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ABSTRACT

This thesis presents theoretical and numerical simulation results of a microring resonator

with a scattering element inserted. The spectral reflection of the scattering element can be

engineered to realize wavelength-selective reflection for the integrated microring. In par-

ticular, a Fabry-Pérot element can be used to produce reflection spectrum with a comb

of peaks, whereas a carefully designed distributed Bragg grating can be inserted to real-

ize single peak reflection at the design wavelength. Furthermore, a grating etalon can be

used to obtain an ultra-narrow transmission filter or sharp cut-off mirror. The thesis will

present semi-analytical solutions to easily anticipate the resultant reflection from the ring for

a given scattering element. The results are presented graphically to facilitate understanding

of the effects of various design parameters. The structures are candidates for compact planar

wavelength-selective mirrors, filters, and switches for dense photonic integrated circuits.
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CHAPTER 1

INTRODUCTION

Microring resonators are promising building blocks for a variety of optoelectronic and pho-

tonic applications, serving as optical switches, filters, modulators, multiplexers, sensors,

amplifiers, laser cavities, and logic gates. Their small size and simple structure enable

monolithic integration on a single chip, possibly opening the door toward photonic inte-

grated circuits. There has been active research in different shapes and configurations of

microring resonators including racetrack design [1], spiral geometry [2], a notched ring [3],

multiple rings cascaded in series [4] or in parallel [5], circular arrays [6], 2D arrays [7], and

embedded [8]. Most research on microring structures had primarily focused on transmission

characteristics. More recently, several studies on microring-based reflectors have been re-

ported [3, 6, 9, 10, 11, 12, 13, 14, 15]. In this thesis, a single microring structure coupled to

a waveguide with a general scattering element inserted in the ring will be analyzed. In par-

ticular, periodic-peak reflection, single-peak reflection, ultra-narrow transmission filter, and

sharp cut-off mirror configurations of microring structures will be discussed. These ultra-

compact microring-based reflectors are candidates for in-plane wavelength-selective mirrors,

filters, and switches for various applications, allowing high density integration into planar

optoelectronic circuits.

1.1 Current Research in the Field

Most microring-based structures proposed and fabricated by researchers are transmissive

wavelength-selective elements, but more recently there have been several reports on reflec-

tive microring-based structures. A structure comprising two-rings cascaded to a single bus

waveguide (Fig. 1.1a) was investigated [9] where both rings are coupled to the bus waveguide,
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Figure 1.1: Various designs for obtaining counter-propagating fields. (a) Double-ring res-
onator system coupled to a waveguide [9]. (b) Circular arrays of coupled microring res-
onators [6]. (c) A microring inserted between two Y-junctions [12]. (d) Cascaded microring
add/drop filters coupled to arms of a Y-junction [13]. (e) A single notched microring [3].
(f) A microring with one-dimensional photonic crystal defects [15]. (g) A microring with
quasi-grating sidewall corrugation [16].
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and at the same time there is direct inter-resonator coupling between the two rings. The

structure results in a single- to four-peak reflection profile depending on coupling coefficients

involved.

A more complicated version employs a circular array of multiple microring resonators

(Fig. 1.1b), coupled to adjacent rings or the bus waveguide [10]. To achieve counter-

propagating waves in this architecture, a serial reflection filter topology is used for an array

of odd number microrings, where only one microring is coupled to the bus waveguide. For

an even number of microrings, a parallel topology is used, where two microrings are each

coupled to the bus waveguide. Employing multiple microring resonators in this geometry

achieves super-flat bandpass response.

Another research group investigated two major configurations of ring-based inline reflec-

tors employing Y-junctions. In the first structure [12], a straight waveguide is split into two

arms by a Y-junction and combined by another opposite-direction Y-junction, resembling

the Mach-Zehnder modulator geometry. In the central portion between the Y-junctions, a

microring is inserted and coupled to each arm (Fig. 1.1c). In the second design [13], optical

input is split into two by a Y-junction, and the signal in each arm is filtered twice by passing

through the cascaded microring add/drop filters, exiting back to the input port or to two

additional output ports (Fig. 1.1d). In both designs, single- or periodic-peak reflection is

possible using different microring radii (Vernier effect).

The simplest design to date was proposed by Little et al. [3]. A small perturbation is

introduced to a microring coupled to a bus waveguide by a single notch at the center of

the ring (Fig. 1.1e). The structure was analyzed and numerically simulated using finite-

difference time-domain (FDTD) method. With a well-designed notch dimension, periodic

peaks of maximum reflection were realized, but as the notch size increases, the perturbation

increases, and the response exhibits increasing ripple in each peak.

Goldring et al. studied a microring reflector with one-dimensional photonic crystal (PhC)

bandgaps [15]. In the notch filter configuration, a microring is coupled to a single waveguide,

where unity-reflection mirror by one-dimensional PhC defects is placed at the through port

as illustrated in Fig. 1.1f. Another set of one-dimensional PhC defects of different period is

placed in the ring waveguide in order to increase modal dispersion, which leads to narrowing
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of the spectral linewidth of the structure. It should be noted that the reflection is achieved

from the mirror placed at the through port, and the PhC defects in the ring serve as the

mechanism to induce large group index near the photonic bandgap. In a similar fashion,

Wang et al. studied the effect of quasi-grating sidewall corrugation resulting from fabrica-

tion issues of a microring resonator system [16], as depicted in Fig. 1.1g. The reflectivity

of the quasi-grating leads to mutual mode coupling between the forward- and backward-

propagating modes in the ring, resulting in resonance splitting. It should be noted, however,

that its reflection spectrum was not studied in the paper.

1.2 Research Motivation and Outline

The notched microring structure is by far the simplest and the most compact structure

among the configurations discussed above, which makes it suitable to design, integrate, and

fabricate on an optical chip with high density. In order to realize such design flexibility, it is

highly desired that more detailed investigation and analysis be carried out on these types of

reflecting microring structures employing various elements not limited to a single notch, but

to any physically realizable elements that can be incorporated. In other words, one needs to

examine a generic case scattering-induced microring mirror. In this paper, a general form

system will be first formulated, such that given some scattering element introduced in the

ring, the reflection and transmission spectrum of this microring mirror is easily predicted.

