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Abstract 

 

 This study shows the results of three-dimensional simulations of the chamber 

flow within the BATES (Ballistic Test and Evaluation System) 15 pound motor.  The 

injection boundary conditions for the motor are defined by the velocity-temperature 

temporal correlations.  Three different propellant morphologies are modeled and tested 

along with a random white noise model that represents the current surrogate for 

propellant modeling.  The data gained from each of these simulations is compared using 

contour plots of the chamber flow characteristics and by performing FFT analysis on the 

head-end pressure histories.   

 The study is then expanded to include analysis of the 70 pound version of the 

BATES motor.  The analysis of one of the propellant morphologies used in the study of 

the smaller motor and the white noise surrogate confirm the results of the 15 pound 

motor.  Analysis of the acoustics and the characteristics of the chamber flow correspond 

with what was previously found.  The results from these comparisons show that 

propellant morphology has a significant effect on the internal chamber flow dynamics.     
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1  Introduction 

 

1.1 Problem Overview 

Controlling the chamber flow dynamics of a solid rocket motor is an important 

factor in maintaining the safety and the performance of the rocket.  This proves to be a 

difficult problem to accurately simulate; however, the Center for Simulation of Advanced 

Rockets (CSAR) at the University of Illinois has created a structured grid, three-

dimensional flow solver that is operational for relatively short burn times.  

 A solid rocket motor is a rocket that uses a solid propellant, known as the grain, as 

its source of fuel.  The propellant that is used for these rockets consists of a mixture of 

ammonium perchlorate (AP) and solid aluminum (Al) along with a polymeric binder.  

Typical composition of a solid propellant is about 88% by weight AP and Al while the 

other 12% is formed by the binder.  Modern propellants can contain up to 30% of Al by 

total mass [1]. The AP acts as an oxidizer that reacts with the aluminum as the rocket is 

being burned.  As the aluminum is burned, it creates aluminum oxide smoke (Al2O3) 

providing large amounts of heat that increase the specific impulse provided by the rocket 

[2].
 
The Al also starts to melt as it is burned, forming puddles of liquid Al that are 

injected into the accelerating flow.  The size of these droplets of liquid Al can vary in size 

from a few microns to a few hundred microns, and it has been shown that the as the 

droplets increase in size, the burning of Al becomes more inefficient [1].  Other than the 

propellant, other parts commonly found in a solid rocket motor include a nozzle, igniter, 

casing, and thermal inhibitors that separate the rocket chamber into segments. 

 Solid rocket motors are used in a variety of situations because of their simplicity 

and because they are easier to store for long periods of time than liquid fuel rockets.  

Their applications include military and commercial considerations as well as space 

shuttle flight.  One of the drawbacks of solid fuel motors, which may also be present in 

liquid rocket motors, is combustion instability that causes oscillations in the chamber 

characteristics of the motor.  This is a recurring problem that has been observed and 

studied in a wide variety of solid rocket motor applications over the last 60 years [3].  

The pressure oscillations can have an effect on both the safety of the motor and the 
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performance of the motor.  High amplitude pressure oscillations can cause stress on the 

motor structure and may also cause thrust oscillations.   

 One such cause for the instabilities that can be found in solid rocket motors is the 

process of vortex shedding.  According to Telara et al. [4], three different types of 

vortices can be produced.  The obstacle vortex is created by intrusions into the chamber 

flow like a thermal inhibitor that delineates the segments of a motor.  Initially, this was 

thought to be the solitary reason for which vortices were produced within a solid rocket 

motor.  However, it was shown that it is possible to have vortex shedding without the 

presence of an obstruction in the flow chamber [5].  A parietal vortex is a vortex that is 

shed from near the propellant surface and is due to instabilities in the mean velocity 

profile that couple with acoustic frequencies within the flow chamber.  This type of 

vortex is prevalent in the aft end of motors that have a large length dimension.  The final 

vortex, the angle vortex, is produced by angles in the geometry of the grain. 

 It has been shown that instabilities grow in amplitude as the frequency of vortex 

shedding moves toward the frequency of the acoustic modes that are a result of the 

geometry of the rocket chamber [6].  Early attempts to numerically simulate the 

phenomenon of this acoustic mode amplification were two-dimensional studies using the 

unsteady Euler and Navier-Stokes equations [7].  Over time, the investigation into the 

role that coupling between acoustic modes and the vortex shedding frequency play in 

motor instability has become more complex.  To increase accuracy, turbulence models 

have become an addition to solid rocket motor simulations.  For example, Kourta used a 

first order turbulence model to study the interaction between vortex shedding and 

acoustic modes, and it was found that the turbulence model improved the prediction of 

flow instability in regards to both frequencies and amplitude of the oscillations [8].  The 

use of turbulence models in simulations has expanded so that they can now be used with 

fluid injection to predict parietal vortex shedding [9].  Recent studies on the effects of 

turbulence models in channels with injected flow have revealed that the large eddy 

simulation is a more accurate model than the κ-ε model, when used to simulate turbulent 

flow [10].    

 Although major advancements have been made in studying the instabilities within 

the chamber of a solid rocket motor, very little attention has been given to creating a 
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computational model of the propellant.  Most studies simply use a constant mass flow 

rate and temperature as the injection conditions [11].  Another common surrogate for a 

propellant model is to use random white noise to describe the mass flow rate.  However, 

this has proven to be an ineffective method, as shown by Apte and Yang [12] who had to 

impose 90% white noise on the mass flow rate to match experimental conditions.  

 Although propellant models are not often used in solid rocket simulations, the 

propellant morphology has been known to be a factor in motor instabilities.  For example, 

it is well known that large head-end pressure oscillations leading to motor instability 

occurred in the 1960’s Maverick program at the Army’s Redstone Arsenal, which was 

subsequently reduced by changing the morphology of the propellant while maintaining 

the same burning rate [13].  The observation of changing the morphology to reduce or 

eliminate motor instability is usually attributed to acoustic instability that arises between 

the coupling of the combustion process of the solid propellant and the chamber flow 

dynamics [14][15].  However, recent numerical computations by Massa et al. [16] 

suggest an alternative or additional mechanism, that of fluctuations arising from the 

unsteady burning of a solid composite propellant morphology that affect the chamber 

flow dynamics and head-end pressure oscillations. The fact that heterogeneous 

propellants burn in a non-homogeneous fashion has also been confirmed experimentally 

[17]. 

 An early attempt to describe propellant combustion modeling was made by 

Beckstead, Derr, and Price [18].  Although this was critical to exposing many important 

observations about how propellant combustion works, its scope was only one-

dimensional.  As knowledge about propellant combustion improved, a code was 

developed that has the ability to emulate the combustion of heterogeneous propellants 

[19]. This code utilizes a random packing algorithm, initially created by Knott et al. [20] 

and subsequently extended by Kochevets et al. [21] and Maggi et al. [22], which can be 

used to pack various sized spheres into periodic cubes.  These spheres are used to 

approximate AP particles, and by matching the size distribution and the volume fraction 

of AP to that of the actual propellant, a computational model is formed.  It is not realistic 

to expect the code to be able to resolve all sizes of the AP spheres, so the spheres that are 
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too small to resolve numerically are solved by a homogenization strategy in which the 

spheres are mixed with the fuel binder to create a homogeneous blend [23].     

