
© 2010 by Asal Naseri Kouzehgarani. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4824577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MODE IDENTIFICATION USING STOCHASTIC HYBRID MODELS
WITH APPLICATIONS TO CONFLICT DETECTION AND

RESOLUTION

BY

ASAL NASERI KOUZEHGARANI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Assistant Professor Natasha Neogi, Chair
Professor Petros Voulgaris
Professor P.R. Kumar
Associate Professor Esa Rantanen

Abstract

Most models of aircraft trajectories are non-linear and stochastic in nature;

and their internal parameters are often poorly defined. The ability to model,

simulate and analyze realistic air traffic management conflict detection sce-

narios in a scalable, composable, multi-aircraft fashion is an extremely dif-

ficult endeavor. Accurate techniques for aircraft mode detection are critical

in order to enable the precise projection of aircraft conflicts, and for the

enactment of altitude separation resolution strategies.

Conflict detection is an inherently probabilistic endeavor; our ability to

detect conflicts in a timely and accurate manner over a fixed time horizon

is traded off against the increased human workload created by false alarms

—that is, situations that would not develop into an actual conflict, or would

resolve naturally in the appropriate time horizon-thereby introducing a mea-

sure of probabilistic uncertainty in any decision aid fashioned to assist air

traffic controllers. The interaction of the continuous dynamics of the air-

craft, used for prediction purposes, with the discrete conflict detection logic

gives rise to the hybrid nature of the overall system. The introduction of the

probabilistic element, common to decision alerting and aiding devices, places

the conflict detection and resolution problem in the domain of probabilistic

hybrid phenomena.

A hidden Markov model (HMM) has two stochastic components: a finite-

state Markov chain and a finite set of output probability distributions. In

other words an unobservable stochastic process (hidden) that can only be ob-

served through another set of stochastic processes that generate the sequence

of observations. The problem of self separation in distributed air traffic man-

agement reduces to the ability of aircraft to communicate state information

to neighboring aircraft, as well as model the evolution of aircraft trajectories

between communications, in the presence of probabilistic uncertain dynamics

ii

as well as partially observable and uncertain data. We introduce the Hybrid

Hidden Markov Modeling (HHMM) formalism to enable the prediction of

the stochastic aircraft states (and thus, potential conflicts), by combining

elements of the probabilistic timed input output automaton and the par-

tially observable Markov decision process frameworks, along with the novel

addition of a Markovian scheduler to remove the non-deterministic elements

arising from the enabling of several actions simultaneously. Comparisons of

aircraft in level, climbing/descending and turning flight are performed, and

unknown flight track data is evaluated probabilistically against the tuned

model in order to assess the effectiveness of the model in detecting the switch

between multiple flight modes for a given aircraft. This also allows for the

generation of probabilistic distribution over the execution traces of the hy-

brid hidden Markov model, which then enables the prediction of the states

of aircraft based on partially observable and uncertain data.

Based on the composition properties of the HHMM, we study a decen-

tralized air traffic system where aircraft are moving along streams and can

perform cruise, accelerate, climb and turn maneuvers.We develop a common

decentralized policy for conflict avoidance with spatially distributed agents

(aircraft in the sky) and assure its safety properties via correctness proofs.

iii

Acknowledgments

I would like to express my gratitude and appreciation to Prof. Natasha

Neogi for serving as my advisor and providing guidance, motivation, and

support for this work. I will always admire her brilliance and her insight for

interdisciplinary research. Along with being my mentor, she has always been

a good friend to me during the good and not so good times. I have been

lucky to have you as my advisor and as my friend. I will always treasure

your kindness and friendship.

I was fortunate enough to have the help and advice of Prof. Esa Rantanen.

He was always ready to offer his wisdom and his experience as a former

controller to keep me in track in regards to human factor issues. And he

made it possible for me to test the applicability of my theories by generously

sharing his vast amount of real flight data. I must thank the other memebers

of my committe, Prof. P.R. Kumar and Prof. Petros Voulgaris, who stirred

me in the right direction with their infinite knowledge and insight into control

theory.

My fellow graduate students, Andres Ortiz and Daniel Uhlig, deserve

many thanks. I will never forget your help while I was preparing for my

preliminary and final defense exams. You were always there for practice

talks and took care of all the other details.

I wish to thank my parents and my family for their support and encour-

agement of my academic pursuits. And, most importantly, to my husband

Amir, you are my everything, thanks for being with me.

iv

Table of Contents

List of Figures . vii

Chapter 1 Introduction . 1

1.1 Air Traffic Control . 1

1.2 Hybrid System . 6

1.3 Hidden Markov Models . 7

1.4 Hybrid Input/Output Automata (HIOA) 7

1.5 Decentralized Conflict Avoidance 9

1.6 Thesis Outline . 10

Chapter 2 Survey of the Field 11

2.1 Probabilistic Conflict Detection Algorithms 11

2.2 Stochastic Hybrid Systems (SHS) 14

2.3 Intent Information . 17

Chapter 3 Hidden Markov Models 20

3.1 Discrete Markov Processes . 21

3.2 Hidden Markov Model . 21

Chapter 4 Hybrid Hidden Markov Models 29

4.1 Hybrid Automata . 29

4.2 Hybrid Input/Output Automata (HIOA) 34

4.3 Probabilistic Timed Input/Output Automata (PTIOA) 37

4.4 Partially Observable Markov Decision Processes 39

4.5 Hybrid Hidden Markov Model 40

4.6 Advantages of HHMM to Other Formalisms 43

v

Chapter 5 Mode Detection Results 45

5.1 Aircraft Flight Data . 45

5.2 The Use of Intent Information 48

5.3 Mode Detection Results and Discussion 49

5.4 Comparing HMM and State-Dependent-Transition Hybrid Es-
timation Algorithm . 64

Chapter 6 Decentralized Conflict Detection and Resolution 67

6.1 Verifying Safety Properties . 68

6.2 Case Study: Decentralized Policy for Conflict Avoidance of
Aircraft in a Stream . 70

6.3 Conflict Detection Extension to Higher Dimensions 83

Chapter 7 Conclusions . 94

References . 98

vi

List of Figures

4.1 Theoretical hybrid hidden Markov model for aircraft in steady
level flight or climbing/descending flight 43

5.1 Position prediction error statistics 47

5.2 Aircraft hybrid input/output automata 48

5.3 Probability of Level Flight Mode during 10 Training Iterations 51

5.4 Detection Threshold . 54

5.5 Planar flight path of the climbing aircraft 55

5.6 Perplexity of data over 10 iterations 57

5.7 Random Aircraft . 58

5.8 Planar flight path of the random aircraft 58

5.9 Indeterminate flight path . 60

5.10 Planar flight path of the indeterminate aircraft 61

5.11 Descending Flight . 62

5.12 Planar flight path of the descending aircraft 62

5.13 Indeterminate flight path . 63

5.14 Planar flight path of the indeterminate aircraft 63

5.15 Mode detection threshold HMM 66

5.16 Mode detection threshold SDTHE, numbers 4 and 5 corre-
spond to submodes CH and CD respectively. 66

6.1 Composed HHMM for each aircraft 74

6.2 Cruise Automaton . 76

6.3 Climb Automaton . 77

6.4 Turn Automaton . 78

vii

6.5 Acceleration Automaton . 79

viii

Chapter 1

Introduction

1.1 Air Traffic Control

The goal of air traffic control ATC) system is to accomplish the safe, efficient

flow of traffic from origin to destination. The task of air traffic control in-

cludes ground operations from the gate to the taxiway to the runway, takeoff

and climb operations to reach a cruising altitude, cross-country flight to the

destination, approach and landing operations at the destination, and taxi

back to the gate. There are three general classes of controllers. Ground and

local controllers (referred to as tower controllers) handle aircraft on the taxi-

ways and runways and also through takeoffs and landings. Radar controllers

handle aircraft from their takeoff to their cruising altitude (departure control)

and then return them through their approach at the destination (approach

control). The busy region surrounding airport facilities is called the terminal

radar control area, TRACON. En-route controllers working at the air route

traffic control center (ARTCC) manage the flow of traffic along the airways

between the TRACON areas. Flow of aircraft across the entire United States

is managed by the Air Traffic Control System Command Center in Herndon,

Virginia. [1]

In the current ATC system, the pilot determines the flight’s objectives

and decides how those objectives can best be met. The objectives include the

1

destination airport, route of flight, proposed altitude, cruising airspeed, time

of departure, climb and descent profiles, and speed schedules [2]. However,

the controller gets only a limited number of these objectives through the

flight plan. Using this limited information, the controller is responsible for

separating aircraft.

Detection of conflicts —defined here as the potential loss of prescribed

separation [3] —between two aircraft is the primary purpose of air traffic con-

trol. This task, multiplied by a large number of aircraft pairs under a single

controller’s responsibility at any time exacts a high toll on human controllers

in terms of mental workload; furthermore, the potential consequences of a

miss —a midair collision —are simply unacceptable within the modern air

transportation systems. Therefore, ATC procedures have been designed to

maximize safety (i.e., to minimize the potential of conflicts) with a necessary

tradeoff in reduced system capacity.

Safety is ensured, in large part, by guaranteeing minimum vertical and

lateral separation. To ensure total safety, the aircraft would never fly. And to

ensure a greater safety level than what we have today, separation thresholds

would be greater than what we currently practice. However, this compromise

the second goal of ATC, efficiency, which is demanded by consumers and

pilots. Every airport has a capacity, i.e., the number of aircraft it can receive

per unit of time. And the goal is to meet this capacity. Optimization is

limited by changes in the weather, wake vortices following the passage of

heavy aircraft and the limited ability to predict the future.

For the current ATC system, for en-route airspace the minimum hori-

zontal separation if 5 nmi, while the minimum vertical separation is 1000 ft.

When the controller is separating aircraft, it is required to ensure that the

airspace reserved for one aircraft does not overlap the airspace reserved for

2

another. Controllers use four methods to separate aircraft: vertical, lateral,

longitudinal, and visual separation [2]. The basic vertical separation method

is for the controller to request that the pilot report passing through or lev-

eling off at a particular altitude. Once this altitude has been reported, the

controller can assign another altitude to a different aircraft, as long as the

two altitudes differ by at least 1000 feet. One exception to this rule is that

if both aircraft are climbing, once the higher aircraft has reported leaving an

assigned altitude and is climbing to an altitude at least 1000 feet higher, the

lower aircraft may be assigned the altitude the first aircraft has vacated.

Exclusive use of vertical separation can result in inefficient use of airspace.

Thus, controllers consider alternating methods of separating aircraft, one of

which is lateral separation. With lateral separation, each aircraft must be

established on an airway whose protected airspaces do not overlap. If this

cannot be accomplished, one of the other methods of separation should be

used.

Holding patterns are used whenever an aircraft does not have sufficient

airspace to continue toward its destination. An aircraft is restricted to a

small area when it is within a holding pattern. By clearing aircraft to fly

either above or below other holding aircraft, vertical separation is applied.

To ensure lateral separation (when the reserved airspace for the holding air-

craft does not overlap with the reserved airspace belonging to other aircraft)

the controller should take into account the speed of the aircraft. Since the

inbound leg of a standard holding pattern is one minute, faster aircraft will

cover a greater distance in that time.

Longitudinal separation between two aircraft that are flying along the

same route can be applied when the aircraft are flying at or near the same

airspeed or the leading aircraft is significantly faster.

3

Visual separation is one of the most flexible methods. In this method, it

is required that either of the pilots sees the other aircraft and provide the

required separation, or that the controller is able to see both aircraft and

provide safe separation.

Air traffic is expected to grow by 5% annually over the next decade. In

view of the current ATC limitations, the Federal Aviation Administration

(FAA) and the aviation community are working together on two initiatives:

Free Flight, and ATC modernization. Free flight allows pilots to choose their

own routes, altitudes, and speeds and modify them in real time as they see fit.

User preference would be restricted only in congested airspace or to prevent

unauthorized entry of special use airspace. Free flight is potentially feasi-

ble because of enabling technologies, like Global Positioning system (GPS),

datalink communications like Automatic Dependence Surveillance-Broadcast

(ADS-B), Traffic Alert and Collision Avoidance Systems (TCAS), and pow-

erful on-board computation.

To increase system throughput and the number of aircraft individual con-

trollers can safely monitor under the demand of increased traffic levels, several

automated aids that detect conflicts based on complex algorithms have been

developed. However, such automated tools are inherently imperfect [4, 5].

NASA’s Center-TRACON Automation System (CTAS) [6] and MITRE’s

URET [7] are decision support tools for ground controllers.

CTAS is a system developed by NASA that provides users with airspace

capacity improvement, delay reductions and fuel savings by using computer

automation to assist controllers in efficiently descending, sequencing, and

spacing arriving aircraft. It provides four functions: traffic management

advisor, descent advisor, final approach spacing toll, and expedite departure

path.

4

The User Request Evaluation Tool (URET) was developed at MITRE

Corporation’s Center for Advanced Aviation System Development (CAASD)

to assist controllers with detection and resolution of predicted problems.

URET combines real-time flight plan and track data (from the ARTCC Host

computer) with site adaptation, aircraft performance characteristics, and

winds and temperatures (from the National Weather Service) in order to

construct four-dimensional flight profiles. It also adapts each trajectory to

the observed behavior of aircraft (speed, climb and descent rate) [7]. URET

uses its predicted trajectories to continuously check for conflicts up to 20

minutes into the future and displays an alert to the appropriate sector. It

also provides a trial plan which allows a controller to check a desired flight

plan amendment for potential conflicts before issuing a clearance. [3]

Combined with the innately probabilistic nature of conflict detection and

the asymmetrical valuing of the two erroneous outcomes, misses and false

alarms —that is, situations that would not develop into an actual conflict,

or would resolve naturally in the appropriate time horizon —automated con-

flict alerting systems frequently produce large numbers of false alarms that

again contribute to increased workload of the human controllers overseeing

the system. Such probabilistic uncertainty associated with automated deci-

sion aids greatly reduces their usability and acceptability in the workplace;

conversely, improvements in the reliability (i.e., reduced false alarm rates)

of automated conflict detection systems will help to bring about their full

potential in increasing the system capacity without undue drawbacks in con-

troller workload and trust. The interaction of the continuous dynamics of

the aircraft, used for prediction purposes, with the discrete conflict detection

logic gives rise to the hybrid nature of the overall system. The introduc-

tion of the probabilistic element, common to decision alerting and aiding

5

devices, places the conflict detection and resolution problem in the domain

of probabilistic hybrid phenomena.

1.2 Hybrid System

Hybrid systems involve both continuous dynamics as well as discrete phe-

nomena. The continuous dynamics of hybrid systems, generally given by

differential equations, may be continuous-time, discrete-time, or mixed. The

discrete variable dynamics of hybrid systems are generally governed by a

digital automaton, or an input-output transition system with a countable

number of states. We can assume a hybrid system to a run with a sequence

of steps. The system evolves continuously, within each step, until a transition

occurs. Transitions are instantaneous state changes that separate continuous

state evolutions.

Due to the inherent uncertainty existing in real world problems, stochas-

tic hybrid and switched modeling formalisms [8] are prevalent in the repre-

sentation of physical systems. Stochastic hybrid systems arise in numerous

applications of systems with multiple nodes, such as flexible manufacturing

system, air traffic management, etc. This idea is not new and many mod-

els of stochastic hybrid systems have been proposed. The major point of

distinction lies in the manner in which the randomness or stochasticity is

incorporated into the model.

Generally, the data received for conflict detection purposes is noisy, and

limited in its scope (i.e. position, speed and heading). Fortunately, air-

craft behavior can be characterized by several standard flight modes, such as

steady level flight, climbing flight, turning flight, etc. However, due to the

noise associated with the flight track data, and the lack of intent information,

6

it is often difficult to determine whether a given aircraft is adhering to its

declared flight plan. In order to estimate the mode of flight, the observed

position, speed and heading data must be analyzed, and a probabilistic dis-

tribution over the possible modes must be determined. This task lends itself

to the framework of Hidden Markov Modeling (HMM), which is used here to

detect flight mode changes.

1.3 Hidden Markov Models

The Hidden Markov Model [9] is comprised of a finite set of states, each of

which is associated with a (generally multidimensional) probability distri-

bution. Transitions among the states are governed by a set of probabilities

called transition probabilities. In a particular state an outcome or observa-

tion can be generated, according to the associated probability distribution.

It is only the outcome, not the state, that is visible to an external observer:

therefore the states of the system are hidden from the observer, hence the

name Hidden Markov Model.

Hybrid Input/Output Automata, HIOAs, are used in description and

analysis of hybrid systems. We use the HIOA framework developed in Ref.

10.

1.4 Hybrid Input/Output Automata

(HIOA)

HIOA is an automaton framework for describing discrete and continuous

behavior. The simplest HIOA consists of sets of internal variables, internal

7

actions, transitions and trajectories. Valuations of the internal variables

define the the states of the automaton, which can change continuously over a

period of time (trajectories) and discretely through transitions. The behavior

of an HIOA is modeled as an alternating sequence of actions and trajectories,

referred to as an execution. An HIOA is a nondeterministic automaton which

can communicate both discretely (through shared actions) and continuously

(through shared variables) with other HIOAs. The external interface of the

HIOA is defined by adding sets of input and output variables and input

and output actions. The externally visible behavior corresponding to an

execution, called a trace, is obtained by removing all the internal variables

and actions from the execution.

In HIOAs, uncertainties are captured as nondeterministic choices. Nonde-

terminism can describe uncertainty as a set of possible choices. Incorporating

probabilities in hybrid systems framework yields a richer language for model

construction called Probabilistic Timed I/O Automata (PTIOA), which pro-

vides a mathematical framework for modeling and verifying computing sys-

tems that interact with uncertain systems. PTIOA supports continuous evo-

lution, nondeterminism, probabilistic transitions, and discrete communica-

tions between components.

In order to generate the probability distribution over a set of executions of

a hybrid system, the issues of non-determinism must be resolved. If there are

several enabled actions for a given state in an execution, one must be chosen

via a consistent policy. Possible policies include (i) event chosen independent

of execution history, or (oblivious), (ii) event dependent on current state, or

(Markovian) (iii) event chosen dependent on execution history, or (history-

dependent). Extensive work has been done regarding the first policy [11].

We consider the implementation of a Markovian policy in the context of a

8

partially observable probabilistic hybrid automata framework, which we call

a Hybrid Hidden Markov Model (HHMM). This framework arose through

the consideration of the distributed air traffic management problem, where

individual airplanes (agents) have full information of their own state and

model, but only partial information regarding their neighbors’ states. We

utilize the HHMM formalism to address the problem of self-separation of

aircraft along a parametrized route in the included example.