Using the methods presented here, one can cleverly engineer a wavelength selective response

by inserting the appropriate scattering element.
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CHAPTER 2

FUNDAMENTALS

In this chapter, I will briefly review some of the theoretical and fundamental background of

microring resonators.

2.1 A General Microring Resonator

When two waveguides are adjacent to each other, modes propagating in the waveguides

couple to each other by the coupling equation described byb1

b2

 = K

a1

a2

 (2.1)

where ai, bi are the complex mode amplitudes1 of the four-port coupler as illustrated in

Fig. 2.1, K =

 τ jκ

jκ τ

 is the coupling matrix, and κ and τ are the real-valued coupling

and transmission coefficients, respectively [17]. The details and derivations of the coupling

equation are not covered in this thesis. For lossless coupling condition, we have

κ2 + τ 2 = 1 (2.2)

which will be the condition assumed throughout the thesis unless specified otherwise. We

will also assume that K is spectrally constant, which is a valid approximation in the cases

where the coupling interaction length is very small [18, Ch. 3].

We are interested in the steady-state spectral dependence of output power |b1|2 given a

1These quantities are normalized in power such that the squares of their amplitudes are proportional to
the intensities of the signals. Throughout the thesis, any signal is assumed to be represented in this manner.
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Figure 2.1: Four-port coupler schematic diagram. Signals a1, b1 represent the input and
transmission signals, respectively.

general relation,

a2 = xb2 (2.3)

where a general propagation term x = |x|eφx describes the amplitude and phase shift per

round trip in the ring. The value of x is determined from the geometry and configuration

of the microring resonator. For example, |x| > 1 implies gain of the signal in the microring.

Solving Eq. (2.1) through Eq. (2.3) simultaneously yields

a2 =
jκx

1− τx
a1 (2.4)

|a2|2 =
κ2|x|2

1− 2τ |x| cosφx + τ 2|x|2
|a1|2 (2.5)

b1 =
τ − x
1− τx

a1 (2.6)

|b1|2 =
τ 2 − 2τ |x| cosφx + |x|2

1− 2τ |x| cosφx + τ 2|x|2
|a1|2 (2.7)

=

(
1− (1− τ 2) (1− |x|2)

1− 2τ |x| cosφx + τ 2|x|2

)
|a1|2. (2.8)

It is also possible to derive complete analytic time-domain solution of a constant input.

Let the input signal turn on at time t = 0, i.e., a1(t) = 0 for t < 0 and a1(t) = a10 for t ≥ 0.

Let t0 be the time delay for optical signal to travel one round trip in the ring. Note that any

change in the input field propagates in multiples of time delay mt0. Hence, it is sufficient

to describe the fields in discrete time-domain mt0, m is an integer, rather than continuous
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time-domain t.

Let sequences aim and bim describe the fields during time mt0 ≤ t < (m + 1)t0. We first

note that

a1m =

0 for m < 0,

a10 for m ≥ 0.

(2.9)

In addition, we define initial conditions

a2m = b1m = b2m = 0 for m < 0. (2.10)

Equation (2.1) is re-written as b1m

b2m

 = K

a1m

a2m

 , (2.11)

and Eq. (2.3) is re-written as

a2m+1 = xb2m . (2.12)

Solving Eq. (2.9) through Eq. (2.12) yields

b2m = jκa10 + τxb2m−1 for m ≥ 0. (2.13)

The solution to the sequence Eq. (2.13) is given by

b2m = jκa10

m∑
i=0

(τx)m for m ≥ 0 (2.14)

= jκ
1− (τx)m

1− τx
a10 for m ≥ 0. (2.15)

Substituting Eq. (2.15) into Eq. (2.11) yields

b1m =

τa10 for m = 0,

κ2x(τx)m−1+τ−x
1−τx a10 for m ≥ 1.

(2.16)

Note that the result in Fig. 2.2 agrees with Eq. (2.6) for m = ∞ when |τx| < 1. The

7



Figure 2.2: Time-domain response of the output to a step input for various values of |x|2 for
κ2 = 0.1 at resonance.

figure plots the time-domain response of the output intensity at the resonance wavelength

for various values of |x|2 at κ2 = 0.1. For |x|2 < κ2, |x|2 = κ2, and |x|2 > κ2, the transient

response resembles that of an overdamped, a critically damped, and an underdamped system,

respectively.

Figure 2.3 depicts a typical spectral response of the build-up factor
∣∣∣a2

2

a2
1

∣∣∣ inside the ring

as a function of φx. The free spectral range (FSR) is the spacing between two successive

intensity maxima, and the full width at half maximum (FWHM) is the spacing between the

two points at the half of the maximum value near the peak. Finesse F is the ratio of the

FSR to the FWHM, and quality factor Q is the ratio of the resonant angular frequency ωr

to the FWHM.
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Figure 2.3: Typical build up factor for a resonator.

2.2 A Microring Coupled to Single Waveguide

In this section, an analysis of the plain microring resonator will be presented closely following

ref. [18, 19]. Figure 2.4 depicts two configurations used for filtering out specific wavelengths

of the input signal. For Fig. 2.4a, we let

x = αejβL = αejθ (2.17)

θ = βL (2.18)

where real values α and θ are the amplitudes and phase factor per round trip in the ring,

respectively. β = kne = 2π
λ
ne is the modal propagation constant in the ring waveguide where

λ is the wavelength in free space,2 ne = β
k

is the effective modal index of the ring, and L is

2Throughout the thesis, λ denotes the wavelength in free space, and λe = λ
ne

denotes the effective
wavelength in the waveguide. The subscript 0 is used to denote the design parameter. For example, β0 is
the modal propagation constant at the design wavelength λ0.
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Figure 2.4: (a) A microring coupled to a single waveguide. (b) A microring coupled to two
waveguides.

the circumference of the ring. Plugging Eq. (2.17) into Eq. (2.8) yields

|b1|2 =

(
1− (1− τ 2) (1− α2)

1− 2τα cos θ + τ 2α2

)
|a1|2. (2.19)

Figure 2.5 plots the output intensity normalized to the input at various α2 < 1 in the ring

for fixed τ 2 = 1 − κ2 = 0.9. As α increases, the dips become sharper. From Eq. (2.19) we

see that: (1) the maxima occur at θ = (2m− 1) π and (2) minima occur at θ = 2mπ, m

is an integer. For the critical coupling condition α = τ [19], the minima become null. We

also see that for lossless ring, i.e., α2 = 1, the output intensity is always equal to the input

intensity, which confirms energy conservation law.

