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Abstract

Data races are a common type of concurrency bug in parallel programs. An important type of race that

has not received much attention is Asymmetric data races. In these races, the state of well tested, correct

threads is corrupted by racing threads from external, typically third-party code. Current schemes to detect

and tolerate these races are software based, and have substantial execution overhead.

This thesis proposes the first scheme to detect and tolerate asymmetric data races in hardware. The

approach, called Pacman, induces negligible execution overhead and requires minimal hardware modifica-

tions. In addition, compared to past software-based schemes, Pacman eliminates deadlock cases. Pacman is

based on using hardware address signatures to detect the asymmetric races. Processor, cache coherence, and

protocol messages remain unchanged. We evaluate Pacman for all the SPLASH2 and PARSEC applications.

Our results show that Pacman is effective and has minimal overhead.
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Chapter 1

Introduction

With the development of multicore technology, parallel programming becomes more and more important.

While at the same time, concurrency bugs are likely to take on a higher profile and become an even costlier

problem. Consequently, it is crucial to continue developing more effective techniques to detect and fix the

concurrency bugs.

A key type of concurrency bug is the data race. A data race occurs when two or more threads access the

same variable without any intervening synchronization and at least one of the accesses is a write.

Since debugging data races is notoriously hard, there are a lot of works focusing on detecting the data

race(e.g., [10, 5, 7, 9, 12, 13, 14, 15, 18, 19, 22, 24, 25, 27, 30, 31, 17, 11, 6]). However, not all data races

would become bugs in the program, people may want to use data race to improve the performance of the

program.

T1                             T2 

              b=a;                   while (flag!=true); 

                                                              flag=true;                        a=2; 

Figure 1.1: Example for benign race

In the situation of Figure 1.1, even though a race occurs, it does not harm the correctness. Narayanasamy

et al [12] showed that in Windows Vista and Internet Explorer, benign races happen rather common. With

this fact, we only focus on data race which has high probability to harm the program, asymmetric race. We

will give a detail definition in Chapter 2. Figure 1.2 shows an example of asymmetric data race, where T1

protects the shared point in its critical section, and T2 modifies the shared point variable without protecting

it. When this situation happens, the program may lead to unexpected results.

Basically, we have two threads that access for the same shared variable from each: one thread is running

in the critical section while the other one is not. Here, we define safe thread as a thread that accesses to

shared variables with appropriate synchronization, and an unsafe thread as a thread that accesses to shared

variables without lock protection or acquiring a wrong lock. Program developer can define which thread is
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lock( mutex );

    shared_point−>var1 = X1;

shared_point = NULL;

if( shared_point != NULL ){

    shared_point−>var2 = X2;

    shared_point−>var3 = X3;

}

unlock( mutex );

T1 T2

Figure 1.2: Example of Asymmetric Data Race

safe and we will ensure the correctness of each critical section in safe thread. For the following discussion

and experiments, we assume all the threads having critical section are safe threads which means we try to

protect all the critical sections of the program.Note that we could only say one thread is a safe thread when

it is executing a critical section.

Usually, asymmetric race will harm the correctness of the program since programmer put the shared

variable inside one critical section. Besides, Microsoft also reports asymmetric races are common in software

development projects [21]. They listed two reasons: First, usually a programmer’s local reasoning about

concurrency is correct. Errors due to taking wrong locks or no lock lie outside of the programmer’s code, for

example, in third party libraries. The second reason has to do with legacy code. For instance, a library may

have been written assuming a single-threaded environment but later the requirement change to multithread

programs. This requires all clients acquire locks before entry and release them on exit which could introduce

races when some clients fail to put lock correctly.

Since asymmetric race is important and may harm the program, the goal of Pacman is not only detecting

asymmetric race but also tolerating asymmetric race. In this scenario, Pacman ensures the correctness of

the critical sections. Here, correctness means the value of shared variable inside the critical section should

not be changed between the first access inside the critical section and the end of the critical section as shown

in Figure 1.3

There are several previous approaches working on tolerating asymmetric races [21, 20]. However, Pac-

man is the first hardware approach to detect and tolerate asymmetric data races. Pacman overcomes the

limitations of software implements such as deadlock, locking granularity, etc. Besides, with signature based

hardware, Pacman can achieve very low overhead without changing processor, adding additional bits to

cache, etc.

This thesis is organized as follows: Chapter 2 gives a background; Chapter 3 and 4 describe the Pac-
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                  T1                                          T2 

                                                         Lock L1           

                                                               =a 

                                                               …                                            a= 

                                                                                                                                                  

                                                         Unlock L1 

Figure 1.3: The goal of Pacman

man architecture and implementation; Chapter 5 evaluates Pacman; Chapter 6 discusses related work; and

Chapter 7 concludes.
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Chapter 2

Background

2.1 What is an Asymmetric Data Race?

Data races occur when two or more threads access to a shared variable without synchronization and at least

one of them is a write. However, some concurrent applications intentionally insert symmetric data races into

lock-free codes to get better performance as shown in Figure 1.1. In this thesis we focus on a harmful data

race that may cause an incorrect behaviour in lock based programs: the asymetric data race.