 With the tools finally in place to create an accurate heterogeneous propellant 

model that could be used in computer simulations, the aforementioned study by Massa et 

al. [16] has shown that the heterogeneity of the propellant does in fact have a significant 

effect on the characteristics of the chamber flow.  Using the process described in [19] as a 

model for the propellant, this study focuses on describing the flow field at an 

intermediate distance from the propellant surface.  The statistics of the temperature and 

the velocity field were collected and analyzed in both the length scale and the time scale.  

It was found the typical length scale was too small for the statistics at one grid point to 

have an effect on the flow field at an adjacent grid point.  However, it was also 

determined that the time scale is such that the temporal correlations at a grid point are 

significant and these fluctuations extend far enough to have an effect on the chamber 

flow.  It was shown that the head end pressure was the location at which the chamber 

flow is most noticeably affected, and that the data was more realistic for the modeled 

propellant than for a white noise surrogate model [16].  

 The study conducted in [24] explores the observation that the propellant 

morphology has significant effects on the chamber flow by testing two different 

propellants on a two-dimensional, nozzleless motor.  The two propellants, Th200 and 

M24, are compared against a random white noise process serving as a surrogate model.  

The results confirmed the observations of [16] in showing that the white noise model 

consistently resulted in lower amplitudes than the modeled propellant tests.  Despite 

agreement with past results, the study in [24] only calculated data for two-dimensional 

models, so it is left unclear whether the same results would hold for a three-dimensional 

model.  The purpose of this thesis, therefore, is to further investigate the role of 

propellant fluctuations (in the absence of acoustic coupling) on solid rocket motor 

internal flow characteristics by using three-dimensional simulations. 

 The structure of the remainder of the paper is as follows.  Section 2 contains the 

problem setup and information concerning the setup of the BATES motor and the 

propellant models.  Section 3 provides an overview of the mathematical methods that 

were used in creating the injection boundary conditions and in analyzing the results.  
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Sections 4 and 5 outline and discuss the data and results from the simulations.  Section 6 

contains direction for future research, and Section 7 contains concluding remarks. 
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2  Problem Setup  

 

2.1 BATES Motor 

 The Ballistic Test and Evaluation System, or the BATES solid rocket motor, was 

first developed by the Air Force in the early 1960s as an experimental motor that could be 

used for high precision ballistics testing [25].  The goal was to produce a motor that could 

accurately portray the performance of a full size motor with different propellants at a 

minimum size to reduce the amount of materials used in testing.  The initial design of the 

motor contained 70 pounds of propellant, while later, a smaller 15 lb. motor was also 

developed.  The smaller design was critical in studying the effects of scaling on the motor 

performance, and also made the testing of scarce propellants feasible [25].  

 Figure 1 shows a schematic of the 15 lb. motor configuration.  The specific 

measurements for this motor and the larger 70 lb. BATES motor can be found in Table 1.  

The length measurement represents the distance from the head end of the motor to the 

nozzle throat.  The speed of sound, a, is found using: 

                                                              RTa              (1) 

Also, T represents the temperature, the term γ refers to the ratio of specific heats, and R is 

the specific gas constant which is determined by: 

                                                            


 )1( 


pc
R             (2) 

Using the properties of the motor given in Table 1, the specific gas constant is found to 

be 293.687 (J/kg-K) for the BATES 15 lb. motor.  This value is then used in (1) to 

determine the speed of sound.   Also, as seen in Figure 1, the motor has a converging- 

diverging nozzle that is attached to the chamber. 

 

 The three-dimensional computational grid and a two-dimensional cut of this grid 

are shown in Figure 2.  It contains 220,032 nonuniformily distributed cells for the 15 lb. 

motor, while the larger 70 lb. motor grid, not shown, yet similar in geometry, contains 

619,400 cells.  Grid refinement has been performed on the grids to show that the steady 

state head end pressure is independent of the mesh [1].  The boundary conditions that are 
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set for the motor are as follows: the nozzle and head end boundaries are set as no slip 

walls, the nozzle outlet is set at supersonic outflow, and mass rate and temperature values 

are set at the injection surface of the propellant.  It is the mass rate and temperature at the 

boundaries that will be varied in the different cases depending on what propellant is being 

tested. 

 

2.2  Propellant Models 

 Previous study has shown that the velocity-temperature correlations above the 

surface of a burning heterogeneous propellant are strongly affected by the propellant 

morphology [16].  These effects on the velocity and temperature can then affect the 

amplitudes of the acoustic modes within the motor chamber.  The spatial microscale has 

been found to be on the order of millimeters, which is too small to be accurately 

represented by the grid used to mesh the model of the motor, and thus spatial correlations 

are ignored.  The temporal microscale has been found to be to the order of milliseconds, 

and as the time step of the simulations will be on the order of milliseconds, this parameter 

must be accounted for in the simulation.  The temporal correlations will differ depending 

on the morphology of the propellant.   

 This study focuses on three different propellant morphologies that have varying 

sizes of AP.  Each morphology uses HTPB as the binder that holds the solid fuel together.  

Rocpack, a propellant packing code that has been developed at CSAR, is the program 

used to create virtual propellant models that simulate the different morphologies.  Cross 

sections of these three-dimensional packs are shown in Figure 3.  The propellants that are 

considered in this test are P82, PBMOD, and M24.  P82 is a polydisperse monomodal 

propellant with a mean AP diameter of 82 microns.  PBMOD is a bimodal propellant 

with mean diameters of 82 microns for the fine AP and 390 microns for the coarser AP.  

The M24 is a trimodal propellant with diameters of 20 microns, 50 microns, and 200 

microns.  It should be kept in mind that these numbers represent mean diameters, and in 

actuality, the diameter of the spheres has a distribution that can be seen in Figure 4.  

Further details of the packs can be found in the paper by Jackson and Buckmaster [19].  

In the current turbulent flow simulations, a nominal propellant model of 10% random 

white noise is often used in place of a propellant, so this model is also studied as a 
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comparison to the heterogeneous propellants.  In addition to the white noise surrogate, a 

control model is also tested in which the injected mass rate and temperature values are 

fixed.    

 The temporal correlations that are created for each of the propellant models are 

described by a normally distributed joint pdf.  The time sequence that is generated for 

each propellant is created to match statistics that have been calculated for each propellant.  

This time sequence must correspond with the autocovariance, the cross-covariance, and 

the joint pdf of the velocity and temperature correlations.  The covarinace matrix that is 

used to describe the correlations spans a shorter time than the time required for the 

simulation.  Therefore predictions of future correlations must be created so that they also 

match the statistics that were calculated.   

 

2.3 Rocfire 

 Rocfire is a computer program that was developed to aid in the analysis of 

burning heterogeneous propellants.  It is a sub-grid combustion model that can describe 

the coupling of the solid phase and gas phase physics at the microscale level.   Rocfire 

uses the packed propellant cube that is generated by Rocpack and defined by the different 

propellants being studied as an input.  Thus, the results are a function of which propellant 

is designated to be burned.  The final result of a Rocfire simulation is the creation of 

temperature and velocity data from planes at a given location above the propellant 

surface.  This data is recorded in the form of a matrix with dimensions given by the 

dimension of the grid used in Rocfire.  The location of these planes is determined by the 

user, and the code is capable of creating results for multiple locations.  Each of these data 

files also represents an instant in time, so that one matrix represents the velocity or 

temperature at a set position and fixed time.  