At resonance, θ = 2πν
c
neL = 2mπ, and hence the FSR in frequency is given by

νFSR = ∆ν =
c

ngL
, (2.20)

where

ng =
∂β

∂k
= ne + ω

∂ne
∂ω

= ne − λ
∂ne
∂λ

(2.21)
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Figure 2.5: Through port intensity normalized to input for τ 2 = 0.9.

is the group index. Sometimes it is more convenient to write the FSR in wavelength,

λFSR = ∆λ ≈ |∂λ
∂ν
|∆ν =

λ2

ngL
. (2.22)

Using Eq. (2.5), the FWHM of the field buildup |a2

a1
|2 is calculated by solving for δθ in the

following equation [18, Ch. 3]:

1

2
· α2κ2

1− 2ατ + α2τ 2
=

α2κ2

1− 2ατ cos δθ + α2τ 2
, (2.23)

from which we obtain

cos δθ =
−1 + 4ατ − α2τ 2

2ατ
(2.24)

= 1− (1− ατ)2

2ατ
. (2.25)
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For ατ ≈ 1, we can use the approximation cos δθ ≈ 1− δθ2

2
since δθ � 1:

δθ ≈ 1− ατ√
ατ

(2.26)

νFWHM = 2δν = 2 · cδθ

2πngL
≈ c(1− ατ)

πngL
√
ατ
. (2.27)

In wavelength, we obtain

λFWHM = 2δλ ≈ |∂λ
∂ν
|2δν =

λ2(1− ατ)

πngL
√
ατ

. (2.28)

2.3 A Microring Coupled to Two Waveguides

Figure 2.4b depicts an add/drop filter. Instead of attenuating resonant frequencies by optical

loss in the ring, the add/drop configuration filters out resonant frequencies to the drop port.

We let

x = ατejθ (2.29)

assuming that the coupling coefficients are identical at both waveguides. For a lossless ring,

i.e., α2 = 1, we note that from conservation of energy, when there is no signal from the add

port, the drop port signal power must equal to the input subtracted by the through port,

given by

|b3|2 = |a1|2 − |b1|2 =
(1− τ 2)

2

1− 2τ 2 cos θ + τ 4
|a1|2. (2.30)

Figure 2.6 plots the through port and drop port intensity of a lossless microring at various

values of τ 2. Note that for a lossless ring, the maxima are always unity regardless of the value

of τ 2. In general, the larger the value of τ 2, i.e., the smaller the value of κ2, the narrower

the FWHM becomes. In the presence of input at the add port, we can easily obtain the

solution by invoking the law of superposition because the system is linear.

For a lossless case, the FSR is identical to Eq. (2.20) and Eq. (2.22), and the FWHM of

12



Figure 2.6: Drop port intensity normalized to input.

the drop power | b3
a1
|2 is given by

νFWHM = 2δν ≈ cκ2

πτngL
(2.31)

λFWHM = 2δλ ≈ λ2κ2

πτngL
. (2.32)

2.4 Fabry-Pérot Resonator

The Fabry-Pérot (FP) resonator is another very simple resonator, which consists of two

reflective elements as shown in Fig. 2.7. To solve for steady state output intensity |a2|2, we

let the field at the position right after the first mirror M1 be x. Assuming lossless material

inside the resonator and that there is no incident signal from the second mirror M2, i.e.,

13



Figure 2.7: Schematic diagram of a Fabry-Pérot resonator consisting of two mirrors.

b2 = 0, we note that x must satisfy the following steady state equation:

x = t1,Ra1 + r1,Lr2,Rxe
j2θd (2.33)

θd = βd (2.34)

where rm,n, tm,n, m = 1, 2, and n = L,R are normalized reflection and transmission coef-

ficients for the fields moving in each direction at each mirror, respectively, as described in

Fig. 2.8 where d is the separation distance of the two mirrors. Solving Eq. (2.33), we obtain

x =
t1,R

1− r1,Lr2,Rej2θd
a1 (2.35)

a2 = t2,Rxe
jθd =

t1,Rt2,Re
jθd

1− r1,Lr2,Rej2θd
a1 (2.36)

|a2|2 =
t21,Rt

2
2,R

1− 2r1,Lr2,Rcos2θd + r2
1,Lr

2
2,R

|a1|2 (2.37)

b1 = r1,Ra1 + r2,Rt1,Lxe
j2θd =

r1,R − (r1,Lr1,R − t1,Lt1,R)r2,Re
j2θd

1− r1,Lr2,Rej2θd
a−1 (2.38)

where rm,n and tm,n are assumed to be real. We note that Eq. (2.37) is in equivalent form to

Eq. (2.30) in the case where two mirrors are identical, i.e., r1,L = r2,R = r, and the mirrors

are lossless, i.e., r2
k,l + t2k,l = 1, and reciprocal3, i.e., tk,L = tk,R.