1.5 Decentralized Conflict Avoidance

In the decentralized air traffic system, each aircraft talks to its closest neigh-

bors, i.e., it has the flight data of its neighboring aircraft. Since there are

data dropouts, uncertainties in the data, an unknown time-varying number of

maneuvering aircraft and unknown identities, the assumption of full observ-

ability does not stand. At each time instant, each aircraft detects potential

conflicts with its neighboring aircraft and then makes a decision to resolve

conflicts. The combination of probabilistic uncertain dynamics and proba-

bilistic observability yields the probability distribution over the state which

is called a belief state.

The mathematical definition of the decentralized conflict detection algo-

rithm for an aircraft, represented by an HIOA, which then receives as inputs

the position, velocity and heading of all aircraft within sensor range, allows

for the aircraft in question to run HHMMs of each aircraft, and to proba-

bilistically predict what mode of the HIOA each sensed aircraft has engaged.

This allows for proactive conflict detection and resolution maneuvers that can

be enacted by each aircraft, without involving overt communication between

aircraft.

9

1.6 Thesis Outline

In the next chapter, a literature review of the state of the art techniques

in stochastic hybrid modeling, probabilistic conflict detection and intent in-

formation are outlined. Chapter four provides the theoretical background

for Hidden Markov Modeling, and the types of problems best suited for this

formalism. The hybrid hidden Markov model (HHMM) is introduced chap-

ter five along with presenting the HIOA and PTIOA frameworks and their

properties. A description of the air traffic data and sector area being used is

given in chapter six. The model which uses intent information in the HHMM

is described here as well. The models derived and their efficacy as well as the

comparison between HMM and other approaches are then discussed in this

chapter. In chapter seven, a decentralized conflict avoidance algorithm using

the HHMM framework and the HIOA language is developed. Conclusions

and future work are outlined in chapter eight.

10

Chapter 2

Survey of the Field

2.1 Probabilistic Conflict Detection

Algorithms

In this section we present a brief review of some of the work done in proba-

bilistic conflict detection. Kuchar and Yang [12] present an excellent survey

of over 60 different conflict detection and resolution schemes, where these

methods are classified according to a taxonomy that includes dimensions of

state (vertical, horizontal or both), prediction methods (nominal, worst-case

or probabilistic), conflict detection threshold, conflict resolution methods and

maneuvers, and conflict management (pairwise or global).

Carpenter and Kuchar [13] have developed a prototype airborne collision

alerting logic for aircraft on approach to closely-spaced parallel runways.

The alerting decision is based on the estimated probability of a collision

(using a series of Monte Carlo simulations), in contrast to using a standard

spatial or temporal alerting criterion (Traffic Alert and Collision Avoidance

System (TCAS) or Precision Runway Monitoring (PRM)) to avoid large time

delays and also unacceptable false alert rates. The authors have developed a

dynamic model of aircraft on approach that includes uncertainties in sensor

measurement and in the intentions of the aircraft. In this model having

knowledge of the relative position, speed, heading and turn rate of parallel

11

traffic is important to determine whether a situation is hazardous. Here the

threatened aircraft follows a normal approach path while the intruder follows

either a normal or a blunder approach path. In case of an alert, the climbing-

turn maneuver is initiated. Since this is an airborne probabilistic logic, as

the authors mention, the pilot may have some difficulties in understanding

why alerts occur. This may result in a lack of trust in the system, hence a

decrease in its efficiency.

Paielli and Erzberger [14,15] present a method that accurately estimates

the probability of conflict for aircraft pairs in free flight. They make two

important assumptions: First, the prediction errors are approximated as

normally distributed. Hence, the two error covariances of the aircraft pair

can be combined into a single covariance of their relative position. Paielli

and Erzberger [14,15] assign this combined covariance to one of the aircraft,

referred to as the stochastic aircraft, while the other aircraft (reference air-

craft) is regarded to have no positional uncertainty. Secondly, it is assumed

that the planned velocities and prediction errors of both aircraft are constant

throughout the encounter or the period of potential conflict. The probability

of conflict is then determined as the intersection of the ellipse corresponding

to the combined error covariance and the circular conflict zone (5 nmi radius).

By projecting the circular conflict zone along a line parallel to the relative

velocity, an extended conflict zone is formed. The total probability of the

encounter is the intersection of the combined error ellipse and this extended

conflict zone. With a coordinate transformation the combined error ellipse

transforms into a unit circle, which simplifies the probability computation

and leads to an analytical computation of the total probability of conflict,

which in turn can be used to find the optimal time to initiate a resolution

maneuver. Paielli [16] tests the conflict detection scheme proposed in Ref. 14

12

using actual flight data, considering only aircraft pairs in level flight over

FL290.

Blin et al. [17] propose different aircraft position error models that they

tune by reproducing the results obtained in Ref. 14, 15. Their models are

based on three considerations: (1) a position error normally distributed with

a constant rate that grows linearly with time, (2) a position error result-

ing from a velocity error modeled as a Brownian process, and (3) a position

error resulting from an acceleration error modeled as a Brownian process.

According to the authors, a combination of these three models is a possi-

ble solution. This new position error model is generic and can be used for

different probabilistic methods. In Ref. 18 the authors have developed an

environment to quantitatively evaluate and compare three different conflict

detection algorithms (geometric, probabilistic and enhanced probabilistic).

They use minimum horizontal separation expansion and altitude shift to cre-

ate conflicts with real air traffic data. Like Ref. 16, the authors develop their

prediction error model with simple trajectory prediction, i.e., straight paths

at constant speed. It is shown that the modifications to the error model of

Ref. 14 proposed in Ref. 17 result in a decrease of the missed detection rate

while maintaining the false alarm rate.

Prandini et al. [19] present a decentralized algorithm for CD&R. In this

model, randomized optimization is used for estimating the criticality mea-

sure, that is, the maximum instantaneous probability of conflict, and for-

mulating a conflict detection algorithm for two aircraft encounters. The

advantage of randomized techniques is that they tend to be computationally

efficient.

Hwang et al. [20] use the trajectory prediction error model proposed in

Ref. 14 to develop a conflict detection algorithm which is based on hybrid

13

models of aircraft. For flight mode estimates they propose a modified version

of the Interacting Multiple Model (IMM) algorithm [21, 22] called Residual

Mean IMM. This work is restricted to two dimensions.

2.2 Stochastic Hybrid Systems (SHS)

Due to the inherent uncertainty existing in real world problems, stochastic

hybrid and switched modeling formalisms [8,23–25] are prevalent in the rep-

resentation of physical systems. Stochastic hybrid systems arise in numerous

applications of systems with multiple nodes, such as flexible manufacturing

system, air traffic management, etc. This idea is not new and many models of

stochastic hybrid systems have been proposed (see Ref. [26] for an overview).

The major point of distinction lies in the manner in which the randomness

or stochasticity is incorporated into the model.

One choice in modeling stochastic hybrid systems is to replace the deter-

ministic dynamics by a stochastic differential equation. In this case, starting

from a fixed initial state, depending on the solutions of the stochastic equa-

tions, different guards can be activated. Hence different discrete transitions

occur randomly, although the discrete state is deterministic [27].

Another choice is to replace the deterministic transitions between discrete

states by random ones governed by some prescribed probabilistic law. Two

types of discrete transitions are studied in different models. The first occur

at the boundaries of the state space, where continuous evolution becomes

impossible. These transitions are called forced transitions. The second class

of transitions, known as spontaneous transitions, can take place in the interior

of the state space at random times (e.g. using a generalized Poisson process)

[24].

14

Some stochastic hybrid models allow diffusion to model continuous evolu-

tion (Switched Diffusion Processes [28, 29]; Stochastic Hybrid Systems [27])

while others do not (e.g. Piecewise Deterministic Markov Processes [30]).

Some models only allow forced transitions [27], others allow random time

transitions [28], while still others allow both. Next, some stochastic hybrid

models are reviewed.

2.2.1 Piecewise Deterministic Markov Processes

(PDMP)

Piecewise Deterministic Markov Processes (PDMP) are a model of stochastic

hybrid systems in which randomness occurs only in the discrete transitions.

The evolution of the continuous state is according to a deterministic nonlinear

differential equation, but transitions occur either when the state hits the

state space boundary (guards), or according to a generalized Poisson process.

After each transition the hybrid system is reset instantaneously according to a

probability distribution which depends on the state before the transition [29].

2.2.2 Switched Diffusion Process (SDP)

A controlled switching diffusion is an example of a hybrid system that arises

in numerous applications like fault-tolerant control systems, multiple tar-

get tracking and flexible manufacturing systems. The continuous state is

governed by a stochastic differential equation (controlled diffusion process),

while the discrete state is a controlled Markov chain which its transition

matrix depends on the continuous state. Also the continuous state jumps at

random times. The characteristic feature of SDP is that the continuous state

15

evolves without jumps, i.e. it can be assumed to be a continuous function of

time [24, 28].

2.2.3 Polynomial Stochastic Hybrid Systems (PSHS)

Stochastic Hybrid Systems (SHS) are a class of nonlinear stochastic contin-

uous time hybrid dynamical systems. They are characterized by a hybrid

state defined by continuous and discrete states. The continuous state evolves

according to a stochastic differential equation that depends on the hybrid

state. The discrete dynamics produces transitions in both continuous and

discrete states. Transitions are either forced or spontaneous. After each tran-

sition, the hybrid state is reset instantaneously to a new value according to a

probability law depending on the pre-jump location. This class allows diffu-

sion processes in the continuous evolution, spontaneous discrete transitions,

forced transitions, and probabilistic reset of the hybrid state as a result of

discrete transitions [30].

PSHS generally correspond to stochastic SHS with polynomial continuous

vector fields, reset maps, and transition intensities. For this model both the

continuous and the discrete component of the hybrid state are stochastic

processes. The evolution of the continuous state is determined by a stochastic

differential equation and the discrete state is governed by a transition or

reset map. These discrete transitions are triggered by stochastic events (like

transitions in PDMP) [25].

Although SHS can model large classes of systems, their formal analysis

presents significant challenges, such as having an analytical solution for the

partial differential equations that express the evolution of the probability

distribution function for the states. But in the PSHS model, an infinite

16

vector is created that contains the probabilities of all discrete modes and the

multi-variable statistical moment of the continuous state. The dynamics of

this vector are governed by an infinite-dimensional linear ordinary differential

equation. It is shown in Ref. [25] that these linear ODEs can sometimes be

approximated by a finite-dimensional nonlinear ODE with relative precision.

2.3 Intent Information

In predicting the potential of future loss of separation between two aircraft

it is imperative to know the respective intentions of the aircraft (e.g., will

they continue on their present straight-line trajectories, or will one or both

change altitudes and/or headings, etc.). Human controllers may infer aircraft

intentions from the filed flight plans but also possess large amounts of intent

information from their communications with pilots as well as their own plan-

ning processes. The latter two sources of information are clearly extremely

valuable in this task due to their greater immediacy and because flight plans

are frequently changed via voice communications, based on controllers’ ac-

tive planning of traffic flows. Automated systems have access to flight plan

information but not to moment-to-moment information exchanges between

controllers and pilots via voice radio, and obviously not to controllers’ covert

planning processes, and therefore are in certain disadvantage compared to

human controllers.

Some CD&R algorithms have used intent information to predict the fu-

ture position of an aircraft. These algorithms may use different types of

intent information. Predefined flight plans and ATC clearances are called

implicit intent information. Implicit intent is available via a filed flight plan,

and/or communications between the ATC controller and the pilot. Infor-

17

mation exchange between two or more aircraft or between aircraft and ATC

through digital data link provides the explicit form of intent. The Flight

Management System (FMS) flight plans are explicit intent. FMS route in-

formation consists of the position of each waypoint, the estimated speed at

each waypoint and the estimated time of arrival at each waypoint.

In Ref. 31 the initial set of explicit intent information, transferred via

data link between aircraft, required to perform conflict detection is described.

Kuchar and Yang [32] describe some of the fundamental issues that arise in

CD&R problems involving intent by developing a generalized model of con-

flict detection when intent information is available. Their model is composed

of a strategic model (economic-based) and a tactical one (safety-based).

In Ref. 33 a method to compute the probability of conflict in the pres-

ence of intent information and trajectory uncertainties is described. This

approach relies on Monte Carlo simulations using a series of straight-line

trajectories.They use a series of Monte Carlo simulations for various trajec-

tory errors and intent information.

Carreno and Munoz [34] present an intent based conflict detection algo-

rithm as well. They use published data to predict aircraft future locations.

Their intent based conflict detection algorithm utilizes intent projection when

the aircraft is on a nominal path, otherwise it reverts to state projection when

the aircraft diverts from its nominal path by more than a predeterminded

margin. This algorithm reduces the number of false alarms as opposed to

state based conflict detection algorithms.

Zhao et al. [35] propose several classifications of pilot intent models. They

specify four groups of intent parameters: motive intent, objective intent,

trajectory intent, and cost intent. Motive intent can be used to predict

18

aircraft trajectories in a short time, in turn objective intent can reduce the

number of false alarms when used in tactical CD&R aids.

Conformance monitoring in air traffic control is required to detect de-

viations of aircraft from their assigned trajectories. This promotes safety,

security, and efficiency. In Ref. 36 fault detection techniques are used for

conformance monitoring, where non-conforming behavior of an aircraft is

considered a fault. Use of this approach and the insight gained through it

is demonstrated by simple implementations of the framework with flight-test

data.

Krozel and Andrisani [37] present a method for inferring the intent of a

pilot in real time. Their method is based on artificial intelligence and links

weather state information, special-use airspace region boundaries and other

factors to the inferred intent. This technique can be used for conformance

monitoring as well but has not been extended to this application as of yet.

19

Chapter 3

Hidden Markov Models

A hidden Markov model (HMM) has two stochastic components: a finite-

state Markov chain and a finite set of output probability distributions. In

other words an unobservable stochastic process (hidden) that can only be ob-

served through another set of stochastic processes that generate the sequence

of observations.

The basic theory of HMMs was introduced in the late 1960s by Baum and

his colleagues [38–41]. In the classic paper of L.R. Rabiner [9] an introduction

to the theory of HMMs and their application in speech recognition has been

presented. In this work, an example of an HMM is introduced where there

is a collection of N urns, each containing a different proportion of colored

balls with M possible colors for each ball. The observation sequence occurs

by choosing a new urn based on only the previously chosen urn, and then

choosing with replacement a ball from this new urn. The ball choices are

observable but the sequence of urn choices are hidden.

HMMs are currently being used in automatic speech recognition [42–

44], language modeling [45, 46], biological sequence analysis [47], network

intrusion detection systems [48, 49] and various other applications.

20

3.1 Discrete Markov Processes

Consider a system with a set of N states, S = {s1, s2, . . . , sN}. At any given

time, the system is in one of the states and moves to another state in the

next time step according to a set of probabilities associated with the state.

If the process is a first order Markov chain, the transition probability does

not depend upon which states the chain was in before the current state, i.e.,

aij = P {qt+1 = j |qt = i} , 1 ≤ i, j ≤ N

The state transition probabilities have the following properties:

aij ≥ 0, 1 ≤ i, j ≤ N

M∑
k=1

aij = 1, 1 ≤ i ≤ N

Since the output of the process is the set of states at each instant of

time and each state corresponds to a physical, i.e., observable, event, this

stochastic process can be called an observable Markov model.

3.2 Hidden Markov Model

The Hidden Markov Model [9,42,50–53] is comprised of a finite set of states,

each of which is associated with a (generally multidimensional) probability

distribution. Transitions among the states are governed by a set of prob-

abilities called transition probabilities. In a particular state an outcome or

observation can be generated, according to the associated probability distri-

bution. It is only the outcome, not the state, that is visible to an external

21

observer: therefore the states of the system are hidden from the observer,

hence the name Hidden Markov Model.

In order to define the HMM completely, the following five elements are

needed:

1) The number of states of the model, N (although the states are hidden).

2) The number of distinct observation symbols per state, i.e, the discrete

alphabet size, M . If the observations are continuous then M is infinite.

3) The state transition matrix, Λ = {aij}, and the set of state transition

probabilities,

aij = P {qt+1 = j |qt = i} , 1 ≤ i, j ≤ N

where qt denotes the current state. Transition probabilities should satisfy

the normal stochastic constraints,

aij ≥ 0, 1 ≤ i, j ≤ N and

M∑
k=1

aij = 1, 1 ≤ i ≤ N.

4) A probability distribution in each of the states, B = {bj(k)} where

bj(k) = P {ot = vk |qt = j} , 1 ≤ j ≤ N, 1 ≤ k ≤M ,

where vk denotes the kth observation symbol in the alphabet, and ot is the

current observation. The following stochastic constraints must be satisfied.

bj(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M and
M∑

k=1

bj(k) = 1, 1 ≤ j ≤ N.

22

5)The initial state distribution, Π = {πi} where,

πi = P {q1 = i} , 1 ≤ i ≤ N.

Therefore we can use the compact notation λ = (Λ, B,Π) to denote an

HMM with discrete probability distributions.

3.2.1 The three basic problems for HMMs

There are three basic problems for HMMs that are useful in real-world ap-

plications. Given the model parameters, the evaluation problem involves

computing the probability of a particular output sequence and is solved us-

ing the forward algorithm. The decoding problem entails determining the

hidden sequence most likely to have generated a sequence of observations,

and is solved by the Viterbi algorithm. In the learning problem, the model

parameters that are most likely to have generated a sequence of observations

are determined using the Baum-Welch algorithm.

1) Given a model λ = (Λ, B,Π) and the observation sequence O =

o1o2 . . . oT , how do we efficiently compute the probability of the observation

sequence, P {O |λ}?

2) Given a model λ = (Λ, B,Π) and the observation sequence O =

o1o2 . . . oT , what is the most likely state sequence in the model, Q = q1q2 . . . qT

that produces the observations?

3) Given a model λ = (Λ, B,Π) and the observation sequence O =

o1o2 . . . oT , how should we adjust the model parameters in order to maxi-

mize P {O |λ}?

23

3.2.2 The Decoding Problem and the Viterbi

Algorithm

The solution to the decoding problem depends upon the way the ”most likely

state sequence” is defined. One approach is to find the most likely state qt

at time t and to concatenate all such qt’s. However this method does not

necessarily give a physically meaningful state sequence. Therefore we use

another method, commonly known as the Viterbi algorithm, where the entire

state sequence with the maximum likelihood is found. In order to facilitate

this computation, we define an auxiliary variable, which gives the highest

probability that a partial observation sequence and state sequence up to

time t can have, given that the current state is i.

