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Graph-based Classification on Heterogeneous
Information Networks

Ming Ji, Yizhou Sun, Marina Danilevsky and Jiawei Han

Abstract—A heterogeneous information network is a network composed of multiple types of objects and links. Recently, it
has been recognized that strongly-typed heterogeneous information networks are prevalent in the real world. Sometimes, label
information is available for part of the objects. Learning from such labeled and unlabeled data via transductive classification can
lead to good knowledge extraction of the hidden network structure. However, although classification on homogeneous networks
has been studied over decades, classification on heterogeneous networks has not been explored until recently.
In this paper, we consider the transductive classification problem on heterogeneous networked data which share a common topic.
Only part of the objects in the given network are labeled, and we aim to predict labels for all types of the remaining objects. A novel
graph-based regularization framework, GNetClass, is proposed to model the link structure in information networks with arbitrary
network schema and number of object/link types. Specifically, we explicitly respect the type differences by preserving consistency
over each relation graph corresponding to each type of links separately. Efficient computational schemes are then introduced to
solve the corresponding optimization problem. Experiments on the DBLP data set show that our algorithm significantly improves
the classification accuracy over existing state-of-the-art methods.

Index Terms—Heterogeneous Information Networks, Classification, Semi-supervised Learning, Regularization.

F

1 INTRODUCTION

INFORMATION networks, composed of large num-
bers of data objects linking to each other, are ubiqui-

tous in real life. Examples include co-author networks
and paper citation networks extracted from biblio-
graphic data, and webpage networks interconnected
by hyperlinks in the World Wide Web. Extracting
knowledge from such gigantic sets of networked data
has recently attracted substantial interest [10] [14]
[15] [18]. Sometimes, label information is available
for part of the data objects. Learning from labeled
and unlabeled data is often called semi-supervised
learning [21] [20] [3], which aims to classify the
unlabeled data based on known information. Clas-
sification can help discover the hidden structure of
the information network, and give deep insight into
understanding different roles played by each object. In
fact, applications like research community discovery,
fraud detection and product recommendation can all
be cast as a classification problem [10] [14]. Generally,
classification can be categorized into two groups: (1)
Transductive classification [9] [10] [21] [20] [18]: to
predict labels for the given unlabeled data; and (2) In-
ductive classification [8] [14] [11] [16] [3]: to construct
a decision function in the whole data space. In this
paper, we focus on transductive classification, which
is a common scenario in networked data.

Current studies about transductive classification on

• Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL, USA. E-mail: {mingji1, sun22, danilev1,
hanj}@illinois.edu

networked data [8] [9] [10] [14] mainly focus on
homogeneous information networks, i.e., networks
composed of a single type of objects, as mentioned
above. But in real life, there could be multiple types
of objects which form heterogeneous information net-
works. Beyond co-author networks and citation net-
works, the bibliographic data naturally forms a net-
work among papers, authors, conferences, terms, etc.
E-commerce systems can also be viewed as networks
linking sellers, customers, items and tags. It has been
recognized that heterogeneous information networks,
where interconnected links can occur between any
two types of objects, are prevalent.

Example 1. Bibliographic Information Network. A
bibliographic information network generally contains
four types of data objects: papers, authors, venues (con-
ferences and journals) and terms. Papers and authors
are linked by the relation of “written by” and “write”.
Papers and venues are linked by the relation of “pub-
lished in” and “publish”. Papers and terms are linked
by the relation of “contain” and “contained in”. �

As a natural generalization of classification on ho-
mogeneous networked data, we consider the prob-
lem of classifying heterogeneous networked data into
classes, each of which is composed of multi-typed
data sharing a common topic. For instance, a research
community in a bibliographic information network
contains not only authors, but also papers, venues
and terms all belonging to the same research area.
Other examples include movie networks in which
movies, directors, actors and keywords relate to the
same genre, and E-commerce networks where sellers,
customers, items and tags belong to the same shop-
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ping category.
The general problem of classification has been well

studied in literature. Transductive classification on
strongly-typed heterogeneous information networks,
however, is much more challenging due to the char-
acteristics of data, which are listed as follows:

1. Complexity of the network structure. Heterogeneous
information networks contain multiple types of
objects and links, and links can exist between
any two types of objects. When dealing with
such multi-typed network structure, one common
solution is to transform it into a homogenous net-
work and apply traditional classification methods
[10] [14]. However, this simple transformation
has several drawbacks. For instance, suppose we
want to classify papers into different research
areas. Existing methods would most likely extract
a citation network from the whole bibliographic
network. Then some valuable discriminative in-
formation is likely to be lost (e.g., authors of the
paper, and venue the paper is published in.) What
is more, it remains unclear how to optimally
transform the multi-typed link information into
a single-typed relation. Two papers can be linked
either by citation or by sharing a common author.
Simply adding these two types of relationship
together fails to distinguish the difference in their
semantic meanings. Another solution to make use
of the whole network is ignoring the type dif-
ferences between objects and links. Nevertheless,
different types of objects naturally have different
data distributions, and different types of links
have different semantic meanings, therefore treat-
ing them equally is likely to be suboptimal. It
has been recognized [7] [15] that while mining
heterogeneous information networks, the type
differences among links and objects should be
respected in order to generate more meaningful
results.

2. Lack of features. Traditional classification methods
usually learn from local features or attributes of
the data. However, there is no natural feature rep-
resentation for all types of networked data. For
example, we can use term frequency to represent
a document, and use pixel values to represent an
image. But it is unclear how to define meaningful
feature representations for conferences and au-
thors in a bibliographic information network. If
we transform the link information into features,
we will likely generate very high dimensional
and sparse data as the number of objects grows
up. Moreover, even if we have feature represen-
tation for some objects in a heterogeneous infor-
mation network, the features of different types
of objects are in difference spaces and are hardly
comparable. This is another reason why tradi-
tional feature-based methods including Support

Vector Machines, Naı̈ve Bayes and logistic regres-
sion are difficult to be applied in heterogeneous
information networks.

3. Lack of labels. Many classification approaches need
a reasonable amount of training examples. How-
ever, labels are expensive in many real applica-
tions. In a heterogeneous information network,
we may even not be able to have a fully labeled
subset of all types of objects for training. Label
information for some types of objects are easy to
obtain while labels for some other types are not.
Therefore, a flexible transductive classifier should
be able to transfer the label information among
different types of objects.

In this paper, we propose a novel graph-based reg-
ularization framework to address all three chal-
lenges, which simultaneously classifies all of the non-
attributed, network-only data with an arbitrary net-
work topology and number of object/link types, just
based on the label information of any type(s) of ob-
jects and the link structure. By preserving consistency
over each relation graph corresponding to each type
of links separately, we explicitly respect the type
differences in links and objects, thus encoding the
typed information in a more organized way than
traditional graph-based transductive classification on
homogeneous networks.

The rest of the paper is structured as follows. In
Section 2, we briefly review the existing work about
classification on networked data and graph-based
learning. In Section 3, we formally define the problem
of transductive classification on heterogeneous in-
formation networks. Our graph-based regularization
framework (denoted by GNetClass) is introduced in
Section 4. Section 5 provides the experimental results.
Finally, we conclude this work in Section 6.

2 RELATED WORK

W E summarize various transductive classifica-
tion methods in Table 1, where one dimension

represents whether the data has features/attributes
or not, and the other dimension represents differ-
ent kinds of network structure: from non-networked
data to heterogeneous networked data. Our proposed
method works on heterogeneous, non-attributed
network-only data, which is the most general case
requiring the least amount of information.

Classifying networked data has received substantial
attention in recent years. One key difference between
traditional classification and classifying networked
data is that data points are not independent, but are
closely correlated. So The central idea is to infer the
class label from the network structure together with
local attributes, if there are any. When classifying web-
pages or documents, local text features and the link
information can be combined by using Naı̈ve Bayes
[4], logistic regression [8], graph regularization [19],



TECHNICAL REPORT, APRIL 2010 3

TABLE 1
Summary of related work about transductive classification

Non-networked data Homogenous
networked data

Heterogeneous
networked data

Attributed
data

SVM, Graph-based
learning, etc.

Statistical Relational Learning (Relational Dependency
Networks, Relational Markov Networks, etc.)

Non-attributed
data / Network-only Link-based classifier,

Relational Neighbor, etc. GNetClass

etc. These methods share the same assumption that
the network is homogeneous. Relational dependency
networks [11] respect the type differences among re-
lational data when learning the dependency structure
by building a conditional model for each variable of
interest, but still rely on local features just like other
relational learning methods do. Moreover, statistical
relational learning usually requires a fully labeled
data set for training, which might be difficult to obtain
in real applications.

Macskassy et al. [9] propose a relational neighbor
classifier on network-only data. Through iteratively
classifying an object by the majority class of its neigh-
bors, this method performs very well compared to
more complex models including Probabilistic Rela-
tional Models [6] [17], Relational Probability Trees [12]
and Relational Bayesian Classifiers [13]. Macskassy et
al. [10] further analyze various configurations in a
classification framework comprised of a local classi-
fier, a relational classifier and a collective inference
procedure. They emphasize the importance of homo-
geneousness in within-network classification.