A different approach involves decomposition of a given FP resonator into three network

3Throughout the thesis, I will assume that all optical elements are reciprocal networks for normalized
fields. This is valid for any system which satisfy Maxwell’s equations with scalar ε and µ [20, Ch. 3].
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Figure 2.8: Reflection and transmission coefficients notations.

systems as shown in Fig. 2.9a. Each network’s four ports are related by scattering S or

transmission T matrices [20, Ch. 3] as follows:

y1

x2

 = S

x1

y2

 =

S11 S12

S21 S22

x1

y2

 (2.39)

x1

y1

 = T

x2

y2

 =

T11 T12

T21 T22

x2

y2

 (2.40)

where xi and yi are signals at the four ports as described in Fig. 2.9b. The scattering and

transmission matrices themselves are related by

S =
1

T11

T21 det T

1 −T12

 (2.41)

T =
1

S21

 1 −S22

S11 − det S

 . (2.42)
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Figure 2.9: (a) A FP resonator decomposed into three networks: two mirrors M1 and M2,
and a propagation distance d. (b) A four-port network schematic diagram.

For a mirror network Mk, we readily see that

SMk
=

rk,R tk,L

tk,R rk,L

 (2.43)

from Fig. 2.8. For a propagation network of distance d, we can easily verify

Sd =

 0 ejθd

ejθd 0

 . (2.44)

Converting Eq. (2.43) and Eq. (2.44) into transmission matrices using Eq. (2.42) and mul-

tiplying them out yields the transmission matrix of the FP resonator,

T = TM1TdTM2 (2.45)

where we note that matrix multiplication of transmission matrices solves the system of the

cascaded networks. Finally, the transmitted signal a2 in the absence of b2 of the FP resonator

can then be solved from

a2 = S21a1 =
1

T11

a1, (2.46)

which agrees with Eq. (2.36). In a similar fashion, the reflected field b1 can also be found
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Figure 2.10: A multi-layered system of different refractive indices.

from

b1 = S11a1 =
T21

T11

a1. (2.47)

2.5 Multi-Layered System

The transmission matrix method can be used to numerically evaluate an arbitrary multi-

layered system of different refractive indices. Consider a system consisting of four layers as

shown in Fig. 2.10. The input signal a1 in a medium with modal index ni is incident on

two layers of indices n1 and n2, and we are interested in the output signal a2 transmitted

to medium of index nt. There are three mirror interfaces: (nL, nR) = (ni, n1), (n1, n2), and

(n2, nt). If we assume for simplicity that the material refractive index is identical to the

modal index, we obtain the scattering matrix for each mirror,

S =

 nL−nR
nL+nR

2nL
nL+nR

√
nR
nL

2nR
nL+nR

√
nL
nR

nR−nL
nL+nR

 =

r t

t −r

 . (2.48)

The rest is very similar to the method described in Section 2.4. This method can be

extended to any number of arbitrary layers. In particular, the numerical simulation of a

Bragg grating’s reflectance spectrum, which will be discussed in the next chapter, can be

evaluated from this transfer matrix approach.
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CHAPTER 3

MICRORING WITH REFLECTIVE ELEMENT

This chapter presents analysis and numerical simulations of microring resonators integrated

with various reflective elements.

3.1 General Analysis

We extend the previous simple model of a general microring resonator analysis presented

in Section 2.1 to account for reflection occurring in the microring. In particular, we model

a reflective element as a four-port network, and we let S =

S11 S12

S21 S22

 be the scattering

matrix of the network, as depicted in Fig. 3.1. Due to the reflection at the network, there

will be fields propagating in both counterclockwise and clockwise directions in the microring,

and hence we use superscripts + and − to indicate the fields propagating in these directions,

respectively. I will closely follow the analysis presented in [21, 22]. Assuming a symmetric

coupling between the microring and the waveguide, we have two sets of coupling equationsb+
1

b+
2

 = K

a+
1

a+
2

 (3.1)

a−1
a−2

 = K

b−2
b−2

 , (3.2)

which are equivalent to Eq. (2.1). For simplicity, we assume that the reflective element is

introduced at the upper center of the ring, such that there is equal distance L
2

for both +

and − waves to reach the element from the coupling region. Again, let Eq. (2.17) describe

the amplitude and phase change per round trip in the ring in the absence of the reflective
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Figure 3.1: A schematic diagram of a microring resonator with a reflective element.

element. Combining Eq. (2.17) and Eq. (2.39), we obtain

a+
2

b−2

 = αejθS

a−2
b+

2

 . (3.3)

Solving Eq. (3.1) through Eq. (3.3) for b−1 = 0 yields

b+
1 =

τ − α (S12κ
2 + (S12 + S21) τ 2) ejθ − α2τej2θ det S

1− α (S12 + S21) τejθ − α2τ 2ej2θ det S
a+

1 (3.4)

a−1 =
−αS22κ

2ejθ

1− α (S12 + S21) τejθ − α2τ 2ej2θ det S
a+

1 , (3.5)

where b+
1 and a−1 are transmitted and reflected field of the general reflective microring struc-

ture, respectively.
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3.2 Graphical Solutions

For simplicity, we assume that the network is lossless reciprocal,1 and a+
1 = 1. Substituting

Eq. (A.21) into Eq. (3.4) and Eq. (3.5) yields

b+
1 =

τ − α|t| (1 + τ 2) ej(θ+ψ+π
2 ) + α2τej2(θ+ψ+π

2 )

1− 2α|t|τej(θ+ψ+π
2 ) + α2τ 2ej2(θ+ψ+π

2 )
(3.6)

a−1 =
jαr∗ (1− τ 2) ej(θ+ψ+π

2 )

1− 2α|t|τej(θ+ψ+π
2 ) + α2τ 2ej2(θ+ψ+π

2 )
, (3.7)

where θ = βL is the round-trip phase change in the ring, and θs = ψ+ π
2

is the transmission

phase change in the scattering element. Note that S12 = j|t|ejψ is the transmission coefficient

of the scattering element, and therefore ψ + π
2

represents the transmission phase shift due

to the element.

