
Secure Offloading of Intrusion Detection
Systems from VMs with Intel SGX

著者 Nakano Tomoharu, Kourai Kenichi
journal or
publication title

2021 IEEE 14th International Conference on
Cloud Computing (CLOUD)

page range 297-303
year 2021-11-13
URL http://hdl.handle.net/10228/00008651

doi: https://doi.org/10.1109/CLOUD53861.2021.00043

Secure Offloading of Intrusion Detection Systems from VMs with Intel SGX

Tomoharu Nakano
Kyushu Institute of Technology
naka tomo@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@csn.kyutech.ac.jp

Abstract—Virtual machines (VMs) inside clouds need to be
monitored using intrusion detection systems (IDS). Since host-
based IDS can be easily disabled by intruders, IDS offloading
with VM introspection (VMI) is used to securely run IDS out-
side a target VM. However, offloaded IDS can be still attacked
because it runs on top of a vulnerable operating system (OS).
Various systems have been proposed to protect offloaded IDS,
but no systems provide an appropriate execution environment
to IDS. This paper proposes SGmonitor for enabling the secure
execution of IDS offloaded from VMs inside clouds using
Intel SGX. SGmonitor executes IDS in SGX enclaves and
preserves confidentiality and integrity. It provides secure VMI
for memory and storage by using encryption and integrity
checking. To make the development of offloaded IDS easier,
it provides the in-kernel API to in-enclave IDS and enables
transparent access to OS data in VMs. We have implemented
SGmonitor in Xen with SGX support and showed that the
overhead of in-enclave IDS was 31% in compensation for much
stronger security.

1. Introduction

Recently, clouds are becoming targets of attackers be-
cause they consolidate too many virtual machines (VMs)
into a small number of network locations. Unfortunately,
some of the VMs have vulnerabilities and can be penetrated
by attacks. In preparation for attacks, intrusion detection
systems (IDS) are of more significance to prevent sensitive
information inside VMs from being stolen. Host-based IDS
runs inside target VMs, but it can be easily disabled by
intruders. To securely execute IDS outside target VMs,
IDS offloading with VM introspection (VMI) [1] has been
proposed. Using this technique, intruders in target VMs
cannot disable offloaded IDS.

However, even if IDS offloading is performed, offloaded
IDS still suffers from attacks. IDS is usually offloaded to
privileged VMs and runs on top of the full-fledged operating
system (OS), which often has many vulnerabilities. If it is
attacked by exploiting such vulnerabilities, it can be disabled
as before IDS offloading. In addition, sensitive information
that IDS obtains from VMs can be eavesdropped on. So far,
various systems have been proposed to protect offloaded IDS
[2]–[5], but no systems provide an appropriate execution
environment to IDS.

In this paper, we propose SGmonitor for securely execut-
ing IDS offloaded from VMs inside clouds using Intel SGX.
SGX is a processor feature for securely executing programs
in enclaves. The execution of in-enclave IDS can prevent
tampering of IDS and information leakage from IDS even
inside clouds. Since only small enclaves are newly added to
the trusted computing base (TCB) for IDS, SGmonitor can
keep the size of the TCB small. Enclaves run as part of an
SGX application and therefore the impact on the security
and performance of the entire virtualized system is limited.

For a rich but minimum execution environment, SG-
monitor provides the in-kernel API to in-enclave IDS. It
transforms IDS code and transparently obtains OS data from
the memory of target VMs. It protects obtained memory data
using encryption and integrity checking. Also, SGmonitor
securely obtains file data from encrypted virtual disks via
the in-enclave filesystem. We have implemented SGmonitor
using Xen supporting SGX [6]. Our experiments showed
that the overhead of our in-enclave IDS was 31%.

The organization of this paper is as follows. Section 2
describes IDS offloading in clouds and the issues. Section 3
proposes SGmonitor for secure IDS offloading with Intel
SGX. Section 4 explains the implementation of SGmonitor
and Section 5 shows our experimental results. Section 6
describes related work and Section 7 concludes this paper.

2. IDS Offloading in Clouds

IDS offloading with VMI [1] securely runs IDS outside a
target VM and monitors the system running inside the VM.
Offloaded IDS analyzes OS data in the memory of the VM
and obtains the system state using memory introspection.
Also, it analyzes the filesystems in the virtual disks of
the VM and examines files and directories using storage
introspection. Thus, it can securely monitor the target system
and detect attacks as if it ran inside a VM. For example, it
can find malware by obtaining the list of running processes
and searching for specific data in files.