δt(i) = max
q1q2···qt−1

P {q1, q2, · · · , qt−1, qt = i, o1, o2, · · · , ot−1 |λ} (3.1)

It is easy to observe that the following recursive relationship holds.

δt+1(i) = bj(ot+1)

[
max

1≤i≤N
δt(i)aij

]
, 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1, (3.2)

where, δ1(j) = πjbj(o1), 1 ≤ j ≤ N .

So, the procedure to find the most likely state sequence starts from the

calculation of δT (j), 1 ≤ j ≤ N , and the state j∗, is found where

j∗ = arg max
1≤j≤N

δT (j). (3.3)

The sequence of states is then back-tracked to find the most likely.

This whole algorithm can be interpreted as a search in a graph whose

nodes are formed by the states of the HMM in each of the time instants

24

t, 1 ≤ t ≤ T .

3.2.3 The Learning Problem

Generally, the learning problem involves adjusting the HMM parameters, so

that the given set of observations (called the training set) is represented by

the model in the best possible way for the intended application. Thus it is

clear that the ”quantity” we wish to optimize during the learning process

differs depending on the nature of the application. In other words, there

may be several optimization criteria for learning, out of which a suitable one

is selected depending on the application.

There are two main optimization criteria found in the literature; Maxi-

mum Likelihood (ML) and Maximum Mutual Information (MMI). The so-

lution to the learning problem under the Maximum Likelihood method is

described below.

In ML we try to maximize the probability of a given sequence of obser-

vations Ow, belonging to a given class w, given the HMM λw of the class w,

with respect to the parameters of the model λw. This probability is the total

likelihood of the observations and can be expressed mathematically as

Ltot = P {Ow |λw } . (3.4)

Since we consider only one class w at a time, we can drop the subscript

and superscript w’s.

However, there is no known way to analytically solve for the model

λ = (Λ, B, π), which maximizes the quantity Ltot. Nonetheless, we can

25

choose model parameters such that it is locally maximized, using an iter-

ative procedure, like the Baum-Welch method, which is described below.

This method can be derived using simple ”occurrence counting” argu-

ments, or using calculus to maximize the auxiliary quantity

Q(λ, λ̄) =
∑

q

P {q |O, λ} log
[
P

{
O, q, λ̄

}]
. (3.5)

A special feature of this algorithm is that it is guaranteed to converge.

To describe the Baum-Welch algorithm, also known as the Forward-

Backward algorithm, we define two auxiliary variables, in terms of the clas-

sical forward and backward variables, αt(i) and βt(j) respectively.

αt(i) = P {o1, · · · , ot, qt = i |λ} (3.6)

αt+1(i) =
N∑

i=1

αt(i)aijbj(ot+1) 1 ≤ j ≤ N , 1 ≤ t ≤ T − 1 (3.7)

βt(j) = P {ot+1, · · · , oT |qt = j, λ} (3.8)

βt(j) =
N∑

j=1

aijbj(ot+1)βt+1(j) 1 ≤ i ≤ N , t = T − 1, T − 2, · · · (3.9)

The first variable is defined as the probability of being in state i at time

t and in state j at time t+ 1. Formally,

ξt(i, j) = P {qt = i, qt+1 = j |O, λ} . (3.10)

This is the same as,

ξt(i, j) =
P {qt = i, qt+1 = j |λ}

P {O |λ} . (3.11)

26

Using forward and backward variables this can be expressed as,

ξt(i, j) =
αt(i)aijβt+1(j)bj(ot+1)∑N

i=1

∑N
j=1 αt(i)aijβt+1(j)bj(ot+1)

. (3.12)

The second variable is the a posteriori probability,

γt(i) = P {qt = i |O, λ} , (3.13)

that is the probability of being in state i at time t, given the observation

sequence and the model. In forward and backward variables this can be

expressed by,

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

. (3.14)

One can see that the relationship between γt(i) and ξt(i, j) is given by,

γt(i) =

N∑
j=1

ξt(i, j), 1 ≤ i ≤ N, 1 ≤ t ≤M. (3.15)

Now it is possible to describe the Baum-Welch learning process, where

parameters of the HMM are updated in such a way as to maximize the

quantity, P {O |λ}. Assuming a starting model λ = (Λ, B, π), we recursively

calculate and update the HMM parameters according to Eqs. 3.16-3.18,

known as re-estimation formulae.

π̄i = γ1(i), 1 ≤ i ≤ N (3.16)

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, 1 ≤ i ≤ N, 1 ≤ j ≤ N (3.17)

b̄j(k) =

∑T
t=1,ot=vk

γt(j)∑T
t=1 γt(i)

, 1 ≤ j ≤ N, 1 ≤ k ≤M (3.18)

27

The Baum-Welch algorithm is guaranteed to converge, thereby finding a

local maxima.

If we now allow the states of the HMM to be represented by continuous,

probabilistic functions, the models become Hybrid Hidden Markov Models

(HHMM) which are described in the next chapter.

28

Chapter 4

Hybrid Hidden Markov Models

In the previous chapter, we studied hidden Markov models. If we now allow

the states of the HMM to be represented by continuous, probabilistic func-

tions, the models become Hybrid Hidden Markov Models (HHMM). Thus,

an HHMM can be used in conjunction with past flight data in a TRACON

in order to model the conformance of aircraft to flight paths, or to detect

when individual aircraft change their mode of flight (e.g. when an aircraft

changes its flight path from steady level flight, to climbing flight etc.).

4.1 Hybrid Automata

A hybrid automaton is a state machine whose states can change by discrete

transitions, which result in an instantaneous change of state, or by continuous

trajectories, which express the evolution of the state over time intervals.

Definition 4.1.1 A hybrid automaton, HA, is composed of the seven-tuple:

HA = (W,X,Q,Θ, E,H,D, T) (4.1)

where,

• The sets W and X are disjoint from each other and correspond to

external and internal variables, respectively. The set of variables is

29

defined as V = W
⋃
X.

• Q represents the set of states, Q ⊂ val(X).

• Θ is the non-empty set of start states, Θ ⊆ Q.

• The set of actions Ac consists of a set E of external actions and a set

H of internal actions which are disjoint from each other.

• The set D, of discrete transitions, D ⊆ Q × Ac × Q, is often denoted

in shorthand by x
a→ x

′
. If x

a→ x
′
, it is said that a is enabled in x.

• T is the set of trajectories for V . For a trajectory τ ∈ T , the first

and last (if τ is closed) states are denoted by τ.fstate and τ.lstate

respectively. The set T satisfies the following closure properties.

– P1 Prefix Closure: For every τ ∈ T and every prefix τ
′

of τ ,

τ
′ ∈ T .

– P2 Suffix Closure: For every τ ∈ T and every suffix τ
′
of τ , τ

′ ∈ T .

– P3 Concatenation Closure: If τ0, τ1, · · · ∈ T is a sequence of trajec-

tories such that τi.lstate = τi+1.fstate, then their concatenation

is also in T .

These closure properties are needed for parallel composition of hybrid

automata. In a composed system, any trajectory of any automaton can be

interrupted at any time by a discrete transition of another automaton. Prefix

closure ensures that the part of trajectory up to the transition is a trajectory,

while the remainder being a trajectory is guaranteed by suffix closure. And

finally the concatenation closure is required so that the automaton can follow

changes in its continuous dynamics.

30

Note: Each variable (a component of the system’s state) v is associated

with a static type and a dynamic type. The static type of v, type(v), is the

set of values that v can take. val(V) is the set of all valuations of V and a

valuation is a function that associates for each v ∈ V a value in type(v).

4.1.1 Executions and Traces

Execution fragments and traces are used to describe the behavior of the

automata. An execution fragment of a hybrid automaton is an (Ac, V)-

sequence (action-trajectory sequence)

α = τ0a1τ1a2τ2 · · · (4.2)

where

• Each τi ∈ T

• Each ai ∈ Ac

• If τi is not the last trajectory in α, then the last state in τi can

map, under some action ai+1, to a first state in some trajectory τi+1;

τi.lstate
ai+1→ τi+1.fstate.

An execution fragment records all the details of a particular run of a

system, including all the discrete state changes and also the changes to the

state and external variables as time advances. The set of execution fragments

ofHA is denoted by fragsHA. An execution fragment α is called an execution

if the first state of α is a start state of the hybrid automaton HA. The set

of executions of HA is defined as execsHA.A state of the hybrid automaton

is reachable if it is the last state of some execution of the automaton. An

31

invariant property (or an invariant) is a predicate on the state variables that

is true in all reachable states.

Traces capture the externally visible behavior of a hybrid automaton.

Traces record external actions and the trajectories that describe the evolution

of external variables. The trace of an execution fragment α, trace(α), is the

(E,W)-restriction of α, i.e., the restriction of α to the external actions and

external variables. A trace fragment of a hybrid automaton HA, from a state

x of HA, is the trace of an execution fragment of HA whose first state is x.

A trace of HA is the trace of an execution of HA. The set of traces of HA

is defined as tracesHA.

Definition 4.1.2 Hybrid automata HA1 and HA2 are said to be compara-

ble if W1 = W2 and E1 = E2, i.e., they have the same external interface.

Furthermore, if HA1 and HA2 are comparable, then HA1 implements HA2

if tracesHA1 ⊆ tracesHA2.

4.1.2 Composition

Parallel composition is an operation on hybrid automata, which allows an

automaton representing a complex system to be constructed by composing

automata representing individual system components. The composition op-

eration in Ref. 10 identifies external actions with the same name in different

component automata, and likewise for external variables. When any compo-

nent automaton performs a discrete step which involves an action a, all the

other automata that have a in their action sets do the same. Similarly, when

any component automaton performs a trajectory which involves a particular

evolution of values for an external variable v, then all the other automata

that have v in their variable set do the same.

32

In Ref. 10, composition is defined as a partial, binary operation on hybrid

automata. Since internal actions of an automaton HA1 are intended to be

unobservable by any other automaton HA2, HA1 is composed with HA2

only if the internal actions of HA1 are disjoint from the actions of HA2.

Likewise, disjointness of the internal variables of HA1 and the variables of

HA2 is required.

Definition 4.1.3 Hybrid automata HA1 and HA2 are said to be compatible

if H1 ∩ A2 = H2 ∩ A1 = ∅ and X1 ∩ V2 = X2 ∩ V1 = ∅.

Definition 4.1.4 If HA1 and HA2 are compatible, then their composition

HA1 ‖HA2 is defined to be the structure HA = (W,X,Q,Θ, E,H,D, T)

where:

• W = W1 ∪W2 and X = X1 ∪X2.

• Q = {x ∈ val(X) |(xrestrictedtoX1) ∈ Q1 ∧ (xrestrictedtoX2) ∈ Q2} .

• Θ = {x ∈ val(X) |(xrestrictedtoX1) ∈ Θ1 ∧ (xrestrictedtoX2) ∈ Θ2} .

• E = E1 ∪ E2 and H = H1 ∪H2.

• For each x, x
′ ∈ Q and each a ∈ A, x

aA→ x
′
iff for i = 1, 2, either

– a ∈ Ai and xrestrictedtoXi
ai→ x

′
restrictedtoXi or

– a /∈ Ai and xrestrictedtoXi = x
′
restrictedtoXi.

• T ⊆ trajs(V) is given by τ ∈ T ⇔ τrestrictedtoV1 ∈ T1∧τrestrictedtoV2 ∈

T2.

.

33

The next theorem states that the class of hybrid automata is closed under

composition.

Theorem 4.1.5 If HA1 and HA2 are hybrid automata, then HA1 ‖HA2 is

a hybrid automaton.

The proof is found in Ref. 10. A projection lemma derived from this

theorem states that the executions of a composition of hybrid automata

project to give the executions of the component automata.

4.2 Hybrid Input/Output Automata

(HIOA)

HIOAs are used in description and analysis of hybrid systems. This model

is based on the concept of infinite state machines whose states can change

by discrete actions or by continuous trajectories [10]. The HIOA model is

a refinement of the hybrid automaton where external actions and variables

consist of input and output actions and variables.

Definition 4.2.1 A hybrid input/output automaton A = (HA,U, Y, I, O)

consists of

• A hybrid automaton HA (4.1).

• A set U of input variables and a set Y of output variables, W = U
⋃
Y .

As before, V = W
⋃
X. The set Z = X

⋃
Y is called the set of locally

controlled variables.

34

• A set I of input actions and a set O of output actions, E = I
⋃
O.

As before Ac = E
⋃
H. The actions in the set L = H

⋃
O are called

locally controlled actions.

In Addition A satisfies:

• E1 Input Action Enabling: For every x ∈ Q and a ∈ I, there exists

x
′ ∈ Q such that x

a→ x
′
.

• E2 Input Trajectory Enabling: A should be able to accept any trajec-

tory for the input variables.

Input trajectory enabling states that an HIOA should be able to accept

any trajectory, i.e., any trajectory for the input variables, either by letting

time advance for the entire duration of the input trajectory, or by reacting

with a locally controlled action after some part of the input trajectory has

occurred.

An automaton with distinguished inputs and outputs that does not nec-

essarily satisfy the axioms E1 and E2 is called a pre-HIOA.

An execution of a pre-HIOA A is defined to be an execution of HA, and

a trace of A is defined to be a trace of HA. Similarly the execution fragments

and trace fragments of a pre-HIOA are the execution fragments and trace

fragments of the corresponding hybrid automaton.

A pair of HIOAs are comparable if they have the same external interface.

Definition 4.2.2 Two pre-HIOAs A1 and A2 are comparable if I1 = I2,

O1 = O2, U1 = U2, and Y1 = Y2. If A1 and A2 are comparable then A1

implements A2.

35

Since internal actions of an HIOA A1 are intended to be unobservable by

any other HIOA A2, A1 is only allowed to be composed with A2 if the set of

internal actions and variables of A1 are disjoint from the sets of actions and

variables, respectively, of A2. Similarly the disjointness of the sets of output

actions of A∞ and A∈ and disjointness of the sets of output variables of A1

and A2 is required.

Definition 4.2.3 Pre-HIOAs A1 and A2 are compatible if H1

⋂
Ac2 = H2

⋂
Ac1 =

∅, X1

⋂
V2 = X2

⋂
V1 = ∅ and Y1

⋂
Y2 = O1

⋂
O2. If A1 and A2 are compat-

ible pre-HIOAs, then their composition, A1 ‖A2 , is defined to be the structure

A = (X, Y, U,Q,Θ, H,O, I,D, T) where

• X = X1

⋃
X2 and Y = Y1

⋃
Y2

• Q = {x ∈ val(X) |x�X1 ∈ Q1 ∧ x�X2 ∈ Q2}

• Θ = {x ∈ Q |x�X1 ∈ Θ1 ∧ x�X2 ∈ Θ2}

• H = H1

⋃
H2 and U = (U1

⋃
U2)− Y

• O = O1

⋃
O2 and I = (I1

⋃
I2)− O

• For each x, x
′ ∈ Q and each z ∈ Ac, x a→Ac x

′
iff for i = 1, 2, either

(1) a ∈ Aci and x�Xi
a→i x

′�Xi, or (2) a /∈ Ai and x�Xi.

• T ⊆ trajs(V) is given by τ ∈ T ⇔ τ ↓ V1 ∈ T1 ∧ τ ↓ V2 ∈ T2.

In general, the composition of two HIOAs A1 and A2 is not necessarily

an HIOA. This happens when the input variables of A1 are output variables

of A2 and vice-versa, and the trajectories of these variables defined by the

automata are inconsistent. Hence, the composed A1 ‖A2 does not satisfy the

input trajectory enabling axiom. Therefore, we have the following weaker

theorem [10].

36

Theorem 4.2.4 If A1 and A2 are compatible pre-HIOAs then A1 ‖A2 is a

pre-HIOA.

In the next section we describe the Probabilistic Timed I/O Automata

framework which supports continuous evolution of states through trajecto-

ries, nondeterministic or probabilistic discrete state transitions (which can

be based on continuous distributions), and discrete communications between

components.

4.3 Probabilistic Timed Input/Output

Automata (PTIOA)

A Probabilistic Timed Input/Output AutomatonA = (X, (Q,FQ), x̄, A,D, T)

consists of [11]:

• A set X of internal or state variables.

• A set Q ⊂ val(X) of states, a measurable space (Q,FQ) called the

state space and the start state x̄ ∈ Q.

• Disjoint sets H , I, and O of internal, input and output actions and the

countable set of actions A = H ∪ I ∪ O (L = O ∪H is the set of local

actions and E = O ∪ I is the set of external actions).

• A set D ⊆ Q× A×P(Q,FQ) of probabilistic transitions.

• A deterministic set T of trajectories for Q which is closed under prefix,

suffix, and concatenation.

37

This closure property is needed for parallel composition of PTIOA, where

any trajectory of any automaton can be interrupted at any time by a proba-

bilistic transition of another automaton. Prefix closure ensures that the part

of the trajectory up to the transition is a trajectory, while the remainder

being a trajectory is guaranteed by suffix closure. Concatenation closure

ensures that the automaton can follow changes in its continuous dynamics.

It should be noted that unlike HIOAs, PTIOAs do not have external

variables (W = U∪Y) and it is assumed that they communicate only through

shared actions.

Execution fragments and traces are used to describe the behavior of the

automata. An execution fragment is an alternating sequence of actions and

trajectories which shows all the changes to the state and external variables

(in the case of the HIOA) and all discrete state changes while time advances.

Traces capture the externally visible behavior of the hybrid automaton and

for a PTIOA record the external actions and duration of the intervening time

intervals. Hence, the trace of α, trace(α), is the (E, ∅)-restriction of α.

In the PTIOA framework there are probability measures over the set

of executions and traces which in the HHM framework translates into the

probability distribution in each of the states.

Definition 4.3.1 [11] Pre-PTIOAs A1 and A2 are compatible if X1

⋂
X2 =

H1

⋂
A2 = H2

⋂
A1 = O1

⋂
O2 = ∅. If A1 and A2 are compatible pre-

PTIOAs, then their composition, A1 ‖A2 , is defined to be the structure A =

(X, (Q,FQ), x̄, A,D, T) where

• X = X1

⋃
X2 and (Q,FQ) = (Q1 ×Q2,FQ1 ⊗ FQ1), and x̄ = (x̄1, x̄2)

• A = A1

⋃
A2, O = O1

⋃
O2, I = (I1

⋃
I2)− O and H = H1

⋃
H2

38

• D ⊆ Q×A× P (Q,FQ) is the set of ((x1, x2), a, μ1 ⊗ μ2) such that for

i ∈ {1, 2} if a ∈ Ai then (xi, a, μi) ∈ Di, otherwise μi = δxi

• T ⊆ trajs(V) is given by τ ∈ T ⇔ τ ↓ X1 ∈ T1 ∧ τ ↓ X2 ∈ T2.

