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ABSTRACT

In urban areas, estimation of ground movements due to excavation is critically
important. In this thesis after a short review of currently used methods in practice for
estimating excavation induced ground movements, a novel inverse analysis approach,
self-learning in engineering simulation (SelfSim), is presented. SelfSim is applied to deep
excavations in order to extract underlying soil behavior.

The performance of the SelfSim inverse analysis is compared to inverse analysis
based on a genetic algorithm. In the SelfSim approach, soil behavior is extracted from in
situ measurements without a pre-defined constitutive model. In the genetic algorithm
approach, soil parameters of an existing constitutive model are identified using field
measurements. The performance of both techniques in capturing soil displacements and
in predicting of soil behavior associated with the Lurie Center excavation in Chicago is
presented.

In order to demonstrate SelfSim’s capabilities in learning soil behavior using
different instrument measurements, a simulated deep excavation is analyzed. The quality
of the extracted behavior is examined by deploying different instrument configurations.
The instruments required to provide sufficient information for SelfSim to extract soil
behavior are identified. Then, some of the findings are further demonstrated in a case
study of an excavation in Taipei soft clays.

To illustrate that it is possible to learn from local experience and predict
excavation performance in similar soil stratigraphy, case studies in Texas, Shanghai and
Taipei are analyzed. The difficulties associated with the use of measured excavation
response that is incompatible with recorded construction activity and the importance of
engineering judgment in preparing measurement data for inverse analysis are highlighted.

Finally, it is shown that the 2D extracted soil behavior of excavation in Chicago
clays can not provide a reasonable excavation performance for an elevated ground
surface excavation in Chicago suburbs within similar soil stratigraphy. It is demonstrated
that the 3D effects of excavation are captured via 3D modeling using SelfSim. At the end,
the extracted soil behavior from 3D analysis is discussed and compared to extracted soil

behavior from 2D analysis.
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CHAPTER 1 INTRODUCTION

There is a high demand for underground space in urban areas. In high density
populated urban areas, there is a great concern for excessive movements induced by
underground space. Therefore, it is critically important to estimate and control the
magnitude and distribution of excavation-induced ground deformations.

In practice, both semi-empirical approaches (Peck 1969; Clough and O'Rourke
1990) and numerical modeling are used to estimate ground deformations due to
excavation. Instruments often are installed to monitor and control the performance of
excavations. If the observed performance of the excavation shows intolerable
deformations changes in the design and construction procedure of excavation is made.

While engineers benefit from semi-empirical methods that are developed based on
previous case studies, there is a gap between numerical modeling and learning from case
histories. Constitutive models are the critical component of numerical modeling. In
typical numerical modeling, an existing constitutive model for various soil and rock
materials is used to represent each sublayer. These constitutive models have all been
developed within the framework of nonlinear elasticity, plasticity, hypoelasticity etc.
They require many model parameters that sometimes have no physical meaning. In many
cases, determining these parameters requires complex laboratory tests that are not
typically available in practice. Numerical models have generally been used for adjusting
or calibrating soil parameters of conventional constitutive models. In most cases the
calibrated material models were site-specific and could not capture material behavior
within similar soil stratigraphy.

Therefore, due to difficulties associated with conventional constitutive models, a
new approach for developing constitutive models and performing numerical modeling of
deep excavations is used in this thesis. In this novel approach the soil constitutive model
is extracted from field measurements that are the actual representation of stress-strain in
an excavation.

Application of this approach is demonstrated for six case studies in this thesis. It
is shown that how it is possible to incorporate numerical simulations as an integral

component in the application of the observational method in geotechnical engineering.



This thesis is divided into four main topics that are discussed after a review of currently
used methods for estimating excavation induced ground movements in practice and a
review of development of “Self Learning in Engineering Simulations” (SelfSim): 1)
comparison of two inverse analysis techniques for learning deep excavation response; 2)
the interplay between field measurements and soil behavior for capturing supported
excavation response; 3) case studies of prediction of excavation response using learned
performance of excavations; and 4) two- and three-dimensional inverse analyses of deep
excavations in Chicago clays.

1. Comparison of two inverse analysis techniques for learning deep
excavation response: Chapter 3 describes and compares two inverse analysis approaches
for an excavation project in downtown Chicago. The first approach is a parameter
optimization approach based on a genetic algorithm. The second approach, self-learning
in engineering simulations (SelfSim), is an inverse analysis technique that combines
finite element method, continuously evolving material models, and field measurements.
The optimization based on the genetic algorithm approach identifies material properties
of an existing soil model, whereas the SelfSim approach extracts the underlying soil
behavior unconstrained by specific assumptions of a soil constitutive model.

2. The interplay between field measurements and soil behavior for capturing
supported excavation response: Chapter 4 demonstrates the integration of inverse
analysis and instrument measurements. It is shown that how it is possible to provide
information on excavation performance at locations where no instrumentation are
available. In this study the relationship between various instruments typically used on an
excavation project and the quality of information that can be extracted for excavation
modeling is examined. A synthetically generated set of instrument measurements that
include inclinometers, surface settlement points, extensometers, heave gages, piezometers
and strain gauges, using an idealized soil profile are initially used. The findings are
further demonstrated with a well-instrumented deep excavation case study in Taipei.

3. Case studies of prediction of excavation response using learned
performance of excavations: Chapter 5 illustrates the performance of SelfSim inverse
analysis approach, with a special focus on its ability to provide soil models based on field

measurements that can predict other excavation performance in similar ground conditions



in Texas, Shanghai and Taipei. The difficulties associated with the use of measured
excavation response that is incompatible with the recorded construction activity and the
importance of engineering judgment in preparing measurement data for inverse analysis
are discussed. In the Texas A&M full scale model wall, the limitations of inverse analysis
in modeling the slippage of the wall and predicting settlements are demonstrated.

4, Two- and three-dimensional inverse analyses of deep excavations in
Chicago clays: Chapter 6 demonstrates the performance of the extracted soil behavior
using SelfSim, from 2D excavation simulation of Lurie Center in Chicago in predicting
the excavation response in Ford Center excavation with similar soil stratigraphy. It is
shown that due to an elevated ground surface around the Ford Center excavation site, 2D
simulation can not provide a reasonable prediction of ground movements around the
excavation. The numerical development required for 3D modeling of excavation using
SelfSim inverse analysis is demonstrated. Then, SelfSim inverse analysis is conducted to
extract the 3D behavior of Ford Center deep excavation from inclinometer measurements
around the excavation. The extracted global response and soil behavior is discussed in

detail.



CHAPTER 2 ESTIMATING EXCAVATION INDUCED GROUND
MOVEMENTS

2.1. Introduction

In urban areas there is a continuing and increased demand for underground space.
It is critically important to estimate and control the magnitude and distribution of ground
movements that result from developing underground space. Since the excavation
construction can influence surrounding structures, observational programs are commonly
set up at an excavation site to evaluate the design assumptions, determine causes of
movements, improve the construction procedure, determine the need for immediate
repair, and evaluate the stability of the excavation. This thesis focuses on applying novel
inverse analysis, SelfSim, in deep excavations and predicting soil movements in response
to excavations.

In this chapter, Section 2.2 describes important factors needs to be considered in
deep excavations. Section 2.3 summarizes related work to numerical modeling of deep
excavations. Section 2.4 addresses the techniques used for deep excavation inverse
analysis. Section 2.5 reviews the SelfSim inverse analysis framework. Section 2.6
explains the application of SelfSim into various geotechnical problems, and Section 2.7

discusses the outstanding issues about deep excavation.

2.2. Important design factors for deep excavations

Observational methods, introduced by Terzaghi and Peck (1948) and Peck (1969)
are used in applied soil mechanics to monitor, control and learn soil behavior. Monitoring
ground and support system response, recording construction activities, and learning from
measured data to extract underlying soil behavior is an important component of this
method. Consequently, the design of braced excavations is based for the most part on
empirical procedures and precedent (Dunnicliff 1996).

Table 2-1 summarizes typical factors that influence the performance of an
excavation. An adequate design has to ensure acceptable structural performance of the
bracing system based on the maximum estimated forces. Section 2.2.1 describes various

approaches used for stability calculations of deep excavations. Section 2.2.2 presents a



brief description of the more commonly adopted design recommendations for excavation
supports. Soil displacements are generally the limiting component in design of urban
excavations; therefore, predicting soil movements is usually a primary consideration.
Section 2.2.3 summarizes various methods based on observed field behavior for
predicting the magnitude and distribution of soil movements in response to excavation.
These methods are only capable of giving approximate estimates of ground movement,
and give limited insight into factors affecting their magnitude and distribution. More
reliable site specific calculations can be achieved using non-linear finite element analyses

that incorporate realistic constitutive models of soil behavior.

2.2.1. Stability

Limit equilibrium methods are widely used in design practice and include
separate calculations of basal stability based on failure mechanisms proposed by Terzaghi
(1943), and Bjerrum and Eide (1956) and overall system stability (Bishop 1955; Spencer
1967). The factor of safety against basal heave is important in estimating ground
deformations of excavation and the support systems constructed in soft cohesive soils
(Mana and Clough 1981). Hashash and Whittle (1996) summarized a number of
alternative methods (Terzaghi 1943; Bjerrum and Eide 1956; Hashash and Whittle 1992;
O'Rourke 1992) for determining the factor of safety against basal heave as provided in
Table 2-2. They also compared results of parametric finite element analyses with the
closed-form methods and concluded that the penetration depth of the support wall has a
significant influence on the overall stability of the excavation and that failure of the soil
is constrained by the presence of the wall unless structural failure of the wall occurs. It
should be noted that this thesis does not deal with stability problems of deep excavations,

but with pre-failure ground movements.

2.2.2. Earth pressures and support system

The support system for deep excavations consists of a retaining wall and wall
supports. Sheetpiles and concrete diaphragm walls are two of the more commonly used
support walls. The wall is either internally braced or anchored with tiebacks. Structural
design focuses on ensuring that the support system can withstand the projected loads and

can control movements within specified allowable limits.



Four important issues are often considered in the design of the support wall: (a)
sufficient strength to resist estimated loads; (b) appropriate wall stiffness to limit bending
and deformation; (c) appropriate embedment depth to guarantee stability; and (d)
adequate embedment depth to control seepage into the excavation.

The selection of support stiffness and spacing generally relies on practical issues
such as minimum spacing to accommodate construction activities. However there are
design methods that recommend anticipated forces on the struts for controlling soil
deformations or estimating projected loads. The most widely used method for estimating
earth pressure for the design of lateral wall support is the empirical apparent earth
pressure diagrams proposed by Peck (1969). These diagrams are based on field
measurements of strut loads for excavations in various soil types supported by sheet piles
and soldier piles and are referred to as apparent earth pressures. Figure 2-1 outlines
apparent earth pressures diagrams suggested by Terzaghi et al. (1996) for excavations in
both clay and sand. Despite their development based on measurements from strutted
excavations, the apparent earth pressure envelopes have been widely used for estimating
the earth pressure in both tieback and strutted excavations. Mueller et al. (1998)
summarized the methods used for design of ground anchor walls. In general the choice of
an appropriate earth pressure diagram for estimating loads for the wall support depends
primarily on the tolerable wall and soil movement. Apparent earth pressures diagrams
shown in Figure 2-1 are more appropriate for excavations supported using relatively

flexible walls and, are not necessarily applicable to excavations using stiff walls

(Hashash and Whittle 2002).

2.2.3. Ground movements

In dense populated urban environments, there is a great concern about excessive
movement of the soil due to excavation. The design of the excavation support system
must limit ground deformations within an allowable range. Therefore, it is critically
important for both design engineers and contractors to estimate the magnitude and
distribution of the ground movements caused by the excavation (Boscardin and Cording
1989). Since there is high risk of litigation over damages caused by excavation
construction, the accurate estimation of ground movements is of primary concern in the

design process of deep excavation in urban areas. Figure 2-2 illustrates general pattern of



ground movements’ profiles as observed in typical excavations. In general, existing
methods of predicting excavation performance are either based on empirical observations
or numerical simulations. Empirical studies attempt to develop general relationships
between observed ground movements and construction activities based on actual
observations from a number of similar excavations.

Peck (1969) provided a framework for understanding the factors that control the
performance of deep excavation supporting system. Peck (1969) compiled ground surface
settlement data measured adjacent to temporary braced sheet pile and soldier pile walls
with struts or tieback support, and summarized the data normalized by the excavation
depth as shown in Figure 2-3. The figure defines three zones, each representing certain
ground conditions. The data suggest that excavations within a thick layer of soft to
medium clay can generate large settlements, often greater than 2% of the excavation
depth adjacent to the support wall, and extend laterally up to four times the excavated
depth from the wall. Hashash et al. (2008) (appendix A) studied the excavation induced
ground deformations measured in Central Artery/Tunnel project in Boston and reported
that for stiff walls the lateral movements can extend up to five times of excavation depth.
Therefore, considering that this chart is based on data from relatively flexible support
walls, the use of the results for much stiffer wall systems such as concrete diaphragm
walls is not reliable.

Clough et al. (1989) and Clough and O’Rourke (1990) presented a semi-empirical
method for estimating excavation deformations in soft clays. The maximum lateral
deformations caused by the excavation depend on the system stiffness and the factor of
safety against basal heave. The overall stiffness of the support system is typically
expressed in terms of an effective stiffness of the system and is defined in Figure 2-4.
They noted that when factor of safety against basal heave is less than 1.5, the system
stiffness can significantly influence the soil movements. Figure 2-4 allows the estimation
of maximum lateral deformation as a percentage of the depth of the excavation, once the
system stiffness has been selected and the factor of safety against basal heave has been
estimated. It should be noted that the factor of safety calculated as proposed by Clough et
al. (1989) ignores the increase of stability due to wall embedment. Hashash et al. (2008)



showed that the results of embedment of the wall can limit the soil movements to much
lower magnitudes than what is proposed in their chart.

Figure 2-5 and Figure 2-6 proposed by Clough and O’Rourke (1990) show
maximum lateral wall deflection and surface settlements respectively as a function of
excavation depth. These figures are commonly used as design tools to estimate maximum
wall and soil movements. Hashash et al. (2008) illustrated that for Central Artery/Tunnel
project the large stiffness of the supporting system and wall embedment limits the lateral
deformations and surface settlements to lower magnitudes than what is proposed by
Clough and O’Rourke (1990). Clough and O’Rourke (1990) also presented dimensionless
settlement profiles in Figure 2-7 as a basis for estimating settlement patterns adjacent to
excavations. Separate profiles were developed for sands, stiff to very hard clays and soft
to medium clays. With knowledge of the maximum settlement, the dimensionless
diagrams in Figure 2-7 can be used to obtain an estimate of the actual surface settlement.
The figure shows that the settlement influence zone extends a distance of about three
times the depth of the excavation (3H) for excavations in stiff to very hard clays and 2H
for excavations in sands and soft to medium clays. However based on Hashash et al.
(2008) for stiff supporting systems, the influence zone can extend up to five times of
excavation depth.

Based on 10 case histories in Taipei, Taiwan, Ou et al. (1993) observed that the
vertical movements of the soil behind the wall may extend to a considerable distance. For
the concave settlement profile, Hsieh and Ou (1998), proposed an envelope for both soft
clay and stiff clay to take into account the settlements in farther distances than 2H from
the excavation, Figure 2-8.

Since empirical and semiempirical methods (Peck 1969; Clough and O'Rourke
1990; Ou et al. 1993; Bowles 1996; Hsieh and Ou 1998) have incomplete linkage
between wall deflections and surface settlement and do not quantify uncertainty in the
estimates of deformations, Kung et al. (2007) proposed a simplified semiempirical model
for estimating maximum wall deflection, maximum surface settlement, and surface
settlement profile for soft to medium clays. Kung et al. (2007) proposed a model (KJHH),
that consists of three component models for predicting wall deflection, deformation ratio,

and ground surface settlement profile caused by a braced excavation in soft to medium



clays. The KJHH model, developed based on thirty-three case histories of braced
excavations in soft to medium clays (obtained from Taipei, Singapore, Oslo, Tokyo, and
Chicago), and the results of a large number of well-calibrated FEM analyses. They also
demonstrated that maximum wall deflections has to be modified by deflection reduction
factor due to presence of hard stratum. The deflection reduction factor K, is related to the
ratio of the depth to hard stratum, measured from the current excavation level, over the
excavation width (T/B). At smaller T/B ratios (T/B<0.4), the presence of the hard stratum
has a great influence on the magnitude of the calculated maximum wall deflection, and at
T/B>0.4, the influence of the hard stratum is negligible, Figure 2-9.

Measurements from model tests have been another tool to investigate ground
movements. Mueller (2000) performed model tests at the University of Illinois on a
solder pile wall with tie-backs in sand and measured surface settlement and lateral wall
displacements for different construction stages. Mueller (2000) also reported results of
analysis using theory of beam on elastic foundation (BOEF). In this approach soil is
idealized by linear springs with certain assumptions regarding soil stiffness.

The above-mentioned empirical and semiempirical correlations estimate ground
movements and support loads on the basis of soil type, workmanship, system stiffness
and the factor of safety against basal heave. These variables correspond to a small
number of the possible factors affecting the performance of deep excavations. Obtaining
relationships for the other factors using empirical data is a complex task since capturing
the effects caused by a single factor requires a significant number of case histories.
Accessing and analyzing such a large number of case studies is extremely difficult;
therefore, many have resorted to performing complementary numerical analyses that are

capable of modeling actual constructions.

2.3.  Numerical models

In recent years, numerical simulations have become much more common for the
analysis of excavations in urban environments. Numerical models are used to predict
induced ground deformations due to excavation (Morgenstern and Eisenstein 1970;
Wong 1970; Clough and Duncan 1971; Clough and Tsui 1974; Clough and Mana 1976;
Mana and Clough 1981; Finno and Harahap 1991; Hashash 1992; Hashash and Whittle
1993; Hsi and Small 1993; Whittle et al. 1993; Whittle and Hashash 1994; Ng et al. 1995;



Hashash and Whittle 1996; Ou et al. 1996; Ou et al. 2000; Potts and Zdravkovic 2001;
Hashash and Whittle 2002; Ukritchon et al. 2003; Finno and Calvello 2005; Finno and
Roboski 2005; Kung et al. 2007; Ou et al. 2008; Kung et al. 2009).

Finite element predictions contain uncertainties related to soil properties, support
system details, and construction procedures. Although many factors such as limited
information about the construction sequence (Clough and O'Rourke 1990); limited site
investigation (Hashash and Whittle 1996); inappropriate representation of the soil
constitutive behavior (Finno and Harahap 1991) limit the application of excavation
simulations, they are still very useful tools to predict excavation performance.

In practice generally plane strain two-dimensional (2D) analysis is conducted to
assess wall and ground movements in the center of each side of the excavation. This
simplifying assumption sometimes is not consistent with actual excavation. In more
complex analysis that the behavior of corner or shorter side of the excavations is
concerned, the analyses apply axisymmetric assumption. To date, due to high cost of
computational and time constraints, the full three-dimensional (3D) analyses have been
rarely applied in practice. A number of studies have been conducted to describe the 3D
modeling of deep strutted excavations in a variety of soil conditions (St-John 1975; Ou et
al. 1996; Ou and Shiau 1998; Zhang et al. 1999; Moormann and Katzenbach 2002; Finno
and Roboski 2005; Zdravkovic et al. 2005; Ou et al. 2008).

Ou et al. (1996) proposed a nonlinear, three- dimensional finite element technique
for modeling deep excavations. They analyzed the effect of the existence of corner effect
on the deflection behavior of an excavation in soft to medium clayey subsoil stratum. By
performing a series of parametric studies, a tentative relationship was developed for
estimating three-dimensional maximum wall deflection of an excavation based on two-
dimensional finite element results. The proposed technique was explored in detail for
TNEC excavation case study by Ou et al. (2000).

Finno et al. (2007) conducted 150 finite element simulations to define the effects
of excavation geometry, i.e., length, width, and depth of excavation, wall system
stiffness, and factor of safety against basal heave on the three-dimensional ground
movements caused by excavation through clays. The results of the analyses were

represented by the plane strain ratio (PSR), defined as the maximum movement in the
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center of an excavation wall computed by three-dimensional analyses normalized by that
computed by a plane strain simulation. Results of their analysis showed that the value of
PSR is affected by (1) the ratios of the length of wall to the excavation depth (L/He); (2)
the plan dimensions of the excavation, L/B, with L being the side where movements are
computed, (3) the wall system stiffness (El/ywh4) as defined by Clough et al.(1989); and
(4) the factor of safety against basal heave. Of these factors, the L/He ratio was the most
influential for the range of parameters considered. When L/He is greater than 6, the PSR
is equal to one and results of plane strain simulations yield the same displacements in the

center of an excavation as those computed by a 3D simulation.

2.4. Inverse analysis approach

Inverse analyses have been applied to geotechnical problems for several decades
(Sakurai and Takahashi 1969; Cividini and Rossi 1983; Gioda and Sakurai 1987,
Hashash et al. 2006). These techniques allow engineers to evaluate numerically
performance of geotechnical structures by a quantifiable observational method. Inverse
analyses have been used to identify soil parameters from laboratory or insitu tests
(Anandarajah and Agarwal 1991; Zentar et al. 2001; Samarajiva et al. 2005),
performance data from excavation support systems (Ou and Tang 1994; Hashash and
Whittle 1996; Calvello and Finno 2004), excavation of tunnels in rock (Sakurai and
Takahashi 1969; Gens et al. 1996; Gioda and Locatelli 1999), and embankment
construction on soft soils (Arai et al. 1986; Honjo et al. 1994).

The common application of numerical modeling is “back calculation”, in which
the simulated model is adjusted to agree with measured values. This approach is
primarily a linear process with ad hoc loops as follows (

Figure 2-10):

1) Problem definition and model idealization: The problem is defined and the
objective of the simulation is determined. For excavations, model simulation is used to
estimate anticipated ground deformations.

2) Material property, in situ and laboratory testing: The material properties are

determined either in the lab or in the field.
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3) Material constitutive behavior, model and property choices: A material
constitutive model that best represents the stress-strain behavior of the soil is selected
based on information gained in Step 2.