However, even if IDS is offloaded outside target VMs,
it can be still attacked. Offloaded IDS usually runs in
privileged VMs, e.g., the management VM called Dom0 in
Xen and the root partition in Hyper-V. Otherwise, it runs as
host processes without VMs as in KVM. In any case, it runs
on top of the full-fledged OS. Since such an OS has many
vulnerabilities, it is difficult to protect offloaded IDS from

attackers. If attackers can access the memory of offloaded
IDS, they can easily steal sensitive information that IDS
obtains from the target VMs. Once they disable offloaded
IDS, they can intrude into the target VMs without detection.

To tackle this issue, many systems have been proposed
for the secure execution of offloaded IDS [2]–[5]. For
example, IDS can be offloaded to more secure VMs [2].
Even system administrators cannot access such secure VMs.
However, such VMs can be still vulnerable because they
provide a rich execution environment including the full-
fledged OS. This largely increases the size of the TCB for
IDS. Without using secure VMs, IDS can be embedded into
the hypervisor [3], which has a much smaller attack surface.
One downside is to increase the size of the hypervisor and
make the TCB for the entire virtualized system larger. This
increases the risk at which the hypervisor is compromised
and the entire system is affected. In addition, it is difficult to
execute sophisticated IDS because the hypervisor provides
only a poor execution environment to IDS.

IDS can be offloaded to the outside of the entire virtu-
alized system including the hypervisor using nested virtual-
ization [4]. Even if the entire virtualized system is attacked,
IDS can continue to monitor target VMs. However, nested
virtualization degrades the performance of the virtualized
system largely. IDS can be run in remote hosts outside
clouds [5]. This approach can protect IDS from intruders
in clouds more easily. Since it cannot execute IDS inside
clouds, system administrators have to prepare hosts for
running offloaded IDS outside clouds. Also, it is costly to
transfer monitored data to remote IDS.

As such, any previous systems do not provide an appro-
priate execution environment for offloaded IDS. The secure
execution of offloaded IDS needs a system that satisfies
the following four requirements. (1) Offloaded IDS should
run inside the same cloud as target VMs to reduce the
management cost and communication overhead. (2) The
increase in the size of the TCB for offloaded IDS should be
minimized to keep the attack surface as small as possible.
(3) IDS offloading should not have a large impact on the
security or performance of the entire virtualized system. (4)
A rich but minimum execution environment is necessary to
run sophisticated IDS, while the increase in the size of the
TCB should be suppressed.

3. SGmonitor

This paper proposes SGmonitor for securely monitoring
VMs by protecting offloaded IDS with Intel SGX inside
clouds.

3.1. Threat Model

We assume that processors are equipped with flawless
SGX. SGX is often used under the assumption that any soft-
ware is untrusted, but we relax this too strong assumption to
achieve a new application of SGX. In this paper, we assume
that only the hypervisor inside clouds is trusted. The hy-
pervisor provides the basis for the memory management of

SGX application

hypervisor

library runtime

management VM target VM

user’s
host

heart

beat VMI

virtual

disk

enclave

OS

IDS

OS

Figure 1: The system architecture of SGmonitor. Gray com-
ponents are trusted.

VMs, on which offloaded IDS relies to monitor VMs. Such
a relaxed assumption has been also used in previous work
using SGX [7]. The trustworthiness of the hypervisor can
be confirmed by various techniques, e.g., remote attestation
with TPM and tamper detection with hardware features [8]–
[10].

In contrast, we do not trust the other software stack.
Adversaries can compromise the entire management VM
including its full-fledged OS. We assume that adversaries
attempt to tamper with IDS offloaded to the management
VM and obtain sensitive information of target VMs via
offloaded IDS.

3.2. Secure IDS Offloading with SGX

SGmonitor securely offloads IDS using SGX from target
VMs in clouds. SGX is a processor feature that enables the
secure execution of programs in an untrusted environment
using protection domains called enclaves. Fig. 1 illustrates
the system architecture of SGmonitor. Offloaded IDS is
created as SGX applications and runs in the management
VM on top of the hypervisor. An SGX application consists
of trusted enclaves and an untrusted SGmonitor runtime.
Each enclave runs IDS and the SGmonitor library. Only
this small library is added to the TCB for offloaded IDS.
Since an SGX application is just one process, the execution
of IDS does not affect the security and performance of the
entire virtualized system.

