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Abstract

Several methodologies are presented in this work to facilitate the modeling of elec-

tromagnetic fields in the context of multi-domain physical interactions. Among the

challenges for computer aided analysis of electromagnetic problems in interaction with

other physical phenomena are the largely different temporal and spatial scales that

may occur and the task of maintaining accuracy and computational efficiency in the

implementation of boundary conditions for time-varying media.

First, we present a methodology for the phenomenological modeling of passive in-

termodulation generation in metallic contacts due to electron tunneling. The method-

ology provides for the development of passive intermodulation source models that are

compatible with general-purpose electromagnetic and non-linear network analysis-

oriented circuit simulators. The derived model allows for an investigation of the

impact of surface roughness and skin effect on the levels and frequency dependence

of passive intermodulation interference. Thus, the model is intended to enhance the

understanding of the passive intermodulation source due to electron tunneling in

metallic contacts.

The second methodology presented is a Lagrangian approach for increasing the

accuracy of the finite difference time domain method for modeling wave propagation

in geometries involving curved and moving boundaries. This methodology provides

for the definition of an equivalent electromagnetic boundary value problem over a

domain with fixed boundaries. A modified time-dependent operator is derived for
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the Lagrangian formulation, operating on a modified set of Maxwell’s equations on a

reference domain. This method relaxes spatial oversampling requirement and achieves

high accuracy and computational efficiency.

The third methodology provides for an efficient analysis of problems with widely

separated time scales. We propose the application of the method of multi-time partial

differential equations to the numerical solution of one-dimensional electromagnetic

wave interactions involving highly disparate temporal variations in both excitation

and time-varying media properties and boundary conditions. The temporal oversam-

pling requirement is relaxed by introducing multiple time scales for quasi-periodic

functions and, upon solution of the multivariate partial differential equation, we re-

cover a solution to the univariate problem.
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Ẽ mapped electric field vector, page 38
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Chapter 1

Introduction

1.1 The Problem

As the fabrication and integration techniques of nano- and microscale devices have

advanced, new possibilities have opened up for the design of devices incorporating

aspects of different physical domains. Electro- and magnetostatic, electrodynamic,

mechanical, quantum mechanical, thermal and fluid-dynamical effects can contribute

to the functionality of these devices. Clearly, advances in the modeling techniques

are required to combine numerical solvers of these different domains in order to allow

for efficient and accurate modeling of new designs prior to their realization in the lab,

and these techniques are currently being pushed forward. Multiphysics modeling is

the term that has been coined in order to refer to techniques which attempt to couple

physical modeling domains which traditionally had been separated. It includes ana-

lytic and numerical modeling techniques and deals with problems like the coupling of

the electrical and acoustic domain for piezo-acoustic transducers or surface acoustic

wave (SAW) filters and resonators [1] or electrostatically controlled microchannels

that transport fluids for chemical analysis or applications like inkjet printers [2–4].

Mechanical switches realized as micro-electro-mechanical-systems (MEMS) [5] have

brought great benefit, like reduced insertion loss and improved linearity, to radio

frequency (RF) integrated circuits (IC). Tunable capacitors and acceleration sensors

have been realized as MEMS. Quantum effects become relevant in electric conduc-
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Figure 1.1: SAW filter structure.

tors with metal-oxide-metal contacts or for RF switches realized as nano-electro-

mechanical-systems (NEMS) using carbon nanotubes [6]. Accounting for generation

and distribution of thermal energy in the design process of mechanical or electric

devices may improve models as the temperature change feeds back into the mechan-

ical and electrical properties of the device. Multiphysics techniques strive for the

hybridization of different modeling techniques to achieve a unified modeling process

from the atom- to the system level [7].

SAW filters take advantage of the relatively low propagation velocity of acoustic

waves, usually around 3×103 to 1×104 m/s compared to electromagnetic (EM) waves

at 3 × 108 m/s in vacuum, allowing for significant time delay of signals on a small

device footprint. Thus SAW filters are today ubiquitous in cellular phone and other

mobile radio systems. Crystalline structures like lithium tantalate (LiTaO3), lithium

niobate (LiNbO3), or quartz (α-SiO2) with a low attenuation coefficient and strong

piezoelectric coupling between the acoustic and the EM wave are commonly used

for SAW devices [8]. Figure 1.1 shows a SAW filter structure with two interdigital

transducers converting the EM signal to the acoustic domain and back again. The

2



elastic surface wave propagation in a piezoelectric is described by [9–12]

cijkl∂
2Uk/∂xl∂xi + ekij∂

2φ/∂xk∂xi + ω2ρUj = 0, j = 1, 2, 3 (1.1)

eikl∂
2Uk/∂xl∂xi − ǫik∂

2φ/∂xk∂xi = 0 , (1.2)

where cijkl is an element of the elastic, eikl of the piezoelectric, and ǫik of the dielectric

tensor. These equations are coupled to Maxwell’s equations in their electrostatic

approximation via

Ej = −∂φ/∂xj (1.3)

∂Dj/∂xj = 0 , (1.4)

where E is the electric field, φ the electric potential and U the mechanical displace-

ment.

An example of the interaction of electrostatics with fluid dynamics is the electro-

osmotic flow (EOF), which is an electrokinetic effect that allows one to control the

flow in microchannnels [2, 13, 14]. EOF provides more control over the fluid transport

and is more convenient to implement than hydraulic pressure flow. A precondition

for the EOF is that an imprint surface charge at the walls of the microchannel, as

common to many materials, will be compensated by a charge accumulation of the fluid

in proximity to the channel wall. An applied electrostatic field will exert force to the

particles in the layer of accumulated charge. Viscous forces act on the remainder fluid

causing the EOF. The EOF is illustrated in Figure 1.2. The EOF is governed by the

Navier-Stokes equation [2]

ρf

(∂uv

∂t
+ (uv · ∇)uv

)
= −∇p+ µv∇2uv + F EK (1.5)

3



and by the equation for the electrokinetic force

F EK = ρeE − 1

2
E · Eǫ0∇ǫ+

ǫ0
2
∇
(
ρf

∂ǫ

∂ρf

E · E
)
, (1.6)

where ρf is the fluid density, uv is the velocity field, p is the pressure, µv is the

dynamic viscosity, and F EK is the net electrokinetic body force acting on the fluid.

Figure 1.2: Electro-osmotic flow.

The above problems are intended to demonstrate the relevance of multiphysics

modeling approaches. Furthermore, these cases can serve as examples for a localized

change of dielectric material properties due to mechanical deformation or controlled

fluid transport. Acoustic coupling to a dielectric slab causes mechanical deformation

of the slab’s boundaries as well as a modulation of the dielectric properties. We will

investigate in this work a technique to incorporate time-varying boundaries in the

context of electrodynamic field modeling. A tight coupling of the different physical

domains in the modeling process will bring dramatic improvement to the performance

of devices and systems.

1.2 State of the Art

Numerous numerical techniques have been developed over the past few decades to

solve complex physical problems for which analytic solutions are non-existent or hard

to access. In electromagnetics, some of these techniques have been adapted from other

4



engineering disciplines like structural mechanics or fluid dynamics. Optimization and

refinement of numerical solvers, in order to improve accuracy and computational per-

formance, are subjects of permanent research interest in order to provide for modeling

tools for cutting edge devices.

Numerical methods solve electromagnetic boundary value problems either in time-

domain (TD) or in the frequency domain (FD) with the Fourier transform (FT)

providing the necessary link between these two domains [15]. These methods can be

further categorized according to whether they are based on the integral equation or

differential equation formulation of Maxwell’s equations (2.1)-(2.4). Problems with

open radiating structures, closed structures, or narrow or broad frequency spectrum

of interest may be solved computationally more efficiently with specific methods. TD

methods, for example, can accommodate nonlinearities in a more direct way than FD

techniques which have to rely on special techniques like harmonic balance [16, 17].

Amongst the widely used methods are the method of moments (MoM) [18], the

finite element method (FEM) [19], the finite difference time domain (FDTD) method

[20, 21], and the transmission line matrix (TLM) method [22, 23]. MoM and FEM are

most commonly implemented in the frequency domain, whereas the FDTD method

and the TLM method are usually implemented in the time domain. However, TD

and FD implementations exist for all of the above methods. The TLM method is

based on a network representation of Maxwell’s equations; the other three methods

are based on the field representation of Maxwell’s equations.

Higher level electronic systems are modeled by network analysis tools like SPICE1

[24, 25]. Low level models are incorporated in high level models by deriving models

with reduced complexity. This is done for example with transistor models in network

analysis tools which provide current-voltage characteristics for the device derived

1SPICE: Simulation Program with Integrated Circuit Emphasis
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from a model based on quantum mechanics. Deriving simplified models from complex

physical problems or problems accessible only phenomenologically can be achieved by

the technique of macro- or reduced order modeling [26, 27]. Low level problems on an

atomistic scale are often modeled with probabilistic techniques like the Monte Carlo

method (MCM) [28, 29] or with the help of mesh-free modeling techniques [30].

In hierarchical methodologies information is often lost between the modeling levels

and thus feedback, in particular from the higher level model to the lower level model,

is often incomplete, reducing the capability to model complex systems.

In recent years interest has grown to couple electromagnetic solvers more tightly

with other physical solvers. Commercial solvers for multiphysics problems have be-

come available, like ANSYS2 or COMSOL3 [31, 32], which provide capabilities to

couple electromagnetic phenomena to problems of heat transfer and structural me-

chanics. Critical for multiphysics modeling is the handling of the different spatial

resolutions required for models in the different physical domains. Another challenge

is imposed to the electromagnetic field modeling by the time variation of the physical

boundaries.

1.3 Summary of this Work

This thesis provides methodologies that facilitate the handling of multiple scales and

variable structures in the electromagnetic field domain and thus aims to improve com-

puter aided analysis of multiphysics problems. Chapter 2 will provide fundamental

equations and theory for the work presented subsequently.

In Chapter 3 we present a methodology for the phenomenological modeling of pas-

sive intermodulation (PIM) generation due to electron tunneling in metallic contacts

2ANSYS Inc., 275 Technology Dr., Canonsburg, PA 15317, U.S.A., http://www.ansys.com
3COMSOL AB, Tegnérgatan 23, SE-111 40 Stockholm, Sweden, http://www.comsol.com
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in the signal transmission path of an RF/microwave system. The model aims at en-

hancing the understanding of this type of PIM source through the investigation of the

impact of surface roughness and skin effect on the levels and frequency dependence

of PIM interference. The methodology is such that it provides for the development

of PIM source models for metallic contacts that are compatible with general-purpose

electromagnetic and network analysis-oriented, non-linear circuit simulators.

Chapter 4 presents a Lagrangian approach for increasing the accuracy of the fi-

nite difference time domain method in modeling electromagnetic wave interactions

in geometries involving curved and moving boundaries. The methodology, which is

implemented numerically using the FDTD method, relies upon the definition of an

equivalent electromagnetic boundary value problem (BVP) over a domain with fixed

boundaries but with a modified operator exhibiting time variation. The Lagrangian

formulation offers a convenient way to define a modified set of Maxwell’s equations

on a reference domain. This modified set of equations is then discretized using the

staggered Cartesian grids of the Yee’s lattice. The attributes of the method are

demonstrated in several examples in Chapter 5.

In Chapter 6 we discuss the technique of multi-time partial differential equations

and its implementation to solve the electromagnetic wave equation. For problems

which exhibit certain periodic properties for their solution, this technique allows for

an expansion of the time variable into multiple variables which are all dependent

variables to the partial differential equation. This may reduce the computational

cost for problems with widely separated time scales. Towards the implementation

of the multivariate technique we will give an introduction to spectral methods. The

formulation and a numerical example of the solution of the one-dimensional wave

equation are given subsequently.

Finally, the presented work is summarized and directions for future research are
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outlined in Chapter 7.
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Chapter 2

The Fundamental Equations

2.1 Partial Differential Equations in

Electrodynamics

The phenomena of electromagnetic wave propagation are governed by Maxwell’s equa-

tions, in their differential form given as

∇× E(r, t) = −∂B(r, t)

∂t
− Jm(r, t) , (2.1)

∇× H(r, t) =
∂D(r, t)

∂t
+ J e(r, t) , (2.2)

∇ · D(r, t) = ρe(r, t) , (2.3)

∇ · B(r, t) = 0 , (2.4)

where E and H are electric and magnetic field intensity, D and B the electric and

magnetic flux density, J e and Jm the electric and magnetic current, and ρe the electric

charge density [33, 34]. The currents are defined as

J e(r, t) = J e0(r, t) + σE(r, t) , (2.5)

Jm(r, t) = Jm0(r, t) + ρ′H(r, t) , (2.6)
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where J e0(r, t) and Jm0(r, t) are the impressed electric and magnetic current, σ is the

electric conductivity, and ρ′ equivalent magnetic resistivity. The electric and magnetic

field intensities are linked to the respective flux densities by the constitutive relations

D(r, t) = ǫ0E(r, t) + ǫ0P (r, t) , (2.7)

B(r, t) = µ0H(r, t) + µ0M (r, t) , (2.8)

where ǫ0 is the free space dielectric permittivity, µ0 is the free space magnetic per-

meability, P is the electric polarization and M is the magnetic polarization. For

non-dispersive media the above relation can be cast as

D(r, t) = ǫ0ǫrE(r, t) , (2.9)

B(r, t) = µ0µrH(r, t) , (2.10)

ǫr =









ǫrxx
ǫrxy

ǫrxz

ǫryx
ǫryy

ǫryz

ǫrzx
ǫrzy

ǫrzz









, µr =









µrxx
µrxy

µrxz

µryx
µryy

µryz

µrzx
µrzy

µrzz









, (2.11)

where ǫr is the relative dielectric permittivity tensor and µr is the relative magnetic

permeability tensor. Hence, Maxwell’s equations (2.1)-(2.4) constitute a set of two

coupled first order partial differential equations (PDEs) or can be written as a single

second order hyperbolic PDE [35, 36].
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2.2 The FDTD Method

The FDTD method is applied in electromagnetics by discretizing the partial differ-

ences on a spatial and temporal grid. Several differencing schemes are available. The

Euler method provides a basic differencing scheme which is derived by truncating the

Taylor-series expansion of the partial derivative at the desired order [36, 37]. Back-

ward, central and forward Euler schemes exist, named according to the location of

the supporting numerical nodes in the finite difference equation. Further numerical

differencing schemes include the Crank-Nicolson scheme [37, 38], which is an implicit

and unconditionally stable scheme, or the Leapfrog scheme [37]. We will briefly dis-

cuss in the following the FDTD implementation of Maxwell’s equations in the Yee

scheme and some aspects pertinent to it.

2.2.1 Yee’s staggered grid

In the Yee scheme [20] Maxwell’s equations (2.1)-(2.4) are approximated by a fi-

nite difference scheme. Electric and magnetic field values and their respective flux

quantities are discretized on a staggered grid, as shown in Figure 2.1. Dielectric and

magnetic fluxes can be obtained easily by evaluation of the magnetic and electric field

quantities along a circular path on the respective staggered grid. Electric and mag-

netic field quantities are alternately updated. The applied central difference scheme

is explicit, has a low memory requirement since the field values have to be stored for

only one time step, and allows for a convenient implementation of boundary condi-

tions where the E- and H-field can both be enforced. The resulting algorithm is

numerically robust and easy to implement, which makes it a very attractive choice.

For convenience we shall write the time index of a function u as upper index and the
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Figure 2.1: Yee’s staggered grid.

spatial ones are denoted as lower indices

u|ni,j,k ≡ u(i∆x, j∆y, k∆z, n∆t) , (2.12)

and for a vector-valued u we write

u =< uxx̂, uyŷ, uzẑ >
T . (2.13)

Since the E- and H-field are evaluated half a time step apart, field values in between

are averaged by

u|ni,j,k =
u|n−1/2

i,j,k + u|n+1/2
i,j,k

2
. (2.14)

The first order partial difference is approximated by the finite difference

∂u|ni,j,k
∂x

≈
u|ni+1/2,j,k − u|ni−1/2,j,k

∆x
. (2.15)
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Thus, the resulting update equations in Yee’s scheme for fields x̂-components are

given by [21]

Hx|n+1/2
i,j,k =

(
1 − ρ′

i,j,k

2µi,j,k

1 +
ρ′

i,j,k

2µi,j,k

)

Hx|n−1/2
i,k +

(
∆t
µ

1 +
ρ′

i,j,k
∆t

2µi,j,k

)(

Ey|ni,j,k+1/2 − Ey|ni,j,k−1/2

∆z

−
Ez|ni,j+1/2,k − Ez|ni,j−1/2,k

∆y

) ,

(2.16)

Ex|n+1
i,j,k =

(
1 − σi,j,k∆t

2ǫi,j,k

1 +
σi,j,k

2ǫi,j,k

)

Ex|ni,j,k +

(
∆t

ǫi,j,k

1 +
σi,j,k∆t

2ǫi,j,k

)(

Hz|n+1/2
i,j+1/2,k −Hz|n+1/2

i,j−1/2,k

∆y

−
Hy|n+1/2

i,j,k+1/2 −Hy|n+1/2
i,j,k−1/2

∆z

)

,

(2.17)

and analog equations are found for Hy, Hz, Ey, and Ez.