Let us assume that we have analytic or numerical values of τ(β), α(β), and θ(β). We can

then plot a contour graph of |a−1 |2 as a function of total detuned phase shift Θ = θ+θs−β0Lt

and magnitude of reflection from the element |r| =
√

1− |t|2 on the Θ - |r| plane. Here,

Lt = L + d is the total circumference of the integrated microring structure2 where L is the

ring-only circumference and d is the length of the inserted scattering element. Similarly, if

the inserted network’s reflectivity |rejψ| as a function of β is already known, we can overlay

its spectral reflectivity graph on the same Θ - |r| plane. By examining the two graphs on the

same plane, we can visualize the effect of the inserted network on the reflected field intensity

of the integrated microring resonator.

The colored part of Fig. 3.2 is the contour graph of |a−1 |2 for α2 = 1 and κ2 = 0.1, which

are assumed to be constants over β. We can see that at |r| ≈ 0.05, the reflection from the

integrated microring becomes unity at the resonance condition Θ = 2mπ. If we increase the

reflectivity of the inserted network, we observe that the peak reflection of the ring starts

to split into two. This is the resonance-splitting caused by mutual coupling between the

forward and backward modes in the ring [16, 23].

1Refer to Section A.4 for details.
2Throughout the thesis, Lt will be assumed to be an integer multiple of the effective design wavelength

λ0,e.
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Figure 3.2: Spectral reflectivity of networks overlaid on the Θ - |r| plane.

If we introduce a constant low reflectivity |r| ≈ 0.05 for all β in the ring, we expect to see

a comb of reflection peaks at every resonance condition Θ = 2mπ. Instead, if we want to

realize an ultra-wide FSR mirror, we simply need to insert a network such that its reflectivity

nulls line up at detuned resonance conditions, i.e., |r(Θ = 2mπ)| ≈ 0.05δ0,m, as depicted in

gray lines in Fig. 3.2.

For higher values of κ2, we observe an increase in the FWHM, as expected from Eq. (2.26).

Similarly, the FWHM increases as the propagation loss in the ring increases, i.e., α2 de-

creases. In this case, the maximum reflection from the integrated microring one can obtain

is no longer unity; more detailed analysis is presented in the next section. Figure 3.3 com-

pares the plots for different values of κ2 and α2. Because the overall shapes of the response

spectra are identical, I will mainly discuss the case where κ2 = 0.1 and α2 = 1 for simplicity,

but one can apply the analysis presented in this thesis to arbitrary values of the parameters

as well.
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(a) κ2 = 0.1 and α2 = 1 (b) κ2 = 0.2 and α2 = 1

(c) κ2 = 0.1 and α2 = 0.9 (d) κ2 = 0.2 and α2 = 0.9

Figure 3.3: Comparison of the 3D reflection spectra of the integrated microring for different
values of κ2 and α2. Note the changes in the color code scales for lossy cases.
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3.3 Maximum Reflection Condition

In order to find the reflectivity of the network such that the reflection from the microring is

maximum, we need to solve

∇Θ,|r||a−1 (Θ, |r|)| = 0, (3.8)

which yields the scattering element’s critical reflectivity amplitude and the resultant micror-

ing reflection amplitude

|rc(Θ)| =

√
(1 + α2τ 2)2 − 4α2τ 2 cos2 Θ

1 + α2τ 2
for − π

2
≤ Θ− 2mπ ≤ π

2
, (3.9)

|a−1c| =
α(1− τ 2)

1− α2τ 2
for − π

2
≤ Θ− 2mπ ≤ π

2
, (3.10)

respectively. Equation (3.9) corresponds to the maximum contour lines (dark red) of Fig. 3.3.

At the resonance condition Θ = 2mπ, Eq. (3.9) reduces to

|rc| =
1− α2τ 2

1 + α2τ 2
. (3.11)

Figure 3.4 graphs the critical reflection of the scattering element and the resultant microring

reflection on the κ2 - α2 plane. For κ2 = 0.1 and α2 = 1 as in the above example, we obtain

|rc| = 0.0526 and |a−1c| = 1, which agrees with what we observed in Fig. 3.2 and Fig. 3.3.

Note that for α2 = 1 and κ2 << 1, Eq. (3.9) reduces to κ2 = 2|rc| as presented in [3].

For |r| > |rc|, we observe the resonance phase condition starts to split as the scattering

increases. This phenomenon can be best explained by considering the effective ring circum-

ference. Due to reflection from the scattering element, the wave circulating in the ring can

be resonant either by one complete round trip (ejΘ) in the low reflection limit |r| ≈ 0, or

two round trips (ej2Θ) in the high reflection limit |r| ≈ 1, as depicted in Fig. 3.5. We hence

observe that the FSR of the integrated microring reduces by half when a highly reflective

scattering element is inserted.

In practice, it may be more difficult to control the coupling coefficient κ than the reflection

|r| because κ is exponentially dependent on the coupling gap between the ring and the bus

waveguides, and a typical dimension of the gap is in the order of 50 to 100 nm. Figure 3.6
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(a) Critical Reflection Condition
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(b) Resultant reflection

Figure 3.4: Contour maps of critical reflection intensity and resultant microring reflection
intensity in the κ2 - α2 plane.
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Figure 3.5: The wave in the ring can be resonant by making one round trip (orange, inner)
or two round trips (red, outer). The effective resonant path is therefore a combination of
the two.

(a) α2 = 0.99 (b) α2 = 0.9

Figure 3.6: Sensitivity contour maps on the Θ - κ2 plane. The graphs are plotting the
reflection power of the microring for fixed |r| = 0.0576 or 0.105 for a range of κ2 under two
lossy conditions.
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shows contour maps of the reflection power for fixed |r| on the Θ - κ2 plane. Here, κ0 is

the design coupling coefficient, and we assume that |r| = rc = 0.0576 or 0.105 is a constant

value optimized for κ2
0 = 0.1, and α2 = 0.99 or 0.9, respectively. From the graphs, we see

that a slightly larger coupling coefficient than the designed one is acceptable as expected

from Fig. 3.4b, but a lower coupling coefficient may degrade the device performance. In the

case of a low loss α2 = 0.99 as in Fig. 3.6a, we find that the range of 0.05 ≤ κ2 ≤ 0.2 will

result in at least 50% of reflection power at resonance. Note that the maximum value of

reflection is obtained for κ2 larger than κ2
0 = 0.1 in the figure. This is because for a lossy

structure, an increase in the coupling coefficient κ and corresponding increase in |r| = rc will

monotonically increase the maximum reflection |a−1c|2. However, an increase in the value of

κ will widen the FWHM of the microring resonator given in Eq. (2.27).