 Initially, Rocfire is run using the Oseen approximation which describes a viscous 

and incompressible flow at low Reynolds numbers.  Once a steady state is reached using 

the Oseen solver, the Navier Stokes equations are then used to provide the data which is 

to be saved.  
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2.4 Rocflo 

 Rocflo is a 3-D flow solver that has been developed at CSAR that is used to find 

the solution to the Euler or Navier-Stokes equations.  It also has the ability to include 

turbulence solutions using large eddy simulations.  Rocflo is used as a structured grid 

solver, while another Rocstar program, Rocflu, must be used for unstructured grids. It can 

be used jointly with other Rocstar applications; however, since fluid flow is the main 

concern of this project, Rocflo was operated in its stand alone capacity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

 

2.5 Figures and Tables 
 

 

 

 
Figure 1: Schematic of the BATES motor, 15 lbs. or 70 lbs. 

 

 

 
Table 1: Table of values for the BATES motor. 

Parameter 15 lb 70 lb 

L (m) 0.39 0.669 

R (m) 0.05842 0.100 

a (m/s) 998.3 1090 

m (kg/m2-s) 22.623 27.638 

Tb (K) 2876 3430 

cp (J/kg-K) 1925.28 1925.28 

γ 1.18 1.18 

 

 

 

 
Figure 2: Computational grid for BATES 15 lb. motor. (a) 3-D mesh.  (b) 2-D mesh, slice taken at z = 

0 plane. 
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Figure 3: Cross-sectional cut of the propellant packs. (a) P82  (b) PBMOD  (c) M24. 

 

 

 

 

 

 

 

 

 
Figure 4: Particle size distributions for (a) P82  (b) PBMOD  (c) M24. 
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3  Mathematical Methods 

 

3.1 Statistics 

 The results gathered from Rocfire are used to form the stochastic boundary 

conditions that are used to emulate the desired propellant morphology.  Therefore, it is 

necessary to define which statistics are needed, and how they are calculated.   

 Each plane above the propellant surface is split into a grid with grid points in the 

x and z direction, where the grid points in x can be defined by i = 0,1,…,nx and the 

gridpoints in z can be defined as k = 0,1,…,nz.  This gives a total of (nx+1)*(nz+1) points 

for each grid.  The y direction is defined as the height above the propellant surface and 

denoted by j = 0,1,…,ny.  Each plane also has different time levels where the total 

number of levels is given by the value of nt.  Rocfire creates a data file for an X-Z plane 

for each y value and for each time step.  Each X-Z plane data file contains either the 

velocity or the temperature value at every grid point.  These data files are stored so that 

there is a time step of 0.00001s between each plane. 

 There are a few statistics that can be calculated for the velocity and the 

temperature values that are important for defining the propellant morphologies.  A useful 

tool in studying the velocity and temperature output is a probability density function 

(pdf).  This is a graphical tool that shows the probability that the velocity or temperature 

is at a certain value.  A pdf is a continuous function, but the data that is recorded by 

Rocfire is given at distinct time steps and grid points.  This problem is solved by 

observing that a pdf is a smoothed version of a histogram.  It can be approximated using 

an algorithm that separates the velocity and temperature values into bins according to 

value.  As the size of each of the bins decreases, the approximation of the pdf as a 

continuous function improves.  

 The pdf is important for determining the statistics of the propellant model.  As an 

example, given that a set of values is represented by X and x represents a single value 

from the set, the pdf can be used to find the moment of the distribution using the equation 

below: 

                                                   



 dxxpdfx

r

r )(                                               (3) 
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 The μ in the above equation is the first moment of X and is known as the 

expectation or the mean of the distribution.  This value is integrating the product of each 

possible value and its probability.  This idea is represented by the following equation 

[26]: 

                                                 



 dxxpdfxXE )()(                                             (4) 

This value can also be represented in discrete form: 

                                                      
x

xxPXE )()(                                                  (5) 

  The second moment is more commonly known as the variance of the distribution 

and is a measure of the spread or the dispersion of the data points x from the mean.  Thus, 

the equation for the variance in terms of the expectation is given by [26]: 

                                           



 dxxpdfxXVar )()(

22                                       (6) 

The second moment can also be found in terms of the expectation by letting r = 2 for (3): 

                                                  22 )()(   XEXVar                                              (7) 

The standard deviation of the distribution, σ, is calculated by finding the square root of 

the variance.  

 The third moment of the distribution X represents its skewness.  This is a measure 

of the symmetry of a distribution.  Similarly to the second moment found above, the third 

moment can be found by letting r = 3 in (3): 

                                                    



 dxxpdfx )(

3
                                                (8) 

It is possible to find the values for each of these terms for both the temperature and the 

velocity calculated in Rocfire. 

 The fact that there are two different distributions being considered, velocity and 

temperature, necessitates the need to look at the joint probability density function for 

these variables.  A joint pdf describes the probability of events occurring in terms of two 

random variables X and Y.  This distribution does not give specific information regarding 

the probabilities for just X or just Y.  This information can be found from a marginal 

distribution, for example, the marginal distribution of X describes the probability 

distribution of X while ignoring all information about Y. It is possible to recover a 

marginal distribution from any joint pdf; however, a joint pdf can only be formed from a 



 14 

 

marginal distribution in a certain case.  If the variables X and Y are independent, then the 

joint pdf may be formed by multiplying the two distributions.  Independence may be 

determined if X and Y follow the below equation: 

                                                      )()(),( YPXPYXP                                                    (9) 

For the problem being studied in this paper, it is assumed that the variables are not 

independent, that velocity and temperature are correlated.  In the discrete form, the joint 

pdf for v and T is found in a similar method as for the marginal distributions where an 

algorithm separates values into bins depending on value.  

 It is possible to show that the velocity and the temperature may be approximated 

to be normally distributed as shown in Figure 5.  Although this is not a determining 

condition for whether the joint pdf also has a normal distribution, it does make a normal 

joint pdf possible.  It would be difficult to calculate the exact joint pdf for this case; 

however, the assumption that it would have a normal distribution seems plausible.  

Therefore, the normal joint distribution of velocity and temperature is determined from 

their univariate distributions, rather than the usual method of finding the marginal 

distributions from the joint pdf. 

  

3.2 Covariance Matrix 

 The velocity and temperature data that is created from Rocfire varies depending 

on the model of propellant that is used as an input.  The data that results from the Rocfire 

simulation is used to compute a covariance matrix that Rocflo uses to set the injection 

boundary conditions on the motor. 

 There are several assumptions that are used when creating the covariance matrix.  

First, the process is assumed to be stationary, inferring that the joint probabililty function 

will be constant regardless of the time or space at which it is calculated.  Second, it is also 

assumed that there is a correlation between velocity and the temperature; these are not 

independent variables.  Last, the velocity and temperature have approximately normal 

probability densities, so it is assumed that the joint pdf is also normal. 

 The covariance matrix holds four different data entries for each time.  Two of the 

entries are calculations of the covariance between velocity and temperature.  The 
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covariance between two sets of data, X and Y, is a moment of the joint distribution of X 

and Y which shows the direction of their relationship [26]. 

                                                 yixi YXEYX  ),cov(                                       (10) 

In terms of Rocfire output, X and Y are represented as the temperature and the velocity.  