2.2.2 Convergence, stability and numerical dispersion

Let us denote the exact solution of a PDE as U , whereas its numerical approximation

shall be u. The PDE’s independent variables are x, y and z. The finite difference

solution is called convergent if u tends to U at a fixed point as ∆x, ∆y, and ∆z all go to

zero [35]. According to Lax’ equivalence theorem, the finite difference approximation

to the initial value problem is convergent if the approximation satisfies the consistency

condition and is stable [39, 40]. Let L(U) = 0 be the representation of the PDE with

the exact solution U and F (u) = 0 be the representation of the finite difference

approximation to the PDE. The truncation error at the grid point (i, j, k) is thus

Ti,j,k(v) = Fi,j,k(v) − L(vi,j,k) , (2.18)
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where v is a continuous function of x, y, and z. The function is called consistent if

Ti,j,k → 0 as ∆x→ 0, ∆y → 0, and ∆z → 0.

The stability refers to the boundedness of the finite difference solution as it is

propagated forward. Different schemes exist to ensure the boundedness of the solution

of the finite difference approximation and of rounding errors. The Fourier series

method and the amplification matrix method belong to the most widely used methods

[35, 41]. The Yee algorithm is conditionally stable. In order to prevent unbounded

growth the time step has to be limited. The Courant-Friedrichs-Lewy (CFL) condition

provides the criteria for the stability of explicit finite difference PDE approximations

[42]. The CFL condition demands for Yee’s time-marching scheme that values on the

numerical grid are not propagated with a numerical velocity faster than the actual

velocity. Thus Yee’s scheme for three-dimensional problems is found to be stable for

∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

. (2.19)

Numerical dispersion occurs in the FDTD scheme and it is determined by the

propagation direction of the wave on the numerical grid and by the discretization of

the grid. A time harmonic propagating wave is described by

u(x, t) = ej(ωt−k·x) , (2.20)

with k = ω
c

being the propagation vector. The numerical propagation vector k̃ in

the finite difference solution to this equation is in general not identical to k. The
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numerical dispersion relation is found to be [21]

(
1

c∆t
sin

(
ω∆t

2

))2

=

(
1

∆x
sin

(
k̃x∆x

2

))2

+

(
1

∆y
sin

(
k̃y∆y

2

))2

+

+

(
1

∆z
sin

(
k̃z∆z

2

))2

. (2.21)

The dispersion error can be kept small by choosing a fine enough grid resolution. For

a grid spacing of ∆x = λ/20 , where λ is the wave length, the phase velocity error

relative to c is confined to −0.31% [21].

2.2.3 Absorbing boundary conditions

The computational domain for finite difference schemes has to be finite and a trun-

cation will be necessary for any problem in an unbounded region. Multiple meth-

ods have been proposed to introduce absorbing boundary conditions (ABC) in the

FDTD scheme [21]. The Sommerfeld radiation condition is known as an analytical

boundary condition for radiation problems [43, 44]. Some ABC methods approximate

this radiation condition for the FDTD scheme, e.g., the methods by Bayliss-Turkel

[45], Engquist-Majda [46], or Mur [47]. The perfectly matched layer (PML) pro-

posed by Bérenger [48, 49] introduces a nonphysical computational layer with provides

impedance matching and high damping for an impinging wave.

2.3 Intermodulation Phenomena

Passive intermodulation (PIM) can be caused by bulk material nonlinearities, surface

effects, and contact nonlinearities [50, 51]. Bulk nonlinearities occur in ferro- and fer-

rimagnetic as well as in dielectric material. Rough surfaces can give rise to nonlinear

properties of the material surface and thus to PIM, in which case the current flow
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direction relative to the surface abrasion will be critical for how strong an effect will

occur [52]. So called a-spots [53] can give rise to PIM due to contact nonlinearities.

Figure 2.2: Current constriction to a-spots.

Due to the surface roughness and thus the non-perfect contact between two surfaces,

the current is concentrated to contact spots as depicted in Figure 2.2. The local

resistance and in particular the change of the resistance due to thermal effects gives

rise to PIM. However, these metal-metal contact nonlinearities can be reduced if the

pressure between the contact surfaces of the connector is increased, making metal-

insulator-metal contact nonlinearities the dominant source for PIM [54, 55]. More

specifically, the tunneling effect becomes dominant for thin contact layers [56]. For

oxidized contact surfaces a potential barrier is introduced, hampering the free current

flow. This potential barrier Ubp is plotted in Figure 2.3, shown along with the impact

of the image force effect. The image force effect reduces the thickness of the barrier

and softens the edges of the barrier causing an increased tunneling current. The

nonlinear voltage-current relation generates intermodulation products. Connectors

often show irregular contact surfaces due to the material roughness, and in addition

different oxidation levels due to corrosion at the microscopic contact point. These

oxidation levels are changing with time. This PIM generating effect is commonly

referred to as the rusty bolt effect.
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Figure 2.3: Barrier potential Ubp(x) for a metal-oxide-metal contact with image force
effect.

2.4 Multi-Scale Modeling

One core issue in many multiphysics modeling tasks is the presence of multiple spatial

and temporal scales that exhibit significant disparity and, yet, need to be resolved for

the accurate quantitative analysis of the multiphysics phenomenon. MEMS devices

are commonly a fraction of the bulk feature size which poses a challenge to any full

wave electromagnetic (EM) analysis [57–59]. To resolve the small details of a MEMS

device a finely resolved computational grid is required, resulting in a discrete problem

of very high dimension.

Some examples for MEMS capacitors and switches [60–62] are presented in Figure

2.4. Frequently these devices are modeled in the mechanical and electrostatic domain.

Figure 2.4(a) shows the schematic of a tunable MEMS capacitor. The separation

d of two parallel plates is controlled by the voltage V applied between the plates,

changing the balances of the Coulomb force and the retaining mechanical force due
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(a) Tunable parallel plate capacitor. (b) Segmented-plate tunable capacitor.

(c) CPW switch.

Figure 2.4: MEMS capacitor and switch devices.

to the spring. Hence, we obtain a change in the capacitance

Cpl(V ) =
ǫApl

d(V )
, (2.22)

where Apl is the plate surface. Concatenating several plate elements together to form a

capacitor, as shown in Figure 2.4(b), with distinct properties of the spring support at

the joints, allows for a linearization of the capacitance to voltage relation [61]. Figure

2.4(c) shows the schematic of a MEMS switch for a coplanar waveguide (CPW) [62].

The feature size for these devices is typically several hundred microns for the edge of

a capacitor plate or of the plate of the switch. Operating those devices with signals

in the range from some gigahertz to several tens of gigahertz would typical require

a mesh size of at least several hundred microns for a full wave EM analysis and a

finer mesh to resolve the lateral dimensions of the MEMS. However, the separation

distance d is typically in the order of 1 µm. The large aspect ratio of the lateral

extent and contact separation distance of MEMS devices proves to be a challenge.

Thus we have to reduce the mesh size considerably in order to accurately model the
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capacitor or switch in a full wave analysis.

A reduced mesh size increases the computational costs in terms of memory allo-

cation and process time. Local mesh refinement can offset this problem by applying

it only in regions where large field variations are anticipated, e.g., in the presence of

sharp discontinuities [63]. At the interface between different grid sizings, spatial and

temporal inter- or extrapolation schemes will be necessary.

Alternatively, different resolutions for certain areas of the computational domain

can be achieved by means of the multiresolution time domain (MRTD) technique

[64, 65]. This technique uses wavelets and a Galerkin-based approach to represent

the fields in the computational cells. The MRTD methodology provides for a time-

marching scheme and can be coupled with Yee’s FDTD. Adaptive mesh refinement

(AMR) allows for time variable resolution of the field within a computational cell by

changing the number of wavelets [66]. We will present a methodology to relax the

requirements for local subgriding in Chapter 4.

Challenges for multi-scale modeling occur not only with respect to different spa-

tial scales but as well for different temporal scales. In the above mentioned examples

of MEMS capacitors, for example, any mechanical motion will take place on a sig-

nificantly longer timescale than any electromagnetic wave propagation phenomena.

Often the process that evolves over the long time scale can be considered as static

from the viewpoint of the fast process. However, the slow and the fast process may

couple to each other such that a static approximation for the process at the long

time scale is not appropriate. Modeling such a problem will require choosing a time

interval long enough to account for the slow time scale and a temporal resolution fine

enough to account for the fast scale. Hence, the computational cost of the problem

scales proportionally to the ratio of long to short time scale. Possible long-term in-

stabilities in the numerical solution algorithm add to the challenge. In Chapter 6 we
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will address this problem using a multi-time approach for the solution of PDEs.

2.5 Modeling of Time-Varying Structures

Time-varying structures, like the above mentioned MEMS capacitors or switches,

impose another challenge to full wave EM modeling. Full wave numerical modeling

requires matching the discretization of the structure’s boundary and interfaces and/or

the entire space under investigation. Methods like the finite difference time domain

(FDTD) method [20, 21], finite element method (FEM) [19] or transmission line

matrix (TLM) method [22, 67] require a computational mesh over the entire domain

to be modeled. To enforce the boundary conditions accurately it is important for

the boundaries to coincide with the nodes of the mesh. As the structural elements of

the device move during the course of the simulation, the conformity of the grid with

the actual boundary is no longer given. Re-meshing of the computational grid and

computing the electromagnetic field at the shifted node positions by interpolation

is a common, though computationally costly, technique. In the re-meshing process

a new mesh has to be generated and the fields known at the previous grid points

have to be interpolated to determine the values at the node locations. The problem

of moving boundaries has been addressed in the context of TLM in [68]. We will

provide an approach to handle time-varying boundaries by using a time-dependent

mapping approach for Maxwell’s equations in Chapter 4.
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Chapter 3

A Statistical Method for Modeling
Multiphysics Phenomena in EM
Waveguiding Structures

The very small ratio of received to transmitted power levels at base stations makes

passive intermodulation-induced interference a serious liability on communication sys-

tem performance. Because of this, there has been a renewed interest in the assessment

of the impact of PIM on wireless communication system performance (see, for exam-

ple, [69–72]) and in the investigation and quantification of the various PIM source

mechanisms [73–76]. Nonlinear effects associated with the conduction properties of

metal-to-metal contacts have been identified as one of the most important sources of

PIM. An overview of the possible physical phenomena occurring in such contacts that

may be responsible for PIM generation is provided in [50]. Among them, the temper-

ature dependence of the contact resistance [77] and electron tunneling through very

thin (in the order of nanometers) metal-oxide-metal films have received special atten-

tion, and macroscopic mathematical models have been proposed for their quantitative

description [78, 79].

For the case of electron tunneling, the developed models have been used in support

of experimental and theoretical quantification of PIM at metallic junctions [80, 81].

In these studies, voltage-current characteristics measurements under dc conditions as

well as junction capacitance measurements have been used to develop circuit models

describing the electron tunneling through the junction. The poor agreement (±15 dB)

between PIM power levels predicted by the generated circuit model, consisting of the

series connection of a series resistance with the impedance formed by the parallel
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combination of a nonlinear resistance with a linear capacitance, and those obtained

through measurement, was attributed to the fact that the equivalent circuit did not

include current crowding due to skin effect as well as the impact of contact surface

roughness. However, no experimental studies which have linked the PIM power levels

consistently to the skin effect have been presented so far.

The modeling methodology presented below aims at overcoming the aforemen-

tioned modeling shortcomings [82]. Toward this objective a distributed model is

developed for the metal-oxide-metal contact, that allows for both surface roughness

and skin effect to be taken into account. Because of the sub-micron thickness of the

contact layer, the distributed model may be cast in terms of a distributed equivalent

circuit. Such a representation makes the proposed PIM source model compatible

with both nonlinear electromagnetic field solvers and general-purpose, network anal-

ysis oriented, nonlinear circuit simulators.

3.1 Modeling Methodology

Shown in Figure 3.1(a,b) is a schematic drawing of the electrical contact formed by two

metal plates. The thickness of the actual contact layer is assumed to be at most 1 µm,

much smaller than the transverse dimensions of the metal plates. For the purpose of

this model, surface roughness is taken into account by allowing the distance between

the plates to be variable. Thus, as the cross-sectional view of Figure 3.1(c) indicates,

a rectangular saw-tooth profile is used to approximate the contact layer between the

metal plates. For a planar contact along x and y, the saw-tooth profile is clearly two-

dimensional. However, for the purposes of this study, and without loss of generality,

we assume that the length of the metal contact (along x) is sufficiently larger than its

width (along y) for the current flow in the metal plates to be predominantly along x.
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This, for example, would be the case when the contact is formed between two metal

strips oriented in the x-direction. Under this assumption, Figure 3.1(c) is interpreted

as the longitudinal, cross-sectional view of the contact region between two metal

plates of equal width w, exhibiting no geometry variation along their width.

Figure 3.1: Contact model. (a) View of the contact between two metal plates formed
by the flanges of a parallel plate waveguide. (b) The thin film contact layer between
the metal plates is characterized by a surface roughness. (c) An approximate model
of this surface roughness utilizes a rectangular saw-tooth profile with a position-
dependent distance between the metal surfaces, shown for the upper part of the
parallel plate waveguide. (d) Synthesized circuit model of the upper flange metal
contact linked to the upper plate of the parallel plate waveguide.

In view of the above discussion, and for the special case of an x-directed current

flow in the metal plates, it should be evident that the electromagnetic field distribution
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between the metal plates is predominantly transverse magnetic (TM) to x. This, then,

suggests that for each “parallel-plate” section of the approximate model depicted

in Figure 3.1(c), a lumped circuit model can be developed consisting of a series

impedance, Zs(ω) = Rs(ω) + jωLs(ω), which accounts for the frequency-dependent

internal impedance of the metallization and the inductance of the (effective) loop

formed by the current flow in the parallel plates, and a shunt admittance, Yp =

Gp +jωCp, which accounts for the capacitance between the plates and the conduction

loss in the oxide film. The computation of these elements is discussed later in the

section. The final model for the metal contact, derived in the following, is linked to

the waveguide as shown in the schematic of Figure 3.1(d).

If the separation between the metal plates is in the order of a few tens of angstroms,

then electron tunneling is possible through the oxide film. For a potential V < ϕ0/e

between the plates, the tunneling current density is given by [78]

J(V ) =
e

2πhs2
ox

{(

ϕ0 −
eV

2

)

exp

[

−4πsox

h

√

2m
(

ϕ0 −
eV

2

)]

−
(

ϕ0 +
eV

2

)

exp

[

−4πsox

h

√

2me

(

ϕ0 +
eV

2

)]}

, (3.1)

where ϕ0 is the work function of the metal, me is the mass of electron, e the charge of

electron, h is Planck’s constant and sox the thickness of the oxide film. This equation

is based on the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the

one-dimensional Schrödinger equation [83, 84]; hence it does not take into account

the two-dimensional potential barrier at the edges of the parallel plates. A voltage-

dependent current source is introduced between the plates to model the relation in

(3.1). Following [81], or by a polynomial approximation to (3.1), the source exhibits

the I − V characteristics

I(V ) = g1V + g3V
3, (3.2)
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with the values of the constants g1 and g3 being dictated by the metallization mate-

rial, the thickness of the film and the area of the contact [79]. Thus, the general model

of the equivalent lumped circuit used for the modeling of a longitudinal (x-directed)

section of the rectangular, saw-tooth contact geometry approximation of Figure 3.1(c)

is as shown in Figure 3.2(a). The electrical model for the contact is obtained through

the concatenation of the models for all longitudinal sections. The resulting model is

depicted in Figure 3.2(b). The extension of this model to the general case where cur-

rent flow in the contact is along both transverse directions x and y is straightforward

with the model of Figure 3.2(a) replaced by its two-dimensional version depicted in

Figure 3.2(c).