3.4 Null Transmission Condition

When the entire structure is lossless, the energy conservation law requires that the sum of

reflected and transmitted power equal to the input power, i.e., |a−1 |2 + |b+
1 |2 = |a+

1 |2 = 1.

Therefore, the maximum reflection condition given in Eq. (3.9) coincides the null transmis-

sion condition for α2 = 1. For lossy case, we solve

|b+
1 (Θ, rnt)| = 0, (3.12)

which yields the solution of the inserted network’s reflection coefficient

rnt =

√
(α2 − τ 2)(1− α2τ 2)

α(1 + τ 2)
for τ 2 ≤ α2 < 1, Θ = 2mπ. (3.13)

Unlike the maximum reflection condition where the solution |rc(Θ)| exists for a wide range

of Θ, the null transmission can be achieved only at the resonance conditions Θ = 2mπ when

α2 < 1. In addition, the null transmission condition also requires that the loss of the

structure satisfy τ 2 ≤ α2 ≤ 1. Note that Eq. (3.13) reduces to the critical coupling condition

α = τ [19] in the case where no reflective element is introduced, i.e., rnt = 0.
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3.5 Comb of Peak Reflector Configuration

From Fig. 3.2, we saw that in order to realize periodic reflection peaks we can introduce a

flat band reflective element in the microring. In practice, we can insert a quarter-wavelength

FP network to a microring (FP-MRR). In Section 2.4, we found that the transmission of a

given FP network is given by

tFP =
t2inte

jθd

1− r2
inte

j2θd
= |tFP |ejθFP , (3.14)

and the reflection is given by

rFP =
−rint(1− ej2θd)

1− r2
inte

j2θd
(3.15)

where rint and tint are reflection and transmission coefficients at the FP-ring interface, re-

spectively.

In typical low-contrast resonators, |rint|2 << 1, so Eq. (3.14) reduces to

tFP ≈ t2inte
jθd . (3.16)

Equation (3.16) and Eq. (2.34) indicate that the transmission phase shift of a low reflection

FP network is roughly a linear function of β with the slope equal to its length d. We thus

obtain the transmission phase shift in the network θFP ≈ θd, and therefore the total round

trip detuned phase in the integrated ring is Θ = θ + θFP − β0Lt ≈ (β − β0)Lt.

For d = 1
4
λ0,e, where λ0,e is the effective wavelength at the design frequency, we obtain

θd = π
2
, and Eq. (3.15) reduces to

rFP =
−2rint
1 + r2

int

, (3.17)

and therefore we design rint such that |rFP | = rc in order to obtain the maximum reflection

from the microring. Because ∂θ
∂β
>> ∂θd

∂β
for a microring with its circumference L >> d, we

can effectively model the reflection from the FP network as a constant value:

|r(Θ)| ≈ rc (3.18)
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near the design wavelength.

Figure 3.7a shows plots of the reflection intensity for different values of α2 and fixed value

of κ2 = 0.9. We observe periodic peak reflectance at each resonance condition Θ = 2mπ as

expected. Note that the spectral response resembles that of a sampled grating distributed

Bragg reflector (SGDBR) plotted in Fig. 3.7b, which is widely used for mirrors in quasi-

continuous tunable lasers. In a SGDBR, many quarter-wavelength FP networks are cascaded

in order to realize high reflectance. In the case of FP-MRR, we make use of field build-up

in the ring resonator to amplify the small reflection introduced from a single or a few FP

elements, which effectively reduces the size and fabrication effort of the periodic-peak mirror.

In addition, for the FP-MRR we do not observe any side mode peaks that are present in the

SGDBR [24], which degrades single mode operation of semiconductor lasers.

3.6 Single Peak Reflector Configuration

In order to realize a single peak reflection only at the design resonance condition Θ = 0, we

must insert a network such that it introduces no reflection at detuned resonance conditions,

i.e.,

r(Θ) = 0 for all Θ = 2mπ, m is nonzero integer. (3.19)

One element that realizes such condition is a Bragg grating or DBR, which consists of a large

number, say 2N , of quarter-wavelength FP elements cascaded together. The total length of

such grating is Lg = N
2
λ0,e. In the low reflectivity limit, we may neglect multiple reflection

in the grating and obtain transmissivity and reflectivity [20, Ch. 3],

tg = t2Ninte
jθg (3.20)

|rg| = 2N |rint
sin θg
θg
|, N |rint| < 0.2 (3.21)

θg = (β − β0)Lg (3.22)

where rint is again the reflection coefficient at each interface in the grating, and θg is the

detuned phase change in the grating. Intuitively, the magnitude of the reflectivity peak
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(a) Reflectance spectra of FP-MRR for various values of α2 at fixed κ2 = 0.9.

(b) Reflectance spectra of a SGDBR consisting of 90 bursts of 10-pair Bragg
grating with material index contrast (n1, n2) = (3, 2.99). The burst period is
30λ0,e where the λ0 = 1550 nm. The zoomed in graph (right) shows side peaks
near its main peak.

Figure 3.7: Comparison of reflectance spectra of FP-MRR and SGDBR. Note the absence
of side mode reflection peaks near the main peaks for the FP-MRR.
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should approach 2N |rint| at the design frequency because each pair of FP elements has two

reflection interfaces.