Recently, there has been a surge of interest in min-
ing heterogeneous information networks [2] [7] [1],
and it has been proposed that the type differences
should be respected in order to generated more mean-
ingful results. NetClus [15] uses a ranking-clustering
mutual enhancement method to generate clusters
composed of multi-typed objects. However, clustering
does not effectively make use of prior knowledge
when it is available. Yin et al. [18] explore social
tagging graphs for heterogeneous web object classifi-
cation. They construct a bipartite graph between tags
and web objects to boost classification performance.
Nevertheless, their method is confined to the specific
network schema between tags and web data, thus not
allowing arbitrary link structure and cannot be ap-
plied to general heterogeneous information networks.

Meanwhile, graph-based learning has enjoyed long-
lasting popularity in transductive classification. Most
of the methods construct an affinity graph over both
the labeled and unlabeled examples based on lo-
cal features to encode the similarity between in-
stances. Then they design a learner which preserves
the smoothness and consistency over the geometri-
cal structure of the data. Zhu et al. [21] formulate
the problem using a Gaussian random field model
defined with respect to the graph. Zhou et al. [20]

propose to let each point iteratively spread its label
information to neighbors so as to ensure both local
and global consistency. Belkin et al. [3] design a frame-
work for data-dependent regularization that exploits
the geometry of the probability distribution on the
labeled and unlabeled data. When local features are
not available in information networks, graph-based
methods can sometimes use the inherent network
structure to play the role of the affinity graph. How-
ever, traditional graph-based learning mainly works
on homogeneous graphs covering all the examples
as a whole, and thus cannot distinguish the different
semantic meaning of multi-typed links and objects
very well. In this paper, we naturally extend the
graph-based learning framework to fit the special
requirements of heterogeneous networked data.

3 PROBLEM DEFINITION

IN this section, we introduce several related con-
cepts and notations related to transductive classi-

fication on heterogeneous information networks, and
then formally define the problem.

Definition 1. Heterogeneous information network.
Given m types of data objects, denoted by X1 =
{x11, . . . , x1n1}, . . . ,Xm = {xm1, . . . , xmnm}, a graph
G = ⟨V,E,W ⟩ is called a heterogeneous information
network if V =

∪m
i=1 Xi and m ≥ 2, E is the set of

links between any two data objects of V , and W is
the set of weight values on the links. When m = 1, G
reduces to a homogeneous information network.

Definition 2. Class. Given a heterogeneous infor-
mation network G = ⟨V,E,W ⟩, V =

∪m
i=1 Xi, a class

is defined as G′ = ⟨V ′, E′,W ′⟩, where V ′ ⊆ V , E′ ⊆ E.
∀e = ⟨xip, xjq⟩ ∈ E′, W ′

xipxjq
= Wxipxjq . Note here, V ′

also consists of multiple types of objects from X1 to
Xm.

Definition 2 follows [15]. Notice that a class in
a heterogeneous information network is actually a
sub-network containing multi-typed objects that are
closely related to each other. Now our problem can
be formalized as follows.

Definition 3. Transductive classification on het-
erogeneous information networks. Given a heteroge-
neous information network G = ⟨V,E,W ⟩, a subset of
data objects V ′ ⊆ V =

∪m
i=1 Xi which are labeled with

values Y denoting which class each object belongs to,
predict the class labels for all the unlabeled objects
V − V ′.
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Fig. 1. Knowledge propagation in a bibliographic infor-
mation network

Author A1Author A1 Term T1

Conference C2
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We design a set of one-versus-all soft classifiers
in the multi-class classification task. Suppose the
number of classes is K. For any object type Xi,
i ∈ {1, . . . ,m}, we try to compute a class indicator
matrix Fi = [f (1)i , . . . , f (K)

i ] ∈ Rni×K , where each
f (k)i = [f(k)i1 , . . . , f(k)ini

]T measures the confidence that
each object xip ∈ Xi belongs to class k. Then we
can assign the p-th object in type Xi to class cip by
finding the maximum value in the p-th row of Fi:
cip = argmax1≤k≤K f(k)ip .