Because of the transverse magnetic attribute of the electromagnetic fields in the

contact layer, the calculation of Zs(ω) and Yp can be effected through the applica-

tion of quasi-static field solvers. For example, for the one-dimensional current flow

situation depicted in Figure 3.1, the methodology used in [85] is employed for their

calculation, given the width and thickness of the metal plates, their separation and the

metallization and oxide properties. Since Zs is frequency-dependent, the magneto-

quasi-static solver discussed in [85] is used to calculate their values for a number of

frequency points over the frequency bandwidth of interest. Subsequently, the calcu-

lated values are used to generate rational function approximations of these quantities,

which, in turn, lend themselves to the direct synthesis of equivalent circuits of con-

stant (frequency-independent) elements that exhibit the same impedance behavior

over the bandwidth of interest.

More specifically, using the methodology described in [86], a rational fit of its

calculated values at discrete frequencies over the bandwidth of interest yields the
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(a)

(b)

(c)

Figure 3.2: Circuit equivalent model. (a) Lumped element circuit equivalent for a
single, parallel-plate section under the assumption of one-dimensional current flow.
(b) Overall distributed-circuit model for metal-to-metal contact under the assumption
of one-dimensional current flow. (c) Lumped circuit for a single, parallel-plate section
for the general case of two-dimensional current flow.
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Figure 3.3: Synthesized impedance of the equivalent circuit.

following closed-form expression for its approximation:

Zs(s) ≈ R0 + sL0 +
K∑

k=1

Rk

s− pk

, (3.3)

where s = jω. The circuit representation of the synthesized impedance is depicted in

Figure 3.3. Use of this synthesized equivalent circuit in place of the series impedances

in the distributed circuit model of Figure 3.2(b) results in a circuit netlist that is

readily compatible with all popular nonlinear circuit simulators.

3.2 Simulation Studies

For the purposes of this numerical study the plate width was taken to be 10 µm

and the plate thickness 1 µm. The total length of the contact was 1 cm (in the x

direction) as shown in Figure 3.1(c). To account for the roughness the metal contact is

subdivided into 50 segments along the x-direction. The length of each segment varied

between 0.01 cm and 0.03 cm. For each segment the plate separation was assigned a

value in the range [10 Å−1 µm]. The material in the gap was randomly assigned to

be either air, or metal oxide, or a lossy dielectric to model the contact and corrosion

profile. With the metallization taken to be aluminium, the following resistivity values

were used: ρAl = 2.65 × 10−8 Ωm, ρoxide = 1 × 10−14 Ωm [87]. The loss tangent of

the dielectric was taken to be tan δ = 0.001. Segment length, metal separation (gap

size), and gap filling are randomly chosen for each segment from a discrete set of
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values in the ranges mentioned above. The probability distribution for each set of

values is uniform. For each segment the equivalent circuit was developed using the

methodology described in the previous section. The frequency bandwidth over which

the circuit of Figure 3.3 was synthesized was 5 GHz. Through concatenation of

the equivalent circuit for each segment, the circuit representation of Figure 3.2 was

established for the contact. The third order polynomials for the controlled current

sources present in the model were extracted from (3.1) for an oxide film with a work

function ϕ0 = 3 eV.

A set of 1000 roughness profiles were generated and used for our simulations. Each

equivalent circuit is driven by a voltage source Vin with input signal

Vin = sin(2πf1t) + sin(2πf2t) . (3.4)

The three pairs of frequencies used for the simulations were (f1 = 100 MHz, f2 = 110

MHz), (f1 = 300 MHz, f2 = 330 MHz), and (f1 = 1 GHz, f2 = 1.05 GHz). All

transient simulations were carried out using SPICE. Plotted in Figures 3.4(a) - 3.4(c),

are the spectra of the calculated current at the voltage source for the three pairs of

frequencies for a single contact with random roughness profile. The spectra of the

other samples differ according to the strength of their intermodulation frequencies

(IMF). Around 19% of the samples show hardly any PIM due to the lack of thin

oxide layers < 20 Å in their random profile. Table 3.1 quantifies the expectation

value µp = 〈PIMF〉 and the standard deviation σp =
√

〈(PIMF − µp)
2〉 of the spectral

power PIMF at various IMFs for the remaining sets of contact roughness profiles [88].

The impact of the frequency-dependence on the skin effect at different frequencies is

clearly evident. Correlating the intermodulation levels with various parameters by
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(a) f1 = 100 MHz, f2 = 110 MHz

(b) f1 = 300 MHz, f2 = 330 MHz

(c) f1 = 1 GHz,f2 = 1.05 GHz

Figure 3.4: Spectrum of the input current Iin.
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Table 3.1: Average spectral power µp and its standard deviation σp for the intermo-
dulation products

IMF 2f1−f2 2f2−f1 3f1 f2+2f1 f1+2f2 3f2

(f1 = 100 MHz, f2 = 110 MHz)
MHz 90 120 300 310 320 330
µ

p
/ dB -8.24 -7.74 -20.12 -6.64 -6.63 -20.11

σp / dB 2.25 2.20 3.77 3.37 3.40 3.90

(f1 = 300 MHz, f2 = 330 MHz)
MHz 270 360 900 930 960 990
µ

p
/ dB -14.06 -13.86 -27.63 -14.14 -14.21 -27.88

σp / dB 3.94 3.98 4.13 4.15 4.16 4.17

(f1 = 1 GHz, f2 = 1.05 GHz)
GHz 0.95 1.10 3.00 3.05 3.10 3.15
µ

p
/ dB -24.23 -24.58 -40.00 -28.60 -28.78 -40.46

σp / dB 4.98 5.02 4.98 5.51 5.54 5.14

[88, 89]

r =
〈PIMFX〉 − 〈PIMF〉〈X〉

√

〈P 2
IMF〉 − 〈PIMF〉2

√

〈X2〉 − 〈X〉2
, (3.5)

where r is the correlation coefficient and X is the chosen parameter, allows for further

investigation of dependencies. As shown in Figure 3.5, correlation between the inter-

modulation level (IML) and the percentage of the contact’s gap filling with oxide is

negligible. However, stronger correlation is found between the IML and the distance

from the voltage source to the first oxide filled gap of size 10 Å as shown in Figure

3.6.

3.3 Conclusion

In summary, a modeling methodology has been presented for the phenomenological

and quantitative analysis of electron tunneling at metallic contacts as a source of

passive intermodulation. As demonstrated by the studies presented above, the pro-

posed model provides for the impact of contact surface roughness and the frequency

dependence of the skin effect field distribution in the metallization to be taken into

account in the quantification of the generated intermodulation interference. The PIM
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Figure 3.5: IML vs. filling of the gap with oxide, f1 = 300 MHz, f2 = 330 MHz, IMF:
990 MHz, r = 0.015
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Figure 3.6: IML vs. distance of the first oxide gap of 10 Å measured from the input
voltage source, f1 = 300 MHz, f2 = 330 MHz, IMF: 990 MHz, r = 0.778
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dropped significantly when the smallest gap sizes were larger than 20 Å. Choosing

samples with gaps < 20 Å, in which case we observe PIM, allows one to perform a

predictive quantitative analysis of how other parameters of the structure impact the

PIM levels.

The generated model is cast in terms of a distributed circuit netlist. Thus, it

is compatible with both general-purpose, transient electromagnetic field solvers and

network analysis-oriented, non-linear circuit simulators. This compatibility facilitates

the incorporation of the model in system-level simulations aimed at intermodulation

interference assessment at the system level.
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Chapter 4

Modeling Curved and Moving
Boundaries with a Lagrangian
Mapping (LM) Method

The success of the FDTD method and its attractiveness are in major part due to

the simplicity of the so-called Yee’s scheme for the spatial discretization of the curl

operators on two staggered Cartesian grids [20, 21]. It is because of its simplicity that

the utilization of a Cartesian grid remains the most attractive in the application of

the method to the modeling of electromagnetic field and wave propagation in domains

involving arbitrarily shaped, non-Cartesian material boundaries. Despite significant

advances in avoiding the modeling error resulting from the staircase approximation

of a curved material boundary [90–95], the simplicity of the Yee’s Cartesian lattice

frequently leads to its adoption at the cost of utilizing a finer grid in order to minimize

the modeling error [96].

The aforementioned advanced techniques for improving modeling fidelity without

increasing the spatial sampling of the fields come at the cost of increased complexity

in both mesh generation and in the development of the discrete forms of the curl

operators.

A topic of significant interest for various engineering applications is electromag-

netic wave interactions with moving objects. Important examples include electro-

magnetic wave scattering by moving and/or rotating objects and electromagnetic

wave interactions with structures with time-varying boundaries. The latter class is

of practical interest due to its relevance for the analysis of phenomena such as the

motion-induced tuning of the pass-bands or stop-bands of electromagnetic filters. The
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theory of electromagnetic waves interacting with moving objects is well-documented

in the literature [97, 98], along with its application to the solution of a limited class

of problems for which analytical solutions can be obtained [99, 100].

For the general case of structures and scatterers of arbitrary geometric shape and

material composition, numerical techniques must be implemented for the solution of

the governing equations. The FDTD method was one of the first methods used to

model transient electromagnetic wave scattering by moving targets [101]. One of the

problems in the application of the FDTD method for the modeling of electromagnetic

wave interactions with geometries that involve moving boundaries is the need for

on-the-fly re-meshing of the computational domain to accommodate the changing

position of the moving boundary.

In this chapter we present an alternative to the above mentioned techniques,

which is based on the application of Lagrangian techniques for solving problems in

mechanics and coupled electro-mechanical problems [102, 103]. The basic idea of the

method is to map the physical domain onto a reference domain with all its boundaries

parallel to the planes of a reference Cartesian coordinate system. Once such a domain

can be defined, the mapped version of Maxwell’s curl equations are cast in a form

that lends itself to their direct discretization using Yee’s staggered Cartesian grids on

the reference domain. The mapping is time dependent and accommodates moving

boundaries. The attributes of such an approach were demonstrated in [104–106].

Use of coordinate transformation for the numerical solution of Maxwell’s equations

on non-orthogonal grids has been explored in the past, most recently in the context of

metamaterials [107]. The approach proposed here attempts to relax the complexity

of [107] in order to provide for an efficient means for handling time-varying and/or

moving boundaries in the electromagnetic boundary value problems of interest.
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4.1 The LM Methodology

In this section we present the development of the equivalent boundary value problem

over a domain with fixed boundaries, based on a Lagrangian approach. To introduce

the concept of the Lagrangian approach it is useful to consider problems in mechan-

ics where the Lagrangian concept is frequently used. Figure 4.1 depicts the reference

Figure 4.1: Reference and deformed configuration.

configuration B and the deformed configuration b of one body. We find the parti-

cle P (α, γ) displaced to p(x, z) where x = α + u and u is the displacement vector.

There are two different approaches that are commonly taken in mechanics to formu-

late a mathematical model describing moving particles [102, 108]. The first approach

describes a particle position as a function of its position at an initial reference con-

figuration and its time evolution. The second approach focuses on a fixed position in

space and the evolution of physical quantities at this point. The latter suggests a La-

grangian approach, as we find it, for example, in fluid dynamics, where the knowledge

of the pressure at some point tends to be more valuable than the actual position of

each of the fluid’s particles. The Lagrangian approach allows for a mapping such that
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we solve for the quantities of interest at fixed locations in the reference configuration.

(a) Deformed configuration. (b) Reference configuration.

Figure 4.2: Non-uniform (deformed) domain at time t and uniform (Cartesian) refer-
ence domain.

Toward this, use is made of the computational domain depicted in Figure 4.2(a).

While Figure 4.2(a) depicts a two-dimensional domain, we assume that the actual

domain is three-dimensional with x − z cross-sectional geometry as depicted in the

figure. Furthermore, for the sake of simplicity and without loss of generality it is

assumed that only the top boundary is moving and, thus, it is changing with time,

as depicted in the figure.

Figure 4.2(b) denotes a rectangular domain (parallelepiped) that will be referred

to in the following as the reference domain. Let (α̂, β̂, γ̂) denote the unit vectors along

the three axes of the Cartesian coordinate system in the reference domain. We can

consider the physical domain of Figure 4.2(a) at time t as the map of the reference

domain. The map between the two domains is effected numerically through a quasi-

elastic finite element solver [109]. Under such a mapping, every grid point P (α, β, γ)

on a rectangular grid over the reference domain is mapped onto a point p(x, y, z) of
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the physical domain at time t. This relationship is cast in the form

d









x

y

z









= F(t)d









α

β

γ









, (4.1)

where the deformation gradient matrix, F(t), is given by

F(t) =









∂x
∂α

∂x
∂β

∂x
∂γ

∂y
∂α

∂y
∂β

∂y
∂γ

∂z
∂α

∂z
∂β

∂z
∂γ









. (4.2)

Furthermore, the mapping between vector quantities in the two domains is given by









Ax

Ay

Az









= G(t)









Aα

Aβ

Aγ









, (4.3)

where the matrix G(t) is given by

G(t) =









∂α
∂x(t)

∂β
∂x(t)

∂γ
∂x(t)

∂α
∂y(t)

∂β
∂y(t)

∂γ
∂y(t)

∂α
∂z(t)

∂β
∂z(t)

∂γ
∂z(t)









. (4.4)

In addition, we need to derive the pertinent equations for the mapping of the

first-order spatial derivatives present in the curl operator. Toward this, it is useful to
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define the following Jacobian determinant:

Dα1α2
x1x2

(t) :=
∂(α1, α2)

∂(x1(t), x2(t))

:= det






∂α1

∂x1(t)
∂α1

∂x2(t)

∂α2

∂x1(t)
∂α2

∂x2(t)




 ,

(4.5)

where α1, α2 assume values from the set {α, β, γ}, while x1, x2 assume values from

the set {x, y, z}. We define the matrix D̃ as

D̃(t) =









Dβγ
yz (t) −Dαγ

yz (t) Dαβ
yz (t)

−Dβγ
xz (t) Dαγ

xz (t) −Dαβ
xz (t)

Dβγ
xy (t) −Dαγ

xy (t) Dαβ
xy (t)









. (4.6)

Using the above definitions the mapped form of Faraday’s law from the deformed

(physical) domain
∂

∂t
E =

1

ǫ
∇× H (4.7)

onto the reference Cartesian domain is given by

∂

∂t
Ẽ =

1

ǫ
G−1(t)D̃(t)∇× H̃ , (4.8)

where the ˜ is used to denote the vector in the reference domain, i.e. Ẽ ≡ Ẽ(α, β, γ, t),

H̃ ≡ H̃(α, β, γ, t). The mapped form of Ampère’s law in a source-free region is given

by
∂

∂t
H̃ = − 1

µ
G−1(t)D̃(t)∇× Ẽ . (4.9)
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Thus, Maxwell’s equations in the reference domain can be written

∂

∂t
Ẽ =

1

ǫ
∇̃(t) × H̃ , (4.10)

∂

∂t
H̃ = − 1

µ
∇̃(t) × Ẽ , (4.11)

where the modified operator ∇̃ is defined as

∇̃(t)× ≡ G−1(t)D̃(t)∇× . (4.12)

For the case of a curved but static boundary, i.e. if there is no time dependence

for G and D̃, the modified system of Maxwell’s equations on the reference domain

with fixed boundaries can be interpreted in terms of an anisotropic medium with the

following electric permittivity and magnetic permeability tensors:

ǭ = D̃−1Gǫ , (4.13)

µ̄ = D̃−1Gµ . (4.14)

In this case no modifications are done to the nabla operator. A brief derivation of

the mapped form of Maxwell’s equations is given in Appendix A.

4.2 Implementation of the LM Method in FDTD

Since we are interested in utilizing the standard Yee’s lattice for the discretization

of the curl operators in Maxwell’s equations, the preferred choice for the reference

domain is one with its boundaries parallel to the planes of the reference Cartesian

coordinate system. Let us assume that a reference Cartesian domain has been estab-

lished and a uniform Cartesian grid is used to provide for its discretization. With
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(a) Reference configuration. (b) Deformed configuration.