To achieve maximum reflection condition, we first choose the combination of rint and N

such that

2N |rint| = rc. (3.23)

Next, we observe that

Θ = (β − β0)Lt = (β − β0)(L+ Lg) (3.24)

where Lt = L + Lg is the circumference of the grating and the ring. We define the ratio of

the detuned phases as p = θg
Θ

, and from Eqs. (3.22) and (3.24), we obtain

0 < p =
Lg

L+ Lg
≤ 1. (3.25)

Note that p is fixed for a given geometry of the structure. Substituting Eq. (3.25) into

Eq. (3.21) yields

|rg(Θ)| = 2N |rint
sin (pΘ)

pΘ
|. (3.26)

Imposing Eq. (3.19) on Eq. (3.26) results in

sin (pΘ) = 0 for all Θ = 2mπ, m is nonzero integer, (3.27)

2mpπ = nπ for some integer n, (3.28)

p =
n

2m
is fixed for any m. (3.29)

The possible choices of n satisfying Eqs. (3.25) and (3.29) are n = m or n = 2m, and

therefore we obtain p = 1
2

or p = 1, respectively. The corresponding grating lengths are

Lg = L =
1

2
Lt or Lg = Lt, L = 0. (3.30)

Physically, the first case is where exactly half of the ring consists of grating (Fig. 3.8a), and

the second case is where the entire ring consists of grating (Fig. 3.8b). These two cases

are the only configurations that will suppress reflection peaks at detuned resonances, i.e.,

30



Figure 3.8: Schematic diagrams of single-peak reflector configurations using DBR grating in
the microring. (a) Half DBR-MRR. (b) Full DBR-MRR.

Θ = 2mπ where m is nonzero integer.

Figure 3.9: Two DBR-MRR configurations reflectivity spectra and reflection spectra overlaid
on the Θ - |r| plane.

Figure 3.9 depicts the two DBR-MRR configurations’ reflectivity spectra and the micror-

ing’s reflection spectra overlaid on the Θ - |r| plane. Figure 3.10 plots the resultant reflection

spectra of the DBR-MRRs. We observe only a single peak at the design frequency as desired.

Note that the full DBR-MRR’s |rint| should be approximately one half the corresponding
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Figure 3.10: Reflection spectra of the two single-peak DBR-MRR configurations.

value in the half DBR-MRR in order to satisfy Eq. (3.23); there are twice more reflection

interfaces for the full DBR-MRR than for the half DBR-MRR.

3.7 Ultra-Narrow Transmission Filter

In this section, I will discuss the case of a FP element inserted microring where the mirror

reflectivity of the FP element is significant. Such element can be effectively realized by

employing a DBR etalon structure, which consists of a DBR grating as the end mirrors.

This DBR etalon integrated microring structure will be referred to as DBR-E-MRR, and its

schematic diagram is drawn in Fig. 3.11.
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Figure 3.11: Schematic diagram of a DBR-E-MRR. d is the length of the DBR etalon, and
L is the length of the microring excluding the scattering element.

For analysis, we start by re-writing Eq. (3.14) and Eq. (3.15) as

tFP =
t2ge

jθd

1− r2
ge
j2θd

=
t2g(e

jθd − r2
ge
−jθd)

1− 2r2
g cos 2θd + r4

g

= |tFP |ejθFP (3.31)

rFP =
−rg(1− ejθd)

1− r2
ge
j2θd

(3.32)

|rFP |2 =
r2
g(2− 2 cos 2θd)

1− 2r2
g cos 2θd + r4

g

=
4r2

g(1− cos2 θd)

(1 + r2
g)

2 − 4r2
g cos2 θd

(3.33)

where rg and tg are the effective mirror reflectivity from the grating. At the design wave-

length, we have [20, Ch. 3]

rg = tanh (N ln (
1 + rint
1− rint

)), (3.34)

and tg =
√

1− r2
g for the lossless case. The phase of the transmission coefficient of the

etalon tFP and its derivative can be solved from Eq. (3.31):

θFP = arctan (Γ tan θd) (3.35)

∂θFP
∂θd

=
Γ sec2 θd

1 + Γ2 tan2 θd
, (3.36)

where Γ =
1+r2g
1−r2g

. We re-write Eq. (3.35) as θd = arctan ( 1
Γ

tan θFP ), and plugging it into
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Eq. (3.33) yields

|rFP | =
2rg tan θFP√

(1 + r2
g)

2(tan2 θFP + Γ2)− 4Γ2r2
g

, (3.37)

where the trig identity cos (arctanx) = 1√
1+x2 has been used.

For rg ≈ 1 and d = λ0,e

2
, we obtain ∂θFP

∂β
= Γd >> ∂θ

∂β
= L near the design wavelength. This

condition implies that θ is a slowly varying function compared to θFP , and therefore we can

approximate Θ(β) = θ(β) + θFP (β)−β0Lt ≈ θFP (β) + 2π−β0Lt near the design wavelength

because θ(β0) = β0L = β0λ0,e = 2π is the phase shift from the ring portion of length L = λ0,e.

Note that β0Lt = 2mπ for some integer m by designing the total circumference Lt = mλ0,e.

By plotting Eq. (3.37) on the Θ - |r| plane, we can anticipate the spectral response of the

DBR-E-MRR structure. Note that in the analysis, we are assuming that rg is a constant

value near the design wavelength given by Eq. (3.34); in reality, the value of rg will change,

and one can employ the transfer matrix method discussed in Section 2.5 to more accurately

evaluate the spectral reflection of the DBR etalon structure.

Figure 3.12a plots Eq. (3.37) on top of the colored contour graph near the design wave-

length for rg = 0.99. Because |r| = 0 at the design wavelength, we expect to see a very

narrow linewidth transmission at the design wavelength until it intersects with the critical

reflection condition rc (red color). Because rc is typically very small, we expect to observe

that the FWHM of the DBR-E-MRR is much smaller than that of the etalon. Figure 3.12b

compares the transmission spectra of the two structures. Note that 2δΘDBR−E−MRR ≈

0.02 << 2δΘEtalon ≈ 0.25.