In a heterogeneous information network, a relation
graph Gij can be built corresponding to each type of
link relationship between two types of data objects
Xi and Xj , i, j ∈ {1, . . . ,m}. Note that it is possible
for i = j. Let Rij be an ni × nj relation matrix
corresponding to graph Gij . The element at the p-
th row and q-th column of Rij is denoted as Rij,pq,
representing the weight on link ⟨xip, xjq⟩. There are
many ways to define the weights on the links, which
can also incorporate domain knowledge. A simple
definition is as follows:

Rij,pq =

{
1 if data objects xip and xjq are linked
0 otherwise.

Here we consider undirected graphs such that Rij =
RT

ji.
In order to encode label information, we basically

set a vector y(k)
i = [y

(k)
i1 , . . . , y

(k)
ini

]T ∈ Rni for each data
object type Xi such that:

y
(k)
ip =

{
1 if xip is labeled to the k-th class
0 otherwise.

Then for each class k ∈ {1, . . . ,K}, our goal is to
infer a set of f (k)i from Rij and y(k)

i , i, j ∈ {1, . . . ,m}.

4 GRAPH-BASED REGULARIZATION
FRAMEWORK

IN this section, we begin by describing the intuition
of our method. Then we formulate the problem us-

ing a graph-based regularization framework. Finally,
efficient computational schemes are proposed to solve
the optimization problem.

4.1 Intuition

Consider a simple bibliographic information network
in Figure 1. Four types of objects (paper, author, confer-
ence and term) are interconnected by multi-typed links
(denoted by solid black lines) as described in Example
1. Suppose we want to classify them into research
communities. Labeled objects are shaded, whereas the
labels of unshaded objects are unknown. Given prior
knowledge that author A1, paper P1 and conference
C1 belong to the area of data mining, it is easy to
infer that author A2 who wrote paper P1, and term
T1 which is contained in P1, are both highly related to
data mining. Similarly, author A3, conference C2, and
terms T2 and T3 are likely to belong to the area of
database, since they link directly to a database paper
P3. For paper P2, things become more complicated
because it is linked with both labeled and unlabeled
objects. The confidence of belonging to a certain class
may be transferred not only from labeled objects (con-
ference C1 and author A4), but also from unlabeled
ones (authors A2 and A3, terms T1, T2 and T3).
The classification process can be intuitively viewed
as a process of knowledge propagation throughout
the network as shown in Figure 1, where the thick
shaded arrows indicate possible knowledge flow. The
more links between an object x and other objects
of class k, the higher the confidence that x belongs
to class k. Accordingly, labeled objects serve as the
source of prior knowledge. Although this intuition is
similar to [9] and [20], the interconnected relationship
and the form of prior knowledge in heterogeneous
information networks are more complex due to the
typed information. Knowledge propagation through
different types of links contains different semantic
meaning, and thus should be treated separately.

In this way, our framework is based on the con-
sistency assumption that the class assignments of
two linked objects are likely to be similar. And the
class prediction on labeled objects should be similar
to their pre-assigned labels. In order to respect the
link type differences, we ensure that such consistency
is preserved over each relation graph corresponding
to each type of links separately. We formulate our
intuition as follows:

1) The estimated confidence measure of two objects
xip and xjq belonging to class k, f(k)ip and f(k)jq ,
should be similar if xip and xjq are linked to-
gether, i.e., the weight value Rij,pq > 0.

2) The confidence estimation f(k)i should be similar
to the ground truth, y(k)

i .

4.2 The Algorithm

For each relation matrix Rij , we define a diagonal
matrix Dij of size ni×ni. The (p, p)-th element of Dij

is the sum of the p-th row of Rij . Following the above
discussion, f(k)i should be as consistent as possible
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with the link information and prior knowledge, so we
try to minimize the following objective function:

J(f (k)1 , . . . , f (k)m )

=

m∑
i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( 1√
Dij,pp

f(k)ip − 1√
Dji,qq

f(k)jq

)2

+

m∑
i=1

αi(f
(k)
i − y(k)

i )T (f (k)i − y(k)
i ). (1)

where Dij,pp is the (p, p)-th element of Dij , and Dji,qq

is the (q, q)-th element of Dji. The first term in the
objective function (1) is the smoothness constraints for-
mulating the first intuition. This term is normalized by√
Dij,pp and

√
Dji,qq in order to reduce the impact of

popularity of nodes. In other words, we can, to some
extent, suppress popular nodes from dominating the
confidence estimations. The normalization technique
is adopted in traditional graph-based learning with
the effectiveness well proved [20]. The second term
minimizes the difference between the prediction re-
sults and the labels, reflecting the second intuition.

