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ABSTRACT 

This dissertation presents an alternative route to achieve ultralow thermal 

conductivity in a dense solid.  Thin films of disordered layered crystalline materials were 

deposited using Modulated Elemental Reactants (MER) method.  Cross-plane thermal 

conductivity was measured using Time-Domain Thermo Reflectance (TDTR) method; 

elastic properties were investigated using picosecond acoustics.  The results are applied 

to reducing the thermal conductivity in misfit layer materials and multilayers containing 

disordered layered crystalline materials. 

The cross-plane thermal conductivity of thin films of WSe2 is as small as 0.05 W 

m-1 K-1 at room temperature, 30 times smaller than the c-axis thermal conductivity of 

single-crystal WSe2 and a factor of 6 smaller than the predicted minimum thermal 

conductivity for this material.  The ultralow thermal conductivity is attributed to the 

anisotropic bonding of the layered WSe2 and orientational disorder in the stacking of 

well-crystallized WSe2 sheets along the direction perpendicular to the surface.  

Disordering of the layered structure by ion bombardment increases the thermal 

conductivity. 

I measured the room-temperature, cross-plane thermal conductivities and 

longitudinal speeds of sound of misfit-layer dichalcogenide films [(PbSe)m (TSe2)n] i (T = 

W or Mo, m = 1-5, n = 1-5)  synthesized by the MER.  The thermal conductivities of 

these nanoscale layered materials are 5-6 times lower than the predicted minimum 

thermal conductivity Λmin of PbSe.  Thermal conductivity decreases with increasing 

content of the main source of anisotropy in the sample, the layered chalcogenide, and it is 

largely unaffected by variations in superlattice period. 
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I investigated the lower limit to the lattice thermal conductivity of Bi2Te3 and 

related materials using thin films synthesized by MER. The thermal conductivities of 

single layer films of Bi2Te3 , Bi2Te3 and Sb-doped Bi2Te3 and multilayer films of 

(Bi2Te3)m(TiTe2)n and [(BixSb1-x)2Te3]m(TiTe2)n are measured by TDTR; the thermal 

conductivity data are compared to a Debye-Callaway model of heat transport by acoustic 

phonons. The homogeneous nanocrystalline films have average grains sizes 30 < d < 100 

nm as measured by the width of the (003) x-ray diffraction peak.  Multilayer films 

incorporating turbostratic TiTe2 enable studies of the effective thermal conductivity of 

Bi2Te3 layers as thin as 2 nm. In the limit of small grain size or layer thickness, the 

thermal conductivity of Bi2Te3 approaches the predicted minimum thermal conductivity 

of 0.31 W m-1 K-1.  The dependence of the thermal conductivity on grain size is in good 

agreement with the Debye-Callaway model.  The use of alloy (Bi,Sb)2Te3 layers further 

reduces the thermal conductivity of the nanoscale layers to as low as 0.20 W m-1 K-1. 
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CHAPTER 1 
 

INTRODUCTION 
 

Thermal conductivity Λ is defined on a macroscopic scale as the ability of a 

material to conduct heat.  Heat transfer at a microscopic scale is a diffusion process.  In a 

solid material, thermal energy is transported by two types of carriers: charged particles 

(free electrons and/or holes) and the lattice vibrations (phonons).  In an insulating 

polycrystalline solid, thermal transport is therefore mediated by phonons and a typical 

temperature dependence of thermal conductivity is depicted in Figure 1. 

 
Figure 1. Temperature dependence of thermal conductivity for crystalline and amorphous 
materials.  From D. G. Cahill and R. O. Pohl, Annu. Rev. Phys. Chem. 39, 93 (1988). 

 

Thermal conductivity of crystals at low temperatures (T << Debye temperature) is 

dominated by boundaries scattering and it mirrors the behavior of specific heat and 
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increases with temperature as Λ ~ T3.  At higher temperatures the phonons start 

interacting with each other in thermally resistive processes (i.e., umklapp scattering) and 

with defects in the crystal, causing the thermal conductivity to peak and then decrease as 

Λ ~ 1/T, with the numerical value of Λ depending upon the degree of anharmonicity of 

the material.2   

The behavior depicted in Figure 1 can be described by the Klemens-Callaway 

(KC) model assuming a Debye density of states [1,  2]: 

3
2

2
0

1
( ) ( )

2

D

T
Bk T

x x C x dx
v

τ
π

Θ

 Λ =  
  

,      (1) 

where x = ωħ / kBT , with ħ and kB denoting Planck’s reduced and Boltzmann’s constants, 

respectively, v is the speed of sound in the material, τ(x) is phonon relaxation time, C(x) 

is the phonon specific heat, and θD is the Debye temperature.  The central assumption of 

the KC model is that all phonon scattering processes are independent of each other and 

can be represented simply by a characteristic relaxation time τ.   

In amorphous materials energy transfer by crystalline lattice waves is replaced by 

a random walk of vibrational energy between localized quantum oscillators [3].  Thermal 

conductivity in amorphous materials is reduced compared to that of crystalline materials 

(see Figure 1) and it typically increases with temperature, which is attributed to the 

increase of the heat capacity with temperature and the fact that the effective phonon 

mean-free path is weakly temperature dependent and mainly determined by structural 

disorder. In fact, an assumption that the mean-free-path is half the wavelength of the 

oscillators leads to the minimum thermal conductivity limit [4]:  
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The unknowns in Equation 2 are the speeds vi for the two longitudinal and one 

transversal sound modes and the number density of atoms n.   

Recent studies have shown that the low limit of thermal conductivity in 

amorphous materials can be circumvented in multilayer crystalline thin films of metals 

and oxides [5, 6] with high interface density. This phenomenon is attributed to thermal 

resistance of the interfaces [7] (Kapitza resistance) which arises from differences in 

elastic properties and densities of vibrational states between materials on each side. When 

the spacing between the metal / oxide interfaces is of the order of mean free path of the 

phonons (a few nanometers) thermal conductivity of the multilayer circumvents the 

minimum thermal conductivity limit.  In particular, when the interface density reaches 

0.5 – 1 nm, the thermal conductivity of W/Al2O3 nanolaminates 5 is 3 times smaller than 

the thermal conductivity of amorphous Al2O3. 

The objective of this dissertation is to present an alternative route to lower the 

thermal conductivity even farther below the minimum thermal conductivity limit using 

layered crystalline materials.  My work has concentrated on metal dichalcogenide MX2 

layered materials.  The structure of these materials consists of X-M-X tri-layer sheets 

with strong intra-layer bonding held together by weak Van der Waals forces.  When 

prepared by alternating elemental layers of M and X and annealed, the resulting structure 

is disordered into small crystalline domains randomly stacked parallel with each other 

and with the deposition substrate.  I used time-domain thermoreflectance to measure 

thermal conductivities as low as 0.05 W m-1 K-1 in thin films of tungsten diselenide, 6 
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times smaller than the predicted minimum thermal conductivity for this material and only 

a factor of 2 larger than the thermal conductivity of air. 

The organization of this dissertation is as follows.  Chapter 2 covers background 

information about the materials synthesis, and thermal and elastic properties 

measurement methods.  Chapter 3 describes a study of the structure and thermal 

properties of disordered layered metal dichalcogenides.  Chapter 4 reports thermal 

properties of misfit layer structures incorporating disordered layered materials.  Chapter 5 

investigates the lower limit to the lattice thermal conductivity of Bi2Te3 and related 

materials and compares the results with a Debye-Callaway model of heat transport by 

acoustic phonons.   
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CHAPTER 2 
 

EXPERIMENTAL METHODS 
 

2.1 Introduction 

I measured the thermal conductivity of the samples discussed in this dissertation 

using the time-domain thermoreflectance (TDTR) [8, 9] method, as implemented by 

Cahill and coworkers [10, 11, 12].  TDTR is an ultrafast optical pump probe technique 

well suited for thermal metrology of thin films.  On the time scale of the measurements 

(pico- to nanoseconds) the heat diffusion lengths in most materials is on the order of tens 

to hundreds of nanometers, thus enabling the user to resolve the thermal conductivity of 

the thin film and the thermal conductance of the film/substrate interface .   

The samples discussed in Chapters 3-5 were deposited using the Modulated 

Elemental Reactants (MER) method [13, 14, 15].  In this process, thin films consisting of 

alternate layers of homogenous elemental constituents are transformed into an amorphous 

alloy during a solid-state reaction at low temperatures.  The drive for this reaction is the 

large negative heat of mixing of the constituent elements so that the amorphous alloy 

product has a lower free energy than the two-phase multilayer reactant [16].  The 

amorphous alloy is then crystallized by heat treatment at higher temperatures.  This 

technique allows the formation of materials otherwise hard to obtain (e.g., misfit layer 

compounds [17]). 

The family of layered materials contains over 100 compounds listed in the 

literature [18, 19]. The family includes pure elements (such as C, P, As, Sb, Bi), binary 
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and ternary inorganic compounds, organic compounds and silicates. Generally, the 

structure of these materials consists of a "sandwich" of strongly bonded sheets (covalent-

ionic bonds) held together by weak Van der Waals forces. Electrically they cover a wide 

spectrum of properties, from semiconductors (WSe2, MoSe2, HfS2) to semi-metallic 

(TiSe2) and metallic behavior (NbSe2, TaS2). Due to their structural anisotropy the elastic 

properties and thermal conductivity in cross-plane direction are smaller compared to the 

in-plane ones (e.g., graphite: in-plane Λ = 2000 W m-1 K-1, C11 = 1440 GPa, cross-plane 

Λ = 8 W m-1 K-1, C33 = 37 GPa).  

2.2 Modulated Elemental Reactants Method 

In Modulated Elemental Reactants (MER) method the samples are prepared by 

sequentially depositing bilayers of the elemental components. In each bilayer, the ratio of 

the layer thicknesses is adjusted to obtain the composition corresponding to the 

stoichiometry of the desired component compound, and the absolute thickness of each 

bilayer is adjusted to provide the number of atoms required to form either a rock salt 

bilayer (PbSe), a dichalcogenide trilayer (WSe2, MoSe2, NbSe2 or TiTe2) or the five-layer 

structure of a unit cell of Bi2Te3 or Sb2Te3.   

 The elemental components are thermally evaporated in a high vacuum chamber 

[20] evacuated to 10-7 Torr and deposited onto as-received p-type Si (100) substrates (for 

TDTR and structure determination measurements) or polished fused silica slides (for 

electrical measurements) from SUMCO Sumitomo (0.01-0.02 Ω cm resistivity range).  

Bismuth (Bi), antimony (Sb), titanium (Ti), selenium (Se) and tellurium (Te) (99.995% 

purity) were acquired from Alfa Aesar.  Lead (Pb), tungsten (W), niobium (Nb) and 

molybdenum (Mo) (99.95% purity) were acquired from PureTech Inc. 
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Bi, Sb, Se and Te were deposited using Veeco Applied Epi SUMO effusion cells 

with boron nitride crucibles.  For Se, Te and Sb a boron nitride lid with a small hole was 

placed in the top of the crucible to improve the uniformity of the evaporated flux, by 

narrowing the deposition profile.  The temperature of the tip and the base of the effusion 

cell were independently controlled with separate PID controllers. The tip was heated 

150°C higher than the base to prevent condensation of the element being deposited.  

Tellurium was deposited with a tip temperature of 500°C at a rate of 1.0 Å/second.  

Selenium was deposited with a tip temperature of 350°C at a rate of 0.5 Å/second.   

Bi and Sb were deposited by applying current to both heaters. For bismuth a tip 

temperature of 750°C and a base temperature of 600°C was used to achieve a measured 

rate of 1.0 Å/second.  For antimony a tip temperature of 710°C and a base temperature of 

550°C achieved a measured rate of 1.0 Å/second.   

W, Nb, Mo, Pb and Ti were deposited using a 6 kV Thermionics Laboratory 

electron beam gun.  Titanium was deposited at a rate of 1.0 Å/second.  W, Nb and Mo 

were deposited at a rate of 0.2 Å/second.  Lead was deposited at a rate of 0.4 Å/second.   

The deposition rates were monitored using quartz crystal microbalances placed at 

25 inches above the sources and connected to the power control feedback of the PID 

controllers and electron beam guns.  Silicon substrates were placed at 30 inches above the 

evaporation sources.  The deposition rates were calculated assuming 100% tooling factors 

and ignoring the height difference between the substrates and the quartz crystal monitors.  

Computer controlled pneumatic source shutters controlled the deposition time and 

sequence of the elements.   
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Post deposition annealing is typically done in a dry nitrogen environment (<0.4 

ppm O2).  The annealing schedule is described in detail in chapters 3-5. 

Sample composition during thickness calibration was determined by electron-

probe micro-analysis (EPMA) [21] using a Cameca SX-50 electron microprobe operating 

at 20 nA current, 1 μm spot size, and 8, 12 and 16 kV beam energies at multiple locations 

on the sample.  The data are refined using the STRATAGem [22] software.   

I used Rutherford backscattering spectroscopy (RBS) [23] (2 MeV He2+ ions, 150 

degrees scattering angle and detector resolution 15 keV) to determine the areal density 

ρRBS (units of atoms cm-2) of individual chemical elements in the samples prior to thermal 

conductivity measurements.  RBS allows the quantitative determination of the 

composition of a material and depth profiling of individual elements without the need for 

reference samples, has a good depth resolution of the order of several nm, and a very 

good sensitivity for heavy elements of the order of parts-per-million (ppm).  The 

accuracy of determining absolute atomic areal densities with the RBS method is 1% due 

to uncertainties in charge collection of the incident beam and the detector solid angle.   

Data from RBS measurements is analyzed using SIMNRA software package [24].  

An example of measurement for a standard 100 nm a-SiO2 film grown on Si (100) 

substrate is shown in Figure 2.  The conversion factors used to convert channel to energy 

in Figure 2 are calibration offset 131 keV and energy per channel 1.86 eV/ch. 
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Figure 2. RBS spectra (open circles) and the SIMNRA fit (uninterrupted line) for 100 nm 
a-SiO2 thermally grown on the Si substrate.  Measured areal density is 650x1015 atoms 
cm-2.  

 

The areal density of a chemical element i in a thin layer is ρRBS (i) ~ Ai / σi , 

where Ai is the area under peak corresponding to element i in that layer after subtracting 

the background signal and σi is the scattering cross-section of the element i for 2 MeV 

He2+ ions [25].  For a thick layer, Ai is replaced by Hi, the signal height from the element 

i in the backscattering spectrum.  It follows that for a layer of XmYn compound material 

the ratio of areal densities yields the stoichiometry of the respective layer x = AX σY / AY 

σX.  I ignored the errors in scattering cross-sections and I estimated the accuracy of 

measuring the stoichiometry Δx / x = 1.4% by calculating the square-root of the sum of 

squares of errors propagated from uncertainty in measurements of peak areas Ai (~ 1%).   

Number density of atoms N can be determined from areal density using the 

relation N = ρRBS / h, where h is the thickness of the layer (typically measured by XRR).  

I compare values of N and absolute atomic ratios determined from RBS analysis with 

those estimated from the crystalline unit-cell parameters for the respective material: N = 

Natoms x Nformulae / Vunit-cell , where Natoms and Nformulae are the number of atoms and 
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respectively , the number of formulae per unit-cell, Vunit-cell is the volume of the unit cell.  

Mass density of a layer estimated from areal density measured by RBS is ρ = ρRBS x MW / 

NA / Natoms / h, where MW is the molecular weight and NA is the Avogadro’s constant.   

