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ABSTRACT 
 
 Interest in berries from South America has increased due to their potential health 

benefits.  The objective of this study was to characterize the anthocyanins and 

proanthocyanidins total phenolics and antioxidant capacity (AC) of V. floribundum and 

A. chilensis, and evaluate, in vitro, the ability of their phenolic extracts to reduce 

adipogenesis, and lipid accumulation in 3T3-L1 adipocytes. The anti-inflammatory 

properties of these extracts on RAW 264.7 macrophages was also investigated. The berry 

of A. chilensis contained 45.7 mg/g DW (cyanidin-3-glucososide (C3G) equivalents) total 

anthocyanins. Seven main anthocyanin structures were identified in this berry of which 

delphinidin-3-glucoside was the main anthocyanin component in this berry. The berry 

and the commercial powder of V. floribundum contained 10.6 mg/g DW and 2.4 mg/g 

(C3G equivalents) respectively of total anthocyanins. Five main anthocyanin structures 

where identified of which delphinidin-3- arabinose and cyanidin-3-arabinose were the 

main anthocyanins present in the berry and in the commercial powder of V. floribundum. 

The berry of A. chilensis contained 4.0 mg/g DW (epicatechin equivalents) of total 

proanthocyanidins, while the berries and commercial powder from V. floribundum had a 

slightly higher concentration of 5.2 and 4.8 mg/g DW (epicatechin equivalents) 

respectively. A. chilensis contained mainly proanthocyanidin dimers (56%) and trimers 

(14%). V. floribundum contained trimers (68%) and in less proportion pentamers (16%) 

and hexamers (8%). The commercial powder contained a larger percentage of dimers 

(34%) and trimers (23%). The berries of A. chilensis and V. floribundum showed similar 

values of total phenolics; however, AC was higher in the berries of A. chilensis. The 

commercial powder of V. floribundum had a lower phenolic content and AC than the 
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freeze dried berry.  Total phenolics and AC were highly correlated for A. chilensis and 

both the berries and the commercial powder of V. floribundum with R2 values of 0.90, 

0.86 and 0.78, respectively.  Anthocyanins were more highly correlated with AC than 

proanthocyanins. Phenolic extracts of the two berries and the commercial powder 

inhibited lipid accumulation by 4.0 to 10.8% when adipocytes were treated at maturity 

and by 5.9 to 37.9% when treated throughout differentiation.  Furthermore, a 

proanthocyanidin-enriched-fraction from V. floribundum significantly induced Pref-1 

expression in preadipocytes. Phenolic extracts decreased the production of nitric oxide 

(3.7 - 25.5%) and prostaglandin E2 (9.1 - 89.1%) and the expression of inducible nitric 

oxide synthase (9.8 - 61.8 %) and cycloxygenase-2 (16.6 - 62.0%) in lipopolysaccharide-

stimulated RAW 264.7 macrophages. V. floribundum and A. chilensis phytochemicals 

limit adipogenesis and inflammatory pathways in vitro, warranting further in vivo studies. 
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CHAPTER 1 
INTRODUCTION 

 
Berries and their derived products have shown a positive impact on metabolic 

syndrome related conditions, including cardiovascular diseases, diabetes and 

inflammation (Juranic 2005, Seeram 2008). Their biological properties have been largely 

attributed to high levels of various phenolic compounds, as well as to the interactive 

synergies between their natural phytochemical components (Szajdek and Borowska 

2008). Interest in berries from South America has increased in recent years mainly due to 

their potential health benefits, and growing consumer interest in novel exotic fruit 

selections in the market place.  

Aristotelia chilensis is a fruit-bearing shrub that thrives in the temperate forests of 

central to southern Chile and western Argentina.  It belongs to the Elaeocarpaceae family 

and is commonly known as “maqui.”  A. chilensis yields a small edible purple/black berry 

averaging 5 mm in diameter with typically 3-4 seeds. The leaves and fruits of A. chilensis 

have been used in folk medicine to treat a variety of ailments including sore throat, 

kidney pains, ulcers, fever, inflammation and diarrhea (Hoffmann 1991, Muñoz and 

others 1981). Reports concerning the phytochemical composition of the berry of A. 

chilensis have indicated the presence of phenolic acids, proanthocyanidins, anthocyanins 

as well as other flavonoids (Escribano-Bailon and others 2006, Céspedes and others 

2010). The berry of A. chilensis has been shown to inhibit low-density lipoprotein (LDL) 

oxidation, to protect against intracellular oxidative stress in human endothelial cells and 

against acute isochemia/reperfusion in vivo in rat hearts (Miranda-Rottmann and others 

2002, Céspedes and others 2008).   



 

2 
 

 Vaccinium floribundum, commonly known as “mortiño,” is a deciduous, 

spreading shrub that belongs to the family Ericaceae. It bears a round blue to nearly black 

edible berry of about 8 mm in diameter.  This berry is found mostly in northern South 

America where it grows at elevations from 1800 to 3800 m ( National Research Council 

1989). In Ecuador, local communities have used this plant to treat various medical 

conditions such as diabetes and inflammation (de la Torre and others 2008), The 

chemical composition and the phenolic profile of V. floribundum has been reported, 

revealing predominantly quercetin, hydroxycinnamic acids and cyanidin-3-glucosides 

(Vasco and others 2009). There are no reports concerning the biological properties of this 

berry.  

 Within recent decades, the incidence of obesity has increased drastically (Ogden 

and others 2006) and has become a worldwide health concern due to its association with 

an increased risk of morbidity and mortality (Flegal 2005, Guh and others 2009). Obesity 

is a complex metabolic disorder that results from an imbalanced energy intake and energy 

expenditure leading to an increase in adipocyte size and number (Hirsh and Han 1969). 

The amount of adipose tissue can be reduced by inhibiting adipogenesis and fat 

deposition (Rayalam and others 2008).  Adipogenesis is the cellular transition through 

which a fibroblastic cell first develops into a preadipocyte and finally into a mature 

adipocyte (Fernyhough and others 2005). Obesity is also associated with a chronic 

inflammatory state characterized by abnormal production of cytokines and the activation 

of inflammatory signaling pathways (Bastard and others 2006). Furthermore, chronic 

inflammation plays a crucial role in the development of metabolic disorders linked to 

obesity, including insulin resistance and arteriosclerosis (Arkan and others 2005, Van 
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Gaal and others 2006). Two important enzymes involved in activating the inflammatory 

response are inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). iNOS 

and COX-2 can catalyze the synthesis of nitric oxide (NO) and prostaglandin E2 (PG E2) 

respectively, which in turn cause sepsis, sepsis shock, and systemic inflammatory 

response syndrome (Guha 2001). Therefore, the inhibition of the expression of these 

enzymes or of their products can help reduce inflammation and related conditions.  

Berries are particularly rich sources of anthocyanins and proanthocyanidins which 

may help to ameliorate conditions related to obesity and inflammation. Studies have 

shown that proanthocyanidins can regulate adipocyte function and positively affect 

obesity management (Vogels and others 2004, Tebib 1996) as well inflammation (Terra 

and others 2009, Wang and others 2009). Anthocyanins have also shown to prevent the 

onset of obesity (Tsuda and others 2003, Prior and others 2009) and reduce inflammatory 

response (Wang and others 2008, Kraft and others 2008). The bioactive properties 

exerted by anthocyanins and proanthocyanidins have been attributed to diverse 

mechanisms of action including antioxidant capacity (Nijveldt and others 2001). 

In this study, we investigated the in vitro antioxidant capacity (AC) of V. 

floribundum and A. chilensis berry extracts, characterized their anthocyanin and 

proanthocyanidin constituents, and evaluated the ability of their phenolic fractions to 

reduce adipogenesis, and lipid accumulation in 3T3-L1 adipocytes. In addition, the anti-

inflammatory properties were evaluated in vitro using lipopolysaccharide-stimulated 

(LPS) RAW 264.7 macrophages by investigating the NO and PGE2 production as well as 

iNOS and COX-2 expression. A commercial powder of V. floribundum was also 

evaluated and compared to the freeze dried berry extracts. 
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CHAPTER 2 
LITERATURE REVIEW 

 
I. Chemistry and biological properties of berries  

A. Phenolic composition of berries 

Berries contain micro and macronutrients such as sugars, vitamins and minerals as 

well as a broad diversity of secondary metabolites (Howard, Hager 2007). Among the 

latter, great interest has been shown towards phenolic compounds due to the various 

biological properties they have demonstrated. Anthocyanins and proanthocyanidins are 

two phenolic compounds present in berries that play an important role in the health 

related properties of these fruits (Juranic 2005, Seeram 2008).  

 Anthocyanins  

Anthocyanins are a class of flavonoid compounds that are responsible for the red, 

orange, purple and blue colors in many fruits and vegetables.  They are involved in the 

protection of plants against excessive light and microbial attack. The ability of 

anthocyanins to impart color is also important in attracting animals for pollination and 

seed dispersal (Kong and others 2003, Crozier and others 2006). These water soluble 

pigments are classified as flavonoids because of their C6C3C6 carbon skeleton (Figure 1).  

Anthocyanidins are primarily present in plants joined to sugar moieties, where they are 

known as anthocyanins.  The most common anthocyanidin structures are pelargonidin, 

cyanidin, delphinidin, peonidin, petunidin and malvidin. These anthocyanidins get their 

names according to what R1 and R2 substitutions are on the B-ring (Castaneda-Ovando 

and others 2009) (Table 1).  Berries are some of the richest dietary sources of 

anthocyanins for humans having as high as 1480 mg of anthocyanins/100g fresh weight 
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(Wu 2004). Anthocyanins have shown to possess several biological properties such as 

antioxidant, anticancer and anti-inflammatory properties (Kong and others 2003) 

 

 

Figure 1. Basic chemical structure of an anthocyanidin. 

 

Table 1.  Chemical structure and color of the six common anthocyanidins (adapted 
from Seeram 2008). 
 

 
Anthocyanidin 

 
Abbreviation 
 

R1 
 

R2 
 

Color 
 

 
Pelargonidin 

 

 
Pg 

 
H 
 

H 
 

Orange 
 

Cyanidin 
 

Cy 
 

OH 
 

H 
 

Orange-red 
 

Peonidin 
 

Pn 
 

OCH3 
 

H 
 

Orange-red 
 

Delphinidin 
 

Dp 
 

OH 
 

OH 
 

Red 
 

Petunidin 
 

Pt 
 

OCH3 
 

OH 
 

Red 
 

Malvidin 
 

Mv 
 

OCH3 
 

OCH3 
 

Bluish-red 
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Proanthocyanidins  

Proanthocyanidins or condensed tannins are the second most abundant  

compounds after lignin in plants. They are mainly found in berries, beans, nuts, cocoa 

and wine and are responsible for the astringent character and bitterness of many of these 

foods (Rasmussen and others 2005). Proanthocyanidins oligomers and polymers are built 

with monomeric flavan-3-ols units. Oligomers are comprised of two to six monomeric 

units, while polymers can comprise up to 50 units. Monomeric flavan-3-ol units are 

linked through C4→C8 or through C4→C6 bonds; these are known as B-type bonds.  In 

some cases an additional ether bond occurs between C2→C7 which is called an A-type 

linkage (Hummer and Schreier 2008). The most common flavan-3-ol monomeric units 

are (+) –catechin/( –  )-epicatechin, (–)-gallocathechin/ (– )(epi)gallocathechin and      

(+)-afzelechin/(–)epiafzelechin, which form oligomers and polymers called  

procyanidins, prodelphinidins and propelargonidins respectively (Serrano and others 

2009). Figure 2 illustrates the structures of some flavan-3-ol monomeric units of 

proanthocyanidins. 