The trade-off among different terms is controlled by
regularization parameters λij and αi, where 0 ≤ λij <
1, 0 < αi < 1. For ∀i, j ∈ {1, . . . ,m}, λij > 0 indicates
that object types Xi and Xj are linked together and
this relationship is taken into consideration. The larger
λij , the more value is placed on the relationship
between object types Xi and Xj . For example, in a
bibliographic information network, if a user believes
that the links between authors and papers are more
trustworthy and influential than the links between
conferences and papers, then the λij corresponding to
the author-paper relationship should be set larger than
that of conference-paper, and the classification results
will rely more on the author-paper relationship. Simi-
larly, the value of αi, to some extent, measures how
much the user trusts the given prior knowledge of
object type Xi. The parameters thus provide more
flexibility to incorporate user preference. But we will
show in Section 5 that the parameter setting will not
influence the performance of our algorithm dramati-
cally.

To facilitate algorithm derivation, we define the
normalized form of Rij :

Sij = D(−1/2)
ij RijD(−1/2)

ji , i, j ∈ {1, . . . ,m} (2)

With simple algebraic formulations, the first term

of (1) can be rewritten as:
m∑

i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( f(k)ip√
Dij,pp

−
f(k)jq√
Dji,qq

)2

=

m∑
i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( (f(k)ip )2

Dij,pp
− 2

f(k)ip f(k)jq√
Dij,ppDji,qq

+
(f(k)jq )2

Dji,qq

)
=

m∑
i,j=1

λij

( ni∑
p=1

(f(k)ip )2 +

nj∑
q=1

(f(k)jq )2

−2

ni∑
p=1

nj∑
q=1

(f(k)ip Sij,pqf(k)jq )
)

=
m∑

i,j=1

λij

(
(f (k)i )T f (k)i + (f (k)j )T f (k)j − 2(f (k)i )T Sijf (k)j

)
Then we can rewrite (1) in the following form:

J(f (k)1 , . . . , f (k)m )

=

m∑
i,j=1

λij

(
(f (k)i )T f (k)i + (f (k)j )T f (k)j − 2(f (k)i )T Sijf (k)j

)
+

m∑
i=1

αi(f
(k)
i − y(k)

i )T (f (k)i − y(k)
i ) (3)

4.2.1 Connection to homogeneous graph-based
learning.
Here we first show that the homogenous version
of our algorithm is equivalent to the graph-based
learning method [20]. Then we show the connection
and difference between our algorithm and [20] on
heterogeneous information networks.

We first define Lii = Ii−Sii , where Ii is the identity
matrix of size ni × ni. Note that Lii is the normalized
graph Laplacian [5] of the homogeneous sub-network
on object type Xi.

Lemma 1. In homogeneous information networks, the
objective function (3) reduces to:

J(f (k)1 ) = 2λ11(f
(k)
1 )T L11f (k)1 +α1(f

(k)
1 −y(k)

1 )T (f (k)1 −y(k)
1 ) �

The proof can be done by simply setting m = 1 in
function (3). It is easy to see that the homogeneous
version of our algorithm is equivalent to the objective
function of [20].

When the information network is heterogeneous,
we can consider all types of objects as a whole set.
We define:

f (k) = [(f (k)1 )T , . . . , (f (k)m )T ]T

y(k) = [(y(k)
1 )T , . . . , (y(k)

m )T ]T

αααi = αi1ni , i = 1, . . . ,m

ααα = diag{[αααT
1 , . . . ,ααα

T
m]}

where 1ni is an ni-dimensional column vector of all
ones. We further construct a matrix corresponding to
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each type of relationship between two different object
types Xi and Xj as follows:

Lij =

[
Ii −Sij

−Sji Ij

]
, where i ̸= j

Suppose
∑m

i=1 ni = n, let Hij be the n × n sym-
metric matrix where each row/column corresponds
to an object, with the order same as that in f(k). The
elements of Hij at rows and columns corresponding
to object types Xi and Xj are equal to Lij , and all the
other elements are 0. This also holds for i = j.