Theorem 4.3.2 If A1 and A2 are pre-PTIOAs then A1 ‖A2 is a pre-PTIOA.

4.4 Partially Observable Markov Decision

Processes

A Markov decision process (MDP) is a framework for sequential decision

making in a stochastic environment, which can be used to model an agent’s

synchronous interaction with an environment. In this framework, it is as-

sumed that there is no uncertainty about the agent’s current state. MDPs

have been applied in economics, operations research, control systems design

and artificial intelligence.

A partially observable Markov decision process (POMDP) is an extension

of an MDP, where the state of the system is not fully observable. POMDPs

have been applied in robotics, networked control systems [54], dialogue man-

agement [55] and hazard avoidance alerting systems [56].

Definition 4.4.1 A POMDP is a tuple (S,A, T,R, Z,O) where [57]

• S is a finite set of states.

• A is a finite set of actions.

• T : S × A → Π(S) is the state transition function, where T (s, a, s
′
) =

P
{
st+1 = s

′ |st = s, at = a
}
∀ s, s′ ∈ S, a ∈ A and Π is the probability

distribution.

39

• R : S×A→ � is the reward function, that gives the expected immediate

reward gained by taking each action in each state.

• Z is a finite set of observations.

• O : S × A → Π(Z) is the observation function, where O(s, a, z) =

P {zt = z |st = s, at−1 = a} ∀z ∈ Z, s ∈ S, a ∈ A.

There are two standard approaches to solving POMDP problems [54]. In

the first approach the control action at a given time depends explicitly on

the complete history of observations which is called the information state and

grows without bound as time progresses. On the other hand, the combination

of probabilistic uncertain dynamics and probabilistic observability yields the

probability distribution over the state which is called a belief state. In the

second approach, the belief state is viewed as another state variable with its

own state space (belief space).

4.5 Hybrid Hidden Markov Model

In this section, we introduce Hybrid Hidden Markov Models (HHMM) by

mapping the PTIOA framework into hidden Markov models. We utilize this

technique to preserve the Markov property for state transitions, since an air-

craft trajectory can be subdivided into distinct segments, each correspond-

ing to a flight mode, and the switching between flight modes is a finite-state

Markov process. From a given state x of a PTIOA, multiple actions may

be enabled, and one of these actions is chosen nondeterministically, which in

turn uniquely determines the probabilistic transition at x, and the next state

according to the probability distribution. To resolve the nondeterminism, a

40

scheduler is used which can be independent of the history of the execution

(oblivious), history dependent or Markovian.

Conceptually, envision a hidden Markov model that allows for an infinite

number of continuous states (which evolve according to continuous differ-

ential equations) that can be reduced to a discrete number of abstractions

which characterize the modes of the HMM. Using the terminology of the

POMDP and PTIOA, we formally define the Hybrid Hidden Markov Model

as follows.

Definition 4.5.1 An HHMM is a tuple (N,M,H, S,B,Π) where:

1. N is the set of states; N = Q ⊂ val(X), where X is a set of internal

or state variables.

2. M = E ∪W is the union of observable actions defined by the set of

external actions (PTIOA), E = I ∪ O (I and O are the set of input

and output actions, respectively), and the observable part of the state

(POMDP), W .

3. H is the set of internal actions, and A = H ∪ I ∪O.

4. S is the state transition function on the measurable state space (Q,FQ)

given by

st,t+1 = P {qt+1 |qt, at} , qt ∈ val(X(t)), at ∈ A and S = {st,t+1} .

(4.3)

5. B is the distribution on the observable execution trace Tobs = mtmt−1 · · ·mt=0

(where mt = val(M(t)) such that

bt(k) = P {mt = val(E ∪W (t)) |qt = val(X(t))} , k ∈M , (4.4)

41

6. Π = {πi} is the initial distribution of the state given the initial set of

start states Θ

πi = P {q0 = θi, θi ∈ Θ} . (4.5)

Note that the state transition function employs a Markovian selection

process.

If we then consider a simple pictorial description (figure 4.1) of an aircraft

which alternates between the modes of steady level flight (represented by the

dynamics contained in the circle on the left) and climbing/descending flight

(represented by the dynamics contained in the circle on the right), and the

non-deterministic transition functions described upon the arrows denoting

the random distribution that determines when the system changes modes,

given that the guarding conditions upon the arrow is satisfied (since each ep-

silon denotes a small value), one can see the characteristics of a hybrid hidden

Markov model, whose probability distribution on the observable execution

trace is unknown.

Thus, given the HHMM λ and a sequence of observations Tobs, we can

determine the probability that the observations are generated by the model.

Furthermore, given the model λ and a sequence of observations Tobs, we

can determine the most likely state sequence in the model that produces the

observations using a continuous adaptation of the Viterbi Algorithm. Finally,

given a model λ and a sequence of observations Tobs, we can determine how

we should adjust the model parameters λ = (Λ, B,Π) in order to maximize

P {Tobs |λ} using a continuous adaptation of the Baum-Welch Algorithm. An

HHMM can be used in conjunction with actual flight data from a TRACON,

in order to model the conformance of aircraft to flight paths, or to detect

when individual aircraft change their mode of flight (e.g. when an aircraft

42

Figure 4.1: Theoretical hybrid hidden Markov model for aircraft in steady
level flight or climbing/descending flight

changes its flight path from steady level flight, to climbing flight etc.).

4.6 Advantages of HHMM to Other

Formalisms

Using HHMMs allows us to look at the aircraft mode identification problem as

a hybrid system with continuous variables (trajectories) instead of a discrete

system. This model is most representative of the actual physical evolution of

an aircraft in flight, as it behaves in a continuous manner. When the aircraft

trajectories are modeled as continuous, we have an infinite number of states;

in order to study them we must use a finite abstraction of the states, which

is enabled by the notion of levels of abstraction (or equivalence classes) in

the HIOA framework. That is why we can use abstract flight modes, such as

steady level flight or accelerating turn, to represent the physical dynamics of

43

the aircraft. Also, to extend the work into decentralized CD&R (that is, the

notion that each aircraft has an HHMM onboard and gets information from

its neighboring aircraft), we need these models to be composable, a property

that is guaranteed by using the HIOA framework. The receptiveness property

of the HIOA does not allow the state machine to block time or to contribute

to producing Zeno behavior (infinite number of discrete transitions in a finite

time).

Modeling the aircraft dynamics as continuous coupled differential equa-

tions allows us to detect mode changes in a more timely fashion. That is, we

do not have to wait for the next discrete time interval to update our estimate

of the mode of the system. As inputs arrive asynchronously to the HIOA,

the boundary between two modes of flight requires that the final valuations

of all continuous variables in the prior mode become the initial values in

the subsequent mode (unless they are overwritten by the triggering input).

The inherent inertia of an HHMM is sufficiently less than that of its equiva-

lent HMM (which is essentially a predictive altitude threshold model). That

is, the HHMM is better able to model, then distinguish, between changes

attributed to noise and/or disturbances, as opposed to actual changes in

commanded flight paths. This is because the HHMM formalism allows for

the incorporation of continuous, stochastic elements, such as random walks

(wind disturbances) and Gaussian noise.

44

Chapter 5

Mode Detection Results

5.1 Aircraft Flight Data

We have used two different sets of real flight data, NDMS data and FEWS

data, in the evaluation of the HHMM framework.

The FAA System Analysis Recording (SAR) stores all flight and radar

information in Air Route Traffic Control Centers (ARTCCs). The SAR data

are reduced into reports generated by two computer programs, the Data

Analysis Reduction Tool (DART) and National Track Analysis Program

(NTAP). A National Airspace System (NAS) Host computer can generate

these reports. The NAS Data Management System (NDMS) was developed

to organize the text-based NTAP reports into hour-long Microsoft Access

database files [58]. Traffic samples used in this paper are from the Indi-

anapolis ARTCC (ZID) for both busy and slow times of day. Each file of

the database corresponds to a single aircraft with the aircraft identifier as

its name. The data in the files are recorded approximately every six seconds

and include

• Digital time (ZULU) in hhmmss format

• Position of the aircraft and its altitude

• Ground speed

45

• Heading angle

• Assigned altitude

• Controlling sector number

The second set of data was obtained from the FAA’s evaluation simula-

tion of Future En route WorkStation (FEWS). The simulations took place

during the summer of 2005 at the Research and Development Human Fac-

tors Laboratory (RDHFL) at the FAA’s Technical Center at Atlantic City

International Airport, NJ. FEWS data includes more information for each

aircraft, and the data are recorded approximately every twelve seconds. The

additional data that we used for our HHMM at each time instant consists

of: true airspeed (kts), indicated airspeed (kts), flight path angle (deg), total

weight of the aircraft (lb), thrust (lb), drag (lb), lift coefficient, desired alt

(ft), desired heading angle (deg) and desired indicated speed (kts).

One of the difficulties in predicting aircraft positions is modeling the

uncertainties. Wind and errors in tracking, navigation, and control affect

the future motion of an aircraft. These uncertainties can be modeled as

the sum of a large number of independent random perturbations acting in

disjoint time intervals and, thus, it is expected to be Gaussian [14, 19].

The fidelity of the data does not allow for the use of comprehensive

stochastic models (for wind and/or radar errors). To the best of our knowl-

edge, this is a common occurence in treatise dealing with actual flight data

[16, 59] and is a subject of future work.

The simple linear model used to predict motion along cross-track and

46

along-track axes for the NDMS data is given below.

ẋ(t) = v(t) sin(π − ψ(t))

ẏ(t) = v(t) cos(π − ψ(t)), (5.1)

where x is the position of the aircraft on the along-track axis, y is the position

of the aircraft on the cross-track axis, v(t) is the ground speed of the aircraft

at time t, and ψ(t) is the heading angle of the aircraft at time t.

0 50 100 150 200
0

1

2

3

4

5

6

Prediction Time (Minutes)

R
M

S
E

rr
or

 (
nm

i)

along−track (x axis)
cross−track (y axis)

Figure 5.1: Position prediction error statistics

To calculate the uncertainty due to Eq. (5.1), the prediction error statis-

tics are computed by using the flight data of 30 aircraft in steady level flight.

A prediction time range of 20 minutes (typical look ahead time for mid-range

conflict detection algorithms [19]) is divided into 200 six-second intervals, and

for each interval the mean, standard deviation, and root mean square (rms)

position prediction errors are computed. The rms errors are shown in figure

5.1. These values can be taken as a bound on uncertainty for the linear

prediction model (Eq. (5.1)), using the aircraft data in order to estimate

future conflicts, and agree with the literature [16]. The standard deviation

errors of the along-track and cross-track axes start at 0.154 nmi and 0.19

nmi, respectively, for zero prediction time.

47

5.2 The Use of Intent Information

To model the flight path of aircraft by automata (finite state machines) two

approaches can be taken. In one model each flight mode of aircraft is one

state of the automaton and in the other there are only two states; one corre-

sponding to the horizontal flight modes (the flight modes that do not involve

any altitude changes, e.g., steady level flight, level turn, speed up/down and

etc.) and the other state representing the vertical flight modes (the flight

modes that necessarily include altitude changes, e.g., climb, descend, accel-

erated climb, and etc.). In this paper the second model is used. Figure 5.2

shows this hybrid input/output automaton (HIOA).

Figure 5.2: Aircraft hybrid input/output automata

Explicit intent information can be used in two different ways in the

HHMM described before. First it can be used for better mode identification.

The predefined flight plans (position of waypoints, etc.) can be interpreted

as flight modes at each time instant. Then the HHMM can use this extra in-

formation to identify the actual modes faster and more accurately. Secondly

intent can be used to determine whether an aircraft is conforming to its flight

plan or not. In this paper intent is used for conformance monitoring.

48

We denote the radar measurements (track files) by x, y, z, θ, φ, ψ, v

which are respectively, positions of aircraft along the longitudinal and lateral

axes, the altitude, pitch (attitude), roll (bank angle), yaw (heading), and

speed. Then by using the HHMM we attempt to find the probability of each

sequence of states and choose the path that has the maximum probability.

We call this path Ŝ.

Explicit intent is known via published flight plans and communications

between the controller and the pilot. The published flight plans (which we

call offline intent information) give us the exact sequence of states and the

path of aircraft. We call this sequence S0 and the positions x0, Y0, Z0.

We assume that the communications between the controller and the pilot

(shared information in controller/pilot interactions [60]) only include con-

troller’s commands and we call them online intent information. These com-

mands should allow us to get the deviation between exact offline intent and

the HHMM estimated sequence.

Intent is a continuous variable and HHMMs can be used to carry contin-

uous intent. By using intent information along with the Viterbi algorithm

in the hybrid hidden Markov model we can estimate likely mode transitions

which lead to a better mode identification. We will also be able to determine

whether the aircraft are conforming to their predefined flight path or ATC

controller’s commands. Based on the HIOA shown above, we can determine

conformance for vertical and horizontal states separately.

5.3 Mode Detection Results and Discussion

The actual aircraft flight data, described in section 5.1 is used in conjunction

with the HHMM described in the previous chapter, to perform conformance

49

monitoring by detecting mode changes in the flight of individual aircraft. If

this model is coupled with the flight plan filed by the aircraft (intent infor-

mation), then the degree of conformance the aircraft exhibits with respect to

its intent can be described probabilistically, by solving the decoding problem.

Alternatively, the flight modes of the aircraft can be described in a stochastic

hybrid setting, and the flight data taken can then be used to train the HHMM

in order to detect transitions between classical modes of flight (i.e., climbing,

climbing turn, level flight, speed-up etc.). This produces an HHMM that

can then be used to give a probabilistic evaluation of the flight mode of an

aircraft after only a few data cycles, in a real-time setting. This latter task is

the focus of this paper, and in the sections below, we describe the parameters

of the trained HMM and HHMM for the flight modes of steady level flight,

climbing/descending flight, turning flight, and climbing/descending turning

flight. The accuracy of the detection of the probabilistic switching function

between these four modes of flight is then discussed.

5.3.1 Parameter Adjustment for Mode Detection

using NDMS Data

In Ref. 61 the altitude data of 30 aircraft, flying initially above FL 260, over a

period of 25 to 65 measurement cycles, were analyzed using the Baum-Welch

algorithm in order to refine the parameters of an HMM for transition detec-

tion between flight modes. These traffic samples were from the Indianapolis

ARTCC (ZID) flying in DAY sector during the busy time of day, 21:00-22:00.

Hence, deviation due to aircraft type was not accounted for in the model, as

it is assumed that the class of planes capable of flight at these altitudes is rel-

atively uniform in terms of flight characteristics. Three abstract observation

50

classes, comprised of level flight, climbing flight, and descending flight, were

used for the mode detection model, with satisfactory preliminary results.

This simplified model and its results are used as a benchmark throughout

this section.

(a) Climbing flight (FL 260-290)

(b) Descending flight (FL 290-260)

Figure 5.3: Probability of Level Flight Mode during 10 Training Iterations

In Ref. 62 we divide the aircraft into the following modes: aircraft in

steady level flight, aircraft in descending or climbing flight, and aircraft in

turning flight (using the same aircraft data as in Ref. 61). To capture the

turn mode, the altitude data is insufficient. Hence, the position of the aircraft

on the along-track and cross-track axes, in addition to the altitude, is used

51

to distinguish between an aircraft in steady level flight and an aircraft which

is turning in the x− y plane. The heading angle of the aircraft is used as a

refining parameter to improve this metric.

Two aircraft, one in climbing flight and another in descending flight, are

used as illustrative examples to demonstrate the trained HMM’s ability to

detect mode changes, and thus determine the conformance of aircraft. Figure

5.3 shows the convergence of this model during 10 training iterations of the

Baum-Welch algorithm. In this figure, P(Level) corresponds to the value

of the probability of being in level flight at each time step. Since the data

used in this paper was recorded at six second intervals, each time step in

this figure stands for six seconds, so the tic-mark corresponding to 7 on the

time axis refers to a time passage of 42 seconds. Here the probability of

being in level flight is plotted for 10 consecutive iterations, where at each

iteration the model processes all the data and adjusts the parameters. The

climbing flight case used 45 measurements (4 min 30 sec) of data, and the

descending flight case used 39 measurements (3 min 48 sec) of data. The

aircraft in figure 5.3(a) starts climbing from FL260 to FL290 at the 11th

time instant and levels off when it reaches FL290 at time 186 seconds. This

is clearly illustrated by the pronounced ”U” shape in the graph at the 10th

iteration. But the aircraft shown in figure 5.3(b) is at first in steady level

flight at FL290 and then starts descending to FL260 at the 11th time instant

and levels off at FL260 at the 31st time step.

The corresponding re-estimated transition and emission probabilities for

both the above scenarios after 10 iterations are given in Table 5.1. For graph-

ical display purposes, we assign a structure using the label ”C” to correspond

to the mode of steady, level flight, and the character ”H” corresponds to the

mode of non-level (climbing, descending or turning) flight. For display pur-

52

Table 5.1: Final probabilities for HHMM trained on data for climbing and
descending flight after 10 iterations

Climbing p(· · · |C) p(· · · |H) p(· · · |START)
p(1 |· · ·) 0.00 0.44
p(2 |· · ·) 1.00 0.56
p(3 |· · ·) 0.00 0.00
p(C |· · ·) 0.90 0.05 1.00
p(H |· · ·) 0.05 0.95 0.00

p(STOP |· · ·) 0.05 0.00 0.00
Descending p(· · · |C) p(· · · |H) p(· · · |START)
p(1 |· · ·) 0.00 0.53
p(2 |· · ·) 0.84 0.47
p(3 |· · ·) 0.16 0.00
p(C |· · ·) 0.88 0.05 1.00
p(H |· · ·) 0.06 0.95 0.00

p(STOP |· · ·) 0.06 0.00 0.00

poses, the three classes of observations for predicted flight over a 6 second

measurement interval are denoted by: Class 1, climbing/descending flight,

Class 2, steady level flight, and Class 3, turning flight. The observation al-

phabet used is thus {1, 2, 3}. Note that in the full HMM the distinction is

made between climbing and descending flight (as is done in Ref. 61), and

between a climbing turn and a descending turn, leading to an observation al-

phabet of {1, 2, 3, 4, 5, 6}. This however is not conductive to concise graphical

or lexical display, and thus the above abstraction is used for visual reasons

and for notational simplicity. As can be seen from Table 5.1, the probabilities

for the mode transitions (i.e. P (C |H) and P (H |C)) are almost identical

for both cases.

