a part of a larger unitary matrix. In the latter
case, if active and sterile neutrinos do not decouple, it is no longer unitary. These
are two strong restrictions imposed on the 3 × 3 PMNS mixing matrix. Thus, the
natural question arises, whether it is possible to characterize matrices by these two
requirements.
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3.1 Singular values and operator matrix norm

To answer this question we first need to introduce some notions coming from matrix
theory. Let A be an arbitrary matrix of size n ×m, the space of all n ×m matrices
will be denoted Mn×m, thus A ∈Mn×m.

Definition 1. Singular values of a matrix A are the positive square roots of the eigen-
values of the matrix A†A, i.e.

σi(A) =
√
λi(A†A) i = 1, 2, ...,m. (3.5)

The set of singular values of a matrix A will be denoted by S(A). The matrix
A†A is a Hermitian matrix which ensures that its eigenvalues are real numbers and
moreover they are also non-negative. The matrix of this type is called non-negative
definite. From the definition it is clear that singular values are also non-negative
quantities. Every matrix can be decomposed into the diagonal form according to its
singular values [76, 77].

Theorem 3.1. (Singular value decomposition)
Let A ∈ Mm×n be given and let q = min{m,n}. Then there is a matrix Σ = (σij) ∈
Mm×n with σij = 0 for all i 6= j and σ11 ≥ σ22 ≥ ... ≥ σqq, and there are two unitary
matrices U ∈ Mm×m and V ∈ Mn×n, which will be called left- and right-hand singular
matrices respectively, such that A = UΣV †.

From the singular value decomposition A = UΣV † it can be seen that the nonzero
eigenvalues of AA† are equal to the nonzero eigenvalues of A†A

A†A = V Σ†U †UΣV † = V ΣTΣV †

AA† = UΣV †V Σ†U † = UΣΣTU †.
(3.6)

These are eigenvalue decompositions of A†A and AA† respectively with nonzero eigen-
values σ2

1, . . . , σ
2
q . In other words, we can also use a matrix AA† in the definition of

singular values. Moreover, if we take the Hermitian conjugation of the singular value
decomposition A† = (UΣV †)† = V ΣU †, we see that S(A) = S(A†). As the singular
values are real numbers, they can be ordered. In this work, we use the convention
that singular values are ordered in non-increasing order, i.e. if σ1, . . . , σq are nonzero
singular values of a matrix A, then

σ1 ≥ σ2 ≥ · · · ≥ σq. (3.7)
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The problem of finding singular values can be transformed into a problem of finding
eigenvalues of Hermitian matrices A†A or AA†. However, there is another way to obtain
results about singular values by considering eigenvalues of Hermitian matrices [76,77].

Theorem 3.2. Let A ∈ Mm×n, let q = min{m,n}, let σ1 ≥ σ2 ≥ · · · ≥ σq be ordered
singular values of A. Then the ordered eigenvalues of the Hermitian matrix

A =
 0 A

A† 0

 (3.8)

are
− σ1 ≤ −σ2 ≤ · · · ≤ σq ≤ 0 = · · · = 0︸ ︷︷ ︸

|m−n|

≤ σq ≤ · · · ≤ σ2 ≤ σ1. (3.9)

Another important notion associated with matrices is that of a norm. As the
matrices form vector space, we can use a standard vector norm to measure the size
of objects. However, for matrices we can define another function that suits matrices
better. This function is called a matrix norm.

Definition 2. A matrix norm is a function ‖· ‖ from the set of all matrices Mn×m

into R that satisfies the following properties

‖A‖ ≥ 0 and ‖A‖ = 0⇔ A = 0,
‖αA‖ = |α|‖A‖,
‖A+B‖ ≤ ‖A‖+ ‖B‖,
‖AB‖ ≤ ‖A‖‖B‖.

(3.10)

In other words, the matrix norm is a vector norm with the additional condition of
submultiplicativity.

There exists an important class of matrix norms consisting of matrix norms which
do not change by the unitary multiplication.

Definition 3. A matrix norm ‖· ‖ is called unitarily invariant if for every unitary
matrices U, V and a given matrix A it satisfies

‖UAV ‖ = ‖A‖. (3.11)

Another important class of matrix norms, called the induced matrix norms, contains
matrix norms that are obtained from the vector norms in the following way

‖A‖? = max
‖x‖?=1

‖Ax‖?, (3.12)
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where ‖· ‖? stands for the corresponding vector norm. In our case, of particular in-
terest is the matrix norm induced from the Euclidean 2-norm ‖x‖2 =

√∑n
i=1 x

2
i =√

(x, x) =
√
x†x for x = (x1, . . . , xn)T . From the Rayleigh quotient λmax(A) =

max‖x‖2=1 x
†Ax [77], we have

‖A‖2
2 = max

‖x‖2=1
‖Ax‖2

2 = max
‖x‖2=1

(Ax)†Ax = max
‖x‖2=1

x†A†Ax

= λmax(A†A) = σ2
1(A).

(3.13)

Thus, the matrix norm ‖· ‖2 can be defined as the largest singular value of a given
matrix. This matrix norm is called an operator norm or spectral norm and will be
denoted throughout the text as ‖· ‖. Thus,

Definition 4. A spectral norm of a matrix A ∈Mn×m is the matrix norm defined as

‖A‖ = max
‖x‖2=1

‖Ax‖2 = σ1(A). (3.14)

Moreover, the spectral norm is also a unitary invariant norm (3.11).
Let us define a special class of matrices that have operator norm less than or equal

to one, i.e. matrices for which the largest singular value is less than or equal to one.

Definition 5. A matrix A ∈Mn×m is called a contraction if

‖A‖ ≤ 1, (3.15)

and a strict contraction if ‖A‖ < 1.

3.2 Mixing matrices as contractions

As we have already seen, the crucial property of the mixing matrix is its unitarity. Let
us investigate singular values of the unitary matrix U ∈Mn×n which is determined by
the unitarity condition

U †U = I, (3.16)

where I is the n × n identity matrix, i.e. I = diag(1, . . . , 1). From the definition
of singular values (3.5), it immediately follows that all singular values of the unitary
matrix are equal to one, i.e. S(U) = {1, . . . , 1}. This is the case for the PMNS mixing
matrix in the Standard Model. However, in the presence of sterile neutrinos, the PMNS
mixing matrix is no longer unitary but is a part of a larger unitary matrix. Moreover,
to preserve mixing between SM neutrinos untouched, the PMNS mixing matrix must
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occupy a top diagonal block of a complete unitary matrix. Thus, it is important to
know the mutual relation between the spectral norm of a matrix and its submatrices.
For principal submatrices such as the PMNS mixing matrix, this relation is presented
in the following proposition.

Proposition 3.1. Let A ∈Mr×r be a principal submatrix of B ∈Mn×n, r ≤ n. Then

‖A‖ ≤ ‖B‖. (3.17)

Proof. Let x ∈ Cr with ‖x‖2 = 1. Then there is a vector y ∈ Cn which is a unit
embedding of x in Cn with ‖y‖2 = 1 such that

‖Ax‖2 ≤ ‖By‖2. (3.18)

Then,
max
‖x‖2=1

‖Ax‖2 ≤ max
‖y‖2=1

‖By‖2. (3.19)

From the neutrino mixing point of view, it is crucial to know singular values of
submatrices of a unitary matrix.

Corollary 1. Every principal submatrix A of a unitary matrix U is a contraction

‖A‖ ≤ 1. (3.20)

Thus, every 3×3 PMNS mixing matrix must be a contraction, either unitary, if there
are only three neutrinos, or a non-unitary contraction, if additional sterile neutrinos
exist. This allows us to make the following definition

Definition 6. A mixing matrix is called physically admissible if it is a contraction.

As the result, the notion of singular values and contractions allows us to describe
completely neutrino mixing matrices including both the SM and BSM scenarios.

3.3 Unitary dilation

We have established that the physically interesting mixing matrices are contractions.
These are matrices that are either unitary or can be a part of a larger unitary matrix.
If we are interested in the BSM scenarios with additional sterile neutrinos we need to
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study the structure of the complete unitary mixing matrix. However, at our disposal
we have only data concerning the SM 3-dimensional mixing matrix. Thus, we need to
find a way to extend these 3 × 3 contractions to a higher dimensional unitary matrix
and maintain the mixing between the SM neutrinos. In mathematics, such a procedure
is called a unitary dilation and it takes lower-dimensional contraction and puts it as
the principal submatrix of a larger unitary matrix

UPMNS
dilation−−−−→

 UPMNS Ulh

Uhl Uhh

 ≡ U → UU † = I. (3.21)

The inverse operation is called the compression of the unitary matrix to the lower
dimensional contraction. Practically the dilation procedure can be applied through
the so-called cosine-sine decomposition (CS decomposition) [78].

Theorem 3.3. Let the unitary matrix U ∈M(n+m)×(n+m) be partitioned as

U =

n m( )
UPMNS Ulh n

Uhl Uhh m
, (3.22)

If m ≥ n, then there are unitary matrices W1, Q1 ∈ Mn×n and unitary matrices
W2, Q2 ∈Mm×m such that UPMNS Ulh

Uhl Uhh

 =
 W1 0

0 W2



C −S 0
S C 0
0 0 Im−n


 Q†1 0

0 Q†2

 , (3.23)

where C ≥ 0 and S ≥ 0 are diagonal matrices satisfying C2 + S2 = In.

There exists another form of the CS decomposition which is more important from
the neutrino physics perspective. Let UPMNS have the singular value decomposition
UPMNS = W1diag(Ir, C)Q†1, where Ir denotes r singular values equal to one, and C

contains singular values that are strictly less than one. The structure of the CS de-
composition reveals the intriguing fact, namely the minimal dimension of the unitary
dilation of a given contraction is not arbitrary, but is encoded in the number of singular
values strictly less than one.

Corollary 2. The parametrization of the unitary dilation of the smallest size is given
by  UPMNS Ulh

Uhl Uhh

 =
 W1 0

0 W2



Ir 0 0
0 C −S
0 S C


 Q†1 0

0 Q†2

 , (3.24)
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where r = n−m is the number of singular values equal to 1 and C = diag(cos θ1, ..., cos θm)
with | cos θi| < 1 for i = 1, ...,m.

This is crucial from the physical point of view, since it tells that the minimal number
of sterile neutrinos is not arbitrary, but depends on the singular values of the PMNS
mixing matrix.