An asymmetric data race happens in lock-based programs when the atomicity of a critical section in a

safe thread is broken by an access to a shared variable from an unsafe thread. Figure 1.2 shows an example

of asymmetric data race.

To characterize the situations where asymmetric data races may happen, we focus on the interleaving

of accesses to a shared variable between a safe thread and an unsafe thread when the safe thread is in its

critical section. We denote Rs and Ws as the reads and writes to the shared variable in a safe thread in its

critical section, Xs as at least a read or write to the shared variable in a safe thread in its critical section

and Ru and Wu as the reads and writes to the variable in an unsafe thread without synchronization.

The Xs-Wu-Xs interleaving produces an incorrect behavior in the safe thread. In this interleaving, an

unsafe thread writes the shared variable between two accesses of the safe thread. This type of violations

is dangerous, since the atomicity of the critical section is violated from the perspective of the safe thread.

Note that if the unsafe thread writes the variable before the safe thread accesses for the first time to the

variable (Wu-Xs) or after the last access (Xs-Wu), it is like the access was produced before or after the

critical section, and the atomicity is not broken. Also, there is one exception in the interleaving Xs-Wu-Xs

that not produce a race, the Ws-Wu-Ws interleaving.

There is other interleaving that produces a race, but it only affects to unsafe threads. In the Ws-Ru-Ws

interleaving the safe thread executes correctly, but the unsafe thread reads an intermediate value of the

shared variable that breaks the isolation of the critical section.

Also, there are some situations where the interleaving between safe and unsafe threads do not produce a
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race, such as Xs-Ru-Xs, with the exception of Ws-Ru-Ws interleaving of the previous paragraph.

In this paper we focus on preserving atomicity from the point of view of safe threads because the

programmer reasons locally, and when establish the boundaries of the critical section, he hopes that the

atomicity is preserved in his well synchronized code. We do not concern about the correctness of the unsafe

threads because we only pretend to maintain the atomicity and correctness in critical sections.

Overall, to maintain the atomicity of the critical sections from the point of view of the safe threads, the

key is taking care that unsafe threads do not write to shared variables while any safe thread is accessing to

the same shared variable in its critical section.

The non-deterministic nature of the interleaving between accesses of different cores in a chip multipro-

cessor makes difficult to detect and debug asymmetric data races, and because of this is, a tolerant system

could be very useful. Two proposals tolerate asymmetric races by replicating the data in a local copy with

a software approach, Tolerace [21] and ISOLATOR [20]. They replicate shared data into local variables to

isolate critical sections and prevent that its behavior is incorrect. The two mechanism detect and tolerate

these races on the fly, due to a static analysis does not work with dynamic memory. These two approaches

are essentially software approaches that introduce overheads due to replication and resolving races. In this

work we approach the first hardware solution with low overhead to detect and tolerate asymmetric data

races.

2.2 Hardware Signatures

Signatures are a low cost hardware solution to keep an unbounded number of addresses in a fixed space.

The basic operations supported by a signature are to insert a new address, test for membership and clear.

Signatures are composed by a long register that keeps a resume of addresses that are hash-encoding and

accumulating with a Bloom filter [3]. Due to aliasing, a conflict can be detected in the test operation when

no actual conflict exist (false positive), but no conflicts are missed. Signatures have been used in several

multiprocessor designs to detect data dependences in thread-level speculation [4], transacional memory [29],

race detection [10], code analysis [26] and others.

The first signature design [3] in Figure 2.1 is composed by a long register and several hash functions. A

hash function gets an address as input, and returns a value in the [0,m-1 ] interval, where m is the size of

the register. In an insert operation, each hash function sets one bit in the register. To test if an address

conflicts with the signature, if the positions in the array getting by the hash functions are all 1, means that

the address is in the signature. To clear the signature the register is reset.
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Figure 2.1: True Bloom Filter.
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Figure 2.2: Parallel Bloom filter.

A more recent implementation of signatures that improve the bloom signature is the parallel bloom

filters [23] in the Figure 2.2. The idea is similar, with the difference that each hash function operates in

different ranges of the array, which permit separate the register in k single-port SRAMs instead of one multi-

port SRAM. Then, this signature is composed by k Bloom Filters, each with a hash function. The insert

operation hashes the address and inserts a bit in all k-filters. One address is represented in the signature if

all bloom filters say it. The advantage of parallel signatures is that hash functions are more simple, and we

can use simple-port SRAMS, and we can take up less space in die chip with similar performance.

In this paper we use hardware signatures with parallel bloom filter to detect and tolerate asymmetric

data races.
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Chapter 3

Tolerating Asymmetric Data Races

3.1 Overview of the Idea

All previous works on tolerating data races are based on software systems [21, 20]. Hardware approaches

mainly focus on detecting the data races [10, 5, 14]. This makes Pacman the first hardware approach to not

only detect but also tolerate the asymmetric data races.

The idea is to use hardware address signatures to automatically record the set of addresses accessed by

the processor in a critical section. These signatures reside in a special hardware module called SigTable. We

envision SigTable to be connected to the on-chip network. By using the cache coherence messages, SigTable

updates the signatures, compares the signatures with the read/write operations from the other processors

and occasionally sends NACK messages to stall some processor.