In Table 5.1, p(2 |C) (or p(2 |H) is the probability of being in steady level

flight if the aircraft was in a level (or non-level) flight mode at the previous

time instant. Hence,

p(1 |C) + p(2 |C) + p(3 |C) = p(1 |H) + p(2 |H) + p(3 |H) = 1 (5.2)

53

Similarly P (H |C) is the probability of being in a non-level flight mode

if the aircraft was in a level mode at the previous time step.

P (STOP |· · ·) and p(· · · |START) depend on the data set that the HHM

is being trained on. In the case of the climbing aircraft the probability of

being in a level flight mode at the beginning of the data set, p(C |START),

is one. For the descending aircraft the probability of reaching the end of the

data while being in a non-level flight mode, p(STOP |H) , is zero. Hence,

p(C |C) + p(H |C) + p(STOP |C) = p(C |H) + p(H |H) + p(STOP |H) = 1

(5.3)

(a) Climbing flight (FL 260-290)

(b) Descending flight (FL 290-260)

Figure 5.4: Detection Threshold

Figure 5.4 illustrates the fact that the model’s ability to detect mode

transitions is very accurate, and usually occurs within two data cycles (within

approximately 12 seconds). The aircraft used for the climbing flight profile

was climbing parallel to its along-track axis, and the y values were almost

54

Figure 5.5: Planar flight path of the climbing aircraft

constant (shown in figure 5.5). As can be seen in figure 5.4(a) the probability

of being in level flight drops below one before the aircraft starts to climb,

which could indicate a turn. But since the aircraft was flying on a straight

line with zero degree change in its heading angle, the governing equations

for the stochastic hybrid evolution in this flight mode was adjusted with the

following condition: if the change in the position of the aircraft along any of

its axes is less than 0.2 nmi, then the aircraft is either in steady level flight,

or climbing/descending flight, depending on the value of its altitude changes

during each time interval. Note, the model is not predicting the climbing

mode at this point. Thus, the addition of this pathological case created a

refinement in the HMM, allowing it to become more robust in the learning

process. This allowed the HMM to make the clear determination of the

climbing flight, thereby eliminating the turn mode, within approximately 12

seconds (between measurement intervals 10-12 on figure 5.4(a)). Thus, the

probability of P (3 |H) = P (3|C) = 0 for the HMM trained on the climbing

flight data. The descending aircraft chosen was a clean descent without

significant variation in the x-y plane and the model detected the mode change

from steady level flight to descending flight within the space of a measurement

interval (6 seconds in interval 11).

Measuring information entropy is one way to evaluate a model, and also

55

a way to assess the complexity of a modeling task for a given repository of

data sets. Entropy is a measure of the level of certainty obtained with the

addition of one additional data point, or:

H =
∑

P (Observations)× lg2(P (Observations)). (5.4)

Mathematically, the perplexity of a model is defined as the base two

exponent of the entropy. We generally say a model is good to the degree

that it assigns high probability (equivalently, low perplexity) to test data.

Obviously no modeling technique can guarantee that the model will assign

high probability to test data it has never seen, but the Baum-Welch algorithm

is guaranteed, at every iteration, to at least improve the probability of the

observed training data.

Figure 5.6 illustrates convergence via each iteration of the Baum-Welch

algorithm; the uncertainty associated with the transition probabilities is de-

creasing, and approaches a perplexity value of about two for the climbing

flight (figure 5.6(a)) and a value of about 2.5 (figure 5.6(b)) for the descend-

ing flight. Thus, the total probability assigned to of all the paths that explain

the data is always increasing. The plots in figure 5.6(c) and 5.6(d) show the

perplexity of data for the model that does not include turn mode [61].

For the climbing flight example, the added condition in the stochastic hy-

brid evolution equations that uses the additional aircraft track information

provided by the heading angle (as well as the x-y positions) results in the

perplexity of the HMM with extended modes (level, climbing, descending,

level turn, climbing turn, descending turn) being equal to that of the sim-

ple model with three modes (level, climbing, descending). Thus, two extra

modes were added, but three extra pieces of observational information (per

56

(a) Climbing flight (b) Descending flight

(c) Climbing flight for the previous model
[61]

(d) Descending flight for the previous
model [61]

Figure 5.6: Perplexity of data over 10 iterations

measurement) were provided in the training set. The heading angle allows

for the immediate elimination of the pathological turning case due to large

error in the x-y plane, thereby eliminating the need to consider any of the

turning modes of flight when determining the mode in the extended model.

Hence, the values seen in figure 5.6(a) and figure 5.6(c) are equal, as the

extended model reduces to the simple model used in Ref. 61. However, in

the descending flight, the initial perplexity and its final value after 10 itera-

tions, are higher when the turn mode is added to the model. This is expected

57

because the information provided by the heading angle is insufficient to elim-

inate the uncertainty in determining whether the aircraft is in turning flight

in the extended model.

(a) Mode detection threshold (b) Perplexity of data

Figure 5.7: Random Aircraft

Figure 5.8: Planar flight path of the random aircraft

Now, to evaluate the effectiveness of an HMM at detecting mode changes,

it is necessary to score the ability of the model to produce a given series of

observations. We can evaluate the performance of the trained HMM against

random aircraft trajectories in the specified flight level, many of whom are

not well behaved.

A representative example of a random aircraft trajectory and the associ-

ated mode change sequence is given in Fig. 5.9. The perplexity of the data

over 10 iterations not only begins at a significantly higher value (Fig. 5.9(b)),

58

for the first iteration (of 5.5, compared to 3.5 for the well behaved data), but

never settles below 3.5, demonstrating that even further refinement may not

improve the entropy associated with the model. As can be seen, the perplex-

ity of the data in this extended model is higher than when the turn mode

is not included in the simplified model (Fig. 5.9(b)). Fig. 5.10 shows the

planar flight path of this aircraft.

Fig. 5.7 shows another random aircraft. Turn mode detection is obvious

in this figure (figure 5.7(a)) and figure 5.8 indeed shows that the path of the

aircraft in x-y plane is a turn. Thus, within three measurement intervals,

the extended model is able to determine the mode switches between turning

flight and descending turning flight, then between descending turning flight

and level flight. The perplexity of the data over 10 iterations not only begins

at a significantly higher value (figure 5.7(b)), for the first iteration (of 5.5,

compared to 3.5 for the well behaved data), but never settles below 3.46,

demonstrating that even further refinement may not improve the entropy

associated with the model.

5.3.2 Parameter Adjustment for Mode Detection

using FEWS Data

Now we use the HHMM to detect mode changes in a new set of aircraft flight

data recorded for FAA’a Future Enroute Workstation Study (FEWS) using

the automaton shown in figure 4.1. Table 5.2 shows the final probabilities

of the HHMM trained on a descending aircraft data. The three classes of

observations for predicted flight over a twelve second interval are denoted by:

Class 1, descending flight, Class 2, steady level flight, and class 3, climbing

flight. Figure 5.11 shows the mode change sequence and the perplexity of

59

(a) Mode detection threshold (b) Perplexity of data

(c) Mode detection threshold for the previous
model [61]

(d) Perplexity of data for the pre-
vious model [61]

Figure 5.9: Indeterminate flight path

data for the descending aircraft.

Figure 5.13 shows a random aircraft. This aircraft is climbing from FL260

and at the 12th time instant, it levels off at FL290 and then starts descending

at the 33th time interval and levels off at the 47th time step when it reaches

FL220. Figure 5.14 shows the planar path of this aircraft. In figure 5.13 the

accuracy of the mode detection of the the HHMM described in this section is

compared with the accuracy of the HMM introduced in the previous section.

As can be seen the HHMM detects mode changes (e.g. climb to steady

level flight) approximately 12 seconds before the HMM. Note that while the

initial perplexity of about 4.82 is higher than the 4.72 of the HMM model in

figure 5.13(d), the well behaved flight modes evinced by the aircraft in figure

60

Figure 5.10: Planar flight path of the indeterminate aircraft

Table 5.2: Final probabilities for HHMM trained on FEWS data for descend-
ing flight (FL 320-230) after 10 iterations

Descending p(· · · |C) p(· · · |H) p(· · · |START)
p(1 |· · ·) 0.00 1.00
p(2 |· · ·) 1.00 0.00
p(3 |· · ·) 0.00 0.00
p(C |· · ·) 0.97 0.06 0.00
p(H |· · ·) 0.00 0.94 1.00

p(STOP |· · ·) 0.03 0.00 0.00

5.13(b) have a final complexity of about 2.67, lower than the 2.85 shown in

figure 5.13(d). Thus, the HHMM is more accurate in this case after sufficient

iteration.

It should be noted that the classical limitations of hidden Markov mod-

els are inherent in the HHMMs produced by this work. The fundamental

assumption in all Markov models is that the transition probabilities are in-

dependent, which may not necessarily be true of all flight data. The HMM

is only as good as the data it was trained upon, and a tendency to iterate

too many times results in overfitting the data, thereby decreasing the score

of the model against other data sets.

Furthermore, we assume that our model has an inherent inertia, which

is characteristic of aircraft flight paths. This acts to smooth the estimation

process over iterations. It should be noted, however, that the continuous

61

(a) Mode detection threshold (b) Perplexity of data

Figure 5.11: Descending Flight

Figure 5.12: Planar flight path of the descending aircraft

model used for the aircraft dynamics had associated with it, an uncertainty

equal to approximately 200 ft in the worst case, which is essentially equal

to the discrete estimation threshold used to determine the flight observation

sequence.

Next, we compare the efficacy of the HHMM with multiple-model Kalman

filter algorithms.

62

(a) Mode detection threshold with HHMM (b) Perplexity of data for HHMM

(c) Mode detection threshold with HMM (d) Perplexity of data for HMM

Figure 5.13: Indeterminate flight path

Figure 5.14: Planar flight path of the indeterminate aircraft

63

5.4 Comparing HMM and

State-Dependent-Transition Hybrid

Estimation Algorithm

Seah and Hwang [63] propose a stochastic linear system hybrid estimation

algorithm to improve tracking of aircraft around airports by using the knowl-

edge of departure or arrival aircraft flight plans and nominal flight profiles.

They use a multiple-model Kalman filter algorithm for aircraft tracking

with a new assumption, i.e., they consider mode transition probabilities to be

dependent on the continuous state, and they derive a conditional mode tran-

sition matrix. They present a discrete-time stochastic linear hybrid system

model of the aircraft dynamics:

x(k + 1) = Am(k)x(k) +Bm(k)wm(k)(k)

z(k) = Cm(k)x(k) + vm(k)(k) (5.5)

πij(x(k)) = P {m(k) = j |m(k − 1) = i, x(k)}

where the continuous state vector is x =
[
ξ ξ̇ ξ̈ η η̇ η̈ h ḣ

]T

and m(k) ∈

{1, 2, · · · , r} is the discrete state/mode. Also the process noise and measure-

ment noise are uncorrelated zero-mean Gaussian sequences.

The horizontal flight submodes are: CV (constant velocity and heading),

CA (constant acceleration/deceleration) and CT (coordinated turn with con-

stant speed and turning rate). The vertical submodes are: CH (constant

altitude) and CD (constant altitude change rate).

64

First, they model the mode transitions using known/deterministic flight

profiles (take-off, landing and movement along SID/STAR). They draw sep-

arate finite state automata for horizontal and vertical planes to show flight

mode transition models for each flight-mode change point (FCP), where the

transition conditions are called guard conditions (Cij). For the stochastic

model, they model the flight profiles to be randomly distributed about the

nominal profile with a Gaussian distribution uncertainty. They show that

the conditional mode transition probabilities πij can be expressed with mul-

tivariate Gaussian density functions instead of multivariate integrals. This

algorithm is called State-Dependent-Transition Hybrid Estimation (SDTHE)

algorithm.

Figures 5.15 and 5.16 compare the mode detection accuracy of HMM with

SDTHE and IMM algorithms under the conditions of Example 2 in Ref. 63.

Because of the discrete nature of the SDTHE and IMM algorithms, HMM

was used instead of the HHMM. As can be seen, HMM has a better accuracy

than IMM and it detects mode changes at the same time instant as SDTHE

algorithm.

The hidden Markov models extend to hybrid HMMs which, detect inputs

in an asynchronous fashion. On the other hand, Kalman filter techniques

(such as IMMs) are restricted in the sense that they have to wait for the next

discrete time interval to update their mode estimation. Hence, HHMMs are

able to detect changes that occur in an asynchronous fashion, that is, between

”update” intervals.

65

Figure 5.15: Mode detection threshold HMM

0 50 100 150 200 250 300 350
4

4.5

5
Estimated mode from IMM1

true mode
estimated mode

0 50 100 150 200 250 300 350
4

4.5

5
Estimated mode from SDTHE

true mode
estimated mode

0 50 100 150 200 250 300 350
4

4.5

5
Estimated mode from IMM2

true mode
estimated mode

Figure 5.16: Mode detection threshold SDTHE, numbers 4 and 5 correspond
to submodes CH and CD respectively.

66

Chapter 6

Decentralized Conflict
Detection and Resolution

Motion coordination/assignment is the general problem of reaching some

global spatial pattern of movement in a set of autonomous agents. In [64]

a notion of virtual nodes (VN) is developed where a virtual node is an ab-

stract, relatively well-behaved active node that is implemented using less

well-behaved real nodes. In this framework, virtual nodes are associated

with predetermined, well-distributed locations in the plane, communicating

among themselves and with mobile client nodes using local broadcast. The

plane is separated into disjoint zones, each belonging to a virtual node, which

is emulated by all the mobile nodes present in its zone. The VN abstraction

provides a centralized controller with reliable storage. The HIOA framework

is used to describe the components of the system. This VN abstraction layer

is applied to the problem of coordinating the motion of real mobile nodes in

a 2 dimensional space.

A distributed hybrid approach to the assignment problem in distributed

motion planning is considered in [65], which simultaneously addresses the

discrete assignment of destinations to agents, which is determined dynami-

cally through distributed coordination protocols, as well as the continuous

control strategies for driving the individual agents to the destinations.

The problem of safely coordinating the motion of several agents sharing

the same environment has received a great deal of attention. In the air

67

traffic control literature, a control policy for generating provably safe conflict

resolution maneuvers for two aircraft is proposed in [66]. The approach

allows for uncertainty in the intent of one of the aircraft and calculates the

least restrictive control scheme for the other aircraft based on the worst case

uncertainty and the minimal unsafe operating region for each aircraft.

Other decentralized algorithms can be found in [67–70].

6.1 Verifying Safety Properties

Proving safety properties over cyber-physical systems involves generating the

set of reachable states for the system, and then assuring that a mathematical

invariant that embodies the safety property holds over this set. Generating

the exact reachable sets of hybrid systems is a non-trivial task, as most

fixed point iteration schemes possess no guaranteed termination conditions,

rendering the problem intractable. Usually, fast overapproximations of the

reachable sets are generated instead, and the invariant property is proved

over the conservative set. However, the lack of a proof does not necessarily

mean that the exact reachable set does not obey the given property; it then

becomes necessary to find a weaker formulation of the safety property, or a

closer overapproximation to the exact reachable set.

6.1.1 Automatic Invariance Verification

Definition 6.1.1 Let M be a hybrid hidden Markov model with X as the

set of internal variables and set of states N = Q ⊂ val(X). Also let P be

a predicate on X. The set of states satisfying P is denoted by P as well.

The predicate P is called an invariant of M if RM ⊆ P, where RM is the

68

reachable set of M.

An HHMMM is safe with respect to a particular safety property S, if S

is an invariant forM. If the set of reachable states ofM,RM, is computable,

then whether RM ⊆ S can be checked. Computing RM is decidable only

if M belongs to a fairly restricted class [71]. These decidable classes are

generally called order minimal hybrid automata [72] with linear, polynomial,

and exponential state models [69, 73–78].

If generating the exact reachable set is not trivial, another alternative

is to compute an overapproximation of RM, denoted by R̄M [79, 80] and

then check the invariant property over the conservative set. Algorithms for

overapproximation of reachable set for hybrid systems have been developed

[81–85].

We now introduce another class of properties ofM.

Definition 6.1.2 Let M be a hybrid hidden Markov model with X as the

set of internal variables and set of states N = Q ⊂ val(X). A predicate P

on X is an inductive property ofM if any execution that starts from a state

satisfying P reaches only states that also satisfy P. An inductive property P

that is satisfied by all the starting states of M is an invariant.

In computer science, invariants and levels of abstraction are standard

methods for reasoning about discrete systems. In Ref. 86 invariant assertion

is used to analyze an acceleration maneuver modeled by hybrid input/output

automata. A deductive technique used for verifying invariance has been

applied earlier to air traffic control systems in the context of HIOAs and

SHIOAs (structured HIOAs) [11,87] and also to vehicle control systems [86,

88, 89]. In this technique, the desired invariant property P is deduced from

69

the specifications of the HHMM M by first finding an inductive property

P ′ ⊆ P, and then checking that the transitions and trajectories ofM preserve

P ′
.

6.2 Case Study: Decentralized Policy for

Conflict Avoidance of Aircraft in a

Stream

6.2.1 Self Separation of Aircraft in a Stream

If we define collision between any two (or more) aircraft PNi and PNj as

being such that a loss of physical separation occurs (say, as being the two

aircraft are no longer laterally separated by 5 nautical miles, or no longer

vertically separated by 1000ft), then we can express the act of collision in

terms of the reachable sets of the automata (HHMMs) PNi and PNj.

For each aircraft PNi in a bounded sector B in �3, all of whom possess

unique identifiers i ∈ I, communication occurs via Automatic Dependent

Surveillance - Broadcast (ADS-B) technique. That is, all aircraft PNj within

a radius Rp of the agent PNi who sends broadcast message m at time t, will

receive the message m in the bounded time interval [t, t + δPNi
], provided

that PNj remains within Rp for the entire interval.

Definition 6.2.1 Denote the set of states reachable for an HHMM PN in

the time interval [t, t+ δPN] = Δt as being RPN : xPN −→ 2xPN ; where xPN

is the position of PN at time t, and RPN(xPN) is the set of all physically at-

tainable points for the aircraft PN in the time interval Δt, given its dynamic

70

constraints.

Note that this definition can be extended to encompass a set relation.

That is, given a set of possible initial positions, Θ, (and a probabilistic dis-

tribution over these positions); we denote the set of reachable states (and

its corresponding probabilistic distribution) as being the union of reachable

sets derived using each point in the initial set as the starting point in the

singleton relation.