3.4 Remarks on the parametrization of the non-unitarity of
the mixing matrix

In section 2.6 we have presented the two most commonly used parametrizations of
non-unitarity of the neutrino mixing matrix and a connection between them. Let us
discuss now more formal details. The α- and η-parametrization represent the deviation
from unitarity as a multiplicative perturbation of a unitary matrix, which requires
decomposition of a matrix into a product of matrices from which exactly one is a unitary
matrix. There exist three different ways to decompose the matrix into a product of
matrices of which one is unitary, namely [77,79]

1. Polar decomposition,

2. QR decomposition,

3. Mostow decomposition.

The first two are already used in neutrino physics in the context of parametrization
of non-unitarity effects in the neutrino mixing matrix [34–39, 80]. These are the polar
decomposition and a modified version of the QR decomposition. Thus, let us take a
closer look at these two parametrizations. The polar decomposition factorizes a given
square matrix A into the following product

A = PU (3.25)

where matrix P is a positive semidefinite Hermitian matrix and U is a unitary matrix.
The polar factor P is uniquely determined and is given by

√
AA† while the unitary

part is uniquely determined if the initial matrix is non-singular.
In the physical application, the polar factor is further decomposed in the following

way
P = I − η (3.26)
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where a Hermitian matrix η describes the deviation from unitarity of the neutrino
mixing matrix and this is the idea behind the η-parametrization. As we already know,
physical mixing matrices must be contractions, i.e. matrices with spectral norm less
than or equal to one or equivalently with the largest singular value less than or equal
to one. Let us notice that in general the polar decomposition does not provide this
property. To see this let us look at a simple example, where we take matrix η in simple
diagonal form 2

η =
 ε 0

0 −ε

 (3.27)

where 0 < ε ≤ 1.
Observe that this results in a positive semidefinite matrix P = I − η which is

necessary for a polar factor. However, such P is not a contraction since one singular
value will be always larger than one, independently of how small ε is.

Recently, the polar factor in a form of (3.26) was identified with a matrix I − ΘΘ†
2

which arises in the context of the complete unitary mixing matrix [81] (for similar
construction see also [82,83]). Hence, in scenarios where the polar factor is considered
as a principal submatrix of a complete unitary mixing matrix, it must be a contraction
(Proposition 3.1). Thus, to ensure that the polar factor I − η is a contraction, a
necessary condition must be imposed on the η matrix, namely it must be a positive
semidefinite matrix. On the other hand, using the fact that the operator norm is
unitarily invariant, it can be shown that for sufficiently small entries of the matrix η
also the inverse is true, i.e if the η matrix is positive semidefinite then P = I − η must
be a contraction [41].

The second of currently used factorizations in neutrino physics is the QR decompo-
sition. It factorizes a given matrix into a product of a unitary matrix Q and an upper
triangular matrix R. For the purpose of neutrino physics, a modified version of the QR
factorization is used, namely the LQ decomposition, where L corresponds to a lower
triangular matrix and Q is a unitary matrix. Moreover, in the context of the neutrino
mixing this lower triangular matrix is further split into the following form

L = I − α (3.28)

where the matrix α is lower triangular and describes a deviation from unitarity of the
UPMNS.

2Since by the unitary invariance (3.11) of the spectral norm the unitary part is irrelevant here, we
can focus only on the polar factor given by (3.26).

36



Both QR and polar decompositions can be related to each other by either applying
the polar decomposition to the lower triangular matrix L or the LQ decomposition to
the polar factor P .

Finally, let us look briefly at the last factorization, i.e. Mostow decomposition. It
decomposes any non-singular complex matrix A in the following way

A = UeiKeS (3.29)

where U is a unitary matrix, K is a real skew-symmetric matrix and S corresponds to
a real symmetric matrix.

At the end, let us emphasize the relation between the approach based on singu-
lar values and the polar decomposition. In our analysis, we use singular values as
an indicator of whether a given matrix is a contraction. However, it is known that
eigenvalues of the polar factor, which follows from its definition, are equal to singu-
lar values of the initial matrix. Thus, from that perspective, a polar decomposition
can be treated as an intermediate step between the matrix under consideration and
its singular value decomposition. Nevertheless, from the numerical analysis point of
view, singular value decomposition algorithms are more natural since they arise from
eigenvalues decomposition of matrices AA† and A†A. Thus, in most cases, in order to
obtain an algorithm for a polar decomposition, we have to adjust algorithms for the
singular value decomposition.

3.5 Non-standard parametrizations, norms and contractions

For the SM UPMNS matrix, it holds that sum of probabilities of neutrino oscillations
equals 1, i.e. ∑

β

Pαβ = 1, e.g. Pee + Peµ + Peτ = 1. (3.30)

However, for a non-unitary matrix U the analogous relation is not fulfilled. Let us
see it in a simple case of two flavours (the same can be done for dimension 3 modified
UPMNS matrix), when U is defined as

U =
 cos Θ1 sin Θ1

− sin Θ2 cos Θ2

 , (3.31)

where Θ2 = Θ1 + ε.
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In this case we get, ∆ij ∝ (m2
i −m2

j)LE∑
α=e,µ

Peα = Pee + Peµ (3.32)

= 1 + 4ε sin2 ∆21 sin Θ1 cos Θ1 cos 2Θ1 +O(ε2),

∑
α=e,µ

Pµα = Pµe + Pµµ (3.33)

= 1− 4ε sin2 ∆21 sin Θ1 cos Θ1 cos 2Θ1 +O(ε2).

We can see that the sum can be either larger or smaller than 1. This example was
given in [84], however, no clue at that time was how to interpret possible results where
the sum of probabilities does not equal 1. Here we show that matrix (3.31) is not the
right way to parametrize BSM effects since it is not representing physically meaningful
mixing matrices. This will be shown by considering the spectral norm of the U matrix
(3.31).

First, we calculate UUT and UTU , and use the following abbreviation s(c)i ≡
sin(cos)Θi for i = 1, 2

UUT =
 1 s1c2 − s2c1

s1c2 − s2c1 1

 , (3.34)

UTU =
 c2

1 + s2
2 c1s1 − s2c2

c1s1 − s2c2 s2
1 + c2

2

 . (3.35)

The spectral norm satisfies the following relation ‖UTU‖ = ‖UUT‖ = ‖U‖2, thus we
can focus on either of these products. Let us write the first product in (3.35) as the
sum

UUT =
 1 s1c2 − s2c1

s1c2 − s2c1 1


=
 1 0

0 1

+
 0 s1c2 − s2c1

s1c2 − s2c1 0

 .
(3.36)

This can be simplified into

UUT =
 1 0

0 1

+
 0 s3

s3 0

 ≡ I +B (3.37)
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where s3 ≡ sin Θ3 = sin(Θ1 − Θ2). The B is symmetric matrix which eigenvalues are
equal ±s3. Let V be a unitary matrix such that V TBV = D = diag(s3,−s3). Since
operator norm is unitarily invariant (3.11), we can write

‖UUT‖ = ‖I +B‖ = ‖V T (I +B)V ‖ = ‖I + V TBV ‖
= ‖I +D‖. (3.38)

The I +D equals  1 + s3 0
0 1− s3

 , (3.39)

hence its spectral norm, i.e. the largest singular value, is equal

1 + s3 if s3 ≥ 0,
1− s3 if s3 < 0.

(3.40)

So we can see that by adding B to the identity matrix we cannot decrease the operator
norm

1 = ‖I‖ ≤ ‖I +B‖ = ‖UUT‖ = ‖U‖2 = 1 + |s3|. (3.41)

Thus
‖U‖ ≥ 1. (3.42)

It is already clear that physically meaningful theory should include only mixing ma-
trices for which contraction relation (3.15) is fulfilled, which is obviously not satisfied
by the discussed matrix U (3.31). The result (3.42) implies that not all parametriza-
tions which violate unitarity are a proper choice, and a simple mixing matrix (3.31)
is superfluous from the physical point of view. It fulfills ‖U‖ = 1 for ε = 0, but then
trivially a unitary matrix is recovered.

3.6 Numerical precision of singular values determination

In the next sections and chapters we will determine numerically singular values. Thus
it is important to estimate errors connected with matrix evaluations. Singular values
are continuous functions of matrix elements [77], and hence a small change in elements
does not change drastically singular values. Quantitatively this can be described with
the use of the Weyl inequality for singular values [85,86] which describes the behaviour
of the singular values of a given matrix U under the additive perturbation gathered in
the matrix E

|σi(U + E)− σi(V )| ≤ ‖E‖, (3.43)
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where ‖· ‖ is a spectral norm. In our analysis the elements of the perturbation matrix
E are taken to be equal to the finest precision of the elements of the matrix under
the consideration. For example, if the best precision of elements of the PMNS matrix
is 10−3, all the elements of the matrix E are equal to 10−3. This gives the following
estimation of the error for singular values

|σi(U + E)− σi(V )| ≤ 3× 10−3. (3.44)

The experimental data with which we will work on (Chapter 5) has the matrix elements
given with 10−5 accuracy. We keep such accuracy, which is correct for considered
interval mixing matrix elements. This precision of matrix elements implies that the
singular values will be given with the 3× 10−5 accuracy. In other words, the threshold
put on the largest singular value of a given matrix to be acknowledged as a contraction
is 1.00003.

On that basis, we can establish the allowed lower bounds for singular values for
physically admissible mixing matrices by considering the interval matrix Uint (2.122)
or (2.123). The results are as follows

CP invariant scenario: {σ1 = 0.95954, σ2 = 0.88186, σ3 = 0.84189},
General scenario: {σ1 = 0.95592, σ2 = 0.84112, σ3 = 0.70275}.

(3.45)

As the deviation below unity of any of singular values is a signal of the BSM scenario,
these results clearly show that within current experimental limits there is a lot of
space for additional neutrinos. Moreover, the largest singular value tells us whether
the mixing matrix is physically meaningful. Thus, if we abandon the restriction of
contraction, i.e. σ1 ≤ 1.00003, then the study of the upper limit for the σ1 of the Uint
(2.122)-(2.123) will measure the amount of non-physical mixing matrices within the
present experimental limits

CP invariant scenario: {σ1 = 1.1369, σ2 = 1.09429, σ3 = 1.02917},
General scenario: {σ1 = 1.28378, σ2 = 1.17208, σ3 = 1.02917}.

(3.46)

We can see that the largest possible σ1 within the Uint is much above the limit of
contractions. On top of that, its deviation from unity is much larger than for the lower
bound for physically admissible matrices (3.45). Moreover, all other singular values also
exceed the unity from above in (3.46), which suggests that within current experimental
limits there is a lot of physically meaningless mixing matrices. In the next chapter we
will construct a general space of physically meaningful mixing matrices.
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4 Region of physically admissible mixing matrices

We will show that a matrix constructed as a finite convex combination of unitary
matrices is a contraction. Let Ui, i = 1, . . . , n, be a unitary matrix, and let A =∑n
i=1 αiUi with αi ≥ 0 and ∑n

i=1 αi = 1, then

‖A‖ = ‖
n∑
i=1

αiUi‖ ≤
n∑
i=1

αi‖Ui‖ =
n∑
i=1

αi = 1⇒ ‖A‖ ≤ 1. (4.1)

The converse is also true [87], i.e.