4) Boundary value problem solution: A finite element or finite difference analysis
program is used with selected soil model. The model computes anticipated ground
deformations including lateral wall displacement and surface settlement.

5) Comparison to measured field behavior: Computed and measured ground
deformations are compared during construction. The most common field measurements
are lateral wall deflections and surface settlements. If a significant discrepancy between
the computed results and the actual measurements exist, often an ad hoc loop of adjusting
model properties (back to Step 3), re-analysis (Step 4) and matching of field
measurements (Step 5) is performed.

6) Analysis of future excavations/stages: The constitutive model is then used to
compute deformations due to additional excavation stages or for similar excavations.

This approach to the solution of boundary value problems is not always successful
in capturing measured field behavior due to various factors including the lack of
sufficient knowledge of soil behavior under complex shearing modes experienced in the
field (Hashash et al. 2006).

It is desirable for a numerical model to learn from precedent represented by field
observations. Learning from precedent represents a classic inverse analysis problem
aimed in part at interpreting the soil and stress response implied by field observations.
For example, during an excavation, the measured lateral wall deformations and surface
settlements are a result of complex shearing of the surrounding soil, and therefore the
observed deformations contain rich information on the stress—strain response of the soil.
Therefore, data collected from the instruments can be used in inverse analyses after
construction (Hsi and Small 1993; Whittle et al. 1993; Ng and Lings 1995; Jan et al.
2002; Finno and Calvello 2005; Marulanda 2005; Hashash et al. 2006). Field
measurements of deep excavations have also been reported in the literature (O'Rourke et
al. 1976; O'Rourke 1981; Finno et al. 1989; Finno and Harahap 1991; Ou and Tang 1994;
Whittle and Hashash 1994; Ou and Wu 1996; Briaud and Lim 1997; Lee et al. 1998; Ou
et al. 1998; Weatherby et al. 1998; Briaud and Lim 1999; Koutsoftas et al. 2000; Ou et al.
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2000; Calvello and Finno 2004; Finno and Calvello 2005; Finno and Roboski 2005; Liu
et al. 2005; Wang et al. 2005; Su et al. 2006; Hashash and Song 2008; Rechea et al. 2008;
Levasseur et al. 2008c).

Ad hoc methods are often used to solve this inverse problem whereby soil model
parameters are adjusted in order to more closely match numerical model calculations with
field observations. In many cases the ad hoc approaches for model update are not
sufficiently general. A simulation that is adjusted to fit results of a given excavation site
may not provide a good estimate of response at another excavation site with a different
support configuration. It is worth noting that learning from precedent in this thesis
excludes issues related to problems associated with construction quality, and is instead
focused on observed behavior that can be associated with well defined construction

activity.

2.4.1. Optimization techniques

Optimization techniques (Gioda and Sakurai 1987; Ou and Tang 1994; Ledesma
et al. 1996; Pal et al. 1996; Zentar et al. 2001; Calvello and Finno 2004; Samarajiva et al.
2005; Levasseur et al. 2008; Levasseur et al. 2009a) are used as an alternative to ad hoc
methods for solving the inverse problem and for learning from precedent. Given a
numerical model, unknown properties of the material constitutive model are
systematically adjusted to minimize the error between numerical model calculations and
observed response. However, the number and type of input parameters to be optimized
depends upon many factors, including the characteristics of the selected soil model, how
the model parameters are combined within the element stiffness matrix in a finite element
formulation, the site stratigraphy, the number and type of observations available, the
characteristics of the simulated system, and computational time issues. Calvello and
Finno (2004) deployed a computer code UCODE (Poeter and Hill 1998) and Hardening-
Soil (H-S) model in back analysis of supported excavations. Their results showed that the
accuracy of back-figuring the observed excavation-induced wall deflection is satisfactory.

Tang and Kung (2009) used a nonlinear optimization technique (NOT)
incorporating the auxiliary techniques to enhance the convergence and stability of the
optimization analysis for supported excavations. The developed NOT was used for the

back analysis of excavation to back-figure soil parameters based on observed
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deformations. Only wall deflection was used and no other excavation induced
deformation (e.g. settlements) was explored in their study. Since many factors such as
soil stiffness and small-strain non-linearity of soil behavior is difficult to represent in
conventional soil models, the back-figured parameters are generally different than real
parameters and the back-figured parameters regarded as the equivalent parameters.

In another related study, Levasseur et al. (2008 a; 2008b) proposed the genetic
algorithm as a new optimization method for geotechnical inverse analyses and soil
parameter identification. This method was applied to reproduce the horizontal
displacement of the wall and was compared to other optimization techniques that are
based on gradient algorithm for Lurie Center case study in downtown Chicago (Rechea et
al. 2008). They concluded that since gradient algorithm assumes the solution of the
inverse problem is unique, and in the field of geotechnics there are a number of
uncertainties associated with in situ measurements, its use is problematic. However, they
recommended genetic algorithm which identifies a set of approximate solution is more
relevant for deep excavation simulations.

Overall, optimization techniques provide a powerful tool for model calibration
using field measurement, though they have some limitations (Hashash et al. 2006):

1) The techniques are unable to overcome inherent limitations in the selected
material constitutive model such as the inability to capture small strain nonlinearity
essential to representing the distribution of deformations around an excavation;

2) It is possible that several combinations of material model properties may lead
to similar estimates of deformations, leading to nonconvergence or nonuniqueness in the
solution.

3) Current modeling approaches are not always able to interpret and thus fully
benefit from the rich soil stress—strain data implied by field observations which results in

limited integration of numerical modeling with the observational approach.

2.4.2. The autoprogressive training algorithm

The field of constitutive relations has recently been extended beyond classical
elastoplastic theories to include artificial neural network (ANN) concepts. The learning
potential of NN material models has been realized using an innovative analysis technique

known as autoprogressive training (Ghaboussi et al. 1998). This technique allows the
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numerical model, for the first time, to extract the material constitutive relationship from
structural systems by using the measurements of loads and displacements.

A NN material model is used in the analysis, and is continuously updated based
on the rich field of stress-strain pairs obtained from the boundary value problem. This
technique has been applied to modeling of composites (Ghaboussi et al. 1998; Haj-Ali et
al. 2001), frictional triaxial tests (Sidarta and Ghaboussi 1998; Fu et al. 2007; Fu et al.
2007; Hashash et al. 2008), and nonuniform material tests (Ghaboussi and Sidarta 1998;
Shin and Pande 2000; Pande and Shin 2002).

Given that complex stress-strains paths are generated around a braced excavation,
it is argued that the rich constitutive information embedded in the global system behavior
can be directly identified from appropriate number of instruments. The autoprogressive
training algorithm provides a unique approach to extract rich sets of stress strain data
from field observations.

The algorithm requires two complementary sets of measured boundary conditions,
whereby each includes either forces or displacements at the boundaries. Using an
incremental non-linear finite element analysis, the two sets of boundaries are alternatively
imposed for each load/construction stage. The analyses produce complementary pairs of
stresses and strains that are used in training the NN material model. The procedure is
repeated until an acceptable match is obtained between the numerical analysis and the
measured data. The resulting NN material model can then be used in the analysis of new

boundary value problems.

2.5. SelfSim inverse analysis framework

Hashash et al. (2003; 2006) introduced a robust inverse analysis approach, self-
learning simulations (SelfSim), to extract soil behavior by using wall deformations and
surface settlements measurements. SelfSim is a software analyses framework that can be
applied to a wide range of engineering problems, including excavations as shown in
Figure 2-11. In a typical excavation problem, wall deformations and surface settlements
are measured at selected excavation stages (Step 1). At a given excavation stage, the soil
is excavated to a known depth and struts or another form of lateral supports (e.g.,
tiebacks) are placed to support the excavation wall. The measured deformations and the

corresponding known excavation stage represent complementary sets of field
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observations. A numerical model is developed to simulate the construction sequence.
ABAQUS (2005) is used as finite element engine for this method. The soil response is
represented using a NN based material constitutive model. Initially the soil response is
unknown and the NN soil model is pretrained using stress—strain data that reflect linear
elastic response over a limited strain range. Additional available soil behavior
information, such as that from laboratory tests, can be used in this initialization process
(Hashash et al. 2006).

In Step 2a of SelfSim a finite-element (FE) analysis using the current NN soil
model is performed simulating soil removal and support installation corresponding to a
given excavation stage. The FE analysis computes stresses and strains throughout the soil
in addition to wall and ground deformations based on equilibrium considerations. Most
likely, the computed deformations will not match measured deformations. SelfSim
stipulates that due to equilibrium considerations and the use of correct boundary forces
due to soil removal, the corresponding computed stress field provides an acceptable
approximation of the actual stress field experienced by the soil. The computed strain field
is considered to be a poor approximation of the actual strain field due to the discrepancy
between computed and measured deformations. In Step 2b of SelfSim a parallel FE
analysis using the same NN soil model is performed in which the lateral wall deflections
and surface settlements are imposed as additional displacement boundary conditions. The
soil is also removed to reflect the current excavation stage (Hashash et al. 2006).

The stress field from Step 2a and the strain field from Step 2b are extracted to
form stress—strain pairs that approximate the soil constitutive response and are used to
retrain the NN soil model. The analyses of Step 2 and the subsequent NN model training
are referred to as a SelfSim learning cycle. The analyses of Step 2 are repeated using the
updated NN soil model and a new set of stress—strain data are extracted for retraining of
the NN soil model in additional SelfSim learning cycles. The solution converges when
the analysis of Step 2a provides the correct ground deformation, i.e., analyses of Steps 2a
and 2b provide similar results. Several SelfSim learning cycles are performed for each
construction stage. The SelfSim learning cycles are performed sequentially for all
available construction stages. This results in a single SelfSim learning pass. SelfSim

learning passes are repeated until the computed and measured displacements match.
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The resulting NN constitutive model can be used in the analysis of other types of
excavations in similar ground conditions or a later excavation stages as illustrated in Step
3. The predictive capability of the developed NN soil model is limited to the stress—strain
levels extracted during SelfSim learning. The predictive capability of the model can be
extended by: (1) additional SelfSim learning using other available excavation case
histories; (2) using additional laboratory test data; and (3) using conventional constitutive
model at stress and strain levels outside those extracted from SelfSim learning (Hashash
et al. 20006).

The SelfSim analyses presented by Hashash et al. (2006) use lateral wall
deflections and surface settlement measurements to capture excavation response and
extract soil behavior. However, SelfSim framework is not limited to these two types of
measurements and can benefit from other measurements. Marulanda (2005) concluded
that additional instruments can potentially be used to develop a more reliable extracted
soil behavior.

The proposed framework “SelfSim” represents a major departure from
conventional methods for development and calibration of numerical models using
laboratory measurements and field observations in which such calibration is limited by
the capabilities and complexity of the material constitutive model. The SelfSim
framework in conjunction with a NN soil constitutive model is also distinctly different
from more common uses of neural networks in geotechnical engineering including deep
excavations (Goh 1996; Kiefa 1998; Jan et al. 2002) in which NN are used as simple
function approximators or to perform tasks where regression analysis will be sufficient.
Within SelfSim, the NN constitutive model can continuously evolve as additional field
observations become available. SelfSim opens new ways to systematically incorporate

field observations of excavation performance into numerical simulations.

2.6. Application of SelfSim in Geotechnical problems

SelfSim has been applied in broad range of geotechnical problems such as
numerical modeling of laboratory tests, seismic site response analyses, and deep
excavations.

Fu (2007) applied SelfSim learning in to two simulated laboratory test, a triaxial

compression shear test with frictional loading platens, and a triaxial torsional shear test

17



with frictional ends. Fu et al. (2007) demonstrated that SelfSim usefully extracts the
diverse stress-strain behavior from within the specimens. The extracted NN based
constitutive model was used in the forward prediction of the load-settlement behavior of
a simulated strip footing. Fu et al. (2007) demonstrate that it is possible to extract non-
uniform stress and strain states from global measurements of load and displacement.
Laboratory test imposing non-uniform conditions on tested soil specimen can then be
used in conjunction with the SelfSim framework to interpret a wide range of soil stress
strain behavior. For further exploration of SelfSim application, Hashash et al. (2008)
employed SelfSim to interpret Racci sand drained shear behavior. The sand specimens in
three different relative densities were tested under three different confining pressures in a
triaxial cell with frictional loading platens. SelfSim framework used to extract stress
behavior from within each specimen using load and displacement measurements. The
extracted behaviors from different tests were combined into a single NN material model.
The extracted stress strain provided insight into sand behavior under more general
loading modes.

Tsai (2007) integrated site response analysis and field measurements from
downhole arrays. Tsai and Hashash (2006; 2008) illustrated that SelfSim framework is
able to gradually capture the measured response while simultaneously extracting the
underlying soil behavior. The resulting soil model, used in a site response analysis,
provides correct ground response. Tsai and Hashash (2009) demonstrated that the
extracted cyclic soil behavior can be further enhanced using additional field
measurements. The algorithm was verified with four synthetic vertical array recordings
and also applied to Lotung and La Cienaga vertical array recordings. The extracted soil
behavior was compared with laboratory measurements and was used to assess influence
of number of cycles and loading rate on soil behavior.

The feasibility of extracting soil behavior from “field measurements” obtained
from simulated excavations using SelfSim was illustrated by Marulanda (2005). The
“field” measurements of lateral wall deflections and surface settlements were generated
synthetically using a FE model of a braced excavation. The target soil behavior was
represented using two plasticity-based soil models: (a) the Modified Cam Clay (MCC)
model (Roscoe and Burland 1968), and (b) the MIT-E3 model (Whittle 1987). After
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using surface settlements and lateral wall deflections, the results showed that the NN
material model learned sufficient features of soil behavior, in this case represented by
MCC or MIT-E3, to reproduce the global response of the excavation.

Since a NN material model allows learning and/or evolving from field
observations and case histories, learning from precedent which is an essential part of civil
and geotechnical engineering for developing empirical design methods, was explored
using SelfSim framework by Marulanda (2005). Marulanda (2005) used SelfSim to
extract soil behavior from three simulated excavation case histories with similar soil
stratigraphy to develop “local experience”. Then the extracted soil behavior was used to
predict the behavior of a new fourth excavation that is distinct from the case studies used
for SelfSim learning. The predicted wall deflections and surfaces settlements matched
reasonably well with the target measurements generated by MIT-E3 model. This exercise
with synthetic data demonstrated that through SelfSim it was possible to incorporate
knowledge gained from precedent in a predictive numerical analysis, and anticipate more
accurate assessment of ground response in deep excavations. However, this exercise was
conducted only with synthetic data by Marulanda (2005) and never was tested for deep
excavation case studies.

SelfSim framework was also examined in using instrumentation programs to
extract soil behavior by Marulanda (2005). Seven configurations in simulated
excavations with synthetic measurements generated by MIT-E3 were used in SelfSim
framework to extract soil behavior. The extracted soil model was used to compute wall
deformations and surface settlements (Marulanda 2005). The main important conclusions
was that lateral wall deflection as the only boundary condition imposed during SelfSim
learning does not provide sufficient constraints to correctly compute the surface
settlements. Using an additional inclinometer farther away from the excavation provided
enough information to capture surface settlements. While this conclusion was critically
important, the study had some limitations: 1) The study was focused on prediction of wall
deformations and surface settlements and not other instrument measurements around the
excavation; 2) The number of configurations were insufficient to make a general

conclusion regarding the effect of different instrument lay outs on extracted soil behavior;
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3) Only synthetic data in simulated excavations were used in the study and the

applications of the findings needed further exploration in excavation case studies.

2.7. Outstanding issues about deep excavations

The previous studies about deep excavations left some questions that motivated

this study:

1.

How can the accuracy of the extracted soil behavior in prediction be improved
during SelfSim learning? It is desirable to maximize the richness and diversity of
the extracted stress-strain database to enhance the performance of the extracted
material model. Various combinations of measurements can be used in SelfSim
to extract the soil behavior. Marulanda (2005) studied only a few combinations of
instrument layout for synthetic excavations. It is desirable in a systematic study to
investigate the effect of using different instruments on learning soil behavior.
Learning from local experience? In a given urban area, case histories of
excavation performance are available and could be used to develop “local
experience” in cases with similar stratigraphy. Marulanda (2005) showed that
SelfSim can be used to extract soil behavior from three simulated excavation case
histories and then the extracted soil model can be used to predict the behavior of a
fourth excavation. However, this approach was not validated using field case
histories.

Learning of 3-D excavation response? The analyses presented in Marulanda
(2005) simplify what is truly a three-dimensional response as a two dimensional
model. The plane strain assumption and the idealization of the field measurements
for a two dimensional analysis is a practical necessity in view of the substantial
additional computational effort involved in performing multiple three
dimensional, non-linear analyses needed for SelfSim. This simplification results
in the loss of information on 3-D soil response, therefore the information gained
from a three dimensional analysis is expected to provide a much richer and a more
general stress-strain data set.

In the following chapters these questions are addressed and discussed in details by

using numerical analysis and case histories.
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2.8. Summary

The deformation behavior of a braced excavation may be affected by a large
number of factors such as the excavation with and depth, wall stiffness, strut spacing,
prestress, depth to an underlying hard stratum, soil stiffness, strength distribution,
dewatering operation, soil consolidation, creep, and workmanship. Nonlinear finite
element analysis provide a comprehensive framework that can be use to evaluate
excavation performance including the design of the wall and support system, prediction
of ground movements and the effects of construction activities. Inverse analysis
approaches are commonly used to compute excavation response. The optimization
technique, whereby the designer adjusts various constitutive model properties to achieve
a better match of ground surface does not overcome the inherent limitation of constitutive
models. These adjustments lack a systematic approach and are rarely useful for modeling
similar problems. While engineers continuously learn from case histories and field
behavior, the current approaches to numerical simulations do not fully benefit from direct
measurements of field behavior. SelfSim inverse analysis is a powerful solution to learn
from precedents and enhance the design of deep excavations in future. The
instrumentation layout effect on extracted soil model from excavations needs further
studies. The capability of SelfSim in predicting excavation response in new excavations
while learning from previous local experience needs further consideration. The SelfSim

framework needs to be tested using measurements of excavation case studies.
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Table 2-1 Factors cited by Mana and Clough (1981) that influence excavation

performance
Design Site Construction
- Depth and width of - Soil Properties - Method and sequence
excavation of construction
- Support spacing - Existing structures and | - Duration of
utilities construction

- Stiffness of support

- Stiffness of the wall

- Transient loads during
and after construction
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Table 2-2 Summary of closed-form calculations of base stability for soft to medium soils

Reference

Terzaghi
(1943)

Bjerrum and
Eide (1956)

O’Rourke
(1992)

Hashash and
Whittle
(1992)

General Equation: FS ={N_S, +N"/H[y - n\/E(Suu /Bl}

after Hashash and Whittle (1996)
Avg. Depths for S,

Capacity Factors

*

N, N
5.7 0

5.7 to 0
6.2

3710 2aM, 7 /[B(L+h-H)]

6.2

@t (B/4)fy,(Sypps / O

f

'VO )

' H+B/(22) (H/2)
O H+B/(2{2) ~

H+B/(2{2) ~

Notes

N
function of
H/B

Values of f
from Davis
and
Booker
(1973)

Note: a=end condition factor, B= excavation width, f=stability calculation factor, h=average vertical
support spacing, H=depth of excavation, N.=bearing capacity factor as a function of H/B, N*=stability
calculation factor in general equation, n=stability calculation factor in general equation, S,,=depth
averaged shear strengths, S,pss=undrained shear strength from direct shear test, y,=soil total unit at
base of excavation.
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Figure 2-1 Suggested apparent earth-pressure diagram for design of struts in open cuts in
(a) Sand (b) soft to medium clay and (c) stiff-fissured clays, after Terzaghi et al. (1996)
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Figure 2-6 Observed maximum soil settlements in the soil retained by in-situ walls, after
Clough and O’Rourke (1990)
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(2007)

31



1. Problem identification and model idealization

1. Material Property Identification
In Situ & Laboratory Tests

3. Material Constitutive Behavior
Model and Property Choices

No,revise
4. Boundary Value Problem Solution model/property
Finite Element/Difference Methods choices

Yes

5. Camparison to Measured Field Behavior
Satisfactory? Yes/no?

6. Use numerical model to estimate behavior for
subsequent analysis stages

Figure 2-10 Common approach to modeling of geomechanics problems, after Marulanda
(2005)
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CHAPTER 3 COMPARISON OF TWO INVERSE ANALYSIS TECHNIQUES
FOR LEARNING DEEP EXCAVATION RESPONSE: PARAMETER
OPTIMIZATION USING GENETIC ALGORITHM AND EVOLUTIONARY
BEHAVIOR LEARNING VIA SELFSIM

3.1. Introduction

In this chapter the performance of two inverse analysis techniques in capturing
observed performance of a deep excavation in downtown Chicago are compared. The
first method is based on a Genetic Algorithm (GA) optimization method. Its goal is to
identify soil parameters of a constitutive model from in situ measurements. The second
method is based on Artificial Neural Networks (ANN). Its goal is to extract soil behavior
from experimental data without a pre-defined constitutive model. Both inverse analysis
techniques and their application to a deep excavation in downtown Chicago are described
in the following sections. Each method has been presented in previous studies as very
efficient methods to solve excavation inverse analysis problem (Hashash et al. 2006;
Levasseur et al. 2009a; Levasseur et al. 2009b). This chapter compares the performance
of both techniques in capturing soil displacements and in predicting of soil behavior

(stress path) in Lurie Center excavation in Chicago, IL, USA.
3.2. Inverse analysis techniques

3.2.1. System identification: error minimization and Genetic Algorithms

The proposed identification method is used to study the soil behavior in Lurie
Center deep excavation, based on the inverse analysis theory introduced by Tarantola
(1987). This method establishes a suitable identification method to adapt itself to
different kinds of geotechnical structures.