If the temperature and velocity are positively related, then covariance will be positive.  If 

the two data sets are negatively related then the covariance will be negative.  If the 

velocity and the temperature are independent, then the covariance would be equal to zero.  

One of the covariance matrix entries is the value of cov(v,T) while another is the value of 

cov(T,v) at the given time.  These values should be equal because the covariance is found 

through multiplication, and the commutative property shows that the order of the 

variables is unimportant.  

  The other two entries in the covariance matrix are a specific type of covariance 

calculation where a signal is compared to a time shifted portion of itself.  This is known 

as the autocovariance of a signal.  In mathematical form, the autocovariance is defined as: 

                                                  jjii XXEji  ),(                                         (11) 

where X is the time signal, μ is the mean, and i and j represent different periods of time 

sampled from that signal.  This definition can change when it is assumed that the time 

signal is stationary, implying that the mean is the same regardless of what period of time 

is taken from the time series.  Stationarity assumes that μi and μj are equal, so the 

equation for autocovariance becomes: 

                                                      kii XXEk)(                                          (12) 

where k refers to the time lag between the two sampled times rather than the specific time 

periods denoted by i and j. 

 The values for the covariance and the autocovariance of the velocity and 

temperature data is then used to create a covariance matrix, which has the following 

definition, 

                                                      T
yyE 


                                              (13) 

in which the vector y is an ordered pair (vm, Tm) for the given time step m.  The 

fluctuation,  


y , will be referred to as Y


.  This vector will have a number of values 

that is defined by the number of time steps. 
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                      )('),'),...,2(',2('),('),('),0('),0(' tntTtntvtTtvtTtvTvY 


         (14) 

The definition of the covariance matrix can now be simplified to  

                                                              TYYE


                                                       (15) 

This formula yields a matrix that has the following form. 

V(0)v(0) v(0)T(0) v(0)v(Δt) v(0)T(Δt) . . . v(0)v(ntΔt) v(0)T(ntΔt) 

V(0)T(0) T(0)T(0) v(Δt)T(0) T(0)T(Δt) . . . v(ntΔt)T(0) T(0)T(ntΔt) 

V(0)v(Δt) v(Δt)T(0) v(Δt)v(Δt) V(Δt)T(Δt) . . . v(Δt)v(ntΔt) v(Δt)T(ntΔt) 

v(0)T(Δt) T(0)T(Δt) v(Δt)T(Δt) T(Δt)T(Δt) . . . v(ntΔt)T(Δt) T(Δt)T(ntΔt) 

    
. . . 

  

v(0)v(ntΔt) v(ntΔt)T(0) V(Δt)v(ntΔt) V(Δt)T(ntΔt) . . . v(ntΔt)v(ntΔt) v(ntΔt)T(Δt) 

v(0)T(ntΔt) T(0)T(ntΔt) V(Δt)T(ntΔt) T(Δt)T(ntΔt) . . . v(ntΔt)T(ntΔt) T(ntΔt)T(Δt) 

 

The matrix shown above is simplified so that only the difference between the time steps 

in the two terms is used. 

 

vv(0) vT(0) vv(Δt) vT(Δt) . . . vv(ntΔt) vT(ntΔt) 

vT(0) TT(0) vT(0) TT(Δt) . . . vT(0) TT(ntΔt) 

vv(Δt) vT(0) vv(Δt) vT(Δt) . . . vv(ntΔt) vT(ntΔt) 

vT(Δt) TT(Δt) vT(Δt) TT(Δt) . . . vT(Δt) TT(ntΔt) 

    
. . . 

  

Vv(ntΔt) vT(0) vv(ntΔt) vT(ntΔt) . . . vv(ntΔt) vT(Δt) 

vT(ntΔt) TT(ntΔt) vT(ntΔt) TT(ntΔt) . . . vT(ntΔt) TT(Δt) 

 

The covariance matrix Σ can be observed to be symmetric; therefore, it may be stored as 

an upper triangular matrix in order to reduce the amount of computer memory required 

for storage.  These values are then stored in the .cov file as a matrix that has two 

columns. The result is the covariance file that is used in the directory from which the 

simulations are being run. 
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vv(0) vT(0) 

Tv(0) TT(0) 

vv(Δt) vT(Δt) 

Tv(Δt) TT(Δt) 

  

vv(ntΔt) vT(ntΔt) 

Tv(ntΔt) TT(ntΔt) 

 

An algorithm within the Rocflo code has been constructed that can reconstruct this 2 

column vector into the upper triangular matrix that is the original covariance matrix. 

 The size of the matrix in the .cov file depends on the length of the Rocfire run.  

There are always 2 columns, but the number of rows is free to change depending on the 

number of time steps that were calculated in Rocfire.  If the number of rows in the 

covariance matrix is represented by the variable ncovvals, then the total time can be 

found by the equation shown below 

                     nt
valsn

1
2

cov
                                                     (16) 

The total time can be found using the time step value, Δt, so the equation above can be 

modified to be: 

                                                 







 1

2

covvalsn
tttotal

                                                (17) 

This equation can also be inverted to determine the dimensions of the covariance matrix 

when the Rocfire simulation time is known. 

                                                










 12cov

t

t
valsn total                                                   (18) 

The result is the recovery of ncovvals, the number of rows that will be present in the 

covariance matrix. 

 

3.3 Acoustics 

 The Navier-Stokes equations can be used to describe the flow of a fluid, resulting 

in a solution of the fluid’s velocity field.  These equations are three-dimensional and 
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represent the conservation of mass, momentum, and energy.  In their full form, the 

Navier-Stokes equations prove difficult to work with; however, in studying the acoustics 

of the flow through the chamber of the BATES motor they may be simplified by making 

some assumptions.  First, the flow is assumed to be inviscid without having any heat 

conduction.  The result is the Euler equations shown below.  When the isentropic relation 

between pressure and density is included with the Euler equations, the system is closed 

and may be solved. 

 

Mass:  

                                                           0



u

t





         (19) 

Momentum: 

                                                   0



puu

t

u 





                                         (20) 

Isentropic Gas Law: 

                                                                   Ap                                                         (21) 

 

The meaning for the variables in the above equations is as follows.  The term ρ stands for 

the density, t is the time, u


 is the velocity vector, p is the pressure, A is a constant, is a 

spatial operator used for the divergence and gradient, and γ represents the ratio between 

the specific heats.    

 The flow is also assumed to be one-dimensional, in so that it only moves in the 

downstream x direction.  This allows the terms with y, z, v, and w to be dropped because 

these values will be equal to zero.  This also means that the y and z direction momentum 

equations can be disregarded.  This results in the one-dimensional Euler equations for 

mass and x-momentum as shown below,   

 

Mass: 

                                                              0 xt u          (22) 

x-momentum: 

                                                        02  xxt puu                                                 (23) 
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 Now that the Navier-Stokes equations have been simplified using the assumptions 

given to the flow, the induced fluctuations must be taken into account.  The fluctuation 

terms are taken to be very small compared to the mean value.  It may also be assumed 

that the mean velocity, u , is small so that it can be approximated as zero.  Also, the mean 

values are taken to be constant in both time and space, so the partial derivatives of the 

means will be equal to zero.  These simplifications allow the density, velocity, and 

pressure terms to be written as a sum of their steady state value and the fluctuation. 