SGmonitor can securely execute offloaded IDS in en-
claves even inside clouds. First, attackers cannot eavesdrop
on sensitive information obtained from target VMs by IDS
thanks to the memory encryption of enclaves. Only IDS
in enclaves can access the memory and disk data of target
VMs. Second, attackers cannot tamper with in-enclave IDS
because SGX always checks the integrity of enclave mem-
ory. They cannot disable monitoring functions of IDS by
modifying IDS at runtime. Third, attackers cannot launch
malicious IDS in enclaves to illegally obtain sensitive infor-
mation from target VMs. At the launch time of an enclave,
SGX checks the digital signature of the IDS. In addition,
SGmonitor checks that the launched IDS is legitimate using
remote attestation.

Unfortunately, SGX cannot prevent attackers from stop-
ping in-enclave IDS with SGX applications. If attackers can
obtain administrative privileges or compromise the OS, they
can easily stop SGX applications. To detect this type of
attack, SGmonitor confirms the correct execution of IDS by
securely sending heartbeats from the outside of clouds to
the SGmonitor library. If the library does not respond to a
heartbeat, the remote user can notice that offloaded IDS is
stopped by an attacker. Since the heartbeats are generated
using a secret key, attackers cannot respond to the heartbeats
correctly. For secure heartbeats, SGmonitor requires a user’s
host outside a cloud, but its role is minimum unlike the
previous work [5].

3.3. Secure VMI with SGX

SGmonitor enables in-enclave IDS to securely monitor
target VMs using VMI. This is challenging because the
functionality of enclaves is strictly restricted. For memory
introspection, IDS first invokes the SGmonitor library in
an enclave and communicates with the trusted hypervisor
via the untrusted SGmonitor runtime. Using the runtime
is necessary because in-enclave IDS cannot directly invoke
the hypervisor. Then, IDS securely obtains OS data in the
memory of a target VM and monitors the system state in
the VM. SGmonitor encrypts all the data passed between
an enclave and the hypervisor and checks the integrity to
prevent the untrusted runtime from eavesdropping on or
tampering with the obtained OS data.

Since it is troublesome to analyze OS data using low-
level memory introspection, SGmonitor provides the in-
kernel API to make the development of sophisticated IDS
easier. The in-kernel API enables IDS to be developed like
OS kernel modules loaded into target VMs. IDS developers
can reuse OS code as much as possible. To bridge the
gap between the in-kernel API and low-level memory intro-
spection, SGmonitor transforms IDS code at compile time
so that memory introspection is transparently performed in
enclaves to target VMs. As a result, developers can develop
in-enclave IDS without considering that IDS is offloaded
and is executed in enclaves.

For storage introspection, IDS uses the in-enclave
filesystem provided by the SGmonitor library to securely
monitor files in the virtual disks of a target VM. It is not
secure that the library invokes the runtime at a higher-
level interface and uses the filesystem of an untrusted OS.
Since the in-enclave filesystem cannot directly access virtual
disks, it invokes the SGmonitor runtime at the block-level
interface. Then, the runtime reads the specified blocks from
virtual disks. To prevent the untrusted runtime from eaves-
dropping on disk data, SGmonitor uses encrypted virtual
disks to run target VMs. The library obtains encrypted disk
data via the runtime and securely decrypts it inside an
enclave. Using encrypted disks is mandatory to protect VMs
inside clouds even without IDS offloading.

SGX application

library runtime

target VM

enclave

1. OCALL

2. hypercall 3. read

hypervisor

OS

IDS

4. encrypted data & hash value

Figure 2: Memory introspection in SGmonitor.

4. Implementation

We have implemented SGmonitor using Xen-SGX
4.7 [6]. SGX requires a secure memory area for enclaves,
called the enclave page cache (EPC). EPC is reserved by
BIOS and the size is limited. Xen-SGX adds the manage-
ment function of EPC to the hypervisor and enables VMs to
use virtual SGX. SGmonitor creates a privileged VM called
an IDS VM for running offloaded IDS with enclaves and
allocates EPC to it. Unlike traditional IDS offloading, IDS
cannot be offloaded to Dom0 in Xen because Xen-SGX
does not support SGX virtualization for para-virtualized
VMs. The IDS VM becomes one of the management VMs.
Therefore, we assume that the entire software stack of the
IDS VM is untrusted including its OS.