\  

 
 

 
 
 

 
 

Figure 2. Structures of flavan-3-ol monomeric units of proanthocyanidins. 

Flavan-3-ols R1 R2 R3 R4 R5 
 

Afzelechin H OH H H OH 
Epiafzelechin H OH H OH H 
Catechin H OH OH H OH 
Epicatechin H OH OH OH H 
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Proanthocyanidins are widely distributed among many edible plants which makes 

them important in human diet (Table 2). The daily average intake of proanthocyanidins 

in the USA is about 53.6 mg/day excluding monomers and 57.7 mg/day including 

monomers (Gu and others 2004). Proanthocyanidins have shown to posses several 

biological properties that can potentially protect humans against cardiovascular disease, 

diabetes and cancer (Rasmussen and others 2005, Serrano and others 2009).  

 
Table 2. Content of proanthocyanidins in common foods  

 
 
Food 
 

Totala 

 
Blueberries 

 
179.8 ± 50.8  

Black-currants  147.8 ± 33.0  
Cranberries 418.8 ± 75.3  
Strawberries 145.0 ± 24.9  
Apples 125.8 ± 6.8 
Pears 31.9 ± 7.8 
Plums 215.9 ± 50.7  
Peaches  67.3 ± 20.9  
Avocados 7.4 ± 4.3  
Barley  74.2 ± 3.0  
Pinto beans, raw  796.3 ± 58.7  
Red kidney beans  563.8 ± 10.4  
Pistachios  237.3 ± 52.0  
Almonds  184.0 ± 48.2  
Walnuts  67.3 ± 14.7  
Peanuts 15.6 ± 2.3  
Peanut butter  13.2 ± 5.2  
Milk chocolate  246.0 ± 0.0 
Black chocolate  192.0 ± 28.8  
Beer  23.0 ± 2.0  
Red wine  
 

313.0 ± 5.0  

 

amg/100 fresh weight foods or mg/L beverages 
(adapted from Rasmussen and others 2005). 
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B. Biological activities of berries and their phytochemicals             

Antioxidant capacity  

Reactive oxygen species (ROS) such as super oxide ion (O2
¯), hydroxyl radical 

(OH ¯) and hydrogen peroxide (H2O2), are produced in our body (Kaur and Kapoor 

2001). These species react with and cause damage to lipids, proteins and DNA. 

The damage to these macromolecules is in turn associated with increased risk of chronic 

diseases such as cancer and cardiovascular diseases.  The human body posess different 

endogenous defense mechanisms that scavenge radicals and repair the oxidative damage. 

A diet rich in antioxidants can further contribute to this defense and aid in the prevention 

of several chronic conditions (Seifried and others 2007, Gutteridge 1993). Fruits and 

vegetables are a major source antioxidants. Some of the components in fruits and 

vegetables acting as antioxidant are phenolic compounds, fiber, and vitamins A, B, C, D 

(Kaur and Kapoor 2001). Among fruits, berries possess a high antioxidant capacity and 

this has been largely attributed to their high content of various phenolic compounds, 

vitamins and fiber (Li and others 2009). Among phenolic compounds in berries 

anthocyanins (Einbond and others 2004, Du and others 2008) and proanthocyanidins 

(Qa'Dan and others 2006)  have shown to have strong antioxidant properties.  

Obesity and inflammation  

The incidence of obesity has increased drastically during the last decades (Ogden 

and others 2006) and is a worldwide health concern because it is associated with an 

increased risk of morbidity and mortality (Flegal 2005, Guh and others 2009). Obesity is 

a complex metabolic disorder that results from an imbalanced energy intake and energy 

expenditure leading to an increase in adipocyte size and number (Hirsch and Han 1969). 
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Adipose mass can increase when adipocytes increase in size due to higher triglyceride 

deposition. In addition, an increase in adipocyte number, arising from differentiation of 

precursor cells into adipocytes or adipogenesis, can also result in an increase in adipose 

mass. Therefore amount of adipose tissue can be reduced by inhibiting adipogenesis and 

fat deposition (Rayalam and others 2008).    

Adipogenesis is a highly regulated cellular transition through which a pluripotent 

mesenchimal cell first develops into a preadipocyte and finally into a mature adipocyte 

(Fernyhough and others 2005) (Figure 3).  

 

 

Figure 3. Differentiation of adipocytes from mesenchymal cells  
(taken from Avram and others 2007). 
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Several inhibitors of adipogenesis have been reported and these include 

extracellular as well as intracellular molecules such as Preadipocyte factor-1 (Pref-1) 

(Harp 2004). Pref-1 also known as Delta-like protein 1 (Dlk1) is an epidermal growth 

factor –repeat containing transmembrane protein of 385 amino acids. This protein, upon 

cleavage by TNF-α converting enzyme (TACE), produces a 50 kD soluble form that 

inhibits adipogenesis through the activation of MAPK kinase/ERK pathway. By 

activating the MAPK kinase/ERK pathway, Pref-1 soluble form prevents the down 

regulation of the transcription factor SRY (sex determining region Y) – box 9 (Sox9), 

which is necessary for  the expression CCAAT enhancer binding protein (C/EBP) β and 

δ. The expression of C/EBP β and δ is necessary to start the differentiation the process. 

Pref-1 is highly expressed in preadipocytes but decreases during differentiation process 

and is absent in mature adipocytes. Pref-1 reflects the degree of adipocyte differentiation 

in vitro and in vivo and therefore constitutes a good marker for adipogenesis (Sul 2009).  

Obesity is associated with a chronic inflammatory state characterized by abnormal 

production of cytokines and other pro-inflammatory mediators and the activation of 

inflammatory signaling pathways (Bastard and others 2006). Furthermore, chronic 

inflammation plays a crucial role in the development of metabolic disorders linked to 

obesity, including insulin resistance and arteriosclerosis (Arkan and others 2005, Van 

Gaal and others 2006). In these inflammatory related diseases, macrophages secrete a 

variety of pro-inflammatory cytokines, pro-inflammatory enzymes and other 

inflammatory mediators. Two important enzymes involved in activating the inflammatory 

response are inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. iNOS 

and COX-2 can catalyze the synthesis of nitric oxide (NO) and prostaglandin E2 (PG E2) 
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respectively, which in turn can cause sepsis, sepsis shock and systemic inflammatory 

response syndrome (Guha 2001) (Figure 4). Therefore the inhibition of the expression of 

these enzymes or of their products can help to reduce inflammation and related 

conditions. 

 

Figure 4. Role of iNOS and COX-2 in inflammation (taken from Cuzzocrea 2007). 
 

Potential of berries to ameliorate obesity and inflammation 

The consumption of berries has been shown to ameliorate several parameters 

related inflammation (Lehtonen 2010, DeFuria and others 2009, Larmo and others 2008) 

and obesity  (Ruel and others 2005). Furthermore anthocyanins and proanthocyanidins, 

which are abundant in berries, have been shown to be beneficial for both conditions. 

Several studies in vivo have indicated that the consumption of proanthocyanidin- rich 

extracts is associated with a reduction in food intake and body weight (Vogels and others 

2004, Tebib 1996) and with a modification in lipid profile and lipid metabolism (Tebib, 

and others 1994, Zern and others 2003, Del Bas and others 2004, Sugiyama and others 

2007). Furthermore, it has been shown that proanthocyanidins can modulate adipose 
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differentiation in vitro (Pinent and others 2005b) and in vivo (Montagut and others 2007) 

and also to stimulate lipolysis in 3T3-L1 adipocytes (Pinent and others 2005a, Hasegawa 

1999, Mochizuki, Hasegawa 2004). Consumption of anthocyanins has also prevented the 

onset of obesity in several animal studies (Prior 2008, Kwon and others 2007). In other 

reports, anthocyanins regulated adipocyte function by affecting adipocyte gene 

expression and adipocytokine expression (Tsuda and others 2005, Jayaprakasam and 

others, 2006, Tsuda and others 2004, Tsuda and others 2006). In addition anthocyanins 

and proanthocyanidins have been shown to possess anti inflammatory properties. Several 

studies have shown that anthocyanins reduce the levels of inflammatory mediators in 

vitro (Wang and others 2008, Kraft and others 2008, Pergola and others 2006, Tsoyi and 

others 2008)  and in vivo (Park and others 2007, Shan and others 2009). 

Proanthocyanidins can also reduce inflammation by modulating cytokine expression, 

inhibiting pro-inflammatory enzymes, or other mechanisms (Terra and others 2009, 

Wang and others 2009, Ho and others 2007, Diouf, and others 2009). The bioactive 

properties exerted by anthocyanins and proanthocyanidins have been attributed to diverse 

mechanisms of action including antioxidant capacity, interaction with enzyme systems or 

other proteins, or others (Nijveldt and others 2001). 

II. Berries from South America 

International interest in berries found in South America has increased in recent 

years mainly due to their potential health benefits and increasing consumer interest in 

novel exotic fruit selections in the market place. The broad diversity of berry-producing 

plants native to this area includes species such as Aristotelia chilensis (Maqui), Euterpe 
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oleracea (Açaí), Malpighia emarginata (Acerola), Ugni molinae (Murta), Fragaria 

chiloensis (Frutilla), Rubus glaucus (Mora) and Vaccinium floribundum (Mortiño).  

A. Aristotelia chilensis    

Ethnobotany and botanical description                                                                                                                      

Aristotelia chilensis is a dioecious fruit-bearing shrub that thrives in the temperate 

forests of central to southern Chile and western Argentina  (Hoffmann 1991, Muñoz and 

others 1981) (Figure 5A). It belongs to the Elaeocarpaceae family and is commonly 

known as “maqui,” “clon,” “queldron” and  “koelon” (Suwalsky and others. 2008).  It is 

an evergreen shrub that may grow in “macales,” or dense thickets, reaching 3-5 m in 

height (Hoffmann 1991). Maqui typically grows in moist, well-drained soils in either 

high or low light environments, but has consistently shown higher survival rates with 

exposure to high light (Lusk, Del Pozo 2002). A.  chilensis yields a small edible 

purple/black berry averaging 5 mm in diameter and typically 3-4 seeds (Hoffmann 1991) 

(Figure 5B).  

 

A                             B 

 
 

Figure 5. Photographs showing the berries (A) and the shrub (B) of Aristotelia chilensis. 
Reproduced courtesy of Guillermo Moreno Crisóstomo 

(http://www.nublenaturaleza.cl/articulos/flora/arboes/el-maqui/). 

http://www.nublenaturaleza.cl/articulos/flora/arboes/el-maqui/�
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The leaves and fruits of A. chilensis have been used in folk medicine to treat a 

variety of ailments including sore throat, kidney pains, ulcers, fever, hemorrhoids, 

inflammation, diarrhea, lesions, migraines, and scars (Hoffmann 1991). 

Phytochemistry 

There are several reports concerning the chemical composition of A. chilensis 

(Table 3) that have indicated the presence of indole and quinoline alkaloids within leaf 

tissue  (Watson and others 1989) and high levels of polyphenols in the berry (Miranda-

Rottmann and others 2002, Céspedes and others 2008).  