        

                                                               '                                                        (24a) 

                                                               'ppp                                                        (24b) 

                                                                'uuu                                                         (24c) 

The terms with the bar over the variable represent the steady state value while the primed 

terms are the fluctuation from the mean.  These new expressions for the density, pressure, 

and velocity can be substituted into the one-dimensional Euler equations, (22) and (23), 

resulting in the equations given below. 

 

Mass: 

                                                             0''  xt u                                                       (25) 

Momentum: 

                                                             0''  xt pu                                                       (26) 

 

To get to these equations, the non-linear terms were neglected because the multiplication 

of two fluctuations can be ignored since ''' ppp  .   

 The relation between the pressure and the density must also be put in terms of the 

mean and fluctuation values.  The resulting equation is 

                                                            ''  App                                                 (27) 

By removing the   from the parentheses on the right side of (27), this may be rewritten 

as 
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




 










'
1' App                                              (28) 

The right side of (28) can be expanded into a Taylor series to give 

                                          






















 ...

''
1'

2

2









App                              (29) 

where the higher order terms may be ignored because they become increasingly small.  

Now, it is useful to only consider the first two terms of the expansion and to multiply 

through by the mean density term.   

                                                       



  '

' AApp                                            (30) 

If it is assumed that the mean values of pressure and density follow the relation that was 

shown in (23), then, with some rearrangement of terms, (30) gives an equation to find the 

density fluctuation. 

                                                                ''
11 pA
                                                 (31) 

 There are now three simplified equations that will be used, (25), (26), and (31).  

The next step is to take the derivative of (25) in time and the derivative of (26) in space. 

                                                             0''  xttt u                                                      (32) 

                                                             0''  xxxt pu                                                     (33) 

These two equations may be combined into a single equation using substitution when it is 

noticed that the term xtu'  is in each (32) and (33).   

                                                             0''  xxtt p                                                        (34) 

This equation only contains terms for the density and the pressure.  The goal is to find an 

equation that only contains the pressure, so (31) may be used to turn the density 

fluctuation into a term that contains the pressure fluctuation. 

                                                          0''  xxtt pAp


 

                                               (35) 

It is possible to simplify the coefficient that is found in front of xxp' .  For an isentropic 

flow, the speed of sound is given by: 
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

p
a 2                                                           (36) 

When the relation between pressure and density from (23) is applied, this equation 

becomes  

                                                               


 A
a 2                                                       (37) 

This result shows that the square of the sound speed is equal to the coefficient found in 

(35).  There is now a partial differential equation that depends only on the speed of sound 

and the pressure. 

                                                            0'' 2  xxtt pap                                                     (38) 

Since this partial differential equation is linear, the method of separation of variables may 

be used to find the solution.  Separation of variables is based on the fact that the solution 

to (38) can be determined by a product of two functions.  One of the functions relies only 

on the time, t, and the other relies only on the position, x. 

                                                        )()(),(' xXtTtxp                                                   (39) 

This solution may then be substituted into (38), 

                                                0)('')()()('' 2  xXtTaxXtT                                         (40) 

This equation may be rewritten after dividing by X(x) and T(t).  The result is that the 

functions of T and X are separated. 

                                                      0
)(

)(''

)(

)('' 2 
xX

xX
a

tT

tT
                                               (41) 

The only way for the difference between these two terms to be equal to zero is for 
)(

)(''

tT

tT
 

and 2a
)(

)(''

xX

xX
 to be equal to a constant value.  Since it does not matter what this constant 

value is as long as it is the same for each term, it may be represented arbitrarily by the 

symbol α.  To make solving the differential equation easier, this constant will be squared 

and made negative, so that the result is: 

                                          2

)(

)(''


tT

tT
     and     

2

2

)(

)(''

atX

tX 
                                   (42) 
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These two equations can be rearranged to be in the form of homogeneous ordinary 

differential equations that can be solved. 

                                                        0)()('' 2  tTtT                                                  (43a) 

                                                       0)()(''
2

2

 xX
a

xX


                                            (43b) 

The solution to the equations (43a) and (43b) are shown below. 

                                                  )sin()cos( 21 tCtCT                                            (44a) 

                                               )sin()cos( 43 x
a

Cx
a

CX


                                       (44b) 

The coefficients are constant values that are denoted by a C with a subscript.   

 It would be easy to set the values of the unknown constants and the value of α to 

be zero to make a solution that is viable.  However, this solution, as will be shown, is not 

useful in finding the frequencies of the acoustic modes.  When α is zero, equations (43a) 

and (43b) become 

                                                                0)('' tT                                                        (45a) 

                                                               0)('' xX                                                       (45b) 

When these values are integrated, they become 

                                                             21)( CtCtT                                                   (46a) 

                                                          43)( CxCxX                                                   (46b) 

Boundary conditions must be known to be able to solve for the constants.  In the case of 

pressure in a motor that acts like a closed-closed tube, the boundary conditions of the 

derivative of the pressure fluctuation equation due to position (44b) can be determined.  

The pressure gradient fluctuation at the head end of the motor where x = 0, and the 

pressure gradient fluctuation at the throat of the nozzle where x = L are both zero.  This 

can be proven by looking at (26).  At the closed end of the tube the velocity is zero 

because the flow cannot move through the wall.  This means that the velocity fluctuation 

tu '  must have a value of zero.  Also, the spatial gradient of the pressure, xp' , must also 

equal zero to satisfy (26).  Letting 0)0(' X makes the constant C3 equal to zero.  It is 

also assumed that the initial condition of the system is 0)0( T .  This boundary condition 
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makes the constant C2 equal to zero.  Two of the constants have now been solved and the 

resulting equations are, 

                                                               tCtT 1)(                                                         (47a) 

                                                              4)( CxX                                                         (47b) 

When these values are put into (39) it becomes, 

                                                             Cttxp ),('                                                        (48) 

Although this is a correct solution to the equation, it does not contain sine or cosine terms 

that would describe the acoustic modes.  Therefore, the term α should be considered to be 

a nonzero value. 

 To find a useful solution, equations (44a) and (44b) will be used again, but with 

the condition that α is not zero.  Since two boundary conditions are known for the 

derivative of (44b), it serves as a good starting point for determining the unknown 

coefficients.  The derivative is shown below: 

                                       )cos()sin()(' 43 x
aa

Cx
aa

CxX


                                 (49) 

The closed-closed tube boundary conditions for pressure gradients can then be substituted 

into (36) to find the values of the coefficients C3 and C4.   

                                 ))0(cos())0(sin(0)0(' 43
aa

C
aa

CX


                            (50) 

For this equation, the sine term is equal to zero.  Therefore, to satisfy the boundary 

condition, the coefficient C4 must be equal to zero because α/a and the cosine term are 

nonzero.  The position equation can now be simplified to become the following. 

                                                    )sin()(' 3 x
aa

CxX


                                               (51) 

Now, the second boundary condition, X’(L) = 0, may be used. 

                                               ))(sin(0)(' 3 L
aa

CLX


                                          (52) 

For a non-trivial solution, the coefficient C3 cannot be set to zero.  Therefore, since α/a is 

known to be nonzero, the sine term must be equal to zero.  This implies, 

                                                            ))(sin(0 L
a


                                                      (53) 

Since multiples of π make a sine equal to zero, 
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                                                                


nL
a

   n = 1, 2, 3, …                   (54) 

Solving for the constant α results in, 

                                                                
L

an
     n = 1, 2, 3, …                   (55) 

 The determined values for C3 and C4 can be inserted into (44b) to find a solution 

for X(x).  The unknown constant C3 in (52) may be set to any value other than zero as 

long as α is chosen as the value shown above.  To make this equation as simple as 

possible, C3 can be chosen to equal 1.   