2.3 Time-Domain Thermoreflectance 

2.3.1 Experimental Setup 

In TDTR method a modulated pump beam is used to raise the temperature near 

the surface of the sample; the differences in reflected probe intensity caused by the 

heating due to the pump pulses are extracted with an rf lock-in amplifier synchronized to 

the modulation frequency of the pump.  The output of the lock-in amplifier V has an in-

phase component Vin(t) and an out-of-phase component Vout(t), V(t) = Vin(t)+i Vout(t), 

where t is the delay time between the pump and probe beams.  I compare the temporal 

evolution of the Vin(t) / Vout(t) ratio with the predictions of a thermal model to obtain the 

thermal transport properties of the sample. 

A schematic of the setup is presented in Figure 3.  A mode-locked Ti:sapphire 

laser (1.5 W power, FWHM ~ 10 nm, λ = 710 - 900 nm tunable, vertical polarization, 

pulses with 0.1 ps duration at a rate of 80 MHz) is pumped by a CW solid state laser (10 

W and λ = 532 nm).  The wavelength and full width at half maximum (FWHM) of the 

Ti:sapphire laser are monitored by a spectrum analyzer; typically λ = 770 nm and FWHM 

= 10 nm.  The output of the Ti:sapphire laser passes through the first λ/2 plate which acts 

as a power control, and then an optical isolator (to prevent unwanted back reflections).  A 

convex lens with focal length of 2 meters collimates the laser beam which is then split 

into a pump and a probe beam using a polarized beam splitter (PBS) cube.  The 
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respective power ratio of the two beams is controlled by the PBS and a second λ/2 plate 

(typically 50-50 ratio).   
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Figure 3. Schematic diagram of the TDTR experimental apparatus. 
 

The intensity of the pump beam is modulated by an electro-optic modulator at 

frequency f (typically, f = 9.8 MHz).  A difference in path length is introduced between 

the pump and probe beams using a computer-controlled mechanical stage, 500 mm in 

length (which translates into a time delay of ~ 4 ns).  The vertically polarized pump beam 

is deflected by a second PBS before entering the objective lens.  The probe beam is 

horizontally polarized after the split and is reflected by a non-polarizing beam splitter 

(BS) before entering the same objective lens.  The pump and probe beam paths are 

parallel and separated vertically by 4 mm at the back focal plane of the objective lens.   

To focus the beams on the sample accurately, a darkfield image is created in a 

CCD camera using an illumination ring and inserting a beam splitter into the beam path 

to deflect the light into the CCD.  The pump and probe beams are focused in the same 

spot on the surface of the sample.  I determined the 1/e2 radius of the laser spot size w0 by 
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analyzing the dependence of the in-phase signal on the overlap of the pump and probe 

beams.  I overlapped the beams by steering the pump beam with the PBS via a high 

precision optical mount and two differential micrometers to maximize the amplitude of 

the photodetector output.  In the present configuration, a micrometer motion of 1 micron 

deflects the pump beam by an angle of Δθx = 35 μrad horizontally and Δθy = 24 μrad 

vertically.  The corresponding lateral displacements at the front focal plane of the 

objective lens with focal length F are x = F Δθx and y = F Δθy , respectively.  I assumed 

an overlap of two identical Gaussian beams and fitting the curves Vin (x) and Vin(y), I 

estimated w0 = 7.5 μm for F = 20 mm (10 X objective), w0 = 15 μm for F = 40 mm (5 X 

objective) and w0 = 3.5 μm for F = 10 mm (20 X objective).   

The reflected probe beam is collimated by the objective lens and it is focused on a 

Si photodiode by a convex lens with a focal length of 300 mm.  The output of the Si 

photodiode is connected to a rf lock-in amplifier locked to the modulation frequency of 

the pump beam f.  A resonant circuit filters the odd harmonics of pump beam modulation 

in the output of the Si photodiode by an inductor placed in series between the reverse-

biased capacitance of the photodiode and the 50 Ω input of the rf lock-in amplifier.  The 

inductance is selected to maximize the response at modulation frequency f.  For a typical 

f = 9.8 MHz, L = 15.6 μH and the quality factor of the resonance circuit Q ≈ 10.   

The PBS behind the objective lens blocks most of the reflected pump beam but a 

significant fraction still passes due to the finite extinction ratio of the PBS, birefringence 

in the sample or optics, and depolarized light scattering.  To suppress this background 

signal, I employed two mechanisms:   
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1. Acoustic frequency modulation of the probe beam by a mechanical chopper 

(200 Hz audio frequency) followed by spatial filtering using an optical aperture (see Figure 

3).  The photodiode signal has then frequency components of f  ± 200 Hz.  The signal is 

demodulated by the rf lock-in amplifier down to 200 Hz. The in-phase and out-of-phase 

outputs of the lock-in are picked up by a pair of computer-based audio frequency lock-in 

amplifiers locked to the modulation frequency of the probe beam, 200 Hz. 

2. Spectral separation of pump and probe beams using sharp edge optical filters 

(“two-tint” method [26]).  The center output wavelength of the Ti : sapphire laser is 

adjusted to 785 nm.  A long-wave pass optical filter (LPF) with a cutoff at 790 nm is 

placed in the pump beam path.  A bandpass filter (BPF) (center wavelength of 785 nm 

and a bandwidth of 3 nm) is placed in the probe beam path.  The BPF is tilted to 

maximize the signal on the photodiode detector and shift the center frequency of the 

probe beam to 781 nm; a tilt angle of 13° creates a wavelength shift of 5 nm.  This 

procedure separates the peak wavelengths of the pump and probe intensities by ~10 nm.  

Diffuse pump light scattered from the sample is then suppressed by a factor of ~1000 

using a short-wave pass optical filter (SPF) with a cutoff of 780 nm placed before the Si 

photodiode.   

The “two-tint” method improves upon the double modulation approach and 

becomes important for samples with increased surface roughness (thermoreflectance 

signal < 70% of specular reflection).   

A thin film of aluminum (50-100 nm thick) is deposited on the samples by dc 

magnetron sputtering prior to measurements.  It acts as a transducer to absorb the energy 
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from the laser pulses and it has optimal thermoreflectance properties in the range of laser 

wavelengths used in my experiments.  

I measured thermal conductivity at temperatures down to 80K by placing the 

samples in a liquid nitrogen (LN2) cooled cryostat evacuated to 10-7 Torr by a turbo 

pump.  An XZ computer-controlled stage allows the sample to be translated for thermal 

conductivity mapping.  

The current implementation of TDTR method (using the Vin(t) / Vout(t) ratio of 

thermoreflectance signals) is a more robust measurement than the traditional 

implementation (measuring in-phase signal alone): both in-phase and out-of-phase 

signals are changed by the same factor when defocusing the pump beam and by changes 

in the pump-probe overlap [11, 27, 28].  In addition, the extra information in the out-of-

phase signal increases the sensitivity of the measurement to the thermal conductivity of 

the sample layer.   

2.3.2 TDTR Model and Data Analysis 

The TDTR model is a numerical calculation of heat flow in a multilayer structure 

[10].  The heat diffusion equation is solved in the frequency domain by assuming 

temperature and heat flow continuity across layer boundaries and a periodic source of 

power with a Gaussian distribution of intensity.  The frequency domain responses are 

then assembled to calculate the ratio of thermoreflectance signals as a function of the 

time delay between the pump and probe.  Details of the calculation are given in 

Reference 10. 

I determine the thermal conductivity of a thin layer by comparing the measured 

Vin(t) / Vout(t) ratio to the calculations of the thermal model.  An interface with thermal 
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conductance G is modeled by a layer with small thermal conductivity ΛG, thickness hG, 

and volumetric heat capacity CG , where G = ΛG / hG.  For a three layer (Al / sample film 

/ substrate) configuration, the model has several parameters: 1/e2 radius of the laser spot 

size w0, the thermal conductance G of the Al/sample interface, the thickness, thermal 

conductivity and volumetric heat capacity of Al layer (hAl, ΛAl, CAl), the thermal 

conductivity and volumetric heat capacity of substrate (Λsub, Csub), and the thickness h, 

thermal conductivity Λ and volumetric heat capacity C of the sample layer  

The procedure for measuring w0 is described in the Experimental Setup section.  I 

typically measured hAl using picosecond acoustics.  The thickness of sample layers was 

measured by x-ray reflectivity (XRR) [29] from the low angle (2θ < 10 degrees) Kiessig 

fringes i.e., subsidiary maxima resulting from X-ray interference from the front and back 

of the films.  Aluminum thermal conductivity is derived from Wiedemann-Franz law 

using 4-point probe measurements of the electrical resistivity at 300 K.  I estimated 

thermal conductivity of Al films at lower temperatures from the values at 300 K 

assuming a constant residual resistivity [30].  The heat capacity of the Al layer [31], and 

heat capacity [32] and thermal conductivity [33] of the crystalline Si (c-Si) substrate (the 

typical substrate used for my samples) are taken from literature values.  Temperature-

dependent heat capacity of the homogenous sample layers is taken from literature values: 

amorphous SiO2 (a-SiO2) [34], Bi2Te3 [35], Sb2Te3 [36], TiTe2 [37], WSe2 [38], MoSe2 

[39], NbSe2 [40], and PbSe [41].  Heat capacity of multilayer samples is a volume 

weighted average of the heat capacities of the individual components.  

No experimental data exists for amorphous silicon (a-Si) in the range 80 < T < 

300 K.  Literature calculations [42, 43, 44]  predict a difference between specific heat of 
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c-Si and a-Si, ΔC = -0.224 + 4.85T / 1685 J mol-1 K-1 for the temperature range 80 < T < 

300 K.  Using specific heat values of c-Si from Reference 32, this translates into 

percentage increase ΔC / Cc-Si from 0.07 % at 80 K to 3 % at 300K.  Therefore I used the 

values from Reference 32 as data for specific heat of a-Si.   

The free parameters of the model, thermal conductance G of the Al/sample 

interface and thermal conductivity Λ of the sample are adjusted in the model to fit the 

experimental data at different delay times ranges (see Figure 4) [45].  At long delay times 

(t > 2 ns), Vin(t) / Vout(t) has a stronger dependence on G.  At short-to-intermediate delay 

times, 0.1 < t < 0.5 ns, Vin(t) / Vout(t) has a strong dependence on Λ and is only weakly 

dependent on G.   
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Figure 4. Ratio of the in-phase to out-of-phase voltage, Vin(t) / Vout(t) (open circles) as a 
function of delay time t for a 1 μm thick film of amorphous SiO2 (a-SiO2) on Si substrate 
at 300K. The parameters for the model fit (uninterrupted line) are: f = 9.8 MHz, w0 = 7.5 
μm; hAl = 70.4 nm, ΛAl = 196 W m-1 K-1, CAl = 2.44 J cm-3 K-1, a-SiO2 C=1.64 J/cm3-K; 
ΛSi = 142 W m-1 K-1, CSi = 1.64 J cm-3 K-1. The free parameters as a result of the fit are G 
= 200 MW/m2-K and a-SiO2 Λ = 1.33 W m-1 K-1. 
 

The TDTR method has been thoroughly validated by previous measurements on 

known materials [46].  To confirm the accuracy of my measurements, a standard sample 

of 1 micron thick amorphous SiO2 thermally grown on Si was coated with Al and I 
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measured it before every set of samples.  The measured room temperature thermal 

conductivity (1.33 W m-1 K-1) is within 2% of reference [47, 48] literature values (1.30 W 

m-1 K-1) for thermally grown SiO2 and bulk a-SiO2.  The values at 88 K are within 8% 

of the same reference literature data, well within the error bars of the measurement.  
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Figure 5. Temperature dependence of the thermal conductivity Λ (closed circles) for a 1 
μm thick film of amorphous SiO2 on Si substrate, measured with TDTR. For comparison 
reasons, I included the literature data from Reference 47 (continuous line).  
 

2.3.3 Error Estimation and Corrections in TDTR Measurements.  

I estimated the accuracy of measuring thermal conductivity of the sample Λ by 

calculating the square-root of the sum of the squares of errors propagated from 

uncertainty in measurements of each of the parameters of the model.   

To gauge how a parameter influences the output of the model, a sensitivity factor 

Sα is defined [45] as: 

in

out

V
dln

V
S

dlnα α

 
− 
 = ,        (3) 

where α is any parameter of the thermal model.  The error propagated from measurement 

uncertainty σα for a parameter α is then σα Sα / SΛ, where SΛ is the sensitivity factor for 

the thermal conductivity of the sample.   
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Figure 6 shows the variation of the sensitivity factors for different parameters as a 

function of film thickness for two typical samples in my study, an ultralow thermal 

conductivity sample (WSe2 Λ = 0.05 W m-1 K-1) and a higher thermal conductivity 

sample (Bi2Te3 Λ = 0.8 W m-1 K-1).   
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Figure 6. Sensitivities to various parameters of the thermal model, plotted as function of 
the thickness for two thin film samples: (A) tungsten diselenide (WSe2); (B) bismuth 
telluride (Bi2Te3).  The parameters used in the calculations are: (A) pump beam 
modulation frequency 0.6 MHz, 1/e2 radius of the laser spot w0=14 microns; Al film, 
thickness 80 nm, thermal conductivity Λ=200 W m-1 K-1, heat capacity C=2.44 J cm-3 K-

1; WSe2 film, Λ=0.05 W m-1 K-1, C=1.95 J cm-3 K-1; Si substrate, Λ=142 W m-1 K-1, 
C=1.64 J cm-3 K-1; (B) pump beam modulation frequency 9.8 MHz, 1/e2 radius of the 
laser spot w0=7.5 microns; Al film, thickness 77 nm, thermal conductivity Λ=200 W m-1 
K-1, heat capacity C=2.44 J cm-3 K-1; Bi2Te3 film, Λ=0.75 W m-1 K-1, C=1.24 J cm-3 K-1; 
Si substrate, Λ=142 W m-1 K-1, C=1.64 J cm-3 K-1.  The temperature is 300K and 
sensitivity is calculated at 0.1 ns delay time 

 

The sensitivity to thermal properties of the sample layer is largest when the 

thermal penetration depth l is larger than the film thickness; l = (Λ/C/ω)1/2, where D = 

Λ/C is the thermal diffusivity of the sample layer and ω = 2πf is the angular frequency of 

the modulation of the pump beam.  As the thickness of sample layer increases, the 
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sensitivity factor for thermal conductivity SΛ drops. For thicker samples, the spot size w0 

also becomes more important.   

The accuracy is dominated by uncertainties in measurements of the thickness hAl 

and thermal conductivity ΛAl of the Al film, thickness h of the sample, and the 1/e2 radius 

w0 of the laser spot.   

The accuracy in measuring hAl, h and w0 are each estimated at 5%.  The accuracy 

for ΛAl is estimated at 5% at 300 K and 15% at 80 K due to deviations from the 

Wiedemann-Franz law [49].  Overall accuracy in measuring Λ is shown as error bars in 

the figures in chapters 3-6 and range between 10% at 300 K and 25% at 88 K.   

The precision of TDTR measurements is dominated by the phase difference 

between the thermoreflectance signal and the reference channel input to the rf lock-in 

amplifier.  The difference is removed by adjusting the reference channel so that Vout(t) is 

continuous when delay time crosses from negative to positive times, i.e., the 

thermoreflectance signal before and after the arrival of pump beam to the surface of the 

sample.  The change in phase is ε ≈ ΔVout/Vin , where ΔVout is standard deviation of Vout .  