The inverse analysis is based on a genetic algorithm optimization process (GA)
used to identify soil parameters. This method is well known as a robust and efficient
approach to solve complex problems (Goldberg 1989). Genetic algorithm can find the

best solution of the problem even with a flat or noisy error function (Levasseur et al.
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2008). This optimization process also provides information on the existence of
correlations between parameters. Moreover, as geotechnical studies are perturbed by
modeling errors or in situ measurement uncertainties, rather than only one exact solution,
several approximate solutions exist for the inverse problem. Levasseur et al. (2009a;
2009b) have shown that a genetic algorithm in combination with a statistical analysis like
principal component analysis is able to identify many of these approximated solutions of
the inverse analysis problem. The main drawback of this method is the high calculation
cost. For instance for an excavation problem requiring identification of three soil model
parameter, it takes about two days with an office computer. It is necessary to perform
many finite element calculations at the beginning of the optimization process to have a
good estimation of the error function in the search space. This sweep, which is essential
for the genetic algorithm, makes this method computationally expensive (Levasseur
2007).

The application of this method in excavation problems is shown in Figure 3-1.
Trial values of the unknown soil model parameters are used as input values in a finite
element code to simulate the excavation problem. PLAXIS (2002) is used as the finite
element engine in this study. The computed lateral wall deflections and surface
settlements are compared to measured values. If the discrepancy between measured and
computed results is not in acceptable range, then through Genetic Algorithm (GA) the
input soil model parameters are optimized. This process is repeated until a good match
between computed and measured soil behavior is observed. Then the identified solution
sets are interpreted through statistical approach, Principal Component Analysis (PCA).

Identification method:
Error function

The discrepancy between the measured behavior and the modeled one is
expressed by a scalar error function, Fe, in the sense of the least square method as

introduced by Levasseur et al. (2008):

Z(Ue, ~Un,) ] 0
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where N is the number of measurement points, Ue; the i™ measured value, Un; the
corresponding value of the numerical calculation and 1/AU; the weight of the discrepancy
between Ue; and Un;. 1/AU; is equal to the experimental uncertainty of the it

measurement point.

Genetic algorithm

Genetic algorithms are inspired by Darwin's theory of evolution and are used in
this study to solve the optimization problem. The main outline of the algorithm, adapted
for excavation problems by Levasseur (2007) and summarized below, is based on the
studies of Goldberg (1989) and Renders (1994).

Each soil parameter that will be optimized is binary encoded and represents a
gene. In this study the primary deviatoric modulus E™'s represents a gene. The
concatenation of several genes forms an individual. For instance if two E™'s, of two soil
layers are identified in genetic algorithm, the concatenation of encoded two E™, is
called an individual which is defined by vector p. A group of N; individuals represents a
population of the it generation.

A scalar error function Fe.(p) is defined for each set of N, unknown parameters,
noted as a vector p. The minimization problem is solved in the Nj,-dimension space
restricted to a maximum and minimum value for each component of vector p.

The main stages of the genetic algorithm are shown in Figure 3-1. In case that the
Feor for wall deformations and surface settlements exceeds the stop criteria, an
evolutionary process using successively selection, reproduction and mutation of soil
model parameters of interest (in this study E™, ) is begun to generate new sets of soil
model parameters (Levasseur et al. 2008). The new sets of soil model parameters are used
in a forward analysis to compute deformations. This process is repeated until conditions
of convergence are satisfied: Either the average of the error function on the parent part of
the population is less than a given error or its standard deviation becomes small enough.
Finite element analysis needs to be conducted for generating each new population. More
details of the analysis can be found in Levasseur (2007) and Levasseur et al.(2008;

2009a; 2009b)
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Principal Component Analysis

After optimum soil model parameters based on minimal value of the scalar error
function are identified by GA, an analysis is conducted to evaluate solution sets.
Therefore, Principal Component Analysis (PCA) is used to provide a representation of
the solution sets identified by GA to make the comparison between several optimizations
easier. The principal component analysis is a factorial analysis method which defines
main orientation of a set of under-study soil parameters, which in this study are E™'s, of
soil layers in the research space. This orientation can be used to interpret the parameter
sensitivities or to find correlations between parameters. By using PCA statistical analysis,
from a discrete set of solution sets identified by GA, a continuous space of solution sets is
estimated. As a result an ellipsoid bounding the sought after solution set can be deduced
from the principal component analysis. The area included in the ellipsoid is a first order
approximation of the set of solutions identified by the GA optimization (Levasseur et al.

2009b).

3.2.2. SelfSim Learning inverse analysis

SelfSim framework application to Lurie deep excavation is illustrated in Figure
3-2. Wall deformations and surface settlements are measured during excavations stages
(Step 1). In Step 2a of SelfSim, a finite-element (FE) analysis is conducted to simulate
soil removal and tieback installation for a given excavation stage in Lurie Center
excavation using the current NN soil model. In Step 2b of SelfSim a parallel FE analysis
using the same NN soil model is performed whereby displacement boundary conditions
such as wall deflection and surface settlements are imposed. The extracted stress field
from Step 2a and the extracted strain field from Step 2b form stress—strain pairs
representing soil constitutive model and are used to retrain the NN soil model. The
solution converges when the analysis of Step 2a and 2b provide similar results. This

process is continued until the computed displacements match the measured values.
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3.3. Lurie Center excavation case study

3.3.1. Geometry and instrument locations

The excavation for the Lurie Research Center was approximately 82 m by 69 m
and depth of 13 m (Finno and Roboski 2005). The site was heavily instrumented to
monitor the ground movements resulting from the excavation. Plan view and instrument
locations are shown in Figure 3-3. The support system, typical soil profile at the site and
element locations for stress paths plots are shown in Figure 3-4. The element locations
were chosen close to inclinometer locations to have a better understanding of the soil
displacement and soil behavior simultaneously. The support system consisted of a sheet
pile wall with three levels of tiebacks. The soil profile from the top consists of fill layer,
lake sand layer, and soft to stiff silty clay layers.

Results from inclinometer LR1 were not used in the analyses due to proximity of
the Prentice Pavilion building to this instrument location. Results from inclinometers LR3
and LR4 were not used in the analyses because of the presence of an existing, pile
supported pedestrian tunnel in left north corner of the site. Inclinometer LR2 was
damaged during the construction. Corner effects influenced the results of inclinometer
LRS, and hence were not amenable to plane strain simulations. Therefore inclinometer
measurements obtained from LR6 and LR8 were employed in GA and SelfSim inverse
analyses.

The finite element model associated with Lurie Center deep excavation problem
is a 2D plane strain model. To avoid 3D stiffening effect of the corners and the variability
of measurements around the excavation, average data of inclinometers installed around
the excavation sides (i.e LR6 and LR8) were used as measurements for inverse analysis.
Settlement data are also used for both inverse analyses. The settlement data correspond to
average vertical displacements measured in proximity to selected inclinometers around
the excavation. The excavation sequence was idealized into seven stages as shown in
Figure 3-5.

The response of clayey layers was assumed to be undrained during excavation.

The excavation was simulated down to El. -7.3 m.
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3.3.2. Learning global excavation response using optimization approach based on

GA

In the optimization approach based on GA, each soil layer is modeled by the
constitutive Hardening Soil model of PLAXIS (Brinkgreve 2003). For volumetric
hardening, an elliptical yield function is used and an associated flow rule is assumed. For
shear hardening, a yield function of hyperbolic type and a non-associated flow rule that
incorporates a dilation angle is employed. The field observations used in the optimization
analysis are selected from inclinometers measurements and surface settlements at stage 7
of the excavation.

Since the stiffness of stiff clay is different around the excavation (Calvello 2002)
and the primary deviatoric modulus Eso™ in the soft to medium clay and the stiff clay
layers, are the most influential parameters on the behavior of the excavation (Finno and
Calvello 2005), Esy™" of the soft to medium clay and stiff clay layers are identified by GA

ref

approach. The Esy~ of fill layer is also identified, because surface settlements are used in
the inverse analysis. The other Hardening Soil model parameters for Chicago clays are
kept fixed as shown in Table 3-1.
The range of (Erefj())ﬁll, (Erefso)med, and (Erefso)stiff values is assumed to be in the
following intervals:
3000 < (E™'so)an < 35000 kPa
3000 < (E™50)medium clay < 35000 kPa
40000 < (E™'so)stifrlay < 200000 kPa
These intervals define the boundaries of the research space for GA optimization.
The increment changes of the parameters in this research spaces are as following:
A(Erefm)med :A(Erefs())ﬁll =500 kPa and A(Erefso)stiff: 2500 kPa. According to this research
space and measured deformations of the excavation, a solution set is identified by GA as
shown in Figure 3-6. The convergence for this analysis takes about 2 days with an office
computer. From this set, an ellipsoid is estimated by PCA, Figure 3-6. The ellipsoid
characterizes the solution set. Figure 3-6 shows that the ellipsoid is elongated in the
directions of (E™'so) stiff clay and (E™'5o) fill, which implies the model is more sensitive

to the medium clay modulus, (E™so)meq, than to moduli of fill and stiff clay layer. In this

set, the optimal parameter values estimated by GA are as follows:
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(E™'50)sn = 28000 kPa
(E"'50)medium ciay = 5500 kPa
(E™'S0)stifr clay = 172500 kPa
Figure 3-7 shows that these parameter values reproduce the horizontal
displacements measured by the inclinometers as well as the observed settlements for

stage 7 of the excavation reasonably well.

3.3.3. Learning of global excavation response using SelfSim learning approach

SelfSim is applied to the Lurie Research Center whereby lateral soil movements
in proximity to the wall and surface settlements corresponding to the known construction
stages for all stages of the excavation are used as boundary conditions for SelfSim
learning. The inclinometers were located 5 ft behind the sheetpile wall, and therefore the
lateral deflections used during SelfSim learning are applied in the finite element analysis
at the same location for all elevations. Each soil layer is modeled with a different NN soil
model.

Prior to any learning, initial soil constitutive models using the NN base module
were developed to represent linear elastic response within a small strain range of 0.1%.
This analysis underestimates lateral wall deformations and surface settlements, but gives
a qualitatively reasonable deformed shape. Several SelfSim learning cycles are conducted
at each excavation stage. After a few passes of SelfSim learning, the calculated
deformations match reasonably with the measured values.

Figure 3-8 shows the deformations after 12 SelfSim learning passes (Hashash et
al. 2006). This SelfSim learning takes about few hours with an office computer. The
computed deformations using soil models extracted through SelfSim learning are similar
to the field measurements, although there are some noticeable discrepancies in the initial
two stages between the computed and the measured soil movements. One possible reason
for these differences is the large measured surface settlement associated with the behavior
of the pavement material and/or near-surface fill. These relatively large surface
settlements at the early stages were likely caused by cyclic motions induced by the
vibratory hammer used to install the sheeting, and thus are not considered in the learning

process.
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3.3.4. Comparison of global excavation response

Comparison of computed lateral deformations and surface settlement from GA
and SelfSim for the stage 7 of excavation are shown in Figure 3-9. Since both analyses
used the inclinometer measurement of the stage 7 of excavation, computed lateral
deformation of SelfSim and genetic algorithm match reasonably with the measurements.

Although the settlement profile was also used in GA optimization analysis, it
appears that the Hardening-Soil model used in the FE model is not capable of
reproducing the settlement profile behind the wall, neither in magnitude nor in shape. The
Hardening-Soil model version used in this study does not have small strain non-linearity
and thus could not represent the stiffness variation over the range of strain levels that
diminishes with further distance from the wall. Therefore, the computed surface
settlements do not perfectly match with the measured values.

The ratio of area under wall deflection divided by the area under settlement
profile for measured, SelfSim result, and GA based optimization is 1.9, 1.6, and 1.3,
respectively. Therefore, based on volume calculation of the area under wall deflection
and settlement profile, closer match of SelfSim and Measured values is reconfirmed.

Since SelfSim in not preconstrained to the limitation of conventional constitutive
models, it can capture the settlements more reasonably. SelfSim can also provide

computed deformations in intermediate stages of excavation.

3.3.5. Comparison of extracted soil behavior after GA and SelfSim learning

The stress paths for selected elements, shown in Figure 3-4, are compared in
Figure 3-10. It is observed that stress paths in the clay layers primarily are elastic. This
confirms Finno and Calvello (2005) conclusions that the primary deviatoric modulus
Eref5 % have the most influence on the behavior of an excavation through the compressible
clays in Chicago.

The stress paths before and after SelfSim learning are illustrated in Figure 3-11.
The NN soil model evolved from reflecting linear elastic soil response, such that it is able
to learn relevant soil behavior, including small strain nonlinearity, essential to compute
the shape of the settlement trough. The stress paths for the top soft layers are more non-
linear than the bottom layers. The comparison of Figure 3-10 and Figure 3-11 shows that

in unloading condition (i.e. element E), the extracted soil behavior from both analyses is
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closer to an elastic response. For elements located in retained soil (i.e. element A, B, C,
D), the mean stress extracted from SelfSim analysis is decreasing with shearing during
the excavation steps. The SelfSim extracted stress paths demonstrate a nonlinear response
for all clay layers and the sand layer. The SelfSim analysis shows that elements A, B and
C undergo shearing almost identical to the Plane Strain Active (PSA) mode. Element A
and B in the retained soil reach a peak strength and undergo some strain softening
afterwards. However the mean stress during excavation from GA analysis is constant for
all layers other than the sand layer. Therefore the stress paths from GA analysis for all
clay layers show qualitatively an elastic behavior.

Figure 3-12 shows the comparison of stress paths after using genetic algorithm
and SelfSim learning for the lake sand layer. The friction angle envelope is shown in this
figure. Under plane strain conditions, the out-of-plane component of strain is equal to
zero. This constraint reduces the degree of freedom that individual soil particles can
move in relation to one another, thus increasing geometric influence (Terzaghi et al.
1996) . Therefore the triaxial friction angle is converted to plane strain friction angles as
indicated in Table 3-1. Both analyses show a nonlinear stress path for lake sand layer.
SelfSim analysis is not using any predefined stress strain relationship, nevertheless the
stress paths for SelfSim analysis shows that it is consistent with the friction angle line.

Figure 3-13 shows the comparison of stress paths using genetic algorithm and
SelfSim learning for clay layers. For simplicity in SelfSim learning the coefficient of
earth pressure at-rest is constant through the soil layers, but in genetic algorithm the
coefficient of earth pressure is varied through the soil layers. Genetic algorithm analysis
shows an elastic stress path for all clay layers. The stress paths obtained after SelfSim
learning for clay layers show a distinct nonlinear soil behavior. This observation can
explain why the surface settlement predictions in genetic algorithm are not as accurate as
settlement predictions in SelfSim. Since the small strain non linearity of soil is reasonably
captured with SelfSim learning approach, the surface settlement match with the measured
values (Hashash et al. 2006; Song et al. 2007). The stress path for all clay layers
particularly element B which is in soft/med clay layer shows that they are consistent with

friction angle envelope.
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Both GA and SelfSim could reproduce the wall deformations reasonably well;
however comparison of stress paths show that SelfSim approach could extract the
underlying soil behavior more reasonably than hardening soil model used in the GA
optimization approach. The outcome would differ if a different material constitutive
model is used in the GA approach

SelfSim learning is based on soil horizontal displacement measurements and
settlements which permit the capture of the soil non linear behavior. However, this
method is independent of any constitutive model. In contrast, GA optimization is based
on the calibration of an existing soil constitutive model on soil horizontal displacement
measurements and settlements. This method permits the use of well known conventional
geotechnical models (often used in engineering) from which some of parameters can be
evaluated independently through an optimization. However, the choice of the constitutive
model mainly influences the final soil behavior in GA optimization. SelfSim allows for
the discovery of new material behavior while GA optimization assists engineers in use of

existing material models through a better selection of material model parameters.

3.4. Summary

Field data are integrated with numerical models to simulate complex geotechnical
problems. Inverse analysis techniques are powerful numerical tools to evaluate
performance of geotechnical structures and extract soil behavior. Two inverse analysis
methods are evaluated using data measured at the Lurie Center case study in Chicago.
Optimized parameters found from the GA approach and the learned constitutive
responses from SelfSim formed the basis of simulations that could reasonably compute
deformations observed during the excavation for the Lurie Center. Unlike GA analysis in
which the soil model has to be preconstrained to specific model (in this study soil
hardening model), SelfSim analysis is able to produce continuously evolving material
models that can learn new material behavior. This capability allows SelfSim to capture
the underlying soil behavior learning measurements at different construction stages.
Optimization based on genetic algorithm could predict the inclinometer measurements
very well, but the stress paths for this method show linear elastic behavior for clay layers,
a feature of the hardening soil model and the undrained simulation. On the other hand

SelfSim is able to capture nonlinearity of soil behavior. This feature explains why the
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ANN model is able to compute settlement profile reasonably well. The computational
demands of both methods vary, though they require skilled users. SelfSim allows for the
discovery of new material behavior while GA optimization assists engineers in use of

existing material models through a better selection of material model parameters.
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Hardening soil Fill layer | Lake Sand Soft to Stiff clay Hard clay
Parameters layer medium clay layer layer
layer
Type Drained Drained Undrained Undrained Undrained
ref Studied Studied Studied ref
1.5-E )
Eso (kPa) Parameter 48000 Parameter Parameter ( > Eso )St'ff
EX (kPa) 13500 * | 48000 * 0.7-EXf* | 07-E % | 07-EL
Er (kPa) 40500 * | 144000 * 3-Elf* 3l * 3-Ef*
Power coefficient m 0.5 0.5 0.8 * 0.85 * 0.6
p" (kPa) 100 * 100 * 100 * 100 * 100 *
Cohesion ¢ (kPa) 19 0.2 * 0.2* 0.2 * 0.2 *
Friction angle ¢ (°)**** 30 35 Hk* 26 * 32 * 35 ek
Dilatancy angle w (°) 2 5% 0 * 0 * 0 *
Vur -pOIsON ratio 0.2 * 0.2 * 0.2 * 0.2 * 0.2 *
unloading/reloading
OCR 1 ** 1.1 ** 1.4 ** 1.5 ** 2.5 **

* (Calvello and Finno 2004)
** (Chung and Finno 1992)
*#* (Finno and Calvello 2005)
*#%* The converted friction angles of lake sand, soft to medium clay, stiff clay and hard

clay for plain strain condition are considered 40, 30, 36, and 39 degrees respectively.
(Ladd and Edgers 1972; Terzaghi et al. 1996, Pestana et al. 2002)

Table 3-1 Hardening soil parameters for each soil layers of the Lurie Center
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Figure 3-6 Solution set identified by GA and estimated ellipsoid using wall deformation
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Figure 3-7 Comparison of computed (a) lateral wall deformation and (b) surface
settlement using GA method with optimal parameter values
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Figure 3-9 Comparison of computed (a) lateral wall deformation and (b) surface
settlement using GA and SelfSim for the stage 7 of excavation
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Figure 3-10 Normalized stress paths of (a) p’-q, and (b) t-q for elements A, B, C, D, E
after using GA analysis method with optimal parameter values
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CHAPTER 4 THE INTERPLAY BETWEEN FIELD MEASUREMENTS AND
SOIL BEHAVIOR FOR CAPTURING SUPPORTED EXCAVATION
RESPONSE

4.1. Introduction

Although installing instruments at an excavation site is an important element to
control and monitor the soil behavior, there are several limitations to field monitoring: 1)
the instruments are installed at discrete locations around the excavation site and cannot
provide a complete picture of ground response everywhere around the site; 2) the number
of installed instruments is limited since their installation, maintenance, and data
collection can be costly; and 3) instruments can be damaged or become inaccessible due
to construction activities. On the other hand numerical models, if reliable, can present a
complete picture of gound response to excavation inexpensively. However the successful
use of numerical simulations is highly dependent on the constitutive model chosen to
represent soil behavior.

Inverse analysis techniques are used to improve or calibrate soil models and
enhance the ability of the numerical analysis to estimate excavation performance. In this
chapter the use of SelfSim inverse analysis and numerical modeling as a tool to
complement instrumentation measurement to develop a more complete estimate of
excavation performance at a given construction stage is explored, Figure 4-1. It is
common to use field measurements from one excavation project to improve a numerical
model to predict performance at later excavation stages or performance of nearby
excavations. Self-learning inverse analysis framework, (SelfSim), introduced by Hashash
et al. (2006) is used to extract soil behavior from instrument measurements. It is
demonstrated that the extracted soil model can be used to predict the excavation response
elsewhere around the excavation. Thus numerical modeling and inverse analysis would
provide information on performance in areas where no instrumentation is available, i.e.
fill-in-the-gaps.

The study explores: 1) the inter-relationship between instrument type and location
and the quality of extracted soil behavior; 2) the potential redundancy in the extracted soil

behavior information from different instruments; and 3) the best deployment of
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instruments so that a more complete picture of excavation performance is known. These
finding are especially valuable should some instruments at the site be damaged or
become inaccessible or when budget constraints limit the number of instruments that can
be deployed.

A simulated excavation is used to examine the effect of inclinometer locations,
piezometers, extensometers, heave gauges, and strut loads on the quality of extracted soil
behavior using synthetically measured excavation performance. Some of the findings are

then illustrated using a well instrumented deep excavation case history in Taipei, Taiwan.

4.2. SelfSim-learning simulations of deep excavations

SelfSim framework application to excavation problems in this chapter is
illustrated in Figure 4-1 (Hashash et al. 2003; Hashash et al. 2006; Hashash 2007; Song et
al. 2007). The deformations of the excavation are measured at selected excavation stages
(Step 1). A NN based constitutive model is used to simulate the soil response. Initially
the soil response is unknown and the NN soil model is pre-trained using stress—strain data
that reflect linear elastic response over a limited strain range. In Step 2a of SelfSim a
finite-element (FE) analysis using the current NN soil model is performed simulating
construction sequences (i.e. soil removal and support installation). In Step 2b of SelfSim
a parallel FE analysis using the same NN soil model is performed in which field
measurements are imposed as additional displacement boundary conditions. The stress
field from Step 2a and the strain field from Step 2b are extracted to form stress—strain
pairs that approximate the soil constitutive response and are used to retrain the NN soil
model. The solution converges when the analysis of Step 2a provides the correct ground
deformation, i.e., analyses of Steps 2a and 2b provide similar results.