Pacman addresses several shortcomings of the existing data race tolerance schemes. First, from theoretical

aspect, Pacman will not generate any new deadlocks or inconstancy behaviors that are not allowed by the

original programs. Second, since we use hardware to check dynamic address on the fly, Pacman will have

more accurate results than static alias analysis. Besides, Pacman does not rely on hardware and OS support

for memory protection. Therefore, if the program uses fine-grained locks, Pacman would not cause any

memory fragmentation. In fact, there is no need for compiler transformation or source code modification.

Unlike existing hardware data race detection schemes, Pacman has several advantages. First, Pacman

does not need additional hardware to support rollback and re-execution. Second, although it is a signature

based system, we have not found any false positive problem during our experiments. The first reason is that

Pacman only records the read/write addresses inside the critical section and usually the size of the critical

section is small. In addition, Pacman does not suffer from false-positive races due to false sharing. This

is because Pacman encodes word addresses in signatures. Accesses to different words of the same line do

not create collision. Finally, there is no need to modify the cache protocol or cache structure to support

Pacman. We only need one simple cache modification to report the displacement events for the clean data

on the network. The necessity of the modification is discussed in Chapter 3.4.
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In the following, we are going to describe Pacman’s operations in details under three stages: basic Pacman

protocol, deadlock issues, and cache displacement. The actual implementation of Pacman is in Chapter 4.

3.2 Pacman Protocol

As shown in Figure 3.1, the key component of Pacman is a SigTable which is connected to the on-chip

network. First, we introduce the Pacman protocol to detect asymmetric races, and then we explain an

advanced protocol to face up more complicated situations. 

P1 P2 P3 P4 

 

Memory 

SigTable 

Figure 3.1: Overview architecture of Pacman

3.2.1 Basic Pacman Protocol

To detect asymmetric data races, the basic Pacman protocol needs a SigTable with several entries, each one

of which is comprised of a tid and a signature.

• tid records the id of the thread that allocates the entry (we assume only one thread is running on one

processor/core, tid is the same as processor/core id)

• signature records all read/write addresses inside critical section.

These two elements are enough to define the basic protocol, when a request arrives to SigTable:

1. For a lock acquire: Allocate a SigTable entry and set tid to the corresponding id.

2. For the read/write access inside the critical section: Insert the address in the corresponding signature

3. For a write access outside the critical section: If this access is conflicted with any signature in SigTable,

it would be stalled by a NACK message sent by SigTable.

8



4. For a lock release: Deallocate the corresponding entry in SigTable.

When a program uses nested locks, Pacman manages it by flattening, which means that the signature

will accumulate all the addresses inside the outmost lock and does not allocate a new entry to inner locks.

To support this feature, Pacman needs a new element for each entry in SigTable - counter.

• counter records the current nested lock level.

With this element, the protocol is slightly modified in the release/acquire operations:

1. For a lock acquire: if there is no entry in SigTable for this thread, create a new entry in SigTable (the

same as the previous protocol) and set the counter to 1. If Pacman has already created the entry for

that thread, increases one to the counter.

4. For a lock release: decrement the counter in the corresponding entry, and if the counter is zero,

deallocate the entry.

With this simple protocol, Pacman detects most of the situations of asymmetric races in programs.

3.2.2 Advanced Pacman Protocol

In previous software approaches [21, 20], deadlock may happen in some corner cases. To handle these

deadlock situations, we define the advanced Pacman protocol.

In the advanced protocol, Pacman sometimes needs stall not only the threads outside the critical section,

but also the threads inside the critical section, because data conflict between two concurrent critical sections.

To manage this, Pacman needs to introduce a new element in the SigTable: the stall tid.

• The stall tid records the thread id which causes the current thread stalling, and it is set to -1 if the

thread is not stalling.

Now, we need to extend the basic Pacman protocol to advanced Pacman protocol as following:

1’. For a lock acquire: If T0 tries to acquire a lock L, compare the mutex variable address of L with all

signatures in SigTable. If there is no collision, then T0 keeps running. If L conflicts with thread T1’s

signature and SigTable shows that thread T1 is not stalled by any other threads, keep T1 running. If

thread T1 is stalled by thread T2, delete thread T2’s entry in SigTable, send a message to the correct

processor so that thread T1 can keep running on it. After L is grabbed, put L to T0 thread’s signature

in SigTable and increment the corresponding counter. If this thread’s entry is not in SigTable, create

a new entry in SigTable.
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2’. For the read/write access inside the critical section: If a thread T0 inside a critical section accesses to

non-mutex address A, compare A with any signature in SigTable, if there is no collision, put A into

T0’s signature. If A conflicts with thread T1’s signature, detect whether there exists a cycle among

the stalled threads. If we detect a cycle in SigTable and T1 is part of that cycle, delete the signature

of T1 so that the deadlock does not happen. If there is no cycle, T0 would be stalled and we will put

T1 to T0’s stall tid.

3’. For a write access outside the critical section: If this access conflicts with any signature in SigTable,

SigTable will send a NACK message to the processor to stall.

4’. For a lock release: Decrement the counter in the corresponding entry, and if the counter is zero,

deallocate the entry.

As we can see, there are four rules to describe the protocol. Rules 3’ and 4’ are quite simple while rules

1’ and 2’ are a bit more complicated. We will discuss rules 1’ and 2’ in the following sections.