 

Table 3. Phytochemicals detected in leaves and berries of Aristotelia chilensis           

Phytochemical constituent Plant 
part used References 

 
• Alkaloids  
 
8-oxo-9-dehydrohobartine 
8-oxo-9-dehydromakomakine 
Aristone 
Aristotelinine  
Aristotelone 
Aristoteline 

Leaves 

Watson and others 1989 

Bittner and others 1978 
Gopalakrishna and others 

1978 

Bhakuni and others 1976 

 
• Phenolics 
 
Delphinidin-3-sambubioside-5-glucoside 
Delphinidin-3,5-diglucoside 
Cyanidin-3- sambubioside -5-glucoside 
Cyanidin-3- sambubioside -5-glucoside 
Cyanidin-3,5,-diglucoside 
Delphinidin-3- sambubioside 
Delphinidin-3-glucoside 
Cyanidin-3- sambubioside 
Cyanidin-3-glucoside 
 

Berries 
Escribano-Bailon and others 
2006, Céspedes and others 

2010 
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The phytochemical profile of  A. chilensis fruits has been reported, revealing 

mainly phenolic acids, proanthocyanidins, anthocyanins among other flavonoids 

(Escribano-Bailon and others 2006, Céspedes and others 2010). 

Biological Properties                                                                               

The berries and leaves of A. chilensis have demonstrated diverse biological 

properties that are mainly attributed to their rich phenolic content and antioxidant 

capacity (Miranda-Rottmann and others 2002, Céspedes and others 2010, Céspedes and 

others 2008). For instance, the maqui berry juice inhibits low-density lipoprotein (LDL) 

oxidation and protects human endothelial cells against intracellular oxidative stress, thus 

suggesting possible antiatherogenic properties (Miranda-Rottmann and others 2002) .  

Methanol extracts of mature maqui berries have also exhibited a protective effect against 

acute isochemia/reperfusion when performed in vivo in rat hearts. The fruit extracts likely 

prevented these harmful effects by reducing lipid oxidation and the concentration of 

thiobarbituric acid reactive substances (TBARS) (Céspedes and others 2008). Extracts 

from the maqui leaves have also shown potential nematicidal (Insunza and others 2001)  

and antiviral activities (Pacheco and others 1993) . Furthermore, aqueous extracts of A. 

chilensis leaves can induce alteration in human erythrocyte morphology by interacting 

with the membrane’s outer phospholipid monolayer. These results suggest that the 

molecular mechanism of action of A. chilensis leaf extracts can be attributed to functional 

perturbation of cell membrane lipid bilayers (Suwalsky and others 2008). Table 4 shows 

a summary of all the studies that have looked at the biological activity of the fruit and 

leaves of A. chilensis. In addition, the A. chilensis  berries exhibit relatively high mineral 

levels; 100 g of maqui berries yield 27% recommended daily allowance (RDA) for 
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calcium, 28% RDA for potassium, and 70% RDA for iron; contrarily the plant exhibits 

low sodium levels. Thus, A. chilensis shows potential for use in dietary supplements or 

functional foods (Damascos and others 2008).   

Table 4. Biological activities of leaves and berries of Aristotelia chilensis. 

Part 
used 

Biological  
Property Model Dose/ 

Effectiveness Reference 

 
Fruit 

 

Cardio 
protective 
effect 
 

Male Wistar Rats  

Single dose 
methanol extract           
(10 mg kg-1) 
 

Céspedes and 
others 2008 

Antioxidant 
activity  

Human umbilical 
vein cells 10 µM GAE juice   Miranda-

Rottmann and 
others 2002 

Human LDL from 
lipidemic blood 
donors 

1 µM GAE 
juice  

 
Leaves 

Nematicidal 
activity 
 

Xiphinema 
americanum sensu 
lato 

25 %  1 : 4 W/V 
aqueous extract   

Insunza, and 
others 2001 

Anti viral 
activity 
 

Herpes virus 
hominis type 2 

IC50 40 µg/mL 
hydroalcoholic 
extract 

Pacheco and 
others 1993 

Alteration of 
human 
erythrocytes 
morphology 
 

Human 
erythrocytes  

1 mM GAE 
aqueous extract 

Suwalsky and 
others 2008 

IC50, 50% inhibitory concentration; LDL, low-density lipoprotein; GAE, gallic acid 
equivalent. 
 
 

Commercial use 

A. chilensis is a widespread plant that is regionally collected and typically 

consumed fresh or used to make jam, tea, wine and juice (Damascos and others 2008). In 

addition it is commonly used as a natural dye due to its high content in anthocyanin 

pigments (Hoffmann 1991). Recently, the use of this plant has outgrown its traditional 
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borders, reaching new areas of commercialization. For instance, a topical formulation 

containing maqui berry extracts, with a high oxygen radical absorbance capacity 

(ORAC), has been developed and patented for the prevention and treatment of skin 

damage, particularly damage resulting from aging and sun exposure.  Furthermore, 

functional beverages and dietary supplements containing Maqui berry extracts and 

featuring a patent pending Maqui Superberry™ are available in the market. 

B. Vaccinium floribundum 

Ethnobotany and botanical description                                                                                                                      

Vaccinium floribundum is a deciduous, spreading shrub that belongs to the family 

Ericaceae (Figure 6A). It bears cylindrical pink flowers and round blue to nearly black 

edible berries (Figure 6B). This species is native to Ecuador and Peru but is also found in 

other countries in South and Central America (National Research Council 1989). 

 

 A                                                                     B 

 
 

Figure 6. Photographs showing the berries (A) and the shrub (B)  
of Vaccinium floribundum. 
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V. floribundum berries are widely consumed in Ecuador as the fresh fruit or as processed 

products. Local communities also have used this plant to treat various medical conditions 

such as diabetes and inflammation (de la Torre L and others 2008). 

Phytochemistry 

The chemical composition and the phenolic profile of V. floribundum has been 

reported revealing predominantly quercetin, hydroxycinnamic acids and cyanidin-3-

glucosides. Anthocyanins were shown to account for ∼67% (345 mg cyanidin/100 g FW) 

of the total phenolic compounds with cyanidin derivatives the major components 

(∼89%). Among the hydroxinnamic acids, chlorogenic and neochlorogenic together with 

caffeic and ferrulic acids were the predominant components.  In addition, the total soluble 

phenolic content and the  antioxidant capacity were  reported as 882 mg gallic acid 

equivalent (GAE)/100 g fresh weight (FW) and 1200 mg Trolox equivalent/100 g FW, 

respectively (Vasco and others 2009). 

Commercial use 

V. floribundum does not currently exhibit widespread commercial use. Typically, 

it is gathered and sold in local marketplaces for raw consumption and small-scale 

processing. Jams, jellies and powders are prepared from the berries (de la Torre and 

others 2008). Although this plant and its derived products are primarily sold locally, it 

has shown promise for future commercial growth.  
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CHAPTER 3 
SIGNIFICANCE OF RESEARCH 

 

The incidence of obesity has increased drastically in the last decade and has become a 

worldwide health concern due to its association with an increased risk of morbidity and 

mortality. Obesity is closely associated with a chronic inflammatory state and this has 

been shown to play a crucial role in the development of metabolic disorders linked to 

obesity, including insulin resistance and arteriosclerosis. Research continues to focus on 

the role of diet, specifically in fruits and vegetables and their phytochemicals, as a 

preventive strategy that may be beneficial to treat health related conditions. A. chilensis 

and V. floribundum berries have been used in folk medicine to treat a variety of ailments. 

In addition, these two berries have been shown to contain a broad range of phenolic 

compounds, which have been associated with health beneficial properties. A. chilensis 

and V. floribundum berries, as well as their derived products have shown to have the 

potential to aid in the management of obesity and to ameliorate inflammation. This study 

provides the phytochemical characterization of V. floribundum and A. chilensis berries 

and investigates for the first time the ability of these berries and of their phytochemicals 

to reduce in vitro inflammation and obesity biomarkers.   
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CHAPTER 4 
HYPOTHESIS AND OBJECTIVES 

 
 

Hypothesis 

V. floribundum and A. chilensis phenolic extracts have the potential to reduce 

inflammation and to inhibit adipogenesis and lipid accumulation. 

Main objective 

To characterize the anthocyanin and proanthocyanidin constituents, to investigate 

the antioxidant capacity (AC) of V. floribundum and A. chilensis berry extracts, and to 

evaluate the ability of their phenolic fractions to reduce adipogenesis, lipid accumulation 

and inflammation in vitro.  

Specific objectives                                                                                                              

1. To quantify and characterize the anthocyanin and proanthocyanidin constituents of V. 

floribundum and A. chilensis.  

2. To determine the antioxidant capacity of V. floribundum, A. chilensis, and of their 

phenolic extracts.  

3. To determine the effect of V. floribundum and A. chilensis phenolic extracts on 

adipogenesis by measuring lipid accumulation and Pref-1 expression in vitro. 

4. To determine the effect of V. floribundum and A. chilensis phenolic extracts on lipid 

metabolism by measuring lipid accumulation in vitro.  

5. To determine the effect of V. floribundum and A. chilensis phenolic extracts on NO and 

PGE2 production and  iNOS and COX-2 expression. 
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CHAPTER 5 
MATERIALS AND METHODS 

I. Materials  

Ripe Aristotelia chilensis berries were collected in January 2009 from the 

Entrelagos region in Chile (S 40º 40' 48,5"/  W 72º 33' 43,3") (Figure 7A).  Ripe 

Vaccinium floribundum berries were collected during late November 2008 in the 

grasslands of Simiatug, Ecuador (Figure 7B).  The berries were cleaned by removing 

leaves, stems and damaged berries. The whole berries were freeze-dried, sealed in plastic 

bags, and shipped to our laboratory. In addition to the collected berries, a V. floribundum 

commercial powder (mortiño; a natural product produced by Simiatug Samai) was 

purchased from a local market in Quito, Ecuador (Figure 7C). This powder was prepared 

by dehydrating fresh berry at low temperatures (< 45 ºC) and high ventilation. The 

berries and the commercial powder were stored at -80 ºC until usage. 

 

 
 

Figure 7. Photograph showing the freeze-dried Aristotelia chilensis (A) and Vaccinium 
floribundum (B) and the commercial powder of Vaccinium floribundum (C). 

 

A B C 
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Swiss albino mouse 3T3-L1 fibroblasts, macrophage RAW 264.7 cell line and 

DMEM were purchased from American Type Culture Collection (Manassas, VA). Fetal 

bovine serum (FBS) was purchased from Invitrogen (Grand Island, NY). 

Isobutylmethylxanthine (IBMX), dexamethasone (DEX), insulin, sodium pyruvate 

solution, penicillin (1000 U/mL), streptomycin (1000 U/ mL), sodium nitrite, 

sulfanilamide, N-1-(naphthyl)ethylenediamine- diHCl, LPS from Escherichia coli 

O55:B5,  Trolox,  Folin-Ciocalteu’s phenol reagent, 2,2-azobis 2-amidinopropane 

dihydrochloride (AAPH), Amberlite XAD-7 resin, Oil Red O, C75 ( ≥ 98% purity), and 

epigallocatechin gallate (EGCG ≥ 95% purity) were purchased from Sigma–Aldrich (St. 

Louis, MO). Cyanidin-3-glucoside standard (≥ 97% purity) was purchased from 

Polyphenols Laboratories AS (Sandnes, Norway). Sephadex LH-20 was purchased from 

GE Life Sciences (Buckinghamshire, UK). Actin mouse mAb epitope mapping at the C-

terminus of actin of human origin, COX-2 mouse mAb against amino acids 580 – 598 of 

human COX-2 and inducible iNOS mouse mAb epitope mapping at the C-terminus of 

mouse iNOS and DLK goat pAb epitope mapping at the C-terminus of human pref-

1/DLK-1 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antimouse 

IgG, horseradish peroxidase conjugate secondary antibody was purchased from GE 

Healthcare (Buckinghamshire, UK).  