Definition 6.2.2 The set of reachable states for PN in [t, t + δPN], given

the initial set of start states Θ, is denoted by RPN(Θ) =
⋃

xPN∈ΘRPN(xPN).

This leads to the formal definition of a collision as:

Definition 6.2.3 A collision between aircraft PNi and PNj is formally de-

fined as occurring if

CPNi,j
:
{
�xPNi

− �xPNj

}
≤ �K (6.1)

where K is the collision threshold. We denote this as (xPNi
, xPNj

) ∈ CPNi,j
.

The threshold K is a vector quantity as the threshold for lateral separa-

tion differs from that of vertical separation.

For aircraft traveling along a parameterized route lateral separation is

the primary concern. If we bound the maximum and minimum acceleration

[a, a] and velocity [v, v] each aircraft is capable of maintaining, we arrive at

the following two conditions necessary to ensure self separation along the

parameterized path for the time interval Δt.

71

Theorem 6.2.4 If we consider the scenario where three aircraft PNi, PNj

and PNk correspond to the leading aircraft, the ”own” aircraft and the lag-

ging aircraft, respectively and with the assumption of starting from a safe

condition, we must have, for safety and liveness to be guaranteed in the time

interval Δt = [t0, t0 + δt]:

∃vj > v, a(τ) ∈ [a, a] such that

K + xPNj
(t0) +

∫ t0+δt

t0

(vj(t0) + a(τ)tau)dτ ≤ xPNi
(t0) (6.2)

+

∫ t0+δt

t0

(vPNi
(t0) + aτ)dτ

and

xPNj
(t0) +

∫ t0+δt

t0

(vPNj
(t0) + a(τ)dτ)dτ ≥ K + xPNk

(t0) (6.3)

+

∫ t0+δt

t0

(vPNk
(t0) + āτ)dτ

This is a conservative bound, which assumes nothing about the behavior

of PNi and PNk, only that PNj has received the broadcast message mi

containing xi and mk containing xk.

6.2.2 Problem Definition

Here we consider a decentralized air traffic control system, where aircraft

are flying along differentiable curves (i.e., enroute flight paths) that we call

streams. The streams are placed in such a way that all the streams on

the vertical plane and all the streams on the lateral plane are conflict free.

72

Hence we can look at one of these streams on which the aircraft are ordered

1 < 2 < · · · < i − 1 < i < i + 1 < · · ·N , where the 1st aircraft is in the

lead, and the N th aircraft is trailing. Safety conditions prohibit two air-

craft loosing a separation of L (�K = (L,D)), and liveness conditions require

each aircraft to maintain a minimum velocity v. Performance considerations

limit maximum acceleration and maximum deceleration, a ∈ [ā, a], as well as

maximum velocity v̄. Thus the initial conditions for one stream are:

vi ∈ [v, v̄] ∀i ∈ [1, · · · , N] (6.4)

|xi+1 − xi| > L |xi − xi−1| > L ∀i ∈ [2, · · · , N − 1] (6.5)

The communication radius for all aircraft is assumed to be R, where

R >> L.

The composite HHMM for each of these aircraft, H , is composed of four

component HHMMs, where each corresponds to a mode of flight and are

labeled Cruise, Accelerate, Climb and Turn, as shown in Fig. 6.1. In this

model the Cruise Automaton acts as a Markovian scheduler/supervisor. It

receives the global inputs, i.e., the flight data of the neighboring aircraft,

along with the local inputs corresponding to the ”own” aircraft. If no poten-

tial conflicts are detected, it only evolves the steady level flight trajectories

and sends out the flight data of the ”own” aircraft. But if a conflict is de-

tected, it determines the resolution maneuver, and then sends out the new

flight data to both the next mode automaton and the neighboring aircraft

automata. Now we will develop each automaton in HIOA language. But first

we will present the language specifications.

73

Figure 6.1: Composed HHMM for each aircraft

6.2.3 The HIOA Language

We use the HIOA language described in Ref. 11 to describe the component

HHMM.

The first line consists of the keyword automaton followed by the au-

tomaton’s name and a list of formal parameters, which are used to specify

sets of objects such as automata, actions, trajectories, etc.

The body of the specification has four sections: signature, variables, tran-

sitions, and trajectories. The actions of an automaton are declared by the

keyword signature followed by a list of actions and their kinds.

The variables section declares the variables of the automaton along with

their kinds, types, dynamic types and possibly their initial value.

The discrete transitions corresponding to each action of the automaton

are defined in the transitions section. A precondition can be defined using

the keyword pre followed by a predicate on the automaton parameters, action

parameters and the internal variables. Due to the input enabling condition,

preconditions cannot be defined for input actions. The program following

the keyword eff defines how the state changes when the action occurs. The

74

statements of the program are assignments, or conditionals or loops.

The trajectories section defines a set of state models for the automa-

ton. Each trajectory definition starts with the keyword trajdef followed by

a name for the state model, an optional invariant condition, a stopping con-

dition using the keyword stop when and a set of Differential and Algebraic

Inequalities (DAIs).

Figure 6.2 shows the Cruise Automaton (HHMM) in HIOA language [11]

for Hi. Hi has two sets of global input and output actions corresponding to

communication from Hi−1 and Hi+1. Cruise receives the global inputs and

the local inputs corresponding to Hi. The receive action receives the aircraft

current flight data, i.e., the position, velocity and heading of each aircraft

and evolves the steady level flight trajectories. Then, to detect potential

conflicts the safety condition is checked by the internal action, conflictdetect.

If a conflict is detected, the value of the boolean internal variable conflict

changes to true and the evolution of the trajectories stops. To resolve the

conflict the resolve action follows the conflict action, where a Markovian

scheduler determines the resolving maneuver. The protocol is as follows.

The first choice is the acceleration mode, but if acceleration or deceleration

cannot be done due to the occurrence of further violations, the climb mode

should be considered, however if another aircraft is above or below Hi, then

the turn mode is chosen. When the acceleration mode is chosen, a new value

for velocity is determined, similarly for the climb mode, a new altitude and

for the turn mode a new heading is determined. The send output action

sends the new values of flight data both to the subsequent automaton as well

as to Hi−1 and Hi+1 along with the new intended value of altitude, velocity

or heading. The automata corresponding to the climb/descend, turn and

acceleration maneuvers are shown in Figures 6.3,6.4,6.5 respectively.

75

A
u
to

m
at

on
C

ru
is

e
S
ig

n
at

u
re

In
p
u
t

re
ce

iv
e(

m
i)

,m
i
∈(

po
si

ti
on

,v
el

oc
it
y,

he
ad

in
g)

O
u
p
u
t

se
nd

(m
2
,m

),
m
∈(

po
si

ti
on

,v
el

oc
it
y,

he
ad

in
g)

⋃ (n
ew

al
ti

tu
de

,n
ew

ve
lo

ci
ty

,n
ew

he
ad

in
g)

In
te

rn
al

co
nfl

ic
td

et
ec

t;
re

so
lv

e
V

ar
ia

b
le

s
In

te
rn

al
(x

c
,y

c
,z

c
)
∈
�

3
;v

c
∈
�

;φ
c
∈
�

co
nfl

ic
t:

B
oo

l:=
fa

ls
e;

d:
B

oo
l:=

fa
ls

e
d
∈
�

,
d:

=
0

T
ra

n
si

ti
on

s
In

p
u
t

re
ce

iv
e(

po
si

ti
on

,v
el

oc
it
y,

he
ad

in
g)

eff
ec

t
(x

c
,y

c
,z

c
)
←

po
si

ti
on

v c
←

ve
lo

ci
ty

φ
c
←

he
ad

in
g

ou
tp

u
t

se
nd

(p
os

it
io

n,
ve

lo
ci

ty
,h

ea
di

ng
)

p
re

co
nfl

ic
t

ou
tp

u
t

se
nd

(n
ew

al
ti

tu
de

,n
ew

ve
lo

ci
ty

,n
ew

he
ad

in
g)

p
re

co
nfl

ic
t

In
te

rn
al

co
nfl

ic
td

et
ec

t
eff

le
t

d=
sa

fe
ty

ch
ec

k(
m

1
,x

c
,y

c
,z

c
,m

3
)

if
d=

tr
ue

th
en

co
nfl

ic
t:

=
tr

ue
fi

In
te

rn
al

re
so

lv
e

p
re

co
nfl

ic
t

eff le
t

re
s=

re
sm

an
eu

ve
r(

m
1
,x

c
,y

c
,z

c
,m

3
)

if
re

s=
1

th
en

ne
w

ve
lo

ci
ty
←

ne
w

ve
lo

ci
ty

ne
w

al
ti

tu
de

,n
ew

he
ad

in
g
←

0
if

re
s=

2
th

en
ne

w
al

ti
tu

de
←

ne
w

al
ti

tu
de

ne
w

ve
lo

ci
ty

,n
ew

he
ad

in
g
←

0
if

re
s=

3
th

en
ne

w
he

ad
in

g
←

ne
w

he
ad

in
g

ne
w

ve
lo

ci
ty

,n
ew

al
ti

tu
de
←

0
T
ra

je
ct

or
ie

s
tr

a
jd

ef
m

ot
io

n
ev

ol
ve

ẋ
c

=
v c

co
s(

φ
c
)

ẏ c
=

v c
si

n(
φ

c
)

ż c
=

0
st

op
w

h
en

co
nfl

ic
t

F
ig

u
re

6.
2:

C
ru

is
e

A
u
to

m
at

on

76

Automaton Climb/Descend

Signature
Input
receive(m),m ∈(position,velocity,heading,newaltitude)
Ouput
send(m),m ∈(position,velocity,heading)

Variables
Internal
(xcd, ycd, zcd) ∈ �3;vcd ∈ �;φcd ∈ �;
(αcd, znewcd) ∈ �2

Transitions
Input receive(position,velocity,heading,newaltitude)
effect
(xcd, ycd, zcd)← position
vcd ← velocity
φcd ← heading
(αcd, znewcd)← newaltitude

output send(position,velocity,heading)
pre
zcd = znewcd

Trajectories
trajdef flightdata
evolve
ẋcd = vcd cos(φcd) cos(αcd)
ẏcd = vcd sin(φcd) cos(αcd)
żcd = vcd sin(αcd)
stop when
zcd = znewcd

Figure 6.3: Climb Automaton

6.2.4 The Conflict Avoidance Policy

In this setup without loss of generality, we assume for each pair of aircraft the

leading aircraft is in charge of conflict avoidance, i.e., it first detects the con-

flict using the mode identification property of HHMM and then performs the

resolution manuever. There are four available maneuvers which we describe

77

Automaton Turn

Signature
Input
receive(m),m ∈(position,velocity,heading,newheading)
Ouput
send(m),m ∈(position,velocity,heading)

Variables
Internal
(xt, yt, zt) ∈ �3;(xt0, yt0, zt0) ∈ �3;vt ∈ �;
φt ∈ �;rnewt ∈ �

Transitions
Input receive(position,velocity,heading,newheading)
effect
(xt, yt, zt)← position
(xt0, yt0, zt0)← position
vt ← velocity
φt ← heading
rnewt ← newheading

output send(position,velocity,heading)
pre
(x2

t + y2
t) = (x2

t0 + y2
t0)

(1/2) + 2rnewt

Trajectories
trajdef flightdata
evolve
ẋt = vt cos(φt)
ẏt = vt sin(φt)
żt = 0
φ̇t = φ̇t

stop when
(x2

t + y2
t) = (x2

t0 + y2
t0)

(1/2) + 2rnewt

Figure 6.4: Turn Automaton

in detail in the following sections.

78

Automaton Acceleration

Signature
Input
receive(m),m ∈(position,velocity,heading,newheading)
Ouput
send(m),m ∈(position,velocity,heading)

Variables
Internal
(xa, ya, za) ∈ �3;va ∈ �;φa ∈ �;
va0 ∈ �;(anewa, vnewa) ∈ �2

Transitions
Input receive(position,velocity,heading,newvelocity)
effect
(xa, ya, za)← position
va0 ← velocity
va ← velocity
φa ← heading
(anewa, vnewa)← newvelocity

output send(position,velocity,heading)
pre
va = vnewa

Trajectories
trajdef flightdata
evolve
ẋt = (va0 + anewtt) cos(φt)
ẏt = (va0 + anewtt) sin(φt)
żt = 0
stop when
va = vnewa

Figure 6.5: Acceleration Automaton

The Cruise Maneuver

As long as each pair of aircraft are not in conflict the leading aircraft does

not change its speed, heading or pitch.

79

vt
i = vt−1

i ifvi > vi+1 (6.6)

The Acceleration Maneuver

If a conflict is detected, the first available resolution maneuver for the leading

aircraft is acceleration.

For the acceleration maneuver to be feasible, there are three conditions

that should be met:

vi < vi+1

vi < vi+1, (
1

2
aτ 2 + viτ)− (vτ) ≥ L

′
(6.7)

vf < v̄ (6.8)

where, L
′
> L is the initial distance between the two aircraft and vf is the

final speed of the leading aircraft at the end of the maneuver.

If these conditions are met, then the transition function for acceleration

is

vt
i = vt−1

i + a(τ − ε) ≥ vt+1
i+1 (6.9)

where ε is the maximum acceleration time.

The Climb Maneuver

When the leading aircraft performs the climb maneuver, it increases its speed

with maximum acceleration to maximum speed, then starts climbing with the

possible maximum pitch to a secondary stream which is D distance above the

main stream and then decreases its speed to the minimum speed. This means

80

that all the aircraft on the secondary stream are flying with minimum speed.

Hence, no conflict occurs on the secondary stream except for when the aircraft

wants to insert itself into the stream (i.e., when it climbs to the secondary

stream and reaches the minimum speed). Thus the turn maneuver is only

chosen when the aircraft can insert itself into the stream. The conditions for

a safe climb maneuver are as the following

xi−1 + vi−1T +
1

2
a(T − ε)2 ≤ xi +

at3

6ε
+ v cos(α)(T − t) (6.10)

v sin(α)(T − t) ≥ D (6.11)

where T is the maneuver time, t2 = v−vi
a
ε

and da
dt
≤ a

ε
.

xk−1 + v[T + τ]− (xi +
at3

6ε
+ v cos(α)(T − t) + vτ) > L (6.12)

where τ = 2(v−v)
a
ε

.

The Turn Maneuver

The turn maneuver is always enabled if the distance between each pair of

aircraft is enforced to be at least L
′
> L. L

′
is selected using

∫ Turn

0

v sin(ψ)dt > L
′

(6.13)

where Turn = f(ψ̇, rturn).

Destination Merge

Since the climb and turn maneuvers result in secondary streams of aircraft,

we need a policy for merging the aircraft at the destination (e.g., an airport).

81

There are two possible policies. The first one, which we call merge at the

destination, dictates that the aircraft on the secondary streams should wait

for all the aircraft on the main stream to merge. According to the second

policy, called the priority merge, if the aircraft in the lead has neighbors on

both the above and side streams, it should let two aircraft from different

streams merge ahead of it. And if the aircraft in the lead has neighbors from

one stream, it should let one aircraft from that stream merge ahead of it.

6.2.5 Proof of Safety

Theorem 6.2.5 N aircraft are moving along a differentiable curve (an en-

route flight path). The aircraft can be strictly ordered 1 < 2 < · · · < i− 1 <

i < i + 1 < · · ·N , where the 1st aircraft is in the lead, and the N th aircraft

is trailing. If the system starts in a safe state, i.e., the aircraft have enough

separation at initial time, then it will always remain in a safe state using the

composed HHMM and the Markovian scheduler which uses the decentralized

common policy.

Proof The proof of the theorem follows from the fact that trajectories are

continuous functions of time. If at any point a pair of aircraft are in conflict

the Markovian scheduler of the leading aircraft chooses a resolution maneu-

ver. If this maneuver is acceleration, then the leading aircraft will change its

speed until the two aircraft are not in conflict anymore and resumes steady

level flight (cruise). If the resolution maneuver is climb (because the ac-

celeration maneuver does not resolve the conflict), then the aircraft starts

climbing to the new altitude and resumes the cruise maneuver. However, if

the turn mode is chosen, then the aircraft transition to turn mode and when

it reaches the desired curve, it goes back to the original cruise mode. Hence,

82

any conflict between pairs of aircraft is resolved within two transitions. Since

this is a common policy between any two pair of aircraft, safety is always

assured. Furthermore, we assume that all aircraft have enough fuel so that

during the merge process even for the worst case scenario, which is the case

where the first aircraft becomes the last aircraft to merge, they all eventually

merge.

6.3 Conflict Detection Extension to Higher

Dimensions

The decentralized conflict avoidance algorithm that we introduce here is

based on the generalized roundabout policy (GR) of [90], in which the prob-

lem of collision-free motion planning for a number of nonholonomic mobile

agents evolving on the plane is considered. The agents are able to move on

the plane at constant speed, along paths with bounded curvature and the

environment in which the agents move is unbounded and free of obstacles.

The agents are aware of the position and orientation of nearby agents, within

a certain sensing or communication radius, but they do not have access to

any other information and they are not required to communicate explicitly

their intentions or their objectives. However, all agents make decisions based

on a common set of a priori decided rules. The GR policy provides provably

safe sensor-based motion planning for an arbitrary number of agents.

The mathematical definition of the decentralized conflict detection algo-

rithm for an aircraft, represented by an HIOA, which then receives as inputs

the position, velocity and heading of all aircraft within sensor range, allows

for the aircraft in question to run HHMMs of each aircraft, and to proba-

83

bilistically predict what mode of the HIOA each sensed aircraft has engaged.

This allows for proactive conflict detection and resolution maneuvers that can

be enacted by each aircraft, without involving overt communication between

aircraft.

Aircraft are regarded as possessing a 5 nmi radius of lateral space to

define its lateral conflict zone, and a 1000 ft vertical height to define its

vertical conflict zone. This means that each ith aircraft can be regarded as

being centered in a cylindrical buffer, denoted by Cbuffer
i which has a ds = 5

nmi lateral radius, and a height of vs = 2000 ft. If the cylindrical buffers of

any two (or more) aircraft overlap, they are said to be in conflict. Thus, if

we define the ith aircraft holding position (xi(t), yi(t), zi(t)) at time t, then

the cylindrical buffer zone about the ith aircraft is defined as:

Cbuffer
i =

{
(x, y, z)|(x− xi)

2 + (y − yi)
2 ≤ (5 ∗ 6080.20)2 ∧ |z − zi| ≤ 1000

}
(6.14)

where (x,y,z) are specified in feet, with the origin given by standard hemi-

spherical longitude and latitude.