Figure 4.3: Uniform (Cartesian) and non-uniform (deformed) grids for reference and
deformed configuration, respectively.

reference to Figure 4.3, in the spirit of the Lagrangian approach, in order to sim-

plify the modeling of electromagnetic wave interactions inside the domain with the

curved top boundary on the right we displace, by analogy to the moving particle

problem in mechanics, the grid points on the boundaries of the uniform grid in the

reference domain until they coincide with the curved boundary on the domain on the

right. Thinking of the reference domain as an elastic membrane, the displacement

of the boundary grid points will result in displacement of the remaining grid points

of the uniform grid. Thus, a deformed grid results over the deformed domain. The

definition of a mapping between the deformed grid and the reference grid allows us,

through the use of the Lagrangian formulation, to apply the spatial discretization

of the curl operators in Maxwell’s equations over the Cartesian grid of the reference

domain. The key difference is that the discretization is applied to a modified version

of Maxwell’s equations, the form of which is governed by the mapping between the

two domains. Furthermore, all boundary conditions at the material boundaries on

the physical (deformed) domain can be enforced in a much simpler manner on the

corresponding maps of the curved boundaries on the reference domain.
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4.2.1 The two-dimensional case

To demonstrate the discrete form of the Lagrangian form of Maxwell’s equations in

the context of the FDTD method, we first consider the two-dimensional case where

the geometry and the field excitation are invariant in the ŷ direction; hence, β̂ ≡ ŷ.

This results in two possible field polarizations, namely, the transverse electric (TE)

and the transverse magnetic (TM). For the TM polarization it is Ey = 0, Hx = 0

and Hz = 0. Furthermore, because of the two-dimensional nature of the problem, it

is ∂α
∂y

= ∂γ
∂y

= 0 and ∂β
∂y

= 1. Making use of these relations in (4.4) and (4.6) results in

the following reduced forms of (4.8)–(4.9):

∂Hβ

∂t
= − 1

µ
det






∂α
∂x(t)

∂γ
∂x(t)

∂α
∂z(t)

∂γ
∂z(t)






(

∂Eα

∂γ
− ∂Eγ

∂α

)

:=
1

µ
H(t)

(

∂Eα

∂γ
− ∂Eγ

∂α

)

,

(4.15)

∂

∂t






Eα

Eγ




 =

1

ǫ






∂α
∂x(t)

∂γ
∂x(t)

∂α
∂z(t)

∂γ
∂z(t)






−1 




∂γ
∂z(t)

− ∂α
∂z(t)

− ∂γ
∂x(t)

∂α
∂x(t)











−∂Hβ

∂γ

∂Hβ

α




 :=

1

ǫ
I(t)






−∂Hβ

∂γ

∂Hβ

α




 .

(4.16)

The above equations are discretized on Yee’s staggered grid as shown in Figure 4.4

where the electric field quantities Eα and Eγ are shown as arrows and the Hβ field,

which is protruding out of the plane, is depicted by dotted circles. More specifically,

we denote Eα|ni,k = Eα((i − 1
2
)∆α, (k − 1)∆γ, n∆t), Eγ|ni,k = Eγ((i − 1)∆α, (k −

1
2
)∆γ, n∆t) and Hβ|ni,k = Hβ((i− 1

2
)∆α, (k − 1

2
)∆γ, n∆t). ∆α and ∆γ represent the

grid spacing, while ∆t represents the discrete time step. Furthermore, H|i,k denotes

the determinant of (4.15) evaluated at the position of the E field component associated

with it in the same equation. In a similar manner, I|i,k denotes the matrix of (4.16)

evaluated at the position of Hβ|i,k, with I|i,k(q, r) specifying the (q, r) element of
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Figure 4.4: Yee’s staggered grid on the Cartesian reference domain.

the matrix. This yields the following discrete form of the Lagrangian formulation of

Maxwell’s curl equations:

Hβ|n+1/2
i,k = Hβ|n−1/2

i,k +
∆t

µ
H|n+1/2

i,k

(

Eγ|ni+1,k − Eγ|ni,k
∆α

−
Eα|ni,k+1 − Eα|ni,k

∆γ

)

, (4.17)

Eα|n+1
i,k = Eα|ni,k +

∆t

ǫ

(

− I|n+1
i,k (1, 1)

Hβ|n+1/2
i,k −Hβ|n+1/2

i,k−1

∆γ
+ I|n+1

i,k (1, 2)×

×
Hβ|n+1/2

i+1,k−1 −Hβ|n+1/2
i−1,k−1 +Hβ|n+1/2

i+1,k −Hβ|n+1/2
i−1,k

4∆α

) , (4.18)

Eγ|n+1
i,k = Eγ|ni,k +

∆t

ǫ

(

− I|n+1
i,k (2, 1)

(
Hβ|n+1/2

i−1,k+1 −Hβ|n+1/2
i−1,k−1

4∆γ
+

+
Hβ|n+1/2

i,k+1 −Hβ|n+1/2
i,k−1

4∆γ

)

+ I|n+1
i,k (2, 2)

Hβ|n+1/2
i,k −Hβ|n+1/2

i−1,k

∆α

)

.

(4.19)
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4.2.2 The three-dimensional case

For the three-dimensional case we denote the field quantities, following Figure 2.1, as

Eα|ni,j,k = Eα((i− 1

2
)∆α, (j − 1)∆β, (k − 1)∆γ, n∆t) , (4.20)

Eβ|ni,j,k = Eβ((i− 1)∆α, (j − 1

2
)∆β, (k − 1)∆γ, n∆t) , (4.21)

Eγ|ni,j,k = Eγ((i− 1)∆α, (j − 1)∆β, (k − 1

2
)∆γ, n∆t) , (4.22)

Hα|ni,j,k = Hα((i− 1)∆α, (j − 1

2
)∆β, (k − 1

2
)∆γ, n∆t) , (4.23)

Hβ|ni,j,k = Hβ((i− 1

2
)∆α, (j − 1)∆β, (k − 1

2
)∆γ, n∆t) , (4.24)

Hγ|ni,j,k = Hγ((i−
1

2
)∆α, (j − 1

2
)∆β, (k − 1)∆γ, n∆t) . (4.25)

Furthermore, we redefine H of (4.15), using (4.4) and (4.6), as

H(t) = G−1(t)D̃(t) . (4.26)

For using H on the discrete mesh we use the index convention of the respective field

quantity to be updated, given in (4.20)-(4.25), and indicate this by annotating this

quantity as a subscript to H. This yields the following update equations for the

H-field of the reference domain, given in (4.11) while assuming ∆α = ∆β = ∆γ:

Hα|n+1/2
i,j,k = Hα|n−1/2

i,j,k − ∆t

ǫ∆α









HHα
|ni,j,k(1, 1)

HHα
|ni,j,k(1, 2)

HHα
|ni,j,k(1, 3)









T

CHα|n+1/2
i,j,k , (4.27)

Hβ|n+1/2
i,j,k = Hβ|n−1/2

i,j,k − ∆t

ǫ∆α









HHβ
|ni,j,k(2, 1)

HHβ
|ni,j,k(2, 2)

HHβ
|ni,j,k(2, 3)









T

CHβ|n+1/2
i,j,k , (4.28)
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Hγ|n+1/2
i,j,k = Hγ|n−1/2

i,j,k − ∆t

ǫ∆α









HHγ
|ni,j,k(3, 1)

HHγ
|ni,j,k(3, 2)

HHγ
|ni,j,k(3, 3)









T

CHγ|n+1/2
i,j,k . (4.29)

For the related E-field of (4.10) the update equations are found as

Eα|n+1
i,j,k = Eα|ni,j,k +

∆t

ǫ∆α









HEα
|n+1/2
i,j,k (1, 1)

HEα
|n+1/2
i,j,k (1, 2)

HEα
|n+1/2
i,j,k (1, 3)









T

CEα|n+1/2
i,j,k , (4.30)

Eβ|n+1
i,j,k = Eβ|ni,j,k +

∆t

ǫ∆α









HEβ
|n+1/2
i,j,k (2, 1)

HEβ
|n+1/2
i,j,k (2, 2)

HEβ
|n+1/2
i,j,k (2, 3)









T

CEβ|n+1/2
i,j,k , (4.31)

Eγ|n+1
i,j,k = Eγ|ni,j,k +

∆t

ǫ∆α









HEγ
|n+1/2
i,j,k (3, 1)

HEγ
|n+1/2
i,j,k (3, 2)

HEγ
|n+1/2
i,j,k (3, 3)









T

CEγ|n+1/2
i,j,k . (4.32)

The above vectors CHα, . . . ,CEγ provide for an averaging of the curl operation in

the reference domain and are defined as

CEα|n+1/2
i,j,k =























Hγ |n+1/2
i,j,k − Hγ |n+1/2

i,j−1,k − (Hβ|n+1/2
i,j,k − Hβ|n+1/2

i,j,k−1)

1
4(Hα|n+1/2

i,j−1,k + Hα|n+1/2
i,j,k − Hα|n+1/2

i,j−1,k−1 − Hα|n+1/2
i,j,k−1 + . . .

. . .Hα|n+1/2
i+1,j−1,k + Hα|n+1/2

i+1,j,k − Hα|n+1/2
i+1,j−1,k−1 − Hα|n+1/2

i+1,j,k−1) − . . .

. . . 1
4(Hγ |n+1/2

i+1,j−1,k + Hγ |n+1/2
i+1,j,k − Hγ |n+1/2

i−1,j−1,k − Hγ |n+1/2
i−1,j,k)

1
4(Hβ |n+1/2

i+1,j,k−1 + Hβ|n+1/2
i+1,j,k − Hβ|n+1/2

i−1,j,k−1 − Hβ|n+1/2
i−1,j,k) − . . .

. . . 1
4(Hα|n+1/2

i,j,k−1 + Hα|n+1/2
i,j,k − Hα|n+1/2

i,j−1,k−1 − Hα|n+1/2
i,j−1,k + . . .

. . .Hα|n+1/2
i+1,j,k−1 + Hα|n+1/2

i+1,j,k − Hα|n+1/2
i+1,j−1,k−1 − Hα|n+1/2

i+1,j−1,k)























,

(4.33)
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CEβ|n+1/2
i,j,k =























1
4(Hγ |n+1/2

i−1,j+1,k + Hγ |n+1/2
i,j+1,k − Hγ |n+1/2

i−1,j−1,k − Hγ |n+1/2
i,j−1,k) − . . .

. . . 1
4(Hβ |n+1/2

i−1,j,k + Hβ|n+1/2
i,j,k − Hβ|n+1/2

i−1,j,k−1 − Hβ |n+1/2
i,j,k−1 + . . .

. . .Hβ |n+1/2
i−1,j+1,k + Hβ|n+1/2

i,j+1,k − Hβ |n+1/2
i−1,j+1,k−1 − Hβ |n+1/2

i,j+1,k−1)

Hα|n+1/2
i,j,k − Hα|n+1/2

i,j,k−1 − (Hγ |n+1/2
i,j,k − Hγ |n+1/2

i−1,j,k)

1
4(Hβ |n+1/2

i,j,k−1 + Hβ|n+1/2
i,j,k − Hβ|n+1/2

i−1,j,k−1 − Hβ |n+1/2
i−1,j,k + . . .

. . .Hβ |n+1/2
i,j+1,k−1 + Hβ |n+1/2

i,j+1,k − Hβ |n+1/2
i−1,j+1,k−1 − Hβ |n+1/2

i−1,j+1,k) − . . .

. . . 1
4(Hα|n+1/2

i,j+1,k−1 + Hα|n+1/2
i,j+1,k − Hα|n+1/2

i,j−1,k−1 − Hα|n+1/2
i,j−1,k)























,

(4.34)

CEγ |n+1/2
i,j,k =























1
4(Hγ |n+1/2

i−1,j,k + Hγ |n+1/2
i,j,k − Hγ |n+1/2

i−1,j−1,k − Hγ |n+1/2
i,j−1,k + . . .

. . .Hγ |n+1/2
i−1,j,k+1 + Hγ |n+1/2

i,j,k+1 − Hγ |n+1/2
i−1,j−1,k+1 − Hγ |n+1/2

i,j−1,k+1) − . . .

. . . 1
4(Hβ |n+1/2

i−1,j,k+1 + Hβ|n+1/2
i,j,k+1 − Hβ|n+1/2

i−1,j,k−1 − Hβ |n+1/2
i,j,k−1)

1
4(Hα|n+1/2

i,j−1,k+1 + Hα|n+1/2
i,j,k+1 − Hα|n+1/2

i,j−1,k−1 − Hα|n+1/2
i,j,k−1) − . . .

. . . 1
4(Hγ |n+1/2

i,j−1,k + Hγ |n+1/2
i,j,k − Hγ |n+1/2

i−1,j−1,k − Hγ |n+1/2
i−1,j,k + . . .

. . .Hγ |n+1/2
i,j−1,k+1 + Hγ |n+1/2

i,j,k+1 − Hγ |n+1/2
i−1,j−1,k+1 − Hγ |n+1/2

i−1,j,k+1)

Hβ|n+1/2
i,j,k − Hβ|n+1/2

i−1,j,k − (Hα|n+1/2
i,j,k − Hα|n+1/2

i,j−1,k)























(4.35)

for the mapped electric field vector and as

CHα|ni,j,k =























Eγ |ni,j+1,k − Eγ |ni,j,k − (Eβ |ni,j,k+1 − Eβ|ni,j,k)
1
4(Eα|ni−1,j,k+1 + Eα|ni−1,j+1,k+1 − Eα|ni−1,j,k − Eα|ni−1,j+1,k + . . .

. . . Eα|ni,j,k+1 + Eα|ni,j+1,k+1 − Eα|ni,j,k − Eα|ni,j+1,k) − . . .

. . . 1
4(Eγ |ni+1,j,k + Eγ |ni+1,j+1,k − Eγ |ni−1,j,k − Eγ |ni−1,j+1,k)

1
4(Eβ |ni+1,j,k + Eβ|ni+1,j,k+1 − Eβ |ni−1,j,k − Eβ|ni−1,j,k+1) − . . .

1
4(Eα|ni−1,j+1,k + Eα|ni−1,j+1,k+1 − Eα|ni−1,j,k − Eα|ni−1,j,k+1 + . . .

. . . Eα|ni,j+1,k + Eα|ni,j+1,k+1 − Eα|ni,j,k − Eα|ni,j,k+1)























, (4.36)
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CHβ |ni,j,k =























1
4(Eγ |ni,j+1,k + Eγ |ni+1,j+1,k − Eγ |ni,j−1,k − Eγ |ni+1,j−1,k) − . . .

1
4(Eβ |ni,j−1,k+1 + Eβ|ni+1,j−1,k+1 − Eβ|ni,j−1,k − Eβ |ni+1,j−1,k + . . .

. . . Eβ|ni,j,k+1 + Eβ |ni+1,j,k+1 − Eβ|ni,j,k − Eβ|ni+1,j,k)

Eα|ni,j,k+1 − Eα|ni,j,k − (Eγ |ni+1,j,k − Eγ |ni,j,k)
1
4(Eβ |ni+1,j−1,k + Eβ|ni+1,j−1,k+1 − Eβ|ni,j−1,k − Eβ |ni,j−1,k+1 + . . .

. . . Eβ|ni+1,j,k + Eβ |ni+1,j,k+1 − Eβ|ni,j,k − Eβ|ni,j,k+1) − . . .

. . . 1
4(Eα|ni,j+1,k + Eα|ni,j+1,k+1 − Eα|ni,j−1,k − Eα|ni,j−1,k+1)























, (4.37)

CHγ |ni,j,k =























1
4(Eγ |ni,j+1,k−1 + Eγ |ni+1,j+1,k−1 − Eγ |ni,j,k−1 − Eγ |ni+1,j,k−1 + . . .

. . . Eγ |ni,j+1,k + Eγ |ni+1,j+1,k − Eγ |ni,j,k − Eγ |ni+1,j,k) − . . .

. . . 1
4(Eβ |ni,j,k+1 + Eβ |ni+1,j,k+1 − Eβ|ni,j,k−1 − Eβ|ni+1,j,k−1)

1
4(Eα|ni,j,k+1 + Eα|ni+1,j,k+1 − Eα|ni,j,k−1 − Eα|ni,j+1,k−1) − . . .

1
4(Eγ |ni+1,j,k−1 + Eγ |ni+1,j+1,k−1 − Eγ |ni,j,k−1 − Eγ |ni,j+1,k−1 + . . .

Eγ |ni+1,j,k + Eγ |ni+1,j+1,k − Eγ |ni,j,k − Eγ |ni,j+1,k)

Eβ |ni+1,j,k − Eβ|ni,j,k − (Eα|ni,j+1,k − Eα|ni,j,k)























(4.38)

for the mapped magnetic field vector.