Lemma 2. On heterogeneous information networks, the
objective function (3) is equivalent to the following:

J(f (k)1 , . . . , f (k)m )

= (f (k))T Hf (k) +
(
f (k) − y(k)

)T
ααα
(
f (k) − y(k)

)
(4)

where H =
∑

i ̸=j λijHij + 2
∑m

i=1 λiiHii. �
Proof: We take different terms in objective func-

tion (3) separately. Recall that

Rij = RT
ji =⇒ Sij = ST

ji

and
(f (k)i )T Sijf (k)j = (f (k)j )T Sjif

(k)
i

When i ̸= j, we have:

λij

(
(f (k)i )T f (k)i + (f (k)j )T f (k)j − 2(f (k)i )T Sijf (k)j

)
= λij

[
(f (k)i )T (f (k)j )T

] [ Ii −Sij

−Sji Ij

][
f (k)i

f (k)j

]

= λij

[
(f (k)i )T (f (k)j )T

]
Lij

[
f (k)i

f (k)j

]
= λij(f

(k))T Hijf (k)

When i = j, we have:

λij

(
(f (k)i )T f (k)i + (f (k)j )T f (k)j − 2(f (k)i )T Sijf (k)j

)
= λii

(
2(f (k)i )T f (k)i − 2(f (k)i )T Siif

(k)
i

)
= 2λii(f

(k)
i )T (Ii − Sii)f

(k)
i

= 2λii(f
(k)
i )T Liif

(k)
i

= 2λii(f
(k))T Hiif

(k)

And it is easy to see that:
m∑
i=1

αi(f
(k)
i − y(k)

i )T (f (k)i − y(k)
i )

=
(
(f (k))− y(k)

)T
ααα
(
(f (k))− y(k)

)
Taking the summation of all the terms together:

J(f (k)1 , . . . , f (k)m )

=
∑
i ̸=j

λij(f
(k))T Hijf (k) + 2

m∑
i=1

λii(f
(k))T Hiif

(k)

+
(
(f (k))− y(k)

)T
ααα
(
(f (k))− y(k)

)
= (f (k))T Hf (k) +

(
f (k) − y(k)

)T
ααα
(
f (k) − y(k)

)

Lemma 2 shows that our proposed GNetClass al-
gorithm has a consistent form with the graph-based
learning framework on homogeneous data [20], in
which H is replaced by the normalized graph Laplacian
L [5]. Moreover, we respect the different semantic
meanings of the multi-typed links by applying graph
regularization on each relation graph corresponding
to each type of links separately rather than on the
whole network. Different regularization parameters
λij also provide more flexibility in incorporating user
preference on how much the relationship between
object types Xi and Xj is valued among all types
of relationships. However, even if all the λij are set
the same, we can see that H is different from the
normalized graph Laplacian L [5] on the whole network
as long as there is one type of objects linking to other
objects via multiple types of relationships.1

4.2.2 Closed form solution.
It is easy to check that Lii is positive semi-definite,
and so is Hii. We now show that Lij is also positive
semi-definite.

Proof: Recall that Dij,pp =
∑nj

q=1 Rij,pq and Rij =

RT
ji, we define:

L̂ij =

[
Dij −Rij

−Rji Dji

]
=

[
Dij 0

0 Dji

]
−
[

0 Rij

Rji 0

]
= D̂ − Ŵ

It can be observed that L̂ij has the same form
as the graph Laplacian [5], where D̂ is a diagonal
matrix whose entries are column (or row, since Ŵ is
symmetric) sums of Ŵ. So L̂ij is positive semi-definite.
Hence

Lij =

[
Dij 0

0 Dji

]−1/2

L̂ij

[
Dij 0

0 Dji

]−1/2

is positive semi-definite.
In this way, Hij is positive semi-definite. We further

check the Hessian matrix of the objective function (3),
which is easy to derive from equation (4):

H
(
J(f (k)1 , . . . , f (k)m )

)
= 2H + 2ααα

H is the weighted summation of Hii and Hij , which
is also positive semi-definite. Since αi > 0 for all
i, we conclude that H

(
J(f (k)1 , . . . , f (k)m )

)
is positive

definite. Therefore, the objective function (3) is strictly
convex. The unique global minimum is obtained by
differentiating (3) with respect to each (f (k)i )T :

∂J

∂(f (k)i )T
=

m∑
j=1,j ̸=i

λij(2f(k)i − 2Sijf(k)j )

+4λiiLiif
(k)
i + 2αi(f

(k)
i − y(k)

i ) (5)

1. If a network has only two types of objects X1 and X2, and
only one type of relationship R12, then H reduces to λ12L.
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and letting ∂J

∂(f(k)
i )T

= 0 for all i.
Finally, we give the closed form solution by solving

the following linear equation system:

f (k)i =
(
(

m∑
j=1,j ̸=i

λij + αi)Ii + 2λiiLii

)−1

×
(
αiy

(k)
i +

m∑
j=1,j ̸=i

λijSijf (k)j

)
, i ∈ {1, . . . ,m}

It can be proven that
(
(
∑m

j=1,j ̸=i λij+αi)Ii+2λiiLii

)
is positive definite and invertible.