Theorem 4.1. A matrix A is a contraction if and only if A is a finite convex combi-
nation of unitary matrices.

This characterization of contractions has physical consequences. It allows gathering
physically meaningful mixing matrices into the geometric region.

Definition 7. The region of all physically admissible mixing matrices, denoted Ω, is
the set of all finite convex combinations of 3 × 3 unitary matrices with parameters
restricted by experiments

Ω :=conv(UPMNS) = {
m∑
i=1

αiUi | Ui ∈ U(3), α1, ..., αm ≥ 0,
m∑
i=1

αi = 1,

θ12, θ13, θ23 and δ given by experimental values}.
(4.2)

There is another equivalent definition of the Ω region, which reflects its geometric
nature, namely as the convex hull spanned on the unitary PMNS matrices.

The Corollary 2 in section 3.3 restricts the minimal dimension of the unitary ex-
tension of the contractions. This allows us to divide the Ω region into four disjoint
subsets according to the minimal dimension of the unitary dilation

Ω1 : 3+1 scenario: Σ = {σ1 = 1.0, σ2 = 1.0, σ3 < 1.0}, (4.3)
Ω2 : 3+2 scenario: Σ = {σ1 = 1.0, σ2 < 1.0, σ3 < 1.0} , (4.4)
Ω3 : 3+3 scenario: Σ = {σ1 < 1.0, σ2 < 1.0, σ3 < 1.0}, (4.5)
Ω4 : PMNS scenario: Σ = {σ1 = 1, σ2 = 1, σ3 = 1}. (4.6)

This division allows to analyze individually scenarios with a different number of
sterile neutrinos. Thus, the study of geometric features of this region is useful for a
better understanding of neutrino physics, especially regarding the number of additional
sterile neutrinos and the structure of the complete mixing matrix.
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It is important to notice that matrices from the Ω1 subset can be extended to
unitary matrices of arbitrary dimension, starting from the dimension four. The same
is true for contractions from the subset Ω2 which can produce any unitary matrices of
dimension five or higher. It may look that there is an overlapping between matrices
from different subsets of the Ω region and some of them may be redundant. This is
however not true, as unitary matrices produced by the contraction from each subset
are unique. It is so because contractions must end up in the 3× 3 top diagonal block
of a complete unitary matrix and as the subsets are disjoint, we cannot reproduce
the same unitary matrices using contractions from different subsets. Thus, instead
of overlapping, we should treat dilations of a given dimension of contractions from
different subsets as complementary to each other.

4.1 Geometry of the region of physically admissible mixing
matrices

The Ω region is a subset of the unit ball of the spectral norm

B(n) = {A ∈ Cn×n : ‖A‖ ≤ 1}. (4.7)

This fact allows us to give another characterization of the Ω region as the intersec-
tion of the B(3) with the interval matrix Uint (2.123)-(2.123), i.e.

Ω = B(3) ∩ Uint. (4.8)

The geometry of B(n) is strictly connected to the geometry of symmetric gauge
functions [76].

Definition 8. A function Φ : Rn → R is a symmetric gauge function if it satisfies the
following conditions

1. Φ is a vector norm,

2. For any permutation matrix P we have Φ(Px) = Φ(x),

3. Φ(|x|) = Φ(x).

Von Neumann proved that symmetric gauge functions and unitarily invariant norms
(3.11) are connected to each other [88], namely

Theorem 4.2. ‖· ‖ is a unitary invariant norm if and only if there exists a symmetric
gauge function Φ such that ‖A‖ = Φ(S(A)) for all A ∈ Cn×n, where S(A) is the set of
singular values of A.
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The spectral norm is a unitarily invariant norm and its corresponding symmetric
gauge function is an infinite norm, i.e.

Φ∞(x) = max{|x1|, |x2|, . . . , |xn|}. (4.9)

The unit ball of the infinite norm is a hypercube

B∞(n) = {x ∈ Rn : Φ∞(x) ≤ 1} = [−1, 1]n . (4.10)

The Von Neuman’s relation between unitary invariant norms and symmetric gauge
functions is also reflected in the geometry of the corresponding unit balls. The charac-
terization of the extreme points and facial structure of unit balls of unitarily invariant
norms by the corresponding structure of unit balls of symmetric gauge functions have
been studied in [89–93]. Faces and extreme points are defined as follows [94,95]

Definition 9. Let C ∈ Rn be a convex set. A convex set F ⊆ C is called a face of C
if for every x ∈ F and every y, z ∈ C such that x ∈ (y, z), we have y, z ∈ F .

Definition 10. The zero dimensional faces of a complex set C are called extreme points
of C. Thus a point x ∈ C is an extreme point of C if and only if there is no way to
express x as a convex combination (1 − λ)y + λz such that y, z ∈ C and 0 < λ < 1,
except by taking x = y = z.

It appears that the extreme points of the B(n) are exactly unitary matrices. This
result has also been obtained in a more general setting by Stoer [96]. The facial
structure of the B(n) is given in the following theorem [90,93]

Theorem 4.3. F is a face of B(n) if and only if there exist 0 ≤ r ≤ n and unitary
matrices U and V such that

F = {U
 Ir 0

0 A

V : A ∈ B(n− r)}. (4.11)

As the Ω region is a subset of B(n), its geometric structure is inherited from B(n).
Thus, the facial structure of the Ω region is the same as for B(n) with restriction
of parameters of unitary matrices U and V to experimental results (2.120) and with
established ranges of singular values (3.45). However, if we look at the definition of
the faces of B(n) (4.11), we will observe that they do not correspond completely to
physically interesting subsets (4.3)-(4.5) of the Ω. Namely, higher-dimensional faces
contain lower-dimensional faces, e.g. for r = 1 the face contains not only matrices with
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two singular values strictly less than one, but also unitary matrices and contractions
with only one singular value strictly less than one. In other words faces of B(n)
comprise matrices from different subsets of Ω. To restrict faces to subsets containing
only matrices with the specific number of singular values strictly less than one, we can
use the notion of the relative interior [94].

Definition 11. The relative interior of a convex set C ⊂ Rn, which is denoted by
ri(C), is defined as the interior which results when C is regarded as a subset of its
affine hull aff(C).

In this definition by the affine hull of the set C we understand the set of all finite affine
combinations of elements of C [97], i.e. aff(C) = {∑k

i=1 αixi : xi ∈ C,
∑k
i=1 αi = 1}.

In that way, the subsets of B(n) corresponding to different minimal unitary extensions
are the relative interiors of F , i.e. subsets of faces for which singular values of the A
submatrix are strictly smaller than one.

Definition 12. The subsets Ω1, . . . ,Ω4 of the Ω region are relative interiors of the
faces F of B(3) for r = 2, 1, 0, 3, respectively, with parameters of unitary matrices U
and V restricted by experimental data and with allowed ranges of singular values.

There is another way to characterize subsets of the Ω region, namely in terms of
Ky-Fan k-norms.

Definition 13. For a given matrix A ∈ Cn×n the Ky-Fan k-norm is defined as the sum
of k largest singular values

‖A‖k =
k∑
i=1

σi(A), for k=1,. . . ,n. (4.12)

In particular for matrices in C3×3 the three possible Ky-Fan norms are

‖A‖1 = σ1(A) (spectral norm),
‖A‖2 = σ1(A) + σ2(A),
‖A‖3 = σ1(A) + σ2(A) + σ3(A) (nuclear norm).

(4.13)

Let us define for k = 1, . . . , 3 the following sets

Sk(r) = {A ∈ Cn×n : ‖A‖k = r},
Ak(r1, r2) = {A ∈ Cn×n : r1 ≤ ‖A‖k < r2},

(4.14)
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i.e. we defined the sphere of radius r and the annulus with radii r1 and r2 for Ky-Fan
norms centered at the origin. Then, the subsets of the Ω can be defined as

Ω1 = S1(1) ∩ S2(2) ∩ A3(2 + σ3min, 3),
Ω2 = S1(1) ∩ A2(1 + σ2min, 2) ∩ A3(1 + σ2min + σ3min, 3),
Ω3 = A1(σ1min, 1) ∩ A2(σ1min + σ2min, 2) ∩ A3(σ1min + σ2min + σ3min, 3),
Ω4 = S1(1) ∩ S2(2) ∩ S3(3),

(4.15)

where σimin for i = 1, 2, 3 are lower limits of singular values allowed by current experi-
mental data (3.45).

4.1.1 Physically admissible mixing matrices as a convex combination of
PMNS matrices

The Ω region is defined as the convex hull of unitary PMNS mixing matrices or equiva-
lently as the set of a finite convex combination of PMNS mixing matrices. In this way,
we claim that every physically admissible mixing matrix can be represented as a fine
convex combination of unitary PMNS matrices. This agrees with the Krein-Milman
theorem which states [97,98]

Theorem 4.4. Let C ⊂ Rn be a nonempty compact convex set, and let ext(C) be the
set of extreme points of C, then

C = conv(ext(C)), (4.16)

As we have discussed, the extreme points of the unit ball of the spectral norm are
unitary matrices and as the Ω is a subset of the B(n), the above theorem justifies
our definition. However, this theorem does not put any restriction on the number of
extreme points necessary to construct any point of a convex set as a convex combination
of its extreme points. The upper bound for this number has been given by Carathéodry
[97,99]

Theorem 4.5. If K ⊂ Rn, then each point of conv(K) is a convex combination of at
most n+ 1 points of K.

The natural question arises: What is the Carathéodry number for the B(n) and Ω
which are embedded in Cn2 ' R2n2? In the physically interesting case where n = 3
according to the Carathéodry theorem we would need 19 unitary matrices. However,
we will prove that for B(3) this number can be significantly reduced.
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Proposition 4.1. The Carathéodory’s number for the conv(U(3))=B(3) is 4.