The resulting NN constitutive model can be used in the analysis of other types of
excavations in similar ground conditions or a later excavation stage. Alternately the
extracted constitutive model can be used in an FE analysis to provide a more complete
estimate of excavation behavior at a given excavation stage in areas where no instruments

are available as illustrated in Figure 4-1.
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4.3. Relationship between instrumentation layout and extracted soil behavior via a
simulated excavation

Marulanda and Hashash (2007) and Song et al. (2007) employed SelfSim inverse
analysis framework to show a strong relationship between instrumentation layout for a
few instruments and the quality of extracted soil behavior. In this section an extensive
numerical study is presented for an idealized braced excavation in soft soil to examine the
relationship between various instruments typically used on an excavation project and the
quality of information that can be extracted for excavation modeling. The field
measurements are generated synthetically using a coupled pore-water pressure-effective
stress FE model of the braced excavation whereby soil behavior is represented using the
MIT-E3 effective stress soil model (Hashash 1992) to represent Boston Blue Clay
behavior. The MIT-E3 model (Whittle and Kavvadas 1994) simulates important features
of soil behavior including anisotropic stress—strain—strength relationship, small strain
nonlinearity, and hysteretic response upon load reversal.

Inclinometers, surface settlement points, extensometer, piezometer, strain gauges,
and heave gauge are placed at selected locations within the excavation site, Figure 4-2.
The 15-m deep excavation which has an equivalent 0.9-m thick concrete wall is
supported by 2.5 m spacing struts. The cross section of the excavation, instrument
locations and construction sequence are shown in Figure 4-2 as well. In this model
excavation, the assumed soil profile includes a very deep 50-m soft clay (OCR=1.3)
layer. The ground water table is 2.5 m below the ground surface.

The SelfSim inverse analysis framework is used to extract the underlying soil
behavior using several combinations of instrument measurements and to examine
instrumentation layout effect on the extracted soil behavior. The instrumentation layouts
employed are: 1) wall deformations only; 2) wall deformations and surface settlements;
3) wall deformations and lateral deflections from inclinometers at various distances from
the wall; 4) wall deformations, surface settlements, and strut loads; 5) wall deformations,
lateral deflection from inclinometer 14 shown in Figure 4-2, and strut loads, 6) wall
deformation, surface settlements, and pore water pressures; and 7) all instruments shown

in Figure 4-2 except strut loads.
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Two indices are used to evaluate the learned instrument response and extracted
soil behavior as they were used by Marulanda and Hashash (2007). For all instrument
readings, Mr,, which is the measured limits of agreement (Bland and Altman 1986),
measures the agreement between the computed deformations and their corresponding
measured values. The differences between measured and computed response are
calculated. Then, the mean and the standard deviation are computed for these differences

to estimate the limits of agreement defined by Bland and Altman (1986). The limits of

agreement are defined by the mean of the differences (H) plus or minus two standard
deviations (2S):
L =d+2s
R (1)
L, =d-2s

L, and L, are the upper and lower limits of the absolute value of the differences

between measured and computed response, whereby 95% of differences lie between these
limits (Bland and Altman 1986). The magnitude of the interval from L] to L, is referred

here as the M| 5:
M, = (L) (L) )

A small value for M, represents better agreement between the measured and
computed values.

For a measure of quality of extracted soil behavior, the differences of stress-strain
response between the correct behavior (soil behavior is known in the simulated
excavation) and extracted behavior are quantified using the concordance correlation
coefficient (CCC) presented by Lin (1989). The CCC ranges from -1 to 1, where 1, -1

and zero mean perfect agreement, perfect reverse agreement, no agreement, respectively.
The CCC is estimated using the mean (\7j ), variance (S jz) and covariance (S7j) of the

stresses and strains as follows:

25,

CCC= N
S12 + S22 +(Y1 _Yz)z

)

Where
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= 4

and
1 n — —
Si? :lel: Yn _Yl)(Yiz -Y2)

In particular, Y, and S, correspond to the mean and the variance of computed
values of stresses or strains, and Y, and S, correspond to the mean and the variance of
measured values of stresses or strains. S,, is the covariance between computed and
measured values. For CCC values the suffixes of 11, 22, and 12, reflect the horizontal,
vertical, and shear components of stresses (o) and strains (g). Although CCC is a good
measure for the purpose of comparison between extracted soil behaviors in this study, it
is worth mentioning that it is not sufficiently illustrating the difference of extracted soil

behavior for each individual element.

4.3.1. Learning from measurement of inclinometer in the wall (11) and surface

settlements points

In a typical excavation, measurement of wall deformations is considered to be of
utmost importance. SelfSim learning is conducted using lateral wall deflection (I1)
measurements only and the extracted soil model is then used in an FE simulation to
compute the excavation behavior. Figure 4-3 shows that the model captures wall
deflections (I1) very well but does not provide a very good match for surface settlement
(not used in SelfSim learning). Figure 4-3 shows that the lateral movements of 12 and 13
are captured reasonably well, and the lateral movements of 14 are slightly overestimated,
but the vertical movement of El is underestimated. Therefore, using wall deformations is
important, but does not provide sufficient information for learning global excavation
behavior.

SelfSim learning is then conducted with measurements of wall deflections (I1)
and surface settlement points and the extracted soil model is used in an FE simulation to
compute the excavation response. Figure 4-4 shows that the model is able to reproduce

both learned measurements well. The lateral movements of 12 and I3 are captured
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reasonably well. The lateral movements of 14 and vertical deformations of E1 have
improved, however they do not match well the measured values. The vertical movements
of H1 are slightly underestimated. Therefore the extracted soil behavior through SelfSim
inverse analysis using measurements of inclinometer in the wall (I1) and surface
settlement points contains enough information about the soil behavior to provide a

reasonable estimate of the overall excavation behavior.

4.3.2. Learning from inclinometer measurements at different locations behind the
wall

SelfSim learning is conducted using measurements of I1 (inclinometer in the
wall) or surface settlements points and I3 or 14 (see Figure 4-2) to evaluate the effect of
inclinometer location on extracting the excavation behavior.

Figure 4-5 shows the computed surface settlement, wall deformation, lateral
movement of 12, 13, 14, vertical movement of E1 and vertical movement of H1 after
SelfSim learning with measurement of inclinometer in the wall (I1) and inclinometer 13.
The lateral deformations of I1 and I3 (used in learning) match the measurements.
Comparison of Figure 4-5 and Figure 4-3 also shows that the computed surface
settlements (which were not used in learning) are improved by using an inclinometer at
distance from the wall. However the lateral deformation of inclinometer 14 is
overestimated and the vertical movements of E1 and H1 are underestimated.

Figure 4-6 shows the extracted excavation behavior after learning with
measurement of inclinometer in the wall (I1) and inclinometer I14. The lateral
deformations of inclinometer 11 and 14 match well the measured values. The computed
surface settlements (which were not used in learning) are significantly improved
compared to the computed settlements in Figure 4-3 and Figure 4-5.

SelfSim learning was also conducted using surface settlements measurements
with lateral deformations of inclinometers I3 and 14. The computed lateral deflections of
inclinometers 11, 12, 13, and I4 and vertical movements of E1 and H1 and surface
settlements do not match well with the measured values. It appears that lateral
deformations of an inclinometer in close proximity to the wall have important
information that cannot be replaced by the surface settlement points or even

inclinometers at some distance from the wall.
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Figure 4-7 provides a quantitative measure, M, of the quality of predicted
response for surface settlements, 11, 12, I3, 14, E1 and HI after learning with selected
instruments. Lower My, values imply better match with the observations. The prediction
of excavation behavior using measurements of lateral movements of the wall and
inclinometers at farther distances from the wall (i.e. I3 and 14) is improved compared to
the case where only wall deformations are used in SelfSim learning. Using an
inclinometer which is farther away from the excavation in addition to the deformations of
the wall provides valuable information about small strain non-linearity of the soil and
therefore, lowers My, values. This figure also shows that the My, value for settlements
predictions of the case whereby wall deformation and inclinometer 13 or 14 are used in
SelfSim learning is close to My, value for the case where wall deformations and surface
settlements are used in SelfSim learning. So it appears that inclinometers at some
distance from the wall provide redundant measurements that can be used to obtain
surface settlement estimates especially when settlement points are damaged and are no
longer accessible. The closer the inclinometer is to the wall, the better the extracted
behavior is. By locating the inclinometer at greater distances from the wall (SS+I3 &
SS+14), the ability to predict measurements at other locations within the excavation
deteriorates significantly.

Figure 4-8 shows similar trends for the extracted soil behavior (as CCC
approaches 1, the extracted behavior approaches the correct behavior) which is quite poor
for SS+I3 & SS+I4 cases, and acceptable for [1+13 and 11+I4. In all the cases that wall
deformations are used in SelfSim learning, the stresses and strain are reasonably matched

with the correct values.

4.3.3. Learning from strut loads, piezometers, and all instruments

Strut loads

SelfSim learning is conducted with measurements of inclinometer in the wall (I1),
surface settlements points and strut loads to evaluate the strut load (SL) effects on
extracted soil behavior, Figure 4-9. Overall the resulting estimates for I1, 12, 13, E1 and

SS are similar to those from the case where wall deformations (I1) and surface
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settlements used in SelfSim learning (Figure 4-4). The computed lateral movements of 14
and vertical movements of H1 have improved.

SelfSim learning is conducted using lateral deformations of the wall, inclinometer
14, and strut loads to include both effect of strut load and inclinometer at a distance from
the wall, Figure 4-10. The lateral deformations of I1 through I4, and vertical movement
of E1 match reasonably well with the measured deformations. The extracted settlement
profile (which was not used in learning) is slightly underestimated (for the last excavation
stage), but is, nevertheless, reasonable. The extracted vertical deformation of the heave
gauge (H1) is overestimated.

Piezometers

SelfSim learning is conducted with measurements of inclinometer in the wall (I1),
surface settlements points and piezometer line (P1), Figure 4-11. Compared to Figure
4-4, whereby wall deformations and surface settlements used, the computed lateral
movements of I1, 12, I3 and vertical movements of H1 still match reasonably well with
the measured values. However, the computed lateral movements of 14 at stage 6 and
vertical movements of E1 have deteriorated. The computed pore water pressures at other
locations improved and they are close to the measured values. Therefore, in case studies
where pore water pressures are needed, it is beneficial to use pore water pressure
measurement in SelfSim learning.

All instruments except strut loads

SelfSim learning is conducted using a total of 7 instruments. Learning is
conducted gradually by introducing one instrument at a time: inclinometer in the wall
(I1), then surface settlements points, then inclinometer 2 (I2), then inclinometer 3 (13),
then inclinometer 4 (I4), then extensometer 1 (E1), then heave gauge 1 (H1), and then
piezometer line 1 (P1) (See the locations in Figure 4-2).

Figure 4-12 shows the computed surface settlement, wall deformation, lateral
movement of 12, I3, 14, vertical movement of E1 and H1 after SelfSim learning. The
lateral deformations of I1, I2 and I3, vertical movements of E1 and H1 and surface
settlements match with measured values. The computed lateral deformations of

inclinometers 13 and 14 and vertical movements of E1 in stages 5 & 6 are not as smooth
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as the other stages indicating instability in the results. It appears that the use of so many
instruments over constrains the problem leading to numerical instability.

Figure 4-13 shows My, values for analyses whereby four different combinations
of instruments were used in SelfSim learning. The analyses where strut loads are used in
the learning process have low My, values, therefore it appears that strut loads provide
important information to evaluate the overall excavation response. The comparison also
shows that in cases where the settlement profile is no longer accessible, learning from
inclinometers at the wall and some distance away from the wall along with strut loads can
extract a model that predicts the overall excavation behavior reasonably well. The pore
water pressures do not appear to provide additional information that significantly
enhances the quality of computed excavation response. As expected, the use of multiple
instruments improves the predicted behavior.

Figure 4-14 shows the comparison of My, values for strut loads. The results show
that the model that uses the strut loads in learning process improves significantly the
computed strut loads in FE analysis. However, the model that uses all the instruments
except strut loads does not predict strut load well.

Figure 4-15 provides CCC values, which is a measure of the accuracy of the
extracted soil behavior for extracted stresses and strains. The use of strut loads greatly
improves the extracted strains and shows a significantly better match with the measured
soil behavior compared to other instrument combinations. This comparison demonstrates
that the strut load data is of major importance for the reliable prediction of ground

response and can provide information that compensate for other missing instruments.

4.4. TNEC deep excavation case study

The utility of inclinometers at some distance from the excavation wall in
estimating ground surface settlements is evaluated using a well instrumented excavation
case history in Taipei. The Taipei National Enterprise Center (TNEC) is an 18-story
building with five basement levels using top-down construction techniques. In the top-
down excavation method concrete floor slabs are used to support the wall. Longer periods
of times are required between two subsequent excavation levels leading to the dissipation
of pore-water pressure which may have a significant influence on the movements of the

wall and soil (Ou et al. 1998).
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The site has slightly irregular plan view and occupies an area of about 3500 m?, as
shown in Figure 4-16 and the excavation is 19.7-m deep. Installed instrumentation
includes earth pressure cells on the wall, rebar stress meters on the reinforcement cage,
piezometers, inclinometers, heave gauges and settlement gauges.

A cross section of the excavation is shown in Figure 4-18. The excavation site
consists of six layers of alternating silty clay and silty sand deposits overlying a thick
gravel formation. The first and second layers consist of a 5.6-m-thick silty clay (CL)
layer and a 2.4-m-thick silty sand (SM) layer, respectively. The third layer is a 25-m-
thick silty clay (CL), and it is mainly this layer that affects the excavation behavior. The
hydraulic conductivity (k) from one-dimensional consolidation tests is around 4x10°
Scm/s. The fourth layer is a 4-m-thick medium dense fine sand and silty clay. The fifth
layer is an 8-m-thick medium to dense silt or silty sand. A gravel formation is located 45
m below the ground surface. Prior to excavation the ground water table was 2 m below
the ground surface. A 90-cm-thick and 35-m-deep diaphragm wall was used as the earth-
retaining structure.

The TNEC site was excavated down to 19.7 m in seven main stages. Because of a
shift observed in measured wall deformations after the fifth stage of the excavation, the
measurements of sixth and seventh stages were not used in SelfSim inverse analysis.
Therefore in this study the excavation site was modeled with five excavation stages down

to a depth of 15.2 m depth, as indicated in Figure 4-19.

4.4.1. SelfSim learning using wall deformations only

A set of SelfSim learning analyses was conducted using wall deformation
measurements only. Separate NN material models are assigned for the various soil
formations. Prior to any learning, the (NN) material models are trained to reproduce
linear elastic behavior. Computed deformations prior to learning are shown in Figure
4-20. The computed deformations differ significantly from and are less than the measured
values.

Five SelfSim learning passes are performed using wall deformations only, down
to third excavation stage. The SelfSim analysis could not progress beyond this excavation
stage using wall deformations only and failed. This might be due to a limitation in the

information contained in these additional stages. Figure 4-21 shows plots of computed
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and predicted deformations of the ground surface, wall and inclinometers SI-1, SI-2, SI-3
and SI-4. The computed deformations for the first three stages have improved
significantly compared to those shown in Figure 4-20. Since SelfSim does not provide a
reasonable prediction outside of the learned stress-strain ranges, the predicted lateral wall
deflections in the fourth and fifth excavation stages are underestimated. While the
deformations of the wall, inclinometer SI-1 and SI-2 match reasonably with the
measurements down to the third excavation stage, the surface settlement and
deformations of inclinometers farther away from the excavation site (i.e. SI-3, and SI-4)

differ from the measured values.

4.4.2. SelfSim learning using wall deformations and an inclinometer farther away

An inclinometer measurement SI-4, 22 m away from the excavation wall is added
to the wall deformation measurements as part of further SelfSim learning down to fifth
excavation stage.

Figure 4-22 shows the measured and predicted deformations of the excavation
after six additional learning passes. The computed lateral deformations of wall (I-1) and
inclinometer SI-4 are in close agreement with the measured values. The predicted
deformations of inclinometers SI-1, SI-2 behind the wall match reasonably with the
actual measurements. The predicted settlement profile has also significantly improved
compared to the predictions in Figure 4-21 even though it was not used in learning. This
confirms earlier finding that an inclinometer at some distance from the excavation wall
has important information about small strain nonlinearity of the soil behavior and the
estimate of surface settlements.

Comparison of measured and computed pore pressures for piezometer lines P1,
P2 and SP (shown in Figure 4-18) are illustrated in Figure 4-23. The comparison shows
the computed pore pressures match reasonably at different depths of the soil profile with
the measured values. In Figure 4-24 measured and computed earth pressures are shown
for the stage 3 and stage 5 of the excavation. The predicted and measured earth pressures
for the stages 1 down to stage 4 match reasonably both in retained soil behind the wall
and the passive side in front of the wall. The predicted as well as measured earth
pressures are started from at rest condition and they become closer to active and passive

conditions for retained soil and passive zone in front of the wall, respectively. The earth
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pressures for the stage five of the excavation in the passive zone in front of the wall are
underestimated.

The SelfSim learning was conducting using instruments along main observation
section shown in Figure 4-16. The extracted soil model is then used in a numerical
analysis to compute deformations at excavation sections at I-2 and I-3 (Figure 4-16).
Figure 4-25 and Figure 4-26 show the comparison of measured and computed wall
deformation for inclinometer I-2 and [-3 using the model developed from main
observation section prior to any learning, after learning with wall deformation only (I-1)
down to third stage of the excavation, and after learning with wall deformation (I-1) and
inclinometer SI-4 in 22m away from the excavation down to fifth stage of excavation.
The wall deflections are underestimated by using the developed model from prior
learning. By using the developed model after learning with the wall deformations only(I-
1), the predicted lateral wall deformations of I-2 and I-3 are in reasonable agreement with
the measured values down to third stage. By using the developed model after learning
wall deformations (I-1) and inclinometer SI-4 the predicted wall deformations for
inclinometers I-2 and I-3 are improved and they are in reasonable agreement down to

fifth stage of the excavation.

4.5. Summary

The relationship between field instrumentation and excavation response has
always been recognized. This chapter presented a study that explored the relationship
between field instrumentation selection and the quality of learned excavation response
facilitated by a unique inverse analysis framework, SelfSim. This study shows:

1. Integrating the proposed inverse analysis framework with a field
instrumentation program for deep excavation can be used to supplement
physical measurements and provide reliable estimates of deformations and
loads elsewhere around the excavation. This finding can assist engineers on
projects whereby cost and space constraints as well as damage to instruments

during construction limit the number of available instrument measurements.
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The integration of the inverse analysis with the remaining measurements can
help fill-in-the-gap otherwise unavailable information.

Wall deformations and surface settlements provide essential information for
learning of overall excavation behavior. An inclinometer placed within or in
close proximity to the wall is essential.

Additional inclinometers placed farther back from the wall provide
supplementary information that can be used to complement prediction of
surface settlements if that information becomes unavailable at certain
excavation stages. The finding is confirmed using the TNEC excavation case
study. This is a useful and practical finding as surface settlement points can
be easily lost in a heavily trafficked urban environment.

Strut loads and (by analogy), tieback loads provide valuable information to
extract soil behavior and enhance the overall quality of estimated ground
response. Therefore, measurement of bracing loads is recommended.

Other instruments such as heave gauges, extensometers, and piezometers
provide useful measurements in order to monitor construction and verify
design assumptions; though it appears in the simulated excavation study that

they are less critical for overall learning of excavation behavior.
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Figure 4-9 Computed response of (a) surface settlements , (b), wall deflections at I1 (c)
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Figure 4-10 Computed response of (a) surface settlements , (b), wall deflections at I1 (c)
lateral movement at 12, (d) lateral movement at 13, (e) lateral movement at 14, (f) vertical
movement at E1, and (g) vertical movement at H1 after SelfSim learning with
measurements of inclinometer in the wall (I1), inclinometer 14, and strut loads.
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Figure 4-11 Computed response of (a) surface settlements , (b), wall deflections at I1 (¢)
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Figure 4-12 Computed response of (a) surface settlements , (b), wall deflections at I1 (¢)
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movement at E1, and (g) vertical movement at H1 after SelfSim learning with
measurements of inclinometer in the wall (I1), surface settlements, 12, 13, 14, E1, HI, P1.

83



R e o e P s
B ]
B R
Eeidsdadsassatiasidsiasaniiiiasid]

A A Ty
B T e
»

B A A A A R A R R A
T T ],
R
i

S

213

12
E H1

B

on

B Set.
B4
SS: Surface settlement

SL: Strut loads

o T T
T

A

EHE1

.
T
R
e

1.0

Wall[1+SS  Wall(I1)+SS+SL Wall(11)+I4+SL Wall(I1)+SS+P1 All instruments

(except SL)

Instruments used in SelfSim learning

Figure 4-13 Comparison of My, values for computed deformations after learning with

measurements of inclinometer in the wall (I1) and surface settlement points;
measurements of inclinometer in the wall (I1), surface settlement points, and strut loads;

measurement of inclinometer in the wall (I1), inclinometer 14, and strut loads;
measurements of inclinometer in the wall (I1), surface settlement points, and piezometer

300

200

M¢. (kN)

P1; all instruments except strut loads;
100

Wall(I1)+SS

Wall(I1)+SS+SL

Wall(I1)+14+SL

All instruments

(except SL)

in SelfSim learning.

Figure 4-14 Comparison of My, values for computed strut loads by using and not using
strut loads

84



T s e
Eiitiniiinniiniiiiiiin
piiiiiiiiii

R R R R A A R R ]
pesiiiiisoniiiibanenuiiiiia e
Bt R A NI AR

i i
B
B e

1.0

20D

All instruments

WallI1)+SS ~ Wall(I1)+SS+SL Wall(I1)+14+SL Wall(I1)+SS+P1

(except SL)

Instruments used in SelfSim learning

Figure 4-15 Comparison of CCC values for soil behavior after learning with

measurements of inclinometer in the wall (I1) and surface settlement points;
measurements of inclinometer in the wall (I1), surface settlement points, and piezometer

P1; all instruments except strut loads; measurements of inclinometer in the wall (I1),
surface settlement points, and strut loads; measurement of inclinometer in the wall (I1),

inclinometer 14, and strut loads.