We correct the overall thermoreflectance signal (Vin + i Vout) by a factor of (1 + i ε), 

which propagates into an error σ = Vin ε / Vout in the ratio of thermoreflectance signals.  

The precision in measuring Λ is then σ / SΛ = ΔVout / Vout / SΛ and is < 2% for the range 

of samples in my study.   

The steady state temperature rise ΔT averaged over the size of the probe beam 

during the measurements is ΔT = I (1 - R) / (2Λ w0 √π),  where I is the power of the 

pump and probe beams and R is the reflectivity of Al at the pump/probe beam 
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wavelength (typically 13% at 770 nm).  The fixed parameters of the model are adjusted to 

take into consideration this temperature rise.   

2.3.4 Mapping of Thermal Conductivity Using TDTR 

A map of thermal conductivity of can be realized by scanning the lateral cross-

section of a sample, recording the thermoreflectance signal at a fixed delay time and then 

converting the Vin / Vout 2-D profile into a map of thermal conductivities.  I run a spot 

TDTR measurement for the full range of delay times and then using a relation calculated 

from the thermal model I convert the map of Vin / Vout ratios to a map of effective thermal 

conductivities Λeff. = ΛC / C0.  Λ and C are the sample thermal conductivity and heat 

capacity at each spatial location and C0 is the heat capacity at the spatial location used for 

thermal profile conversion.  

For delay times in the range 100 ps < t < 500 ps, heat has diffused uniformly 

through the Al film but little heat has entered the sample because of the limited thermal 

conductance of the Al / sample interface.  Thus, the in-phase thermoreflectance signal is 

proportional to E / (hAl CAl), where (hAl CAl) is the heat capacity per unit area of the Al 

film and E is the energy in each pump optical pulse. The out-of-phase thermoreflectance 

signal is proportional to the imaginary part of the frequency response at the modulation 

frequency of the pump beam. Since heat diffuses a distance in the sample that is large 

compared to the thickness of the Al film, the imaginary part of the frequency response is 

proportional to P / (C Λ f)1/2, where (C Λ)1/2 is the thermal effusivity of the sample, f is 

the modulation frequency of the pump beam, and P is the power of the pump beam. The 

ratio Vin(t) / Vout(t) at short to intermediate delay times is therefore approximately 

proportional to Λ1/2.  I use a second degree polynomial to perform the conversion as 
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described above.  The lateral resolution of the measurement is mostly controlled by the 

laser spot size w0. Because the thermoreflectance signal arises from the product of the 

pump and probe fluence, the effective spot size of the measurement is w0 / √2 . 

The advantage of this method is that it enables a quick thermal profile of a section 

through a multilayer [50] or composition gradient [51] sample.  However, the precision 

of thermal conductivity measurements at a single delay time is worse than measurements 

utilizing the full range of delay time because of larger uncertainties in the phase of the 

reference channel and uncertainties in the thermal conductance G of Al / sample 

interface.   

2.3.5 Measurements of Elastic Properties 

I used picosecond acoustics [52] and picosecond interferometry [53, 54] to 

measure the thickness of the Al film and cross-plane speed of sound in the samples of 

interest.  

In picosecond acoustics, the Al film deposited on the sample partially absorbs the 

pump laser pulse and expands, generating an acoustic/strain pulse that propagates away 

from the surface of the sample.  The acoustic pulse reflects from interfaces in the sample 

and returns to the surface of the Al film where it changes the local index of refraction and 

thus is detected by variations (positive or negative peaks) in the thermoreflectance signal.  

To determine the sign of the variation the following observation applies: an acoustic 

pulse will undergo a phase shift by π (or zero) when reflected from an interface with a 

layer with lower (or higher) acoustic impedance Z = ρ v, where ρ is the density and v is 

the longitudinal speed of sound in the said layer.  If we write the acoustic impedances on 

either side of an interface as Z2 and Z1, the coefficient of reflection for normal incidence 
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is R = (Z2 - Z1) / (Z2 + Z1) and -1 < R < 1; the amplitude of the acoustic peaks in the 

thermoreflectance signal is influenced by the value of R and the absorption/transmission 

coefficient of the layers that the acoustic echo traverses when returning to the surface of 

Al layer.  

The thickness of the Al film is calculated from the arrival time t for acoustic 

echoes from the Al / sample interface using the bulk longitudinal speed of sound [55] for 

Al vAl = 6.42 nm/ps: hAl = vAl t / 2.  A native aluminum oxide film approximately 3 nm 

thick forms on the Al layer after the deposition and its thickness is added to the value 

determined by acoustic echoes when inserted in the thermal model.  The origin of time 

scale (i.e., t = 0) is the coincidence of the pump and probe beams and I use the location 

half way between the start and the maximum of the coincidence peak.   

An example of measurement to determine the Al thickness is shown in Figure 7 

and Figure 8.  In Figure 7, acoustic impedance of glass [55] (ρ = 2.5 g cm-3, vglass = 5.7 

nm ps-1) is less then that of the Al layer55 (ρ = 2.7 g cm-3, vAl = 6.42 nm ps-1).  The strain 

wave undergoes a π phase change at Al/glass interface so the first echo peak is negative;  

after a second π phase change at Al/air interface, the strain wave is reflected off the Al / 

glass interface with another π phase change, therefore the second echo peak is also 

negative.   
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Figure 7. Picosecond acoustics measurements for an Al film deposited on soda-lime glass 
slide.  Arrival time of echoes from the Al/glass interface are t1 = 50 ps and t2 = 100 ps.  
Al layer thickness estimated from this measurement is hAl = vAl (t2-t1) / 2 = 160.5 nm.  
Measurement was performed at f = 9.8 MHz.   
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Figure 8. Picosecond acoustics measurements for an Al film deposited on Si (100) 
substrate.  Arrival time of echo from the Al / Si interface is t1 = 34.8 ps.  Al layer 
thickness estimated from this measurement is hAl = vAl t1 / 2 = 111.7 nm.  Measurement 
was performed at f = 9.8 MHz.   

 

In Figure 8, acoustic impedance of Si substrate [56] (ρ = 2.3 g cm-3, vSi = 8.4 nm 

ps-1) is larger then that of the Al layer.  The strain wave undergoes a null phase change at 

Al / Si interface so the sign of the echo peak is positive.   
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In some samples the shape of the first echo peak from the Al / sample interface 

consists of a combination of two peaks.  I attribute this behavior to a thin soft layer of 

hydrocarbons or amorphous oxide created on the sample during subsequent handling in 

air before the Al deposition.  I assume the acoustic impedance of the soft layer is less 

then that of the Al and sample layers; e.g., average values [55] for mass density and 

speed of sound of a hydrocarbon layer are ρ = 1 g cm-3 and v = 2 nm ps-1.   

Figure 9 illustrates the shape and sign of the first and second acoustic peaks 

resulting from reflections at Al / soft layer and soft layer / sample interfaces.  The 

acoustic impedance of the soft layer is less then that of the Al and sample layers and the 

resulting reflections combine to form the peaks as shown in Figure 9c.  An example of 

this behavior is shown in Figure 10, Figure 12 and Figure 15. 

I measured the longitudinal cross-plane speed of sound for the sample layers in 

this study using the thickness of the layer (determined by XRR) and the time interval that 

separates acoustic echoes from the Al / sample interface and sample / substrate interface.  

Examples of the measurements for various samples used in my experiments are shown in 

Figure 10 to Figure 18.  All measurements were performed with modulation frequency of 

the pump beam f = 9.8 MHz.    
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Figure 9. Illustrative sketch of acoustic reflections from Al / soft layer and soft layer / 
sample interfaces and their contributions to subsequent formation of the first and second 
Al acoustic peaks.  The initial strain wave has two components: (A) one is reflected at the 
Al / soft layer and then undergoes secondary reflections at Al / soft layer and soft layer / 
sample interfaces; (B) the other is transmitted into the soft layer, is reflected off the soft 
layer / sample interface and then undergoes secondary reflections at Al / soft layer and 
soft layer / sample interfaces.  The symbols “∪” and “∩” indicate the shape of the 
acoustic peak as a reflection reaches the surface of Al layer.  Round times for crossing 
the thickness of Al layer (tAL) and soft layer (tSL) are used to calculate the arrival time of 
the reflections at the surface of Al layer.  In Figure (C) is illustrated (not to scale) the 
predicted final shape and sign of the first and second acoustic peaks for the Al layer.   
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Figure 10. Picosecond acoustics measurements for h = 360 nm thick WSe2 film deposited 
on Si (100) substrate and annealed to 625 ºC for 1 hour.  The echoes from Al / WSe2 
interface are located at t1 = 24.8 ps and t2 = 51.3 ps (A).  Arrival time for acoustic signal 
from WSe2 / Si interface is t3 = 469.2 ps (B).  Cross-plane longitudinal speed of sound in 
the WSe2 film is v = 2 h / (t3 – t1) = 1.6 nm ps-1.  Mass density of WSe2 film from RBS 
measurements of areal density is ρ = 9.35 g cm-3.  Top plot shows a detail of delay time 
range relevant for echoes from Al / WSe2 interface.  Average round time for the sound 
wave from the Al/WSe2 interface to reach the surface of the Al layer is t = (t1 + t2/2)/2 = 
25.2 ps.  Thickness of Al layer is hAl = vAl t / 2 = 81 nm.  
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Figure 11. Picosecond acoustics measurements for h = 76 nm thick MoSe2 film deposited 
on Si (100) substrate and annealed to 625 ºC for 1 hour.  Arrival time of echoes from the 
Al / MoSe2 and, respectively MoSe2 / Si interfaces are t1 = 25.2 ps and, respectively t2 = 
103.2 ps.  Thickness of Al layer is hAl = vAl t1 / 2 = 81 nm.  Cross-plane longitudinal 
speed of sound in the MoSe2 film is v = 2 h / t = 1.9 nm ps-1.  Mass density of MoSe2 film 
from RBS measurements of areal density is ρ = 6.84 g cm-3.   
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Figure 12. Picosecond acoustics measurements for hmisfit_layer = 59 nm thick misfit layered 
(PbSe)5(WSe2)5 film deposited on Si (100) substrate and annealed to 400 ºC for 1 hour.  
Arrival time of echoes from the Al / (PbSe)5(WSe2)5 interface are t1 = 80 ps and t2 = 161 
ps.  Average round time for the reflection from the Al / (PbSe)5(WSe2)5 interface to reach 
the surface of the Al layer is t = (t1 + t2/2)/2 = 80.3 ps.  Thickness of Al layer is hAl = vAl t 
/ 2 = 257.6 nm.  The echo from (PbSe)5(WSe2)5 / Si interface is located at t3 = 119.2 ps.  
Cross-plane longitudinal speed of sound in the (PbSe)5(WSe2)5 film is vmisfit_layer = 2 
hmisfit_layer / (t3 – t1) = 3 nm ps-1.  Mass density of (PbSe)5(WSe2)5 film from RBS 
measurements of areal density is ρ = 7.25 g cm-3.  
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Figure 13. Picosecond acoustics measurements for hmisfit_layer = 44 nm thick misfit layered 
(PbSe)4.5(MoSe2) film deposited on Si (100) substrate and annealed to 400 ºC for 1 hour.  
The echoes from Al / (PbSe)4.5(MoSe2) and (PbSe)4.5(MoSe2) / Si interfaces arrive at 
surface of the Al layer at t1 = 28 ps and, respectively t2 = 55 ps.  Thickness of Al layer is 
hAl = vAl t1 / 2 = 90 nm.  Cross-plane longitudinal speed of sound in the (PbSe)4.5(MoSe2) 
film is vmisfit_layer = 2 hmisfit_layer / (t2 – t1) = 3.3 nm ps-1.  Mass density of (PbSe)4.5(MoSe2) 
film from RBS measurements of areal density is ρ = 8.00 g cm-3. 
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Figure 14. Picosecond acoustics measurements for h = 54 nm thick misfit layered 
(PbSe)(NbSe2)3 film deposited on Si (100) substrate and annealed to 400 ºC for 1 hour.  
Arrival time of echoes from the Al / (PbSe)(NbSe2)3 and (PbSe)(NbSe2)3 / Si interfaces 
are t1 = 32 ps and, respectively t2 = 70 ps.  Thickness of Al layer is hAl = vAl t1 / 2 = 103 
nm.  Cross-plane longitudinal speed of sound in the (PbSe)(NbSe2)3 film is v = 2 h / (t2 – 
t1) = 2.8 nm ps-1.  Mass density of (PbSe)(NbSe2)3 film from RBS measurements of areal 
density is ρ = 7.21 g cm-3.  
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Figure 15. Picosecond acoustics measurements for h = 106 nm thick Bi2Te3 film 
deposited on Si (100) substrate and annealed to 400 ºC for 1 minute.  The echoes from Al 
/ Bi2Te3 interface are located at t1 = 26.4 ps and t2 = 53.1 ps.  Arrival time for the echo 
from Bi2Te3 / Si interface is t3 = 111 ps.  Average round time for the reflection from the 
Al / Bi2Te3 interface to reach the surface of the Al layer is t = (t1 + t2/2)/2 = 26.5 ps.  
Thickness of Al layer is then hAl = vAl t / 2 = 85 nm.  Cross-plane longitudinal speed of 
sound in the Bi2Te3 film is v = 2 h / (t3 – t1) = 2.5 nm ps-1.  Mass density of Bi2Te3 film 
from RBS measurements of areal density is ρ = 7.84 g cm-3. 
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Figure 16. Picosecond acoustics measurements for h = 100 nm thick Sb2Te3 film 
deposited on Si (100) substrate and annealed to 400 ºC for 1 minute.  The echoes from Al 
/ Sb2Te3 and Bi2Te3 / Si interfaces are located at t1 = 25.3 ps and, respectively t2 = 103 ps.  
Thickness of Al layer is hAl = vAl t1 / 2 = 81 nm.  Cross-plane longitudinal speed of sound 
in the Sb2Te3 film is v = 2 h / (t2 – t1) = 2.6 nm ps-1.  Mass density of Sb2Te3 film from 
RBS measurements of areal density is ρ = 6.48 g cm-3. 
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Figure 17. Picosecond acoustics measurements for h = 59 nm thick 
(TiTe2)4(Bi2Te3)3(TiTe2)4(Sb2Te3)3 multilayer film deposited on Si (100) substrate and 
annealed to 250 ºC for 5 minutes.  Arrival time of echoes from the Al/multilayer interface 
and multilayer/Si interface are t1 = 23.7 ps and, respectively t2 = 77.8 ps.  Al layer 
thickness estimated from this measurement is hAl = vAl t1 / 2 = 76 nm.  Cross-plane 
longitudinal speed of sound in the 3-component multilayer film is v = 2 h / (t2 – t1) = 2.2 
nm ps-1.  Mass density of (TiTe2)4(Bi2Te3)3(TiTe2)4(Sb2Te3)3 multilayer film from RBS 
measurements of areal density is ρ = 7.01 g cm-3. 
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Figure 18. Picosecond acoustics measurements for h = 44 nm thick TiTe2 film deposited 
on Si (100) substrate and annealed to 300 ºC for 5 minutes.  Arrival time of echoes from 
the Al / TiTe2 and TiTe2 / Si interfaces are t1 = 27.8 ps and, respectively t2 = 73.3 ps.  Al 
layer thickness estimated from this measurement is hAl = vAl t1 / 2 = 89 nm.  Cross-plane 
longitudinal speed of sound in the TiTe2 film is v = 2 h / (t2 – t1) = 1.9 nm ps-1.  Mass 
density of TiTe2 film from RBS measurements of areal density is ρ = 6.25 g cm-3.   
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To estimate the accuracy of measuring speed of sound in a layer by picosecond 

acoustics, I add the uncertainties in measuring the thickness of the layer (~5%) and the 

time interval between successive echoes (~ 5%).  Overall accuracy for measuring speed 

of sound is 10%.   