4.3 Boundary Conditions for Fast Moving

Structures

For boundaries moving at speeds not negligible compared to the speed of light, c0,

we must take relativistic boundary conditions into account. Maxwell’s equations are

invariant with respect to their inertial frame. We consider the two inertial frames K

and K ′ that are in relative motion, described by the velocity vector v, to each other

as depicted in Figure 4.5. The field quantities in K ′ can be obtained from the field
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Figure 4.5: Two inertial frames K and K ′ in relative motion to each other.

quantities in K by means of the Lorentz transformation, yielding [98]

E′ = E‖ +
1

√

1 − β2

(
E⊥ + v × B

)
, (4.39)

B′ = B‖ +
1

√

1 − β2

(

B⊥ − v × E

c20

)

, (4.40)

D′ = D‖ +
1

√

1 − β2

(

D⊥ +
v × H

c20

)

, (4.41)

H ′ = H‖ +
1

√

1 − β2

(
H⊥ − v × D

)
, (4.42)

where ‖ and ⊥ denote the field quantities parallel and perpendicular to the velocity

v. For a moving perfectly electrically conducting (PEC) surface, the total tangential

electric field component E||,tot is given by [21, 101]

E||,tot =
2βv

1 + βv

E||,inc , (4.43)

where E||,inc denotes the incident tangential electric field, and

βv = − 1

c0
n̂ · v , (4.44)
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where n̂ is the boundary’s surface normal. The terms v and n̂ are evaluated for the

deformed configuration either directly in the deformed domain or after a map in the

reference domain.

4.4 Numerical Stability Considerations

The LM FDTD method is suitable, as we will demonstrate in the next chapter, to

model modest curvatures and smooth deformations, of the static or time-varying

type, in a medium. The stability criteria discussed in Section 2.2.2 will not hold

true in general for the mapped FDTD. One aspect we have to consider is that the

CFL condition has to be satisfied for the deformed grid, and thus the minimum

grid spacing in the deformed grid will be relevant for determining a suitable time

step. Moreover, considering the equivalence of the governing equations of the static

LM method to Maxwell’s equations for a general anisotropic material, as we have

seen in (4.13)-(4.14), we see that the FDTD implementation is equivalent to that

for a general anisotropic problem. The implementation of an anisotropic FDTD

scheme is not trivial and is often conflicted by long-term instabilities. The stability of

anisotropic FDTD schemes has been discussed in [110–113]. For the Yee scheme the

electric and magnetic field components are spatially separated on the grid, requiring

spatial interpolation over electric or magnetic field values exposed to different material

parameters in order to obtain the respective flux densities. Thus, errors are easily

introduced. These stability issues are not inherent to the LM method; rather, they

are caused by the way the method is implemented numerically. Strong deformations

of the grid in the LM method are reflected in the tensor matrices equivalent to strong

anisotropy. The limitations on the grid deformation are thus directly related to the

robustness of the implemented anisotropic FDTD scheme.
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Chapter 5

Numerical Validation of the LM
Method

In order to validate the proposed method we have chosen to apply it to the elec-

tromagnetic modeling of four structures: a two-dimensional, stationary rectangular

cavity with an indentation in one of its four metallic walls; a three-dimensional metal-

lic resonator shaped like a truncated cylinder; a parallel-plate waveguide with a non-

rectangular, stationary periodic corrugation in one of its two walls; and a parallel-plate

waveguide with a moving, periodic corrugation.

5.1 Eigenanalysis of a Two-Dimensional Deformed

Rectangular Metallic Resonator

The resonator we consider has the dimensions a = 3 cm × b = 4 cm and is filled

with air. The walls are perfect electric conductors (PEC) and we are interested in

calculating the eigenfrequencies of the TM modes of the resonator in the presence

of an indentation in the top wall. In the absence of any indentation the resonant

frequencies of the modes are given by

fm,n =
1

2π
√
µǫ

√
(mπ

a

)2

+
(nπ

b

)2

, (5.1)

where the indices m,n define the mode number. The deformed resonator is shown

in Figure 5.1. The indentation of the top plate is defined mathematically in terms of
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(a) Deformed resonator mesh. (b) Areas used for the calculation of the eigen-
frequencies using perturbational techniques.

Figure 5.1: Geometry and gridding of the deformed resonator.

the function

a′(z) =







a |z − b/2| ≥ b/4

(1 − 0.1(4z
b
− 1))a b/4 < z ≤ b/2

(1 − 0.1(3 − 4z
b

))a b/2 < z < 3/4b

, (5.2)

with 0 ≤ z ≤ b, yielding a triangular shaped dent. For an analytic means of approx-

imating the resonant frequencies of the deformed resonator, we use a perturbational

technique [114]. The shift ∆ωr in the resonant frequency ωr is calculated through the

expression
∆ωr

ωr

≈
∫∫

∆S
(µ|H0|2 − ǫ|E0|2)ds

∫∫

S
(µ|H0|2 + ǫ|E0|2)ds

. (5.3)

Referring to Figure 5.1(b), S is the area of the non-deformed rectangular box, whereas

∆S denotes the area of the indentation. H0 and E0 are the fields of the mode for

the unperturbed resonator. We expect the analytic result obtained using the above

equation to serve as a good indicator of the shift in the resonant frequencies of the

cavity caused by the indentation.

Our calculation of the resonant frequencies of the perturbed resonator relies on its
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Table 5.1: Resonant frequencies of the two-dimensional metallic resonator depicted
in Figure 5.1

mode order
m 0 1 1 0 1
n 1 0 1 2 2
Unperturbed resonator Resonant frequency (GHz)
Analytic solution (5.1) 3.74 4.99 6.24 7.49 9.00
Equation (5.2) perturbed resonator
Equation (5.3) perturbational technique 3.59 5.23 6.17 7.64 9.22
Lagrangian FDTD (1 mm grid spacing) 3.67 5.11 6.18 7.53 9.15
Lagrangian FDTD (2 mm grid spacing) 3.67 5.11 6.18 7.51 9.14
TLM (1 mm grid spacing) 3.62 5.11 6.14 7.56 9.16
TLM (2 mm grid spacing) 3.66 5.42 6.44 7.55 9.37

excitation by a pulse and the subsequent Fourier transform of the transient response

obtained from the Lagrangian FDTD simulation. In addition, we have computed

the resonant frequencies using the TLM field solver MEFiSTo1 [22], which utilizes a

rectangular grid.

The results obtained from the three approaches are listed in Table 5.1, along with

the values of the resonant frequencies of the unperturbed resonator. The results of the

Lagrangian FDTD and the TLM solution follow closely the trend predicted by (5.3)

and are in very good agreement with each other when the grid size in the reference

Cartesian grid is 1 mm. As the grid becomes coarser, with its grid size assuming a

value of 2 mm, the values for the resonant frequencies obtained by the Lagrangian

FDTD method change only very little. Since the dent extends into the resonator

by 3 mm, a grid resolution of 2 mm in a staircase approximation of the indentation

will be too coarse to model the shape of the metallic wall accurately. However, the

Lagrangian FDTD method enables us to obtain accurate results even when using a

coarser grid.

1MEFiSTo: Multi-purpose Electromagnetic Field Simulation Tool, Faustus Scientific Corpora-
tion, 1256 Beach Dr., Victoria, BC, V8S 2N3 Canada, http://www.faustcorp.com
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5.2 Analysis of the Eigenfrequencies of a

Three-Dimensional Cylindrical Section

The following example studies the eigenfrequencies of a three-dimensional resonator.

The studied structure has the shape of a truncated cylinder with PEC walls and is

air-filled. The cylindrical resonator is based on a rectangular box of the dimensions

a× b× d. The base of the cylinder lies in the xy-plane, the cylinder’s axis is parallel

Figure 5.2: Geometry of the cylindrical resonator.

to the z-coordinate axis. The top plate of the resonator is deformed such that the

cylinder’s base in the xy-plane is described by a rectangle for which the top border has

been replaced by a segment of a circle through the points (a · x̂, 0 · ŷ), (0.95a · x̂, b/2 · ŷ)

and (a · x̂, b · ŷ). The cylinder is sketched in Figure 5.2. The dimensions of the

resonator are a = 30 mm, b = 40 mm, and d = 50 mm. For the undeformed resonator
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the resonant frequencies are found to be

fm,n,p =
1

2π
√
µǫ

√
(mπ

a

)2

+
(nπ

b

)2

+
(pπ

d

)2

, (5.4)

with

m = 0, 1, 2, . . . , n = 0, 1, 2, . . . , p = 1, 2, 3, . . . , m+ n 6= 0 , (5.5)

for TE modes and

m = 1, 2, 3, . . . , n = 1, 2, 3, . . . , p = 0, 1, 2, . . . , (5.6)

for TM modes. Hence, the dominant modes are the TE101, TE011, and TM110 modes.

The eigenfrequencies are obtained using the LM method for the three-dimensional LM

FDTD (4.27)-(4.32), and reference solutions are obtained from the FEM solver HFSS2

and the TLM solver MEFiSTo. The computed eigenfrequencies are presented in Table

5.2. As for the two-dimensional example of the previous section, the LM method

achieves good accuracy with a relatively coarse grid, which can be seen by comparing

the results of the LM method to those of the TLM method with a rectangular grid.

5.3 Analysis of a Corrugated Parallel-Plate

Waveguide

Electromagnetic wave propagation in periodic structures is an extensively studied

phenomenon [115–124]. A comprehensive overview of wave propagation in active

and passive periodic structures is given in [125]. The periodic structure can arise

2HFSS: High Frequency Structural Simulator, ANSOFT, LLC, 225 West Station Square Dr.,
Suite 200, Pittsburgh, PA 15219, U.S.A., http://www.ansoft.com
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Table 5.2: Resonant frequencies of the three-dimensional metallic resonator sketched
in Figure 5.2

mode order
m 0 1 1
n 1 0 1
p 1 1 0
Unperturbed resonator Resonant frequency (GHz)
Analytic solution (5.4) 4.80 5.83 6.25
Perturbed resonator (see Figure 5.2)
HFSS FEM 4.77 5.97 6.43
LM FDTD (2.5 mm grid spacing) 4.76 6.00 6.43
TLM (2.5 mm grid spacing) 4.68 5.98 6.56
TLM (0.625 mm grid spacing) 4.77 5.99 6.45

from the crystalline structure of the medium, a thermal grating or acoustic waves

propagating through the medium and deforming it. Due to the scattering of the

wave by the periodic structure, the medium becomes dispersive and the dispersion

diagram exhibits pass-bands alternating with stop-bands. In the case of a propagating

periodic perturbation the scattered waves exhibit a Doppler shift, so the dispersion

characteristic is shifted in frequency. The case of the propagating perturbation will

be addressed in Section 5.4.

The objective of this study is to investigate and model the transmission properties

of a corrugated, air-filled, parallel-plate waveguide under TM excitation. The periodic

corrugation is due to indentations of the top wall as shown in Figure 5.3. We have

cascaded 15 sections to form the periodically corrugated part of the waveguide that

will serve as a filter structure. Figure 5.3 depicts the deformed grid of the parallel-

plate waveguide for two cascaded sections.

The PEC walls of the waveguide have a maximum plate separation of d = 1 cm.

At its narrowest, the distance between of the plates is reduced to 70% of the original

separation. The distance from the top wall to the bottom wall versus z is described
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(a) Deformed grid for Lagrangian FDTD Approach.

(b) Stair case approximation for standard FDTD (1 mm grid spacing).

Figure 5.3: Two sections of the corrugated parallel-plate waveguide.

by

d′(z) =







d |z − a/2| ≥ a/4

(
1 − 0.3 cos2([2z/a− 1]π)

)
d a/4 < z < 3a/4

, (5.7)

with 0 ≤ z ≤ a, as shown in Figure 5.3. The waveguide is excited in the fundamental

mode with a modulated Gaussian pulse with its center frequency at 4.7 GHz and a

3 dB bandwidth of 2.5 GHz. Because the indentations serve as a periodic capacitive

loading of the guide, we expect a stop-band at around 3.75 GHz and 7.5 GHz [126]

for a periodic interval of a = 4 cm. The magnitude of the transmission coefficient,

S21, is plotted in Figure 5.4 with the solid line showing the results obtained from

the Lagrangian FDTD method and the dashed lines those obtained using a standard

FDTD method with staircase approximation of the corrugated boundary. Figures

5.4(a)-5.4(c) show |S21| obtained with grid spacings of 0.5 mm, 1 mm and 2 mm.

The vertical lines in the figures mark the frequencies where the value of |S21| meets

the −3 dB level. Numerical values for the −3 dB frequencies are given in Table 5.3.

As it is evident from the plots and the data, the Lagrangian FDTD method
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(b) Grid spacing 1 mm.

Figure 5.4: Magnitude of the transmission coefficient, |S21|, of the corrugated wave-
guide for different grid resolutions. Vertical lines mark −3 dB frequency points for
Lagrangian (solid line) and standard FDTD (dotted line) method.

56



2 3 4 5 6 7 8 9 10

−10

−8

−6

−4

−2

0

frequency / GHz

S
2

1
 /

 d
B

 

 

Lagrangian approach
standard FDTD

(c) Grid spacing 2 mm.

Figure 5.4: (cont.)

Table 5.3: −3 dB frequency points of the falling (F) and rising (R) edges of the |S21|
graph.

method grid spacing −3 dB frequency / GHz
/ mm lower upper stop-band

F R F R
Lagrangian FDTD 0.5 3.35 4.11 7.16 7.74

1.0 3.38 4.07 7.15 7.76
2.0 3.42 4.03 7.17 7.71

standard FDTD 0.5 3.36 4.05 7.08 7.76
1.0 3.34 4.02 7.02 7.75
2.0 3.46 3.92 7.19 7.49
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sustains better accuracy as the grid becomes coarser. For the case of the finest grid

resolution, with a grid size of 0.5 mm, the results obtained from Lagrangian FDTD

and the standard FDTD method are in very good agreement. For coarser grids the

accuracy of the standard FDTD method degrades, especially at higher frequencies, as

expected. The staircase approximation of the standard FDTD in a grid with a spacing

of 2 mm is too coarse to resolve accurately the 3 mm deep corrugation. However,

the Lagrangian FDTD method is capable of predicting the −3 dB frequencies for the

falling and rising edges of the upper stop-band with sustained accuracy even at a grid

resolution of 2 mm.

5.4 Analysis of a Parallel-Plate Waveguide with a

Moving Corrugation Profile

A periodically in time and space modulated medium gives rise to an electromagnetic

bandgap structure. The band characteristic can be shifted by tuning the time mod-

ulation of the medium. We compare the effect of a sinusoidally modulated structure

on the bandgap using an FDTD implementation for curved moving boundaries with

an approximation to the analytic solution derived from Floquet’s theorem. For the

latter, we consider the mutual coupling of a finite set of time-space harmonics.

Analytic solutions to the wave equation in a medium changing periodically in

space can be found with the help of Mathieu functions [127–129] and for the more

general case of time- and space-periodic media by use of Floquet’s theorem [130, 131].

For the latter case, energy transfer between the electromagnetic wave and the wave

exhibited by the varying material parameters may occur in the form of a parametric

amplification [132, 133]. The effect of the variation in time of the periodic structure

on the bandgap characteristic can be utilized to create tunable filter structures.
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5.4.1 Formulation of the problem

We consider a filter structure consisting of a parallel plate waveguide with perfectly

electrically conducting (PEC) corrugated walls and filled by a dielectric with the

permittivity ǫm. The variation of the plate separation is described by the function

d(t, z) =
d0

√

1 +M cos(ωpt− βpz)
(5.8)

and depicted in Figure 5.5. The spatial period in (5.8) is given by a and thus

βp = 2π/a. The problem is two-dimensional hence we use the reduced formulation

Figure 5.5: Two sections of the corrugated parallel-plate waveguide.

in the FDTD mapping approach. The variation of the plate separation modulates

the capacitive loading of the waveguide and the impedance is proportional to the

plate separation. The mapping method provides for a rigorous formulation for gen-

eral boundary displacements. However, in this particular case the plate separation

translates into an impedance modulation Z =
√

µ
ǫm

d
w
, where w is the waveguide’s

width, which is equivalent to a one-dimensional transmission line with

ǫ(t, z) = ǫm + ∆ǫ cos(ωpt− βpz) , (5.9)

µ = const., and M = ∆ǫ/ǫm. We will use this permittivity variation in the one-

dimensional wave equation for our analytic reference solution.
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5.4.2 Analytic approach

For a one-dimensional transmission line Maxwell’s equations yield, using ǫ from (5.9),

∂2Ex

∂z2
= µ0

∂2

∂t2
(ǫEx) . (5.10)

We follow [118–120] and choose the Floquet ansatz to solve (5.10)

Ex = E0e−(ωt−κz)

+∞∑

n=−∞

ane−n(ωpt−kpz) . (5.11)

This yields the following relation for neighboring Fourier coefficients of (5.11)

an+1 +Dnan + an−1 = 0 , (5.12)

with

Dn =
2ǫm
∆ǫ

[

1 −
( κa+ 2πn

ka+ 2πvn

)2]

, (5.13)

v = vp/v0, vp = ωp/βp, v0 = ω/k and k = ω
√
µǫm. Finally, (5.12) is expanded into

the recursive relation using continued fraction expansions

Dn − 1

Dn−1 − 1
Dn−2−

1

...