We used the Intel SGX SDK 1.9 to develop SGX ap-
plications containing in-enclave IDS. An SGX application
executes in-enclave IDS by using the enclave call (ECALL)
mechanism in SGX. ECALL enables untrusted code outside
an enclave to securely invoke trusted code in the enclave.

4.1. Secure Memory Introspection

To obtain OS data in the memory of a target VM,
IDS first invokes the SGmonitor library in an enclave and
the library then invokes the SGmonitor runtime outside the
enclave, as illustrated in Fig. 2. This invocation is done using
the outside call (OCALL) mechanism in SGX. OCALL en-
ables trusted code inside an enclave to invoke untrusted code
outside the enclave. In this OCALL, the library passes the
virtual address of OS data to the runtime. Then, the runtime
invokes the hypervisor using a newly added hypercall for
obtaining memory data of a VM.

To prevent the requested virtual address from being
eavesdropped on or tampered with by the untrusted SG-
monitor runtime, SGmonitor uses encryption and integrity
checking. Upon invoking the runtime, the library generates
a sequence number and calculates the hash value of the
requested virtual address and the sequence number. Then, it
encrypts the virtual address and the sequence number. The
hypervisor decrypts the received request, calculates the hash
value from the virtual address and the sequence number, and
compares the calculated value with the received hash value.
If the two values do not match, the hypervisor returns an
error.

If the integrity of the request is kept, the hypervisor
walks the page tables of the guest OS in the VM. Using
the page tables, it translates the passed guest virtual address
into a guest physical address. Then, it translates the obtained
address into a host physical address using the extended page
tables (EPT) for the VM. Finally, it obtains the memory data
of the page including the requested OS data.

Then, the hypervisor calculates the hash value of the
obtained data and the received sequence number. It encrypts
the data and returns that with the hash value to the SGmoni-
tor library via the runtime. The library decrypts the received
response, calculates the hash value from the memory data
and the sequence number, and compares the value with the
received hash value. The sequence number is required to
prevent the replay attack, in which the runtime illegally
returns legitimate OS data captured before.

We have ported AES functions with AES-NI of wolf-
SSL to enclaves and the hypervisor. The SGmonitor library
avoids executing the CPUID instruction for checking the
availability of the AES-NI feature in CPUs. The execution
of that instruction is not allowed inside enclaves. To use
AES-NI in the hypervisor, SGmonitor saves and restores
the XMM registers before and after invoking AES func-
tions, respectively. This is because it was not assumed that
the hypervisor uses those registers. Also, we have ported
the SHA-256 function of OpenSSL to the hypervisor. The
SGmonitor library uses the SHA-256 function provided by
the SGX SDK in enclaves.

The SGmonitor library caches the obtained memory data
in enclave memory. If IDS requires the same OS data or the
other data in the cached pages, the library does not need
to invoke the hypervisor. However, it is well known that
the performance of enclaves largely degrades due to the
overhead of memory encryption and decryption when used
enclave memory exceeds the size of EPC [11]. Therefore,
the library periodically removes older data in the cache and
keeps the cache size appropriate. For example, it can flush
the cache when IDS completes checking a set of malware.

4.2. Secure Storage Introspection

To enable in-enclave IDS to access files in target virtual
disks, we have ported the virtual filesystem (VFS) and
the ext4 filesystem in Xvisor 0.2.10 [12] as an in-enclave
filesystem. Xvisor is a lightweight hypervisor for embedded
systems. The ported filesystem provides minimum functions
for monitoring virtual disks. Since Xvisor does not support
several important ext4 features, e.g., extents usually used in
Linux, we have added the necessary support. To delegate
block-level accesses to the SGmonitor runtime, the SGmon-
itor library also provides a thin block layer. That layer issues
OCALL with a disk offset and a data size.

The SGmonitor runtime performs actual access to en-
crypted virtual disks, as illustrated in Fig. 3. In advance,
SGmonitor shares virtual disks located in Dom0 or network
storage with the IDS VM using NFS. Then, it mounts
partitions in the virtual disks and creates device maps. The
runtime reads the specified blocks from the device maps and

SGX application

filesystem runtime

enclave
encrypted

virtual disk
1. OCALL

IDS

block layerblock dataOS

2. read

Figure 3: Storage introspection in SGmonitor.