3.3 Deadlock Issues

As we described before, Pacman uses cache protocol to send NACK messages to instruct a processor to

stall. Thus, Pacman adds extra stalling requests due to the collision with signature which could generate

new dead lock situation. In this section, we describe two such cases to better understand the protocol.

3.3.1 Nested Lock

                    T1                                                T2                                      

                Lock L1                                         Lock L2                     

                  g2= 

                  g1=                                                … 

                   …                                                  g1= 

                   Lock L2                                       Unlock L2                                  

                   Unlock L2 

               Unlock L1                                                     

                                               

 Figure 3.2: Nested lock example

The first example is about nested lock shown in Figure 3.2. In this example, at the first time, T1 grabs

the lock L1 while T2 grabs the lock L2. After that, T1 issues write accesses to g2&g1 and put g2&g1’s

10



addresses to its signature. When T2 tries to access g1, since it is conflicted with T1’s signature, T2 should

receive a NACK message. This behavior could generate a deadlock when T1 tries to grab lock L2 later.

The problem is that T1 is stalled by T2 because T1 can not grab lock L2 and T2 is stalled by T1 due to

signature confliction.

The simplest solution to avoid this deadlock is to delete one entry from SigTable when a conflict is

detected between two critical sections. For example, in this case, when T2 detects the collision with T1,

T1’s entry will be deleted from SigTable to avoid the deadlock. But this solution has a disadvantage.

Consider the following case in Figure 3.3:

                    T1                                                T2                                      T3 

                Lock (L1)                                   Lock (L2)                     

                  g2= 

                  g1=                                                … 

                   …                                                  g1= 

                   …                                                  …                                       g2= 

                   =g2 

               Unlock (L1)                                Unlock (L2)                     

                                               
Figure 3.3: An example illustrating disadvantage of simple solution

Since T1’s signature is deleted when T2 detects the conflict, even if there is no deadlock, the critical

section of T1 looses the opportunity of protection.

A better solution for this example is to delete T1’s entry when T1 tries to grab the lock L2 which is

owned by T2. Compared to the simplest solution, the deletion of T1’s entry is delayed. In general, the

deadlock happens in the following way: there exists three threads Ti, Tj, Tk (Ti and Tk could be the same

thread). Ti wants grab a lock which is owned by Tj and Tj is stalled by Tk. Basically, since Tj holds the

lock, this solution wants to keep Tj running to avoid the deadlock. The solution is to delete Tk’s entry from

the SigTable so that Tj can keep running. This solution is used as rule1’ in our protocol.

Plain variables in multiple critical sections

The second deadlock case could happen in multiple critical sections as shown in Figure 3.4.

In this example, T1 first puts g1’s address in its signature while T2 puts g2’s address in its signature.

T2 will be stalled by T1 because g1 conflicts with T1’s signature and T1 would be stalled by T2 due to g2.

This case is easier to solve than the previous deadlock case as in Chapter 3.3.1. The reason is that for

nested locks, T2 must keep running since T2 has the lock which T1 wants. However, in this example, the
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T1                             T2 

Lock L1                   Lock L2 

g1=                         … 

…                           g2= 

…                           g1= 

g2=                          … 

Unlock L1              Unlock L2 

Figure 3.4: another example for deadlock

solution could delete either T1’s or T2’s entry to avoid deadlock.

As discussed in Chapter 3.3.1, the simplest solution (delete one signature in case of conflict ) can also

be applied to solve the deadlock problem while the chance to protect more critical sections is lost. A better

solution is to try to detect the potential stalling cycle in SigTable. The example of Figure 3.4 shows that T1

is stalled by T2 and T2 is stalled by T1. If there is a cycle in SigTable, according to rule 2’, we can delete

one entry in SigTable.

3.3.2 Optimizations for the Protocol

A solution of the problems in Chapter 3.3.1 and Chapter 3.3.1 is to delay the time to delete the entry from

SigTable. However, this solution cannot protect the critical section anymore after the deletion of the entry.

                       T1                             T2                    T3 

Lock L1                   Lock L2 

g1=                        g3= 

…                           g2= 

…                           g1= 

g2=                          … 

                           …                             …                     g3=   

    …                            =g3                           

Unlock L1              Unlock L2 

  

Figure 3.5: Disadvantage of the protocol
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In the Figure 3.5, according to the advanced protocol, T2 is stalled by T1 because of g1’s confliction.

When T1 issues write access to g2, Pacman detects the stalling cycle between T1 and T2 and then deletes

the entry of T2 in SigTable. When T3 wants to write g3, it should be an asymmetric race with T2 but since

T2’s signature has been deleted in the table, Pacman can not detect this data race.

To address this problem, instead of deleting the entry in SigTable, we keep it in SigTable. However, in

order to avoid deadlock, Pacman does not stall the processor if detects the conflict with signature and there

exists a stalling cycle. With this new approach, for Figure 3.5, when T1 issues the write operation to g2, it

detects the conflict with T2’s signature and the stalling cycle between T1 and T2. Now, Pacman does not

delete the entry of T2, keeps T2’s entry in SigTable but allows T1 writes to g2 for just once. After that,

since T2’s signature is in SigTable, when T3 issues write to g3, it would receive a NACK message.