85



%
| AP-2 |
[ Mainlobservation section
! | A
I-3 | 1-2 | I-1) SP

(@) (@) [@WA

Q S Skldap-
0 10m S1-23
O Inclinometer (I and SI) 2
= Settlement point SI—3(§>

a Combined Earth/Water pressure cell (SP) SI- 4?
a Piezometer (P) x

1
Figure 4-16 TNEC plan view and instrument locations, modified after Ou et al. (1998)

86



Water content (%)

@ SPT-N
Trye—exTr QCR  values 5, (kPa)
0 10203040500 | 2 o 4 80 50 100 150 200
T 11 1 T BT T T
Silty Clay =
56 - Q — - O —_{:—
g0 |_Silty Sand o e
— - OO - 8 — ) _—.?—"'—
R e | r R
o o
Silty Clay — ;((ﬁ L -5 L 3
e igpl o -
_— — - — 0 b—
= oa=d 3
= 5] o) o
£ SN i -
—CPTU
5 330 Dense Fine Sand| | O . B | e
175 and Silty Clay O 14 Chu.ac
Dense Siltor | [ §
Silty Sand
46.0 - ©
Gravel -

Figure 4-17 Subsurface ground conditions and soil properties, after Ou et al. (2000)

87



wn
K
K on
1
N
wn
K
™
K 1
—_— e
T wn
[ A
s =) o A
< = = —
o S _ 9 3
1 B— —_—
~m T T T s T “ 3
[l ! < “““usu mub < lpru
n B 7 7 o 8 — — — 0
N < =38
=¥ A e
n n =
et
©n 8
o S
S B
g =2
g =T %
n 2% O s
prwe
-
w53 2738
o~ =}
R 5E2=z
2 << o o o © = R = E
17307 R R — D o .2 2 0
o S s E SO
Al - - = = = = <« ¢« —< x 4 —— d
— — )
S| /RO ==
O~ 0= L
N IZINAD NN n [Own g
L L 1 L 1 | — |
s 7 I e B v o E e
S e L

Figure 4-18 Excavation section view, modified after Ou et al. (1998)

88



¢ 0.00 m G
R i 2.0 o -2.8m i-z.o
Reference Stase |
Configuration age
-34.0m -34.0m
S 2.0 © =
Wtﬂté r'nﬂl> i—Z.O Concrete Slab 1 [t 2.0
8= A %‘"“‘"‘_’g}"‘g‘“
9.5—=
Stage 2 Stage 3
340m Removal of strut 340m

-34.0 m

-34.0m

Figure 4-19 Excavation sequence in TNEC project

89



Wall I-1 (cm) Distance from the wall (m)
08 6 4 2 0 OO 20 40 60 80 100

Depth (m)

Settlement (cm)

SI-1 (cm) SI-2 (cm)
08 6 4 2 0 8 6 4 2 0

Figure 4-20 Computed response of (a) wall deflections, (b) surface settlements, (c) lateral
movement at SI-1, (d) lateral movement at SI-2, (e) lateral movement at SI-3, (f) lateral
movement at SI-4 prior to SelfSim learning, TNEC excavation.
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Figure 4-21 Computed response of (a) wall deflections, (b) surface settlements, (c) lateral
movement at SI-1, (d) lateral movement at SI-2, (e) lateral movement at SI-3, (f) lateral
movement at SI-4 after 5 passes of SelfSim learning with wall deformations (I-1) only
down to third excavation stage, TNEC excavation.
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Figure 4-22 Computed response of (a) wall deflections, (b) surface settlements, (c) lateral
movement at SI-1, (d) lateral movement at SI-2, (e) lateral movement at SI-3, (f) lateral
movement at SI-4 after 6 passes of SelfSim learning with wall deformations (I-1) and
inclinometer SI-4 at 22 m distance from the wall, down to fifth stage of the excavation
using the database of SelfSim learning with wall deformations only down to third stage of
excavation, TNEC excavation.

92



P1-8m-Measured
P1-20m-Measured
P1-30m-Measured
P1-8m-Computed
= P1-20m-Computed
A P1-30m-Computed
— P1-8m-Static
------- P1-20m-Static

(a) —--—- P1-30m-Static
-100 ‘

<

o

>

*

(=)
T

Pore Pressure (kPa)

300

P2-21m-Measured
P2-25m-Measured
P2-30m-Measured
P2-21m-Computed
P2-25m-Computed
° 8 4o P2-30m-Computed
— P2-21m-Static
------- P2-25m-Static
—---—- P2-30m-Static

[
|
[
I
!
!
!

.o
I
|
;
bl
o

.
a
1
4
4
4
!
:
:
:
:
d
d
]
T
u]

[\®]
=
o

>
>
>

om0 pi
o
0p
45
e

Y

Pore Pressure (kPa)
<o
o
L 2
<o
8 F B

(=)
T
[}

(b) ¢
-100 ‘

300

SP1-20m-Measured
SP2-20m-Measured
SP3-28m-Measured
SP4-28m-Measured
SP1-20m-Computed
SP2-20m-Computed
4  SP3-28m-Computed
SP4-28m-Computed
— SP1&2-20m-Static

© SP3&4-30m-Static
-100 |

0 50 100 150 200 250
Time (day)

o <

>

[\®]
]
o

o

>

—_
]
o

(=)
T
[ ]

Pore Pressure (kPa)
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SP2, SP3, and SP4, TNEC excavation.
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Figure 4-24 Comparison of measured and computed earth pressures after learning with
wall deformations (I-1) and inclinometer SI-4 for earth pressures at the wall for a) stage
3, and b) stage 5 of the excavation, TNEC excavation.

94



I-2 (cm) I-2 (cm) I-2 (cm)
8 6 4 2 0 8 6 4 2 0 8 6 4 2

Figure 4-25 Comparison of measured and computed wall deformations of I-2 after a)
prelearning, b) learning with wall deformations only (I-1), and c) learning with wall
deformations (I-1) and inclinometer SI-4, TNEC excavation (For legend see Figure 4-22).

95



I-3 (cm) I-3 (cm) [-3 (cm)
1086 420 1086420 108 6 420

Figure 4-26 Comparison of measured and computed wall deformations of I-3 after a)
prelearning, b) learning with wall deformations only (I-1), and c) learning with wall
deformations (I-1) and inclinometer SI-4, TNEC excavation (For legend see Figure 4-22).
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CHAPTER 5 CASE STUDIES OF PREDICTION OF EXCAVATION RESPONSE
USING LEARNED PERFORMANCE OF EXCAVATIONS

5.1. Introduction

In many major urban areas, there are a number of well document excavation case
histories that are used by engineers as the precedent to estimate performance of new
excavations in similar soil stratigraphy. Learning from precedent represents a classic
inverse analysis problem aimed in part at interpreting the soil and stress response implied
by field observations. For instance, Calvello and Finno (2004) optimized the Hardening-
Soil (H-S) model (Schanz et al. 1999) for four layers of Chicago glacial clays initially
using results from triaxial test. Since the developed model could not predict the wall
lateral deformations of a subway station excavation in Chicago, they had to recalibrate
the model using inclinometer data that recorded the lateral displacements. Finno and
Calvello (2005) used the inclinometer at stage 1 of excavation to recalibrate the H-S
model and could predict the measured lateral deflections for later stages reasonably well.
Their study was limited to prediction of lateral wall deflections. While parameter
optimization approaches are very powerful, they are constrained by prior assumptions
regarding the material constitutive model and thus unable to learn new material behavior.

Hashash et al. (2006) demonstrated SelfSim learning capacity and the ability to
extract soil material behavior using numerically simulated excavation case histories. The
extracted soil model provided a reasonable prediction of excavation performance in a
new excavation site, Figure 5-1.

Three different simulated case histories were developed within a fictitious urban
area where the geologic profile is similar but not identical at all three sites. The
subsurface profiles assumed for the three simulated case histories had slight variations in
properties (different overconsolidation ratios OCRs) and strata thickness. SelfSim
learning was conducted using measurements of inclinometer at the wall and surface
settlements behind the wall from all three cases. Then the extracted soil model was used
in a new excavation in the hypothetical urban area to predict the ground movements.
Afterward, synthetic measurements that were not used in SelfSim learning were obtained

from the simulated excavation and compared to the predictions. The lateral wall
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deflections and surface settlements of a new case study were predicted reasonably well.
This finding demonstrated that it is possible to predict excavation performance of a new
case study after learning soil behavior from previous case studies that have similar soil
stratigraphy. However, the findings of Hashash et al. (2006) are limited to simulated
excavations using synthetic measurements.

In this chapter, the performance of SelfSim learning is demonstrated using
excavations in Texas, Shanghai and Taiwan. At each of these locations an instrumented
excavation is used in learning of the relevant underlying soil behavior. The learned soil
behavior is then used in a numerical analysis to predict the performance of another

excavation in similar stratigraphy that was not used in the learning process.
5.2. Full scale model wall in sandy soils at University of Texas A&M

5.2.1. Site description

The Texas A&M full scale model wall was constructed and tested as a part of
research performed to improve the design of permanent ground anchor walls for highway
applications (Weatherby et al. 1998). A 7.5-m-high, instrumented, full-scale, tiedback, H-
beam and wood lagging wall was constructed in an alluvial sand deposit to study various
aspects of the behavior of anchored walls. Figure 5-2 shows the location of the site at
Texas A&M University Riverside campus.

The schematic of plan view, instrument locations and elevation view of the Texas
A&M site are shown in Figure 5-3. The wall which is supported by pressure-injected
ground anchors has two sections. Up to soldier beam number 12 the piles have lighter
sections, (HP8x36, HP6x25), and therefore two levels of tiebacks are used. For soldier
beam numbers 13 to 22 a single tieback level was used, because of the larger pile sections
(HP10x57, HP12x53, HP10x42). Soldier beams 7 to 10 in the two levels of tieback
section and soldier beams 13 to 16 in the single tieback level section are instrumented
with inclinometers and surface settlement points, Figure 5-3. There are 6 inclinometers in
the retained soil. Inclinometers I-1, I-2 and I-3 are in the two-level tieback section of the
wall and located behind soldier beam 10 at distances of 0.7m, 1.5m, and 4.5m from the
wall, respectively. The corresponding surface settlement points for these inclinometers

are located behind soldier beam 9. Inclinometers I-4, I-5, and I-6 are in the single tieback
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level section of the wall behind the soldier beam 14 at distances of 0.7m, 1.5m, and 4.5m
from the wall, respectively. The corresponding surface settlement points for these
inclinometers are located behind soldier beam 15.

The cross sections of the wall with soil stratigraphy are shown in Figure 5-4. The
soil profile consists of fill overlying loose clayey sand followed by medium dense clean
sand, and medium dense clayey sand. The fill is composed of silty and clayey sand,
which was placed in 15 to 22 cm lifts and compacted with two passes of a fully loaded
rubber tire pan scraper. The water table is at EL. -7.0 m. The friction angle was estimated
to be between 30 to 32 degree using the correlation developed by Trofimenkov (1974) for
loose clayey sand and medium dense sand layers at this site (Weatherby et al. 1998). The
relative densities of the layers vary from 40 to 60 percent.

SelfSim learning is conducted using inclinometers measurements from the two-
level tieback section. The extracted soil models are used in a finite element analysis to

predict the excavation performance in single tieback section of the wall.

5.2.2. Learning soil behavior from two-level tieback section of the wall

Figure 5-5 summarizes the construction activities affecting the wall in the two-
level tieback section of the wall. The excavation induced deformations are available at
stages 2, 4, and 7 for two-level tieback section.

The full scale model wall is simulated using solid element with a bending
stiffness equivalent to that of the soldier-pile wall. The tiebacks are simulated by elastic
spring elements. The soil profile in the analyses consists of four representative layers for
fill, loose clayey sand, medium dense clean sand and medium dense clayey sand.

Although the Texas A&M excavation was not constructed symmetrically, it is
modeled as a 2D symmetric excavation with large half width of 20m to minimize the
effect of this assumed symmetry. The model dimensions are 85m and 18m in horizontal
and vertical dimensions, respectively. Individual soil layer are represented separately via
corresponding NN based material models.

Prior to any SelfSim learning, initial NN based soil constitutive models are pre-
trained to represent linear elastic response within a very small strain range. The initial

Young’s moduli used for pre-training are deliberately chosen large to produce small
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excavation-induced deformations. Figure 5-6 shows the computed deformations prior to
SelfSim learning. The surface settlements and lateral deflections of I-1, I-2, and I-3 are
underestimated. In the last stage of full scale model wall construction (i.e. 122 day), the
soldier beam piles appears to have settled/slipped. The measured subsurface settlement
behind the wall reflects this observation, Figure 5-6a. The slippage of the wall induced
large settlements behind the wall and is not represented in the inverse analysis. Various
instrument combinations are used in SelfSim learning to explore the extent of learning

and the ability to predict excavation response.

Learning soil behavior using wall deformations (I-1) only

Figure 5-7 shows the results of forward analysis after SelfSim learning from wall
deformations (I-1) only. The computed response of the wall (I-1) provides a reasonable
match to measured values, but the lateral movements at I-2 and I-3 and vertical
movements of settlement points are underestimated for Stage 7. Surface settlements near
the wall which are affected by wall slippage are underpredicted. It is worth noting that
measured wall deflections for I-2 Stage 7 exceed those for I-1 Stage 7. This behavior is
unexpected and likely due to spatial variability of measurement. However this measured
data is inconsistent from the 2-D inverse analysis point of view as it provides

contradictory information. Therefore I-2 is not used in learning.

Learning soil behavior using wall deformations (I-1) and inclinometer measurements at
-3

SelfSim learning is conducted using wall deformations (I-1) and lateral
deflections of the inclinometer I-3 in order to improve the learned behavior. Figure 5-8
shows the computed excavation response. The computed lateral deformations of I-3,

particularly in stage 7, have improved in comparison to Figure 5-7.

Learning soil behavior using wall deformations (I-1), inclinometer measurements at 1-3
and tieback loads
Final SelfSim learning analysis is conducted using the wall deformations (I-1),

lateral movements of inclinometer I-3, and tieback loads to capture the change in lateral
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deformations of the wall after tieback installation. Figure 5-9 shows the computed
excavation response. The computed lateral movements of the wall (I-1) and inclinometer
I-3 improved compared to the results in Figure 5-7 and Figure 5-8. It is observed using
tieback loads provide important information that enhances the model to capture
reasonably the measured deformations in inclinometer I-3, noticeably for the stage 7.
Figure 5-10 shows the comparison of measured and computed tieback loads. The
computed tieback loads after learning with wall deformations (I-1), lateral deflections at
inclinometer I-3 and tieback loads are in more agreement with the measured loads. When
only wall deformations or wall deformations and lateral deformations at inclinometer I-3
are used in SelfSim learning, the computed tieback loads are overestimated. Nevertheless,
the computed loads are improved by using both wall deformations (I-1) and lateral
deflections of inclinometer I-3 compared to the case where wall deformations (I-1) only

are used.

5.2.3. Predicting excavation response in one-level tieback section of the wall

The developed models from the SelfSim learning of the two-level tieback section
are used to predict the soil behavior in one-level tieback section of the wall. The wall
length and excavation depth are the same as those for the two-level tieback section
(Figure 5-4), but larger soldier beams sections are used. Figure 5-11 shows the
construction sequence for one-level tieback section of the wall.

Figure 5-12 shows the predicted excavation performance for the one-level tieback
section using the developed model after SelfSim learning with wall deformations (I-1)
only of two-level tieback section. Since heavier soldier beams are used in one-level
tieback section, the deformations are generally less than the two-level tieback section. It
is observed that the lateral deflections of inclinometer -4, I-5 and 1-6 are slightly
overpredicted for all excavation stages. The results show that for all inclinometers, the
deep seated deflections are overpredicted.

Figure 5-13 shows the predicted and measured surface settlements and lateral
deformations of inclinometer I-4, [-5, and [-6 after SelfSim learning with wall
deformations (I-1) and lateral deflections of inclinometer I-3 from the two-level tieback

section. The prediction improved in comparison to Figure 5-12. However the deflections

101



for the inclinometer I-5 and I-6 at stage 6, particularly in lower elevations are still
overpredicted.

Figure 5-14 shows the predicted excavation response using the developed model
after SelfSim learning with wall deformations (I-1), lateral deflections of I-3 and tieback
loads of two-level tieback section. The predicted lateral deformations of inclinometers I-
4, 1I-5 and I-6 are in good agreement with measured values. Similar to the two-level
tieback section of the wall, the slippage of the wall induced large surface settlements
behind the wall in single tieback level section. Therefore, the surface settlements near the
wall which are affected by wall slippage are not modeled in this simulation and are
under-predicted.

Figure 5-15 compares measured and predicted tieback loads in one-level tieback
section of the wall. The predicted tieback loads using developed model after SelfSim
learning with wall deformations (I-1), lateral deflections of I-3 and tieback loads of two-
level section of the wall are in reasonable agreement with measured values, for one out
of the three construction stages. The predicted tieback loads using developed model after
SelfSim learning with wall deformations (I-1) only or wall deformations (I-1) and lateral
deflections of I-3 consistently overestimate the measured loads.

This case study demonstrates that the lateral deformations at the wall and at
distances from the wall in the single tieback level section can be predicted using the soil
model extracted from field observations in the two-level tieback section of the wall.
However, the surface settlements are not predicted reasonable due to the wall slippage
effect which caused large settlements behind the wall and was not simulated in the

inverse analysis.
5.3. Bottom-up excavation in soft clays of a metro station in Shanghai

5.3.1. Site description

The Yishan Road metro station, located in southwest Shanghai, is a 15.5 m deep
excavation with 17.4 m width and 335 m length in Shanghai soft clays at Pearl II metro
line (Liu et al. 2005). The site is instrumented to monitor wall deflections, total earth

pressures at the wall, pore-water pressures, and vertical ground movements. Figure 5-16
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shows the plan view of Yishan Road metro station and instrument locations along the
project line. The ground water table is at about 1 m below the ground level.

Figure 5-17 shows the soil stratigraphy and typical cross section of the excavation
site. The site is underlain by thick, relatively soft to stiff clay deposits. The uppermost
clay layer appeared to be desiccated and it has lower water content but higher shear
strength than those of the underlying marine deposits (i.e., soft to medium stiff clay). The
shear strength and compressive modulus profiles were obtained from in situ vane shear
tests and oedometer tests at stress ranges from 100 to 200 kPa, respectively. The
permeability of shallow sedimentary marine soft silty and marine medium clays was 10
and 10” m/s, respectively. Generally the water content of each soil lies close to the liquid
limit and the soils have a relatively high void ratio and hence high compressibility (Liu et
al. 2005).

The Yishan Road metro station excavation was supported by a 0.6 m thick
concrete diaphragm wall. The wall length between Panels 27 and 35 was 28 m and in the
remaining panels were 28 and 34 m at the north and south sides of the station,
respectively. The deeper wall in the south was placed to minimize the effects of the
station excavation on adjacent light-rail line running parallel to the wall about 20-30 m
away. Prior to the main excavation, the soil at depths between 8.6 and 10.6 m and
between 16.6 and 19.6 m below the ground surface was treated by compaction grouting at
the passive zone of the excavation with 3 m spacing after the construction of the
diaphragm wall. Since the compaction grouting was discontinuous, the inclinometer
deflections showed that the grouting was ineffective. The excavation was conducted from
two ends towards the center of the station.

Reinforced concrete struts of 800 mm width and 1200 mm depth were installed at
-1.2 m depth at 6 m horizontal spacing and pre-stressed steel pipes of 609 mm in
diameter (external) and 16 mm in thickness were used at other levels at 3 m horizontal
spacing to support the diaphragm wall. Each pre-stressed strut was periodically adjusted
to maintain the pre-stress to not less than 0.7 times the estimated total vertical stress (Liu
et al. 2005). Prior to excavation to -12.5m, a 0.6 m thick reinforced concrete middle slab

was constructed except for the section between Panels 27 and 35. After construction of
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middle slab, 60 days were allowed for curing the concrete. Based on Liu et al. (2005) no
significant creep effect could be identified over the 60 days curing of the middle slab.

Large lateral wall deflections were measured from excavation depth of 12.5 to
15.5 m, which was not consistent with reported construction activities. This was probably
because of the relatively shorter wall or insufficient application of pre-stress (Liu et al.
2005). Therefore, the metro station excavation was simulated down to 12.5 m excavation
depth. Based on the support system configuration and construction activities, three
clusters are defined to perform forward analysis,

Figure 5-16. In cluster 1 the wall length for north and south walls of the
excavation is 28 m. The middle slab was not used in this cluster. In cluster 2 the middle
slab and wall length of 34 m are used to simulate excavation. In cluster 3 the middle slab
and wall length of 28 m are used to simulate the excavation.

The construction sequence and wall length of excavation for clusters 1, 2, and 3
are illustrated in Figure 5-18. SelfSim learning is conducted using measurements of
inclinometer 105, inclinometer 106, and settlements CJ04 in cluster 1 to extract the
underlying soil behavior. The measured deflections of inclinometers in the first stage
were not reported, hence the measurements of stages two to five are used for SelfSim
learning. The extracted model is used to predict the instrument measurements in clusters
2 and 3 along the metro station, shown in Figure 5-16.