Picosecond interferometry is based on inelastic light scattering from acoustic 

modes, i.e., Brillouin scattering.  The frequency shift of the scattered light is known as 

the Brillouin frequency φ.  In this method, a semitransparent ~ 10 nm thin film of Pd is 

deposited on the samples.  The wavelength of the Ti : sapphire laser is adjusted to a 

center peak value where the sample is transparent.  Thermal expansion of Pd film due to 

heating by the pump laser pulses generates a strain pulse.  Interference of probe pulses 

reflected from the strain pulse and the Pd surface creates periodic oscillations of 

frequency φ in the in-phase signal Vin.  The longitudinal speed of sound v is determined 

then by v = φ λ / 2n , where n is the index of refraction and λ the laser wavelength.  The 

index of refraction is determined by variable angle spectroscopic ellipsometry (VASE).  

An example of picosecond interferometry measurement data is shown in Figure 19.  

Overall uncertainty in determining the speed of sound by picosecond interferometry is 

5% and is dominated by the errors in measuring the index of refraction n.   
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Figure 19. Example data for the oscillations in Vin as a function of delay time that are 
used to measure longitudinal speed of sound by picosecond interferometry in a 343 nm 
thick WSe2 film.  Laser wavelength is 800 nm, the period of oscillations is 60 psec and 
index of refraction measured by VASE is n = 4.13; speed of sound v = 1.61 nm ps-1.  
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CHAPTER 3 
 

THERMAL CONDUCTIVITY OF HOMOGENOUS, 
LAYERED DISORDERED CRYSTALLINE MATERIALS  

 

Significant components of this chapter were published in “Ultralow thermal conductivity 

in disordered, layered WSe2 crystals”, Science 315 (351) 2007.  I collaborated with 

Professor David Johnson, Dr. Nguyen Ngoc and Mr. Colby Heideman at University of 

Oregon for sample deposition.  Dr. Paul Zschack at the Advanced Photon Source at 

Argonne National Laboratory provided instrument time and assistance with synchrotron 

x-ray characterization of the deposited films.  I deposited some of the samples used in 

this study and I performed laboratory x-ray diffraction, ion bombardment, RBS elemental 

analysis and the thermal and elastic properties measurements.   

3.1 Introduction 

The lowest thermal conductivity materials are typically found among electrically-

insulating amorphous solids and glasses.  In these materials, heat conduction is 

adequately predicted by a simple phenomenological model, the minimum thermal 

conductivity, where heat conduction is described by a random walk of vibrational energy 

on the time and length-scales of atomic vibrations and inter-atomic spacings [4].  More 

sophisticated theories of heat conduction in disordered materials support this description: 

a majority of the vibrational modes (termed “diffusons” by Allen and Feldman [57]) 

carry heat in this manner and only a small fraction of the vibrational modes propagate as 

waves, or are localized and therefore unable to contribute to heat conduction.  Recent 

reports [58, 59] have shown that the minimum thermal conductivity can be circumvented 
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in multilayer thin films of metals and oxides. When the spacing between the interfaces is 

only a few nm, the thermal resistance of the interfaces reduces the thermal conductivity 

far below the thermal conductivity of the homogeneous amorphous oxide.   

In this section, I demonstrate a new route for achieving ultra-low thermal 

conductivity.  The thermal conductivity of disordered thin films of the layered crystal 

WSe2 can be as small as 0.05 W m-1 K-1, a factor of 6 smaller than the predicted the 

minimum thermal conductivity and, to the best of my knowledge, the lowest thermal 

conductivity ever observed in a fully dense solid.  Disruption of the layered structure and 

the crystallinity of the WSe2 sheets by ion irradiation produce a dramatic increase in the 

thermal conductivity of the thin film. Thus, the lowest thermal conductivities are not 

found in the fully amorphous form of WSe2; rather, ultra-low thermal conductivity is 

achieved by controlling both order and disorder in this anisotropic material. 

3.2 Experimental Details 

Thin films of tungsten selenide (WSe2, nominal thickness 30, 50, 70, 360 and 480 

nm), molybdenum selenide (MoSe2, nominal thickness 70 and 260 nm) and niobium 

selenide (NbSe2, nominal thickness 30, 60, and 120 nm) were synthesized by the 

modulated elemental reactants (MER) method.  Sequential bilayers of M (M=W, Mo, 

Nb) and Se were deposited onto unheated Si (100) wafers.  In each bilayer, the ratio of 

the layer thicknesses was adjusted such that, after annealing, we obtain the stoichiometry 

of the desired compound: 1.4Å of M (M=W, Mo or Nb) and 9Å of Se per bilayer.  I 

purchased a single crystal of WSe2 from Nanoscience Instruments to provide a baseline 

for comparisons.  The Si wafers used for MoSe2 deposition had a 50 nm thick thermally 

grown a-SiO2 blanket layer.   
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The base pressure of the deposition chamber was 10-7 torr.  Molybdenum, 

niobium and tungsten were deposited using electron-beam sources (99.95% purity); 

selenium (99.995% purity) was evaporated from effusion cells.   

After deposition, the samples were annealed in a N2 atmosphere to form the 

desired layered structures.  WSe2 films of nominal thickness of 30, 50, and 360 nm were 

annealed for 1 h at 625 °C.  To investigate how the microstructure and thermal 

conductivity evolved with annealing, films of nominal thickness of 70 nm were annealed 

for 1 hour at 200, 350, 500 and 650 °C; and films of nominal thickness 480 nm were 

annealed for 4 hours at 300, 400, 500 and 600 °C; MoSe2 films were annealed at for 1 

hour at 250, 450 and 625 °C; NbSe2 films were annealed at for 1 hour at 100, 200, 300 

and 400 °C.   

The crystalline quality and crystallographic orientation were evaluated by x-ray 

diffraction (XRD) using a Philips X'pert diffractometer with Cu Kα1 radiation; 

instrumental broadening determined from the FWHM of the (004) peak of a Si standard 

is 0.18 degrees.   

Synchrotron x-ray diffraction provided an in-depth look at the microstructure of 

the samples.  The scans were taken at the high-resolution 33ID beam line of the 

Advanced Phonon Source (APS) at Argonne National Laboratory.  The scans were 

collected at beam energies of 13.4 keV and 18.5 keV.  In-plane diffraction is a technique 

that is sensitive to the in-plane (a-b lattice plane) structure of the films.  The data was 

collected by setting the sample on a goniometer (Huber or Newport Kappa 

Diffractometer) at a small incident angle (0.20 degrees) relative to the x-ray source and 

scanning the detector in the a-b plane of the film.  Scans of reciprocal space were 
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obtained using a MAR345 (Rayonix/ Marresearch) scanning image plate detector at a 

grazing incidence angle of 1.0. The raw image plate data consists of a 2300 x 2300 matrix 

that consists of pixels of intensity (z coordinate) with x and y coordinates. To obtain 

useful information, the data must be calibrated to account for the detector to sample 

distance, x-ray wavelength, tilt of the detector and the distortion of the Ewald sphere due 

to using a flat image plate.  The acquired data was processed and converted to reciprocal 

space plots using Fit2D software [60].   

The stoichiometry and oxygen contamination of the films were determined by 

EPMA.  Oxygen content was on average 3 at.% in all the samples.  Thickness of the films 

was determined from low angle (< 10 degrees 2θ) XRR scans by analyzing the Kiessig 

fringes.   

I measured thermal conductivity using time-domain thermoreflectance; a thin film 

of Al, 60-85 nm thick was deposited on the samples by dc magnetron sputtering.  

Because of the very low thermal diffusivity of samples, I optimized the sensitivity of my 

measurements (see Figure 6) by using different pump beam modulation frequencies: I 

used a low frequency (580 kHz) for the 30, 50, and 70 nm WSe2 films, the 70 nm MoSe2 

films and the 30 and 60 nm NbSe2 films.  I used a high frequency (9.8 MHz) for the 360 

and 480 nm WSe2 films and the single crystal WSe2 sample, the 260 nm MoSe2 films and 

the 120 nm NbSe2 films.  The pump and probe beam optical beams were focused on the 

surface of the samples using a microscope objective lens of 40 mm focal length, 

producing a 1/e2 radius of the focused spot of 14 microns.  The laser power incident at the 

surface of the sample is typically ~ 5 mW for both the pump and probe. The steady-state 

temperature rise at the surface of the thin film samples is typically ~ 5 K with the highest 
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steady-state temperature rise encountered in my experiments being 10 K for a 343 nm 

WSe2 film at 88 K.  For the single-crystal WSe2 sample, the highest steady state 

temperature rise encountered in my experiments is 20 K at a measurement temperature of 

300 K.  The steady-state heating of the samples is taken into account in the data analysis.  

The thermal conductivity is determined by comparing the time dependence of the 

ratio of the in-phase Vin and the out-of-phase Vout signals from the rf lock-in amplifier to 

calculations using a thermal model.  The thermal model has several parameters (pump 

modulation frequency, laser spot size, and the thickness, thermal conductivity and heat 

capacity of each layer) but the thermal conductivity of the sample film or bulk crystal is 

the only important unknown.  The aluminum film thickness was derived using the 

picosecond acoustics method.  Aluminum thermal conductivity is calculated using the 

Wiedemann-Franz law from 4-point probe measurements of the electrical resistivity at 

300 K; lower temperature values were estimated from the values at 300 K assuming a 

constant residual resistivity [30].  The heat capacity of the Al layer [31], and heat 

capacity [32] and thermal conductivity [33] of the Si substrate are taken from literature 

values.  I used reference literature values for temperature dependence of heat capacity for 

WSe2 [38], MoSe2 [39] and NbSe2 [40].  The thermal conductance of the Al/sample 

interface is also adjusted in the model to fit the data but because of the low thermal 

conductivities of the thin films, this interface conductance has very little influence on the 

measurement of the thermal conductivity.  Overall uncertainties range between 10% at 

300 K and 25% at 80 K.   

I measured the cross-plane longitudinal speed of sound vL in the films using 

picosecond acoustics; vL is determined from the sample thickness measured by x-ray 
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reflectivity and the difference in the arrival times of acoustic echoes reflected from the 

Al/sample and sample/substrate interfaces.   

To study the effect of order-disorder balance I bombarded a sample of 24 nm 

WSe2 film with 1 MeV Kr+ ion beam.  The fluences used were in the range of 1x1013 to 

3x1015 cm-2.  A low beam current (30 nA) was used to minimize the amount of self-

annealing in the samples. Simulations using the Ion Stopping and Range in Targets 

module in SRIM 2008 software package [61] predict that 1 MeV Kr+ ions pass thru the 

24 nm thick WeSe2 films and penetrate deep into the Si substrate to a range of ~ 600 nm.  

To convert the Kr+ fluence to units of displacement per atom (DPA) for each layer of the 

target, I calculated the depth profile of collision events using SRIM software package 

with displacement energies 25 eV for WSe2 and 15 eV for Si.  The profile is then 

converted to DPA for each respective dose/layer type (see Figure 20 and Figure 21).  The 

effect of the WSe2 layer on the DPA depth distribution is negligible because its thickness 

is much smaller than the projected range of Kr+ ions in the entire target. 
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Figure 20. Calculated depth profile of DPA for 1 MeV Kr+ ions in Si for ions dose of 
3x1015 ions/cm2.  Open circles indicate the simulated profile in a Si substrate only, closed 
circles indicate the profile for a target composed of 24 nm WSe2 on top of a Si substrate.  
The DPA plot of the 24 nm of WSe2 is expanded in Figure 21.  
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Figure 21. Calculated depth profile of DPA for 1 MeV Kr+ ions in 24 nm WSe2 film for 
ion dose of 3x1015 ions/cm2.   

 

I irradiated bare silicon substrates with the same range of ion fluences and 

measured their thermal conductivity using the TDTR method. For TDTR data analysis 

the irradiated bare substrates were modeled as a 600 nm top layer of uniformly [62] 

amorphized Si (the length of ion penetration depth) and a bottom layer of crystalline Si.  

The measured thermal conductivity of ion-irradiated Si (Figure 22 and Figure 23) was 

then used in the TDTR analysis of the WSe2 films.   
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Figure 22. Thermal conductivity Λ versus irradiation dose (DPA units) for bare Si 
substrate.  Each DPA value is obtained from the calculated DPA depth profile for each 
respective irradiation dose by averaging over a distance of 600 nm.   
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Figure 23. Thermal conductivity Λ (closed circles) versus temperature for bare Si 
substrate irradiated with 1 MeV Kr+ ions to a dose of 3x1015 cm-2 (DPA = 8.72).  Also 
included is the temperature dependence of thermal conductivity (open circles) for a 1 μm 
thick a-SiO2 film from Figure 5.  

 

3.3 Results and Discussion 

Structure analysis of the samples by x-ray diffraction (XRD) using a laboratory x-

ray source shows that the films have a layered structure with as-deposited samples 

containing weak and broad (0 0 L) diffraction maxima; the intensity and sharpness of 

these diffraction peaks grow with annealing temperature (see Figure 24, Figure 25 and 

Figure 26).   
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Figure 24. X-ray diffraction data as a function of annealing temperature for a 50 nm 
WSe2 thick film, annealed for 1 h in dry nitrogen atmosphere at the temperatures 
indicated in the plot. (0 0 L) peaks are indexed in the figure.  
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Figure 25. X-ray diffraction data for a 60 nm NbSe2 thick film, annealed for 1 h in dry 
nitrogen atmosphere at 400 ºC. (0 0 L) peaks are indexed in the figure. 
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Figure 26. X-ray diffraction data for a 70 nm MoSe2 thick film, annealed for 1 h in dry 
nitrogen atmosphere at 625 ºC. (0 0 L) peaks are indexed in the figure. 
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I analyzed the stoichiometry and areal density of the sample films using RBS (see 

Figure 27).  The conversion factors used to convert channel to energy in Figure 27 are: 

WSe2 – calibration offset 138 keV and energy per channel 1.82 eV/ch; NbSe2 – 

calibration offset 134 keV and energy per channel 1.82 eV/ch; NbSe2 – calibration offset 

136.5 keV and energy per channel 1.85 eV/ch.  The quadratic term was null for all 

measurements.  Overall accuracy for estimating the stoichiometry of the sample layers is 

1.4% (see Section 2.2). 

The ratio of metal (W, Mo or Nb) to chalcogenide (Se) in the samples increases 

with annealing temperature from x = 0.39 ± 0.01 in the as-deposited samples to x = 0.49 ± 

0.01 in the samples annealed to the highest temperatures (about 600 ºC for WSe2 and 

MoSe2 and 400 ºC for NbSe2).  Mass density of the thin film samples was determined 

from RBS measurements of total areal density of atoms (see section 2.2) and number 

density of atoms N for each material.  Mass density increases with annealing temperature 

from 98.5 to 99.8% of theoretical density: ρ = 9.39 g cm-3 for WSe2, ρ =6.97 g cm-3 for 

MoSe2, and ρ = 6.47 g cm-3 for NbSe2.   
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Figure 27. RBS spectra (open circles) and the SIMNRA fit (uninterrupted line) for (A) 50 
nm thick WSe2 sample; (B) 60 nm thick NbSe2 film; (C) 70 nm thick MoSe2 film; oxygen 
peak in Figure C belongs to 50 nm a-SiO2 thermally grown on the Si substrate. 
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The XRD and RBS observations indicate that the desired chemical compounds 

are fully formed after deposition and undergo further densification and crystallization 

with annealing temperature.   