Let us consider creating a more conservative buffering zone: define the

maximum acceleration and maximum velocity that the aircraft can attain

in the lateral and vertical planes as {aLmax, aV max} and {vLmax, vV max} re-

spectively through performance specifications, and the maximum pitching

and turning angles that the aircraft can execute as {αmax, ψmax}. Then, we

can embed the cylindrical buffer in a more conservative cylinder, defined by

the maximum vertical distance, dV max and lateral distance dLmax that the

aircraft can travel from its present position in the next 12 second update

84

interval, centered at the position of the ith aircraft as follows:

Ccon
i =

{
(x, y, z)|(x− xi)

2 + (y − yi)
2 ≤ (dLmax)

2 ∧ |z − zi| ≤ dV max

}
(6.15)

A sufficient condition to ensure safety is that the interiors of conservative

buffers Ccon
i are disjoint at all times; if such a condition is met, conflicts can

be avoided if agents hold their conservative buffers fixed, and move within

them (by setting ψ′ = −1, which results in circular motion about a fixed

center, for normalized and rate limited ψ′). As a consequence, each point of

contact between conservative buffers defines a constraint on further motion

for both agents involved. More precisely, if the conservative buffer of agent i

is in contact with the conservative buffers of agents with indices in Ji, where

i ⊂ {1, ..., n} of the n aircraft, the motion of the agents is constrained as

follows:

x′i(xj − xi) + y′i(yj − yi) ≥ 0, ∀j ∈ Ji (6.16)

In other words, the velocity of the ith conservative buffer is constrained

to remain in the convex cone determined by the intersection of a number

of closed half-planes. Note that the full set of constraints can be computed

assuming that each agent is aware of the configuration of all agents within the

sum of conservative buffers. In addition, the amount of information needed

to compute the bound is uniformly bounded, independent from the total

number of agents in the system: in fact, the maximum number of agents

whose conservative buffer is in contact with the conservative buffer of the

computing agent is twenty.

As previously mentioned, setting ψ′ = −1 causes an immediate stop of

an aircraft’s conservative buffer’s motion. We will say that when ψ′ = −1,

85

the aircraft is in the Hold state. Given that each aircraft is assigned origin-

destination pairs, (gi0, gif) = [(xi0, yi0, zi0), (xif , yif , zif)], the Straight mode

is defined as being, at time t:

ψi(t) = arctan(
yif − yi(t)

xif − xi(t)
) ∧ ψ′ = 0 ∧ vL �= 0 ∧ vV = 0 (6.17)

that is, the heading angle is the planar line of sight angle (discounting

pitch) to the destination from the present position, and the aircraft is moving

laterally along that heading angle at a non-zero velocity, while not changing

altitude.

Define the set-valued map Θ : SE(2)× 2SE(2) → 2S1
, associating to the

configurations of an aircraft and of its neighbors the set of allowable lateral di-

rections in which the conservative buffer of the computing aircraft can trans-

late without violating the constraints of 6.16. For a connected, non-empty set

B ⊂ S1, B /∈ ∅; define max(B) and min(B) as the elements on the bound-

ary of B, respectively in the positive and negative direction with respect to

the bisectrix of B. Finally, define the map Θ−(g, ḡ) = Θ(g, ḡ)\min(Θ(g, ḡ)).

In other words, the output of Θ− is an open set, obtained removing the

boundary in the clockwise direction of the cone of feasible reserved region

translations, where gi = (xi, yi, ψi) is the lateral position of the ith aircraft.

Whenever Θ is a proper subset of S1, max(Θ), min(Θ), and Θ− are well

defined. If Θ = ∅, or Θ = S1, we set Θ− = Θ.

Our concept for decentralized conflict-free coordination is based on main-

taining the interiors of conservative buffers’ disjoint. Assuming that no con-

straints are violated, an aircraft will attempt to steer the center of its own

conservative buffer towards the position it would assume at the target config-

uration. In a free environment, this can be accomplished switching between

86

the Hold state and the Straight state according to the following logic:

ψ′(t) =

⎧⎪⎨
⎪⎩

0, ψ = arctan(
yif−yi

xif−xi
) ∧ gi �= gf if conservative conflict

−1 otherwise

(6.18)

where a conservative conflict is defined as at least one other aircraft having

their conservative buffer in tangential contact with the ith aircraft’s buffer,

and (xi0, yi0, zi0), (xif , yif , zif) are the coordinates of the origin and destina-

tion for the ith aircraft.

Note that conservative buffers move along straight lines according to 6.18;

clearly, such a policy is not optimal (in a minimum-time or minimum-length

sense), but it does provide a simple feasible path for the agent from the

current configuration to its target.

If the path of the conservative buffer to its position at the target is blocked

by another conservative buffer, a possible course of action is represented by

ascending or descending above or below the blocking conservative buffers.

Since in our setup agents communicate only information on their states, not

on their future intentions, care must be exercised in such a way that the

interiors of conservative buffers remain disjoint. We use the probabilistic

mode information gleaned from the HHMMs correspondent to each aircraft

Ji in order to do so.

Let us start by assuming that the conservative buffer of the neighboring

aircraft remains stationary and is planar with the ith aircraft; in order to

bypass such a conservative buffer, without violating safety constraints, the

87

control input must be set to

αi = arctan(
dV max

2dLmax
) (6.19)

v′ = 2

122
∗ [d2

Lmax + (
dV max

2
)− vi ∗ (12)] (6.20)

The above policy is obtained by switching between the hold state and a

climb/descend state; note that when in the climb/descend state, the agent

is not climbing or descending at the maximum rate.

Note that 6.19 and 6.20 also addresses the case in which the aircrafts

motion is constrained by more than one contact with other aircrafts conser-

vative buffers. The only case in which the aircraft will not transition to the

climb/descend state, is the degenerate case.

In general, the conservative buffer of an aircraft will not necessarily re-

main stationary while an aircraft is climbing/descending over it. Further-

more, the aircraft in contact with the conservative buffer may not be copla-

nar. While it can be recognized that the interiors of the conservative buffers

of two or more coplanar aircraft executing 6.19 and 6.20 will always remain

disjoint, it is possible that contact between two aircraft is lost unexpectedly

(recall that the control input of other aircraft, their constraints, and their

targets, are not available) or that the aircraft are non-coplanar. In this case,

we introduce a new state, which we call Turn, in which the aircraft utilizes

the probabilistic mode information given by the HHMM for the Ji aircraft

in contact with the conservative buffer of the ith aircraft to predict whether

a climb/descend maneuver is possible following a lateral maneuver. In this

case, the aircraft then implements a lateral turn motion (or possibly hold, if

the configuration of all 20 contiguous conservative buffer aircraft are present),

88

based on the assumed mode of the Ji aircraft in conservative buffer contact.

Thus, while in climb/descend mode, either climbing or descending immedi-

ately becomes a viable option given the nature of the surrounding coplanar

stationary Ji aircraft and the absence of non-coplanar aircraft; the prefer-

ential mode of Turn is chosen if sufficient mode information is available, as

follows:

α(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+arctan(dV max

2dLmax
) if

∑
Ji

(zJi
− zi) ≤ 0 ∧ card(Ji) < 20

−arctan(dV max

2dLmax
) if

∑
Ji

(zJi
− zi) ≥ 0 ∧ card(Ji) < 20

0 otherwise

(6.21)

where card is the cardinality operator.

We then define the heading ψ at which we wish to turn to , and then

either execute a climb/descend maneuver (or possibly continue in straight

line flight) as long as the heading ψ is at least ±60◦ away from all ψJi
defined

by the vectors (or bisectricies):

ψJi
= arctan(

yJi
− yi

xJi
− xi

), ∀Ji (6.22)

The Turn state can only be entered if the previous state wasHold or Straight

and the current heading was incorrect in order to perform a Climb/Descend

maneuver. This is due to the fact that it is preferential to climb or descend

to avoid a conflict, rather than maneuver laterally. The aircraft is essen-

tially ”rolling” its conservative buffer around the surface of the obstructing

conservative buffer, until it can realign its lateral heading direction to an

unobstructed path and perform a climb/descend maneuver (or recover an

unobstructed lateral path to its destination). It turns at the prescribed rate:

89

ψ′(t) =

⎧⎪⎨
⎪⎩

1

1+
dLmax

2

Θ−(g, ḡ) /∈ ∅ ∧ ψ = max(Θ) if conservative conflict

−1 otherwise

(6.23)

The above policy is obtained by switching between the Hold state and

the Turn state; note that when in the Turn state, the aircraft is not turning

at the maximum rate. Note this also addresses the case in which the air-

crafts motion is constrained by more than one contact with other aircrafts

conservative buffer. The only case in which the aircraft will not transition

to the Turn state, is the degenerate case, where Θ is singleton, and Θ− is

empty, that is, the aircraft’s conservative buffer is surrounded laterally by

six aircrafts’ conservative buffers.

The HIOA for this extended conflict detection algorithm is detailed below.

automaton ExtendedConflictAvoidance
(HHMModeJi

, (x, y, z)Ji
, Ji ⊂ {1, 2, . . . , n})

signature
output Out(Conflictm:bools, m : Ji)
internal straight
internal turn
internal climb/descend
internal hold

variables
[x, y, z, ψ, α]: array[reals] := 0
now:reals := 0
HHMMode(m): [bools] := [acceleration, climb, cruise, turn], ∀m ∈ Ji

Q:[bools] := {straight, climb/descend, hold, turn}
ConflictJi

: [bools] := 0, ∀Ji

Θ−: [reals] := [0, 2π)

transitions

internal straight
pre (Q = ’Straight’) ∨ (Q = ’Hold’ ∧ψ ∈ Θ−)

90

pre (xi, yi, zi) �= (xif , yif , zif)
pre ¬∃ConflictJi

| HHMMode(m)= ’Turn’ ∨ ’Climb’, m ∈ Ji

eff
ψ = arctan(

yif−yi

xif−xi
)

dψ = 0
α = 0
dα = 0

post ∀Ji compute Θ−, ConflictJi

internal turn
pre (Q = ’Turn’) ∨ (Q = ’Hold’)
pre (xi, yi, zi) �= (xif , yif , zif)
pre ¬∃ConflictJi

| HHMMode(m) =’Climb’ ∨ ’Accelerate’, m ∈ Ji

eff
dψ = 1

1+ ds
2

∧ Θ−(g, ḡ) /∈ ∅ ∧ ψ = max(Θ)

α = 0
dα = 0

post ∀Ji compute Θ−, ConflictJi

post ψ ∈ Θ−

internal climb/descend
pre (Q = ’Turn’) ∨ (Q = ’Hold’)
pre (xi, yi, zi) �= (xif , yif , zif)
pre ψ ∈ Θ−)
pre ¬∃ConflictJi

| HHMMode(m) =’Climb’, m ∈ Ji

eff
dψ = 0

α =

{
+arctan(dV max

2dLmax
) if

∑
Ji

(zJi
− zi) ≤ 0 ∧ card(Ji) < 20

−arctan(dV max

2dLmax
) if

∑
Ji

(zJi
− zi) ≥ 0 ∧ card(Ji) < 20

dα = 0
post ∀Ji compute Θ−, ConflictJi

post ψ ∈ Θ−)

internal hold
pre Θ− ∈ ∅)
pre ∃ConflictJi

|HHMMode(m) = ’Climb’ ∨ ’Accelerate’ ∨ ’Turn’
pre m ∈ Ji

pre (xi, yi, zi) �= (xif , yif , zif)
eff

dψ = -1
α = 0
dα = 0

post ∀Ji compute Θ−, ConflictJi

91

trajectories
trajdef flightdata

evolve
d(now) = 1
dxi = cos(ψi)cos(αi)
dyi = sin(ψi)cos(αi)
dzi = cos(αi)
dψ = dψq, q ∈ Q
dα = dαq, q ∈ Q

6.3.1 Conflict Detection Extension: Safety Theorem

Theorem 6.3.1 For all initial conditions for which the interiors of the air-

crafts’ conservative buffers are disjoint, i.e.,

n⋂
j=1

[Ccon
i = (x, y, z)|(x− xi)

2 + (y − yi)
2 ≤ (dLmax)

2 ∧ |z − zi| ≤ dV max]

(6.24)

the Extended Conflict Detection algorithm is safe, that is,

∀t ≥ 0, (xj −xi)
2 +(yj − yi)

2 ≤ (5 ∗ 6080.20)2∀i, j ∈ {1, . . . , n}, i �= j (6.25)

and

∀t ≥ 0, |zj − zi| ≤ 1000, ∀i, j ∈ {1, . . . , n}, i �= j (6.26)

Proof The proof of the theorem follows directly from the fact that trajec-

tories gi(t), i = 1, . . . , n are continuous functions of time. Moreover, within

each state the feedback control policy has been chosen so that conservative

buffer zones that are not overlapping can never come into an overlapping

state without triggering the ’Hold’ mode. The transition is always enabled

to the ’Hold’ state, which stops the overall motion of the conservative buffer

instantaneously, even though the aircraft and the conflict buffer is still in mo-

92

tion inside the conservative buffer. Since the aircraft are always contained

within their conservative buffers, at a lateral distance ds/2 and a vertical

distance vs/2 from its boundary, safety is ensured.

93

Chapter 7

Conclusions

The objective of this work was to develop a framework which can be used

in analysis of stochastic hybrid systems with hidden states and uncertain-

ties. Specifically the intent was to develop specification and verification for

a framework that interacts with air traffic control system to perform con-

flict detection and resolution.Therefore, the Hybrid Hidden Markov Models,

HHMM, framework, incorporating both continuous states and unknown dis-

crete state transition probabilities was developed. HHMMs map the proba-

bilistic timed I/O automata, PTIOA, framework into hidden Markov models.

Using HHMMs allows us to look at the aircraft mode identification prob-

lem as a hybrid system with continuous variables (trajectories) instead of

a discrete system. This model is most representative of the actual physi-

cal evolution of an aircraft in flight, as it behaves in a continuous manner.

When the aircraft trajectories are modeled as continuous, we have an infinite

number of states; in order to study them we must use a finite abstraction of

the states, which is enabled by the notion of levels of abstraction (or equiv-

alence classes) in the HIOA framework. That is why we can use abstract

flight modes, such as steady level flight or accelerating turn, to represent the

physical dynamics of the aircraft.

Modeling the aircraft dynamics as continuous coupled differential equa-

tions allows us to detect mode changes in a more timely fashion. That is, we

94

do not have to wait for the next discrete time interval to update our estimate

of the mode of the system. As inputs arrive asynchronously to the HIOA,

the boundary between two modes of flight requires that the final valuations

of all continuous variables in the prior mode become the initial values in the

subsequent mode (unless they are overwritten by the triggering input). An

HHMM can be used in conjunction with actual flight data from a TRACON,

in order to model the conformance of aircraft to flight paths, or to detect

when individual aircraft change their mode of flight (e.g. when an aircraft

changes its flight path from steady level flight, to climbing flight etc.).

In order to effectively perform conflict detection and conformance mon-

itoring, there is a potential to use stochastic hybrid models to detect mode

transitions, and thereby aid in the planning of future trajectories and resolu-

tion maneuvers. The ability to efficiently detect mode changes using Hybrid

Hidden Markov Models is demonstrated by evaluating the prediction prob-

abilities of various trained and composite HHMMs, each of which possesses

a differing level of abstraction, along with varying mode structures and de-

grees of complexity. The inherent inertia of an HHMM is sufficiently less

than that of its equivalent HMM (which is essentially a predictive altitude

threshold model). That is, the HHMM is better able to model, then distin-

guish, between changes attributed to noise and/or disturbances, as opposed

to actual changes in commanded flight paths. This is because the HHMM

formalism allows for the incorporation of continuous, stochastic elements,

such as random walks (wind disturbances) and Gaussian noise.

We have used two different sets of real flight data, NDMS data and FEWS

data, in the evaluation of the HHMM framework. The dynamic model inher-

ent in the HHMM’s probabilistic determination of flight mode using actual

flight data yields results that are more accurate than the purely discrete

95

HMM. The HHMM detected the mode change from climbing to level flight

approximately 12 seconds before the HMM. In this case the overall perplexity

of the HHMM was 2.67 which is better than the HMM’s value of 2.85. These

comparisons used actual NDMS and FEWS flight data.

HHMM is capable of distinguishing between multiple modes (climb, turn,

etc.) in an asynchronous fashion. When presented with random aircraft flight

data, HHMM is able to detect mode changes in approximately two time steps

after they are initiated. We have favorably benchmarked the model against

the results achieved in Ref. 63, demonstrating the validity of the model and

the HMM technique.

Also, to extend the work into decentralized CD&R (that is, the notion

that each aircraft has an HHMM onboard and gets information from its

neighboring aircraft), we need these models to be composable, a property

that is guaranteed by using the HIOA framework. The receptiveness property

of the HIOA does not allow the state machine to block time or to contribute

to producing Zeno behavior (infinite number of discrete transitions in a finite

time).

We studied two decentralized air traffic systems. In the first system,

N aircraft are moving along a differentiable curve (an enroute flight path).

Safety conditions prohibit two aircraft loosing a separation of K, and liveness

conditions require each aircraft to maintain a minimum velocity. The com-

posite HHMM for each of these aircraft, H , is composed of four component

HHMMs, where each corresponds to a mode of flight and are labeled Cruise,

Accelerate, Climb and Turn. In this model the Cruise Automaton acts as a

Markovian scheduler. It receives the global inputs, i.e., the flight data of the

neighboring aircraft, along with the local inputs corresponding to the ”own”

aircraft. If no potential conflicts are detected, it only evolves the steady level

96

flight trajectories and sends out the flight data of the ”own” aircraft. But if

a conflict is detected, it determines the resolution maneuver, and then sends

out the new flight data to both the next mode automaton and the neighbor-

ing aircraft automata. We developed the automata corresponding to each

resolution maneuver and proved that if this system starts in a safe state, it

will remain in a safe state.

For the second system, a novel spatially decentralized, cooperative policy

for conflict resolution was developed. This decentralized conflict avoidance

algorithm is used for higher dimensional problems. In this method, each

aircraft is surrounded by a virtual cylinder called conservative buffer. A

sufficient condition to ensure safety is that the interiors of conservative buffers

are disjoint at all times; if such a condition is met, conflicts can be avoided

if agents hold their conservative buffers fixed, and move within them. As

a consequence, each point of contact between conservative buffers defines

a constraint on further motion for both agents involved. The amount of

information needed to compute the bound is uniformly bounded, independent

from the total number of agents in the system: in fact, the maximum number

of agents whose conservative buffer is in contact with the conservative buffer

of the computing agent is twenty. The resolution maneuvers for this model

are straight, turn, climb/descend, and hold. The details of the HIOA for this

extended algorithm are presented. This policy is safe if the initial conditions

satisfy a rather non-restrictive condition

97

References

[1] C. D. Wickens, A. S. Mavor, and J. P. McGee, Eds., Flight to the Fu-
ture: Human Factors in Air Traffic Control. Washington, DC: Na-
tional Academy Press, 1997.