Proof. Let B∞ = {x ∈ R3 : ‖x‖∞ ≤ 1} be a unit ball of the infinite norm in R3,
i.e. the cube [−1, 1]3. The extreme points of the B∞ are vertices of the cube, i.e.
vectors vj = (±1,±1,±1)T for j = 1, . . . , 8. Let ψ : B∞ → M3×3 be a mapping which
sends a vector from the unit ball B∞ into the diagonal matrix. Then, the ψ sends the
extreme points of the B∞ into the diagonal unitary matrices Uj = diag(±1,±1,±1) for
j = 1, . . . , 8. The Carathéodory’s number for the cube is 4. Thus, every point in B∞
can be written as the convex combination of at most 4 extreme points vj. In particular
every point of the positive octant can be written in this way. This means that every
diagonal matrix D ∈ M3×3 with diagonal elements in [0, 1] can be written as convex
combination of at most 4 diagonal unitary matrices Uj, i.e. D = ∑4

i=1 αiUi, with αi ≥
0 and ∑4

i=1 αi = 1. Now, let A be a contraction with a singular value decomposition
A = WDV †, where W and V are unitary matrices. This gives

A = WDV † =
4∑
i=1

αiWUiV
†. (4.17)

As the conv(U(3))=B(3) is the set of all 3×3 contractions, this completes the proof.

As an immediate consequence of this proposition and the construction used in the
proof, matrices from the Ω2 subset, i.e. with two singular values strictly less than
one, can be constructed as the convex combination of 3 unitary matrices. Whereas,
matrices from the Ω1 subset, i.e. with only one singular value strictly less than one,
can be constructed as the convex combination of two unitary matrices.

Following the idea of Stoer [96], we will show how to construct contractions with
two and one singular values strictly less than one as a convex combination of three and
two unitary matrices, respectively. Let us take the following diagonal matrix

D1 =


1 0 0
0 a 0
0 0 b

 , (4.18)

where a, b < 1. It can be written as the following sum

D1 = 1− a
2


1 0 0
0 −1 0
0 0 −1

+ a− b
2


1 0 0
0 1 0
0 0 −1

+ 1 + b

2


1 0 0
0 1 0
0 0 1

 . (4.19)
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Now let us take another diagonal matrix. This time with only one diagonal element
strictly less than one

D2 =


1 0 0
0 1 0
0 0 a

 , (4.20)

where a < 1. The D2 matrix can be written as

D2 = 1− a
2


1 0 0
0 1 0
0 0 −1

+ 1 + a

2


1 0 0
0 1 0
0 0 1

 . (4.21)

Multiplying D1 and D2 matrices from left- and right-hand side by unitary matrices,
we end up with a singular value decomposition of a given matrix with singular values
gatherd in D1 and D2, respectively. As a result contractions with two and one singular
values strictly smaller than one can be written as convex combinations of unitary
matrices with singular values encoded in coefficients of the combination.

4.2 Volume

Lie groups, besides being of course groups, are also manifolds [100], i.e. geometric
structures. Thus, we can associate with them geometrical properties such as the surface
area, also called the volume. Two very important groups in physics fall into this
category, namely an orthogonal group, and its complex counterpart: a unitary group.
These groups are also very important in neutrino physics as the mixing matrix is either
an orthogonal matrix or, if the CP phase is non-zero, a unitary matrix.

The set of all orthogonal matrices of dimension n × n, i.e. O(n) = {O ∈ Rn×n :
OOT = I}, is an example of a Stiefel manifold [101]. As the orthogonal matrices have
n(n−1)

2 independent parameters, the Stiefel manifold of the orthogonal group is a n(n−1)
2

dimensional manifold embedded in n2 space. We can associate to it a volume which is
expressed as the Haar measure over the orthogonal group [101–105]

vol(O(n)) =
∫
O(n)

[OTdO]∧, (4.22)

where [OTdO]∧ denotes the wedge product of the matrix OTdO and dO is the matrix
of the differentials of the orthogonal matrix O. This volume can be expressed in the
following compact form [105,106]

vol(O(n)) = 2nπ n2
2

Γn(n2 ) = 2nπ
n(n+1)

4∏n
k=1 Γ(k2 )

, (4.23)
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where Γn(x) = π
n(n−1)

4 Γ(x)Γ
(
x− 1

2

)
. . .Γ

(
x− n−1

2

)
. In the case interesting from the

neutrino physics perspective, i.e. for n = 3, this gives

vol(O(3)) = 16π2. (4.24)

However, as the determinant of the PMNS mixing matrix is equal to 1, it belongs
to even a smaller subset, namely the special orthogonal group SO(3). The special
orthogonal group is a subgroup of O(3) and its volume is half of the volume of the
orthogonal group, i.e.

vol(SO(3)) = 8π2. (4.25)

Moreover, the PMNS matrix does not cover the entire range of parameters and hence
we must start from OTdO in order to calculate the volume of this submanifold. Taking
the standard PMNS parametrization (2.42) we get

OTdO =


0 dθ12 + s13dθ23 c12dθ13 − c13s12dθ23

−dθ12 − s13dθ23 0 c13c12dθ23 + s12dθ13

−c12dθ13 + c13s12dθ23 −c13c12dθ23 − s12dθ13 0


(4.26)

The wedge product of the independent elements of this matrix is equal to

[OTdO]∧ = cos(θ13)dθ12dθ13dθ23. (4.27)

Thus, the volume of PMNS matrices is given by

vol(PMNS) =
∫ θ12U

θ12L

∫ θ13U

θ13L

∫ θ23U

θ23L

= cos(θ13)dθ12dθ13dθ23, (4.28)

which with the current experimental limits on θ12, θ13 and θ23 (2.120) gives

vol(PMNS) = 2.2667× 10−4. (4.29)

As we can see the PMNS matrices contribute only in a small portion, 0.00029 percent,
to the entire SO(3), and if compared to the orthogonal group the PMNS matrices
constitute only 0.00014 percent of the O(3).

The unitary group U(n), i.e the group of all unitary matrices U(n) = {U ∈ Cn×n :
UUT = I}, is another example of Stiefel manifold. Similarly, as for the orthogonal
group, the volume of the unitary group is given by the Haar measure over the group

vol(U(n)) =
∫
U(n)

[U †dU ]∧, (4.30)
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where [U †dU ]∧ denotes the exterior product of the matrix U †dU and dU is the matrix
of the differentials of the unitary matrix U . The volume of the unitary group can be
expressed in a compact form as [102–106]

vol(U(n)) = 2nπn2

Γ̃n(n)
= 2nπ

n(n+1)
2

1!2! . . . (n− 1)! , (4.31)

where Γ̃n(x) = π
n(n−1)

2 Γ(x)Γ(x − 1) . . .Γ(x − n + 1). Thus, the volume of the 3 × 3
unitary matrices equals

vol(U(3)) = 4π6. (4.32)

Moreover, the determinant of the PMNS matrix is equal to one, which means it belongs
to the special unitary group SU(n). The volume of the SU(n) written in the compact
form is [102–104]

vol(SU(n)) = 2
(n−1)

2 π
(n−1)(n+2)

2

1!2! . . . (n− 1)! . (4.33)

For the physically interesting dimension, i.e. n = 3 this volume is equal to

vol(SU(3)) =
√

3π5. (4.34)

The PMNS mixing matrix with non-zero CP phase, however, does not have the full set
of parameters, as some of them can be incorporated into the redefinition of the fermion
fields, and moreover ranges of these parameters are restricted by experiments. Hence,
in order to calculate its volume, it is necessary to start from a specific parametrization
of the mixing matrix (2.42). It can be done in the same way as for its real counter-
part, i.e. by calculating the wedge product of the matrix U †dU . However, for the
complex matrices, it is much more complicated. Alternatively, it can be calculated by
determining the Jacobian matrix of the PMNS matrix in the parametrization (2.42)

J =
(
∂uij
∂yk

)
, i, j = 1, . . . , n (4.35)

and the yk are parameters (for the PMNS matrix k = 1, . . . , 4). Then, the volume
element is multiplied by the Jacobian |J | =

√
det(1

2J
†J).

The volume of complex PMNS matrices can be calculated in one more way, namely
by using the Cartan-Killing metric [107–109]

ds2 = (V, V )dt2, (4.36)

where (A,B) = 1
2Tr(A

†B) is the inner product induced by the Frobenius norm and
V = U †dU . The V is anti-Hermitian and thus (V, V ) = 1

2Tr(V
†V ) = −1

2Tr(V
2).
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The Hermitian product of the Jacobian matrix for the PMNS matrix is given by

1
2J
†J =


1 0 sin(θ13) cos(δ) 0
0 1 0 0

sin(θ13) cos(δ) 0 1 0
0 0 0 sin2(θ13)

 . (4.37)

Let us look also at the expression for the Cartan-Killing metric

ds2 = dθ2
23 + dθ2

13 + dθ2
12 + 2 sin(θ13) cos(δ) + sin2(θ13)dδ2 (4.38)

which as expected gives the same matrix as (4.37). Finally, the Jacobian for the PMNS
matrices is equal to

|J | =
√

sin2(θ13)− cos2(δ) sin4(θ13). (4.39)

Thus, the volume of the complex PMNS matrices is given by

vol(PMNS) =
∫
PMNS

|J |dV

=
∫ √

sin2(θ13)− cos2(δ) sin4(θ13)dθ23dθ13dθ12dδ.
(4.40)

Taking into account current experimental limits for mixing parameters (2.120) the
numerical value for the volume of the complex PMNS mixing matrices is

vol(PMNS) = 1.4777× 10−4. (4.41)

So far we have established the volume of the neutrino mixing matrices only for the
SM scenario. However, if we want to consider also BSM scenarios, it is required to
consider the entire Ω region and not only its extreme points. In order to do this, we
will use the fact that the region of all physically admissible mixing matrices is a subset
of the unit ball in the spectral norm B(n) = {A ∈ Cn×n : ‖A‖ ≤ 1} and for the CP
conserving case it is restricted to the real matrices B̃(n) = {A ∈ Rn×n : ‖A‖ ≤ 1}.
Volumes of the B(n) and B̃(n) can be calculated from the singular value decomposition.
The differential of the singular value decomposition of a given matrix A = UΣV † is
equal to

dA = dUΣV † + UdΣV † + UΣdV †. (4.42)

By multiplying this from the left-hand side by U † and from the right-hand side by V
we get

dX ≡ U †dAV = U †dUΣ + dΣ + ΣdV †V, (4.43)
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which can be rewritten using dV †V = −V †dV in the following form

dX = U †dAV = U †dUΣ + dΣ− ΣV †dV. (4.44)

The Haar measure is left- and right-invariant, thus [dA]∧ = [U †dAV ]∧ = [dX]∧. The
entrywise analysis of the dX in the CP invariant scenario gives

[dX]∧ =
∏
i<j

|σ2
j − σ2

i | ∧ni=1 dσi[OTdO]∧[QTdQ]∧. (4.45)

Hence, the volume of the unit ball of the spectral norm in a real case is given by

vol(B̃(n)) = 1
2nn!vol(O(n))2

∫ 1

0

∏
i<j

|σ2
j − σ2

i |
n∏
k=1

dσk. (4.46)