I used synchrotron x-ray diffraction to characterize the microstructure of a typical 

WSe2 film.  These highly textured films have completely random crystalline orientation 

in the a-b plane.  I examined the crystalline structure of the film by scanning the 

diffraction intensity through reciprocal space where the (1 0 3) reflection intersects the 

Ewald sphere.  The relatively narrow linewidth in the direction parallel to the surface,   

[H 0 3], gives a lateral coherence length of 6 nm (Figure 28C).  Scans through the 

intersection of (1 0 L) reflections with the Ewald sphere probe the coherence of the 

crystal structure along the direction normal to the WSe2 sheets.  The large linewidths 

(Figure 28B) indicate that crystallographic ordering in the stacking of the WSe2 sheets is 

limited to <2 nm.   

Similar scans on a typical NbSe2 thin film (Figure 29) yields in-plane coherence 

length of 9 nm and out-of-plane coherence length of 3 nm.  Scans of MoSe2 (Figure 30) 

thin film samples result in in-plane coherence length of 5 nm and out-of-plane coherence 

length of 2 nm.   
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Figure 28. X-ray diffraction data for a 32.5 nm thick WSe2 film collected at the 33BM 
beam-line of the Advanced Photon Source using 18.5 keV photons. After deposition, the 
WSe2 film was annealed for 1 hour at 650°C in a N2 atmosphere.  (A) False-color 
depiction of the x-ray diffraction intensities collected by the area detector in the vicinity 
of the (1 0 3) and (1 0 5) reflections. The vertical direction is normal to the sample 
surface and the horizontal direction is in the plane of the sample.  (B) Scan of the x-ray 
diffraction intensities along the surface normal.  The scan direction is shown as the 
vertical red line in A).  (C) Scan of the x-ray diffraction in the in-plane direction. The 
scan direction is shown as the horizontal red line in (A). 
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Figure 29. X-ray diffraction data for a 60 nm thick NbSe2 film collected at the 33ID 
beam-line of the Advanced Photon Source using 13.4 keV photons. After deposition, the 
NbSe2 film was annealed for 1 hour at 400°C in a N2 atmosphere.  (A) Scan of the x-ray 
diffraction intensities along the surface normal.  (B) Scan of the x-ray diffraction in the 
in-plane direction. 
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Figure 30. X-ray diffraction data for a 70 nm thick MoSe2 film collected at the 33ID 
beam-line of the Advanced Photon Source using 13.4 keV photons. After deposition, the 
MoSe2 film was annealed for 1 hour at 625°C in a N2 atmosphere.  (A) Scan of the x-ray 
diffraction intensities along the surface normal.  (B) Scan of the x-ray diffraction in the 
in-plane direction. 
 



 48

0 100 200 300 400 500 600 700

Annealing Temperature ( oC)

0.02

0.04

0.06

0.08

0.10

Λ
(W

m
-1

K
-1

)

WSe2 70 nm

WSe2 35 nm
WSe2 360 nm

 
Figure 31. Thermal conductivity Λ vs. annealing temperature for WSe2 films with 
nominal thicknesses 70 nm (full circles), 360 nm (closed triangles) and 35 nm (open 
circles). Annealing was done in N2 atmosphere for one hour at the temperature indicated 
on the x-axis. 
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Figure 32. Thermal conductivity Λ vs. annealing temperature for MoSe2 films with 
nominal thicknesses 70 nm (full circles) and 260 nm (open circles).  Annealing was done 
in N2 atmosphere for one hour at the temperature indicated on the x-axis. 
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Figure 33. Thermal conductivity Λ vs. annealing temperature for NbSe2 films with 
nominal thicknesses 30 nm (full circles), 60 nm (open circles) and 120 nm (closed 
triangles). Annealing was done in N2 atmosphere for one hour at the temperature 
indicated on the x-axis. 
 

Data for thermal conductivity as a function of annealing temperature demonstrate 

that microstructure evolution in 70 nm thick WSe2 samples during thermal annealing 

causes the thermal conductivity to decrease (Figure 31).  This behavior is surprising: 

since annealing materials at elevated temperature reduces the densities of metastable 

crystalline defects and thermal conductivity tends to increase as defects are eliminated, it 

is typically expected that annealing a material will increase the thermal conductivity.  A 

similar behavior is observed in 70 nm thick MoSe2 samples (see Figure 32) and 30 nm 

thick NbSe2 samples (see Figure 33).  

In Figure 34, I compare the thermal conductivity of annealed WSe2 films to the 

conductivity of a single crystal of WSe2 and the predicted minimum thermal 

conductivity.  The thermal conductivity of single crystal WSe2 is approximately 

proportional to 1/T, as expected for a dielectric or semiconductor where heat transport is 

dominated by phonons with mean-free-paths limited by anharmonicity. Calculations of 

the minimum thermal conductivity require knowledge of the number density of atoms 
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and the speeds of sound [4].  Number density of atoms calculated from lattice parameters 

is N = 4.96x1022 atoms cm-3.  I measured the longitudinal speed of sound in the cross-

plane direction of nominal 360 nm thick films, vL = 1.6 nm ps-1, using picosecond 

acoustics; this measurement is in good agreement with an independent measurement of 

the same film using picosecond interferometry, vL = 1.7 nm ps-1, using an index of 

refraction at the laser wavelength of 800 nm of n = 4.13.  Using vL=1.65 nm ps-1 and a 

mass density of 9.4 g cm-3, gives the elastic constant C33=25.6 GPa, comparable to C33 

literature values for NbSe2 and TaSe2 [63]. The transverse speed of sound vT is not 

accessible to the standard methods of picosecond acoustics; instead, I estimated vT=1.15 

nm ps-1 from the measurement of vL and the literature ratio C44/C33 for NbSe2 and TaSe2. 

The lowest thermal conductivity Λ measured at 300 K is Λ = 0.048 W m-1 K-1 for 

a 62 nm thick WSe2 film, 30 times smaller than the cross-plane thermal conductivity of 

single-crystal sample of WSe2 (Figure 34) and a factor of 6 smaller than the predicted 

minimum thermal conductivity.  This degree of deviation from the predicted minimum 

thermal conductivity in a homogeneous material is unprecedented [64].  Interestingly, the 

conductivity of the 62 nm thick film is smaller than the conductivity of a thinner film (24 

nm) or a thicker film (343 nm).  The reasons for these differences are not understood at 

this time but it might be due to variations in the degree of crystallographic ordering along 

the thickness of the films. 
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Figure 34. Summary of measured thermal conductivities of WSe2 films as a function of 
the measurement temperature.  The samples were annealed at 625 ºC for 1 hour prior to 
measurements.  Each curve is labeled by the film thickness.  Data for a bulk single crystal 
are included for comparison. The ion-irradiated sample was subjected to a 1 MeV Kr+ ion 
dose of 3x1015 cm-2 (~ 10.5 DPA). The interrupted line marked Λmin is the calculated 
minimum thermal conductivity for Wse2 films in the cross-plane direction. 
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Figure 35. Summary of measured thermal conductivities of MoSe2 films as a function of 
the measurement temperature.  The samples were annealed at 625 ºC for 1 h prior to 
measurements.  Each curve is labeled by the film thickness.  The interrupted line marked 
Λmin is the calculated minimum thermal conductivity for MoSe2 films in the cross-plane 
direction.  
 

In Figure 35 I compare the cross-plane thermal conductivity of annealed MoSe2 

films to the predicted minimum thermal conductivity calculated using longitudinal and 

transverse speeds of sound and the number density of atoms (N = 4.96x1022 atoms cm-3).  

I measured the longitudinal speed of sound in the cross-plane direction of nominal 260 

nm thick films using picosecond acoustics: average value , vL = 2.0 nm ps-1.  I estimated 

transverse speed of sound vT=1.4 nm ps-1 from measurement of vL and the literature ratio 

C44/C33 for NbSe2 and TaSe2 [63].  The lowest thermal conductivity Λ measured at 300 K 

is Λ = 0.087 W m-1 K-1 for a 70 nm thick MoSe2 film, a factor of 4 smaller than the 

predicted minimum thermal conductivity of MoSe2.  The conductivity of the thicker 260 

nm film is almost two times larger, Λ = 0.36 W m-1 K-1 at 300 K.   
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Figure 36. Summary of measured thermal conductivities of NbSe2 films as a function of 
the measurement temperature.  The samples were annealed at 400 ºC for 1 h prior to 
measurements.  Each curve is labeled by the film thickness.  The interrupted line marked 
Λmin is the calculated minimum thermal conductivity for NbSe2 films in the cross-plane 
direction.  Samples were annealed at 400 ºC for 1 hour prior to measurements.   

 

Figure 36 summarizes the thermal conductivity measurements on annealed NbSe2 

films.  The lowest thermal conductivity Λ measured at 300 K is Λ = 0.06 W m-1 K-1 for a 

33 nm thick NbSe2 film, a factor of 7 smaller than the predicted minimum thermal 

conductivity of NbSe2.  I calculated Λmin using number density of atoms N = 4.66x1022 

atoms cm-3 and literature values [63] for the speeds of sound, vL =2.55 nm ps-1 and vT = 

1.65 nm ps-1.  Thermal conductivities of thicker NbSe2 films is significantly larger, Λ = 

0.25 W m-1 K-1 at 300 K, yet still lower then estimated Λmin. 

NbSe2 exhibits metallic behavior 19 with an electrical resistivity along the c-axis 

that is a factor of 30 larger then the electrical resistivity in the a-b plane [65].  I estimated 

the electronic contribution to the thermal conductivity of the NbSe2 films from 



 54

measurements of the in-plane electrical conductivity of films deposited on fused-quartz 

substrates.  The NbSe2 films were deposited using the same recipe as the ones formed on 

Si (100) substrates for the thermal conductivity measurements (TDTR measurements 

require high thermal conductivity substrates).  Room temperature electrical 

measurements showed the NbSe2 films have p-type conduction and the a-b plane average 

electrical conductivity is 1550 (ohm-cm)-1 for 30 nm films, and 3650 (ohm-cm)-1 for 60 

nm films and 120 nm thick films.  These values are a factor of 4.3 and respectively 1.8 

times lower then the bulk [65, 66] a-b plane electrical conductivity for NbSe2.  I 

estimated the electronic component of the thermal conductivity Λe using the Wiedemann 

Franz law with a degenerate Lorenz number L = π2 (kB/e)2 / 3 = 2.45x10-8 V2/K2 and c-

axis electrical conductivity 0.03 times the a-b plane values.  The c-axis Λe = 0.04 W m-1 

K-1 for 30 nm NbSe2 films, and 0.09 W m-1 K-1 for 60 and 120 nm thick NbSe2 films.  

Given the turbostratic microstructure of our thin film samples, I expect that the 

anisotropy of electrical conductivity will be significantly larger than in the bulk, and thus 

the electronic contribution to the c-axis thermal conductivity of NbSe2 will be 

significantly smaller. 

The data shown in Figure 28 and Figure 34 lead to the conclusion that the ultra-

low thermal conductivities are produced by random-stacking of well-crystallized WSe2 

sheets. To test this idea, I used irradiation by energetic heavy ions to disrupt the 

crystalline order in the thin film samples (Figure 37).  At the highest ion dose, 3x1015 

ions cm-2 (10.5 DPA), I observed a factor of 5 increase in the thermal conductivity of the 

WSe2 film (see Figure 38) and Λ approaches the value estimated for the amorphous WSe2 
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(see Figure 34).  This increase in thermal conductivity with ion beam damage is also 

unprecedented.  
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Figure 37. XRD intensity of the (002) peak as a function of ion bombardment dose for 26 
nm thick film (open circles) and 100 nm film (filled circles – measured at University of 
Oregon) of WSe2. The uninterrupted line marked “no irradiation” indicates the intensity 
of the (002) peak in the same film, not subjected to ion irradiation. 
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Figure 38. Thermal conductivity versus irradiation dose for WSe2 films 26 nm thick.  
Samples were irradiated with 1 MeV Kr+ ions to the dose indicated on the x-axis of the 
plot (in DPA units). 

 

To gain further insight and confidence in the experimental results, molecular 

dynamics simulations on model structures were performed by Professor Keblinski and his 

group at Rensselaer Polytechnic Institute.  The estimated value for thermal conductivity 

Λ is 0.06 W m-1 K-1 , with a 10% error bar.  Given the approximate form of the potentials 
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used in the computational work, the agreement between the measured and calculated 

thermal conductivities is better than expected.  Nevertheless, the low thermal 

conductivity of the model structure suggests that the ultra-low thermal conductivity in 

layered, disordered crystals is a general phenomenon and not restricted to WSe2.  This 

conclusion is supported by the measurements on the MoSe2 (Figure 35) and NbSe2 

(Figure 36) samples.  I speculate at this time that the differences in Λ between the thinner 

and thicker disordered layered films are due to variations in the crystallographic order 

along the thickness of the films: annealing data (see Figure 31 to Figure 33) suggests the 

samples re-crystallize as a result of increased heat treatment temperatures, i.e., the 

crystalline coherence length is increasing.  Also, electrical measurements data suggests 

the variations in electrical conductivity in the 30 nm and 60 and 120 nm films of NbSe2 

are caused by different electrical anisotropy ratios in the thin and thick films.  These 

variations could be a result of different degrees of turbostratic disorder.   

3.4 Conclusions 

In summary, I found that the thermal conductivity of disordered, layered 

crystalline materials is significantly less than the predicted minimum thermal 

conductivity for the cross-plane direction and that the thermal conductivity increases 

when the layered structure is disrupted by ion bombardment. These results demonstrate 

that control of both order and disorder, i.e., the disordered stacking of well-ordered 

crystalline sheets of a layered crystal, can produce unexpected and dramatic reductions in 

thermal conductivity. Molecular dynamics simulations on model structures suggest and 

the experimental data concurs that the ultra-low thermal conductivity in layered, 

disordered crystals is a general phenomenon.   
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CHAPTER 4 
 

THERMAL CONDUCTIVITY OF MISFIT LAYERED 
MATERIALS 

 

Significant components of this chapter were published in “Low thermal conductivity in 

nanoscale layered materials synthesized by the method of modulated elemental 

reactants”, Journal of Applied Physics 104, 033533 (2008).  I collaborated with Professor 

David Johnson, Mr. Qiyin Lin and Mr. Colby Heideman at University of Oregon for 

sample deposition and structural characterization.  I measured the thickness, composition, 

thermal and elastic properties of the samples described in this chapter.   

4.1 Introduction 

In the previous section I showed that ultralow thermal conductivity is a general 

property of layered disordered crystalline metal dichalcogenides, and possibly common 

to all layered disordered materials.  Literature reports have also demonstrated that 

superlattices of semiconductors can have thermal conductivities less than the conductivity 

of the corresponding alloy [67] ; and that nanoscale multilayers of oxides and metals can 

have thermal conductivities smaller than the conductivity of typical refractory thermal 

barriers [58].  With these ideas in mind I set up to explore ways to produce even lower 

thermal conductivity in nanoscale multilayer films in which the layers have different 

compositions and crystal structures.   