The same idea can be applied to Chapter 3.3.1. In Figure 3.2, rather than remove T1’s entry we allow

T2’s access of g1 and keep T1’s entry in SigTable.

Since all the dead lock examples in Chapter 3.3 are buggy code with data race, we believe in real

applications, it happens very infrequently. Depending on the performance or reliability, we can choose the

advance protocol or optimization approach to tolerate asymmetric races.

3.4 Cache Displacement

To minimize the hardware modification to support Pacman, SigTable simply attaches to the on-chip network

without modification of processor, cache coherent protocol, etc.

But in respect that Pacman can only monitor the events on the network, some read/write operations

which are not be reported on the network may affect Pacman’s correctness. Usually there are two kinds of

read/write which cannot be detected in the network: write to a dirty data in the owner cache and read of

a clean data from the owner cache. We would like to discuss the following four cases where Pacman cannot

monitor the events.

1. A processor P1 writes to a dirty variable in its own cache outside the critical section. Since P1 will

not put this write access to the bus, Pacman cannot capture this event to compare with the entries in

SigTable. Fortunately, Pacman does not need to handle this case since only P1 owns this variable and

the bus access does not conflict with any other signature.

2. P1 reads a clean variable in its own cache outside the critical section. Pacman only stalls the write

accesses from unsafe thread, so that it allows any read accesses.
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3. P1 writes to a dirty variable in its own cache inside the critical section. In this case, the signature

must record the address of the variable, however the cache does not give the address to the bus at the

moment. Instead, Pacman can insert this address into the signature later when other thread wants to

access this dirty variable. For example, when P2 tries to write the dirty address in P1, Pacman can

detect P2’s write request first, and then P1 needs to write back the dirty data to the memory. Now,

Pacman is able to detect this write back event through bus, put this address into the signature and

send NACK to P2. If during P1’s critical section, no other threads require this dirty variable, Pacman

will still behave correctly without this address in the signature.

4. P1 reads a clean variable in its own cache inside the critical section. Basically, Pacman cannot detect

this behavior by the bus. But when other thread requests this variable, if this variable is still in

the cache, Pacman is able to put this address to the signature and send NACK to requester. The

only problem is that this clean variable has been displaced inside the critical section and other thread

requests this data. As shown in Figure 3.6, at the beginning, P1 reads clean data A1 so that we cannot

detect this behavior by bus. After that, P1 reads A2 which need replace A1 in the cache. Now, since

A1 is neither in the P1’s cache nor in P1’s signature, P2 can write to A1. To address this problem,

we would require cache to report clean data displacement to the bus, so that we can put these ”clean”

addresses to the signature during the critical section. Obviously, not all these ”clean” addresses are

read during the critical section, we could have the false positive problem. But our experiment results

show that cache displacement happens very rare inside the critical section, so this should not be a big

issue.

P1                             P2 

                Lock L1 

= A1 (A1 is clean in the cache) 

… 

= A2(replace A1 in the cache) 

…                              A1= 

… 

Unlock L1 

Figure 3.6: Example of cache displacement
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Chapter 4

Implementation Issues

Pacman implementation requires a new hardware module connected to the memory bus and two new in-

structions. However, Pacman does not modify cache tags or data arrays in the cache hierarchy and does not

need to change the software nor libraries.

4.1 Pacman Module in Bus

The Pacman module is a simple hardware module placed in the bus that snoops the cache coherence messages.

As shown in Figure 4.1, Pacman module comprises a signature table and a controller.

In our current implementation, Pacman works with one thread per core on a 4 core chip-multiprocessor,

and we use 2 bits tid, 1kbits signature, 2bits stall tid and 10 bits counter. Note that the counter may

overflow if the critical section has a lot of nested locks. To solve this problem, when the counter reachs its

maximun value, the following acquire requests do not increment the counter. This situations may induce

that the thread entry was deallocated before the critical section finishes, and not the whole critical section

is protected from asymmetric races. Usually there is hardly deep nested locks in real applications, and this

situation is very rare. In our current implement, we use 10 bits to support a maximun of 1024 levels of

nested lock.

The Pacman controller manages all the incoming coherence messages on the bus and takes the appropriate

decisions. When a incoming request arrives to Pacman module, the controller tests for conflicts in the

signatures of the table entry which tid is different from the request’s tid, and if a conflict exists, the Pacman

controller resolves the race in the conflict resolution module (deleting the signature or sending a NACK to

the conflicting core, see Chapter 3.1). Also, if the tid of the incoming message exists in the SigTable, the

Pacman module inserts the address in the corresponding signature. As well, the controller uses the signature

functional unit to perform basic operations in signatures (test, insert and clear operations).

15



Conflict

Resolution

Pacman Controller

Unit

Signature Functional

Pacman Module
NACK

Bus

. . .

. . .

SigTable

P1 P2 Pn

signaturetid counterstall_tid

Figure 4.1: Pacman Module

4.2 New Instructions

Pacman adds two new instructions to the system to enable and disable the Pacman module (Table 4.1) at

runtime.

Pacman Instruction Description

pacman on Enables Pacman module
pacman off Disables Pacman module

Table 4.1: Instructions to manage Pacman module.