                                                             )cos( x
a

X


                                                      (56) 

This solution may be substituted into equation (39) to provide a solution to the spatial 

part of the pressure fluctuation. 

                                                     )cos()(),(' x
a

tTtxp


                                               (57) 

Now, a solution for the time part of the fluctuation, T(t), must be found. It is known that 

the time dependent portion of the pressure fluctuation is represented by (44a).  At the 

initial time when t = 0, the pressure gradient should still be zero.  Therefore, the 

coefficient C1 must be zero.  The equation now becomes, 

                                                           )sin(2 tCT                                                        (58) 

To make the solution easier to obtain, let the coefficient C2 be equal to one.   

                                                              )sin( tT                                                          (59) 

Although, by itself, the above represents a viable solution, a useful relationship can be 

determined by rewriting the value of α.  By setting the constant α equal to angular 

frequency (α = 2πf) in equation (55), it is possible to introduce the temporal frequency. 

                                                               
L

an
f


 2   n = 1, 2, 3, …                   (60) 

When this equation is rearranged to solve for the frequency, an equation that can be used 

to solve for the frequency of the longitudinal modes of the motor is produced. 

                                                                 
L

na
f

2
   n = 1, 2, 3, …                   (61) 
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This equation will be used in the Results section of this paper to provide the theoretical 

frequencies for the pressure FFT plots.   

 The spatially dependent term of the above equation is a cosine function and 

therefore is oscillatory.  The solution to this equation may be found by setting the term α 

to equal the angular frequency, 2πf.  Then when α is expanded to the form shown in (55), 

the value for the pressure fluctuation becomes: 

                                                )cos()sin(),('
L

xn
ttxp


    n = 1, 2, 3, …                 (62) 

A plot of this graph at an instant in time and letting T(t) equal one is shown in Figure 6.  

This plot shows that the different modes, which are determined by the value of n in (62), 

have an impact on the pressure fluctuation.  Of particular importance are the odd 

numbered modes because of the way that they affect the boundaries of the motor.  The 

even numbered modes have an equal pressure at x = 0 and at x = L, so that the effect on 

the boundaries is canceled because an equal pressure is pushing in opposite directions at 

each boundary.  However, for the odd numbered modes, at x = 0, the pressure amplitude 

is equal to 1, while at x = L, the pressure amplitude is equal to -1.  This creates a force on 

the x = 0 boundary that is working in the same direction as the force that is pushing on 

the boundary at x = L.  Therefore, this force is not cancelled and has an effect on the 

chamber flow of the motor.  The understanding of this force is essential for the safety of 

manned space flight because of the potential effects that it could have on the astronauts in 

the space shuttle.    

 

3.4 Waterfall Plot 

 Although not used in the analysis of the results for this study, a waterfall plot is 

another useful tool that can be used to analyze the acoustics of a motor.  It can be used to 

visually present values across two separate variables in one plot.  It is useful in acoustics 

as a method in which to show oscillation amplitudes in terms of time and frequency.  A 

Matlab code can be created to compute and plot waterfall plots using the data from probe 

files that are generated from Rocflo.  This is done using a time span of probe data and 

splitting this data into smaller time windows to be analyzed.  These time windows 

generally have some overlap into the times of adjacent windows. FFT analysis is then run 
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on each of these time windows, so that each window has its own set of magnitudes on the 

frequency scale.  The result is a frequency scale and a time scale, and also a magnitude 

that corresponds to a particular time and frequency.   

 Waterfall plots are also helpful in determining areas of resonance, as a resonant 

frequency will be exhibited as a ridge of increasing amplitude as it progresses through 

time.  It is useful to examine an example that features resonance to be able to see the 

ridge created in the waterfall plot.  The differential equation shown below is used as an 

example of a system that has resonance. 

                                                      tFx
dt

xd
o  sin2

2

2

          (63)  

Then, theoretical values were chosen for the variables.  The variable oF  was set to be 5, 

the term was given the value 225  , and  was given the value 210  .  The term  is 

the one that determines the resonance of the system where the resonant frequency in 

Hertz can be found using the formula




2
.  Therefore, in this example, the resonant 

frequency is expected to be at 10 Hz, and this result is confirmed by the waterfall plot 

shown in Figure 7.  There is a ridge of high amplitude at 10 Hz that continually increases 

as time progresses, thus indicating resonance at this frequency.  As shown in the figure, 

the waterfall plot has gridlines for only one of the variables.  When using the amplitudes 

from the FFT plot, it is most useful to include gridlines from constant times.  This creates 

a collection of FFT plots that show the results at various time windows where the plotted 

time value is the middle of each window for which the FFT was generated. 
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3.5  Figures 

 

 
Figure 5: Velocity (top) and temperature (bottom) distributions from Rocfire output for PBMOD. 
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Figure 6: Plot of the acoustic modes in a motor of length of L. 

 

 
Figure 7: Waterfall plot for a system with resonance at 10 Hz. 
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4  Bates 15 lb. Motor Results 

 

4.1 Acoustics 

 To study the longitudinal acoustic modes of the BATES 15 lb. motor it is 

necessary to look at the pressure history as a function of time.  Figure 8 shows the head 

end pressure time history for the three propellant cases and also for the white noise and 

no fluctuations cases that were simulated.  The time span of this plot is from 0.5 seconds 

until 1.5 seconds with a time step of 0.1ms between each data point for the propellant 

cases.  The white noise case has a time step of 0.01ms between data points to ensure that 

the acoustic modes can be accurately captured.  The time averages for each case in the 

time window displayed by Figure 8 are shown in Table 2.  The head end pressure 

averages are shown to be similar for each case; however, each of the cases has a small 

difference from the case that has no fluctuations.  The propellant modeled cases can have 

either a higher of a lower pressure average than the case without fluctuations, so there is a 

slight dependence on the type of propellant being used in determining the average 

pressure.  

 Other than just having a difference in the head end pressure average, the 

propellant model cases also show a larger variation in pressure than the white noise 

model.  There is even a noticeable difference between each propellant as the P82 

propellant has low amplitude oscillations, and the bimodal propellant, PBMOD, exhibits 

a large pressure change as a result of its oscillation.   

 The FFT plots of the head end pressure probe of the BATES 15lb. motor are 

shown in Figure 9.   The range of these plots was made to be from 0 to 5000 Hz so that 

three of the longitudinal modes could be clearly captured.  The theoretical and the actual 

values of the longitudinal modes for each of the four cases shown above are given in 

Table 3.  The theoretical values for the longitudinal dimensional frequencies in a closed-

end tube are calculated from )2/(* Lmaf   s
-1

, where m denotes the mode that is being 

evaluated so that m = 1, 2, 3, ….   

 There are a few trends that can be observed from the results shown in Table 3.  