#include <linux/sched.h>

void detect_process(void)
{

struct task_struct *p;

for_each_process(p) {
if (strcmp(p->comm, "kworkerds") == 0)

printk("Mining tools installed\n");
}

}

Figure 4: A simple code example for detecting malicious
processes by name.

returns the data to the library in an enclave. Since all the
partitions in virtual disks are encrypted, the runtime cannot
eavesdrop on sensitive information. The SGmonitor library
decrypts the received data and passes it to the filesystem.

4.3. Execution Environment for IDS

To enable in-enclave IDS to be developed like Linux
kernel modules, SGmonitor provides an execution environ-
ment for using the in-kernel API. Fig. 4 shows a simple
code example for traversing the process list in a target VM
and detecting malicious processes by name. Developers can
use the header files of the Linux kernel such as sched.h
to write IDS code. They can use the kernel data structure
such as task_struct, which contains the process name
in the comm array. They can also use kernel macros such as
for_each_process for examining all the processes and
global kernel variables such as init_task, which is used
in the for_each_process macro. In addition, they can
use helper functions such as strcmp and printk, which
are provided in the Linux kernel.

Using the LLView framework [13], SGmonitor compiles
IDS code written with the in-kernel API and transforms the
emitted LLVM intermediate representation to transparently
obtain OS data from a target VM. Specifically, it inserts the
invocation of the function for accessing the memory of a tar-
get VM with OCALL just before each load instruction. The
inserted function invokes the SGmonitor runtime outside the
enclave to issue the hypercall for obtaining the specified
memory data, as described in Section 4.1. It does nothing
if the target of the load instruction is a local variable.
Then, SGmonitor modifies that load instruction to read the
obtained data. In addition, it replaces kernel variables with

the corresponding virtual addresses used in the guest OS.
The mapping from kernel symbols to their virtual addresses
is obtained from the System.map file.

To monitor files and directories in virtual disks, SGmon-
itor provides the user-space API, which is a subset of the one
provided by the C standard library. For example, developers
can use functions such as read, stat, and readdir. Note that
SGmonitor does not provide functions for modifying files
and directories because VMI is used only for obtaining
information.

4.4. Secure Heartbeats

To send heartbeats securely, a user’s host generates a
random number as a challenge and sends it to the SGmonitor
runtime. Then, the runtime invokes the SGmonitor library
in an enclave using ECALL. The library calculates the hash
value of the received challenge and the secret key shared
with the user’s host. As a response, it returns the hash
value to the user’s host via the runtime. The user’s host also
calculates the hash value of the generated challenge and the
shared secret key. If the hash value matches the received
response, it is guaranteed that IDS is running normally.
Since the hash value includes a secret key, only correct IDS
can return correct responses.

4.5. Secure Key Sharing

SGmonitor securely shares a symmetric key for encrypt-
ing memory data between the hypervisor and an enclave.
First, the SGmonitor library in an enclave generates an
encryption key and encrypts it using the public key of the
hypervisor. The encrypted key is securely passed to the hy-
pervisor using OCALL and a hypercall. Then, it is decrypted
using the corresponding private key in the hypervisor. Since
only the hypervisor can access its private key, the SGmonitor
runtime cannot decrypt the shared key.

To prevent an illegitimate enclave from registering an
encryption key to the hypervisor, SGmonitor relies on a
user’s host outside a cloud. When an enclave is launched, it
is remotely attested to by the trusted attestation server at a
user’s host. The server can accept only legitimate enclaves
running pre-registered IDS and establish a secure commu-
nication channel. The SGmonitor library securely passes an
encrypted key to the server and obtains its digital signature
using the server’s private key. It passes the encrypted key
with the signature to the hypervisor. Then, the hypervisor
verifies the signature using the server’s public key.

SGmonitor uses two more keys for disk encryption and
secure heartbeats. For disk encryption, a user’s host securely
sends a key for encrypting a virtual disk using the secure
communication channel established with the SGmonitor li-
brary by remote attestation. Then, the library registers the
key to the hypervisor. For secure heartbeats, a user’s host
and the library securely share a secret key similarly.