II. Methods 

 The complete experimental design of this study, including the preparation of the 

phenolic extracts, the phytochemical analysis and the biological assays is illustrated in 

Figure 8. 
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Figure 8. Experimental design. Abbreviations: PAE, post-amberlite extract; ANC, 
anthocyanin-enriched-fraction; PAC, proanthocyanidin-enriched-fraction. 
 

 

A. Preparation of phenolic-rich extracts and fractions 

The process used to prepare the phenolic extracts and fractions is illustrated in 

Figure 9 

Preparation of the phenolic-rich extract 

Berry extraction and fractionation were performed based on procedures developed 

by Grace and others (2009). The freeze dried berries and the commercial powder were 

blended with 80% ethanol acidified with 0.3% trifluoroacetic acid (TFA). The extract 

was then filtered through cotton, followed by Whatman # 4 then #1 filter paper with the 

aid of suction. The collected hydro-alcoholic extract was evaporated using a rotary 

evaporator at a temperature not exceeding 40 °C. The aqueous concentrate was 

partitioned with ethyl acetate (4 × 500 mL) to remove lipophilic material. The aqueous 

layer was retained and loaded onto an Amberlite XAD-7 column (30 × 10 cm) 

preconditioned with acidified water, (0.3% TFA). The resin was washed thoroughly with 
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acidified water (0.3% TFA, ~3 L) to remove free sugars, pectins, and phenolic acids. The 

polyphenolic mixture was then eluted with acidified ethanol (0.3% TFA), evaporated, and 

freeze-dried to yield post-amberlite extract (PAE).  

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Flow chart showing extraction and anthocyanin and proanthocyanidin 
enrichment process. Abbreviations: PAE, post-amberlite extract; ANC, anthocyanin-
enriched-fraction; PAC, proanthocyanidin-enriched-fraction. Adapted from Grace and 
others 2009. 
 
 
 
Preparation of anthocyanin and proanthocyanidin-enriched fractions 

The enriched fractions were prepared by placing 2 g of the PAE on a Sephadex 

LH-20 column (30 × 3 cm). Anthocyanins were obtained from an isocratic elution of 

Dry berry fruit 

Crude extract 

Post-amberlite extract (PAE) 

Extract with 80% EtOH 
(0.3% TFA) 

Amberlite XDA-7 
EtOH (0.3% TFA) 

Anthocyanin-  
enriched fraction 

(ANC) 

Proanthocyanidin-  
enriched fraction 

(PAC) 
 

Sephadex-LH-20 
70% Acetone 

Sephadex-LH-20 
20% EtOH (0.3% TFA)  
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20% aqueous ethanol acidified with 0.3% TFA. Two anthocyanin fractions of 200 ml 

each were collected for the two berries and the commercial powder. The column was then 

washed with 70% aqueous acetone to elute polymeric proanthocyanidins. Two 

proanthocyanidins fractions of 200 ml each were collected for the two berries and the 

commercial powder. All fractions were concentrated and freeze-dried to yield an 

anthocyanin-enriched-fraction 1 (ANC 1), anthocyanin-enriched-fraction 2 (ANC 2), 

proanthocyanidin-enriched-fraction 1 (PAC 1) and proanthocyanidin-enriched-fraction 1 

(PAC 2).  For the following analysis only anthocyanin-enriched-fraction 1 (ANC 1) and 

proanthocyanidin-enriched-fraction 1 (PAC 1) were used, and will be referred as ANC 

and PAC throughout the text. 

B. Chemical analysis 
 

Total polyphenol content 

Total phenolic content was measured using the Folin-Ciocalteu method, adapted 

to a micro-assay, from the method described by Chandra and de Mejia (Chandra, de 

Mejia 2004). Briefly, to a 96-well flat bottom plate, 50 μL of 1 N Folin-Ciocalteu’s 

phenol reagent and  50 μL of either sample, standard or blank were added; this mixture 

was allowed to stand for 5 min before the addition of 100 μL of 20% Na2CO3.  The 

solution was then allowed to stand for 10 min before reading at 690 nm using a Synergy 

2 multi-well plate reader (Biotek, Winooski, VT). Results were expressed as catechin mg 

equivalents, using the standard curve y= 0.011x - 0.071, R2 = 1.   

Anthocyanin and proanthocyanidin analysis  

Anthocyanin separation was conducted on an 1100 HPLC (Agilent Technologies, 

Santa Clara, CA) using a reverse phase Supelcosil-LC 18 column (250 mm × 4.6 mm × 
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5 μm) (Supelco, Bellefonte, PA). Samples were prepared by dissolving 5 mg of extract or 

enriched-fractions in 1 mL of methanol and filtering through 0.45 μm nylon filters 

(Fisher Scientific, Pittsburg, PA) before injection. The mobile phase consisted of 5% 

formic acid in H2O (A) and 100% methanol (B). The flow rate was held constant at 1 

mL/min with a step gradient of 10, 15, 20, 25, 30, 60, 10, and 10% of solvent B at 0, 5, 

15, 20, 25, 45, 47, and 60 min, respectively. The same instrumentation was used to 

separate proanthocyanidins. Mobile phase consisted of 94.9% H2O, 5% acetonitrile and 

0.1% formic acid (A) and of 94.9% acetonitrile, 5% H2O and 0.1% formic acid (B). The 

flow rate was held constant at 1 mL/min with a step gradient of 0, 5, 15,30,60, 90, 0  and 

0% of solvent B at 0, 3, 40, 45, 50, 55, 47, and 60 min, respectively. Anthocyanins and 

proanthocyanins were detected at 520 nm and 280 nm using diode array detector (DAD), 

respectively.   Chemstation software (Agilent Technologies Inc, Santa Clara, CA) was 

used for both protocol control and data processing.  

The HPLC-ESI-MS analyses were made with an LCQ Deca XP mass 

spectrometer (Thermo Finnigan Corp., San Jose, CA), MS version 1.3 SRI, electrospray 

ionization (ESI) in the positive ion mode (m/z 150-2000), with a photodiode array (PDA) 

detector (200-600 nm), version 1.2, autosampler version 1.2, and Xcalibur software for 

data processing. The HPLC separations were carried out on a C-18 reversed-phase 

column (150 mm, 2.1 mm i.d., particle size 5 μm, 90Ǻ) (VYDAC, Western Analytical, 

Murrieta, CA, USA). The analysis was carried out using mobile phase consisting of 

94.9% H2O, 5% acetonitrile and 0.1% formic acid (A) and of 94.9% acetonitrile, 5% H2O 

and 0.1% formic acid (B), with a step gradient of 5, 30, 60, 90, 90, 5 and 5% of solvent B 

at 0, 40, 45, 50, 55 and 60 min. A constant rate flow rate of 200 µL/min and an injection 
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volume of 10 µL; were employed. Samples were prepared by dissolving 5 mg of extract 

or enriched-fraction in 1 mL of methanol and filtering through 0.45 μm nylon filters 

before injection. Acquisition of LC-PDA-MS data was performed and processed using 

XCalibur Qual Browser v1.4 software (Thermo Electron Corp., Waltham, MA). 

The total anthocyanin content of the two berries (A. chilensis and V. floribundum) 

and the commercial powder was calculated as cyanidin-3-glucoside equivalent (C3G 

equivalent) Three concentrations of the standard at 0.25 mg, 0.5 mg, and 1.0 mg/mL were 

used to quantify the anthocyanins using peak areas measured by HPLC at 520 nm. The 

identification of anthocyanins was based on comparison with published data (Chandra, de 

Mejia 2004), MS spectral data and comparison to reference standards. In the same way, 

the total proanthocyanidin content of the two berries and the commercial powder was 

calculated as epicatechin equivalents from the peak area measured at 280 nm, with the 

exclusion of 520 nm wavelength peaks which were anthocyanins.  

C. Biochemical analysis 

Antioxidant Capacity 

 Antioxidant capacity (AC) was measured by the oxygen radical absorbance 

capacity (ORAC) assay (Prior et al 2003, Dávalos and others 2001).  Briefly, aliquots of 

20 μL sample (0.1 mg/mL), Trolox standard dissolved in 75 mM phosphate buffer pH 7.4 

or 75 mM phosphate buffer pH 7.4 blank were added to a 96-well black walled plate.  

This was followed by the addition of 120 μL 17 nM fluorescein. The plate was then 

incubated for 15 min at 37 ˚C and then 60 μL of 153 mM AAPH were added.  The plate 

was read in a Synergy 2 multi-well plate reader (Bio-Tek), at 37 ˚C, sensitivity 60, read 

every 2 min for 120 min with excitation 485 and emission 582 nm.  Results were 
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expressed as mmol Trolox equivalents, using the standard curve y = 0.23x + 1.11, R2 = 

0.99. 

D. Biological activities 

Adipogenesis and lipid metabolism   

Cytotoxicity assay 

 All treatments were assayed for cytotoxicity before lipid quantification or Pref-1 

assays. CellTiter 96®AQueous One Solution was used to determine the number of viable 

cells according to the manufacturer’s manual (Promega, Madison, WI). Briefly, the 

CellTiter 96®AQueous One Solution (20 µL) was added to 100 µL of media containing 

wells (with cells) and then the plate was incubated in a 5% CO2 incubator at 37 ˚C. After 

2 h, absorbance was measured at 515 nm with a 96-well plate reader (Biotek® 

Instruments, Winooksi, VA). Cell viability was calculated using the following equation:  

 

Atreatment 515 nm/Acontrol 515 nm * 100 = % cell viability 

 

Cell culture and treatments 

 The 3T3-L1 preadipocytes were seeded at 3 x 104 cells/well in 24-well plates and 

cultured in DMEM containing 10 mM sodium pyruvate, 100 U/mL penicillin, 100 U/mL 

streptomycin and 10%  FBS (FBS/DMEM medium). For pre-adipocyte differentiation, 

two days after reaching 100% confluence, the cells were stimulated with FBS/DMEM 

medium containing 167 µM insulin, 0.5 M IBMX, and 1 M DEX for 2 days. Cells were 

then maintained in FBS/DMEM medium with 167 nM insulin for another 2 days, 

followed by culturing with FBS/DMEM medium for an additional 4 days, at which time 
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up to 90% of cells were mature adipocytes with accumulated fat droplets. To study the 

effect of the phenolic extracts on lipid metabolism, mature adipocytes received a single 

treatment of 100 µM (C3C or epicatechin equivalents) PAE, ANC and PAC of the two 

berries and the commercial powder, 10 days after the initiation of differentiation for 48 h. 

After this period, lipid accumulation was quantified (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10. Diagram showing differentiation, treatments and red oil assay timeline when 
adipocytes received a single treatment at mature stage. Abbreviations: IBMX, 3-isobutyl-
1 methylxanthine; DEX, Dexamethasone; INS, Insulin. 
 
 
 

To monitor the effect of these extracts on adipogenesis, adipocytes were treated 

throughout the differentiation process at days 2, 4, 6, 8 and 10. Twelve days after the 

adipocytes were seeded and treated throughtout the differentiation, lipid accumulation 
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was quantified (Figure 11). In addition, EGCG and C75 (100 µM) were used as positive 

controls. All treatments were dissolved in 0.01% DMSO. The concentrations used were 

based on preliminary data from a cytotoxicity assay (Appendix J), making sure that cell 

viability was at least 80%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Diagram showing differentiation, treatments and red oil assay timeline when 
adipocytes were treated throughout the differentiation process. Abbreviations: IBMX, 3-
isobutyl-1 methylxanthine; DEX, Dexamethasone; INS, Insulin. 
 