4.2.3 Iterative solution.
Though the closed form solution is obtained, some-
times the iterative solution is preferable. Based on
equation (5), we derive the iterative form of our
algorithm as follows:

• Step 0: For ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . ,m},
initialize confidence estimates f (k)i (0) = y(k)

i and
t = 0.

• Step 1: Based on the current f (k)i (t), compute:

f (k)i (t+ 1)

=

∑m
j=1,j ̸=i λijSijf (k)j (t) + 2λiiSiif

(k)
i (t) + αiy

(k)
i∑m

j=1,j ̸=i λij + 2λii + αi

for ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . ,m}.
• Step 2: Repeat step 1 with t = t + 1 until con-

vergence, i.e., until f (k)∗i = f (k)i (t) do not change
much for all i.

• Step 3: For each i ∈ {1, . . . ,m}, assign the
class label to the p-th object of type Xi as
cip = argmax1≤k≤K f(k)∗ip , where f (k)∗i =

[f(k)∗i1 , . . . , f(k)∗ini
]T .

Following analysis similar to [20], the iterative algo-
rithm can be proven to converge to the closed form
solution. The iterative solution can be viewed as a
natural extension of [20], where each object iteratively
spreads label information to its neighbors until a
global stable state is achieved. At the same time,
we explicitly distinguish the semantic differences be-
tween the multi-typed links and objects by employing
different normalized relation graphs corresponding
to each type of links separately rather than a single
graph covering all the instances.

4.3 Time complexity analysis
We analyze the computational complexity of the iter-
ative solution here. Step 0 takes O(K|V |) time for ini-
tialization, where K is the number of classes and |V |
the total number of objects. At each iteration of step 1,
we need to process each link twice, once for the object
at each end of the link. And we need O(K|V |) time to
incorporate label information in αiy

(k)
i . So the time for

each iteration is O(K(|E|+|V |)), where |E| is the total

number of links in the information network. Finally,
it takes O(K|V |) time to compute the class prediction
result in step 3. Hence the total time complexity of
the iterative algorithm is O

(
NK(|E|+ |V |)

)
, where N

is the number of iterations.
The time complexity of the closed form solution is

dependent on the particular network structure. We
omit the analysis due to space limitation. In general,
the iterative solution is more computationally efficient
because it bypasses the matrix inversion operation.

After all, the classification task is done offline,
where all the objects can be classified once and the
results stored for future querying.

5 EXPERIMENTAL RESULTS

IN this section, we present an empirical study of
the effectiveness of our graph-based regularization

framework for transductive classification (denoted by
GNetClass) on the real heterogeneous information
network of DBLP2. As discussed before, we try to clas-
sify the bibliographic data into research communities,
each of which contains multi-typed objects all closely
related to the same area.

5.1 Data set
We extract a sub-network of the DBLP data set on
four areas: database, data mining, information re-
trieval and artificial intelligence, which naturally form
four classes. Five representative conferences in each
area are picked. By selecting papers published in the
20 conferences, together with the authors of these
papers and the terms that appeared in the titles of
these papers, we obtain a heterogeneous information
network that consists of four types of objects: paper,
conference, author and term. Within that heterogeneous
information network, we have three types of link
relationships: paper-conference, paper-author, and paper-
term. The final data set we used contains 14376 papers,
20 conferences, 14475 authors and 8920 terms, with a
total number of 170794 links3. By using our GNetClass
algorithm, we can label any type(s) of objects and
simultaneously classify all types of objects.

For accuracy evaluation, we manually labeled 4057
authors according to their homepages, 100 papers ac-
cording to the contents, and all 20 conferences accord-
ing to their call for papers. In the following sections,
we randomly choose a subset of labeled objects and
use their label information as prior knowledge. The
classification accuracy is evaluated by comparing with
manually labeled results on the rest of the labeled ob-
jects. Since terms are difficult to label even manually,
i.e., many terms are closely related to multiple areas,
we did not evaluate the accuracy on terms here.