The inclusion of the factor 1
2n assures the uniqueness of the singular value decomposi-

tion. For the physically interesting dimension n = 3, we have

vol(B̃(3)) = 8π4

45 . (4.47)

Similar entrywise analysis of the (4.44) provides the volume element for the singular
value decomposition of complex matrices

[dX]∧ =
n∏
i=1

σi
∏
i<j

|σ2
j − σ2

i |2 ∧ni=1 dσi[U †dU ]∧[V †dV ]∧ (4.48)

Thus, the volume of the unit ball of the spectral norm is given by

vol(B(n)) = 1
(2π)nn!vol(U(n))2

∫ 1

0

n∏
k=1

σk
∏
i<j

|σ2
j − σ2

i |2
n∏
k=1

dσk. (4.49)

The factor 1
(2π)n ensures the uniqueness of the singular value decomposition. In the

case interesting from the neutrino physics perspective, i.e. n = 3, this gives

vol(B(3)) = π9

8640 . (4.50)

We can use the formulas for the volumes of B(3) and B̃(3) as the basis in the calculation
of the volume of the Ω region. As the Ω region is defined as the convex hull of the
PMNS matrices, to find its volume we need to replace in the formulas (4.46) and
(4.49) vol(U(n)) and vol(O(n)) by vol(PMNS) in the general and CP conserving
case, respectively. Moreover, it is also necessary to restrict ranges of singular values for
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those allowed by current experimental data (3.45). As the result, for the CP invariant
scenario, we have the following formula

vol(Ω̃) = 1
2nn!vol(PMNS)2

∫ 1

σmin

∏
i<j

|σ2
j − σ2

i |
n∏
k=1

dσk. (4.51)

Taking into account current experimental bounds (2.120) and allowed ranges for sin-
gular values (3.45), the numerical value is equal

vol(Ω̃) = 6.45× 10−16. (4.52)

Thus, the Ω region in the CP invariant case constitutes only 1.84 × 10−18 percent of
the unit ball (4.46).

For the general case including the CP phase, the formula for the volume of the Ω
region is given by

vol(Ω) = 1
(2π)nn!vol(PMNS)2

∫ 1

σmin

n∏
k=1

σk
∏
i<j

|σ2
j − σ2

i |2
n∏
k=1

dσk, (4.53)

and its numerical value is
vol(Ω) = 1.12× 10−18. (4.54)

In the complex case, the contribution of the Ω region is even smaller than in the CP
invariant scenario and it constitutes only 4.34 × 10−25 percent of the respective unit
ball in the spectral norm (4.49). It may look like that vol(Ω̃) is larger than the vol(Ω),
however, we must keep in mind that Ω̃ and Ω are structures of different dimensions,
and thus cannot be compared directly.

We have established earlier the characterization of the Ω region as the intersection of
the B(3) and Uint (4.8). The Uint can be treated as a hyperrectangle in R9 or C9 ' R18

respectively for the CP invariant case and the general case. As such, they also are
geometric structures with associated volume. This volume is simply the product of the
length of its sides, i.e. given intervals. Thus for the CP conserving case, it gives

vol(Uint) = 2.84× 10−10. (4.55)

Whereas when the CP phase is taken into account it is equal to

vol(Uint) = 2.27× 10−11. (4.56)

In [41] statistical analysis was performed concerning the amount of physically admissi-
ble mixing matrices contained within the interval matrix Uint. The analysis establishes
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that for the CP invariant scenario only about 4% of matrices within the interval ma-
trix are contractions. Comparison of volumes gives a similar qualitative result, namely
contractions make a small part of the Uint. The exact calculation reveals that the
volume of the Ω region constitutes 0.00023 percent of Uint in the CP conserving case
and 8.12× 10−6 percent for the general complex scenario.
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5 Phenomenological implications

So far we have discussed formal aspects of the region of physically admissible mixing
matrices. Now, we will focus on the application of the matrix theory methods in order
to make phenomenological predictions, focusing in particular on the estimation of the
active-sterile neutrino mixing.

5.1 Numerical analysis based on the α-parametrization

Most of the numerical estimations will be based on the α-parametrization (2.128).

UPMNS = TU ′ = (I − α)U ′. (5.1)

Since the singular values are unitarily invariant [110], i.e. the unitary matrix U ′ does not
change their values, we can focus solely on the triangular matrix T which simplifies the
calculations. Moreover, it is important that the left-hand singular matrix (see Theorem
3.1 in section 3.1) is the same for UPMNS and T . This can be seen if we consider the
singular value decomposition of the T matrix T = UΣV †. Then,

UPMNS = TU ′ = UΣV †U ′ = UΣW †. (5.2)

The next reason to work with the α-parametrization lies in the fact that it is possible
to construct lower triangular matrices with a prescribed set of singular values [111].
The process is known as the inverse singular value problem. Thus, right from the
beginning we control the number of singular values that are strictly less than one, i.e. we
can specify the minimal number of additional neutrinos. Moreover, constructed lower
triangular matrices have prescribed diagonal elements which in the case of triangular
matrices equal to eigenvalues. As a result, we are able to construct the following matrix

T =


t11 0 0
t21 t22 0
t31 t32 t33

 (5.3)

with S(T) = {σ1(T), σ2(T), σ3(T)} (the highlighted quantities are prescribed).
The elements tij are restricted by the experimental data. The current bounds are

presented in Tab. 1. These limits are given for three different massive scenarios: m >

EW (EW stands for the electroweak scale), ∆m2 & 100 eV2 and ∆m2 ∼ 0.1− 1 eV2.
The numerical estimation will also be performed for these three different massive sce-
narios.
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Entry (I): m > EW (II): ∆m2 & 100 eV2 (III): ∆m2 ∼ 0.1− 1 eV2

T11 = 1− α11 0.99870÷ 1 0.976÷ 1 0.990÷ 1
T22 = 1− α22 0.99978÷ 1 0.978÷ 1 0.986÷ 1
T33 = 1− α33 0.99720÷ 1 0.900÷ 1 0.900÷ 1
T21 = |α21| 0.0÷ 0.00068 0.0÷ 0.025 0.0÷ 0.017
T31 = |α31| 0.0÷ 0.00270 0.0÷ 0.069 0, 0÷ 0.045
T32 = |α32| 0.0÷ 0.00120 0.0÷ 0.012 0.0÷ 0.053

Table 1: Limits on the elements of the T = I − α matrix for different non-standard
neutrino mass scenarios (I)-(III). Limits for the α matrix elements αij are taken from
[39] (with 95% CL), which are obtained from the global fits [112] to the experimental
data [113–117]. Moreover, these data also include formalism connected with non-
standard interactions [39].

5.2 Numerical distinguishability and continuity of singular
values

It is important to distinguish numerically, with the chosen precision, matrices which
exhibit two distinct sets of singular values. This is crucial when we consider subsets of
the Ω region (4.3)-(4.5). To see under which circumstances it is possible, let us consider
a simple two dimensional model of a lower triangular matrix.

We start from the following diagonal matrix 0.99 0
0 0.99

 . (5.4)

This matrix has obviously two singular values strictly less than one, equal to 0.99. Now
we transform this matrix to the lower triangular form by adding to the position (2, 1)
a parameter ε:  0.99 0

ε 0.99

 . (5.5)

We will increase ε from 0 to 0.1 with different precision (Tab. 2) to see which precision
guarantees such distinction. The behaviour of singular values for the matrix (5.5) is
shown in Fig. 1.

Singular values will be fixed with the 3 · 10−5 accuracy, as discussed in section 3.6.
Thus, we are interested in the precision of ε which allows us distinguishing singular
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Figure 1: The behaviour of singular values σ1 and σ2 as a function of the ε parameter
which changes from 0 to 0.1. The continuity in changes of singular values with ε is
evident. We are looking for the precision of the parameter ε for which σ1 has within the
precision of calculations a common value with the horizontal dashed line at 1, which
represents the physical limit, see Table 2.

values with this precision. In particular, we will determine when the first singular value
can reach unambiguously the value one, i.e. 1± 3 · 10−5. The results are gathered in
Tab. 2. We can see that the exact determination of the singular value is possible for
the precision of ε at the level of 10−4. It cannot be achieved with the precision of the
matrix element ε at the level of 10−3. Further increase of the ε precision results in a
larger number of solutions so, as long as we stay within allowed intervals, by adjusting
a proper density of sifting we are able to distinguish two singular values with imposed
accuracy.

Initial singular value (σ1) 0.99
Size of the ε step Number of matrices

0.001 0
0.0001 1
0.00001 11

Table 2: A number of matrices that can reach the value of the first singular value (σ1)
equal to 1± 3 · 10−5 starting from 0.99. When the precision of ε increases, it is more
probably to find non-zero solutions.
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5.3 Numerical separation between the subsets of the Ω region

According to the division of the Ω region into the subsets corresponding to the min-
imal number of additional sterile neutrinos (4.3)-(4.5), it is natural to ask whether
scenarios with different number of sterile neutrinos can be distinguished on the level of
experimental limits. To answer this we have created lower triangular matrices with pre-
scribed singular values which correspond to the subsets (4.3)-(4.5). After the multiple
repetition of the procedure we have established upper and lower limits for elements of
the T matrix for each subset. The results show that on the current experimental level
of accuracy it is not possible to distinguish between scenarios with two and three ad-
ditional neutrinos. However, for the scenario with only one additional neutrino, small
deviations from experimental bounds given in Tab. 1 for some matrix elements have
been observed. These results are presented in Tab. 3 where elements with the largest
deviation from the experimental limits are highlighted in red.