One class of materials that fits the profile is that of the misfit-layered compounds. 

The general chemical formula of these compounds is [(MX)m (TX2)n]  where X = S and 
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Se, M = Sn, Pb, Sb, Bi, and rare earth metals, and T= Ti, V, Cr, Nb, Ta and other 

transition metals.  These structure of these compounds consist of alternating distorted 

rock salt layers with dichalcogenide layers [68, 69, 70].  The distortion in the rock salt 

results from the coordination of the metal in the rock-salt layer by the Se in the 

dichalcogenide layer (i.e., Pb by Se from the TSe2 layer) [71].  The values m and n 

represent the number of rock salt bilayers and the number of Se-T-Se planes in the unit 

cell, respectively.  Charge transfer is generally accepted [72] as the stabilizing 

mechanism for the misfit structure over a physical mixture of the components.   

This section shows the results of my investigation of the thermal conductivity of 

thin film samples of misfit-layer dichalcogenide films [(PbSe)m (TSe2)n] i (T = W, Mo or 

Nb, m = 1-5, n = 1-5) synthesized by the modulated elemental reactants method.   

4.2 Experimental Details 

Thin films of nanoscale layered materials were synthesized using the modulated 

elemental reactants (MER) method.  Pb, W, Nb and Mo were evaporated from electron-

beam sources; Se was evaporated from effusion cells.  To synthesize misfit-layer 

chalcogenides with layer formula [(PbSe)m (TSe2)n]i (X = W, Nb or Mo, m = 1-5, n = 1-5, 

i = 10-40) , we started by depositing onto unheated Si(001) wafers m bilayers of Pb and 

Se with 1:1 atomic ratio followed by n bilayers of X and Se (X = W, Nb or Mo) with 1:2 

atomic ratio.  The m+n sequence was repeated i times and the as-deposited films were 

annealed for 1 hour at 400 °C in dry N2.  The total thickness of annealed [(PbSe)m 

(MoSe2)n]i films varied between 40 and 60 nm, except for sample [(PbSe)3 (MoSe2)3]i 

which was 115 nm thick.  The total thickness of the annealed [(PbSe)m (WSe2)n]i films 

varied from 20 to 60 nm.  The [(PbSe)m (NbSe2)n]i films were 50 nm nominally thick.  
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For comparison purposes, a 260 nm thick PbSe sample was synthesized by the same 

approach.   

The stoichiometry and oxygen contamination of the films were determined at 

University of Oregon by electron-probe micro-analysis (EPMA).  The EPMA data was 

refined using the STRATAGem software package.  Oxygen content was on average 5 

at.%.   

The crystalline quality, crystallographic orientation, and thickness of the films 

were evaluated by x-ray diffraction (XRD) and x-ray reflectivity (XRR) using a Bruker 

D8 Discover diffractometer with Cu Kα1 radiation.  Thickness of the films was derived 

from the Kiessig fringes in low angle (2θ < 10 degrees) XRR scans.   The period of the 

repeat unit was determined from the position of the satellites of the high-angle (0 0 L) 

diffraction peaks [73]. 

Thermal conductivity was measured at room temperature using time-domain 

thermoreflectance (TDTR).  Prior to the measurements, I coated the samples with a 

transducer layer of Al, 80-85 nm thick, using dc magnetron sputtering.  I used a 1/e2 

radius of the focused spots of 7.5 microns and the total incident laser power was typically 

10 mW.  The steady-state temperature rise was estimated at 3 - 9 K.  The differences in 

reflected probe intensity caused by the heating due to the pump pulses were extracted 

with a rf lock-in amplifier synchronized to the modulation frequency of the pump (f = 9.8 

MHz).  

I determined the thermal conductivity of the samples by comparing calculations 

made with a thermal model to the time dependence of the in-phase signal Vin of the rf 

lock-in normalized by the out-of-phase signal Vout.  The thermal conductivity of the Al 
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layer was estimated using the Wiedemann-Franz law and 4-point probe measurements of 

the in-plane electrical resistivity; the thickness of the Al layer was measured by 

picosecond acoustics. The heat capacity of the Al layer [31], and heat capacity [32] and 

thermal conductivity [33] of the Si substrate are taken from literature values.  The heat 

capacity of each sample layer is a volume weighted average of the heat capacities at 300 

K of the individual components: WSe2 [38] (1.95 J cm-3 K-1), MoSe2 [39] (1.94 J cm-3 K-

1), NbSe2 [40] (1.93 J cm-3 K-1) and PbSe [41] (1.44 J cm-3 K-1).  The overall uncertainty 

in measuring the thermal conductivity was estimated at 10%. 

I measured the cross-plane longitudinal speed of sound vL in the films using 

picosecond acoustics; vL is determined from the sample thickness measured by x-ray 

reflectivity and the difference in the arrival times of acoustic echoes reflected from the Al 

/ sample and sample / substrate interfaces.   

4.3 Results and Discussion 

X-ray diffraction scans of as-deposited films (data not shown) contain weak and 

broad high angle (00L) Bragg peaks corresponding to the target chemical compounds.  

The peaks become sharper with increasing annealing temperature indicating the 

formation of highly textured structures with layers aligned parallel to the surface of the 

substrate.  The period of the repeat unit extracted from the (00L) Bragg peaks in the high 

angle XRD scans are in good agreement with the period of repeat unit calculated using 

the lattice constants and the target compositions and structures for each sample (see for 

example Figure 39).   
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Figure 39. Diffraction patterns of the (PbSe)m(WSe2)n compounds after annealing at 400 
°C for 1 hour. The structures calculated for each compound show a regular increase in the 
c-axis of the unit cell. 

 

I analyzed the stoichiometry and areal density of the sample films using RBS (see 

Figure 40).  The conversion factors used to convert channel to energy in Figure 40 are: 

(PbSe) (MoSe2) – calibration offset 135 keV and energy per channel 1.803 eV/ch; 

(PbSe)5 (WSe2)5  – calibration offset 140 keV and energy per channel 1.852 eV/ch; 

(PbSe)2 (NbSe2)2  – calibration offset 141 keV and energy per channel 1.782 eV/ch.  The 

quadratic term was null for all measurements.   
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Figure 40. RBS spectra (open circles) and the SIMNRA fit (uninterrupted line) for (A) 53 
nm thick (PbSe) (MoSe2) film; (B) 48 nm thick (PbSe)5 (WSe2)5 film; (C) 49 nm thick 
(PbSe)2 (NbSe2)2 film. 
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The ratio Pb : X : Se (X = W, Mo or Nb) is within 5% of those predicted by the 

model crystalline structure for [(PbSe)m (WSe2)n] and within 3% for [(PbSe)m (MoSe2)n] 

and [(PbSe)m (NbSe2)n] misfit layer samples.  Average mass density of the sample films 

agree within 5% with the values estimated by XRR and within 3% with those predicted 

by the crystalline structure model of each compound.   

As shown in Figure 41, Figure 42, and Figure 43, we have not succeeded in 

creating materials with thermal conductivity Λ below what I previously measured for 

single component WSe2 films, Λ =0.05 W m-1 K-1.  Thermal conductivity is reasonably 

well correlated with the composition of the film, i.e., the PbSe content, but it does not 

display a significant correlation with the density of interfaces, i.e., the period of the 

multilayer. 

0.0 0.2 0.4 0.6 0.8 1.0
PbSe content

0.1

Λ
(W

m
-1

K
-1

)

(PbSe)m : (MoSe2)n

0.03

0.3

(1;5)
(1;3)

(1;2)

(2;3)

(2;2)
(3;3)
(1;1)

(2;1) (3;1)
(4.5;1)

 

(A) 

10 100
Multilayer period (Å)

0.1

Λ
(W

m
-1

K
-1

)

(PbSe)m : (MoSe2)n

0.03

0.3

20 50

(1;1)

(1;2) (1;3)
(1;5)

(2;1)

(3;3)

(2;2)

(2;3)
(3;1)

(4.5;1)

 

(B) 
Figure 41. Cross-plane thermal conductivity of (PbSe)m (MoSe2)n films. Data are plotted 
as a function of (A) PbSe atomic fraction (calculated as 2m/(2m+3n)); and (B) thickness 
of the misfit layer repeat unit.  Each data point is labeled by a (m;n) index for the film 
where m is the number of PbSe bilayers and n is the number of MoSe2 sheets in the repeat 
unit. 
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(B) 
Figure 42. Cross-plane thermal conductivity of (PbSe)m (WSe2)n films. Data are plotted 
as a function of (A) PbSe atomic fraction (calculated as 2m/(2m+3n)); and (B) thickness 
of the misfit layer repeat unit.  Each data point is labeled by a (m;n) index for the film 
where m is the number of PbSe bilayers and n is the number of WSe2 sheets in the repeat 
unit. 

 

0.0 0.2 0.4 0.6 0.8 1.0
PbSe content

0.1

Λ
(W

m
-1

K
-1

)

(PbSe)m : (NbSe2)n

0.3

0.2

(1;5)

(1;3)
(1;2)

(1;1)

(3;3)
(2;2)

(3;1)

(2;1)

(A) 

10 100
Multilayer period (Å)

0.1

Λ
(W

m
-1

K
-1

)

(PbSe)m : (NbSe2)n

0.2

0.3

20 50

(1;1)
(2;1)

(1;2)

(1;3)

(3;1)
(2;2)

(1;5)

(3;3)

(B) 
Figure 43. Cross-plane thermal conductivity of (PbSe)m (NbSe2)n films. Data are plotted 
as a function of (A) PbSe atomic fraction (calculated as 2m/(2m+3n)); and (B) thickness 
of the misfit layer repeat unit.  Each data point is labeled by a (m;n) index for the film 
where m is the number of PbSe bilayers and n is the number of NbSe2 sheets in the repeat 
unit. 

 

The lowest thermal conductivities are 0.07 W m-1 K-1 for (PbSe)1 (MoSe2)5, 0.06 

W m-1 K-1 for (PbSe)1 (WSe2)4, and 0.14 W m-1 K-1 for (PbSe)1 (NbSe2)5.  These values 

are approximately a factor of 5 and respectively 3 smaller than the minimum thermal 

conductivity of PbSe Λ min = 0.38 W m-1 K-1 calculated using the speeds of sound [74] 
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(vT = 1.4 nm/ps and vL = 3.9 nm/ps) and mass atomic density of 8.3 g cm-3 of PbSe.  

These values are also approximately a factor of 4 and respectively 2 smaller than the 

minimum thermal conductivity of WSe2 Λ min = 0.29 W m-1 K-1 calculated in Chapter 3.  
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Figure 44. Longitudinal speed of sound of (PbSe)m (MoSe2)n films as a function of the 
PbSe atomic fraction (calculated as 2m/(2m+3n)).  Each data point is labeled by a (m;n) 
index for the film, where m is the number of PbSe bilayers and n is the number of MoSe2 
sheets in the repeat unit.  The solid line is a linear extrapolation of the data used to extract 
the longitudinal speed of sound for pure MoSe2 and PbSe. 
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Figure 45. Longitudinal speed of sound of (PbSe)m (WSe2)n films as a function of the 
PbSe atomic fraction (calculated as 2m/(2m+3n)).  Each data point is labeled by a (m;n) 
index for the film, where m is the number of PbSe bilayers and n is the number of WSe2 
sheets in the repeat unit. 
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Figure 46. Longitudinal speed of sound of (PbSe)m (NbSe2)n films as a function of the 
PbSe atomic fraction (calculated as 2m/(2m+3n)).  Each data point is labeled by a (m;n) 
index for the film, where m is the number of PbSe bilayers and n is the number of NbSe2 
sheets in the repeat unit.  The solid line is a linear extrapolation of the data used to extract 
the longitudinal speed of sound for pure NbSe2 and PbSe. 

 

The cross-plane longitudinal speeds of sound vL of the misfit-layer films (Figure 

44, Figure 45 and Figure 46) indicate a softening of the lattice with decreasing PbSe 

content; this behavior is most clearly shown in the data for (PbSe)m (MoSe2)n and 

(PbSe)m (NbSe2)n films, see Figure 44 and Figure 46.  As was the case with the data for 

Λ, the density of interfaces does not appear to have a significant influence on vL.  A 

linear extrapolation of these data to pure MoSe2 , NbSe2 and PbSe gives elastic constants 

of C33= 28 GPa, C33= 42 GPa and C11= 124 GPa, respectively.  The results are similar to 

literature values for longitudinal elastic constant of PbSe [74] (C11=124 GPa) and NbSe2 

[63] (C33= 42 GPa) and similar to the longitudinal elastic constant for WSe2 (C33=25.6 

GPa), measured in chapter 3. 
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4.4 Conclusions 

Using nanoscale multilayers prepared by modulated elemental reactants method, I 

have demonstrated a large variety of nanostructured materials with thermal conductivities 

significantly below the predicted minimum thermal conductivity of the component 

materials used to create the multilayer.  I was not successful, however, in producing 

thermal conductivities below the ultralow values I reported in single component WSe2 

films.  For multilayer materials with similar composition, changes in the density of 

interfaces—or equivalently, changes in the thicknesses of the individual layers—do not 

produce significant changes in the thermal conductivity.  This null result (the relative 

insensitivity of the data to the density of interfaces) is somewhat surprising since the 

finite thermal conductance of interfaces between different materials is usually thought to 

play an important role in the reduction of thermal conductivity in multilayers and 

superlattices.  Apparently, the interface thermal conductance is not a significant factor for 

heat transfer in the multilayer materials reported here; and the thermal conductivity is 

instead controlled by the unusual thermal properties of the disordered layered crystals 

such as WSe2 that are included in the multilayer. 

The origin of ultra-low thermal conductivity of layered disordered WSe2 films 

was recently studied [75] using molecular dynamics simulations and vibrational mode 

analysis on model structures.  This study shows that the ultra-low thermal conductivity 

can be attributed to the strong anisotropy in the elastic constants of the materials due to 

weak interplanar Van der Waals bonding.  The anisotropy suppresses the density of 

vibrational modes with wave-vectors that have components in the cross-plane direction of 

the samples, so there are fewer phonon modes carrying heat in that direction than is 
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assumed in the model of the minimum thermal conductivity.  This conclusion of is 

consistent with our experimental results: in the misfit layer films, the cross-plane thermal 

conductivity decreases with increasing content of the main source of anisotropy in the 

sample, the layered chalcogenide; and the thermal conductivity is largely unaffected by 

variations in superlattice period. 
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CHAPTER 5 
 

THERMAL CONDUCTIVITY OF NANOSCALE LAYERED 
MATERIALS 

 

Significant components of this chapter were published in “Low thermal conductivity in 

nanoscale layered materials synthesized by the method of modulated elemental 

reactants”, Journal of Applied Physics 104, 033533 (2008), and “Lower limit to the 

lattice thermal conductivity of nanostructured Bi2Te3-based materials”, Journal of 

Applied Physics 106, 073503 (2009).  I collaborated with Professor David Johnson and 

Dr. Clay Mortensen from University of Oregon for sample deposition and structural 

characterization.  I measured the thermal and elastic properties of the samples described 

in this chapter.  I thank Mr. Yee Kan Koh for his help in implementing the Debye – 

Callaway model used in this chapter. 

5.1 Introduction 

In the previous section I showed that by incorporating disordered layered 

materials in multilayer films, we can control the thermal conductivity Λ of the multilayer 

by controlling the amount of disordered material rather then the density of abrupt 

interfaces.  This observation has motivated me to explore how I might extend this 

behavior into classes of materials that are known to have high power factors for 

thermoelectric energy conversion, e.g., Bi2Te3 and Bi2Te3/Sb2Te3 multilayers [76].   