In order for the inverse analysis algorithm to work well, it is essential that field
measurements used are compatible with reported and idealized construction sequence.
Figure 5-19 shows the reported measurements of inclinometers in Yishan Road station
for inclinometer 105 & 106, and surface settlements CJ04 (Cluster 1, Figure 5-16).
Inclinometer data of 105 and 106 are similar. Inclinometer 105 shows outward movements
into the retained soil that cannot be explained by the idealized construction sequence
shown in Figure 5-18. This movement might be due to excessive pre-stressing of the
bracing and pauses difficulty for inverse analysis as the pre-stressing load is not known.
Therefore a slight adjustment is made to these deformations to eliminate the slight
outward movement of the wall. A continuous surface settlement profile is also developed
from the reported measurements at discrete points. Without these adjustments, the inverse

analysis algorithm experienced significant difficulties because the original data would
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indicate that the wall at the top moved into the soil due to soil removal which is
physically not plausible. The adjusted measurements for inclinometer and settlements are

referred to by proposed measurements label in Figure 5-19.

5.3.2. Learning soil behavior from measurements in cluster 1

The support wall for the deep excavation is simulated using solid elements with a
bending stiffness equivalent to that of 0.6 m thick concrete diaphragm wall. The soil
profile in the analyses is represented with five NN material models to represent layers:
(1) for top fill layer, (2) for medium clay, soft silty clay, and soft to medium clay between
depths of 2 m and 15 m, (3) for medium clays between depths of 15 m and 18 m, (4) for
stiff clays between depths of 18 m and 23 m, and (5) for stiff silty clays at depths lower
than 23 m. Shanghai deep excavation is modeled as 2D symmetric excavation with half
width of 8.7m. The model dimensions are 130 m and 70m in horizontal and vertical
directions, respectively.

Prior to any SelfSim learning all soil constitutive models are pre-trained to
represent linear elastic response within a very small strain range. The initial Young’s
modulus used for pre-training is deliberately chosen large to produce small excavation-
induced deformations. Computed deformations prior to SelfSim learning are shown in
Figure 5-20. The computed deformations significantly underestimate the proposed
measurements.

SelfSim learning is then conducted using proposed measured wall deformations of
inclinometer 105 & 106 and surface settlement points CJ04 (for locations see cluster 1 in
Figure 5-16). Computed and proposed measured deformations of the excavation after six
passes of SelfSim learning are shown in Figure 5-21. The computed deformations
improved significantly in comparison to results shown in Figure 5-20. The difference
between measured and computed deformations except for wall movements in the fifth
stage of excavation, are generally less than 2 mm, which indicates a reasonable match.
The lateral deformations in the fifth stage are underestimated.

The predicted pore water pressures at different depth at location PA1, located in
cluster 1, is shown in Figure 5-22. No pore water pressure data was used in SelfSim
learning. The trends of predicted dissipation of pore pressures are in general agreement

with measured values for PA1.
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5.3.3. Predicting excavation response in clusters 2 and 3

The developed soil models after SelfSim learning with measured wall
deformations and surface settlements in Cluster 1 are used to predict excavation behavior
in Clusters 2 and 3 shown in Figure 5-16.

Prediction for Cluster 2

The predicted wall deformations of 103 and 109, and surface settlements CJ02 and
CJOS in cluster 2 are shown in Figure 5-23. The lateral deformations of 103 and 109 are
less than the measured deflections of 105 and 106 due to use of middle slabs. The
predicted deformations of the wall for inclinometers 103 and 109 in stages 3 and 4 are in
reasonable agreement with the measured deflections. The wall deflections and surface
settlement for stage 5 are underestimated. It is unclear why a sudden increase in
measured settlements occurred between Stage 4 & 5 which cannot be explained by the
known construction sequence. It is possible that an unrecorded deviation from the
construction sequence caused this sudden increase.

The predicted pore water pressures at PA2, cluster 2, at different depths is shown
in Figure 5-24. There is a general agreement between measured and predicted porewater
pressures.

The comparison of predicted and measured earth pressures for PA2 is shown in
Figure 5-25. Based on Liu et al. (2005) since the initial earth pressures are not consistent
with Ky pressure and Rankine’s active earth pressure, the measured absolute values are
not very reliable. Therefore, only the trend of the measured and predicted values should
be considered. In the upper 15 m, the measured earth pressure coefficient is slightly
larger than the K, at-rest condition for stages 2, 3, 4, and 5. For the depths more than 15
m from the ground surface, the measured earth pressure coefficient is less than K, at-rest
condition. The predicted earth pressure for second stage is close to Ky at-rest condition.
As the excavation proceeds, the predicted earth pressure coefficient becomes smaller than
Ky at-rest value.

Prediction for Cluster 3

The predicted wall deformations of 104 and surface settlements CJ06 in cluster 3

are shown in Figure 5-26. The lateral wall deflections for stage 3, 4, and 5 of the

excavation match reasonably with the measured values. The settlements also are in
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reasonable agreement with measured values for stage 3, 4 and 5. Compared to surface
settlements CJ02 and CJO5 (Figure 5-23), there are no large settlement measurements for

stage 5 of surface settlements CJ06.

5.4. Excavation in Taipei silty clays

Two excavation sites in Taipei, shown in Figure 5-27, are employed in the inverse
analysis and prediction exercise. The Taipei National Enterprise Center (TNEC) and
Formosa deep excavation sites are about 2 kilometers apart. Inclinometer measurements
from TNEC excavation are used in SelfSim inverse analysis to extract the underlying soil
behavior. The extracted soil models are then used in a numerical analysis to predict the

performance of Formosa deep excavation.

5.4.1. Site description

TNEC excavation case study
The Taipei National Enterprise Center (TNEC) is an 18-story building with five

basement levels using top-down construction techniques (Ou et al. 1998). The site has
slightly irregular plan view and occupies an area of about 3500 m?, as shown in Figure
5-28. The excavation depth is 19.7-m deep. The excavation site was extensively
instrumented using earth pressure cells on the wall, rebar stress meters on the
reinforcement cage, piezometers, inclinometers, heave gauges and settlement gauges.

A cross section of the excavation is shown in Figure 5-29. The excavation site
consists of six layers of alternating silty clay and silty sand deposits overlying a thick
gravel formation. The first and second layers consist of silty clay (CL) layer and silty
sand (SM) layer, respectively. The third layer is a 26-m-thick silty clay (CL), and it is
mainly this layer that affects the excavation behavior. The fourth and fifth layers are
medium dense fine sand and silty clay mixed with silty sand, respectively. A gravel
formation is located 45 m below the ground surface. Prior to excavation the ground water
table was 2 m below the ground surface. A 90-cm-thick and 35-m-deep diaphragm wall
was used as the earth-retaining structure. The construction sequence of TNEC excavation
is shown in Figure 5-30. The excavation is modeled in five excavation stages down to

depth of 15.2 m depth.
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Formosa excavation case study
Formosa is an 18.45m deep excavation case study in Taipei. Figure 5-31 shows

the plan view of the project and instrument locations (i.e. inclinometer and surface
settlement points). The cross section of the wall and soil layers is shown in Figure 5-32.
The soil profile is a typical soil profile of Taipei and consists of mainly clayey layers at
the top 26 meters. Underneath the clay layer is a combination of silty sand and clayey silt
followed by a gravel layer (Ou et al. 1993). The excavation is supported by a 31 m length
and 0.8 m thickness diaphragm wall and the struts are in 3m spacing. The ground water
table is 2 m below the ground surface.

The 18.45 m excavation was conducted in 7 stages. The measured inclinometers
for the last two stages show a shift after installation of struts. Therefore, the excavation is
modeled down to fifth stage of the excavation (i.e. 13.2 m). The construction sequence of

the excavation is shown in Figure 5-33.

5.4.2. Learning soil behavior from measurements of TNEC excavation, Taipei

The support wall for the TNEC excavation is simulated using solid elements with
a bending stiffness equivalent to that of a 90-cm-thick concrete diaphragm wall. The soil
profile is represented with four NN material models to represent layers: (1) for top 6 m
silty clay and 2 m silty sand (NN1-TNEC), (2) for silty clays between depths of 8 m and
16 m (NN2-TNEC), (3) for silty clays between depths of 16m and 24m (NN3-TNEC),
and (4) for silty clays between depths of 24m and 34m (NN4-TNEC). Elastic material
model with Young modulus of E = 16.6 MPa is assigned for the depths lower than 34m.
TNEC excavation is modeled as 2D symmetric excavation with a half width of 25m. The
model dimensions are 170m and 70m in horizontal and vertical dimensions, respectively.

Prior to any SelfSim learning all NN soil constitutive models are pre-trained to
represent linear elastic response within a very small strain range. The initial Young’s
modulus used for pre-training is sufficiently large to produce small excavation-induced
deformations. A set of SelfSim learning analyses was conducted using wall deformation
measurements (I-1) only. SelfSim learning failed beyond stage three of the excavation.
This might be due to a limitation in the information contained in these additional stages.

Therefore, an inclinometer measurements SI-4, 22 m away from the excavation wall is
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added to the wall deformation measurements as part of further SelfSim learning down to
fifth excavation stage. Figure 5-34 shows the measured and predicted wall deformations,
lateral deflections of inclinometer SI-4 and surface settlements after six passes of SelfSim
learning. The computed lateral deformations of wall (I-1) and inclinometer SI-4 are in
close agreement with the measured values. The settlements (not used in SelfSim learning)

are also predicted reasonably.

5.4.3. Predicting the excavation response in Formosa excavation, Taipei

The developed soil models after SelfSim learning with wall deformations of
inclinometer I-1 and SI-4 from Taipei National Enterprise Center (TNEC) building in
Taipei are used to predict the wall deflections and surface settlements in Formosa
excavation.

The support wall for Formosa deep excavation is simulated using solid elements
with a bending stiffness equivalent to that of 0.8-m-thick diaphragm wall. The soil profile
in the analysis is represented with three extracted NN material models from TNEC
excavation. The represented soil layers are as followings: (1) NN1-TNEC soil model for
top 1 m fill, (2) NN2-TNEC soil model for clays between depth of 1m and 12m, (3)
NN3-TNEC soil model of TNEC for clays between depth of 12m and 26m. Elastic
material model with Young’s modulus of E = 16.6 MPa is used for the depths lower than
26m. The Formosa deep excavation is modeled as a 2D symmetric excavation with half
width of 15m. The model dimensions are 120m and 70m in horizontal and vertical
dimensions, respectively.

Figure 5-35 shows the predicted and measured deformations of inclinometers and
settlement points. The predicted wall deformations reasonably match with the measured
values. The surface settlements are also reasonably predicted up to 10 m from the wall.
The surface settlements are slightly overestimated at farther distances from the wall. It
should be emphasized that no measurements from Formosa excavation case study were
used in SelfSim learning and the computed values are pure predictions.

TNEC and Formosa case studies show a successful application of SelfSim
learning whereby extracted soil behavior from a case study in Taipei provides a
reasonable prediction of wall deformations and surface settlements in another case study

with similar soil stratigraphy.
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5.5. Summary

This chapter demonstrated that inverse analysis can be a suitable approach to
predict the excavation performance in urban area after learning from precedent case
histories or local experience.

The chapter highlighted the importance of having reliable measurements that can
be clearly related to specific construction activities (cause and effect). Therefore it is not
sufficient to rely on measurements of quantities such as deformations and pressures, but
there is a need to develop a detailed record of construction.

The extracted soil behavior from two-level tieback section of the wall in Texas
A&M case study in sandy soil could predict reasonable wall deformations and lateral
deformations in distances from the wall in one-level tieback section of the wall. The
extracted soil behavior from instrument measurements in cluster 1 of Yishan Road metro
station case study provide a reasonable prediction of wall deformations and surface
settlements in clusters 2 and 3 along the 335 m length of the station. Predicted pore water
pressures are in agreement with the measured values. Use of extracted soil behavior from
TNEC project to predict the excavation behavior in Formosa case study in soft clays of
Taipei shows a successful implication of SelfSim framework whereby excavation
performance can be predicted after learning from precedent.

In the future, the proposed inverse analysis approach can be used with available
measurements to develop numerical models with “local experience”.  Available
excavation performance data sets can be used to develop area-specific soil models (e.g.
San Francisco Bay Mud, Boston Blue Clay). The developed soil models can be used to
provide acceptable predictions of excavation-induced ground deformations for new

excavations constructed in these locals.
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Figure 5-5 Construction sequence for two level tieback section of the Texas A&M
University full scale model wall
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Figure 5-6 Computed response in two anchor section, Texas A&M excavation, prior to
SelfSim learning.
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Figure 5-8 Computed response, two anchor section, Texas A& M excavation, after six
passes of SelfSim learning with wall deformations (I-1), and lateral movements of
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Figure 5-9 Computed response, two anchor section, Texas A& M excavation, after six
passes of SelfSim learning with wall deformations (I-1), lateral movements of

inclinometer I-3, and tieback loads.
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Figure 5-12 Predicted excavation response in single tieback level section, Texas A& M
excavation, using developed model from learning wall deflections (I-1) only.
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Figure 5-13 Predicted excavation response in single tieback level section, Texas A& M
excavation, using developed model from learning wall deflections (I-1), and lateral
movements of inclinometer I-3 in two-level tieback section of the wall.
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Figure 5-14 Predicted excavation response in single tieback level section, Texas A& M
excavation, using developed model from learning wall deflections (I-1), lateral
movements of inclinometer -3 and tieback loads in two-level tieback section of the wall.
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Figure 5-16 Plan view of Yishan road metro station and instrument locations, Shanghai
excavation, modified after Liu et al. (2005)
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128



Wall Deflection (mm)

Distance from the wall (m)

020 15 10 5 0 -5 00 5 10 15 20
\ \ \ dgé,k
= E
= é«no — gz
Fare 5 4
A\ ‘)J o
0 o EE 5
EosoEm ks 36
=15, @ e 7
a e o~ o 8 ‘ ‘
8 .\ ] A e
< \2} JAN \
20 ‘oo E% RN § Raw Proposed
R 0o Stages Measurements Measurements
* Df'% 2 : 105 & CJ04 | 106
25 - LA Stage 2 . o S
(a) ¢ mio
Stage 3 A A ——
30 \ \ \ \
Stage 4 n o n
Stage 5 . © ——

Figure 5-19 Original and proposed measurements for inverse analysis for a) lateral wall
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Figure 5-20 Computed deformations in Cluster 1 prior to SelfSim learning; a) wall
deformations, and b) surface settlements, Shanghai excavation
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Figure 5-21 Computed deformations in Cluster 1 after six passes of SelfSim learning with
Cluster 1 measured deformations; a) wall deformations, and b) surface settlements,
Shanghai excavation
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Figure 5-23 Predicted deformations in cluster 2 after six passes of SelfSim learning with
Cluster 1 deformations; a) wall deformations (I03 and 109) and b) surface settlement
CJ02 and CJO5, (middle slab was used), Shanghai excavation
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Figure 5-26 Predicted deformations in cluster 3 after six passes of SelfSim learning with
cluster 1 deformations; a) wall deformations (104) and b) surface settlement CJ06,
(middle slab was used), Shanghai excavation
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Figure 5-27 The location of TNEC and Formosa excavation site in Taipei
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Figure 5-34 Computed response after six passes of SelfSim learning with wall
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stage of the excavation using the database of SelfSim learning with wall deformations
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CHAPTER 6 TWO AND THREE-DIMENSIONAL INVERSE ANALYSES OF
DEEP EXCAVATIONS IN CHICAGO CLAYS

6.1. Introduction

Estimate and control of ground movements induced by deep excavations are
critically important in urban areas. During excavations instruments are installed to
monitor ground response and to verify design assumptions. In practice, a number of
empirical and semi-empirical methods are used to estimate ground deformations (Peck
1969; Clough and O'Rourke 1990; Kung et al. 2007).

Numerical methods have also been used to estimate ground movements (Wong
1970; Clough and Tsui 1974; Mana and Clough 1981; Finno and Harahap 1991; Hsi and
Small 1993; Whittle et al. 1993; Hashash and Whittle 2002; Finno and Calvello 2005).
Generally plane strain two-dimensional (2D) analysis is conducted to assess wall and
ground movements in the center of each side of the excavation. This simplifying
assumption is sometimes inconsistent with the measured excavation behavior in the field.
To date, due to high cost of computational cost and time constraints, the full three-
dimensional (3D) analyses have been infrequently applied in practice. A number of 3D
simulation studies have been conducted to describe the 3D effects in deep strutted
excavations in a variety of soil conditions (St-John 1975; Ou et al. 1996; Ou and Shiau
1998; Zhang et al. 1999; Moormann and Katzenbach 2002; Finno and Roboski 2005;
Zdravkovic et al. 2005; Ou et al. 2008).

Ou et al. (1996) proposed a relationship for estimating three-dimensional
maximum wall deflection of an excavation based on two-dimensional finite element
results. The proposed technique was explored in detail for Taipei National Enterprise
Center (TNEC) excavation by Ou et al. (2000). Finno et al. (2007), conducted 150 finite
element simulations to define the effects of excavation geometry, i.e., length, width, and
depth of excavation, wall system stiffness, and factor of safety against basal heave on the
three-dimensional ground movements caused by excavations in clays. The results of the
analyses were represented by the plane strain ratio (PSR), defined as the maximum
movement in the center of an excavation wall computed by three-dimensional analyses

normalized by that computed from a plane strain simulation. Results of their analysis
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showed that the ratio of the wall length to the excavation depth is the most influential
factor.

Finno and Roboski (2005) analyzed the measured 3D reposne of Lurie Center
excavation in Chicago clays and proposed a closed form solution to estimate the
settlements that developed parallel to the support walls at the Lurie Center excavation.
The settlements can be estimated by a complimentary error function, given a maximum
movement, and depth and length of excavation.

Inverse analyses have been applied to several geotechnical problems (Sakurai and
Takahashi 1969; Cividini and Rossi 1983; Gioda and Sakurai 1987; Hashash et al. 2006).
Inverse analyses have been used to identify soil parameters from laboratory or insitu tests
(Anandarajah and Agarwal 1991; Zentar et al. 2001; Samarajiva et al. 2005),
performance data from excavation support systems (Ou and Tang 1994; Hashash and
Whittle 1996; Calvello and Finno 2004), excavation of tunnels in rock (Sakurai and
Takahashi 1969; Gens et al. 1996; Gioda and Locatelli 1999), and embankment
construction on soft soils (Arai et al. 1986; Honjo et al. 1994).

The common application of numerical modeling is “back calculation”, in which
the simulated model is adjusted to agree with measured values. This approach is
primarily a linear process with ad hoc loops. This approach to the solution of boundary
value problems is not always successful in capturing measured field behavior due to
various factors including the lack of sufficient knowledge of soil behavior under complex
shearing modes experienced in the field (Hashash et al. 2006).

Optimization techniques (Gioda and Sakurai 1987; Ou and Tang 1994; Ledesma
et al. 1996; Pal et al. 1996; Zentar et al. 2001; Calvello and Finno 2004; Samarajiva et al.
2005; Levasseur et al. 2008; Levasseur et al. 2008 a) are used as an alternative to ad hoc
methods for solving the inverse problem and for learning from precedent. Given a
numerical model, unknown properties of the material constitutive model are
systematically adjusted to minimize the error between numerical model calculations and
observed response. Calvello and Finno (2004) deployed a computer code UCODE
(Poeter and Hill 1998) and Hardening-Soil (H-S) model in back analysis of supported
excavations. Their results showed that the accuracy of back-figuring the observed

excavation-induced wall deflection is satisfactory. Tang and Kung (2009) used a
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nonlinear optimization technique (NOT) incorporating the auxiliary techniques to
enhance the convergence and stability of the optimization analysis for supported
excavations. Since many factors such as soil stiffness and small-strain non-linearity of
soil behavior is difficult to be represented by the conventional soil models, the back-
figured parameters are generally away from real parameters and the back-figured
parameters regarded as the equivalent parameters.

In another related study, Levasseur et al. (2008 a; 2008b) proposed the genetic
algorithm as a new optimization method for geotechnical inverse analyses and soil
parameter identification. This method was applied to reproduce the horizontal
displacement of the wall and was compared to other optimization techniques that are
based on gradient algorithm for Lurie Center case study in downtown Chicago (Rechea et
al. 2008). They concluded that since gradient algorithm assumes the solution of the
inverse problem is unique, and in the field of geotechnics there are a number of
uncertainties associated with in situ measurements, its use is problematic. Overall, the
inherent limitations of constitutive models used in optimization techniques, and non
uniqueness of solution sets, results in limited integration of numerical modeling with
observational approach.

However, Hashash et al. (2003; 2006) recently introduced a robust inverse
analysis approach, self-learning simulations (SelfSim), to extract soil behavior by using
wall deformations and surface settlements measurements.

SelfSim is an inverse analysis framework that implements and extends
autoprogressive algorithm proposed by Ghaboussi et al. (1998). The filed measurements
are used to extract soil behavior through the use of a continuously evolving neural
network (NN) material model. Two complementary numerical analyses are performed for
each excavation stage. In the first analysis the force boundary condition is applied to
extract stresses. The computed strains most likely do not match with field strains in this
analysis. In the second analysis the displacement boundary conditions are applied to
extract strains. The computed stresses most likely do not match with field stresses. The
extracted stress-strain pairs from analysis a and b are used to re-train the NN material
model until the two analyses give similar results (Hashash et al. 2006; Marulanda and

Hashash 2007), Figure 6-1.
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Hashash et al. (2006) demonstrated SelfSim learning capacity and the ability to
predict performance of a new excavation using numerically simulated excavation case
histories. Song et al. (2007) demonstrated that besides wall deformations, inclinometers
placed at further distances back of the wall, and strut loads are useful measurements that
can improve learning soil behavior. While the SelfSim framework has been applied to
several clayey excavation sites (Hashash et al. 2006), Osouli and Hashash (2008)
conducted SelfSim to extract sandy soil behavior from excavation measurements of a full
scale model wall at Texas A&M supported by a two-level tieback section. The SelfSim
approach has also been used to predict excavation-induced ground movements in several
case studies . Two dimensional analyses were used in all the previous application of
SelfSim framework.