− 1

Dn+1 − 1
Dn+2−

1

...

= 0 , (5.14)

which is truncated for the numerical computation after a chosen value for n. Equation

(5.14) is solved using a nonlinear Newton method [134] and yields a relation for κ(ω)

respectively ω(κ). To ensure convergence of the above method v should be outside
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the interval specified by [119, 120]

1
√

1 + ∆ǫ/ǫm
≤ v ≤ 1

√

1 − ∆ǫ/ǫm
. (5.15)

5.4.3 Results

We have computed the bandpass characteristic using the analytic method and the

mapping approach for a transmission line with ǫm = 2ǫ0, ∆ǫm = 0.6ǫ0 for (5.9) and

hence M = 0.3 in (5.8). The period length is chosen a = 4 cm and the constant for

the plate separation d0 = 1 cm; thus, we find the plate separation varying between

dmin = 0.88d0 and dmax = 1.2d0. The waveguide is excited below higher order cut-off

frequencies, exciting only the fundamental, transverse electromagnetic (TEM) mode.

The frequency fbg of the stop-band can be estimated from the condition for the Bragg

reflection [135] yielding maximum reflection for

fbg,n =
n

2a
√
µǫm

, (5.16)

where n is the order of the stop-band, and hence fbg,1 = 2.65 GHz, fbg,2 = 5.30 GHz.

The frequency f ′ observed by a moving corrugation profile deviates from the actual

frequency f according to the Doppler effect

f ′ = f

√

1 − vp/c

1 + vp/c
, (5.17)

with c = 1/
√
µǫm. Hence, for the case where the propagation vector of the TEM wave

and of the corrugation profile point in the same direction, the observed frequency f ′

is reduced. The Bragg condition will apply to the observed frequency f ′ and occur

at a frequency f , which increases along with vp. Thus the stop-bands shift upward

in frequency. Conversely, it will shift to lower frequencies for an opposite directed
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Figure 5.6: Dispersion diagram.

motion of the corrugation profile.

Due to the difference in the velocity of the moving boundary and the guided elec-

tromagnetic wave and hence a phase mismatch, we do not consider parametric am-

plification an issue. Approximating the analytic solution in (5.14) numerically yields

the dispersion relation graphed in Figure 5.6 for vp = 1× 107 m/s and vp = −1× 107

m/s, with κ = κ′ − κ′′. Whereas this solution is for an infinite structure, we con-

sider for the mapped FDTD method a waveguide section with 30 periods (see Figure

5.5). The waveguide is excited at one side of the moving corrugated section with a

modulated Gaussian pulse and sampled at the other side. The power spectrum of the

input signal is centered at 4.7 GHz and the full-width at half-maximum (FWHM)

bandwidth is given as 2.9 GHz. The mesh spacing in the numerical reference grid

is 2.5 mm. We have computed the lower and upper edge of the first stop-band of

the fundamental mode, and the center frequencies of the first two stop-bands. For

the FDTD method the lower and upper edge for the stop-band are specified as the

frequency points where the energy transfer drops to S21(f) = −3 dB. The S21 param-

eter of the waveguide for vp = −1 × 107 m/s, vp = 0 m/s, and vp = 1 × 107 m/s is

shown in Figures 5.7 and 5.8. For the solution of (5.14) at vp = 0 we find κ′′ at the
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Figure 5.7: Transmission coefficient |S21| for moving boundary with vp = −1 × 107

m/s and vp = 0 m/s. Vertical lines mark the −3 dB frequency points.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−6

−5

−4

−3

−2

−1

0

1

frequency / GHz

S
2

1
 /

 d
B

 

 

moving boundary (v=1× 10
7
 m/s)

static boundary

Figure 5.8: Transmission coefficient |S21| for a moving boundary with vp = 1 × 107

m/s and vp = 0 m/s. Vertical lines mark the −3 dB frequency points.
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Table 5.4: Stop-band frequencies of a time-space periodic waveguide with its profile
depicted in Figure 5.5, with results obtained from the Doppler shift approximation,
analytic solution and LM FDTD method.

frequency lower stop-band / GHz
v Doppler analytic LM FDTD
/ ms−1 approx. lower edge upper edge center lower edge upper edge center
−1 × 107 2.53 2.34 2.74 2.54 2.34 2.69 2.51

0 2.65 2.47 2.87 2.67 2.46 2.84 2.65
1 × 107 2.78 2.59 2.99 2.79 2.57 2.95 2.76

frequency upper stop-band / GHz
v Doppler analytic LM FDTD
/ ms−1 approx. lower edge upper edge center lower edge upper edge center
−1 × 107 5.06 5.03 5.16 5.09 - - 5.04

0 5.30 5.29 5.41 5.35 - - 5.30
1 × 107 5.56 5.53 5.66 5.59 - - 5.54

center of the lower and upper stop-band to be κ′′bg,1 = 1.78 m−1 and κ′′bg,2 = 5.9 m−1.

The difference in κ′′ is reflected in different attenuation levels of the two stop-bands

in the plots of Figures 5.7 and 5.8. However, these values for κ′′ are applicable to

an infinite structure. The frequencies for the stop-band are presented in Table 5.4

with results obtained from an approximation using the Bragg condition (5.16) and

the Doppler effect (5.17), using the analytic approach for TEM waves of (5.14), and

the FDTD implementation of the mapped equations in (4.9). The values obtained

for the stop-band frequencies are in good agreement for the different methods.

We have excited the waveguide with a sinusoidal in the spectrum of the pass-band

and we have computed the S21 parameter using the mapping FDTD. The results for

the input signal at f = 4.2 GHz are plotted in Figure 5.9. For the corrugation profile

moving with vp = 1×107 m/s we observe intermodulation products at very low power

levels at frequencies separated by integer multiples of fp = ωp/(2π) = βpvp/(2π) = 250

MHz away from the excitation frequency, as suggested in Floquet’s ansatz (5.11).
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Figure 5.9: Transmission coefficient |S21| for a moving boundary with vp = 1 × 107

m/s, excited at f = 4.2 GHz.

5.5 Conclusion

An FDTD method based on a Lagrangian mapping approach has been developed

for a computationally efficient numerical modeling of electromagnetic structures with

curved moving boundaries. In this method the physical domain is mapped by a

time-dependent mapping on a reference domain such that the boundary surfaces

are fixed coordinate surfaces in the reference domain and conform with Yee’s grid.

The map of Maxwell’s equations on the reference domain is interpreted in terms of

a Maxwellian equation system describing wave propagation with a modified nabla

operator inside a domain with boundaries parallel to the planes of the Cartesian

reference coordinate system. This allows a straightforward application of Yee’s FDTD

scheme and yields high numerical efficiency and low computational effort together
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with high accuracy. The staircase approximation of the curved boundaries is avoided

and boundary conditions are applied accurately. This results in enhanced accuracy

in the numerical solution without the need for finer grid resolution.

Numerical studies in two and three dimensions were used to demonstrate the

accuracy of the proposed Lagrangian FDTD method. For the static case we have

presented the example of a perturbed resonator in two and three dimensions, and

of a two-dimensional space periodic filter. Furthermore, a time-space periodic fil-

ter structure has been analyzed for the tunability of its band-gaps to validate the

time-dependent mapping approach. We have compared the results to an analytic

solution existing for the infinite extended time-space periodic structure. The moving

boundaries in this numerical example move with very high velocity. When choosing

a velocity of the periodic boundary motion that could be attributed to acoustic phe-

nomena, for example, the disparity between the temporal scale of the electromagnetic

wave, which we will refer to as T1 = 1/f1, on the one hand, and the temporal scale

at which the periodic motion of the boundary takes place, denoted as T2 = 1/f2, on

the other hand, will increase tremendously. As a result the computational cost will

increase significantly and long-term instabilities in the numerical simulation will be of

great concern. To compute the interaction between the EM wave and the boundary

motion in our example, the computational cost scales as O(f1/f2 = 16), with f1 ≈ 4.0

GHz and f2 ≈ 1 × 107 ms−1/(4 × 10−2 m) = 0.25 GHz. If we consider a periodic

boundary motion at v = 400 ms−1, a value that could very well be attributed to some

acoustic wave phenomena, the complexity scales as O(f1/f2 = 4 × 105). This scaling

in complexity, which is tied to the ratio of the temporal scales involved, is a challenge

frequently encountered in the modeling of multi-domain physical interactions. We will

address this problem in the next chapter, through the development of a method that

makes use of multiple time variables to relax the significant computational overhead
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stemming from temporal oversampling.
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Chapter 6

A Multi-Time Solution Approach to
Problems of Electromagnetic
Wave-Propagation Exhibiting Widely
Separated Time Scales

Widely separated time scales in EM circuit and EM wave propagation problems pose

significant computational challenges to their numerical solution. Large disparity be-

tween governing time scales leads to increased computational cost manifested in terms

of increased processing time for obtaining the response and increased memory require-

ments. This is due to the necessity to choose a long time interval in order to capture

the slow time scale and at the same time choose a fine temporal resolution to accom-

modate the fast time scale. In addition to the increase in the computational cost,

we may face further problems like long-term instabilities. Different time scales in cir-

cuit simulations are often handled by the technique of harmonic balance or by use of

shooting methods [136]. Harmonic balance is preferable if there are no or only weak

nonlinearities present, and it is very efficient for sinusoidal excitations. The shooting

method, on the other hand, handles nonlinearities well. However, it is not well suited

for distributed problems such as transmission lines. The demand for a fine temporal

resolution in order to fulfill the CFL condition can be avoided, if an unconditionally

stable alternate direction implicit (ADI) scheme is used [137]. However, an increased

time step in the ADI scheme compromises the numerical accuracy rapidly [138, 139].

The envelope ADI-FDTD, presented in [140], has significantly improved the numeri-

cal accuracy for large time steps and is applicable for problems with harmonic carrier

frequencies [141].
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The approach pursued subsequently makes use of the multi-rate behavior of certain

problems. A methodology that has been proven successful in multi-rate simulation

of lumped circuits exhibiting strong nonlinearity is the multi-time partial differential

equation (MPDE) method [142–146]. The reported success of the method makes it a

promising candidate for use in multi-rate electromagnetic field simulations. To date

no efforts have been reported on applying the method to the numerical simulation of

distributed wave phenomena. This is examined for the first time in this work.

We will continue with an introduction to the MPDE method followed by a brief

discussion of spectral methods which we will use for our MPDE problem. We will

then discuss the MPDE for a one-dimensional EM problem. Next we will develop an

MPDE formulation for the relevant problem, perform some numerical studies, and

discuss the obtained results.

6.1 The Multi-Time Partial Differential Equation

Solution Approach

As stated above, the numerical integration of differential algebraic equations for prob-

lems with widely separated time scales is computationally costly and possibly prob-

lematic due to numerical long-term instabilities. To demonstrate the benefits of the

multi-time method we consider the two-tone problem

b(t) = sin
(2π

T1

t
)

sin
(2π

T2

t
)

, (6.1)

which contains one temporal scale at the frequency f1 = 1/T1 = 1 GHz and a second

temporal scale at f2 = 1/T2 = 10 MHz. Hence, we have to choose a time step for our

numerical integration small enough to resolve T1 and yet an integration interval long
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enough to capture T2. The computational cost will scale according to

O
(

N
T2

T1

)

, (6.2)

where N is the number of sample points to resolve one period T1. For the MPDE

formulation (6.1) is reformulated as

b̂(t1, t2) = sin
(2π

T1

t1

)

sin
(2π

T2

t2

)

, (6.3)

where we use ˆ to denote a multi-time variable. The conversion from the represen-

tation by the time t to the multivariate representation by ti, i = {1, 2}, is obtained

with help of the modulo-operator

ti = t mod Ti , (6.4)

hence b(t) = b̂(t mod T1, t mod T2). The multi-time function b̂ is graphed in Figure

6.1. To recover the univariate representation we use (6.4) to follow a trace in the t1−t2

plane of Figure 6.1, as depicted in Figure 6.2. The recovered univariate function b is

plotted in Figure 6.3. While the multivariate function, sampled with N = 20 points

per time scale, is represented by a total of N2 = 400 sample points, N T2/T1 = 2000

sample points are required for the univariate representation. Herein lies the advantage

of the MPDE method. The relation between the MPDE method and the univariate

PDE formulation will be discussed in more detail below following the discussion of

the MPDE method in [144].

The MPDE method is applicable to problems with multirate behavior. A function
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Figure 6.1: Multi-time function b̂.

Figure 6.2: t1 − t2 plane.
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Figure 6.3: Univariate function b.

x(t) is considered quasi-periodic if it can be expressed in the form

x(t) =
+∞∑

i1=−∞

· · ·
+∞∑

im=−∞

Xi1,...,ime
j2π(

i1
T1

+···+ im
Tm

)t
, (6.5)

where Xi1,...,im are real or complex valued constants. The multivariate function

x̂(t1, . . . , tm) is said to be m-periodic if real constants T1, . . . , Tm exist such that

x̂(t1 + k1T1, . . . , tm + kmTm) = x̂(t1, . . . , tm) (6.6)

for all integers k1, . . . , km and all real t1, . . . , tm. Furthermore, if any m-periodic

function x̂(t1, . . . , tm) is given, a quasi-periodic function x is obtained by

x(t) = x̂(t+ c1, . . . , t+ cm) (6.7)

for any c1, . . . , cm. This can be shown by expanding the multi-time function into a

Fourier series

x̂(t1, . . . , tm) =
+∞∑

i1=−∞

· · ·
+∞∑

im=−∞

Xi1,...,ime
j2π(

i1t1
T1

+···+ imtm
Tm

) (6.8)
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and then substituting ti = t+ ci within the Fourier series. Hence, x(t) is obtained in

the quasi-periodic form of (6.5)

x(t) =
+∞∑

i1=−∞

· · ·
+∞∑

im=−∞

(

Xi1,...,ime
j2π(

i1c1
T1

+···+ imcm
Tm

)
)

e
j2π(

i1
T1

+···+ im
Tm

)t
. (6.9)

Above, we had an m-periodic function x̂ and obtained the quasi-periodic function

x. In reverse, an m-periodic function can be found that satisfies (6.7), given any

m-tone quasi-periodic function x and any constants c1, . . . , cm. This can be seen by

the expansion of the quasi-periodic function x as in (6.5) and by the definition

x̂(t1, . . . , tm) =
+∞∑

i1=−∞

· · ·
+∞∑

im=−∞

(

Xi1,...,ime
−j2π(

i1c1
T1

+···+ imcm
Tm

)
)

e
j2π(

i1t1
T1

+···+ imtm
Tm

)
,

(6.10)

which will satisfy (6.7).

With the above definitions and established relations in mind, we consider the

univariate PDE of the form

∂q(x(t))

∂t
= f(x(t)) + b(t) , (6.11)

where all variables may be vector valued, except the time t. The related MPDE

equation will be defined as

∂q(x̂)

∂t1
+ · · · + ∂q(x̂)

∂tm
= f(x̂) + b̂(t1, . . . , tm) . (6.12)

If x̂(t1, . . . , tm) and b̂(t1, . . . , tm) satisfy (6.12), then x(t) = x̂(t + c1, . . . , t + cm) and

b(t) = b̂(t+c1, . . . , t+cm) satisfy (6.11) for any fixed c1, . . . , cm. This relation between
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the PDE and the MPDE can be proven by

q(x(t)) = q(x̂(t+ c1, . . . , t+ cm)) , (6.13)

∂q(x(t))

∂t
=
∂q(x̂(t+ c1, . . . , t+ cm))

∂t1
+ · · · + ∂q(x̂(t+ c1, . . . , t+ cm))

∂tm

= f(x̂(t+ c1, . . . , t+ cm)) + b̂(x̂(t+ c1, . . . , t+ cm))

= f(x(t)) + b(t) .

(6.14)

Hence, the solution to the PDE can be obtained from the solution to the MPDE by

following certain straight lines in the solution domain spanned by the variables of

dependence.