TABLE 1: The detection of malware using memory intro-
spection.

malware process module TCP UDP mmap kernel packet
name name port port file symbol socket

kworkerds ✓ ✓
adore ✓ ✓
sebek ✓
slapper ✓
bindshell ✓
tcpdump ✓
scalper ✓
suckit ✓
sniffer ✓

5. Experiments

We conducted several experiments to show the effective-
ness of IDS offloaded with SGmonitor. For comparison, we
used three execution environments in addition to SGmonitor
(SGmon). To identify the encryption overhead, we ran IDS
using an unencrypted virtual disk without encrypting mem-
ory data or checking the integrity (SGmon/np). To examine
the overhead of SGX, we also ran IDS without an enclave
(IDS-VM). In this environment, IDS directly issued the
hypercall for obtaining memory data and accessed a virtual
disk without OCALL. To examine the impact by using an
IDS VM, we ran IDS in Dom0 and used a local virtual disk
without NFS (Traditional).

We used a PC with an Intel Xeon E3-1225 v5 processor,
8 GB of memory, and an HDD of 1 TB. We ran Xen-SGX
4.7 and created an IDS VM and a target VM. For each
VM, we assigned two virtual CPUs, 2 GB of memory, and
a virtual disk of 50 GB and ran Linux 4.4. For the IDS VM,
we allocated 93 MB of EPC, which was the maximum size.
We measured the execution time of IDS for each execution
environment 10 times. To flush the cache at the OS level,
we rebooted the PC every time we ran IDS.

5.1. Developed In-enclave IDS

We have developed in-enclave IDS that has similar
detection capabilities to chkrootkit [14]. This IDS uses the
in-kernel API although the original chkrootkit uses the user-
space API through a shell script and external commands.
As shown in Table 1, our IDS examines 11 features using
memory introspection to detect 9 types of malware. Specif-
ically, it checks process names, module names, TCP and
UDP port numbers, the names of memory-mapped files,
kernel symbols, and processes using packet sockets. Using
storage introspection, the IDS examines the existence of 240
malicious files and searches for specific strings included in 9
files to detect 57 types of malware. In addition, it examines
specific strings included in 55 system commands. For this
string search, we have implemented a function equivalent to
strings command and ported the regular expression func-
tions from the musl library [15].

The code size of this IDS is only 396 KB. In the SG-
monitor library (247 KB), the size of the regular expression
functions is the largest (106 KB). The size of the filesystem

Traditional
IDS-VM
SGmon/np
SGmon

th
ro

ug
hp

ut
 (M

B/
s)

0

200

400

600

800

(a) Memory

Traditional
IDS-VM
SGmon/np
SGmon

th
ro

ug
hp

ut
 (G

B/
s)

0

1

2

3

4

(b) Storage

Figure 5: The performance of VMI.

is relatively small (53 KB) and only 11% of that of the ext4
kernel module in Linux. Note that our filesystem includes
the VFS layer as well. This code size is enough small even
for small EPC.

5.2. Effectiveness of In-enclave IDS

To confirm that our in-enclave IDS could detect mal-
ware, we first emulated various types of malware in the
target VM. For example, we established a network connec-
tion to port 2001 used by the Scalper worm. We created a
file named /etc/xig created by Rocke Monero Miner in
the virtual disk of the VM. As a result, the IDS could detect
all types of malware.

Next, we used a virtual disk called Metasploitable 2 [16]
as a target of our IDS. This virtual disk includes various
actual vulnerabilities and backdoors. Our IDS could detect
a backdoor by checking the configuration file of inetd, for
example. Since SGmonitor does not currently support the
old 32-bit Linux kernel running in Metasploitable 2, our
IDS could not analyze its OS data. It is not so difficult to
support it because SGmonitor enables developers to reuse
the source code of Linux as much as possible.

5.3. Performance of VMI

To examine the performance of memory introspection,
we measured the throughput of obtaining OS data from the
memory of the target VM. We created a benchmark program
that read 50 MB of memory data in total. In this experiment,
the SGmonitor library did not cache obtained memory data
to always read the VM’s memory. As shown in Fig. 5(a),
the monitoring performance in the IDS VM was 43% higher
than that in Dom0. The difference between Dom0 and the
IDS VM is that Dom0 is para-virtualized but the IDS VM
is fully virtualized. This difference affected the execution
performance of the hypercalls for obtaining memory data.
Using an enclave, the performance degraded by 37% due
to the overhead of OCALL. The overhead of encryption
and integrity checking was larger and reached 73%. In
summary, SGmonitor degraded the performance of memory
introspection by 76%, compared with the traditional method.

storage-related
memory-related

ex
ec

ut
io

n
tim

e
(m

s)

0

200

400

600

800

Traditional IDS-VM SGmon/np SGmon

Figure 6: The execution time of the IDS.