In this chapter, SelfSim learning inverse analysis approach introduced by Hashash
et al. (2006) for 2-D excavation analyses is extended to learn excavation response in 3D
analysis. The geographic location of the two sites is shown in Figure 6-2. SelfSim is used
to extract the Chicago clay and sand layers behavior from Lurie Center excavation in a
2D analysis. The extracted soil behavior is used to predict the wall deformations and
surface settlements in Ford Center deep excavation, in Evanston, IL. Since the different
ground elevation around the excavation site imposes 3D effects, the incapability of 2D
analysis is highlighted. The numerical development in order to simulate the excavation in
3D via SelfSim inverse analysis is demonstrated. The SelfSim inverse analysis in three-
dimensional simulation is used to learn the Ford Center deep excavation measured
response. The quality of the learned global response and extracted soil behavior is

discussed in detail.
6.2. Site description

6.2.1. Lurie center

The excavation for the Lurie Research center was approximately 82 by 69 m and
depth of 13m (Finno and Roboski 2005). The site was heavily instrumented to monitor
the ground movements resulting from the excavation. The support system and typical soil

profile at the site are shown in Figure 6-3. The support system consisted of a sheet pile
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wall with three levels of tiebacks. The soil profile consists of fill layer at the top, lake
sand layer, and soft to stiff silty clay at the bottom. Much of the subsoil in the Chicago
area consists of fairly distinct strata deposited during the advances and retreat of glaciers
during the Wisconsin Stage and are identified as clay strata. In order of deposition they
are Park Ridge, Deerfield, and Blodgett (Chung and Finno 1992). The Park Ridge,
Deerfield, and Blodgett are ice margin silty clay deposits which have different water
contents and strength parameters. The stiff crust above Blodgett layer is desiccated clay
caused by drop on the level of Chicago Lake.

The excavation sequence was idealized in seven stages down to elevation -7.3.
The average inclinometer measurements obtained from LR6 and LR8 and surface

settlements were deployed in SelfSim learning analysis.

6.2.2. Ford Center engineering design center

The Ford Motor Company Engineering Design Center is a five-story building
founded on drilled caissons with two-level basement (Blackburn 2005). The 9.1 m depth
excavation is supported by sheet pile walls and two levels of bracing. Due to closeness of
excavation site to the Tech building and cautious about any damage to Tech building,
several instruments are placed around the site: inclinometers on 3 sides of the excavation,
tiltmeters affixed to columns in Tech building, optical surveying of the ground surface
and sheet pile wall, and strain gauges on struts (Blackburn 2005). The plan view of the
site and instrument locations are shown in Figure 6-4. Two inclinometers (i.e. I-1 and 1-2)
were installed in north side of the excavation. Inclinometer I-3 and [-4 were installed in
east and west side of the excavation, respectively. Eight settlement points were monitored
for this excavation. Settlement point P1 and P2 were in farther distance from the
excavation as reference points. Settlement point P3 and P4 were on top of the sheet pile
wall. Settlement point PS5 was located on a concrete block in 2.5 m from the sheet pile
wall. The other three settlement points (i.e. P6, P7, and P8) were located on ground
surface. The excavation support system includes XZ85 section sheet pile walls supported
by two levels of internal bracing, which are 0.61m-diameter pipes. In each corner of the
excavation six struts in two levels supported the sheet pile walls, Figure 6-4. Two levels
of walers in elevations +1.5 m and -1 m were installed around the excavation. The

eastward and southward cross sections of the excavation are shown in Figure 6-5 and
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Figure 6-6, respectively. Three locations in each side of the excavation are selected to
show the stress paths and are indicated by S-1 to S-9. The stress paths for fill, soft clay,
and medium clay layers are demonstrated for each location.

The Soil profile in Evanston area, similar to Chicago’s, consists of fill, sand and
clay layers overlay limestone bedrock. Figure 6-7 shows comparison of soil profiles in
Evanston and Chicago. As it is observed, the Ford Center excavation site is located on a

compressible clay layer which is up to 17-m thickness in some areas.

6.3. Learning of 2D global excavation response from Lurie Center using SelfSim

Hashash et al. (2006) applied SelfSim to the Lurie Research Center. All lateral
soil movements in proximity to the wall and surface settlements corresponding to the
known construction stages are used as boundary conditions for SelfSim learning by
Hashash et al. (2006). The inclinometers were located 5 ft behind the sheetpile wall, and
therefore the lateral deflections used during SelfSim learning were applied in the finite
element analysis at the same location for all elevations. The soil profile in the analyses
was represented with four NN material models to represent layers: (1) top fill layer
(NN1-Lurie), (2) lake sand layer (NN2-Lurie), (3) soft to medium silty clay layer (NN3-
Lurie), (4) stiff to very stiff silty clays (NN4-Lurie). Lurie deep excavation was modeled
as 2D symmetric excavation with half width of 25m. The model dimensions were 150 m
and 22m in horizontal and vertical directions, respectively.

Prior to any SelfSim learning all soil constitutive models were pre-trained to
represent linear elastic response within a very small strain range. The initial Young’s
modulus used for pre-training was deliberately chosen large to produce small excavation-
induced deformations. This analysis underestimated lateral wall deformations and surface
settlements, but gives a qualitatively reasonable deformed shape. Several SelfSim
learning cycles were conducted at each excavation stage. After a few passes of SelfSim
learning the calculated deformations reasonably match with the measurements in all
excavation stages.

Figure 6-8 shows the deformations after 12 SelfSim learning passes (Hashash et
al. 2006). Overall, the computed deformations using soil models extracted through

SelfSim learning are similar to the field measurements, although there are some
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noticeable discrepancies in the initial two stages between the computed and the measured
soil movements. One possible reason for these differences is the large measured surface
settlement associated with the behavior of the pavement material and/or near-surface fill.
The soil models extracted by Hashash et al. (2006) from Lurie Center are used to predict

the excavation response in Ford Center excavation.

6.4. Predicting 2D excavation response in Ford Center using Lurie Center
extracted soil models

Due to the similarity in soil profile of Ford Center in Evanston and Lurie center in
downtown Chicago, the extracted soil model from Lurie Center is used to predict the
inclinometer measurements and surface settlements in Ford center excavation.
Construction sequence of the excavation in 2D analyses in six main stages is shown in
Figure 6-9.

The soil profile in the analysis is represented with three extracted NN material
models from Lurie Center excavation. The represented soil layers are as followings: (1)
NN1-Lurie soil model for fill/sand/silt layer, (2) NN3-Lurie soil model for crust clay, soft
clay, and medium clay, (4) NN4-Lurie soil model for stiff silty clay. The Ford Center
deep excavation is modeled as a 2D symmetric excavation with half width of 20m. The
model dimensions are 120m in horizontal dimension. The vertical dimension of the
model is 22m.

Figure 6-10 shows the measured and predicted vertical movements of surface
settlements points and lateral movements of inclinometers I-1, 1-2, I-3 and I-5. The
settlements for all stages are underestimated. The lateral deflections of I-1, 1-2, I-5 are
overpredicted by two orders of magnitude. The lateral deflections of I-3 are predicted in
the same order of magnitude. The large deflections measured by inclinometer 1-3, are
most likely due to the close proximity of the inclinometer to the wall and the reduced
system stiffness caused by the pop out constructed for elevator pit in east part of
excavation (Blackburn 2005).

Although the Tech building foundation load could have an effect on the measured
data and could be considered as a source of disagreement between the computed and
target values, further analysis by considering its effect did not improve the predicted

results.
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In addition since the Tech building is a two-story building with a basement level,
the consolidation of clays due to loads of building could not change the stiffness of clay
layers significantly. Therefore it is less likely that the different stiffness of clay layers be

the source of discrepancy between predicted and measured deflections values.

6.5. Extracted soil behavior in 2D analysis

Figure 6-11 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay layers for locations S-1 in the north side of
excavation; see the S-1 location in Figure 6-4. The location of elements in each soil layer
is shown in Figure 6-5 and Figure 6-6. The fill/sand/silt layer undergoes shearing almost
identical to Plane Strain Active (PSA) mode and it reaches peak shear strength. The stress
paths for clay layers show a change in the direction of shear plane. The soft clay shows a
drained type of behavior , which does not seam reasonable. The stress path for stiff clay
demonstrates a shearing behavior almost identical to Place Strain Passive (PSP) mode.

Figure 6-12 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay for locations S-5 in the west side of excavation;
see the S-5 location in Figure 6-4. The sand, soft clay and medium clay layers
demonstrate a drained type of behavior. A change in the direction of the principal stresses
for fill/sand/silt and clay layers is observed.

Figure 6-13 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay for locations S-3 in the east side of excavation;
see the S-3 location in Figure 6-4. Similar to S-5 stress paths, the fill/sand/silt, soft clay
and medium clay layers demonstrate a drained type of behavior with a rotation in the
direction of principal stresses.

The different elevation of more than a couple of meters among different sides of
the excavation has a great influence on the behavior of the excavation. The elevations of
surrounding sides of the excavation are shown in Figure 6-5 and Figure 6-6. Since the
excavation site is not a flat area, the 2D plain strain assumption to model this excavation
will not capture the true behavior of excavation. Therefore, 3D modeling of the Ford

Center is an inevitable task.
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6.6. Three-dimensional construction monitoring of Ford Center deep excavation
Ford Center deep excavation was monitored with instruments and extensive
number of as-built digital photos from prior to sheet pile wall installation to the end of the
excavation. In addition a relatively new technology, three-dimensional laser scanning
(3DLS) that utilizes LIDAR (Light Detection and Ranging), was used to produce
accurate 3-D representations of soil surface and construction activities as shown in Figure
6-14. Through 3DLS process, thirteen scans of whole excavation at approximately one
week intervals became available for Ford Center excavation which is shown in Figure
6-15. The scans and photos are used to define the 3D construction sequences in SelfSim

inverse analysis.

6.7. Numerical development of 3D simulation: Brick element deleting scheme

Since all the analyses that have been conducted by SelfSim in deep excavations
are either in 1D or 2D framework (Marulanda 2005; Hashash et al. 2006; Song et al.
2007; Osouli and Hashash 2008), the SelfSim analysis in 3D for Ford Center is an
extension of SelfSim application to 3D geotechnical problems.

A Finite Element Model can be generated and updated more accurately using 3D
laser scanning result. The terrain meshes obtained from 3DLS contain most of the basic
geometric information, including the shape, height, and location of the excavated ground
surface. To use this information in numerical modeling of deep excavation problems this
image should be converted to 3D finite element meshes.

The procedure for a 3DLS image of a given excavation stage is presented in
Figure 6-16. The scanned image of the excavation stage on March 12" is presented in
Figure 6-16(a). The points are important data in the scanned image that represents the
surface of ground. The point data is extracted from the image as illustrated in Figure
6-16(b).

In order to model this excavation stage an initial FE model of the geometry before
excavation is developed using a FE preprocessor, shown in Figure 6-16(c). At this stage,
user can define the dimensions and size of the elements, and also the density of the mesh
in a certain area. This initial model is used as a base model throughout all the excavation
stages. Then after, the 3D point data, shown in Figure 6-16(b) is compared with the node

and element information of the FE model. Those elements in the base model that are
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located above the point data from the scanning are deleted. As a result, the remained
elements represent the geometry of the excavation site at this given excavation stage,
Figure 6-16d.

Using this procedure, separate FE meshes are generated for each excavation
stages used in the FE analysis. To combine them into one input, Element Change option
in ABAQUS is utilized. For instance, Figure 6-17(a) is FE mesh of the excavation stage
on March 12", and Figure 6-17(d) is on April 14™, The elements in those two models are
compared with each other. Based on the comparison a set of elements that should be
deleted (Figure 6-17(b)) and a set of elements that should be added (Figure 6-17(c)) are
detected. The whole procedure is automated using C++.

Figure 6-18 illustrates the initial FE mesh of Ford Center. Elastic analyses with
several different sets of dimensions are performed to decide the final dimension. The
chosen model dimensions are 200m by 200m in horizontal direction. The vertical
dimension of the model is 22m. Total of 11572 elements are used with the highest density
of elements near the excavation site. The density of elements in the mesh is decreasing by
distance from the site to reduce the computational cost.

Due to high computational costs associated with 3D modeling the construction
sequence of the excavation are selected carefully to minimize the number of excavation
stages without compromising the accuracy of the problem. Therefore, besides the
reference ground surface Feb 18" (Figure 6-19(b)), four stages of excavation on March
12 (Figure 6-19(c)), April 14" (Figure 6-19(d)), and May 7t (Figure 6-19(e)), are
selected from thirteen available scans shown in Figure 6-15 as construction stages for 3D
simulation. Figure 6-19 illustrates the FE mesh which was built using a brick element
deleting scheme for selected excavation stages. The elevation difference around the
excavation site before the excavation is also observed in the model in Figure 6-19(a).
Walers and struts are implemented with bar elements using the transformed section area
reported by Blackburn (2005). The elastic material with properties of steel is used for the

bar elements.

6.8. Learning 3D behavior of Ford Center excavation using SelfSim in 3D analysis
Inclinometers I-1, I-2, I-3 and 1-4 with different configuration are used in SelfSim

learning to extract the soil behavior. Since the settlement points P3 and P4 are located on
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the sheet pile wall, and settlement point P5 is located on a concrete block in vicinity of
excavation, the reliable soil settlement measurements are limited to three points P6, P7,
and P8. Therefore, settlements measurements are not used in SelfSim learning analyses.

The soil profile in the analyses is represented with five NN material models to
represent layers: (1) top fill/sand/silt layer, (2) lake sand layer, (3) soft silty clay layer, (4)
medium silty clay layer, and (5) stiff to very stiff silty clays.

Prior to any SelfSim learning all soil constitutive models are pre-trained to
represent linear elastic response within a very small strain range. The initial Young’s
modulus used for pre-training is deliberately chosen large to produce small excavation-
induced deformations. Figure 6-20 shows this analysis underestimates lateral
deformations of inclinometer I-1, I-2, I-3, and I-5 and surface settlements.

Figure 6-21 shows the computed and measured lateral deflections and settlements
after five passes of SelfSim learning using inclinometers I-5 only. The deflections of
inclinometer I-5 improved in comparison to that of Figure 6-20. However the
inclinometer measurements of I-1, I-2, and I-3 and surface settlements are
underestimated. One inclinometer measurement in the west side of the excavation is not
providing sufficient information about the excavation behavior in north and east side of
the excavation.

Then the measurement of inclinometer I-1 is added to SelfSim learning analysis.
Figure 6-22 shows the computed and measured lateral deflections and settlements after
five passes of SelfSim learning using inclinometers I-5 and I-1. Computed lateral
deflections of I-5 are slightly improved. The computed lateral deflections of inclinometer
I-1 improved significantly. By providing measurement of inclinometer I-1, the results
improve significantly in predicting lateral deformations of inclinometer I-2. The lateral
deflections of I-3 and surface settlements are underestimated.

In the next SelfSim analysis inclinometer I-2 is added to inclinometers I-1 and I-5
using the database of previous analysis whereby inclinometers I-1 and I-5 used for
SelfSim learning. Figure 6-23 shows the computed and measured lateral deflections and
settlements after five passes of SelfSim learning using inclinometers I-5, I-1, and I-2. The
computed lateral deformations of inclinometers I-1 and I-2 slightly improved. The

computed lateral deflections of inclinometers I-5 and [-3 and surface settlements
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remained unchanged in comparison to Figure 6-22. Since inclinometers I-1 and I-2 are in
the same side of the excavation, the learned behavior does not change significantly from
the configuration whereby the inclinometers 15 and I1 were used.

SelfSim learning analysis continued by adding inclinometer I-3 to inclinometers I-
5, I-1, and I-2. The measurements of inclinometer I-3 show large deflections. Most likely
the inclinometer was affected by the construction of elevator pop out in proximity to its
location. Therefore by introducing the inclinometer I-3 the computed deflections of
inclinometers I-5, I-1, and I-2 shifted to larger values.

The settlement contours around the excavation are shown in Figure 6-24. In each
excavation stage, except than stage 4, the elevation of the ground surface inside
excavation is lower in the proximity to the east wall than the walls in other sides of the
excavation. Therefore, the predicted settlements are larger in east side than the other sides
of the excavation.

In Figure 6-25 the predicted settlements in parallel distances of 4.7, 10, and 17 m
from the east wall are compared to the settlements computed with the closed form
solution proposed by Finno and Roboski (2005). Based on this solution the settlements
can be estimated by a complimentary error function, given a maximum movement, and
depth and length of excavation. The settlements calculated by Finno and Roboski (2005)
method, slightly over predict the settlements computed by SelfSim. However both
methods show a symmetry behavior in east side of the excavation.

Figure 6-26, Figure 6-27, and Figure 6-28 show the comparison of two methods
in estimating the settlements trough in the retained soil in 10 m distance from the wall
and parallel to the north, west, and south wall. The settlements calculated by Finno and
Roboski (2005) predict a symmetric settlement trough, while a non symmetric settlement
profile is predicted by SelfSim 3D analysis. The 3D effect imposed by elevated ground

surface is not compatible with the symmetric assumption.

6.9. Extracted soil behavior in 3D analysis

Figure 6-29 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay layers for locations S-2, S-1 and S-7 in the north
side of excavation; see the element locations in Figure 6-4. In element S-2 the

fill/sand/silt layer undergoes shearing almost identical to the Plane Strain Passive (PSP)
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mode. However the clay layers show a behavior close to Plane Strain Active (PSA)
mode. The stress paths for clay layers are consistent with friction angle envelope. In
element S-1, the fill/sand/silt layer undergoes PSA mode and shows strain softening. The
clay layers show a behavior almost identical to PSA mode. In element S-7, while the
fill/sand/silt layer demonstrates a behavior close to PSA mode of shear, the clayey layers
show PSP mode of shear. Although SelfSim analysis is not using any predefined stress
strain relationship, the stress paths for fill/sand/silt layer is consistent with the friction
angle line. The clay layers for this element show an elastic response.

Figure 6-30 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay for locations S-5, S-8 and S-9 in the west side of
excavation; see the element locations in Figure 6-4. In element S-5, the fill/sand/silt and
clay layers undergo shearing almost identical to PSA mode of shear. However the clay
layers show an elastic response. The medium clay layers show a rotation in direction of
principal stresses. In element S-8, the fill/sand/silt and soft clay layer undergo shearing
close to PSA mode. In element S-9, the fill/sand/silt and soft clay layer demonstrate a
PSA mode of shear.

Figure 6-31 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay for locations S-10, S-4 and S-11 in the south side
of excavation; see the element locations in Figure 6-4. In element S-10, the fill/sand/silt
layer reaches the peak shear strength. The clay layers experience slight shearing due to be
in proximity to corner of the excavation. In element S-4, while the sand layer experience
PSP mode of shear, the clay layers undergo PSA mode of shear. A change in the direction
shear plane is observed for sand and soft clay layers. In element S-11, the fill/sand/silt
and clay layers undergo shear almost identical to PSP mode of shear.

Figure 6-32 shows the normalized stress paths for elements in middle of
fill/sand/silt, soft clay and medium clay for locations S-12, S-13 and S-3 in the east side
of excavation; see the element locations in Figure 6-4. In element S-12, while the
fill/sand/silt layers undergoes shear identical to PSP mode of shear. In element S-13, the
fill/sand/silt layer demonstrates PSP mode of shear and the clay layers has a similar
behavior to PSA mode of shear. In element S-3 the sand and soft clay layers undergo

shear similar to PSP and PSA mode of shear, respectively. Due to proximity of element
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S-12 and S-3 to the wall, the stress paths demonstrated for medium clay layer do not
show fully undrained behavior.

Although all 12 selected elements show undrained soil behavior for medium clay
layer, the extracted soil behavior of medium clay layer for elements S-9, S-12, and S3
shows stress paths that are not representative of undrained type of soil behavior. This
may be due to two reasons: 1) the element locations are in proximity to the wall, and
therefore the excessive pore water pressures are dissipated more quickly; 2) the
excavation period, which started in February and ended in May 2004, is long enough so

that some of the excess pore water pressure is dissipated during the construction period.