[2] M. S. Nolan, Ed., Fundamentals of air traffic control. Brooks Cole,
1999.

[3] E. M. Rantanen, A. Naseri, and N. A. Neogi, “Evaluation of airspace
complexity and dynamic density metrics derived from operational
data,” Air Traffic Control Quarterly, vol. 15, no. 1, pp. 65–88, 2007.

[4] L. C. Thomas and E. M. Rantanen, “Human factors issues in imple-
mentation of advanced aviation technologies: A case of false alerts
and cockpit displays of traffic information,” Theoretical Issues of Er-
gonomics Science, vol. 7, no. 5, pp. 501–523, 2006.

[5] L. C. Thomas, C. D. Wickens, and E. M. Rantanen, “Imperfect au-
tomation in aviation traffic alerts: a review of conflict detection al-
gorithms and their implications for human factors research,” in Proc.
47th Annual Meeting of the Human Factors and Ergonomics Society,
Santa Monica, CA, 2003.

[6] H. Erzberger, T. J. Davis, and S. Green, “Design of center-tracon
automation system,” in AGARD Guidance and Control Symposium
Machin Intelligence in Air Traffic Management, Berlin, Germany,
1993, pp. 11.1–11.12.

[7] D. J. Brudnicki and A. L. Mcfarland, “User request evaluation tool
(uret) conflict probe performance and benefits assessment,” in US-
A/Europe ATM Seminar, Paris, 1997.

[8] H. Blom and J. Lygeros, Eds., Stochastic Hybrid Systems: Theory and
Safety Critical Applications. New York: Springer, 2006.

[9] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov
models,” IEEE ASSP Magazine, vol. 3, pp. 4–16, Jan. 1986.

[10] N. Lynch, R. Segala, and F. Vaandraager, “Hybrid I/O automata,”
Information and Computation, vol. 185, pp. 105–157, Aug 2003.

98

[11] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Massachusetts, sep
2007.

[12] J. K. Kuchar and L. C. Yang, “A review of conflict detection and reso-
lution modeling methods,” IEEE Trans. on Intelligent Transportation
Systems, vol. 1, pp. 179–189, Dec. 2000.

[13] B. D. Carpenter and J. K. Kuchar, “Probability-based collision alert-
ing logic for closely-spaced parallel approach,” in AIAA Meeting Pa-
pers on Disc, Reston, VA, 1997.

[14] R. A. Paielli and H. Erzberger, “Conflict probability estimation for
free flight,” J. of AIAA Guidance, Control, and Dynamics, vol. 20, pp.
588–596, Jun. 1997.

[15] H. Erzberger, R. A. Paielli, D. R. Isaacson, and M. M. Eshowl, “Con-
flict detection and resolution in the presence of prediction error,”
in 1st USA/Eur. Air Traffic Management R & D Seminar, Saclay,
France, 1997.

[16] R. A. Paielli, “Empirical test of conflict probability estimation,” in
2nd USA/Eur. Air Traffic Management R & D Seminar, Florida,
1998.

[17] K. Blin et al., “A stochastic conflict detection model revisited,” in
Proc. AIAA Guidance, Navigation, and Control Conference, Reston,
VA, 2000.

[18] T. Loureiro, K. Blin, E. Hoffman, and K. Zeghal, “Development of
a tool comparing conflict detection algorithms for air traffic man-
agement,” in Proc. Guidance, Navigation, and Control Conference,
Canada, 2001.

[19] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic ap-
proach to aircraft conflict detection,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 1, pp. 199–220, Dec. 2000.

[20] I. Hwang, J. Hwang, and C. Tomlin, “Flight-mode-based aircraft con-
flict detection using a residual-mean interacting multiple model algo-
rithm,” in Proc. AIAA Guidance, Navigation, and Control Conference,
Austin, TX, 2003.

[21] X. R. Li and Y. Bar-Shalom, “Design of an interacting multiple model
algorithm for air traffic control tracking,” IEEE Trans. on Control,
Systems Yechnology, vol. 1, pp. 186–194, Sep. 1993.

[22] E. Mazor et al., “Interacting multiple model methods in target track-
ing: a survey,” IEEE Trans. on Aerospace and Electronics Systems,
vol. 34, pp. 103–123, Jan. 1998.

99

[23] C. G. Cassandras and J. Lygeros, Eds., Stochastic Hybrid Systems.
Boca Raton: CRC, Taylor and Francis, 2006.

[24] M. L. Bujorianu, W. Glover, J. Lygeros, and G. Pola, “A stochastic
hybrid process modeling framework,” HYBRIDGE, Tech. Rep. IST-
2001-32460, 2003.

[25] M. L. Bujorianu and J. Lygeros, “General stochastic hybrid systems:
Modeling and optimal control,” in Proc. IEEE Conference on Decision
and Control, vol. 2, New York, NY, 2004, pp. 1872–1877.

[26] G. Pola, M. L. Bujorianu, J. Lygeros, and M. D. DiBenedetto,
“Stochastic hybrid models: An overview,” in Proc. of IFAC Confer-
ence on Analysis and Design of Hybrid Systems ADHS, France, 2003,
pp. 45–50.

[27] J. Hu, J. Lygeros, and S. Sastry, Towards a Theory of Stochastic Hy-
brid Systems, ser. Hybrid Systems: Computation and Control, 2000,
pp. 160–173.

[28] M. K. Ghosh, A. Arapostathis, and S. I. Marcus, “Ergodic control of
switching diffusions,” SIAM Journal on Control and Optimization,
vol. 35, pp. 1952–1988, Nov. 1997.

[29] M. K. Ghosh and A. Baghchi, “Modeling stochastic hybrid systems,”
in 21st IFIP TC7 Conference on System Modeling and Optimization,
France, 2003.

[30] M. H. A. Davis, Markov Processes and Optimization. London: Chap-
man and Hall, 1993.

[31] E. C. Hahn and C. R. Wanke, “Preliminary requirements for avionics
intent information for free flight,” in 14th Digital Avionics Systems
Conference, Cambridge, MA, 1995, pp. 462–467.

[32] J. K. Kuchar and L. C. Yang, “Incorporation of uncertain intent infor-
mation in conflict detection and resolution,” in Proc. IEEE Conference
on Decision and Control, California, 1997, pp. 1810–1815.

[33] L. C. Yang and J. K. Kuchar, “Using intent information in probabilis-
tic conflict analysis,” in Proc. AIAA Guidance, Navigation, and Con-
trol Conference, Boston, MA, 1998, pp. 797–806.

[34] V. A. Carreno and C. Munoz, “Implicit intent information for conflict
detection and alerting,” in Proc. 23rd Digital Avionics Systems Con-
ference, Salt Lake City, Utah, 2004.

[35] Y. Zhao, C. Haissig, and M. J. Hoffmann, “Analysis of pilot intent in
air traffic management,” in Proc. IEEE American Control Conference,
New York, 1998, pp. 1789–1792.

100

[36] T. G. Reynolds and R. J. Hansman, “Investigating conformance mon-
itoring issues in air traffic control using fault detection techniques,”
AIAA Journal of Aircraft, vol. 42, pp. 1307–1317, Oct. 2005.

[37] J. Krozel and D. Andrisani, “Intent inference with path prediction,”
AIAA Journal of Guidance, Control, and Dynamics, vol. 29, pp. 225–
236, Apr. 2006.

[38] L. E. Baum and T. Petrie, “Statistical inference for probabilistic func-
tions of finite state Markov chains,” The Annals of Mathematical
Statistics, vol. 37, pp. 1554–1563, 1966.

[39] L. E. Baum and J. A. Egon, “An inequality with applications to sta-
tistical estimation for probabilistic functions of a Markov process and
to a model for ecology,” Bulletin of the American Meteorological Soci-
ety, vol. 73, pp. 360–363, 1967.

[40] L. E. Baum and G. R. Sell, “Growth functions for transformations on
manifolds,” Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211–
227, 1968.

[41] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occuring in the statistical analysis of probabilistic functions
of Markov chains,” The Annals of Mathematical Statistics, vol. 41,
no. 1, pp. 164–171, 1970.

[42] L. R. Rabiner and B. H. Juang, Eds., Fundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice Hall, 1993.

[43] J. K. Baker, “Stochastic modeling as a means of automatic speech
recognition,” Ph.D. dissertation, Carnegie-Mellon University, 1975.

[44] A. B. Pritz and A. G. Richter, “On hidden Markov models in isolated
word recogition,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Tokyo, 1986, pp. 705–708.

[45] R. L. Cave and L. P. Neuwirth, “Hidden Markov models for English,”
in Symposium on the Applications of Hidden Markov Models to Text
and Speech, Princeton, NJ, 1980, pp. 16–56.

[46] F. Jelinek, “Self-organized language modeling for speech recognition,”
T.J. Watson Research Center, Yorktown Heights, NY, Tech. Rep.,
1985.

[47] E. Birney, “Hidden Markov models in biological sequence analysis,”
IBM Journal of Research and Development, vol. 45, no. 3/4, pp. 449–
454, 2001.

101

[48] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applications
of hidden Markov models to detecting multi-stage network attacks,”
in 36th Hawaii International Conference on System Sciences, Hawaii,
2003.

[49] R. Khanna and H. Liu, “System approach to intrusion detection us-
ing hidden Markov model,” in International Conference on Wireless
Communications and Mobile Computing, Vancouver, Canada, 2006.

[50] A. B. Poritz, “Hidden Markov models: a guided tour,” in Proc. IEEE
International Conference of Acoustics, Speech and Signal Processing,
New York, 1988, pp. 7–13.

[51] Z. Ghahramani, “An introduction to hidden Markov models and
bayesian networks,” Int. J. of Pattern Recognition and Artificial In-
telligence, vol. 15, pp. 9–42, Feb. 2001.

[52] J. Bilmes, “What HMMs can do,” University of Washington, Dep. Of
EE, Seattle, WA, Tech. Rep. UWEETR-2002-2003, 2002.

[53] L. R. Rabiner, “A tutorial on hidden Markov models and selected ap-
plications in speech recognition,” Proc. of the IEEE, vol. 2, pp. 257–
286, Feb. 1989.

[54] S. Adlakha, S. Lall, and A. Goldsmith, “Information state for Markov
decision processes with network delays,” in IEEE Conference on Deci-
sion and Control, Cancun, dec 2008, pp. 3840–3847.

[55] J. D. Williams, P. Poupart, and S. Young, “Factored partially ob-
servable Markov decision processes for dialogue management,” in 4th
Workshop on Knowledge and Reasoning in Practical Dialog Systems,
2005.

[56] L. F. Winder, “Hazard avoidance alerting with Markov decision pro-
cesses,” Ph.D. dissertation, Massachusetts Institute of Technology,
Massachusetts, Aug 2004.

[57] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 99–134, 1998.

[58] S. H. Mills, E. M. Pfleiderer, and C. A. Manning, “POWER: Objec-
tive activity and taskload assessment in en route air traffic control,”
FAA, Tech. Rep. DOT/FAA/AM-02/2, 2002.

[59] C. Gong and D. McNally, “A methodology for automated trajectory
prediction analysis,” in Proc. AIAA Guidance, Navigation, and Con-
trol, Providence, Rhode Island, 2004.

102

[60] R. J. Hansman and H. J. Davison, “The effect of shared information
on pilot/controller and controller/controller interactions,” in 3rd US-
A/Eur. Air Traffic Management R & D Seminar, Napoli, Italy, 2000.

[61] N. A. Neogi and A. Naseri, “Using hidden Markov models to detect
mode changes in aircraft flight data for conflict resolution,” in Proc.
IEEE Systems, Man, and Cybernetics, Taiwan, 2006, pp. 3732–3737.

[62] A. Naseri, N. A. Neogi, and E. M. Rantanen, “Stochastic hybrid mod-
els with applications to air traffic management,” in Proc. AIAA Guid-
ance, Navigation, and Control, no. AIAA-2007-6696, Hilton Head, SC,
2007.

[63] C. E. Seah and I. Hwang, “A hybrid estimation algorithm for
terminal-area aircraft tracking,” in Proc. AIAA Guidance, Navigation,
and Control, Hilton Head, SC, 2007.

[64] N. Lynch, S. Mitra, and T. Nolte, “Motion coordination using virtual
nodes,” in 44th IEEE Conference on Decision and Control and Euro-
pean Control Conference, Seville, Spain, 2005, pp. 2823 – 2828.

[65] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in dis-
tributed motion planning with local coordination,” IEEE Transactions
on Robotics, vol. 24, no. 1, pp. 232–242, 2008.

[66] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A study in multiagent hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp. 509–521, 1998.

[67] V. J. Lumelski and K. R. Harinarayan, “Decentralized motion plan-
ning for multiple mobile robots: the cocktail party model,” Au-
tonomous Robots, vol. 4, no. 1, pp. 121–135, 1997.

[68] E. Klavins, “Communication complexity of multi-robot systems,”
in Fifth International Workshop on the Algorithmic Foundations of
Robotics, Nice, France, 2002.

[69] C. Tomlin and M. R. Greenstreet, Eds., Hybrid Systems: Communica-
tion and control, 5th international workshop, HSCC 2002, ser. Lecture
Notes in Computer Science. Stanford, CA: Springer, 2002, vol. 2289.

[70] L. Pallottino, V. Scordio, and A. Bicchi, “Decentralized cooperative
conflict resolution among multiple autonomous mobile agents,” in
IEEE Conference on Decision and Control, Paradise Island, Bahamas,
2004.

[71] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?” Journal of Computer and System
Sciences, vol. 57, pp. 94–124, 1998.

103

[72] G. Lafferriere, G. J. Pappas, and S. Yovine, “A new class of decidable
hybrid systems,” in Hybrid Systems: Computation and Control, 1st ed.
Springer Berlin / Heidelberg, 1999, pp. 137–151.

[73] O. Maler and A. Pnueli, Eds., Hybrid Systems: Communication and
control, 6th international workshop, HSCC 2003, ser. Lecture Notes in
Computer Science. Prague, Czech Republic: Springer, 2003, vol. 2623.

[74] R. Alur and G. J. Pappas, Eds., Hybrid Systems: Communication and
control, 7th international workshop, HSCC 2004, ser. Lecture Notes in
Computer Science. Philadelphia, PA: Springer, 2004, vol. 2993.

[75] M. Morari and L. Thiele, Eds., Hybrid Systems: Communication and
control, 8th international workshop, HSCC 2005, ser. Lecture Notes in
Computer Science.

[76] J. P. Hespanha and A. Tiwari, Eds., Hybrid Systems: Communica-
tion and control, 9th international workshop, HSCC 2006, ser. Lecture
Notes in Computer Science. Santa Barbara, CA: Springer, 2006, vol.
3927.

[77] A. Bemporad, A. Bicchi, and G. C. Buttazzo, Eds., Hybrid Systems:
COmmunication and control, 10th international workshop, HSCC
2007, ser. Lecture Notes in Computer Science. Pisa, Italy: Springer,
2007, vol. 4416.

[78] M. Egerstedt and B. Mishra, Eds., Hybrid Systems: Communication
and control, 11th international workshop, HSCC 2008, ser. Lecture
Notes in Computer Science. St. Louis, MO: Springer, 2008, vol. 4981.

[79] D. M. Stipanović, I. Hwang, and C. J. Tomlin, “Computation of an
over-approximation of the backward reachable set using subsystem
level set functions,” Dynamics of Cont., Discrete and Impulsive Sys-
tems Series A: Mathematical Analysis, vol. 11, pp. 399–411, 2004.

[80] I. Hwang, D. M. Stipanović, and C. J. Tomlin, “Polytopic approxi-
mation of reachable sets applied to linear dynamic games and to a
class of nonlinear systems,” in Advances in Control, Communication
Networks, and Transportation Systems: In Honor of Pravin Varaiya,
E. H. Abed, Ed. Boston, MA: Birkhaüser, 2005, pp. 3–19.

[81] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reach-
ability analysis of piecewise-linear dynamical systems,” in Hybrid Sys-
tems: Computation and Control, LNCS, B. Krogh and N. Lynch, Eds.
Berlin: Springer-Verlag, 2000, pp. 20–31.

[82] I. Mitchell and C. J. Tomlin, “Level set methods for computation in
hybrid systems,” in Hybrid Systems: Computation and Control, LNCS,

104

B. Krogh and N. Lynch, Eds. Berlin: Springer-Verlag, 2000, pp. 310–
323.

[83] A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Hybrid
Systems: Computation and Control, 2006, pp. 257–271.

[84] I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Computing reachable
sets for continuous dynamic games using level set methods,” vol. 50,
pp. 947–957, 2005.

[85] A. M. Bayen, E. Cruck, and C. Tomlin, “uaranteed overapproxima-
tions of unsafe sets for continuous and hybrid systems : Solving the
hamilton-jacobi equation using viability techniques,” in 5th Inter-
national Workshop on Hybrid Systems: Computation and Control,
LNCS, Stanford, CA, 2002, pp. 90–104.

[86] N. A. Lynch, “A three-level analysis of a simple acceleration maneu-
ver, with uncertainties,” in Third AMAST Workshop on Real-Time
Systems, Salt Lake City, UT, 1996, pp. 1–22.

[87] C. Livadas, J. Lygeros, and N. A. Lynch, “High-level modeling and
analysis of TCAS,” in 20th IEEE Real-Time Systems Symposium
(RTSS 99), Phoenix, AZ, 1999, pp. 115–125.

[88] H. B. Weinberg, N. A. Lynch, and N. Delisle, “Verification of auto-
mated vehicle protection systems,” in Hybrid Systems III: Verification
and Control Workshop on Verification and Control of Hybrid Systems,
LNCS, 1995, pp. 101–113.

[89] H. B. Weinberg and N. A. Lynch, “Correctness of vehicle control sys-
tems - a case study,” in 17th IEEE Real-Time Systems Symposium
(RTSS 96), Washington, DC, 1996, pp. 62–72.

[90] E. Frazzoli, L. Pallottino, and A. Bicchi, “Decentralized cooperative
conflict resolution for multiple nonholonomic vehicles,” in Proc. AIAA
Guidance, Navigation, and Control, San Fransisco, CA, 2005.

105