(I): m > EW (II): ∆m2 & 100 eV2 (III): ∆m2 ∼ 0.1− 1 eV2

(1, 1) 0.99885÷ 0.99999 0.97641÷ 0.99996 0.99020÷ 0.99999
Exp: 0.99870÷ 1 0.976÷ 1 0.990÷ 1
(2, 2) 0.99980÷ 0.99999 0.99331÷ 0.99999 0.98646÷ 0.99999
Exp: 0.99978÷ 1 0.978÷ 1 0.986÷ 1
(3, 3) 0.99721÷ 0.99996 0.90040÷ 0.99985 0.90015÷ 0.99958
Exp: 0.99720÷ 1 0.900÷ 1 0.900÷ 1
(2, 1) 0.00001÷ 0.00062 0.00031÷ 0.02214 0.00014÷ 0.01615
Exp: 0.0÷ 0.00068 0.0÷ 0.025 0.0÷ 0.017
(3, 1) 0.00002÷ 0.00266 0.00048÷ 0.06892 0.00012÷ 0.04500
Exp: 0.0÷ 0.00270 0.0÷ 0.069 0.0÷ 0.045
(3, 2) 0.00008÷ 0.00113 0.00052− 0.01196 0.00024÷ 0.05281
Exp: 0.0÷ 0.00120 0.0÷ 0.012 0.0÷ 0.053

Table 3: Lower and upper bounds for elements of the matrix T in the 3+1 scenario.
For scenarios 3+2 and 3+3 we do not observe any changes of experimental limits given
in Tab. 1.
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5.4 Active-sterile mixing

In scenarios with sterile neutrinos we have at our reach only the 3 × 3 submatrix of
the complete unitary mixing matrix, corresponding to the SM neutrinos mixing. Thus,
it is important to estimate from the currently available experimental bounds possible
limits on the active-sterile mixing, i.e. limits on the elements of the submatrix Ulh

of (2.124). Such estimation can be provided on the matrix theory basis using the
CS decomposition (discussed in section 3.3). Let us first focus on the 3+1 scenario,
i.e. the scenario with one additional neutrino, where the complete unitary matrix is
4 × 4. In this case only matrices from the Ω1 subset can be extended to a full 4 × 4
unitary matrix, i.e. contractions with only one singular value strictly less than one.
This complete unitary matrix can be decomposed via CS decomposition as

 UPMNS Ulh

Uhl Uhh

 =
 W1 0

0 W2




1 0 0 0
0 1 0 0
0 0 c −s
0 0 s c


 Q†1 0

0 Q†2

 . (5.6)

We are interested in the estimation of the Ulh, which is given by

Ulh = W1S12Q
†
2, (5.7)

where W1 ∈ C3×3 is unitary, S12 = (0, 0,−s)T and Q2 = eiθ, θ ∈ (0, 2π]. The structure
of the S12 matrix implies that only the third column of the W1 matrix is important in
our estimation

Ulh = −(we3, wµ3, wτ3)T se−iθ. (5.8)

Focusing on the absolute value of the active-sterile mixing we get

|(Ulh)α3| = |wα3se
−iθ| = |wα3|· |s|, α = e, µ τ. (5.9)

The absolute value of the s can be expressed by the third non-unit singular value

|s| = |
√

1− c2| = |
√

1− σ2
3|. (5.10)

Finally, the complete formula for the active-sterile mixing in the 3+1 scenario as a
function of the third singular value is given by

|(Ulh)α3| = |wα3|· |
√

1− σ2
3|, α = e, µ τ. (5.11)
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The similar steps provide the formula for the active-sterile mixing in the 3+2 scenario
as functions of the σ2 and σ3. The CS decomposition of the 5× 5 unitary matrix gives

 UPMNS Ulh

Uhl Uhh

 =
 W1 0

0 W2




1 0 0 0 0
0 c2 0 −s2 0
0 0 c3 0 −s3

0 s2 0 c2 0
0 0 s3 0 c3


 Q†1 0

0 Q†2

 . (5.12)

From which the submatrix corresponding to the active-sterile mixing reads

Ulh = W1S12Q
†
2, (5.13)

where W1 ∈ C3×3, Q ∈ C2×2 are unitary matrices and

S12 =


0 0
−s2 0

0 −s3

 . (5.14)

The matrix form of the Ulh is as follows

Ulh = −


w12s2q11 + w13s3q21 w12s2q12 + w13s3q22

w22s2q11 + w23s3q21 w22s2q12 + w23s3q22

w32s2q11 + w33s3q21 w32s2q12 + w33s3q22

 . (5.15)

As in the 3+1 scenario, we are interested in the estimation of the absolute values of
the active-sterile mixing which is given by

|(Ulh)αj| = |wα2s1q1j + wα3s2q2j| = |wα2q1j

√
1− σ2

2 + wα3q2j

√
1− σ2

3|. (5.16)

The Q2 matrix is arbitrary which makes calculation much more difficult. However, if
we are only interested in the largest value for the active-sterile mixing for each flavour,
we can use triangle inequality and take |qij| = 1 to simplify the calculation

|(Ulh)αj| ≤ |wα2|· |
√

1− σ2
2|+ |wα3|· |

√
1− σ2

3|. (5.17)

Finally, we can derive the formula for the active-sterile mixing for the 3+3 scenario
as a function of all three singular values. As before to accomplish this we use the CS
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decomposition

 UPMNS Ulh

Uhl Uhh

 =
 W1 0

0 W2





c1 0 0 −s1 0 0
0 c2 0 0 −s2 0
0 0 c3 0 0 −s3

s1 0 0 c1 0 0
0 s2 0 0 c2 0
0 0 s3 0 0 c3



 Q†1 0
0 Q†2

 .

(5.18)
The submatrix corresponding to the active-sterile mixing is given by

Ulh = W1S12Q
†
2, (5.19)

where W1 ∈ C3×3, Q2 ∈ C3×3 are unitary matrices and

S12 =


−s1 0 0

0 −s2 0
0 0 −s3

 . (5.20)

After multiplying these three matrices, the matrix form of the active-sterile submatrix
takes the following form

Ulh = −w11s1q11 − w12s2q21 − w13s3q31 −w11s1q12 − w12s2q22 − w13s3q32 −w11s1q13 − w12s2q23 − w13s3q33
−w21s1q11 − w22s2q21 − w23s3q31 −w21s1q12 − w22s2q22 − w23s3q32 −w21s1q13 − w22s2q23 − w23s3q33
−w31s1q11 − w32s2q21 − w33s3q31 −w31s1q12 − w32s2q22 − w33s3q32 −w31s1q13 − w32s2q23 − w33s3q33

 .
(5.21)

We are interested in the estimation of the absolute value of the active-sterile mixing
which is given by

|(Ulh)αj| =|wα1s1q1j + wα2s2q2j + wα3s3q3j| =

|wα1q1j

√
1− σ2

1 + wα2q2j

√
1− σ2

2 + wα3q3j

√
1− σ2

3|.
(5.22)

The Q2 matrix is an arbitrary unitary matrix which makes the calculation more diffi-
cult. However, if we are only interested in the estimation of the largest value for each
flavour, we can use triangle inequality and take |qij| = 1

|(Ulh)αj| ≤ |wα1|· |
√

1− σ2
1|+ |wα2|· |

√
1− σ2

2|+ |wα3|· |
√

1− σ2
3|. (5.23)

In this way we have established the analytical formulas (5.11),(5.16) and (5.22) for
the active-sterile mixing as a function of singular values for scenarios with a different
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minimal number of additional neutrinos. The next natural step is to perform numerical
analysis to obtain bounds for the active-sterile mixing. As it is clearly seen from the
formulas, the difficulty of the calculation grows with the number of additional sterile
neutrinos. The necessary ingredients, i.e singular values and singular vectors wij, come
from the singular value decomposition of the lower triangular matrix T . As we have
shown in (5.2) the left singular matrix W1 is the same for the T matrix and for the
UPMNS matrix, and hence we can perform analysis on a much simpler T matrix. What
follows, we present the numerical results for the scenario with one additional neutrino:

• (I): m > EW.

|Ue4| ∈ [0, 0.021] , |Uµ4| ∈ [0.00013, 0.021] , |Uτ4| ∈ [0.0115, 0.075] .
|Ue4| ≤ 0.041 [118], |Uµ4| ≤ 0.030 [118], |Uτ4| ≤ 0.087 [118].

(5.24)

• (II): ∆m2 & 100 eV2.

|Ue4| ∈ [0, 0.082] , |Uµ4| ∈ [0.00052, 0.099] , |Uτ4| ∈ [0.0365, 0.44] . (5.25)

• (III): ∆m2 ∼ 0.1− 1 eV2.

|Ue4| ∈ [0, 0.130] , |Uµ4| ∈ [0.00052, 0.167] , |Uτ4| ∈ [0.0365, 0.436] .
|Ue4| ∈ [0.114, 0.167] [119], |Uµ4| ∈ [0.0911, 0.148] [119], |Uτ4| ≤ 0.361 [120].

(5.26)

As we can see, for the seesaw like neutrinos, i.e. very heavy sterile neutrinos (sce-
nario I), results obtained with the use of singular values give stringent upper bounds
for the active-sterile mixing when comparing to results obtained by others. The anal-
ysis in [118] assumes that each new lepton mixes with only one SM family. What is
interesting, in some cases (|Uµ4|, |Uτ4|) we find a preference for non-zero mixings. For
the intermediate massive scenario (II), to our knowledge, these are the first estab-
lished limits for the active-sterile mixing. In the case of light sterile neutrinos (III),
the results obtained with our method are comparable with other results available in
literature.

5.5 Norms as non-unitarity quantifiers

If any singular value of a studied matrix differs from unity, then the matrix is surely
non-unitary. However, not all the time we need such precise analysis. To check unitarity
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condition, we can calculate the Hermitian product of a matrix, and check whether it
satisfies unitarity conditions UU † = I and U †U = I. In particular, we want to calculate
the difference between the identity matrix and the Hermitian product of the matrix

I − UU †,
I − U †U.

(5.27)

This tells us how much a given matrix differs from unitarity. However, if we would like
to measure how this deviation differs from matrix to matrix, it is not clear how to do
that using the above formulas. Thus, it is preferable to find a matrix function that
measures the deviation from unitarity as one number.

Definition 14. Let A ∈ Cn×n be a given matrix and let ‖· ‖ be any matrix norm,
then the function

‖I − AA†‖ (5.28)

measures how far A is from the unitary matrix.

So far we have used only spectral norm, however, there is an abundance of matrix
norms, which can be used to measure the deviation from unitarity. Many of them are
simple functions of matrix elements and thus are easy to calculate. We will discuss
some of them, each measuring non-unitarity on different matrix level and highlighting
different physical properties. The norms we are interested in are

1. Spectral norm : ‖A‖2 = max‖x‖2=1‖Ax‖2 = σ1(A). (5.29)

2. Frobenius norm : ‖A‖F =
√
Tr(A†A) =

√√√√ n∑
i=1

m∑
j=1
|aij|2 =

√√√√√min{n,m}∑
i=1

σi(A)2. (5.30)

3. Maximum absolute column sum norm (MACN): ‖A‖1 = max
j

m∑
i=1
|aij|. (5.31)

4. Maximum absolute row sum norm (MARN): ‖A‖∞ = max
i

m∑
j=1
|aij|. (5.32)

We will also consider the maximal absolute value of the elements |A|max = maxij |aij|
as it is usually used to quantify the deviation from unitarity.