6.10. Summary

The extracted soil models from Lurie Center excavation in downtown Chicago
has been used to predict excavation performance in Ford Center excavation in Evanston,
IL. Although both sites have similar soil stratigraphy, the lateral deflections are
overestimated by two orders of magnitude. The settlement profile is underestimated. The
uneven ground surface around the excavation in Ford Center imposes a 3D effect on
excavation performance. Therefore a 3D analysis was conducted to overcome the
limitations plane strain assumption in 2D analysis. Brick element technique was
developed to simulate excavation stages which were recorded by LIDAR scanning
technique during the excavation. The extracted soil models from 3D SelfSim analysis in
Ford Center can provide a reasonable lateral deflections induced by excavation around

the site. The 3D analysis provides a more reasonable soil behavior than 2D analysis.
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Center excavation, for locations see Figure 6-4
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Figure 6-12 Normalized stress paths of (a) p’-q, and (b) t-q for elements in middle of
fill/sand/silt, soft clay, and medium clay layers for elements S-5 in west side, Ford Center
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Figure 6-14. Laser scanned image of Ford Center excavation
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Figure 6-15 Scans of Ford Center excavation during construction
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Figure 6-17. The procedure of generating excavation stages with add and remove options
(a) FE mesh for March 13™, (b) Elements deleted (bold line), (¢c)Elements added ((bold

line), (d)FE mesh for April 14"

Figure 6-18. FE mesh of Ford Center
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Figure 6-19. FEM mesh of five selected stages, Ford Center excavation
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Figure 6-20 Computed and measured Ford Center excavation response prior to SelfSim
learning in 3D simulation for a) surface settlements, b) lateral movements of I-1, ¢)
lateral movements of 1-2, d) lateral movements of I-3, and e) lateral movements of I-5
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Figure 6-21 Computed and measured Ford Center excavation response after five passes
of SelfSim learning using inclinometers I-5 only in 3D simulation for a) surface
settlements, b) lateral movements of I-1, c¢) lateral movements of I-2, d) lateral
movements of I-3, and e) lateral movements of I-5
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Figure 6-22 Computed and measured Ford Center excavation response after five passes
of SelfSim learning using inclinometers I-5, and I-1 in 3D simulation for a) surface
settlements, b) lateral movements of I-1, ¢) lateral movements of 1-2, d) lateral
movements of [-3, and e) lateral movements of I-5
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Figure 6-23 Computed and measured Ford Center excavation response after five passes
of SelfSim learning using inclinometers I-5, I-1, and I-2 in 3D simulation for a) surface
settlements, b) lateral movements of I-1, ¢) lateral movements of 1-2, d) lateral
movements of [-3, and e) lateral movements of I-5
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Figure 6-24 Surface settlement contours around Ford Center excavation site for a) stage
1, b) stage 2, c) stage 3, and d) stage 4
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Figure 6-25 Surface settlement parallel to the east wall of the excavation, a) in 4.7 m
distance from the wall, b) in 10 m distance from the wall, ¢) in 17 m distance from the
wall, Ford Center excavation
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Figure 6-26 Surface settlement parallel to the north wall of the excavation in 10 m
distance from the wall, , Ford Center excavation, (for legend see Figure 6-25)

Distance from NW corner of the excavation (m)
-10 0 10 20 30 40 50

distance from west wall (mm)

Surface settlements in 10 m

Figure 6-27 Surface settlement parallel to the west wall of the excavation in 10 m
distance from the wall, , Ford Center excavation, (for legend see Figure 6-25)
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Figure 6-28 Surface settlement parallel to the south wall of the excavation in 10 m
distance from the wall, , Ford Center excavation, (for legend see Figure 6-25)
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Figure 6-29 Normalized stress paths of (a) p’-q, and (b) t-q for elements in middle of
fill/sand/silt, soft clay, and medium clay layers for elements S-2, S-1, and S-7 in north

side, Ford Center excavation, for locations see Figure 6-4
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Figure 6-30 Normalized stress paths of (a) p’-q, and (b) t-q for elements in middle of
fill/sand/silt, soft clay, and medium clay layers for elements S-5, S-8, and S-9 in west
side, Ford Center excavation, for locations see Figure 6-4
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Figure 6-31 Normalized stress paths of (a) p’-q, and (b) t-q for elements in middle of
fill/sand/silt, soft clay, and medium clay layers for elements S-10, S-4, and S-11 in south
side, Ford Center excavation, for locations see Figure 6-4
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Figure 6-32 Normalized stress paths of (a) p’-q, and (b) t-q for elements in middle of
fill/sand/silt, soft clay, and medium clay layers for elements S-12, S-13, and S-3 in east
side, Ford Center excavation, for locations see Figure 6-4
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

7.1. Summary and conclusions

In this study the potential capabilities of SelfSim were demonstrated using case
studies of deep excavations. The proposed SelfSim framework utilizes a neural network
material model and nonlinear finite element method. In SelfSim inverse analysis the
measured excavation performance in forms of load and displacement boundary
conditions is used to extract relevant soil behavior. The SelfSim framework allows
numerical simulations of deep excavation to benefit from the continuous acquisition of
data from instrumentation programs implemented to monitor the performance of the
excavation and the surrounding ground. This framework provides a great opportunity to
incorporate numerical simulations as an integral component in the application of the
observational method in geotechnical engineering. The followings are the summary and

conclusions of this study.

7.1.1. Comparison of optimization techniques using genetic algorithm and SelfSim

learning in extracting the soil behavior-Lurie Center

Genetic algorithm and artificial neural Network algorithm are two useful methods
for modeling excavations. Two methods are tested using measured data collected at the
Lurie center case study in Chicago. Optimized parameters found from the GA approach
and the learned constitutive responses from SelfSim formed the basis of simulations that
could reasonably compute deformations observed during the excavation for the Lurie
Center. Unlike GA analysis in which the soil model has to be preconstrained to specific
model (in this study soil hardening model), SelfSim analysis does not have to be
constrained to any predefined model. This capability allows SelfSim to capture the
underlying soil behavior while it is learning about measurements at different construction
stages. Optimization based on genetic algorithm could predict the inclinometer
measurements and maximum surface settlements reasonably well. The stress paths results

for this method show predominantly linear elastic behavior for clay layers, a feature of
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the hardening soil model and the undrained simulation. On the other hand SelfSim is able
to capture both lateral wall deformations and surfaces settlement profile. The stress paths
from SelfSim analysis show a distinct nonlinearity of soil behavior for all clay and
fill/sand layer. The SelfSim analysis shows that pattern of stress paths are far more
complex than elastic behavior. This feature explains why the ANN model is able to

compute settlement profile reasonably well.

7.1.2. The interplay between field measurements and soil behavior for capturing
supported excavation response

The relationship between field instrumentation selection and the quality of learned
excavation response facilitated by a unique inverse analysis framework, SelfSim, was
explored. This study shows that integrating the proposed inverse analysis framework with
a field instrumentation program for deep excavation can be used to supplement physical
measurements and provide reliable estimates of deformations and loads elsewhere around
the excavation. This finding can assist engineers on projects whereby cost and space
constraints as well as damage to instruments during construction limit the number of
available instrument measurements. The integration of the inverse analysis with the
remaining measurements can help fill-in-the-gap otherwise unavailable information.

It is demonstrated that wall deformations and surface settlements provide essential
information for learning of overall excavation behavior. An inclinometer placed within or
in close proximity to the wall is essential. Additional inclinometers placed farther back
from the wall provide supplementary information that can be used to complement
prediction of surface settlements if that information becomes unavailable at certain
excavation stages. The finding is confirmed using the TNEC excavation case study. This
is a useful and practical finding as surface settlements point can be easily lost in a heavily
trafficked urban environment.

It is shown that bracing loads and by analogy, tieback loads provide valuable
information to extract soil behavior and enhance the overall quality of estimated ground
response. Therefore, measurement of bracing loads is recommended.

Other instruments such as heave gauges, extensometers, and piezometers provide

useful measurements in order to monitor construction and verify design assumptions;
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though it appears in the simulated excavation study that they are less critical for overall

learning of excavation behavior.

7.1.3. Case studies of prediction of excavation response using learned performance
of similar excavations via inverse analysis

The field instrumentation measurements from several case studies are used to
capture soil behavior from one section of a deep excavation and then use the developed
soil model to predict the excavation performance in other sections of the same excavation
or different excavation with similar soil stratigraphy.

It is demonstrated that the extracted soil behavior from two-level tieback section
of the wall in Texas A&M case study in sandy soil could predict reasonably well the
lateral deflections measured at the wall and in different locations behind the wall in one-
level tieback section of the excavation.

It is shown that the extracted soil behavior from using wall deflections and
surfaces settlements measurements in proximity to the Panel 27 of Yishan Road metro
station in Shanghai could predict the excavation performance reasonably in other
sections. Lateral wall deflections and surface settlements are predicted reasonably along
the 335 m length of the station.

It is shown that the extracted soil behavior from TNEC excavation project can be
used to predict the excavation response in Formosa case study in soft clays of Taipei. The
lateral well deflections and surface settlements are predicted reasonably well in Formosa
excavation. This study shows a successful implication of SelfSim framework whereby
excavation performance can be predicted after learning from precedent. This finding is
critically important as several case studies records are available in each urban area. The
extracted soil behavior from those case studies “local experience” can be used in new

excavation projects to assess excavation induced ground movements more accurately.

7.1.4. Ford Center excavation case study

The extracted soil models from Lurie Center excavation in downtown Chicago is
used to predict excavation response in Ford Center excavation in Evanston, IL. The
extracted soil models from Lurie Center overpredict excavation induced lateral

deflections by approximately two orders of magnitude in Ford Center excavation.
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Although the soil stratigraphy of the two sites is similar, elevated ground surface
surrounding the Ford Center excavation imposes 3 dimensional effects in excavation
performance. Three dimensional analysis of Ford Center excavation is inevitable task to
capture excavation response in Ford Center. The new monitoring scheme, LIDAR
scanning, of construction sequence of excavation sites are used and discussed. The
development of 3D numerical modeling of SelfSim is explained. It is demonstrated that
the computed lateral movements occurred during the excavation is improved via 3D
SelfSim inverse analysis. The results show that it is critically important to have at least
one inclinometer in each side of excavation to capture the soil behavior in 3D modeling.
The predicted settlements profiles around the excavation site also show a significant 3D
effect caused by elevated ground surface. The comparison of extracted soil behavior from
2D and 3D analysis demonstrate that the 2D analysis for Ford Center excavation can not

represent the soil behavior.

7.2. Recommendations for future work

With the application of the SelfSim framework to extract material behavior from
field measurements, there are a number of possibilities for future work. It is believed that
the proposed SelfSim framework will make an important impact on the method of
engineering analysis and design. The following represents some of the possibilities for

future research within the framework of SelfSim:

7.2.1. Web-based database for field observations in deep excavations

SelfSim inverse analysis framework is a powerful tool that can change the current
practice in design of deep excavations. The use of more case studies with diversified
construction sequences, soil properties, and supporting systems improves the extracted
model. The more information is provided, the more representative the extracted model
would be. Therefore, a systematic complementary effort should be made to facilitate the
access to more data in urban areas. There are currently numerous excavation case studies
that are constructed in the dense populated cities that their information is not currently
accessible for designers, engineers and researchers. Although, in last 30 years far-

reaching progress has been made in development of emerging technologies, wireless
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sensors, digital scanners and communication devices, geotechnical engineers have not
fully benefit in their practice from those developments.

It is desirable to change the current practice of deep excavation designs by
developing the following factors: 1) A web-based system should be designed to provide a
template for collecting instruments measurements, geometry, site descriptions, etc. 2) The
digital camera and laser scanners can be deployed before the start of excavation. 3) A
wireless communication system can be set up to transfer the data collected by monitoring
devices. 4) An Automated system should be designed to test and interpret the collected
data to examine the data validity.

Should the aforementioned factors develop, a significant change and improvement

is going to be observed in design, construction and monitoring of excavation sites.

7.2.2. Field data and construction records verification tool

There are lots of difficulties in interpreting the data collected from the field. Some
of those demonstrated in Texas A&M and Shanghai case studies. These difficulties
sometimes are due to incompatibility of the monitoring data and the recorded
construction activities or the improper recording the monitoring devices. In either case
the inconsistency between “cause and effect” imposes a pause for performing inverse
analyses. Numerous case studies are reported in the literature; however they can not be
used in inverse analyses studies. Therefore, it is critically important from the beginning
of construction, the monitoring data is verified by the construction activity records in
order to revise the monitoring scheme or to include the details of construction variation in
the reports. For instance for excavations, it is needed to develop a software that field
engineer quickly checks the validity of the collected monitoring data and construction

sequence and to make sure the collected data logically makes sense.

7.2.3. The soil-wall interaction in numerical modeling

The interaction of the strut-wall-soil system in braced excavations is a complex
phenomenon that has been studied extensively in the past. Careful assessment of the
major change in stress and deformation influenced by soil-wall interaction is critically
important. For instance soldier piles are often designed and analyzed as contiguous wall

systems even though they are, in reality, not so. Nonetheless, designers have recognized

191



that the soldier pile retaining system is not only often more flexible than other systems
but the stiffness of the system is non-uniform in that the piles are much stiffer than the
timber lags. To the fact that the soldier piles and timber laggings have very different
stiffness means that the interaction between the retaining system and the soil is three-
dimensional (3D) in nature. Furthermore, supporting systems are commonly modeled as
beam elements that have equivalent stiffness of the wall. Beam elements may not
realistically represent the interaction between the supporting system and surrounding soil.

More research and development is required to model soil-wall interaction.

7.2.4. Developing local experience database

The case studies in Taipei demonstrated that it is possible to learn from precedent
case studies and predict performance of a new excavation in the same local. There are
many construction case histories conducted in urban area that they have similar soil
stratigraphy. The proposed inverse analysis approach can be used with available
measurements from previous excavation case studies to develop numerical models with
“local experience”. This approach paves the way to develop area-specific soil models
(e.g. San Francisco Bay Mud, Boston Blue Clay). Thenafter, the developed soil models
can be used to provide acceptable predictions of excavation-induced ground deformations

for new excavations constructed in these locals.

7.2.5. User interface development for SelfSim

The successful use of numerical softwares is dependent on their capability to
handle broad range of problem; however having a user friendly interface is critically
important. In the current format of SelfSim package for excavation application, a
significant amount of time is spent for preparing the input files for SelfSim learning
simulations, which is not affordable in practice. Indeed for 3D problems another program
(e.g. Patran) is used to generate the mesh.

The interface should be designed to ask for the number of soil layers, geometry of
the excavation, density of mesh, soil parameters, excavation sequence, instrument

locations, raw measurements, NN structures for each soil layer, and SelfSim input
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parameter from the user. Then the application of SelfSim would be much easier and more

practical than its current format.

7.2.6. Hybrid constitutive models

The use of extracted constitutive models from SelfSim learning in predicting new
excavations performances are appropriate as long as the stress-strain range of new
excavations falls within the stress-strain range that was learned. In other words, SelfSim
framework is not appropriate for extrapolation purposes. Therefore, it is desired to
develop hybrid constitutive models in a framework that utilizes the extracted soil models
from SelfSim learning within the learned stress-strain ranges and the suitable
conventional models for outside of leaned stress-strain ranges. This will enhance the
performance of simulations for the cases that the training dataset does not have sufficient

information.
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APPENDIX CENTRAL ARTERY/ TUNNEL PROJECT EXCAVATION
INDUCED GROUND DEFORMATIONS

A.1 Introduction

A major concern for the development of urban excavations is the induced
deformations in the surrounding soil and the subsequent impact on adjacent structures.
Erroneous estimates of soil deformations prior to construction may result in either large
construction costs due to excessive ground support or damage to the surrounding
structures due to inadequate excavation support. Additional factors such as construction
technique, soil type, and support system have significant influence on the predicted
deformations. Therefore, new case histories add to our knowledgebase of precedent.
Several studies (Peck 1969; Karlsurd 1986; Clough et al. 1989; Clough and O'Rourke
1990; Ou et al. 1993; Fernie and Suckling 1996; Wong et al. 1997; Long 2001,
Moormann 2004; O'Rourke and McGinn 2006) compiled such case histories and
developed empirical correlations for estimating ground deformations.

The Central Artery/Tunnel project is one of the largest and most complex
highway construction projects ever undertaken in the US. The project encompasses 242
lane kilometers, of which half run underground in an 11.3 kilometers corridor as
illustrated in Figure A-1. Excavations were extensively instrumented for construction
monitoring and design verification purposes. These instrumented excavations provide a
unique opportunity to observe ground response to excavation. The excavations are within
typical soil profiles of Boston consisting of fill, clay, and glacial till. Instrumentation data
from three construction contracts C11A1, C15A1, and C17A2, Figure A-1, are presented

and summarized in this technical note.
A.2 Contracts C11A1, C15A1, C17A2

Contract C11A1

Contract C11A1 spans approximately 685 m, corresponding to a section of the
CA/T 1-93 Northbound alignment, Figure A-1. C11A1 extends between station CANB
(THE CANBERRA HOSPITAL - A.C.T.) STA. 84+21, adjacent to the Wang Building
on Kneeland Street, and station CANB STA. 106+70 located to the north of the Dewey
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Square Tunnel Portal on Congress Street. The topography of the site is fairly level, with
an average surface elevation (CA/T Datum) of 33.5 m. The depth of the excavations for
the tunnels ranges from about 16.8 m to 33.5 m and the width of the excavations varies
from about 17.7 m to 32.9 m. |

Typical soil profile in this contract is shown in Figure A-2a. North of CANB Sta.
88, the sequence of stratification is fill and organic deposits at the top, underlain by
Boston Blue Clay and glacial till over argillite bedrock. A detail description of subsurface
conditions can be found in several published documents (H&A 1995; O'Rourke et al.
1997; O'Rourke and O'Donnell 1997; Lambrechts 1998; BSP 2006). The ground water
table is approximately 1.5 m below the ground surface.

The excavation support walls with depth of 30.5 m consist of 0.9 m thick soldier
piles and tremie concrete (SPTC) supported by 8 2-W30x173 or 2-W36x359 steel struts
as cross-lot bracing at 2.1m to 3.6m spacing (Hashash et al. 2003). A typical excavation
sequence begins by excavating to a level just below where the first struts are to be
installed. Then walers are installed and struts jacked to about 50% of their design load.
This process is repeated for the next strut level. A typical section along this contract is

shown in Figure A-2b.

Contract C15A1

Contract C15A1 starts from STA 142 and ends at STA 155, Figure A-1. The
excavation depth shown in Figure A-3a ranges from 18.3 m to 21.3 m with similar
sequence of soil layers, and support system to C11A1, except the average vertical support

spacing is 5.2 m (BSP 2006) Figure A-3b.

Contract C17A2

Contract C17A1 starts from STA 132 and ends at STA 142, Figure A-1. The soil
profile consists of 6.1 m fill and organic deposits at the ground surface, clay and glacial
deposits with variety in excavation depth on the bedrock shown in Figure A-4a. The
excavation depth ranges trom 13./ m to 19.8 m. Figure A-4b shows, two middle walls 1n
each section which separate west and east SPTC walls. The support system includes
bracing with struts just at one elevation in addition to roof girders in every section and the

spacing varies from 3.7 m to 7.6 m.
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In all three contracts the support walls are embedded into the bedrock which limit

the deformations due to excavation.

A.3 Lateral wall deformations
Maximum wall deflections versus excavation depth from the three contracts are
shown in Figure A-5. The deflection measurements have an average trend line

5, | H=0.07% with &,,/H =0.22% as an upper limit for all measurements. This is

significantly smaller than prior reported results (Clough and O'Rourke 1990) which

provide &,, / H =0.2% as an average trend line and &, / H =0.5% as an upper bound.

The deflections in glacial till are less than those in clay even where the excavation depth
is greater due to the greater stiffness of the till.

Although the thickness of clay layer in C11A1 is almost twice as the C17A2, the
stiffer support system provided in C11Al1 is effective in reducing deformations to levels
comparable to those in C17A2. The embedment of the wall into the rock in addition to
the system stiffness results in smaller deformations in all three contracts. The computed
maximum wall deflections based on the model proposed by Kung et al. (2007) are plotted
in this figure and are in general agreement with field measurements.

Figure A-6 plots the measured wall deflection ratios versus system stiffness and
superimposed on the empirical chart proposed by Clough and O’Rourke (1990) which are
routinely used in engineering practice. The hatched zones in this figure represent the
ranges of calculated system stiffness and measured deformations for all excavations. The
factor of safety against basal heave is estimated to be larger than 3. While there is general
agreement between the field observations and the empirical chart, the measured
deformations are very small and extend below the lowest curve (FS=3.0) shown in the

chart.

A.4 Lateral deformations behind the wall

Figure A-7 is a plot of maximum lateral deflection ratio versus distance behind
the wall obtained from inclinometers placed in the support wall and in the retained soil.
An equation is proposed to represent a bound for all the data measured and it ranges from

about 0.2% next to the wall to about 0.05% at a normalized distance of 1. Similar trend
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was observed in the data provided by Koutsoftas et al. (2000). The data fall within the
zone of high horizontal stiffness of Clough and O’Rourke (1990).

A.5 Surface settlement behind the wall
Figure A-8 plots maximum surface settlement versus excavation depth. The upper

and average trend lines are O | H =0.2% and O H =0.05%

, respectively. They are
lower than the corresponding lines of Clough and O’Rourke (1990). The soil settlements
behind the wall in C15A1 are less than in C17A2 at similar excavation depths because of
greater stiffness provided by smaller vertical spacing of the struts. The computed
maximum measured surface settlements are in the range that is computed by the model of
Kung et al. (2007).

Figure A-9 plots maximum deformation versus distance behind the wall. The data
shows that the maximum settlement for all the data is about 35 mm and that settlements
extend as far as 100 m behind the wall, though the data is sparse beyond a distance of 60
m. Precision of measurements and construction activities near the settlement
measurement locations may have some effect on measured settlements at distances far
away from the excavation.

Figure A-10 shows the normalized settlements versus normalized distance behind
the excavation. Both quantities are normalized with respect to excavation depth. Separate

plots are shown for data corresponding to clay and till profiles. While most settlements

— V)
O, | H =0.02% , the normalized settlements extend to distances farther than

are less than
the distance ratio of 2 to 3 suggested by earlier empirical envelopes. Data located at
distances larger than D/H>4 correspond generally to excavation depths less than 12 m.
Figure A-11 plots the same data set, but now with settlements normalized by the
corresponding maximum surface settlement. The measurements show that even for
distances up to 4 to 5 times of excavation depth the settlements are on the order of 60%
of maximum settlements. This behavior is especially pronounced for the contracts C11A1
and C17A2. The settlement data shows that the stiff support system combined with the
influence of wall embedment in rock reduce the maximum settlement. Although the

maximum settlement is now small, the settlement trough extends further than proposed in

earlier studies. The measured data in this figure is compared with other proposed
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empirical relations (Hsieh and Ou 1998; Kung et al. 2007). The CA/T measured data does
not fit within the boundaries proposed in these studies. ,

Figure A-10 and Figure A-11 also show envelopes of the CA/T surface settlement
data. The envelopes for the clay profiles reflect the lower settlement ratios but wider
distribution of settlements behind the wall. For the clay profiles the envelopes reflect a
limit on lateral extent of settlements to a distance ratio of 5. For the till profiles the
envelopes reflect a limit on lateral extent of settlements to a normalized distance of 3. It
is possible that these wider normalized settlement troughs are due to the relatively small
deformations experienced by the soil. The soil response is likely to be more linear at

smaller strains.

A.6 Conclusions

Measured deformations from three selected excavation contracts of Central
Artery/Tunnel project show that it is possible to control deformations around an
excavation to small levels. Increasing system stiffness and embedment of the wall into a
stiff layer are key factors in limiting the deformations. Wall deflections are below
0,,/ H=0.22% and surface settlements are belowd,, / H = 0.2% . Surface settlements,
though small, extend to significant distance (up to 5x excavation depth) behind the
support wall. Lateral deformations behind the wall reduce exponentially with distance
from the wall. Both magnitude and distribution of surface settlements behind the wall are

significantly less in till compared to clay.
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Boston

Figure A-1 Plan view of the Central Artery/Tunnel project C11A1, C17A2 and C15A1
construction contracts
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