To examine the performance of storage introspection, we
measured the throughput of reading a file in an encrypted
virtual disk. We created a benchmark program that read a
text file of 50 MB. As shown in Fig. 5(b), the monitoring
performance in the IDS VM was 12% lower than in Dom0.
This is because the benchmark in the IDS VM accessed the
virtual disk located in Dom0 using NFS. When the virtual
disk is located in network storage, the performance would
be almost the same. Using an enclave, the performance
degraded by 68% due to frequent OCALL at the block
level. The overhead of decryption itself was small and only
16%. In summary, SGmonitor degraded the performance of
storage introspection by 76%, compared with the traditional
method.

5.4. IDS Performance

We measured the execution time of our IDS. In this
experiment, the SGmonitor library cached all the obtained
memory data. For the other methods including the traditional
IDS offloading, the obtained memory data was also cached.
Fig. 6 shows the average execution time and the breakdown
for memory- and storage-related detection. Compared with
the traditional IDS offloading, the overhead of our in-enclave
IDS was 31% using SGmonitor. This overhead is much
smaller than those of simple memory and storage introspec-
tion. This is because the IDS not only obtains data from the
target VM but also inspects the obtained data.

For malware detection with memory introspection, the
SGmonitor library obtained 6.1 MB of memory data in total
from the target VM. This data was cached in EPC, but the
impact on EPC was small. Compared with the traditional
IDS offloading, this detection took 74% longer time in
SGmonitor. In contrast, the execution time was only 5%
longer in SGmonitor without data protection. This means
that the overhead of SGX and our introspection library was
small, but that of the encryption and integrity checking of
memory data was large. For malware detection with storage
introspection, the SGmonitor library obtained 15.6 MB of
file data in total from the target VM. Compared with the tra-
ditional IDS offloading, the detection time was 17% longer
in SGmonitor. Surprisingly, the overhead of decrypting disk
data was negligible because it took a much longer time to
perform pattern matching of the strings included in files.

6. Related Work
As described in Section 2, there are various systems

for the secure execution of offloaded IDS [2]–[5]. In this
section, we describe the other work on secure monitoring.

Several systems for securely running IDS with SGX
have been proposed although they cannot run offloaded host-
based IDS unlike SGmonitor. S-NFV [17] runs part of IDS
in enclaves. It moves the states of virtual network functions
in network function virtualization (NFV) and the state pro-
cessing code to an enclave. As an example, it secures the
per-flow state of the Snort IDS, which is network-based IDS.
It minimizes the amount of code running in an enclave, but
it is difficult to securely split an NFV application into one
running in a trusted enclave and the other running in an
untrusted outside world.

SEC-IDS [18] runs the entire Snort IDS in an enclave
with almost no modification. To enable running legacy IDS
in an enclave, it uses the Graphene-SGX library OS [19].
In addition, it uses DPDK to efficiently acquire network
packets in an enclave. As long as the state of Snort fits into
the size of EPC, SEC-IDS achieves near-native performance.
However, the size of the TCB is largely bloated by Snort,
necessary libraries, and Graphene-SGX. The lines of code
are more than one million only for Graphene-SGX.

Using the other hardware features, several systems have
been proposed to securely monitor the hypervisor or the OS.
They can be applied to the monitoring of VMs. Copilot [20]
and HyperCheck [9] send memory data to a remote host us-
ing a dedicated PCI add-in card and the system management
mode (SMM) of Intel processor, respectively. They need to
run IDS in remote hosts outside clouds. HyperGuard [8]
monitors the hypervisor using SMM inside a target host.
HyperSentry [10] enables an agent to securely run inside the
hypervisor using SMM. Flicker [21] runs IDS using AMD
SVM and Intel TXT securely. However, the entire system
has to be stopped during the execution of IDS for security.