When any thread executes pacman on, the cache controller send a message to Pacman module, and from

that moment the Pacman module begin to collect addresses in critical sections from that core, and detect

asymmetric races from other accesses. When pacman off is executed in a thread, the cache controller sends

a message to Pacman module, and from that moment, the Pacman module will not tolerate asymmetric

races in that thread.

These two instructions are used in our approach to exclude serial regions of programs and shared libraries

to be recollected by the Pacman module. They can reduce the overheads and signature pollution when

Pacman is not necesary.

4.3 Other Issues

Current systems usually support two common issues that we do not mention until now: multithreading and

OS thread migration. Multithreading is when a core supports multiple threads at the same time, and thread
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migration is when the OS migrates one thread from one core to another.

The previous discussion of Pacman assumes in single thread core without virtualization support. In this

section, we would discuss how Pacman supports these two issues in a simple way.

4.3.1 Thread Migration Support

Although thread migration is uncommon when a thread is inside a critical section, Pacman is able to handle

this situation.

The simplest solution to support thread migration in Pacman is to delete the entry of the migrated

thread in the signature table and, from that moment, Pacman does not tolerate asymmetric races inside

that critical section. However, we want that migrated threads keep safe. We propose that, when the thread

is preempted, the OS marks that thread in the SigTable as preempted, and it flashes the cache to insert

dirty lines in the signature. Note that, even when the thread is preempted, Pacman continues protecting

it from asymmetric races because the signature is not deleted. When the thread is running again, the OS

changes the old tid for the new tid, and Pacman continues running as usual. To support this feature, a new

software interface is necessary in the OS to access the Pacman module.

4.3.2 Multithreading Support

Since our approach is based on snoop cache coherence requests, Pacman can not distinguish two requests

from different threads in the same core. Pacman protects all threads in a multithreaded core under the same

signature. This means that if two threads in their critical section are executed concurrently in the same core,

Pacman uses the same signature for both, and it increments the counter for each acquire and decrements it

for each release (in a similar way as nested lock, see Chapter 3.2). To support asymmetric race tolerance

in this context, safe threads and unsafe threads should be scheduled in different multithreaded cores, to

minimize the probability of asymmetric races among threads in the same core. This need extra OS support

to schedule them in different cores.
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Chapter 5

Evaluation

5.1 Experimental Setup

To evaluate the potential and performance of Pacman, we model Pacman by using Pin [8], a software

framework for dynamic binary instrumentation, and run it on a real 4-processor shared-memory machine.

The Pacman model behaves as connected to a coherence bus to observe the memory access information.

The default bit width of each signature is 1,024 bits and the default size of SigTable is 8 entries. Pacman

simulator by Pin detects a pair of pthread mutex lock and pthread mutex unlock as a critical section and

records the addresses of read or write accesses inside the critical section into a signature. To evaluate the

overhead of the additional bus traffic due to clean cache-line displacements, we also model a 32-Kbyte L1

caches and their coherence bus with an MESI cache coherence protocol [16] for 4-core chip multiprocessor.

When a snoop request from another processor displaces a cache line in the clean status, Pacman simulator

records the displaced cache line address into a signature. In addition, Pacman simulator dynamically counts

the number of simultaneous threads that start at pthread create and end at pthread join to simulate new

Pacman instructions, pacman on and pacman off. If the number of simultaneous threads is one, Pacman

simulator does not enable SigTable because Pacman only targets the critical sections in parallel region.

Pacman simulator also ignores the critical sections in shared libraries.

Table 5.1 shows the default parameters used in Pacman simulator.

SigTable entries 4 L1 cache size 32 Kbytes
Signature size 1024 bits L1 cache line size 64 bytes
tid 2 bits L1 associativity 4
stall tid 2 bits Coh. Protcol MESI
counter 10 bits

Table 5.1: Default parameters in evaluation

We evaluate Pacman with all applications in SPLASH-2 [28] and PARSEC [2] benchmarks. To run

SPLASH-2 as multi-threads applications, we use the modified SPLASH-2 [1] that implements the MACROS

in SPLASH-2 with the pthreads library and defines a critical section as a pair of pthread mutex lock and
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pthread mutex unlock. We use all fourteen benchmarks in SPLASH-2 and their default inputs.

On PARSEC benchmarks, we use pthreads configuration to run them as multi-thread applications. The

critical sections are also defined by a pair of pthread mutex lock and pthread mutex unlock in the pthreads

library. We use all twelve benchmarks supported in the pthreads configuration in PARSEC and their input

data are simmedium.