 
 
Lipid quantification by Oil Red O assay 

 Briefly, treated mature adipocytes were washed with Dulbecco’s phosphate 

buffered saline (DPBS) and fixed with 10% formalin (in DPBS) in 24-well plates for 1 h.  

Then, cells were washed with 60% isopropanol and allowed to air dry.  The Oil Red O 
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stock solution (6:4 v/v with water) was added to lipid droplets for 1 h.  After Oil Red O 

lipid staining, cells were washed with water four times and were air dried.  Oil Red O dye 

was eluted by adding 100% isopropanol and then incubating at room temperature for 10 

min.   The absorbance of the resulting eluant was measured at 510 nm using a Synergy 2 

multi-well plate reader (Bio-Tek). Inhibition of lipid accumulation in adipocytes was 

calculated using the following equation:  

 

(Acontrol, 510 nm – Atreatment, 510 nm)/Acontrol, 510 nm * 100 = % inhibition of lipid accumulation 

 

Measurement of Pref-1 expression by Western blotting 

 Preadipocytes were seeded at a concentration of 1.0 x 105 cells/well in 6- well 

plates and cultured with FBS/DMEM.  After 24 h, the cells were treated with100 µM 

(C3C or epicatechin equivalent) PAE, ANC and PAC of the two berries and the 

commercial powder for 24 h. The concentrations used were based on preliminary data 

from a cytotoxicity assay (Appendix K), making sure that cell viability was at least 80%.  

Treated preadipocytes were lysed in sample loading buffer (Laemmli buffer with 5% b-

mercaptoethanol) and sonicated using an ultrasonic cell disruptor from Misonix Inc. 

(Farmingdale, NY). After lysis, the cell lysates were boiled for 5 min and separated via 

electrophoresis on 4–20% Tris-HCl ready gels (Bio Rad Laboratories). Gels were run on 

a PowerPac 300 (Bio-Rad) at 200 V for 30 min. The separated proteins were transferred 

to a polyvinylidene difluoride (PVDF) membrane (Bio Rad) in transfer buffer (25 mM 

Tris, pH 8.3, 192 mM glycine, and 0.1 % SDS) using Western sandwich assembly for 1 h 

at 4 ºC using 110 V. The membrane was then blocked with 5% non-fat dry milk (NFDM) 
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in Tris-buffered saline with 0.1% Tween 20 (TBST) for 1 h at 4 ºC. After blocking, the 

membrane was washed with TBST and incubated with 10 mL of anti-pref-1 goat 

polyclonal IgG antibody (1:2000 in TBST with 1% NFDM) at 4 ºC overnight. The 

membrane was washed again and incubated with 10 mL of ECL anti-goat IgG 

horseradish peroxidase conjugate (1:1000 in TBST with 1% NFDM) for 3-4 h at room 

temperature. The membranes were washed a final time in TBST. Pref-1 expression was 

visualized using chemiluminescent reagent (GE Life Sciences, Piscataway, NJ) following 

manufacturer's instructions. The membrane picture was taken with a Kodak Image station 

440 CF (Eastman Kodak Company, New Haven, CT). Pref-1 expression was calculated 

as the ratio between Pref-1 and actin band intensity. 

Inflammation  

A diagram showing the cell culture, treatments and measurement of NO and PGE2 

production and iNOS and COX-2 expression in RAW 264.7 macrophages is shown in 

Figure 12. 

Cytotoxicity assay 

 All the cell treatments were assayed for cytotoxicity before performing any 

inflammatory marker assay. CellTiter 96®AQueous One Solution was used (Promega, 

Madison, WI) as mentioned previously.  

Cell culture and treatments  

Macrophage cell line RAW 264.7 were seeded at 2 x 105cells/well in 6- well 

plates and cultured in FBS/DMEM medium at 37 °C in 5% CO2/95% air. After 48 h of 

incubation, cells were treated with 100 µM (C3C or epicatechin equivalent) of PAE, 

ANC and PAC of the two berries and the commercial powder and 1 µg/mL of LPS for  
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24 h. In addition, quercetin (100 µM) was used as a positive control. Treatments were 

dissolved in 0.01% DMSO. The concentrations used were based on preliminary data from 

a cytotoxicity assay (APPENDIX  L), making sure that cell viability was at least 80%. 

After 24 h treatment, the spent medium was collected and analyzed for NO and PGE2. 

Cell lysates were used to study the effect of the phenolic extracts on the expression of 

COX-2 and iNOS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Diagram showing cell culture, treatments and measurement of NO and PGE2 
production and iNOS and COX-2 expression in RAW 264.7 macrophages. 
Abbreviations: NO, nitric oxide; PGE2 prostaglandin E2; iNOS, inducible nitric oxide 
synthase; COX-2, cycloxygenase-2; LPS, lipopolysaccharide. 
 
 

Seed RAW 
264.7 

macrophages 

 

 
 

Supernatant 

 

 

Cell lysates 

 

Western blot 

PGE2 

 

NO 

 

Treatment 
+ 

LPS 1 µg/mL 
 

COX-2 
iNOS protein 

expression 
 

PGE2 ELISA 
kit 

 

Measurement of Nitrite 
Griess Reagent 

 



 

34 
 

Measurement of NO and PGE2 production  

NO production was determined by measuring the level of nitrite accumulation 

(the stable metabolite of NO) in the spent medium. For nitrite measurement, 100 µL of 

the spent medium was plated in 96-well plate and an equal amount of Griess reagent (1% 

w/v sulfanilamide and 0.1% w/v N-1 (naphthyl) ethylenediamine-diHCl in 2.5% v/v 

H3PO4) was added. The plate was incubated for 5 min and the absorbance measured at 

550 nm. The amount of NO was calculated using the following sodium nitrite standard 

curve y = 0.14x + 0.09, R² = 0.99. For PGE2 measurement, PGE2 ELISA kit monoclonal 

was used following manufacturer's instructions (Cayman Chemical, Ann Arbor, MI).  

Measurement of iNOS and COX-2 expression by Western blotting  

COX-2 and iNOS expression were determined in cell lysates. The primary 

antibodies used were COX-2 or iNOS mouse monoclonal antibodies (1:200) and 

antimouse IgG horseradish peroxidase conjugate as the secondary antibody (1:1000). All 

other steps were preformed as described above. The expression of these enzymes was 

calculated as the ratio between COX-2 or iNOS and actin band intensity. 

E. Statistical analysis 

Data were expressed as means of at least two independent replicates. Results were 

compared by one-way analysis of variance (ANOVA) using the proc GLM function of 

Statistical SAS version 9.2 (SAS Inst. Inc., Cary, NC).  Group means were considered to 

be significantly different at p < 0.05. Mean separation was achieved through least 

significant difference (LSD) procedure in SAS.   
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CHAPTER 6 
RESULTS AND DISCUSSION 

I. Phenolic composition and antioxidant capacity  

Table 5 shows the total anthocyanins, total proanthocyanidins, total phenolics and 

antioxidant capacity of A. chilensis berries and its phenolic extracts. Table 6 shows the 

total anthocyanins, total proanthocyanidins, total phenolics and antioxidant capacity of V. 

floribundum berries, the commercial powder and their phenolic extracts. 

 
 
Table 5. Total anthocyanins, total proanthocyanidins, total phenolics and antioxidant 
capacity of Aristotelia chilensis berries and phenolic extracts. 
 

  
Anthocyanins 

(%) 1 

 
Proanthocyanidins 

(%) 2 

 
Total 

phenolics 
(mg/g) 3 

Antioxidant 
capacity 

(mmol/g) 4 

 
Yield 5 

 

 
DB 

 
4.6  ± 0.1 6 c 0.4 ± 0.3 6 c 53.3 ± 5.8 7 d 0.3 ± 0.17 d NA 

PAE 
 

58.4 ± 0.7 b 
 

 
5.1 ± 0.4 b 

 

 
632.6 ± 5.8b 

 

 
7.5 ± 0.1b 

 

 
7.8 

 

ANC 
 

79.8 ± 1.7 a 
 

 
≥ 0.1 d 

 

 
573.7 ± 13.0c 

 

 
9.5 ± 0.3a 

 

 
2.9 

 
 

PAC 
 

≥ 0.1 d 49.3 ± 3.2 a 973.2 ± 36.9 a 9.8 ± 0.5a 0.6 

 
1% expressed as cyanidin-3-glucoside equivalents; 2% expressed as epicatechin 
equivalents; 3mg/g of catechin equivalent estimated by Folin Ciocalteu; 4mmol/g of 
Trolox equivalents estimated by ORAC; 5g extract or enriched-fraction obtained per 100 
grams of dried berry; 6Data from phenolic-rich extracts was converted to freeze-dried 
fruit weight basis; 7The dried sample was homogenized in 80% ethanol, kept overnight at 
4 ºC and centrifuged. The ethanolic extract was used to measure TP and AC. (NA)  Not 
applicable.  The data represents the mean ± SD from at least two independent studies and 
a least a triplicate analysis. Values within a column followed by different letters are 
significant at p ≤ 0.05. Abbreviations: DB, dry berry; PAE, post-amberlite extract; ANC, 
anthocyanin-enriched-fraction; PAC, proanthocyanidin-enriched-fraction. 
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Table 6. Total anthocyanins,  total proanthocyanidins,  total phenolics and antioxidant 
capacity of Vaccinium floribundum freeze-dried berries, the commercial powder and their 
phenolic extracts. 
 

 
 
Anthocyanins 

(%) 1 

 
Proanthocyanidins 

(%) 2 

 
Total 

phenolics 
(mg/g) 3 

Antioxidant 
capacity 

(mmol/g) 4 

 
Yield 

5 

 
 Freeze-dried berries    

 
FB 

 
1.1 ± 0.1  6 c 

 
0.5 ± 0.1 6 c 

 
53.0 ± 1.6 7 e 

 
0.2 ± 0.01 7 f 

 
NA 

 
PAE 

 
11.1 ± 0.5 b 

 
5.3  ±  0.5 b 

 
524.4 ± 4.5 d 

 
8.3 ± 0.4 c 

 
9.8 

 
ANC 

 
15.7 ± 0.2 a 

 
≥ 0.1 d 

 
711.2 ± 21.2 c 

 
10.6 ± 0.9 a 

 
2.1 

 
PAC 

 
≥ 0.1 d 

 
54.3 ± 2.4 a 

 
869.2 ± 15.1 b 

 
9.2 ± 0.3 b 

 
0.4 

 Commercial powder    

 
CP 

 
0.2 ± 0.1 7 c 

 
0.5 ± 0.03 7 c 

 
18.1 ± 0.2 f 

 
0.1 ± 0.03 7 g 

 
NA 

 
PAE 

 
2.3 ± 0.6 b 

 
4.6 ± 0.3 b 

 
495.6 ± 9.1 7 d 

 
3.3 ± 0.1 d 

 
10.2 

 
ANC 

 
4.3 ± 0.6 a 

 
≥ 0.1 d 

 
927.2 ± 7.6 a 

 
10.1 ± 0.1 a 

 
0.1 

 
PAC 

 
≥ 0.1 d 

 
49.2 ± 1.1 a 

 
788.1 ± 3.2 b 

 
4.9 ± 0.4 d 

 
0.8 

 
1% expressed as cyanidin-3-glucoside equivalents; 2% expressed as epicatechin 
equivalents; 3mg/g of catechin equivalent estimated by Folin Ciocalteu; 4mmol/g of 
Trolox equivalents estimated by ORAC; 5g extract or enriched-fraction obtained per 100 
grams of dried berry; 6Data from phenolic-rich extracts was converted to freeze-dried 
fruit weight basis; 7The dried sample was homogenized in 80% ethanol, kept overnight at 
4 ºC and centrifuged. The ethanolic extract was used to measure TP and AC. The data 
represents the mean ± SD from at least two independent studies and a least a triplicate 
analysis. Values within a column followed by different letters are significant at p ≤ 0.05. 
Statistical analysis was performed independently for the freeze dried and the commercial 
powder of V. floribundum. Abbreviations: freeze-dried berry (FB), dry post-amberlite 
extract (PAE), anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-
fraction (PAC), commercial powder (CP). Not applicable (NA). 
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A. Anthocyanins 

 The berry of A. chilensis contained seven main anthocyanin structures: delphinidin-

3-sambubioside-5-glucoside (m/z: 759), delphinidin-3,5-diglucoside (m/z: 627), cyanidin-

3-sambubioside-5-glucoside (m/z: 743), delphinidin-3- sambubioside (m/z: 597), 

delphinidin-3-glucoside (m/z: 465), cyanidin-3-sambubioside  (m/z: 581), cyanidin-3-

glucoside (m/z: 449). This was in agreement with previous reports (Escribano-Bailon and 

others 2006, Céspedes and others 2010, Vasco and others 2009, Grace and others 2009). 