First, the three propellant cases and the white noise case have peaks at frequencies that 

are similar to the calculated theoretical mode, validating that the peaks that are evident in 
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the FFT plots from Figure 9 are due to the rocket acoustics.  Secondly, the amplitudes for 

all of the cases decrease as the longitudinal mode number increases.  While the three 

propellant cases show somewhat similar percentage loss in the amplitude of the acoustic 

mode, the white noise case has a less drastic decrease in amplitude.  Lastly, the amplitude 

shows a dependence on the type of propellant that is used to set the boundary conditions.  

The bimodal propellant, PBMOD, always exhibits the highest amplitude, and at one point 

is three times greater than the amplitude of P82.  The white noise case has much lower 

amplitude at the first acoustic mode than any of the propellant cases.  It is almost four 

times smaller than the P82 case, which exhibits the smallest amplitude of any of the 

propellants.  The acute differences between each of the four cases provide clear evidence 

that the amplitude of the longitudinal acoustic modes is affected by the propellant 

morphology. 

 

4.2 Chamber Flow Dynamics 

 Another area of interest is the effect that propellant morphology has on the 

chamber flow dynamics of the BATES 15lb. motor.  The plots in Figures 10–13 show the 

temperature contours at different instances in time for each of the three propellant cases, 

and also for white noise.  The location of these slices is 0.2 meters downstream from the 

head end of the motor.  

 These figures show that a contrast exists between the temperature distributions in 

each of the four cases.  The fluctuations defined by P82 produce a temperature contour 

that has small changes near the propellant surface, but very little effect on the interior of 

the chamber.  The PBMOD defined boundary conditions, meanwhile, produce a 

temperature distribution that is not as uniform as what was found in the P82 case.  The 

propellant surface exhibits a larger variation of temperature and the interior of the motor 

also shows fluctuation in the temperature values.   The M24 case also shows temperature 

variation that is unique from what was found for the P82 and PBMOD described 

boundary conditions.  While showing more temperature variation than P82, there is not as 

much variation than what is seen for PBMOD.  Although the white noise boundary 

condition captures the temperature fluctuation near the propellant surface, it does not 

exhibit the same fluctuation in the chamber interior that is present in the PBMOD and 
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M24 cases.  The differences between each of these cases show that propellant 

morphology has a strong influence on the chamber flow dynamics of the motor, which 

further points out the flaws in using white noise as a surrogate model for a heterogeneous 

propellant.   

 The plots in Figure 14 show the temperature contours for a slice taken at z = 0 m 

for each of the four cases tested with boundary condition inputs.  These results are similar 

to what was found for Figures 10-13 where P82 shows very little temperature fluctuation 

and PBMOD shows the most variation in temperature.  The surface of the propellant 

exhibits the biggest temperature changes, while the interior of the chamber has 

temperatures closer to the average value.  The white noise and the P82 cases show very 

little change in the interior temperature, while M24 and PBMOD has a noticeable 

fluctuation in interior chamber temperature.  This is further proof that the white noise 

model cannot be used as a reliable predictor of the chamber flow dynamics with the 

presence of a heterogeneous propellant.   
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4.3  Figures and Tables 

 

 

 

 
Figure 8: Time history of the head end pressure for the 15lb. BATES motor. 

 

 

 

 

 

 

 
Table 2: Average head end pressure. Time: 0.5s - 1.5s. 

Case Average Pressure (MPa) 

No Fluctuations 5.6822 

White Noise 5.6878 

P82 5.6824 

PBMOD 5.6931 

M24 5.6801 
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             (a)                 (b)   

 
                                          (c)                (d) 

Figure 9: FFT plots at 0.5s – 1.5s for (a) White Noise 10%  (b) M24  (c) P82  (d) PBMOD. 

 

 

 

 

Table 3: Computed and theoretical frequencies of the first three longitudinal modes for all 5 cases 

studied for the Bates 15lb. motor. 

Longitudinal Mode 1 2 3 

 Hz Pa psi Hz Pa Psi Hz Pa Psi 

Theoretical 1280 --- --- 2560 --- --- 3840 --- --- 

White Noise 1370 2.32 0.000337 2770 2.12 0.000308 4270 1.51 0.000219 

P82 1370 8.83 0.00128 2670 2.65 0.00038 4100 1.57 0.00022 

PBMOD 1320 19.30 0.00280 2730 8.41 0.00122 4160 4.28 0.00062 

M24 1330 15.44 0.00223 2740 5.91 0.00086 4200 3.04 0.00044 
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Figure 10: Temperature contours at x = 0.2 m for BATES 15 lb. motor with injection conditions 

defined by P82.  Time: 0.5s, 1.0s, 1.5s (top to bottom). 
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Figure 11: Temperature contours at x = 0.2 m for BATES 15 lb. motor with injection conditions 

defined by PBMOD. Time: 0.5s, 1.0s, 1.5s (ltop to bottom). 
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Figure 12: Temperature contours at x = 0.2 m for BATES 15 lb. motor with injection conditions 

defined by M24. Time: 0.5s, 1.0s, 1.5s (top to bottom). 
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Figure 13: Temperature contours at x = 0.2 m for BATES 15 lb. motor with injection conditions 

defined by White Noise 10%. Time: 0.5s, 1.0s, 1.5s (top to bottom). 
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                           (a) P82                                             (b) PBMOD 

  
                                (c) M24                                      (d) White noise 10% 

 

Figure 14: Temperature contours at z = 0m at t = 1.0s for BATES 15 lb. motor. 
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5  Bates 70 lb. Motor Results 

 

5.1 Acoustics 

 The larger 70 lb. BATES motor was also simulated to ensure that the results 

gained from the simulation of the 15 lb. motor was replicated on a larger scale.  The 

computational cost of the larger grid allowed for only the white noise and the PBMOD 

cases to be run.  Figure 15 shows the head end pressure history as a function of time from 

0.5 seconds to 1.5 seconds for the case with PBMOD propellant.  The average headend 

pressure is 6.9871 MPa. 

 An examination of the FFT’s presented by Figure 16 show some similarities to 

the results that were found for the BATES 15 lb motor.  One difference is that the FFT of 

the case using the white noise propellant shows little differentiation in amplitude 

throughout the entire range of frequency.  This occurs because of the sampling rate used 

to record the pressure at the head-end of the motor.  This same effect was observed with 

the 15 lb. motor, but was remedied by increasing the sampling rate from every 0.1ms to 

0.01ms.  Computational cost of the running the larger motor has prohibited doing this for 

the 70 lb. motor.  Despite the lack of clearly defined acoustic modes, this plot is still 

useful in examining the amplitude characteristics for the white noise FFT.   

 At larger frequencies, the longitudinal modes of the PBMOD case are clearly 

visible due to a large increase in amplitude at these frequencies.  The theoretical values 

and the calculated values from the white noise and PBMOD simulations may be seen in 

Table 4.  It can also be seen that the amplitude of these peaks decreases with increasing 

mode number.  In comparison, and matching what was seen in the BATES 15 lb results, 

the white noise case has relatively constant amplitude that does not change as the mode 

number increases.  The amplitudes of the first, second, and third modes in the white noise 

case are much smaller than that of the PBMOD case.  The amplitude of the first mode of 

the PBMOD case is about 16 times larger than the amplitude of the first mode of the 

white noise case.  This difference in amplitude begins to decrease when moving to higher 

modes; however the amplitude of the second mode for the PBMOD case is still about 6 

times higher than the amplitude of the white noise case.  These differences are even more 

pronounced than what was seen in the BATES 15 lb. runs where the differences between 
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the PBMOD and the white noise amplitudes were only about 160% for the first mode and 

110% for the second mode. 