Let us construct a matrix from the Ω region and calculate its deviation from uni-
tarity using the above norms. The matrix under consideration will be constructed as
a convex combination of four PMNS matrices

U = α1U1 + α2U2 + α3U3 + α4U4. (5.33)
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As an example, we have chosen the following values for the mixing parameters for Ui
matrices

U1 : θ12 = 31.27◦, θ13 = 8.20◦, θ23 = 40.1◦, δ = 120◦,
U2 : θ12 = 35.86◦, θ13 = 8.93◦, θ23 = 51.7◦, δ = 369◦,
U3 : θ12 = 33.21◦, θ13 = 8.54◦, θ23 = 44.4◦, δ = 238◦,
U4 : θ12 = 32.67◦, θ13 = 8.78◦, θ23 = 48.5◦, δ = 176◦,

(5.34)

and the following values for αi coefficients

α1 = 12
100 , α2 = 48

100 , α3 = 27
100 , α4 = 13

100 . (5.35)

The resulting matrix is as follows

U =


0.817367 0.555024 0.0239921− 0.00614i

−0.391253 + 0.00345799i 0.538647 + 0.00215621i 0.731669
0.409187 + 0.00400813i −0.619299 + 0.00269373i 0.66064

 ,
(5.36)

with the following set of singular values S(U) = {0.99905, 0.99165, 0.98046}, and as
expected it is a contraction. The evaluation of the deviation from unitarity gives

‖I − UU †‖2 = 0.0386998,
‖I − UU †‖F = 0.0421683,
‖I − UU †‖1 = 0.0433827,
‖I − UU †‖∞ = 0.0433827,
|I − UU †|max = 0.0232465.

(5.37)

We can see that the maximal absolute value of elements gives the smallest result. It is
useful if we are concerned about the largest deviation amongst the elements. However,
it does not provide information about the deviation of other elements beside that it
is smaller. Other considered norms treat the deviation from uniatarity more globally,
taking into account entire column or all matrix elements. From these norms the spectral
norm gives the smallest result and this is expected from the compatibility of matrix
norms [77]. The MACN and MARN norms gave the same result, as the calculation is
performed on a symmetric matrix. The spectral and Frobenius norm can be viewed as
global indicators of the deviation from unitarity as they involve all matrix elements.
On the other hand, the MACN and MARN norms measure this deviation on the level
of rows, i.e. on the flavour level, even if are disturbed by the addition of cross product
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of elements, which is relatively small for matrices close to unitarity. To measure the
deviation on the column level, i.e. on the massive level, we must calculate MACN or
MARN for I − U †U instead of I − UU †.

It is worth mentioning that all information about deviation from unitarity important
from the physical point of view is encoded in the diagonal of the matrices I − U †U

and I − UU †. The elements on the diagonal contain information about the deviation
for a given flavour or massive state, depending on the choice of U †U or UU †. Whereas
the trace gives a square of the Frobenius norm, which measures the deviation from
unitarity globally.

5.6 Quark sector

On the occasion, as the discussed matrix theory formalism is universal, let us consider
the quark sector. In the quark sector, similarly to the lepton sector, the mass matrices,
in general, are not diagonal. Thus, in order to obtain quarks with definite masses, these
matrices must be diagonalized. For quarks in general the mass matrix is a 3×3 complex
matrix and as such it must be diagonalized by the singular value decomposition. As
the result there exists a mixing between weak quark states and mass quark states

qUL = V U†
L q′UL = (uL, cL, tL)T , qUR = V U†

R q′UR = (uR, cR, tR)T ,
qDL = V D†

L q′DL = (dL, sL, bL)T , qDR = V D†
R q′DR = (dR, sR, bR)T ,

(5.38)

where qU,DL,R are arrays of quark fields with definite masses and q′U,DL,R are arrays of quark
fields with definite flavours. However, the only physical effects of the mixing between
weak and mass eigenstates are visible through the charged-current interactions which
contain only left-handed chiral fields

jµQ,W = 2q′UL γµq′DL . (5.39)

By expressing the weak eigenstate quark fields in the mass eigenstate we get

jµQ,W = 2qULV
U†
L γµV D

L q
D
L = 2qULγµV

U†
L V D

L q
D
L . (5.40)

Thus, physically meaningful effects of quark mixing are encoded in the product V U†
L V D

L .
In the quark sector, this matrix is called Cabibbo-Kobayashi-Masakawa (CKM) mixing
matrix [121,122], i.e.

VCKM = V U†
L V D

L =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (5.41)
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As the product of two unitary matrices, the CKM mixing matrix is also unitary. It
shares many similarities with the PMNS mixing matrix of the neutrino sector. Alike
for Dirac neutrinos, 2n−1 complex phases can be eliminated from the CKM matrix by
the redefinition of the quarks fields. As the result, we have exactly same the number
of parameters as for the PMNS mixing matrix in the case of Dirac neutrinos

angles: n(n− 1)
2 ,

phases: (n− 1)(n− 2)
2 ,

(5.42)

which for a 3 × 3 matrix gives 3 angles and 1 phase. This means that it can be
parametrized in the exactly same way as the PMNS matrix

VCKM =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13




c12 s12 0
−s12 c12 0

0 0 1

 . (5.43)

The main difference between the CKM mixing matrix and the PMNS matrix is the
value of mixing parameters and the resulting exact structure of the mixing matrix.
The current bounds for the mixing parameters in the quark sector are [59]

sin θ12 = 0.22650± 0.00048, sin θ23 = 0.04053+0.00083
−0.00061,

sin θ13 = 0.00361+0.00011
−0.00009, δ = 1.196+0.045

−0.043.
(5.44)

These parameters exhibit the following hierarchy s13 � s23 � s12 � 1 which translates
into the allowed ranges of the mixing elements

|VCKM | =


[0.9739, 0.97412] [0.22602, 0.22698] [0.00352, 0.00372]
[0.22588, 0.22684] [0.97309, 0.97331] [0.03992, 0.04136]
[0.00838, 0.00877] [0.03918, 0.0406] [0.999137, 0.999196]

 , (5.45)

or written in an explicit interval form

Vud ∈ [0.9739, 0.97412] ,
Vus ∈ [0.22602, 0.22698] ,
Vub ∈ [0.00114− 0.00352i, 0.00151− 0.00322i] ,
Vcd ∈ [−0.22686− 0.00014i,−0.22587− 0.00013i] ,
Vcs ∈ [0.97305− 0.000033i, 0.97334− 0.000029i] ,
Vcb ∈ [0.03992, 0.04136] ,
Vtd ∈ [0.00755− 0.00343i, 0.00827− 0.00313i] ,
Vts ∈ [−0.04059− 0.00079i,−0.03914− 0.00073i] ,
Vtb ∈ [0.999137, 0.999196] .

(5.46)
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The CKM matrix has almost a diagonal structure in comparison to the neutrinos sector
where the elements of the mixing matrix are much more uniformly distributed. This
almost diagonal structure of the quark mixing matrix allows to represent it in the
so-called Wolfenstein parametrization [123,124]

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (5.47)

The Wolfenstein parameters are defined as follows

s12 = λ, s23 = Aλ2, s13e
iδ = Aλ3(ρ+ iη). (5.48)

The present limits for the Wolfenstein parameters are [59]

λ = 0.22650± 0.00048, A = 0.790+0.017
−0.012,

ρ̄ = 0.141+0.016
−0.017, η̄ = 0.357± 0.011,

(5.49)

where ρ̄ = ρ(1− λ2

2 + . . . ) and η̄ = η(1− λ2

2 + . . . ).
Regardless of the difference in the exact structure between neutrino and quark

mixing matrices, the methodology developed for the neutrino sector translates one-
to-one to the quark sector. As a deviation from the unity of any singular value is
a signal of non-unitarity of the matrix, it is even more desirable to perform singular
value analysis of CKM mixing matrices, as we have experimental access from different
processes to all the matrix elements with much higher precision than for neutrinos.
The calculated maximal and minimal singular values allowed for the interval quark
mixing matrix (5.46) are:

σ1 ∈ [0.99997, 1.00101],
σ2 ∈ [0.99965, 1.00037],
σ3 ∈ [0.99890, 1.00002].

(5.50)

The obtained ranges for allowed singular values for the CKM mixing matrices are much
narrower than those for neutrinos (3.46). It means that the CKM mixing matrix is
much closer to the unitary matrix than the PMNS mixing matrix. Nevertheless, there
is still a possibility that the CKM mixing matrix is not unitary, however, the physically
interesting deviation from unitarity, i.e. σ1 ≤ 1.00003, is visible only by investigating
the second and the third singular value.

It might seem that with the considered precision three additional quarks are forbid-
den. However, referring to the discussion at the beginning of Chapter 4, contraction
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with minimal unitary dilation of dimension smaller than 6 can also be extended to a
6 × 6 unitary matrix. Nevertheless, physically meaningful mixing matrices for quarks
are restricted to the unit sphere in the spectral norm S(3) = {A ∈ C3×3 : ‖A‖ = 1}.
In other words, they lie on the boundary of the unit ball (4.7) and do not go inside.
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6 Connection between masses and mixing

The neutrino masses and mixing are inseparably connected. The mixing matrix di-
agonalizes the mass matrix (2.26). To study them simultaneously it is necessary to
solve the eigenvalue problem. This becomes an issue when dimensions grow, which is
the case when sterile neutrinos are involved. When, the CP phase is non-zero, which
is currently strongly supported by experimental results, the problem is even more dif-
ficult, as we have to find singular values of the mass matrix. Thus, often we study
these two matrices separately guided by experimental insight. One way to study these
two matrices together as a system is in terms of angles between spaces spanned by the
eigenvectors. This is a very broad and interesting subject, to our knowledge, so far not
discussed in the literature in the context of neutrino physics.

Before we move to the main theorem which allows such description, let us state the
auxiliary theorem which highlights geometric aspects of the relation between subspaces
[76,125].

Theorem 6.1. Let X1, Y1 be n× l matrices with orthonormal columns.Then there exist
l × l unitary matrices U1 and V1, and an n× n unitary matrix Q, such that if 2l ≤ n,
then

QX1U1 =


I

0
0

 , (6.1)

QY1V1 =


C

S

0

 , (6.2)

where C, S are diagonal matrices with diagonal entries 0 ≤ c1 ≤ ... ≤ cl ≤ 1 and
1 ≥ s1 ≥ ... ≥ sl ≥ 0, respectively, and C2 + S2 = I.

The geometric interpretation of this theorem is as follows. Let E and F be l-
dimensional subspaces of Cn. Then, we can transform Cn by the unitary transformation
Q such that the columns of matrices

I

0
0

 and


C

S

0

 (6.3)

form orthogonal bases for QE and QF , respectively. Space spanned by the columns
for which ci = 0, is the orthogonal complement of QE in QF . The relation s2

i + c2
i = 1
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suggests that si and ci can be treated as the sines and cosines between these subspaces.
Moreover, these two spaces are equal to each other if and only if S = 0. Thus, the
matrix S measures how close subspaces E and F are to each other. This allows us to
make the following definition

Definition 15. Let E and F be l−dimensional subspaces of Cn. The angel operator
between E and F is defined as follows

Θ(E ,F) = arcsinS. (6.4)

It is a diagonal matrix whose diagonal elements are called the canonical (principal)
angles between subspaces E and F .