An HPLC chromatogram illustrating these structures in the PAE is shown in Figure 13 

and the peak assignment and the concentration of individual anthocyanins in the PAE and 

in the ANC for A. chilensis is presented in Table 7. Delphinidin 3-glucoside (peak 5) was 

the main anthocyanin component present in this berry. HPLC analysis indicated that 

berries from A. chilensis contain 45.7 mg/g DW (C3G equivalents). This value is higher 

than that previously reported by Escribano-Bailon and others and Céspedes and others 

(Escribano-Bailon and others 2006, Céspedes and others 2010) who reported on average 

about 2.5 mg/g DW (C3G equivalents). This difference in anthocyanin concentration in 

part may be explained by differences in the time and place of collection of A. chilensis 

berries in the previous studies.  The berries analyzed in this report were collected at the 

most southern location in Chile. The time and place of harvest can influence growing 

conditions, which have been shown to affect the composition of these fruits (Ortega-

Regules and others 2006, Howard and others 2003). The differences in the method of 

extraction used in previous studies may also explain this difference in anthocyanin 

concentration. 
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Figure 13. HPLC chromatogram of the post-amberlite extract (PAE) of Aristotelia 
chilensis. The identities of the compounds associated with the anthocyanin peaks shown 
here are given in Table 7. 
 
 
 
Table 7.  Identification and content of anthocyanins in the post-amberlite extract (PAE) 
and anthocyanin-enriched-fraction (ANC) of Aristotelia chilensis using HPLC and ESI-
MS at 520 nm.  
 

Peak 
 

Anthocyanin 
 

(m/z) PAE 
(%) 

ANC 
(%) 

1 
 
Delphinidin-3-sambubioside-5-glucoside 759/597/465/303 8.4 11.9 

2 
 
Delphinidin-3,5-diglucoside 627/465/303 7.5 11.0 

3 
 
Cyanidin-3-sambubioside-5-glucoside 743/581/449/287 6.1 8.7 

4 
 
Delphinidin-3-sambubioside 597/303 9.3 12.9 

5 
 
Delphinidin-3-glucoside 465/303 17.5 22.3 

6 
 
Cyanidin-3-sambubioside 581/287 0.3 0.4 

7 
 
Cyanidin-3-glucoside 449/287 9.3 12.5 

 
 
Total 

 
58.4 79.7 

 
Percentages were calculated as cyanidin-3-glucoside equivalents. Abbreviations: post- 
amberlite extract (PAE), anthocyanin-enriched-fraction (ANC).  
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Berries and commercial powder of V. floribundum contained the same anthocyanin 

profiles (Figure 14A, B). Five anthocyanins were identified in the berries of V. 

floribundum: delphinidin-3-galactoside (m/z 465), cyanidin-3-galactoside (m/z 449), 

delphinidin-3-arabinose (m/z 435), cyanidin-3-glucoside (m/z 449), and cyanidin-3-

arabinose (m/z 419). This was in agreement with previous studies. Delphinidin-3- 

arabinose (peak 2) and cyanidin-3-arabinose (peak 5) were found to be the main 

anthocyanins in this berry. 

 
 

 

 
 
 
Figure 14. HPLC chromatograms of the post-amberlite extract (PAE) of Vaccinium 
floribundum (A) and the commercial powder of Vaccinium floribundum (B). The 
identities of the compounds associated with the anthocyanin peaks shown here are given 
in Table 8. 
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The individual concentrations of anthocyanins present in the PAE and ANC of the berry 

and the commercial powder of V. floribundum are presented in Table 8. HPLC analysis 

indicated that the total anthocyanin content of this berry was 10.6 mg/g DW (C3G 

equivalent) which is comparable to the value previously reported (Vasco and others 

2009). The commercial powder of V. floribundum, although maintaining the same 

anthocyanin profile, showed a lower anthocyanin content (2.4 mg/g DW C3G 

equivalents) as compared with the freeze dried berry. This was consistent with several 

studies that indicated that processing of anthocyanin- containing foods can lead to 

anthocyanin degradation (Yue 2008). 

 
 
Table 8.  Identification and content of anthocyanins in the post-amberlite extract (PAE) 
and in the anthocyanin-enriched-fraction (ANC) of the freeze-dried (F) and the 
commercial powder (C) of Vaccinium floribundum using HPLC and ESI-MS at 520 nm.  
 

Peak 
 

Anthocyanin 
 

(m/z) PAE 
(%) 

ANC 
(%) 

   F C F C 

1  
Delphinidin-3-galactoside 

 
465/303 1.0 0.1 1.4 0.3 

2  
Cyanidin-3-galactoside 449/287 4.8 0.8 7.0 2.9 

3  
Delphinidin-3-arabinose 435/303 1.0 0.2 1.4 0.1 

4  
Cyanidin-3-glucoside 449/287 0.4 0.2 0.4 0.2 

5  
Cyanidin-3-arabinose 419/287 3.9 0.9 5.5 0.8 

 
 

% Total  11.1 2.2 15.7 4.3 
 
Percentages were calculated as cyanidin-3-glucoside equivalents. Percentages were 
calculated as cyanidin-3-glucoside equivalents. Abbreviations: post- amberlite extract 
(PAE), anthocyanin-enriched-fraction (ANC).  
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The fruit of A. chilensis showed a higher concentration as well as a more diverse 

anthocyanin profile, when compared to the fruit of V. floribundum.  

B. Proanthocyanidins 

The berry of A. chilensis contained 4.0 mg/g DW (epicatechin equivalents), while 

the freeze dried berries and commercial powder from V. floribundum had a slightly 

higher concentration of 5.2 and 4.8 mg/g DW (epicatechin equivalents), respectively. 

HPLC-MS analysis revealed a series of proanthocyanidins ranging from dimers to 

hexamers. The proportion of proanthocyanidin oligomers and polymers varied among the 

two berries and the commercial powder. To estimate the relative ratio of the 

proanthocyanidins, the HPLC-MS peaks were summed, and each peak was expressed as a 

percentage of the total sum (Yousef and others 2004). Based on this estimation, A. 

chilensis contained mainly dimers (56%) and trimers (14%). Small MS peaks of 

proanthocyanidin tetramers, pentamers, and hexamers were also detected. V. floribundum 

contained trimers (68 %) and in less proportion pentamers (16 %) and hexamers (8%). 

The commercial powder contained a larger percentage of dimers (34%) and trimers 

(23%) (Table 9). Figure 15 illustrates the UV chromatogram, at 280 nm absorption and 

the ESI/MS spectra of the PAE (A) and the PAC (B) of V. floribundum. In the PAE, 

anthocyanins are present at a higher proportion in comparison with proanthocyanidins 

oligomers and polymers (Figure 15A).  After the enrichment process (Figure 15B) the 

proportion of proanthocyanidins increases displaying a series of proanthocyanidins 

ranging from dimers to hexamers. In the UV chromatogram of the PAC (Figure 15B) a 

large hump characteristic of proanthocyanidins can be visualized.   
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Figure 15. HPLC –ESI/MS chromatogram of the post-amberlite extract (PAE) (A) and 
the proanthocyanidin-enriched-fraction (PAC) (B) of V. floribundum including UV 
chromatogram with 280 nm absorption and ESI/MS spectra. The large bold numbers 
indicate the average degree of polymerization from dimers to hexamers and ANC refers 
to anthocyanins. 
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C. Antioxidant capacity 

 The berries of A. chilensis and V. floribundum showed similar values of total 

phenolics expressed as catechin equivalents (Tables 5 and 6). However, the AC 

measured as oxygen radical scavenging capacity and expressed as Trolox equivalents, 

was higher in the berries of A. chilensis indicating that the constituents of this berry have 

more AC.  When comparing the berry and the commercial powder of V. floribundum, 

results indicate that the phenolic content and the AC of the commercial powder decreases 

and this is likely to be a consequence of processing.  Total phenolics and AC correlated 

for A. chilensis and both the V. floribundum berries and commercial powder with R2 

values of 0.90, 0.86 and 0.78, respectively. Anthocyanins were more highly correlated 

with AC than proanthocyanins.  

II. Adipogenesis and lipid metabolism  

Figure 16 shows the percent inhibition of lipid accumulation for both the single 

treatment on mature adipocytes and treatment throughout their differentiation process 

with 100 µM  (C3C or epicatechin equivalents) of the phenolic extracts (PAE, ANC and 

PAC) from the two berries and the commercial powder, and at 100 µM  of positive 

controls (EGCG and C75).  

Lipid accumulation was inhibited from 4 to 11% when adipocytes received a 

single treatment and from 6 to 38% when adipocytes were treated throughout the 

differentiation process. The highest lipid accumulation inhibition (38%) was observed 

when adipocytes were treated throughout the differentiation process with PAC from V. 

floribundum. Figure 17 shows 3T3-L1 adipocytes after treatment with PAC from V. 

floribundum in comparison to the negative control. It can be visualized that most cells 
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remain as preadipocytes (Figure 17A) as compared with the mature adipocytes seen in 

the control (Figure 17B). 

 

 

 

Figure 16. Effect of phenolic extracts (PAE, ANC and PAC) of the two berries and the 
commercial powder and positive controls (EGCG and C75) on lipid accumulation 
inhibition, when 3T3-L1 adipocytes were treated throughout the differentiation process 
and when adipocytes received a single treatment at the mature stage. 3T3-L1 adipocytes 
were treated with 100 µM of each phenolic extract (equivalent C3C or epicatechin) and 
positive controls for 48 h at 37 ºC in a humidified 5% CO2 incubator. Cells were 
harvested 10 days after initiation of differentiation and lipid quantification was performed 
by Oil Red O assay. The data represents the mean ± SD from at least two independent 
studies and a least a triplicate analysis. Different letters indicate significant difference, p 
≤ 0.05. Abbreviations:  ECGC, epigallocatechin-3-gallate; PAE, post- amberlite extract; 
ANC, anthocyanin-enriched-fraction; PAC, proanthocyanidin-enriched-fraction. 
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Figure 17. Visualization of 3T3-L1 mature adipocytes when treated with 100 µM 
equivalent epicatechin of PAC from Vaccinium floribundum throughout the 
differentiation process (A) as compared to the negative control (no PAC treatment) (B), 
and treatment with 100 µM ECGC (epigallocatechin 3-gallate ) (C) and 100 µM C75 (α-
methylene-γ-butyrolactone) (D). Images were photographed at 20X magnification. 