3.8 Sharp Cut-Off Mirror

If we slightly detune the etalon length d′ = d+δ and the ring-only length L′ = L−δ, then we

expect to see the spectral reflection of |r(Θ)| shift horizontally on the Θ - |r| plane, as seen in

Fig. 3.13a. From the graph, we expect to see a sharp transition between 100% reflection to

100% transmission near the design wavelength for the lossless case. Figure 3.13b shows the

reflection and transmission power of the detuned DBR-E-MRR structure. As anticipated,

we realize a sharp cut-off mirror near the design wavelength. This could have applications
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(a) Reflection spectrum of DBR etalon on the Θ - |r| plane for rg = 0.99 under
lossless condition.

(b) Transmission spectra of the DBR-E-MRR and its etalon structure under loss-
less condition.

Figure 3.12: Ultra-narrow transmission filter employing DBR etalon in the microring. Notice
the significant narrowing of the linewidth for the DBR-E-MRR.
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(a) Reflection spectrum of detuned DBR etalon on the Θ - |r| plane for rg = 0.5
under lossless condition.

(b) Reflection and transmission spectra of the detuned DBR-E-MRR under loss-
less condition.

Figure 3.13: Sharp cut-off mirror configuration of the DBR-E-MRR by slightly detuning the
etalon length d.
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in optical switching. In practice, it will be a technical challenge to accurately resolve a very

small detuning length δ.
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CHAPTER 4

CONCLUSION

4.1 Achievements

In this thesis, I presented a semi-analytic model of the microring resonators with integrated

scattering elements. When a scattering element is introduced in the ring resonator, two

modes of waves propagating in the opposite directions in the ring are coupled. By engineering

the reflectivity spectrum of the inserted element, one can obtain a mirror with series of peak

reflection or a single-peak reflections. Its compact structure and flexible design make it a

good candidate for in-plane mirrors, filters, and switches for photonic integrated circuits.

4.2 Future Directions

The modeling presented in the thesis assumes that numerical values of structure parameters,

such as the coupling coefficient κ, propagation loss in the ring α, modal index ne, and reflec-

tion spectrum of the inserted network r, are precisely known. In practice, these parameter

values cannot be determined, simulated, or fabricated with exact precision. It is therefore

desired to study the sensitivity analysis of the structure’s reflection spectrum for a given de-

viation in the parameter values. In addition, developing recipes to fabricate the devices that

fall within operational range of target physical dimensions and material properties needs to

be done. Lastly, measurement, testing, and analysis of the devices is also very important for

realization of the microring structures presented in the thesis.
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APPENDIX A

SCATTERING MATRIX PROPERTIES

A.1 General Case

For a four-port network of normalized fields, inputs x1, x2 and outputs y1, y2 can be related

by a general scattering matrix S,y1

y2

 = S

x1

x2

 =

S11 S12

S21 S22

x1

x2

 (A.1)

where Skl = |Skl|ejφkl and 0 ≤ φkl < 2π is the phase of the corresponding element Skl. To

accurately characterize a given network, we need to define eight nonnegative real variables,

four magnitude terns |Skl| and four phase terms φkl.

A.2 Reciprocal Case

Reciprocity of a network imposes a condition on a scattering matrix

ST = S, (A.2)

which simply yields,

S12 = S21. (A.3)

Thus, a scattering matrix of a reciprocal network has the general form

S =

S11 S12

S12 S22

 . (A.4)
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A.3 Lossless Case

The sum of input power is given by

|x1|2 + |x2|2 =

x1

x2

† x1

x2

 , (A.5)

and similarly the sum of output power is given by

|y1|2 + |y2|2 =

y1

y2

† y1

y2

 =

S

x1

x2

†S

x1

x2

 =

x1

x2

† S†S
x1

x2

 . (A.6)

If a network is lossless, the sum of input power must equal to the sum of output power.

Equating Eq. (A.5) and Eq. (A.6), we obtain a constraint on the scattering matrix,

S†S = I, (A.7)

which then yields the following three conditions:

|S11|2 + |S21|2 = 1 (A.8)

|S12|2 + |S22|2 = 1 (A.9)

S∗11S12 + S∗21S22 = 0. (A.10)

Equations (A.8), (A.9), and (A.10) each give a constraint to a magnitude term, and Eq. (A.10)

gives an additional constraint to a phase term. Simplifying the constraints results in

|S12| =
√

1− |S11|2 (A.11)

|S21| =
√

1− |S11|2 (A.12)

|S22| = |S11| (A.13)

φ11 + φ22 = φ12 + φ21 +mπ, (A.14)
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where m = ±1 or ±3. Applying these conditions to the scattering matrix S, we obtain

S =

|r|ejφ11 |t|ejφ12

|t|ejφ21 |r|ejφ22

 (A.15)

=

|r|ej φ11−φ22
2 |t|ej(φ12−ψ)

|t|ej(φ21−ψ) |r|e−j
φ11−φ22

2

 ejψ (A.16)

=

 |r|ejφr |t|ej
φ12−φ21−mπ

2

|t|e−j
φ12−φ21−mπ

2 e−jmπ |r|e−jφr

 ejψ (A.17)

=

 |r|ejφr |t|ejφt

−|t|e−jφt |r|e−jφr

 ejψ (A.18)

=

 r t

−t∗ r∗

 ejψ, (A.19)

where |r| = |S11|, |t| =
√

1− |S11|2, and ψ = φ11+φ22

2
. Thus, a lossless condition on the

network reduces the number of free variables of the scattering matrix to one magnitude

variable |r| and three phase variables φr, φt, and ψ.

A.4 Lossless Reciprocal Case

If a lossless network is also reciprocal, we impose an additional condition on Eq. (A.19) as

follows:

t = −t∗. (A.20)

From Eq. (A.20) we obtain t = ±j|t|. The sign can be lumped into φr and ψ by adding π

to each term. Therefore, a scattering matrix of a lossless reciprocal network is described by

a general form

S =

 r j|t|

j|t| r∗

 ejψ =

−j|r|ejφr |t|

|t| −j|r|e−jφr

 ej(ψ+π
2

), (A.21)
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which is characterized by one magnitude term |r| and two phase terms φr, ψ. Note that the

transmission phase shift of the network is given by φ12 = ψ + π
2
.
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