Furthermore, it can be shown that any periodic solution of the MPDE generates a

quasi-periodic solution to the univariate PDE. This is termed the MPDE sufficiency

condition and it states that if x̂ is an m-periodic solution to (6.12) under the m-

periodic excitation b̂, then x(t) = x̂(t + c1, . . . , t + cm) is an m-tone quasi-periodic

solution to (6.11) under the m-tone quasi-periodic function b(t) = b̂(t+c1, . . . , t+cm).

The MPDE necessity condition, on the other hand, states that if there is a quasi-

periodic solution x to (6.11) for a quasi-periodic excitation b, then there is an m-

periodic solution x̂ for an m-periodic b̂ for (6.12) such that x(t) = x̂(t+c1, . . . , t+cm)

and b(t) = b̂(t + c1, . . . , t + cm) for any c1, . . . , cm. Proofs for the MPDE sufficiency

condition and the MPDE necessity condition can be found in [144].

The function x̂(t1, . . . , tm) does not have to be m-periodic but may have only a

m− 1 periodicity. In this case we have an envelope function of the form

x̂(t1, . . . , tm) =
+∞∑

i2=−∞

· · ·
+∞∑

im=−∞

(

Xi2,...,im(t1)e
j2π(

i2t2
T2

+···+ imtm
Tm

)
)

, (6.15)

for which the MPDE method provides a unique solution, if periodic and initial bound-
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ary conditions are enforced [144]. The periodic boundary conditions demand

x̂(t1, t2 + T2, . . . , tm + Tm) = x̂(t1, t2, . . . , tm) , (6.16)

and h defines the initial boundary condition

x̂(0, t2 + T2, . . . , tm + Tm) = h(t2, . . . , tm) . (6.17)

6.2 Spectral Methods

Spectral methods provide the means to solve PDEs with high accuracy by transform-

ing the function into the spectral domain and applying differential operators in this

domain [147–150]. The spectral expansion functions, like Fourier series or Chebyshev

expansion functions, achieve very good convergence of the finite approximation of

the PDE solution to the actual solution for smooth problems. The high accuracy of

spectral methods is a salient feature and it is referred to as spectral accuracy.

For the solution of PDEs by means of a spectral method we consider the periodic

function u(x), defined on x = (0, 2π), and its spectral representation using the Fourier

coefficients ûk. The Fourier coefficients are obtained by the Fourier transform

ûk =
1

2π

∫ 2π

0

u(x)e−jkxdx , k = 0,±1,±2, . . . , (6.18)

and u(x) is recovered from the Fourier series expansion

u(x) =
+∞∑

k=−∞

ûke
jkx . (6.19)
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In the spectral domain the n-th order partial derivative is found by

∂nu(x)

∂xn
=

+∞∑

k=−∞

(jk)nûke
jkx . (6.20)

For a continuously differentiable u we find for k 6= 0, using integration by parts

2πûk =

∫ 2π

0

u(x)e−jkxdx =
−1

jk
(u(2π−) − u(0+)) +

1

jk

∫ 2π

0

∂u(x)

∂x
e−jkxdx . (6.21)

The decay of the Fourier coefficients ûk with growing k can be seen from the above

equation for a one-time continuously differentiable function u. For an m-time con-

tinuously differentiable function u, where ∂nu/∂xn is periodic for all n ≤ m− 2, the

decay is

ûk = O(k−m) , k = ±1,±2, . . . , (6.22)

where we use the Landau notation [151] to estimate the decay. Spectral accuracy

refers to the fact that the k-th Fourier coefficient decays faster than any negative

power of k for an infinitely differentiable function for which all its derivatives are

periodic [148].

For comparison we consider the approximation error of the finite difference ob-

tained by truncating the Taylor series expansion

u(xi + ∆x) = u(xi) + ∆x
∂u|i
∂x

+
(∆x)2

2!

∂2u|i
∂x2

+
(∆x)3

3!

∂3u|i
∂x3

+ · · · . (6.23)

Discretizing u(x) on the interval x = (0, 2π) with N points yields ∆x = 2π/N and

xi =
2πi

N
, i = 0, ..., N − 1 . (6.24)

Hence the approximation error for ∂u/∂x will be O(N−1). Using local interpolation
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one can derive higher order finite difference schemes and hence, this error can be

reduced to O(N−m), where m is some constant which represents the order of ap-

proximation [149]. However, the decay of the spectral coefficients given in (6.22) is

achieved for every m. Hence, the convergence of the numerical solution with the

actual solution for the spectral method is outstanding provided the Fourier series

expansion has not been truncated below an acceptable limit for k [148].

Upon discretizing the function u, the transformations of (6.18)-(6.19) between the

physical and the spectral domain are found by the discrete Fourier transform (DFT)

ũk =
1

N

N−1∑

j=0

u(xi)e
−jkxi , k = −N/2, ...., N/2 − 1 , (6.25)

and the inverse discrete Fourier transform (IDFT)

u(xi) =

N/2−1
∑

k=−N/2

ũke
jkxi , (6.26)

where N is assumed to be an even number here and in the following. To perform a

differential operation on u in the physical domain a matrix operator can be introduced

[148]. For this purpose we need an interpolant

INu(x) =
N−1∑

i=0

u(xi)ψi(x) , (6.27)

with

ψi(x) =
1

N

N/2
∑

i=−N/2

ejk(x−xi) . (6.28)

The Fourier interpolation derivative DNu is introduced as

DNu =
∂INu(x)

∂x
(6.29)
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along with the Fourier interpolation derivative matrix DN , yielding

(DNu)i =
N−1∑

l=0

(DN)ilul . (6.30)

The elements of DN are derived as

(DN)il =







1
2
(−1)j+l cot

(
(i−l)π

N

)

i 6= l

0 i = l

, (6.31)

and for the second order derivative D(2)
N as

(D
(2)
N )il =







1
4
(−1)i+lN + (−1)i+l+1

2 sin2
(

(i−l)π
N

) i 6= l

− (N−1)(N−2)
12

i = l

. (6.32)

6.3 The MPDE Formulation for the

One-Dimensional EM Wave Equation

In the following we consider a one-dimensional electromagnetic wave in a medium with

time- and space-dependent variation of the electric permittivity and constant mag-

netic permeability. The reduced form of Maxwell’s equations for the one-dimensional

wave equation shall be

−µ∂Hy

∂t
=
∂Ex

∂z
, (6.33)

∂(ǫEx)

∂t
= −∂Hy

∂z
, (6.34)

in the well known univariate formulation. For the following problem we will assume

that the carrier frequency of the EM wave is high and hence its time scale is fast
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compared to the time scale of the time-varying permittivity. We establish two time

variables t1 and t2 following the MPDE method introduced in 6.1. The multivariate

formulation of (6.33)-(6.34) is found to be

−µ∂Ĥy

∂t1
=
∂Êx

∂z
, (6.35)

∂(ǫÊx)

∂(t1, t2)
= −∂Ĥy

∂z
, (6.36)

with t1 = m∆t1, T1 = M∆t1, t2 = n∆t2, and T2 = N∆t2. Since the permittivity ǫ

has no variation with t1, (6.36) can be written as

ǫ
∂Êx

∂t1
+
∂ǫ

∂t2
Êx + ǫ

∂Êx

∂t2
= −∂Ĥy

∂z
. (6.37)

6.4 A TD Envelope Integration Scheme for the

MPDE

A numerical scheme to solve the one-dimensional multi-time EM wave equation with

time- and space-varying permittivity is developed in this section. We use a time

domain envelope scheme as discussed in Section 6.1. For the electric and magnetic

field values we use the notation

Êm,n
x,j = Êx(m∆t1, n∆t2, j∆z + 1/2) , (6.38)

Ĥm,n
y,j = Ĥy(m∆t1, (n+ 1/2)∆t2, j∆z) , (6.39)
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Figure 6.4: Spatial discretization of 1D EM wave.

and

Ê
m,n

x =
[
Êm,n

x,1 · · · Êm,n
x,J

]T
, (6.40)

Ĥ
m,n

y =
[
Ĥm,n

y,1 · · · Ĥm,n
y,J+1

]T
. (6.41)

The wave equation is solved for z = [0, L], with L = (J + 1)∆z, where ∆z is the

space increment and J the number of spatial sample points for the electric field. The

spatial sampling scheme is depicted in Figure 6.4. For the spatiotemporally varying

permittivity we assume a harmonic variation of the form

ǫ(t2, z) = ǫ0(ǫm + ǫv sin(2πt2/T2 − zκ)) . (6.42)

The short notation for its discretization will be

ǫnj = ǫ(n∆t2, (j + 1/2)∆z) . (6.43)

Using these definitions and the spectral differentiation scheme of (6.31), we discretize

(6.35) and (6.37), applying an implicit backward Euler scheme,

∂ǫ

∂t2
Êm,n+1

x + ǫ
2π

T1

(DM)mmÊ
m,n+1
x +

ǫÊm,n+1
x − ǫÊm,n

x

∆t2
= −

Ĥm,n+1
y,j+1 − Ĥm,n+1

y,j

∆z
, (6.44)

−µ
(2π

T1

(DM)mmĤ
m,n+1
y +

Ĥm,n+1
y − Ĥm,n

y

∆t2

)

=
Êm,n+1

x,j − Êm,n+1
x,j−1

∆z
. (6.45)
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Upon rearranging the finite MPDEs we obtain

Êm,n
x,j = (1 +

∆t2
ǫnj

(
∂ǫnj
∂t2

+ ǫnj
2π

T1

(DM)mm))Êm,n+1
x,j +

∆t2
ǫnj ∆z

(Ĥm,n+1
y,j+1 − Ĥm,n+1

y,j ) , (6.46)

Ĥm,n
y,j = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,j +

∆t2
µ∆z

(Êm,n+1
x,j − Êm,n+1

x,j−1 ) . (6.47)

The wave is excited at z = 0 and terminated with a fixed resistive load at z = L.

Thus we implement the following boundary conditions:

Ĥm,n
y,1 = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,1 +

∆t2
µ∆z

(Êm,n+1
x,1 − Êm,n+1

src ) , (6.48)

Ĥm,n
y,J+1 = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,J+1 +

2∆t2
µ∆z

(ZĤm,n+1
y,J+1 − Êm,n+1

x,J ) , (6.49)

where Êm,n
src is the source term and Z is the impedance

Z =

√
µ

ǫ0ǫm
. (6.50)

We define the vector Xn containing all the electric and magnetic field samples in

z = [0, L], t1 = [0, T1] at the time t2 = n∆t2 as

Xn =




























Ê
1,n

x

...

Ê
M,n

x









[J ·M ]









Ĥ
1,n

y

...

Ĥ
M,n

y









[(J+1)·M ]




















. (6.51)
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The MPDE in the discretized form of (6.46)-(6.49) yields the time marching update

equation

Xn+1 = (Λn+1)−1Xn + Gn+1 . (6.52)

Gn is the source term described by

Gn =
∆t2
µ∆z

[
0 · · · 0
︸ ︷︷ ︸

J ·M

| Ê1,n
src 0 · · · 0
︸ ︷︷ ︸

J+1

| Ê2,n
src 0 · · · 0
︸ ︷︷ ︸

J+1

| · · · | ÊM,n
src 0 · · · 0
︸ ︷︷ ︸

J+1

]T
. (6.53)

For establishing Λ
n in (6.52) we define

A
n =









1 + ∆t2
ǫn
1

∂ǫn
1

∂t2
0 0

0
. . . 0

0 0 1 + ∆t2
ǫn
J

∂ǫn
J

∂t2









J×J

, (6.54)

B
n =

∆t2
∆z









−1/ǫn1 1/ǫn1 0 0

0
. . . . . . 0

0 0 −1/ǫnJ 1/ǫnJ









J×(J+1)

, (6.55)

C =
∆t2
µ∆z
















1 0 0 0

−1 1
. . . 0

0
. . . . . . 0

0
. . . −1 1

0 0 0 −2
















(J+1)×J

, (6.56)
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and

D =












1 0 0 0

0 1
. . . 0

0
. . . . . . 0

0 0 0 (1 + 2∆t2
µ∆z

Z)












(J+1)×(J+1)

. (6.57)

Hence, we find Λ
n to be

Λ
n =



























A
n 0 0

0
. . . 0

0 0 A
n

















B
n 0 0

0
. . . 0

0 0 B
n

















C 0 0

0
. . . 0

0 0 C

















D 0 0

0
. . . 0

0 0 D



























+

+ ∆t2



























(DM)11I · · · (DM)1MI

...
. . .

...

(DM)M1I · · · (DM)MMI

















0 0 0

0
. . . 0

0 0 0

















0 0 0

0
. . . 0

0 0 0

















(DM)11I · · · (DM)1MI

...
. . .

...

(DM)M1I · · · (DM)MMI



























.

(6.58)

6.5 Numerical Results

In this section we present numerical studies of the formulation developed in Section

6.4. We will consider the one-dimensional problem of (6.35)-(6.37) with a spatiotem-

poral dependence of the permittivity with traveling-wave-like behavior as in (6.42) and
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Figure 6.5: Excitation signal with E0 = 1.

with standing-wave-like behavior, and we consider a problem with a time-dependent

load impedance while the permittivity will be constant.

6.5.1 Case study (I)

In our first example we assume a permittivity ǫ = ǫ0ǫm which is constant over space

and time. The relative permittivity is ǫm = 4.5. We will consider a time-dependent

termination of the form

ZL(t2) = (6 + 5 sin(2πt2/T2))

√
µ

ǫ0ǫm
(6.59)

at z = L. The domain has a matched termination at z = 0. The excitation signal,

plotted in Figure 6.5 for E0 = 1, is described by

Esrc(t) = E0

(

sin(2πf1t) −
1

2
sin(4πf1t)

)

Vm−1 . (6.60)

The domain is excited at z = ∆z by the input signal Esrc with E0 = 2. Furthermore

f1 = 10 MHz, f2 = 100 kHz, L = 20 m, and M = 18, with M = T1/∆t1. The

parameters are summarized in Table 6.1. The boundary conditions and source im-

plementation previously defined in (6.48)-(6.49) are modified, for this example only,
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Figure 6.6: Reference solution for Es for Case (I).

Table 6.1: Summary of the parameters of the MPDE case studies.

Case f1 f2 f1/f2 ǫ ZL L Lm vph ∆z

(I) 10 MHz 100 kHz 102 const. ZL(t) 20 m – – ∼ 0.7 m

(II) 10 MHz 100 kHz 102 ǫ(t, z) const. 20 m 4 m – ∼ 0.6 m

(III) 10 MHz 100 kHz 102 ǫ(t, z) const. 20 m 4 m 105 m/s ∼ 0.6 m

(IV) 10 MHz 1 kHz 104 ǫ(t, z) const. 20 m 10 m 104 m/s 1.0 m

to be

Ĥm,n
y,1 = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,1 +

2∆t2
µ∆z

(Êm,n+1
x,1 + Êm,n+1

src + ZĤm,n+1
y,1 ) ,

(6.61)

Ĥm,n
y,2 = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,2 +

∆t2
µ∆z

(Êm,n+1
x,2 + Êm,n+1

src − Êm,n+1
x,1 ) , (6.62)

Ĥm,n
y,J+1 = (1 + ∆t2

2π

T1

(DM)mm)Ĥm,n+1
y,J+1 +

2∆t2
µ∆z

(Zn
LĤ

m,n+1
y,J+1 − Êm,n+1

x,J ) , (6.63)

where Z is defined in (6.50) and Zn
L = ZL(n∆t2) in (6.59). Using these source

and boundary conditions, the definitions of (6.53), (6.56), and (6.57) are updated

accordingly for our MPDE scheme. The signal is sampled close to z = L. This

sampled signal is denoted as Ês(t1, t2). A reference solution is computed for the

univariate problem using the Yee FDTD scheme. The reference solution is graphed

in Figure 6.6. The time resolution ∆t1 in the MPDE scheme is approximately twice
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the time step ∆t of the reference solution. For the non-periodic, slow time scale t2, the

solution of the MPDE is propagated with a time step which is an integer multiple of

∆t1, hence ∆t2 = q∆t1, q = {1, 2, 3, . . . }. Figure 6.7 shows the results computed with

the MPDE scheme for q = 100. The solutions of the MPDE scheme are in very good

agreement with the reference solution. The computation time for the MPDE scheme

is reduced to 14% of that of the reference solution for the configuration stated above.

Hence, we can achieve significant speedup in the computation time while maintaining

good accuracy of the results.