Recently [77, 78], nanostructured Bi2Te3 prepared by ball-milling and spark-

plasma-sintering have been demonstrated with significantly enhanced efficiency in 
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comparison to materials prepared by traditional methods of powder processing. The 

improved efficiency can be mostly attributed to a reduction in thermal conductivity 

created by scattering of phonons at the boundaries between nanoscale grains.  These 

observations raise the question of how small of grains are needed to significantly reduce 

the lattice thermal conductivity and ultimately what is the lower limit to the lattice 

thermal conductivity of  Bi2Te3-based thermoelectric materials. 

To help answer these questions, we prepared a variety of thin films of Bi2Te3, 

related alloys, and multilayers with well-controlled structure on nanometer length scales.  

Specifically, we introduce disordered layers of TiTe2 in multilayers to create strong 

phonon scattering on well-defined length scales of only a few nanometers. 

Bismuth telluride [79] (Bi2Te3) and antimony telluride [80] (Sb2Te3) have 

rhombohedral crystal structures with one chemical formula per unit cell.  The most often 

used description is the pseudo-hexagonal unit cell obtained by transformation of axes and 

containing three chemical formulae per unit cell with lattice parameters [81] : Bi2Te3 a = 

4.4 Å, c = 30.5 Å; Sb2Te3 a = 4.3 Å, c = 30.4 Å.  The hexagonal cell is formed by 

stacking of layers of like-atoms perpendicular to the c-axis and following the sequence 

(called quintet) Te-X-Te-X-Te (X = Bi or Sb); each quintet is bonded to the next by Te-

Te bonds and longer-ranged electrostatic [82, 83] interactions.  Titanium telluride (TiTe2) 

has a hexagonal crystal structure [84] with one formula unit per unit cell (a = 3.8 Å, c = 

6.5 Å). In this structure, one sheet is composed of a hexagonal plane of Ti atoms bonded 

to two Te layers by strong covalent–ionic bonds and each two-dimensional TiTe2 sheet is 

bonded to adjacent sheets by weak Van der Waals forces. 
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This section shows the results of my investigation of the thermal conductivity of 

thin film samples of Bi2Te3 and Bi2Te3 – based materials.  First, I looked at single layer 

homogeneous Bi2Te3, Sb2Te3 and multilayer [(TiTe2)3 (Bi2Te3)m (TiTe2)3 (Sb2Te3)n]i (m = 

1-5, n = 1-5) samples to gauge the effects of superlattice structures on the thermal 

conductivity of our films.  Second, thin films of alloy (Bi0.5Sb0.5)2Te3, multilayer 

(Bi2Te3)m(TiTe2)n (m = 2-6, n=2-6) and multilayer alloy [(BixSb1-x)2Te3]m(TiTe2)n were 

synthesized to optimize lowering the lattice thermal conductivity by small grains, alloy 

mix and the introduction of disordered layers in the structure . 

5.2 Experimental Details 

Multilayer thin films of nanoscale materials were synthesized using the modulated 

elemental reactants (MER) method.  The films were deposited onto polished Si (100) 

oriented substrates.  Bismuth, antimony and tellurium were deposited using effusion cells 

and titanium was deposited with an electron beam source.   

To start, homogenous Bi2Te3 and Sb2Te3 films were prepared by depositing 

alternating layers of M (M = Bi or Sb) and Te with a 2:3 atomic ratio, each bilayer having 

a thickness of 10.1 Å.  Homogenous TiTe2 films were prepared by depositing alternating 

layers of Ti and Te with a 1:2 atomic ratio, each bilayer having a thickness of 6.5 Å.  

After annealing, each Bi/Te bilayer formed a Te-Bi-Te-Bi-Te layers quintet, one-third of 

a hexagonal Bi2Te3 unit cell; each Ti/Te layer resulted in a Ti-Te-Ti sheet.  Annealing 

was done in a dry N2 environment (< 0.4 ppm O2).  The single-component Bi2Te3 films 

were annealed at 100, 150, 200, 250, 300 or 350 °C for 15 minutes and at 400 °C for 1 

minute.  The single-component Sb2Te3 films were annealed in dry N2 atmosphere at 100, 

150, 200, 250 and 300 °C for 15 minutes, at 350 °C for 2 minutes, or at 400 °C for 1 
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minute.  The single-component TiTe2 films were annealed in dry N2 atmosphere at 150, 

250 and 300 °C for 5 and 30 minutes.  Bi2Te3 and Sb2Te3 films single-component films 

were 100 nm nominally thick; TiTe2 films were 50 nm nominally thick.   

Three-component multilayer films with layer formulas [(TiTe2)3 (Bi2Te3)m 

(TiTe2)3 (Sb2Te3)n]i (m = 1-5, n = 1-5, i = 5-7) were synthesized by depositing a sequence 

of single elements: three bilayers of Ti and Te with 1:2 atomic ratio, followed by m 

bilayers of Bi and Te with 2:3 atomic ratio, followed by another sequence of three 

bilayers of Ti and Te with 1:2 atomic ratio, and finally n sequential bilayers of Sb and Te 

with 2:3 atomic ratio.  The sequence was repeated i times and then the films were 

annealed for 5 minutes at 250 °C in dry N2 atmosphere.  After annealing, the nominal 

thickness of the 3-component films was 55 nm.   

Three different series of [(Bi2Te3) m (TiTe2) n] (m, n = 2-6) multilayer films were 

prepared: in the first one, the repeat unit contained m = 3 bilayers of Bi and Te with 2:3 

atomic ratio, followed by n = 2 - 6 bilayers of Ti and Te with 1:2 atomic ratio; in the 

second series, the repeat unit contained m = 2-6 bilayers of Bi and Te with 2:3 atomic 

ratio, followed by n = 3 bilayers of Ti and Te with 1:2 atomic ratio; the third series 

consisted of multiples of the repeat unit containing equal number of Bi/Te followed by 

Ti/Te bilayers with m = n = 2, 5, and 6.  After annealing at 300 °C for 30 minutes, the 

films were 50-100 nm thick.  

The alloy and multilayer alloy films were prepared by depositing alternating 

bilayers of Bi/Te, Sb/Te and Ti/Te.  Films with chemical composition (Bi0.5Sb0.5)2Te3 

were deposited and then annealed in sealed quartz ampoules evacuated to 1x10-6 Torr in 

the presence of Te-rich Bi2Te3 powder.  The films were subsequently annealed at 150 °C 
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for 30 min, at 250 °C for 10 min, or at 300 °C for 4 and 8 min and after annealing were 

≈60 nm thick.  Films with chemical composition [(BixSb1-x)2Te3] m (TiTe2) n (x = 0.55 +/- 

0.09, m = 2-4, n= 3 and 6) were deposited using the same recipe but annealed in a dry N2 

atmosphere at 250 °C.  After annealing, the films had a thickness between 40 and 60 nm. 

The stoichiometry and oxygen contamination of the films were determined by 

electron-probe micro-analysis (EPMA).  The EPMA data were refined using the 

STRATAGEM software package.  Oxygen content was on average 7 at.% in the 3-

component films and 3 at.% in the 2-component films. 

X-ray diffraction (XRD) and x-ray reflectivity (XRR) were employed to 

determine the phase-formation, grain-size, film thickness, multilayer-period and the 

crystallographic orientation of the as-deposited and annealed samples.  The x-ray studies 

were performed using Cu Kα1 radiation source with a Goebel mirror to collimate the 

beam.  Thickness of the films was evaluated from the Kiessig fringes of low angle XRR 

scans.  The period of the multilayers was determined from the position of superlattice 

Bragg diffraction maxima in the high angle XRD data.  The grain size was calculated 

using the Scherrer equation after accounting for the contribution of instrumental 

broadening, ∆ (2θ) ≈ 0.05°, to the width of the (003) diffraction peak.   

Grazing incidence in-plane x-ray diffraction (GIIXRD) and high-angle x-ray 

diffraction (HAXRD) data of the as-deposited alloy and multilayer alloy samples indicate 

the incipient formation of alloy composition with nanometer size grains.  Subsequent 

annealing promoted grain growth of the respective alloy composition, as noted from the 

narrowing of the diffraction maxima.  The (Bi0.5Sb0.5)2Te3 alloy films are highly textured 

in the [0 0 L] crystallographic direction. Post deposition annealing of the multilayer 
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[(Bi2Te3)m (TiTe2)n] samples results in superlattice formation as determined from the 

presence of superlattice Bragg diffraction past the 30th order corresponding to the 

superlattice period.  

X-ray diffraction studies of the [(BixSb1-x)2Te3] m (TiTe2)n films showed the 

formation of high quality multilayers with precise stacking of the a-b planes of the 

superlattice relative to the substrate.  Bragg diffraction maxima were observed past the 

50th order, indicating the high quality of the alloy multilayer.  Diffraction data obtained 

using an in-plane geometry revealed diffraction corresponding to TiTe2 and (Bi,Sb)2Te3 

with no diffraction observed corresponding to either Bi2Te3 or Sb2Te3, confirming the 

alloy nature of the superlattices.   

I measured thermal conductivity of the samples at room temperature using time-

domain thermoreflectance (TDTR).  Prior to the measurements, I coated the samples with 

a transducer layer of Al, 80-85 nm thick, using dc magnetron sputtering.  I used a 1/e2 

radius of the focused spots of 7.5 microns and the total incident laser power was typically 

20 mW.  The steady-state temperature rise was estimated at 2 - 5 K.  The differences in 

reflected probe intensity caused by the heating due to the pump pulses are extracted with 

a rf lock-in amplifier synchronized to the modulation frequency of the pump (f = 9.8 

MHz).  

I determined the thermal conductivity of the sample by comparing calculations 

made with a thermal model to the time dependence of the in-phase signal Vin of the rf 

lock-in normalized by the out-of-phase signal Vout.  The thermal conductivity of the Al 

layer was estimated using the Wiedemann-Franz law and 4-point probe measurements of 

the in-plane electrical resistivity; the thickness of the Al layer was measured by 
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picosecond acoustics. The heat capacity of the Al layer [31], and heat capacity [32] and 

thermal conductivity [33] of the Si substrate are taken from literature values.  The heat 

capacity of each sample layer is a volume weighted average of the heat capacities of the 

individual components: Bi2Te3 [35], Sb2Te3 [36] and TiTe2 [37] for the 2- and 3-

component samples.  The overall uncertainty in measuring the thermal conductivity was 

estimated at 10%.  I measured the cross-plane longitudinal speed of sound vL in the films 

using picosecond acoustics; vL is determined from the sample thickness measured by x-

ray reflectivity and the difference in the arrival times of acoustic echoes reflected from 

the Al / sample and sample / substrate interfaces.   

5.3 Results and Discussion 

Structural characterization of he samples was obtained using synchrotron x-ray 

diffraction at beam line 33-ID-D at the Argonne Lab Advanced Photon Source.  The 

degree of turbostratic disorder in the annealed samples was evaluated by scanning the 

diffraction intensity through reciprocal space where the (1 0 L) reflection intersected the 

Ewald sphere. These studies revealed that TiTe2 exhibits turbostratic disorder; i.e., the 

annealed films have a disordered layered structure with precise stacking of the a-b planes 

relative to the substrate and small coherence lengths, 6 nm in the in-plane and 8 nm in the 

out-of-plane directions.   

Temperature dependence of thermal conductivity exhibits a behavior similar to 

the disordered layered chalcogenides previously described in chapter 3 (Figure 47).  To 

calculate the minimum thermal conductivity Λmin for TiTe2 , I measured cross-plane 

longitudinal speed of sound vL = 1.7 nm ps-1 using picosecond acoustics.  Using vL and a 

mass density of 6.27 g cm-3, gives the elastic constant C33 = 18 GPa, 2 - 3 times less then 
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literature values for TiSe2 [85] (C33 = 39 GPa) and TiS2 [86] (C33 = 55 GPa).  I estimated 

cross-plane transversal speed of sound vT = 1 nm ps-1 from the measurement of vL and the 

literature ratio C44/C33 for TiSe2 and TiS2.   
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Figure 47. Summary of measured thermal conductivities of TiTe2 films as a function of 
the measurement temperature.  The samples were annealed at 300 ºC for 5 minutes prior 
to measurements.  Each curve is labeled by the film thickness. The interrupted line 
marked Λmin is the calculated minimum thermal conductivity for TiTe2 films in the cross-
plane direction. 

 

Typically, annealing of materials at elevated temperature reduces the density of 

crystalline defects and leads to an increase in thermal conductivity.  The thermal 

conductivity Λ of single-component Bi2Te3 and Sb2Te3 films follows this expected 

behavior up to an annealing temperature of approximately 200 ºC, see Figure 48.  For an 

annealing temperature of 250 ºC, the thermal conductivity Λ of two-component films is a 
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factor of 2 smaller than Λ of single-component films and the thermal conductivity of 

three-component films is a factor of 4 smaller than Λ of single-component films. 
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Figure 48. Cross-plane thermal conductivity of films based on Bi2Te3 and Sb2Te3 as a 
function of annealing temperature:  2-component Bi2Te3 / Sb2Te3 multilayers (filled 
triangles); 3-component Bi2Te3 / TiTe2 / Sb2Te3 multilayers (open triangle); single-
component Sb2Te3 (open circles); single-component Bi2Te3 (filled circles); and single-
component TiTe2 (filled squares).  The data point for the 3-component film is the average 
of the thermal conductivities for several structures, see also Figure 49. 
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Figure 49. Cross-plane thermal conductivity of 3-component Bi2Te3 / TiTe2 / Sb2Te3 
films (closed triangle) and 2-component Bi2Te3 / Sb2Te3 films (open triangle) annealed at 
250 °C.  Open circles are thermal conductivities for Bi2Te3 / Sb2Te3 superlattices from 
Reference 87.  Minimum thermal conductivity for Bi2Te3 (dashed line) is included for 
comparison. 
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The data for two-component Bi2Te3 / Sb2Te3 films are in good agreement with 

prior work [87] (see Figure 49) on the thermal conductivity of Bi2Te3 / Sb2Te3 multilayers 

prepared by chemical vapor deposition.  Also included in Figure 49 is the predicted 

minimum thermal conductivity Λmin for Bi2Te3 calculated using the cross-plane speeds of 

sound and the number density of atoms (N = 2.96x1022 atoms cm-3).  I measured the 

longitudinal speed of sound for homogeneous Bi2Te3 films and the value (vL = 2.5 nm ps-

1) coincides with that estimated from reference [88] elastic constants (C33 = 48 GPa).  I 

estimated the transverse (vT = 1.9 nm ps-1) speed of sound from literature values [89] for 

the elastic constants (C44 = 27 GPa) and the mass density 7.9 g cm-3.  The thermal 

conductivity for 3-component films is independent of the period of the multilayer and the 

average Λ (0.18 W m-1 K-1) is two times lower than Λmin of Bi2Te3.  The low Λ of the 3-

component films cannot be explained by a softening of the lattice.  The average value of 

the longitudinal speed of sound in the 3-component films (2.45 nm ps-1) is close to that 

measured for single-component Bi2Te3 (2.48 nm ps-1) and Sb2Te3 (2.93 nm ps-1) films 

annealed at the same temperature, 250 °C, see Figure 50.  
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Figure 50. Longitudinal speed of sound for 3-component Bi2Te3 / TiTe2 / Sb2Te3 films 
(closed circles) plotted as a function of superlattice period. Speed of sound in single-
component Sb2Te3 and Bi2Te3 films (solid and dashed lines) are shown for comparison. 
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(B) 

Figure 51. Cross-plane thermal conductivity of [(Bi2Te3)m(TiTe2)n] (m = 2-6, n=2-6) 
films. Data are plotted as a function of (A) TiTe2 atomic fraction (calculated as 
3n/(5m+3n)); and (B) thickness of the multilayer repeat unit.  Each data point is labeled 
by a (m;n) index for the film where m is the number of Bi2Te3 quintet layers and n is the 
number of TiTe2 sheets in the repeat unit. Also included is the average measured thermal 
conductivity for the pure TiTe2 samples. 
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(B) 

Figure 52. Cross-plane thermal conductivity of [(BixSb1-x)2Te3]m (TiTe2)n (x = 0.55 +/- 
0.09, m = 2-4, n= 3 and 6) films. Data are plotted as a function of (A) TiTe2 atomic 
fraction (calculated as 3n/(5m+3n)); and (B) thickness of the multilayer repeat unit.  Each 
data point is labeled by a (m;n) index for the film where m is the number of (BixSb1-x)2Te3 
quintet layers and n is the number of TiTe2 sheets in the repeat unit. Also included is the 
average measured thermal conductivity for the pure TiTe2 samples. 
 