7. Conclusion
This paper proposed SGmonitor for the secure execution

of offloaded IDS with Intel SGX. We have implemented
SGmonitor in Xen-SGX and showed that the performance
overhead of in-enclave IDS was 31%. For IDS executed
asynchronously and infrequently, this overhead could be
acceptable in exchange for much stronger security. One of
our future work is to provide an extended execution envi-
ronment such as user-space API to host-based IDS running
in enclaves. To avoid the increase of the TCB and support
existing userland IDS, we are planning to use SCONE [11]
as a library OS unlike SEC-IDS [18]. Also, SGmonitor
needs to support the integrity checking of disk data. Another
direction is to use SMM for securely obtaining the memory
data of VMs, instead of using the trusted hypervisor.

Acknowledgment
The research results have been achieved by the “Re-

silient Edge Cloud Designed Network (19304),” the Com-

missioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

[1] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191–206.

[2] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy, “Self-
service Cloud Computing,” in Proc. ACM Conf. Computer and Com-
munications Security, 2012, pp. 253–264.

[3] Y. Oyama, T. Giang, Y. Chubachi, T. Shinagawa, and K. Kato, “De-
tecting Malware Signatures in a Thin Hypervisor,” in Proc. Annual
ACM Symp. Applied Computing, 2012, pp. 1807–1814.

[4] S. Miyama and K. Kourai, “Secure IDS Offloading with Nested
Virtualization and Deep VM Introspection,” in Proc. European Symp.
Research in Computer Security, Part II, 2017, pp. 305–323.

[5] K. Kourai and K. Juda, “Secure Offloading of Legacy IDSes Using
Remote VM Introspection in Semi-trusted Clouds,” in Proc. IEEE
Int. Conf. Cloud Computing, 2016, pp. 43–50.

[6] K. Huang, “Introduction to Intel SGX and SGX Virtualization,” Xen
Project Developer and Design Summit, 2017.

[7] H. Shuang, W. Huang, P. Bettadpur, L. Zhao, I. Pustogarov, and
D. Lie, “Using Inputs and Context to Verify User Intentions in Internet
Services,” in Proc. ACM SIGOPS Asia-Pacific Workshop on Systems,
2019, pp. 76–83.

[8] J. Rutkowska and R. Wojtczuk, “Preventing and Detecting Xen Hy-
pervisor Subversions,” Black Hat USA, 2008.

[9] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: A Hardware-
assisted Integrity Monitor,” in Proc. Int. Symp. Recent Advances in
Intrusion Detection, 2010, pp. 158–177.

[10] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky,
“HyperSentry: Enabling Stealthy In-context Measurement of Hyper-
visor Integrity,” in Proc. ACM Conf. Computer and Communications
Security, 2010, pp. 38–49.

[11] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in Proc. USENIX Symp. Operating
Systems Design and Implementation, 2016, pp. 689–703.

[12] A. Patel, M. Daftedar, M. Shalan, and M. El-Kharashi, “Embedded
Hypervisor Xvisor: A Comparative Analysis,” in Proc. Euromicro Int.
Conf. Parallel, Distributed, and Network-Based Processing, 2015, pp.
682–691.

[13] Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai, “Detecting
System Failures with GPUs and LLVM,” in Proc. ACM SIGOPS Asia-
Pacific Workshop on Systems, 2019, pp. 47–53.

[14] N. Murilo and K. Steding-Jessen, “chkrootkit – Locally Checks for
Signs of a Rootkit,” http://chkrootkit.org/.

[15] R. Felker et al., “musl libc,” https://musl.libc.org/.
[16] Rapid7, “Metasploitable 2,” https://metasploit.help.rapid7.com/docs/

metasploitable-2.
[17] M. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV: Securing

NFV States by Using SGX,” in Proc. ACM Int. Workshop on Security
in Software Defined Networks & Network Function Virtualization,
2016, pp. 45–48.

[18] D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort Intrusion Detec-
tion System with Intel Software Guard Extension (Intel SGX),” in
arXiv:1802.00508, 2018.

[19] C. Tsai, D. Porter, and M. Vij, “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX,” in Proc. USENIX Annual
Technical Conf., 2017, pp. 645–658.

[20] N. Petroni, Jr., T. Fraser, J. Molina, and W. Arbaugh, “Copilot –
a Coprocessor-based Kernel Runtime Integrity Monitor,” in Proc.
USENIX Security Symp., 2004.

[21] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki, “Flicker:
An Execution Infrastructure for TCB Minimization,” in Proc. ACM
SIGOPS/EuroSys European Conf. Computer Systems, 2008, pp. 315–
328.