6.5.2 Case study (II)

In our next example we assume a permittivity which has a space and time dependence

described by

ǫ(t2, z) = ǫ0(ǫm + ǫv sin(2πt2/T2) sin(zκ)) . (6.64)

The relative permittivity is ǫm = 4.5. While we had time-dependent termination

of the simulation domain in the previous case, we now have a constant termination

of Z =
√

µ/(ǫǫm) at z = L. The excitation signal is that of (6.60) with E0 = 1.

Furthermore f1 = 10 MHz, f2 = 100 kHz, L = 20 m, κ = 2π/Lm, Lm = 4 m, and

M = 34. The parameters are summarized in Table 6.1 under Case (II).

The explicit Yee FDTD reference solution is graphed in Figure 6.8. The time

resolution ∆t1 in the MPDE scheme is the same as the time step ∆t of the reference

solution. Figure 6.9 shows the results computed with the MPDE scheme for ∆t2 =

q∆t1, with q = 100. Again, the solutions of the MPDE scheme are in very good

agreement with the reference solution. The computation time is reduced to 33%

compared to the computation time of the reference solution.
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Figure 6.7: MPDE solution for Case (I) with time-dependent termination Zn
L and

constant permittivity, with ∆t2 = 100∆t1, M = 18.
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Figure 6.8: Reference solution for Es for Case (II).

6.5.3 Case study (III)

For the permittivity variation of (6.42) we choose ǫm = 4.5, ǫv = 2, and κ = 2π/Lm.

While these parameters will be the same for the case studies (III) and (IV), the

remaining parameters will vary. The fast and the slow time scale have the frequencies

f1 = 10 MHz and f2 = 100 kHz respectively. The length L of the line is 20 m and

the wave length for the permittivity variation is Lm = 20 m. The spatial resolution

is ∆z ≈ 0.6 m. The excitation signal is the one of (6.60) with E0 = 1. The reference

solution is computed for the univariate problem using the Yee FDTD scheme. The

time step ∆t for this solution is selected such that it satisfies the CFL condition

(2.19). For the multi-time PDE we choose ∆t1 to be equal the time increment ∆t of

the univariate case. We have T1 = M∆t1 and for our case M = 34. These parameters

are summarized in Table 6.1 under Case (III). The permittivity variation is described

by a traveling wave with the phase velocity vph = 105 ms−1. The amplitude of the

sampled signal of the reference solution is graphed in Figure 6.10. The bivariate

sampling signal Ês in the t1 − t2 plane, obtained from the solution to the MPDE

equation with ∆t2 = q∆t1 and q = 20, is shown in Figure 6.11. Subsequently, Es in

its univariate form is obtained along diagonal lines in the two-dimensional time plane,

using linear interpolation for the values off the node points. We have solved the MPDE
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Figure 6.9: MPDE solution for Case (II) with ∆t2 = 100∆t1, M = 34.
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scheme for several values of q. The results for q = 4, q = 10, q = 50, and q = 100 are

plotted in Figures 6.12-6.15. The figures show the recovered univariate amplitude of

Es, the envelope of Es for the respective MPDE solution compared to the envelope of

the reference solution, and the amplitude spectrum of Es of the MPDE and reference

solution. We can observe good agreement of the MPDE result to the univariate

PDE reference solution for small values of q and a slow degradation of the agreement

as q is increased. A comparison of the spectra shows good agreement, too. The

spectral spacing ∆f of the intermodulation frequencies is found to be 100 kHz, hence

in agreement with the permittivity variation at f2. For higher q, the intermodulation

products attenuate faster. The imbalance of the intermodulation levels around the

base frequencies f1 and 2f1, i.e. the fact that the intermodulation levels are higher for

frequencies smaller than f1 and 2f1 respectively, is due to the propagation direction

of the wave describing the permittivity variation. For the permittivity variation

ǫ(t2, z) = ǫ0(ǫm + ǫv sin(2πt2/T2 + zκ)) (6.65)

this will reverse, as shown in Figure 6.16, for a simulation with q = 50 and parameters

otherwise identical to the previous simulation.

The computation of the MPDE scheme and of the reference solution has been

performed using MATLAB.1 The ratio of the computation time on our computer for

the MPDE solution to that for the reference solution is plotted in Figure 6.17. A gain

in speed for the MPDE method is achieved with increasing q. For the above example

the MPDE is faster than the univariate reference method for q ≥ 42. However, for

this comparison the time step ∆t1 was chosen to be the same in the MPDE method

and in the reference solution. Since our MPDE scheme is, unlike the scheme used

1MATLAB, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098, U.S.A., http://
www.mathworks.com
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Figure 6.12: MPDE solution for Case (III) with ∆t2 = 4∆t1, M = 34.
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Figure 6.13: MPDE solution for Case (III) with ∆t2 = 10∆t1, M = 34.
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Figure 6.14: MPDE solution for Case (III) with ∆t2 = 50∆t1, M = 34.
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Figure 6.15: MPDE solution for Case (III) with ∆t2 = 100∆t1, M = 34.
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Figure 6.16: MPDE solution for Case (III) with ∆t2 = 50∆t1, M = 34, and reversed
propagation direction of the wave-like permittivity variation, according to (6.65).
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for the univariate PDE (treference), with q = ∆t2/∆t1 and M = T1/∆t1.

for the reference solution, an implicit scheme, we are not constrained by the CFL

stability condition and hence may enlarge ∆t1. We have repeated the computation

for M = 18. The computation time is reduced by a factor ∼ 3.6 compared to the

previously used M = 34. As a consequence the MPDE scheme performs faster than

the reference solution for q ≥ 12. The results for M = 18 and q = 20 are shown in

Figure 6.18. These results are in good agreement with the reference solution and our

simulation is completed in 59% of the time needed to compute the reference solution.

6.5.4 Case study (IV)

For our forth case study the following parameters have been changed from Case (III)

to the values stated: f1 = 10 MHz, f2 = 1 kHz, Lm = 10 m, L = 20 m, and M = 68.

For comparison to the other cases, these values are listed in Table 6.1 under Case

(IV). The values for ǫm and ǫv remain unchanged. The time scales are separated by

a factor 104. The phase velocity for the permittivity is vph = 104 ms−1. Hence, the

phase velocity is in the range of acoustic phase velocities achieved in SAW devices
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Figure 6.18: MPDE solution with ∆t2 = 20∆t1, M = 18 for Case (III).
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Figure 6.19: MPDE solution for case study (IV) with ∆t2 = 1000∆t1.

[8]. This example explores the use of the MPDE method to an EM problem for which

the interaction with the electromagnetic wave may stem from acoustic phenomena.

The time resolution ∆t1 in the MPDE scheme is chosen to be the same as ∆t for

the univariate reference solution. The results for ∆t2 = q∆t1, with q = 103 are

plotted in Figure 6.19. The envelope of MPDE solution captures the envelope of

the reference solution well. Intermodulation frequencies in the amplitude spectra are

spaced at ∆f ≈ 1 kHz. The time to compute the MPDE solution amounts to 2% of

the computation time of the reference solution for our MATLAB program.
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6.6 Conclusion

In this chapter, we have developed an MPDE formulation to solve EM wave prob-

lems with widely separated time scales in one dimension. We have demonstrated the

formulation for the case of a domain with space- and time-dependent permittivity.

In this case the time variation of the permittivity is much slower in oscillation than

the EM signal. We have considered this example for different choices in the per-

mittivity properties. One of these choices is motivated by applications that involve

acoustically induced time-varying material and/or domain properties. In a further

example, the permittivity was neither space nor time dependent but rather had a

time-dependent termination of the domain. The termination had a slow oscillatory

impedance variation.

The computed results yield good agreement with the reference solutions obtained

for the conventional univariate PDEs by applying the explicit Yee scheme. With

proper parameter sets chosen for the MPDE scheme, the scheme may significantly

reduce computation time while delivering solutions which have characterized our ref-

erence solutions very well. The reduction of the computation time can be influenced

easily by changing the refinement of the numerical discretizations and the integration

step size of the time envelope approach. While accurate solutions may be obtained

faster than with a univariate approach, a degradation of the solution will eventually

occur if the temporal resolution and integration time step become too coarse.

We give a complexity estimation for the number of operations to solve the PDE

and the MPDE in Table 6.2. For the MPDE the estimation is done for a solution

performing an LU factorization with and without taking advantage of the sparsity

and bandedness of the matrix [152, 153]. The number of operations is estimated for a

one-, two-, and three-dimensional problem, where J = JxJyJz is the total number of

spatial sample points, and Ji, i = {x, y, z}, the number of sample points along each
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Table 6.2: Estimation of the number of operations to solve the single and mutli-time
PDE schemes for one-, two-, and three-dimensional problems. J is the number of
spatial sample points, M = T1/∆t, and M̂ = T1/∆t1. Ns and N̄s are the numbers
of slow periods in the univariate case and the multivariate case respectively. k is the
matrix bandwidth.

Explicit univariate Implicit MPDE Implicit MPDE scheme
PDE scheme scheme with LU factorization

with LU factorization for a sparse banded matrix
1D 2JM T2

T1
Ns

5
3
(2JM̂)3 T2

T1

M̂N̄s

q
4k22JM̂ T2

T1

M̂N̄s

q

2D 3JM T2

T1
Ns

5
3
(3JM̂)3 T2

T1

M̂N̄s

q
4k23JM̂ T2

T1

M̂N̄s

q

3D 6JM T2

T1
Ns

5
3
(6JM̂)3 T2

T1

M̂N̄s

q
4k26JM̂ T2

T1

M̂N̄s

q

spatial dimension. In Table 6.2, we choose M = T1/∆t to represent the temporal

resolution of the fast scale for the univariate case, and M̂ = T1/∆t1 for the multi-

time case. Ns and N̄s are the numbers of slow periods in the univariate case and the

multivariate case respectively. The ratio of the complexity of the explicit FDTD to

that of the MPDE scheme is found from Table 6.2 as

complexity explicit FDTD
complexity implict MPDE

=
Ns

N̄s

qM

(2kM̂)2
, (6.66)

where k is the matrix bandwidth. Geometries with very fine features that require

fine grid size, and hence fine temporal sampling, will produce results with the MPDE

in cases with M̂ << M . For one-dimensional problems the matrix bandwidth is

small. Hence, we expect computational gains from the use of implicit MPDE for

such problems. For three-dimensional problems the matrix bandwidth will be large

in general. For this case iterative sparse solvers are needed to keep the complexity

low [154].
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Chapter 7

Discussion

7.1 Summary

This work has been concerned with challenges that arise in the numerical modeling of

phenomena that involve coupling of electromagnetic field theory with other physical

domains. The challenging issues for these problems of multi-domain physical inter-

actions are to achieve high modeling accuracy and modeling efficiency despite highly

disparate spatial and temporal scales.

The emphasis in this work is on three technically important cases of electromag-

netic multiphysics phenomena. We investigated the electromagnetic wave propaga-

tion through the adjacent surfaces of a metallic contact. A methodology for the

phenomenological modeling of PIM generation due to electron tunneling in metallic

contacts, known as the rusty bolt effect, has been developed. This treatment yields a

nonlinear telegrapher’s equation with distributed nonlinear voltage controlled current

sources. Surface roughness and skin effect are included in the derived model which is

compatible with nonlinear network analysis tools like SPICE. The developed model

is the first multi-scale model put forward which allows for the quantitative analysis

of this problem and, hence, enables us to analyze the impact of various parameters

of the structure on the PIM levels.

The second methodology developed is the Lagrangian mapping approach for the

modeling of electromagnetic phenomena in domains with curved moving boundaries.
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It is implemented in the FDTD method. By defining a mapping of a deformed (phys-

ical) domain onto a reference domain with Cartesian boundaries, the standard FDTD

scheme on a rectangular grid can be utilized to model time-varying curved bound-

aries. The map of the Maxwell equation system yields a modified nabla operator for

the LM method. Other methods, which use orthogonal grids for modeling curved

boundaries, may require substantial spatial oversampling to achieve good accuracy.

The LM method, however, significantly relaxes these spatial oversampling require-

ments. Furthermore, the complexity in the mesh generation is not increased for the

LM method, and a complex development of the discrete forms of the curl operators is

not necessary either. Hence, the Lagrangian mapping method provides high accuracy

and improved modeling and computational efficiency.

The third development is a multi-time partial differential equation formulation

for the modeling of one-dimensional EM wave phenomena. Large disparity between

governing time scales leads to increased computational cost and hence to increased

computation time and memory requirements for obtaining a response. The MPDE

method introduces multiple time scales and, as a consequence, reduces the temporal

oversampling requirements. In our studies we have shown that the MPDE formulation

can achieve substantial reductions of the computation time for some problems with

respect to the computation time required for the solution of the single time PDE. The

MPDE method has not been applied to problems of distributed wave phenomena

prior to this work. The MPDE method was able to provide solutions with very

good accuracy with respect to the reference solutions and with (significantly) reduced

processing time.
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7.2 Future Work

Regarding the statistical method to model the problem of PIM in RF contacts, pre-

sented in Chapter 3, it would be of great interest to research this model in conjunction

with empirical data. The prediction of PIM levels remains very difficult to this date.

Performing a statistical analysis with empirical data may improve the understanding

of the effects causing passive intermodulation. A derivation of macro-models for RF

connectors based on prior statistical modeling may help in the design and analysis of

RF systems.

The Lagrangian mapping method provides high accuracy while relaxing spatial

oversampling requirements and hence the computational cost. The anisotropic FDTD

implementation is known for issues regarding the long-term stability of the algorithm

resulting from the fact that the different components of the electric and magnetic field

are defined on spatially separated sampling points [110]. In particular the analysis of

problems with widely separated time scales is hampered by these instability issues.

Hence, it is of interest to improve the robustness of the algorithm, for example by

an improved averaging scheme of the field components. The implementation of the

LM method with other numerical techniques, such as the TLM method, is clearly of

interest, too. In the TLM method field components are defined not on a staggered but

on a common grid. This may help to reduce long-term instabilities. Though there

is work on anisotropic schemes for the TLM method available [155, 156], further

research will be necessary to implement a Lagrangian mapping scheme in the TLM

method.

With respect to the MPDE method it will be of interest to extend the MPDE

scheme for the electromagnetic wave equation to problems of two and three dimen-

sions. The MPDE method reduces the number of integration steps required for a

numerical solution of the problem. This can help to reduce the computational cost
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of solving the univariate PDE problem depending on the scaling of the parameters

involved. Due to the reduced number of integration steps, this will provide progress

toward a method that avoids or delays the occurrence of long-term instabilities, as dis-

cussed with regard to the previous problem. If this proves successful, a combination

of the MPDE and the LM methods will be a further goal of interest.
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Appendix A

Derivation of the Modified Maxwell’s
Equations

This appendix gives a more detailed description on how to obtain Maxwell’s equations

in their modified form based on the Lagrangian approach presented in Chapter 4.
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(A.1)

We expand Maxwell’s equations (2.1)-(2.2) for the source-free case and hence find

Ampère’s law as
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and Faraday’s law as

∂Ex

∂t
=

1

ε

(∂Hz

∂y
− ∂Hy

∂z

)

(A.5)

∂Ey

∂t
=

1

ε

(∂Hx

∂z
− ∂Hz

∂x

)

(A.6)

∂Ez

∂t
=

1

ε

(∂Hy

∂x
− ∂Hx

∂y

)

. (A.7)

121



Using the map of (A.1) we obtain for (A.2)-(A.4)
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For the partial derivative of a vector A in the reference system {α̂, β̂, γ̂} with respect

to the spatial coordinates in the system of {x̂, ŷ, ẑ}, we find
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Using this relation in (A.8)-(A.10) yields
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where we have defined
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Next, we define

D̃ =









−Dβγ
yz Dαγ

yz −Dαβ
yz

Dβγ
xz −Dαγ

xz Dαβ
xz

−Dβγ
xy Dαγ

xy −Dαβ
xy









, (A.16)

which allows us to modify Maxwell’s equations describing Ampère’s law to the form
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Considering that the H field components are mapped from the {α̂, β̂, γ̂} system to

the system of {x̂, ŷ, ẑ} by









Hx

Hy

Hz









= F









Hα

Hβ

Hγ









, (A.19)

with

F =









∂α
∂x

∂β
∂x

∂γ
∂x

∂α
∂y

∂β
∂y

∂γ
∂y

∂α
∂z

∂β
∂z

∂γ
∂z









, (A.20)
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we obtain the modified equations of the Lagrangian mapping method

∂

∂t









Hα

Hβ

Hγ









=
1

µ
F−1D̃

(

∇×









Eα

Eβ

Eγ









)

. (A.21)

The remaining equations based on Faraday’s law are obtained mutatis mutandis.
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