Figure 51 and Figure 52 show the thermal conductivity vs. composition for the 

superlattice samples.  I observed a reduction in the thermal conductivity with increasing 

TiTe2 content and the values approach that measured for homogenous TiTe2 samples.  

The thermal conductivity is sensitive to the relative amount of TiTe2 in the sample and 

not to the density of interfaces or the superlattice period.  As described in the previous 

section, I attribute the low thermal conductivity in the cross-plane direction to strong 

phonon scattering and anisotropic elastic constants of the turbostratic disordered material, 

in this case TiTe2.  The (Bi,Sb)2Te3 / TiTe2 multilayer alloy samples have a lower thermal 

conductivity (Λ avg. = 0.17 W m-1 K-1) than the Bi2Te3 / TiTe2 multilayer films ( Λ avg. = 

0.24 W m-1 K-1) , see Figure 51B and Figure 52B.  Compositions that approach pure 

Bi2Te3 have higher thermal conductivity as Bi2Te3 does not exhibit turbostratic disorder. 

The average thermal conductivity of our homogeneous TiTe2 thin film samples is 

extremely low, Λ = 0.12 W m-1 K-1.  In bulk form, TiTe2 is a semimetal with an electrical 
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conductivity along the c-axis that is a factor of 35-40 smaller then the conductivity in the 

a-b plane [90, 91, 92].  The electrical conductivities in the a-b plane of our thin film 

samples are 4100-4600 ohm-1 cm-1, a factor of  ≈ 2.3  smaller than a-b conductivity of 

bulk90 TiTe2.  If the anisotropy of electrical conductivity our thin film samples were the 

same as in bulk TiTe2, we would expect an electronic contribution to the c-axis thermal 

conductivity of 0.09 W m-1 K-1.  Given the turbostratic microstructure of our thin film 

samples, however, I expect that the anisotropy of electrical conductivity will be 

significantly larger than in the bulk, and the electronic contribution to the c-axis thermal 

conductivity of TiTe2 will be significantly smaller than 0.09 W m-1 K-1. 

To gain insight into the effect of grain size on the lattice thermal conductivity of 

Bi2Te3, I followed previous work [93] and constructed a Debye-Callaway (D-C) model 

using the procedure described by Morelli et al. [94].  To constrain the parameters of the 

D-C model, I estimated the cutoff frequencies (θL = 96 K and θT = 62 K) by the acoustic 

phonon frequencies at the zone boundary (fL= 2.0x1012 Hz; fT= 1.3x1012 Hz) from 

calculations of the phonon density of states [95, 96].  I calculate the relative ratio of the 

anharmonic scattering strengths of umklapp and normal processes, BU and BN, using 

equations 10 and 25 (with a = 2, b = 1) from Reference 94: BU = ħ γ2 / (M v2 θ) and      

BN = kB γ2 V1/3 / (M v3) for the longitudinal and transversal propagation modes.  Here ħ is 

the reduced Planck constant, kB is the Boltzmann constant, γL = 1.0 and γT = 0.7 are the 

mode Grüneisen constants, M = 2.66x10-25 kg and V = 3.38x10-29 m3 are the average 

mass and volume per atom, v is the speed of sound and θ is the cutoff frequency.  Phonon 

scattering by isotope disorder calculated with equation 16 of Reference 94 is negligible 

(Γ = 8.21x10-5).  A boundary scattering rate τ-1 = v / h describes phonon scattering by 
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grain boundaries and hetero-interfaces; v is the speed of sound and h is the grain size.  I 

estimated the polycrystalline average rigidity modulus G and bulk modulus K from 

elastic properties [89] of single crystal Bi2Te3 using the Voigt-Reuss-Hill method [97, 98] 

, i.e., the arithmetic mean of G and K moduli calculated by the Voigt and Reuss 

approaches.  I calculated the transversal and longitudinal polycrystalline average speeds 

of sound as /Tv G ρ= = 1590 m/s and ( 4 / 3) /Lv K G ρ= + =2840 m/s, where ρ  = 

7.86 g/cm3 is the mass density of Bi2Te3. 

Our implementation of the D-C model does not include heat transport by optical 

phonons and, because of the relatively low cut-off frequencies for the acoustic branches, 

greatly restricts the number of acoustic phonons that contribute to heat transport in the 

model; in fact, <10% of the 3N vibrational modes of the crystal are included in this 

approach.  To account for heat transport by phonons that are neglected by the model, I 

estimate the thermal conductivity of these phonons using the calculated minimum 

thermal conductivity Λmin of Bi2Te3.   
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Figure 53. Plot of experimental lattice thermal conductivity of single crystal Bi2Te3 
(Reference 99, filled circles) fitted with predictions of the Debye-Callaway (D-C) model 
described in the study (solid line).   
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To fit the strength of anharmonic phonon scattering in the D-C model, the 

calculations of the D-C model are added to the minimum thermal conductivity, Λmin 

=0.31 W m-1 K-1, and then compared to data for bulk [99] Bi2Te3, see Figure 53.  For the 

calculations, I vary the coefficients BU and BN while keeping their relative ratio fixed and 

set the grain size of the sample to a large value h= 4 mm (i.e., single crystal sample).  The 

values I obtained thus are: BUL = 9.7x10-18 s K-1, BUT = 23x10-18 s K-1; BNL = 14x10-18 s 

K-1, BNT = 39x10-18 s K-1. 
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Figure 54. Thermal conductivity Λ measured for homogeneous Bi2Te3 (full circles) and 
(Bi,Sb)2Te3 alloy (full triangles) plotted as a function of grain size or layer thickness h.  
Also included are literature values for small grain polycrystalline Bi2Te3 samples 
(References 100 – open square and 101 – filled squares).  The open circles and triangles 
represent effective Λ for Bi2Te3 and respectively (Bi,Sb)2Te3 alloy layers calculated from 
measured Λ of multilayer [(Bi2Te3)m(TiTe2)n] (Figure 51B) and [(BixSb1-x)2Te3]m (TiTe2)n 
(Figure 52B) films.  The solid line is the D-C model calculation of lattice thermal 
conductivity of Bi2Te3 with the assumption of a boundary scattering length that is equal 
to the thickness of the sample.  Minimum thermal conductivity of Bi2Te3 is added in the 
model calculation to account for heat transport by high frequency acoustic and optical 
phonons.  The dashed line represents the calculated total thermal conductivity of Bi2Te3 
with contributions from D-C model and the electronic thermal conductivity.  The dash-
dot line is the D-C model calculation of lattice thermal conductivity of (Bi,Sb)2Te3 alloy 
with the addition of strong point-defect phonon scattering, Γ=0.3. 
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In Figure 54, I compare the thermal conductivity Λ measured for the various 

Bi2Te3 layers to the predictions of the D-C model as a function of grain size. This plot 

includes data for homogeneous, nanocrystalline Bi2Te3 that I previously presented as a 

function of annealing temperature; see Figure 48 and Figure 49.  For comparison, I 

included in Figure 54 examples of other previous work [100, 101] on small grain Bi2Te3.   

To extract the effective thermal conductivity of the nanoscale Bi2Te3 layers in the 

multilayer [(Bi2Te3)m(TiTe2)n] samples, see Figure 51B, I ignore possible contributions to 

the thermal resistance from the Bi2Te3/TiTe2 interfaces and apply a simple effective 

medium model that treats the thermal resistance of the multilayer as the sum of the 

thermal resistances of the individual layers; i.e., I solve for the thermal conductivity of 

the Bi2Te3 layers Λ-Bi2Te3 in equation:  

2 3 2

x y x y

multilayer Bi Te TiTe

+ = +
Λ − Λ − Λ −

,     (4) 

where x and y are the individual layer thicknesses in the multilayer repeat period and Λ-

TiTe2= 0.12 W m-1 K-1.  

The Bi2Te3 data closely follow the trend in the lattice thermal conductivity 

predicted by the D-C model.  As the grain size is reduced toward 2 nm, the lattice thermal 

conductivity approaches the lower limit predicted by the model of the minimum thermal 

conductivity, 0.31 W m-1 K-1.  Similar values are observed [87] in short period 

superlattices of Bi2Te3/Sb2Te3.  For grain sizes on the order of ~50 nm, my data and 

modeling indicate that the reduction in thermal conductivity compared to the reported 

bulk values [99] is observable but small, ≈ 13%.  This conclusion was also reached by 
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Shi [102, 103] and co-workers from their studies of the thermal conductivity of 50 nm 

diameter Bi2Te3 nanowires.  

I emphasize that my measurements are for the total thermal conductivity but the 

D-C model does not include the electronic contribution.  I estimate the electronic 

contribution to the thermal conductivity of the nanocrystalline films from measurements 

of the in-plane electrical conductivity of Bi2Te3 films deposited on fused-quartz 

substrates using the same recipe as the films that were deposited on Si for the thermal 

conductivity measurements. (TDTR measurements require high thermal conductivity 

substrates.)  Electrical measurements in the a-b plane showed the films are n-type Bi2Te3; 

Seebeck coefficient and electrical conductivity varied with increasing annealing time 

from -83 to -137 μV/K and 436 to 1482 (ohm-cm)-1,  respectively.  I estimate the 

electronic component of the thermal conductivity Λe using the Wiedemann Franz law 

with a non-degenerate Lorenz number L = 2(kB/e)2 = 1.45x10-8 V2/K2 and electrical 

conductivity equal to ¼ the average of the a-b plane values [104, 105] .  I add the result, 

Λe ≈ 0.11 W m-1 K-1 to the D-C model and plot the sum as the dashed line in Figure 54.  

The data fall below this curve indicating either that the anisotropy in electrical 

conductivity is greater than a factor of 4 or that the D-C model overestimates the lattice 

thermal conductivity of our nanocrystalline Bi2Te3 films.  

Figure 54 also summarizes the measurements of the thermal conductivity of 

(Bi,Sb)2Te3 layers as a function of grain size.  As before, I extracted the effective thermal 

conductivity of nanoscale (Bi,Sb)2Te3 layers from measurements on multilayer 

[(Bi,Sb)2Te3]m(TiTe2)n films (Figure 52B) using an effective medium model and the 

measured thermal conductivity of TiTe2 : 
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2 3 2( , )

x y x y

multilayer Bi Sb Te TiTe

+ = +
Λ − Λ − Λ −

.    (5) 

Average measured thermal conductivity of the (Bi0.5Sb0.5)2Te3 films is 0.36 W m-1 K-1, a 

factor of 1.9 smaller than that of homogeneous Bi2Te3 layers with similar grain size.  

Electrical measurements in the a-b plane of the (Bi0.5Sb0.5)2Te3 films deposited on fused-

quartz substrates indicate n-type conduction: Seebeck coefficient and electrical 

conductivity varied with increasing annealing time from -23 to -113 μV/K and 109 to 211 

(ohm-cm)-1,  respectively. As before, I estimate the electronic component of the thermal 

conductivity using the Wiedemann-Franz law with a non-degenerate Lorenz number and 

electrical conductivity equal to 1/4  the average of the a-b plane values [106], Λe = 0.02 

W m-1 K-1.   The average lattice thermal conductivity obtained by subtracting the small 

electronic component from the measured thermal conductivity is a factor of ≈ 2 smaller 

than the lattice thermal conductivity of Bi2Te3 layers predicted by the D-C model.  The 

magnitude of this reduction is comparable to what is observed in bulk (Bi,Sb)2Te3 alloys 

[107, 108].  These observations are confirmed by recent reports on p-type Bi0.5Sb1.5Te3 

nanocrystalline bulk alloys [109, 110] that estimate lattice thermal conductivity ≈ 0.3 W 

m-1 K-1 in the limit of low grain size (d<10 nm). 

The reduction in lattice thermal conductivity of (Bi,Sb)2Te3 alloys is typically 

attributed to phonon Rayleigh scattering created by variations in atomic mass and 

chemical bonding when Bi atoms are replaced by Sb.  Calculations of point defect 

scattering by mass disorder are relatively straightforward but scattering rates created by 

variations in bond-length or bond-strength disorder are difficult to estimate; furthermore, 

even if the cross sections could be estimated, I do not know if the total cross sections for 

the variations scattering terms (mass, bond-length, bond-strength) should be added or if 
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interference between the various scattering terms needs to be taken into account.  

Therefore, to gain insight in the magnitude of the reduction in thermal conductivity that 

might be created by point defect scattering in a (Bi,Sb)2Te3 alloy, I added to the D-C 

model what I believe is a reasonable upper limit to the point defect scattering rate [111, 

112] , Γ=0.3.  The result is included in Figure 54. In this calculation, the lattice thermal 

conductivity is suppressed by a factor of 1.3 for grain sizes d ≈ 50 nm; adding point 

defect scattering to the model has little effect in the limit of small grain size, d<10 nm, 

where the thermal conductivity has already been reduced close to the minimum value.    

Data for the alloy layers, however, fall significantly below the calculation in the 

limit of small grain size and therefore also fall well below the prediction of the model of 

the minimum thermal conductivity.  It is not yet clear the difference in conductivity 

between Bi2Te3 and (Bi,Sb)2Te3 alloy layers at small grain sizes, d<10 nm, where the 

effects of point defect scattering should be small; I can only speculate at this time that the 

effective thermal conductivities of the (Bi,Sb)2Te3 layers in the alloy multilayers  

[(Bi,Sb)2Te3]m(TiTe2)n are being suppressed by the effects of interface resistance that are 

stronger in the alloy multilayers than in the (Bi2Te3)m(TiTe2)n multilayers. 

5.4 Conclusions 

Multilayer films incorporating turbostratic TiTe2 enable studies of the effective 

thermal conductivity of Bi2Te3 layers as thin as 2 nm. In the limit of small grain size or 

layer thickness, the thermal conductivity of Bi2Te3 approaches the predicted minimum 

thermal conductivity of 0.31 W m-1 K-1.  The dependence of the thermal conductivity on 

grain size is in good agreement with the Debye-Callaway model for a range of grain sizes 
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1-100 nm.  Very low thermal conductivities (Λ = 0.20 W m-1 K-1) can be achieved by 

combining the effects of alloying and turbostratic disorder in a multilayer structure. 
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