5.2 Characterization

Max #sig Max sig Max d.
% insts #insts insts #reads #writes #disps addrs addrs nested

Category Application #CS in CS /CS in CS /CS /CS /CS /CS in CS locks

SPLASH-2 cholesky 13,898 0.048% 18.6 168 5.9 2.3 0.000 3.9 12 1
Kernels fft 36 0.268% 30.8 47 10.6 9.3 0.083 7.0 10 1

lu/contiguous 276 0.003% 35.7 47 12.5 10.5 0.000 7.6 10 1
lu/non cont. 84 0.047% 33.8 47 11.8 9.9 0.048 8.4 11 1
radix 78 0.003% 25.2 47 9.0 8.0 0.000 6.7 9 1

SPLASH-2 barnes 68,951 0.388% 118.1 1,892 40.1 29.3 0.000 15.5 89 1
Apps fmm 44,614 0.221% 142.1 252 54.7 27.9 0.000 21.2 36 1

ocean/contiguous 5,264 0.028% 27.7 45 10.1 8.0 0.007 6.5 10 1
ocean/non cont. 5,144 0.028% 27.0 45 10.1 8.0 0.005 6.5 10 1
radiosity 541,746 1.106% 11.2 1,233 4.4 2.5 0.000 3.2 163 5
raytrace 189,918 0.316% 16.1 6,010 3.8 2.7 0.000 3.4 595 1
volrend 72,592 0.019% 12.1 50 5.0 3.0 0.000 7.0 12 1
water-nsquared 6,368 0.046% 49.8 51 34.0 12.2 0.000 19.9 22 1
water-spatial 234 0.001% 18.2 49 6.8 4.7 0.021 5.4 11 1

PARSEC canneal 8 0.003% 6,561.0 13,120 1,020.3 653.8 0.375 45.8 88 2
Kernels dedup 35,862 0.101% 165.1 809 62.7 35.7 0.055 13.1 63 2

streamcluster 104,208 0.002% 9.9 39 3.1 2.8 0.000 3.6 7 2

PARSEC blackscholes 0 0.000% 0.0 0 0.0 0.0 0.000 0.0 0 0
Apps bodytrack 16,341 0.008% 22.5 1,235 9.3 7.1 0.001 6.3 55 2

facesim 8,754 0.001% 39.5 154 19.4 10.7 0.001 7.3 17 2
ferret 141,615 0.750% 314.6 431,271 90.1 64.7 0.010 16.0 957 3
fluidanimate 4,227,740 1.049% 12.0 39 6.6 3.5 0.000 6.1 12 2
raytrace 60 0.000% 8.0 31 2.7 2.3 0.033 3.2 7 1
swaptions 0 0.000% 0.0 0 0.0 0.0 0.000 0.0 0 0
vips 14,010 0.006% 49.3 7,197 18.5 11.7 0.014 10.0 149 23
x264 4,071 0.001% 18.9 43 9.0 4.8 0.024 5.9 9 1

Table 5.2: Characteristics

Table 5.2 gives the characteristics of the critical sections in all 26 applications. Column 3 lists the number

of critical sections except serial region and shared libraries. Column 4 shows the percentage of the dynamic

instructions in critical sections to the total executed instructions. Most benchmarks execute less than one

percent instructions as critical sections of total executed instructions. Radiosity and Fluidanimate execute

more than one percent instructions in critical sections since they repeatedly acquire and release locks inside

a loop. Blackscholes and Swaptions do not have critical section in user routine. Their threads independently

run without any synchronization. We see that the real application programs only have short periods that

require to protect critical section from asymmetric race.

Column 5 and 6 show the average number of executed instructions per critical section and the maximum

number of instructions in a critical section respectively. Most benchmarks execute less than one hundred

instructions in critical section in average, however some benchmarks execute more than one thousand in-

structions in critical section. Canneal and Ferret especially shows distinctive characteristics. Some critical

sections in both benchmarks have huge loops that last to release the lock. The size of critical section affects
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performance of Pacman, since activated Pacman may stall other threads having doubtful accesses until the

end of the critical section.

Columns 7-9 list the numbers of read, write and clean cache displacements to shared memory per critical

section respectively. Pacman observes these accesses on a bus and registers the addresses into SigTable. We

can see that the number of clean cache displacements that cause extra traffics on a bus is less than one per

critical section.

Column 10 shows the number of addresses recorded in SigTable per critical section and the maximum

number of recorded addresses in a critical section are shown in column 11. Since SigTable keeps independent

addresses on a bus to their signature bits by hash functions, the number of recorded addresses in the signature

are less than the total number of accesses. These number of recorded addresses affects the possibility to

cause an unnecessary false positive conflict on a signature when other threads access to shared memory and

the address is converted to same signature bit by the hash function.

The last column shows the maximum depths of nested locks except shared libraries. The value more than

one means that the benchmark has nested locks. The value one indicates that the benchmark has no nested

lock and the value zero means no critical section in the benchmark. We can see that the maximum depth of

nested locks is less than or equal to three except Radiosity and Vips. The data structure of Radiosity and

Vips consists of a tree list and a sequential list whose node operation is executed recursively. Since Radiosity

and Vips acquire and release locks during each node operation, they recursively create nested locks depend

on the depth of the tree list and the length of the sequential list respectively. More nested locks than Vips

might overlook asymmetric races even on Pacman, since Pacman does not acquire new signature for the

critical section when counter for the nested locks is overflowed as discussed in section 4.1. However, we can

see that Pacman hardly overlook asymmetric races even in such deep nested locks, because the periods in

critical section is quite short shown in column 4.

5.3 Overheads

Table 5.3 shows the overheads of Pacman on SPLASH-2 and PARSEC benchmarks. Column 3 lists the

number of executed Pacman instructions ( pacman on and pacman off ) that are inserted to exclude parallel

sections and shared libraries from the bus observation of Pacman. We can see that the number of dynamic

instructions are absolutely smaller than the total executed instructions shown in Table 5.2 and induces

negiligible overheads.