 

As shown in Figure 16, lipid accumulation inhibition was higher when adipocytes 

were treated continuously throughout the differentiation process. To further study the 

effect of these extracts on adipogenesis, Pref-1 expression was analyzed. The ability of a 

phenolic extract to induce or maintain the expression of Pref-1 can indicate its potential 

to inhibit adipogenesis (Wang and others 2006). The effect of the phenolic extracts on 

Pref-1 expression in 3T3-L1 preadipocytes when treated for 24 h is shown in Figure 18.  

The PAC from V. floribundum showed a significant increase (p < 0.05) in Pref-1 

expression in comparison with the control. The PAC of A. chilensis and of the 
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commercial powder also induced Pref-1 expression, although these treatments were not 

statistically different than the control (p > 0.05). 

 

 

A. chilensis V. floribundum 
 

V. floribundum commercial 
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Figure 18. Effect of phenolic extracts (PAE, ANC and PAC) of the two berries and 
commercial powder on Pref-1 expression in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes 
were treated with 100 µM of each phenolic extract (C3C or epicatechin equivalents) for 
24 h at 37 ºC in a humidified 5% CO2 incubator. Cells were harvested 24 h after 
treatment and Pref-1 expression was analyzed by Western blotting. The data represents 
the mean ± SD from at least two independent studies and a least a triplicate analysis. 
Different letters indicate significant difference, p ≤ 0.05. Abbreviations:  Post-amberlite 
extract (PAE), anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-
fraction (PAC). 
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The present study showed that the phenolic extracts of the two berries were more 

efficient in reducing lipid accumulation in vitro through the inhibition of adipogenesis 

than through regulation of lipid metabolism at the mature stage of adipocytes. It was also 

shown that PAC of V. floribundum was potent in inhibiting adipogenesis (38%), reaching 

inhibition levels close to that of EGCG (49%), a known adipogenesis inhibitor (Hwang 

and others 2005) . This observation is supported by previous studies that have shown that 

proanthocyanidin rich extracts inhibit differentiation in vitro (Pinent and others 2005b) 

and in vivo (Montagut and others 2007). In addition, the PAC of V. floribundum induced 

the expression of Pref-1 in preadipocytes indicating that this is one of the potential 

mechanisms by which it inhibits adipogenesis. This is in accordance with other studies 

which show that proanthocyanidins can induced Pref-1 expression in 3T3-L1 (Pinent and 

others 2005b).  The PAC of A. chilensis and commercial powder of V. floribundum also 

showed a modest inhibition (14 %) in adipogenesis as well as an elevation in Pref-1 

expression; nevertheless their effects were not as potent as PAC of V. floribundum. 

HPLC-MS analysis performed in this study indicated that PAC of V.  floribundum had a 

higher  degree of polymerization than  A. chilensis and the commercial powder. Several 

studies have demonstrated that higher molecular weight proanthocyanidins have a greater 

biological activity than smaller weight forms (Santos-Buelga, Scalbert 2000, Scalbert 

2000, Schmidt and others 2006). Thus, the higher degree of polymerization of 

proanthocyanidns found in V. floribundum PAC may partially explain its higher 

inhibitory effect on adipogenesis.  Nevertheless, further characterization of 

proanthocyanidins is needed to better understand the relation between the 

proanthocyanidins structure and their role in adipogenesis.  
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III. Inflammation 

 Figure 19 shows that nitrite production was significantly inhibited by four of the 

nine phenolic extracts as compared to positive control (p ≤ 0.05).  

 

 
 
 
Figure 19.  Effect of 100 µM (C3C or epicatechin equivalents) of phenolic extracts 
(PAE, ANC and PAC) of the two berries and commercial powder on nitrite production in 
LPS-stimulated RAW 264.7 macrophages. Quercetin was used as a positive control. The 
data represent the mean ± SD from at least two independent studies and at least triplicate 
analyses. Different letters indicate significant difference, p ≤ 0.05.  Bars indicate SD. 
Abbreviations:  post- amberlite extract (PAE), anthocyanin-enriched-fraction (ANC) or 
proanthocyanidin-enriched-fraction (PAC). 
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the phenolic extracts inhibited iNOS expression from 9.8-61.8% (Figure 20).  PAC from 
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role of these phenolic extracts on inflammation, the production of PGE2 and the 

expression of COX-2 were also determined on LPS stimulated RAW 264.7 macrophages. 
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Figure 20.  Effect of 100 µM (C3C or epicatechin equivalents) of phenolic extracts 
(PAE, ANC and PAC) of the two berries and commercial powder on iNOS protein 
expression by Western blot in LPS-stimulated RAW 264.7 macrophages. Quercetin was 
used as a positive control. The data represent the mean ± SD from at least two 
independent studies and at least triplicate analyses. Different letters indicate significant 
difference, p ≤ 0.05.  Bars indicate SD. Abbreviations:  Post- amberlite extract (PAE), 
anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-fraction (PAC). 
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production of PGE2 as compared to the positive control (p ≤ 0.05). ANC fraction from V. 

floribundum showed the highest inhibition (89.1%), which was comparable to that of 

quercetin. In addition, all the phenolic extracts inhibited the expression of COX-2 at 

levels that ranged from 16.6 to 62.0% (Figure 22). The PAC fraction of the commercial 

powder and the ANC fraction from V. floribundum showed the highest inhibitory effect 

(62 and 58% respectively). 

 

 

 

 
Figure 21.  Effect of 100 µM (C3C or epicatechin equivalents) of phenolic extracts 
(PAE, ANC and PAC) of the two berries and commercial powder on PGE2 production in 
LPS-stimulated RAW 264.7 macrophages. Quercetin was used as a positive control. The 
data represents the mean ± SD from at least two independent studies and at least triplicate 
analyses. Different letters indicate significant difference, p ≤ 0.05.  Bars indicate SD. 
Abbreviations:  Post-amberlite extract (PAE), anthocyanin-enriched-fraction (ANC) or 
proanthocyanidin-enriched-fraction (PAC). 
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Figure 22.  Effect of 100 µM (C3C or epicatechin equivalents) of phenolic extracts 
(PAE, ANC and PAC) of the two berries and commercial powder on COX-2 protein 
expression by Western blot in LPS-stimulated RAW 264.7 macrophages. Quercetin was 
used as a positive control. The data represents the mean ± SD from at least two 
independent studies and at least triplicate analyses. Different letters indicate significant 
difference, p ≤ 0.05.  Bars indicate SD. Abbreviations:  post-amberlite extract (PAE), 
anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-fraction (PAC). 
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The results of this study showed that the phenolic extracts from the two berries 

and the commercial powder decreased inflammation in vitro by inhibiting LPS-induced 

iNOS /NO and COX-2/PGE2 pathways in macrophages. This is in accordance with 

several other studies that have shown berries possess anti-inflammatory properties 

(Defuria and others 2009). Furthermore, anthocyanins have been shown to reduce the 

levels of inflammatory mediators in vitro (Kraft and others 2008, Wang and others 2008, 

Pergola and others 2006) and in vivo (Park and others 2007, Shan and others 2009, Tsoyi 

and others 2008) . Proanthocyanidins have also been shown to ameliorate inflammation 

by modulating cytokine expression, inhibiting pro-inflammatory enzymes, or other 

mechanisms (Terra and others 2009, Wang and others 2009, Ho and others 2007, Diouf, 

and others 2009).  
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CHAPTER 7 
SUMMARY AND INTEGRATION 

 
Interest in berries from South America has increased in recent years mainly due to 

their potential health benefits, and growing consumer interest in novel exotic fruit 

selections in the market place. The present study characterized the anthocyanins and 

proanthocyanidins of V. floribundum and A. chilensis, total phenolics and antioxidant 

capacity, and evaluated, in vitro, the ability of their phenolic extracts to reduce 

adipogenesis and lipid accumulation in 3T3-L1 adipocytes.  

In accordance with previous studies, seven main anthocyanins were identified in 

the berry of A. chilensis and five anthocyanins in the berry of V. floribundum.  The berry 

of A. chilensis showed a higher concentration as well as a more diverse anthocyanin 

profile, when compared to the fruit of V. floribundum. The commercial powder of V. 

floribundum, although maintaining the same anthocyanin profile, had a lower 

anthocyanin content as compared with the freeze dried berry. Total proanthocyanidins 

measured as epicatechin equivalents, were lower in the berry of A. chilensis when 

compared to the freeze dried berries and commercial powder from V. floribundum. 

HPLC-MS analysis revealed a series of proanthocyanidins ranging from dimers to 

hexamers in both berries and in the commercial powder. 

  The berries of A. chilensis and V. floribundum showed similar values of total 

phenolics, but the AC was higher in the berries of A. chilensis, indicating that these 

berries possess more antioxidant constituents. The commercial powder of V. floribundum 

had a lower phenolic content and AC when compared to the freeze dried berry and this is 

likely to be a consequence of processing. Total phenolics of the two berries and of the 
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commercial product showed a high correlation with AC. Anthocyanins were more highly 

correlated with AC than proanthocyanidins.  

The phenolic extracts from the berries from A. chilensis and V. floribundum, and 

the commercial powder of V. floribundum inhibited lipid accumulation, adipogenesis and 

inflammatory mediators in vitro. PAC fraction from V. floribundum markedly inhibited 

adipogenesis in 3T3-L1 adipocytes by increasing the expression of Pref-1 in 

preadipocytes. Furthermore, the phenolic extracts inhibited expression of LPS-induced 

iNOS/NO and COX-2/PGE2 pathways in RAW264.7 macrophages. The potency of these 

extracts to reduce inflammation in vitro depends on their phytochemical composition.  

The results of this study show that A. chilensis and V. floribundum  contain 

phytochemicals that limit adipogenesis and lipid accumulation in fat cells and 

inflammatory pathways in macrophages in vitro and therefore further research in vivo 

should be conducted  on these berries. 
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CHAPTER 8 
CONCLUSIONS 

 
• The total anthocyanin content in the berry of A. chilensis was 45.7 mg/g DW (C3G 

equivalents). Seven main anthocyanin structures were identified: delphinidin-3-

sambubioside-5-glucoside, delphinidin-3,5-diglucoside, cyanidin-3-sambubioside-5-

glucoside, delphinidin-3- sambubioside, delphinidin-3-glucoside, cyanidin-3-

sambubioside, cyanidin-3-glucoside. Delphinidin-3-glucoside was the main anthocyanin 

component in this berry. 

• The total anthocyanin content in the berries and in the commercial powder of V. 

floribundum was 10.6 mg/g DW and 2.4 mg/g (C3G equivalents) respectively. Five main 

anthocyanin structures were identified: delphinidin-3-galactoside, cyanidin-3-galactoside, 

delphinidin-3-arabinose, cyanidin-3-glucoside, and cyanidin-3-arabinose. Delphinidin-3- 

arabinose and cyanidin-3-arabinose were the main anthocyanins present in this berry. 

•  The berry of A. chilensis contained 4.0 mg/g DW (epicatechin equivalents), while the 

berries and commercial powder from V. floribundum had a slightly higher concentration 

of 5.2 and 4.8 mg/g DW (epicatechin equivalents), respectively. 