Moreover, using this operator, we can define the distance or gap between two sub-
spaces as

Definition 16. Let E and F let be l−dimensional subspaces of Cn. Let E and F be
orthogonal projection onto E and F respectively. The distance between subspaces E and
F is defined to be

‖E − F‖ = ‖E⊥F‖ = ‖ sin Θ‖ (6.5)

The perturbation behaviour of individual eigenvectors is much more complicated
than the behaviour of eigenvalues. However, the spaces spanned by eigenvectors behave
quite nicely. This behaviour is described by the Davis-Kahan theorem [126].

Theorem 6.2. Let A and B be Hermitian operators, and let S1 be an interval [a, b]
and S2 be the complement of (a − δ, b + δ) in R. Let E = PA(S1), F⊥ = PB(S2) be
orthogonal projections onto subspaces spanned by eigenvectors of A and B corresponding
to eigenvalues from S1 and S2 respectively. Then for every unitarily invariant norm,

‖EF⊥‖ ≤ 1
δ
‖E(A−B)F⊥‖ ≤ 1

δ
‖A−B‖, (6.6)

where
δ = dist(σ(A), σ(B)) = min{|λ− µ| : λ ∈ σ(A), µ ∈ σ(B)}, (6.7)

and σ(A), σ(B) are spectra of matrices A and B, respectively.

6.1 Seesaw family

The most controllable behaviour of eigenspaces is ensured for the Hermitian matri-
ces. However, every problem for singular values can be transformed into an equivalent
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problem for eigenvalues of Hermitian matrices (Theorem 3.2). Thus, the most impor-
tant scenarios from the neutrino physics perspective can be covered. At our disposal,
we have the Davis-Kahan theorem which describes the behaviour of eigenspaces when
the matrices experience perturbation. Such a situation can be identified in the mass
matrices of the seesaw family.

Definition 17. The neutrino mass matrix is called the seesaw matrix if it has the
following form

M =
 0 MD

MT
D MR

 (6.8)

with elements of MD and MR satisfying |mD| � |mR|.

All the matrices with a zero top diagonal block and appropriate scale of elements
of off-diagonal blocks can be reorganized into the seesaw mass matrix. For instance,
this is the case for the inverse seesaw and the linear seesaw [127]. Further, the seesaw
mass matrix can be written in a perturbative way

M =
 0 MD

MT
D MR

 =
 0 0

0 MR

+
 0 MD

MT
D 0

 ≡MR +MD, (6.9)

where the MD matrix is treated as the perturbation of the MR matrix. This repre-
sentation of the M matrix allows for the immediate application of the Davis-Kahan
theorem (Theorem 6.2).

6.2 Separation between eigenspaces in the seesaw scenario

We are interested in how masses and mixings are connected to each other in the seesaw
scenario3. To pose the problem, we will study the behaviour of the eigenspace of the
matrixMR under the perturbationMD (6.9). Thus, we are interested in the estimation
of the difference between eigenspaces spanned by eigenvectors ofMR and M (6.9). As
an example, we will study the CP invariant case that allows for the direct application
of the Davis-Kahan theorem (Theorem 6.2). The CP-violating case can also be treated
by this approach by rephrasing the problem for singular values to the eigenproblem for
a Hermitian matrix (Theorem 3.2).

As a starting point let us consider the eigenproblem for the matrix MR. For a
block-diagonal matrix eigenvalues correspond to the eigenvalues of its diagonal blocks.

3Recently, an interesting relation has been found between eigenvectors and eigenvalues for neutrino
oscillations in [128,129].
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In this case, one of these blocks is a zero matrix. Thus, this block has a threefold
eigenvalue 0 and the corresponding eigenvectors are

(1, 0, 0, 0, 0, 0, ..., 0)T , (0, 1, 0, 0, 0, 0, ..., 0)T ,
(0, 0, 1, 0, 0, 0, ..., 0)T . (6.10)

They span a standard 3-dimensional Euclidean space embedded in a (3+NR)-dimensio-
nal space. The rest of the eigenvalues ofMR corresponds to those of the MR subma-
trix. The Davis-Kahan theorem allows us to estimate the sine of the angle between
subspaces, denoted as sin Θ in (6.5), spanned by the eigenvectors. Since the eigenspace
spanned by the zero eigenvalues ofMR has a very simple structure, we will focus on
the estimation of the angle between spaces corresponding to light neutrinos. Informa-
tion about the other pair of subspaces follows immediately from the orthogonality of
the mixing matrix. Let us denote the eigenspaces spanned by the eigenvectors corre-
sponding to small eigenvalues by VL and V ′L, respectively forMR and M . Then in the
seesaw scenario we have

‖ sin Θ(VL, V
′

L)‖ ≤ 1
δ
‖M −MR‖ = 1

δ
‖MD‖, (6.11)

where δ is the distance between the largest of the light masses and the smallest of the
heavy masses. The relation is illustrated in Fig. 2.

The above inequality says that sin Θ(VL, V
′
L) can be estimated using a gap between

spectra and the size of the perturbation. It is clear that if the subspaces VL and V
′
L

are close to each other then the sine between them will tend to zero. Therefore, from
(6.11) we can draw the following general conclusions:

• If the separation between light and heavy neutrinos is pronounced like in the
seesaw case, then the subspace spanned by light neutrinos is almost parallel to
the 3-dimensional Euclidean space. However, when these two spectra approach
each other not much information can be retrieved from the Davis-Kahan theorem
(Theorem 6.2).

• Even if the δ is not that large, these two subspaces still can be almost parallel
whenMD is very small.

We have considered the perturbation behaviour of eigenspaces of the neutrino mass
matrix in the CP conserving seesaw scenario. The general complex seesaw mass ma-
trix analysis is much more difficult and requires studying singular values. This can
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Figure 2: The behaviour of the sin Θ, controlled by the Davis-Kahan theorem, in the
seesaw scenario. The region below the graph represents allowed values. In this case,
sin Θ is bounded by a function depending on the norm ofMD and the gap between the
spectrum. As heavy neutrinos become lighter and lighter, the blowout of the bound is
observed.

be transformed to the eigenproblem for Hermitian matrices (Theorem 3.2) but the di-
mensionality of the matrix grows. On top of that, it would be interesting to find a CS
decomposition of the seesaw mixing matrix, as it encodes the principal angles between
subspaces.
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7 Summary and outlook

The concepts which have their origin in matrix theory can enrich neutrino studies sig-
nificantly. The major role in the development of neutrino mixing analysis by matrix
theory methods has been played by singular values. First of all, they allow defining
physically admissible mixing matrices as contractions, i.e. matrices with the largest
singular value less than or equal to one. The recognition of contractions as physically
meaningful mixing matrices was crucial for further development, since only those ma-
trices can be extended to a larger unitary matrix which appears when sterile neutrinos
are under consideration. We have found that all physically admissible mixing matrices
form a geometric region defined as the convex hull spanned by the 3-dimensional uni-
tary PMNS mixing matrices (Chapter 4). The structure of this region has important
physical consequences, namely, it can be divided into four disjoint subsets correspond-
ing to the different minimal number of additional neutrinos. This means that the
minimal number of additional neutrinos is not arbitrary and is encoded in the number
of singular values strictly less than one. In this way we can consider independently
scenarios with different number of sterile neutrinos, resulting in separate constraints on
active-sterile mixing. Motivated by this observation, we have undertaken the geomet-
ric analysis of this region. Based on the fact that the region of physically admissible
mixing matrices is a subset of the unit ball of the spectral norm, we found out that
the subsets corresponding to the different minimal number of additional neutrinos are
the relative interiors of the faces of the unit ball with parameters restricted by experi-
ments. We have calculated the volume of this region expressed by the Haar measure of
the singular value decomposition, providing information about its size. We have also
made a step towards an efficient way of constructing physically interesting matrices as
every contraction can be written as a convex combination of unitary matrices. The
upper limit for the number of unitary matrices necessary to construct any contraction
is known as the Carathéodry number. We have proven that for 3× 3 contractions the
Carathéodry number is equal to four. Moreover, for matrices corresponding to one and
two additional neutrinos, this number can be reduced to two and three, respectively.

The second part of the dissertation (Chapter 5) focused on the application of ma-
trix theory methods to phenomenological studies. The emphasis has been put on the
estimation of the active-sterile mixing. The approach we have undertaken is based on
the so-called unitary dilation procedure, which puts a given contraction on the top
diagonal block of a larger unitary matrix. The practical application of this procedure
has been done by using the cosine-sine decomposition. We were able to derive analytic
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formulas for active-sterile mixing as a function of singular values for each scenario with
a different minimal number of additional neutrinos. On that basis, numerical esti-
mation of the active-sterile mixing in the scenario with one sterile neutrino has been
performed resulting in new stringent upper bounds, and in some cases lower bounds.
On top of that, we have discussed the application of matrix norms as the indicators of
non-unitarity of the mixing matrix. A simple example has been presented showing that
different norms measure deviations from unitarity on different matrix levels. Finally,
as the matrix theory methods translate one-to-one into the quark sector, we made a
brief comparison of both neutrino and quark sectors based on singular values.

In the last chapter, we studied the connection between neutrino masses and mixing
in terms angles between subspaces spanned by the eigenvectors of the mass matrix. As
an example, we analysed the seesaw family mass matrices. We used the Davis-Kahan
theorem to quantify angles between subspaces in terms of the Dirac mass matrix and
the gap between active and sterile neutrino masses.

Our findings provide new concepts in neutrino mixing analysis, allowing for a con-
sistent treatment of neutrino phenomena, including extra neutrino species, and to go
towards refined neutrino mass and mixing model constructions. The material presented
in this dissertation is by no means exhaustive. However, it gives a solid basis for further
studies. The first step should be the numerical estimation of the active-sterile mixing
in scenarios with two and three sterile neutrinos. On the theoretical side, it would be
important to study carefully the sequence of unitary dilations of increasingly higher
dimensions. Such analysis can shed a light on the upper limit of additional neutrinos.
On top of that, the connection between masses and mixing deserves in-depth studies.

Matrix theory is a broad subject, and more interesting connections between physics
and mathematics are waiting for discovery. Another particularly interesting direction
from the neutrino physics perspective is the application of the inverse eigenvalue prob-
lem in studies of structures of the mass and mixing matrices.
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