Column 4 shows the bus traffic overhead connecting Pacman module. When processors in Pacman system
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# Pacman %increase %stall in
Category Application instructions in traffic worst case

SPLASH-2 cholesky 4 0.000% 0.144%
Kernels fft 4 0.050% 0.803%

lu/contiguous 4 0.002% 0.008%
lu/non cont. 4 0.024% 0.142%
radix 4 0.009% 0.010%

SPLASH-2 barnes 4 0.000% 1.165%
Apps fmm 4 0.000% 0.663%

ocean/contiguous 4 0.003% 0.083%
ocean/non cont. 4 0.002% 0.085%
radiosity 12 0.000% 3.317%
raytrace 4 0.000% 0.949%
volrend 4 0.000% 0.057%
water-nsquared 4 0.000% 0.137%
water-spatial 4 0.019% 0.002%

PARSEC canneal 10 0.004% 0.008%
Kernels dedup 13 0.004% 0.302%

streamcluster 10 0.001% 0.007%

PARSEC blackscholes 5 0.000% 0.000%
Apps bodytrack 161 0.002% 0.023%

facesim 75 0.001% 0.003%
ferret 52 0.001% 2.251%
fluidanimate 5 0.000% 3.148%
raytrace 166 0.089% 0.000%
swaptions 5 0.000% 0.000%
vips 58 0.004% 0.018%
x264 65 0.017% 0.004%

Table 5.3: Overheads

acquire and release locks, they issue acquire and release requests to SigTable attached on a bus. In addition,

Pacman displaces cache line in clean status by a snoop request from another processor. We assume that the

traffic size of acquire, release and clean displacement is one byte, one byte and five byte respectively. We can

see that the overheads of bus traffic are less than 0.1%. Since the number of dynamic instructions in critical

section are small, Pacman limits the overheads of additional bus traffics to a minimum.

Finally, we estimate the stall cycle in the worst case shown in the last column. When an access from a

thread conflicts on a signature that may cause an asymmetric race, Pacman stalls the processor until the

signature for a critical section is released. If signature conflicts are occurred in all critical sections, the total

stall cycle becomes the worst case. We can see that the stall cycles are less than one percent except Barnes,

Radiosity, Ferret and Fluidanimate even in the worst case.

5.4 Handling Bugs

5.4.1 Existing Bug

Since SPLASH-2 and PARSEC are widely used benchmarks, usually they are well synchronized and Pacman

cannot find asymmetric races in most applications. However, in PARSEC, we do find an asymmetric race
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from bodytrack application in Figure 5.1.

T1                                 T2 

                               

Lock                               if (slack > 0){ 

…                        

while(nWakeupTickets == 0) {  

…                                  nWakeupTickets++; 

} 

nWakeupTickets--;                    } 

Unlock 

 

 

 Figure 5.1: An asymmetric race in PARSEC

In this case, T1 accesses nWakeupTickets before and after a while loop inside a critical section and T2

accesses nWakeupTickets outside the critical section. We suggest it is not necessary to put nWakeupTickets

inside the critical section.

5.4.2 Inserted Bugs

We also modified some SPLASH-2 benchmarks to have intentional asymmetric race collisions on their shared

variables. We concurrently create a thread that continuously write random values to shared variables without

any locks. These accesses cause asymmetric race problems during the execution. In the tests on Pacman

simulation, we see that Pacman detects and toleratess all asymmetric race cases.
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Chapter 6

Related Work

There have been two significant proposals focused on detecting and tolerating asymmetric data races in

lock-based concurrent programs.

One of them is ToleRace [21], the first proposal on deal with this type of races. In a critical section,

ToleRace replicates the shared data on the fly, so that the thread that is in the critical section has an

exclusive copy, and it continues reading and writing to this copy until it releases the lock. When the critical

section finishes, ToleRace compares the data versions and determine if a race has occurred, and in that

case, it may tolerate or reported it. This approach may produce sequentially inconsistent states in some

situations.

The other proposal is ISOLATOR [20], that is similar to ToleRace, but detects and tolerates asymmetric

races using data replication and page protection. When a thread is in its critical section, ISOLATOR

replicates data in a local copy and protects the pages containing shared variables. If an unsafe thread

tries to access to protected pages, a page protection fault is raised and the asymmetric race is detected.

ISOLATOR solves the inconsistency problems of the previous proposal, but at the same time introduces

new deadlock situations.

Pacman differ from the previous proposals in that is the first hardware approach that detects asymmetric

races, it is not based on data replication to maintain correctness in critical sections, and introduce a low

overhead hardware solution based on signatures. Pacman also solve the inconsistency problems of Tolerace

and the deadlocks of ISOLATOR.
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Chapter 7

Conclusions

This thesis proposed Pacman, the first hardware approach to not only detect but also tolerate asymmetric

races. To address this problem, Pacman does not change the processor and cache coherence protocol mes-

sages. It uses hardware signature model to detect asymmetric races and use cache coherence to tolerate the

races. Moreover, Pacman can solve the limitations which previous works have.

We presented the architecture of Pacman, an implementation, and its software interface. Application

code remains unmodified. Our experiment showed that Pacman can run efficiency and achieve low overhead.
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