 The results from the BATES 70 lb. motor are encouraging in that they are similar 

to what was found in the 15 lb. motor.  This shows that the acoustic modes found in the 

FFT plots from the 15 lb. motor at the acoustic modes are not just a product of the 

computational grid for the motor.  Similar results showing the difference between white 

noise and actual propellant models are gained by simulating the two different sizes of 

BATES motors.  This suggests that other types of motors will be similarly affected by the 

choice of propellant model.   

 

5.2 Chamber Flow Dynamics 

 As what was done for the BATES 15 lb. motor, the temperature contour plots of 

the BATES 70 lb. motor in Figure 17 and Figure 18 show the differences between the 

white noise and PBMOD simulations.  The white noise plots show temperature 

fluctuation at the edges of the motor chamber but a constant temperature within the 

chamber.  The PBMOD defined propellant creates temperature fluctuation around the 

edge of the chamber, but it also has varying temperature within the chamber.  For both 

cases, the most extreme temperature differences are found near the burning surface at the 

chamber edge. 

 The plots in Figure 19 show the temperature contour through the entire chamber 

of the motor.  Once again, although the white noise case shows fluctuation near the edge 

of the chamber, it fails to capture the temperature fluctuation that is seen on the interior 

of the chamber.  The motor that used the bimodal propellant model shows that there is the 

most fluctuation near the boundaries of the motor, and it also shows fluctuation within 

the chamber itself as was seen in the Bates 15 lb. motor. 
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5.3 Figures and Tables 

 

 

 
Figure 15: Time history of the head end pressure for the 70lb. BATES motor with PBMOD and 

white noise propellant. 

 

 

 

 
    (a)                    (b) 

Figure 16: FFT plots for head end pressure of the Bates 70lb. motor. (a) White noise  (b) PBMOD 
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Table 4: Computed and theoretical frequencies of the first three longitudinal modes for the Bates 

70lb. motor. 

Longitudinal Mode 1 2 3 

 Hz Pa Psi Hz Pa psi Hz Pa Psi 

Theoretical 815 --- --- 1629 --- --- 2444 --- --- 

White Noise 878 4.82 6.99E-4 1751 3.12 4.53E-4 2777 3.13 4.54E-4 

PBMOD 866 78.30 0.0114 1755 20.23 0.00293 2668 11.95 0.00173 

 

 

 

 

 

 

 
Figure 17: Temperature contours at x = -0.5 m for BATES 70 lb. motor with injection conditions 

defined by White Noise 10%. Time: 0.5s, 1.0s, 1.5s (left to right, top to bottom). 
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Figure 18: Temperature contours at x = -0.5 m for BATES 70 lb. motor with injection conditions 

defined by PBMOD. Time: 0.5s, 1.0s, 1.5s (left to right, top to bottom). 
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Figure 19: Temperature contours at z = 0 m at t = 1.5s for BATES 70 lb. motor. Top: White Noise 

Bottom: PBMOD. 
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6  Future Work 

 

 A portion of this study that could use future investigation is revealed by an 

examination of the FFT plots shown in Figure 9.  There are unexpectedly high amplitudes 

in the low frequency range.  For the propellant model simulations, the acoustic modes are 

clearly evident; however, the amplitude of these modes is minimal when compared to the 

amplitude shown near 0 Hz.  This is a point of concern as such high amplitude low 

frequency content is unexpected and thought to be a result of calculation method.  One 

theory is that high amplitudes at these low frequencies are a consequence of the random 

walk process that is used to predict the propellant covariance values past what was 

produced by Rocfire.  The Rocfire simulations take a large amount of computational 

time, so initial results were gathered, and then forecasting was used to predict up to the 

amount of time needed for the burning simulation.  The random walk prediction method 

could produce mean values for velocity and temperature that could change from the mean 

gathered from the actual simulation values.  This may or may not be a significant factor 

to the problems that were encountered in the initial simulations, but it seems plausible 

enough to warrant being fixed.   

 The initial Rocfire results contained too little data to be able to compare with 

forecasting models for accuracy, so one solution to this problem is to run Rocfire to the 

same amount of time for which the motor simulation will run, so that an exact solution 

can be created.  This exact solution can then be used in place of forecasting to determine 

the injection boundary conditions.  It can also be used as a guide for future attempts to 

create an accurate forecasting model if forecasting is found to be the reason for the large 

amplitudes at small frequencies.  

 Despite the issues with the low frequency amplitudes, the results from the higher 

frequency portion of the FFT give a basis to the fact that modeling propellant 

morphology to create boundary injection conditions can have a significant effect on the 

chamber flow and acoustic nodes.  The preliminary results from this study encourage the 

further study of the modeling of the propellants for boundary conditions in order to 

enhance the accuracy of solid rocket simulations.     
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7  Conclusions 

 

 The velocity-temperature temporal fluctuations above a propellant have been 

previously described and calculated in an entirely two-dimensional case [19].  It was 

determined in this study that these fluctuations have an effect on chamber flow, 

specifically head end pressure.  However, these tests have never been run in three 

dimensions; therefore, it was necessary to test the conclusions of the previous work using 

a three-dimensional simulation of an actual test rocket.  This study has shown the effects 

of propellant modeling on the simulation of the burning of the BATES motor using three 

different propellant morphologies. 

 The results of this numerical simulation revealed the dependence of the 

amplitudes of the longitudinal acoustic modes and the internal chamber flow dynamics on 

the propellant morphology.  FFT analysis of the head end pressure time history clearly 

exhibited the acoustic modes while also showing that changing the propellant could 

increase or decrease the amplitude of these modes.  The amplitudes for the acoustic 

modes when using the PBMOD propellant was consistently larger than that of the M24 or 

P82 propellants.  Furthermore, the amplitudes of the acoustic modes from the propellant 

defined boundary conditions were characteristically different than that of the white noise 

defined boundary case.  The white noise case showed much lower amplitude at the first 

acoustic mode than was seen in the propellant cases. Also, the propellant cases showed 

greater decrease in amplitude as the frequency of the mode increased compared to what 

was seen with white noise.  The chamber temperatures were also plotted as contours to 

provide further comparison between the propellants and the white noise.  All of the cases 

showed the greatest fluctuation near the edges of the motor; however, the propellants also 

showed fluctuation within the interior of the chamber while this fluctuation was not 

evident in the white noise case.  These comparisons have shown that using white noise as 

a model propellant is a poor approximation, especially when actual propellant 

morphologies are available for use. 

 This study has opened up a few areas where future investigation could be 

considered.  The propellant morphology cases demonstrated high amplitudes in the head 
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end pressure FFTs near the small frequency range that is thought, at least in part, to be a 

result of artificial creation through the calculation of forecasted values.  Either a new 

forecasting method or a longer simulation of the burning propellant is necessary to test 

this hypothesis, so that a more accurate solution is found for the low frequency 

amplitudes.  Also, the BATES motor represents a relatively small test motor, so it would 

be interesting to see how propellant morphology would affect larger rockets that have 

lower frequency acoustic modes.  The extension of this study to simulations of larger 

motors will only improve the understanding of the effects of propellant morphology and 

help reveal its consequences on actual rockets and manned space flight.  Further study in 

this area could provide ways to improve and optimize efficiency and rocket performance. 
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