• A. chilensis contained mainly proanthocyanidin dimers (56%) and trimers (14%). V. 

floribundum contained trimers (68%) and in less proportion pentamers (16%) and 

hexamers (8%). The commercial powder contained mainly dimers (34%) and trimers 

(23%). 

• The berries of A. chilensis and V. floribundum showed similar values of total phenolics , 

but  the AC was higher in the berries of A. chilensis . 

• The commercial powder of V. floribundum had a lower phenolic content and AC than the 

freeze dried berry and this is likely to be a consequence of processing.   
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• Total phenolics and AC correlated for A. chilensis and both the V. floribundum berries 

and commercial powder with R2 values of 0.90, 0.86 and 0.78, respectively. 

• Anthocyanins were more correlated with AC than proanthocyanins. 

• Phenolic extracts inhibited lipid accumulation by 4.0 to 10.8% when adipocytes were 

treated at maturity and 5.9 to 37.9% when treated throughout differentiation.   

• The proanthocyanidin-enriched-fraction from V. floribundum significantly induced Pref-1 

expression in preadipocytes.  

• Phenolic extracts decreased the production of nitric oxide (3.7 - 25.5%) and prostaglandin 

E2 (9.1 - 89.1%) and the expression of inducible nitric oxide synthase (9.8 - 61.8%) and 

cycloxygenase-2 (16.6 - 62.0%) in lipopolysaccharide-stimulated RAW 264.7 

macrophages.  

• V. floribundum and A. chilensis phytochemicals modulate adipogenesis and inflammatory 

pathways in vitro, warranting further in vivo studies. 
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CHAPTER 9 
FUTURE STUDIES 

 

This study presented a detailed examination of the antioxidant capacity of V. 

floribundum and A. chilensis berry extracts, and determined the potential of their phenolic 

fractions to reduce adipogenesis, lipid accumulation and inflammation in vitro.  

Further animal studies and human trials should be performed in order to better understand 

how these berries and their phenolic compounds are absorbed and behave in the human 

body. Toxicological studies of the berry extracts are also important in order to assess 

their safety for human consumption.  Once the efficacy and safety of the extracts of these 

berries have been properly evaluated and validated, these can be incorporated in diverse 

products to increase their value or use as supplements for human diet. 

In this study a commercial powder of V. floribundum was also evaluated and compared to 

the freeze dried berry.  Further studies can look at different drying conditions for the 

elaboration of this commercial powder and suggest a process that will minimize phenolic 

degradation and that will preserve the bioactive properties of the fresh berry. Studies 

looking at other ways the berries of V. floribundum and A. chilensis can be processed 

would be valuable commercialization and increasing the value of these berries.  
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APPENDIX A 

 

 

 

 
 
Chromatographic-guided enrichment for anthocyaninis in A. chilensis (520 nm). Crude 
extract (A), post- amberlite extract (B), anthocyanin-enriched-fraction (C), anthocyanin-
enriched-fraction 2 (D). 
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APPENDIX B 

 

 

 

Chromatographic-guided enrichment for anthocyaninis in V. floribundum (520 nm). 
Crude extract (A), post- amberlite extract (B), anthocyanin-enriched-fraction 1 (C), 
anthocyanin-enriched fraction 2 (D). 
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APPENDIX C 

 

 

 

Chromatographic-guided enrichment for anthocyaninis in the V. floribundum commercial 
powder (520 nm). Crude extract (A), post- amberlite extract (B), anthocyanin-enriched-
fraction 1 (C), anthocyanin-enriched-fraction 2 (D). 
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APPENDIX D 
 

 

 
 

 
HPLC chromatogram (280 nm) of the proanthocyanidin-enriched-fraction1 (A) and 
proanthocyanidin-enriched-fraction 2 (B) of A. chilensis. 
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APPENDIX E 

 
 

 
 

 
 
 
 

HPLC chromatogram (280 nm) of the proanthocyanidin-enriched-fraction1 (A) and 
proanthocyanidin-enriched-fraction 2 (B) of V. floribundum.  
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APPENDIX F 

 
 
 
 
 

 

 
 
HPLC chromatogram (280 nm) of the proanthocyanidin-enriched-fraction1 (A) and 
proanthocyanidin-enriched-fraction 2 (B) of Vaccinium floribundum commercial powder. 
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APPENDIX G 

 
 

 
LC-MS ion spectrum showing the molecular ion [m+] (m/z) of the major  anthocyanins in 
the berry of A. chilensis: delphinidin-3-sambubioside-5-glucoside (m/z: 759), 
delphinidin-3,5-diglucoside (m/z: 627), cyanidin-3-sambubioside-5-glucoside (m/z: 743), 
delphinidin-3-sambubioside (m/z: 597), delphinidin-3-glucoside (m/z: 465), cyanidin-3-
sambubioside (m/z: 581),  cyanidin-3-glucoside (m/z: 449). 
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APPENDIX H 

 
 

 
 

 
 
LC-MS ion spectrum showing the molecular ion [m+] (m/z) of the major  anthocyanins in 
the berry of V. floribundum (A) and in the commercial powder (B): Delphinidin-3-
galactoside (m/z: 465), cyanidin-3-galactoside (m/z: 449), delphinidin-3-arabinose (m/z: 
435), cyanidin-3-glucoside (m/z: 449), cyanidin-3-arabinose (m/z: 419). 
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APPENDIX I 

 

 
 

 

 
 

LC-MS ion spectrum showing the the molecular ion [m+] (m/z) of the major 
proanthocyanidins oligomers and polymers in the berry of Aristotelia chilensis (A) 
Vaccinium floribundum (B) and the commercial powder of Vaccinium floribundum (C) 
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APPENDIX J 

 

 
 

 
 
 
Inhibition of cell viability (%) by phenolic extracts (PAE, ANC and PAC) of the two 
berries and the commercial powder and positive controls (EGCG and C75) when 3T3-L1 
adipocytes were treated throughout the differentiation process (A) and when adipocytes 
received a single treatment at mature stage (B). 3T3-L1 adipocytes were treated with 100 
µM of each phenolic extract (equivalent C3C or epicatechin) and positive controls. The 
data represents the mean ± SD from at least two independent studies and a least a 
triplicate analysis. Abbreviations:  ECGC (epigallocatechin-3-gallate), post- amberlite 
extract (PAE), anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-
fraction (PAC).  
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APPENDIX K 

 
 

 
 
Inhibition of cell viability (%) by phenolic extracts (PAE, ANC and PAC) of the two 
berries and the commercial powder when 3T3L1 preadipocytes were treated with 100 µM 
of each phenolic extract (C3C or epicatechin equivalents) and control for 24 h at 37 ºC in 
a humidified 5% CO2 incubator. The data represents the mean ± SD from at least two 
independent studies and a least a triplicate analysis. Abbreviations:  post- amberlite 
extract (PAE), anthocyanin-enriched-fraction (ANC) or proanthocyanidin-enriched-
fraction (PAC).  
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APPENDIX L 

 
 
 
 

 
Inhibition of cell viability (%) by phenolic extracts (PAE, ANC and PAC) of the two 
berries and the commercial powder and positive control (quercetin) when RAW 264. 
macrophages were treated with 100 µM of each phenolic extract (C3C or epicatechin 
equivalents) and control for 24 h at 37 ºC in a humidified 5% CO2 incubator. The data 
represents the mean ± SD from at least two independent studies and a least a triplicate 
analysis. Abbreviations:  post- amberlite extract (PAE), anthocyanin-enriched-fraction 
(ANC) or proanthocyanidin-enriched-fraction (PAC).  
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APPENDIX  M 

 
 
 

 
Standard curve used to measure nitric oxide production in RAW 264.7 macrophages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y = 0.1567x + 0.1044
R² = 0.99

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30

A
bs

 5
50

 n
m

Nitrite, µg/mL



 

85 
 

 
CURRICULUM VITAE 

 
Maria Elisa Schreckinger 

 
EDUCATION 
 

• University of Illinois at Urbana-Champaign; GPA: 3.70/4.0 
Masters of Science in the Division of Nutritional Sciences, Expected Graduation 
May 2010 

• Universidad San Francisco de Quito, Quito,  Ecuador; GPA: 3.81/4.0 
Bachelor of Science in Biotechnology, May 2008 

• Virginia Tech, Blacksburg, VA; GPA: 3.43/ 4.0 
Exchange program, 2005-2006 
 
 

TECHNICAL SKILLS 
 

• HPLC/HPLC-MS 
• Total polyphenol content 
• Antioxidant capacity 
• SDS-PAGE electrophoresis 
• Western blot analysis 

 

• Cell culture 
- 3T3L1 adipocytes 
- RAW 264.7 macrophages 

• Excel, Word, Power Point, SAS 
 

 
PUBLICATIONS 
 
• Schreckinger, ME; Lotton J; Lila, MA; Gonzalez de Mejia, E. Berries from South 

America: A comprehensive review on chemistry, health potential and 
commercialization. J. Med. Food 2010, 13, 1–14. 

 
• Schreckinger, ME; Wang J; Yousef G; Lila, MA; Gonzalez de Mejia, E.  Antioxidant 

capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts 
of Vaccinium floribundum and Aristotelia chilensis (submitted to the Journal of 
Agriculture and Food Chemistry). 

 
 

WORK EXPERIENCE 
 
Research Assistant University of Illinois, Division of Nutritional Sciences (August 2008-
Present) 

• Conducting research on the chemistry and the metabolic enhancing properties of 
berries from South America. 
 

Lab Assistant at Universidad San Francisco de Quito, Laboratory of Microbiology and 
Molecular Biology.  (June- September 2007).              



 

86 
 

• Assist in the identification of pathogenic Escherichia coli strains in an 
epidemiological study preformed in a northern region of Ecuador.       
                       

Lab Technician at Virginia Polytechnic Institute and State University, Plant Pathology, 
Physiology and Weed Science Department. (June – August 2006)                               

•  Assist in current research about the evolution of the plant pathogen Pseudomona 
syringae. 
 

Hospital Carlos Andrade Marin, Department of Microbiology. Quito, Ecuador, June – 
July 2005 

• Learn to utilize different techniques and equipment to make microbiological 
analysis of urine, blood and tissue samples.  

 
 
SELECTED AWARDS AND ACTIVITIES 
 

 
• Global Institute for BioExploration Scholarship awarded in 2008 to 2010. 
• Scholarship for students of Science at Universidad San Francisco de Quito, 

awarded in 2003 to 2008. 
• Dean’s List and President’s List for five semesters at Universidad San 

Francisco, Quito, Ecuador. 
• Scholarship at Virginia Tech, Fall 2005- Spring 2006, granted through the VT-

Ecuador Student Exchange Program. 
• Secretary of the Ecuadorian Association at University of Illinois at Urbana-

Champaign 
 
RELATED COURSE WORK 
 

• Biochemical Nutrition  
• Bioactive Components in Food 
• Plant Secondary Metabolism 
• Advanced Food Microbiology 
• Principles of Nutrition 

• Applied Statistical Methods I 
• Food Safety: Biotechnology and GMOs 
• Epigenetic Aspects of Human Diseases 
• Plant Biochemistry 

 
FOREIGN LANGUAGE SKILLS  
 

• Native Spanish, fluent English, intermediate Italian, basic French. 
 

 


	MARIA ELISA SCHRECKINGER
	THESIS
	Submitted in partial fulfillment of the requirements
	Urbana, Illinois
	CHAPTER 5:  MATERIALS AND METHODS..…………………….…………….. 21
	I. Materials……………………………………………………………….…………. 21
	CHAPTER 6:   RESULTS AND DISCUSSION….…...………………………..…… 35