2. http://www.informatik.uni-trier.de/∼ley/db/
3. The data set is available at www.cs.illinois.edu/homes/

mingji1/DBLP four area.zip for sharing and experiment repeata-
bility.
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TABLE 2
Comparison of classification accuracy on authors (%)

# of conferences labeled per area nLB(A-C-P-T) wvRN(A-C-P-T) LLGC(A-C-P-T) GNetClass(A-C-P-T)
1 26.1 63.0 67.6 70.1
2 25.2 74.1 90.8 91.4
3 27.0 82.7 90.7 91.5

TABLE 3
Comparison of classification accuracy on papers (%)

# of conferences labeled per area nLB(A-C-P-T) wvRN(A-C-P-T) LLGC(A-C-P-T) GNetClass(A-C-P-T)
1 29.0 52.0 69.0 72.0
2 32.0 65.0 83.0 85.0
3 32.0 74.0 84.0 84.0

TABLE 4
Comparison of classification accuracy on conferences (%)

# of conferences
labeled per area

nLB
(C-C)

nLB
(A-C-P-T)

wvRN
(C-C)

wvRN
(A-C-P-T)

LLGC
(C-C)

LLGC
(A-C-P-T)

GNetClass
(A-C-P-T)

1 25.0 18.8 50.0 50.0 75.0 75.0 75.0
2 50.0 41.7 83.3 41.7 83.3 83.3 83.3
3 87.5 50.0 87.5 50.0 87.5 100.0 100.0

5.2 Algorithms for comparison
We compare GNetClass with the following state-of-
the-art algorithms:

• Learning with Local and Global Consistency
(LLGC) [20]

• Weighted-vote Relational Neighbor classifier
(wvRN) [9] [10]

• Network-only Link-based Classification (nLB) [8]
[10]

LLGC is a graph-based transductive classification al-
gorithm, which is also the homogenous reduction of
GNetClass if we use the intrinsic network structure
to play the role of the affinity graph. Weighted-vote
relational neighbor classifier and link-based classifi-
cation are two popular classification algorithms on
networked data. Since local attributes/features are not
available in our problem, we use the network-only
derivative of the link-based classifier (nLB). Following
[10], nLB creates a feature vector for each node based
on neighboring information.

Note that none of the algorithms above can be di-
rectly applied to heterogeneous information networks.
In order to make all the algorithms comparable, we
can transform a heterogenous information network
into a homogeneous one in two ways: (1) disregard
the type differences between objects and treat all
of them as the same type; or (2) extract a homo-
geneous sub-network on one single type of objects,
if that object type is partially labeled. We try both
approaches in the accuracy study. The open-source
implementation of NetKit-SRL4 [10] is employed in
our experiments.

For parameter setting, since the homogeneous
LLGC algorithm just has one α and one λ, only the

4. http://www.research.rutgers.edu/∼sofmac/NetKit.html

ratio α
λ matters. The α

λ are are set by searching the grid
{0.01, 0.05, 0.1, 0.5, 1, 5, 10}, where the best results are
obtained by α

λ = 0.5. For GNetClass, we do not treat
any object/link type as particularly important here
and use the same set of parameters as LLGC for a fair
comparison, i.e. αi = 0.1, λij = 0.2, ∀i, j ∈ {1, . . . ,m}.

5.3 Infer from a single type of objects

In this section, we only label the object type conference
and do classification on papers, conferences, authors and
terms simultaneously. Since prior knowledge is given
on conferences, the results on authors and papers
of wvRN, nLB and LLGC can only be obtained by
disregarding the type differences between objects and
links, denoted by (A-C-P-T). While classifying con-
ferences, we also tried constructing a homogeneous
conference-conference (C-C) sub-network in different
ways. The best results shown are given by linking
two conferences if an author publishes papers in
both of them, with the weight being the number of
common authors shared. Note that the transformation
encodes link relationships of both paper-conference and
paper-author. We show the classification accuracy on
authors, papers and conferences in Tables 2, 3 and 4,
respectively.

When classifying conferences, GNetClass performs
slightly better than LLGC, wvRN and nLB on the
homogeneous conference-conference sub-network (C-C).
As the number of labeled conferences increases, the
difference between these algorithms becomes smaller.
LLGC on the whole network (A-C-P-T) performs com-
parably to GNetClass. One possible reason for this
might be that the links connected with conferences are
relatively dense and contain rich information, making
it easy for algorithms to classify conferences correctly.
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TABLE 5
Comparison of classification accuracy on authors (%)

(a%, p%) of authors
and papers labeled

nLB
(A-A)

nLB
(A-C-P-T)

wvRN
(A-A)

wvRN
(A-C-P-T)

LLGC
(A-A)

LLGC
(A-C-P-T)

GNetClass
(A-C-P-T)

(0.1%, 0.1%) 25.4 26.0 40.8 34.1 41.4 61.3 82.9
(0.2%, 0.2%) 28.3 26.0 46.0 41.2 44.7 62.2 83.4
(0.3%, 0.3%) 28.4 27.4 48.6 42.5 48.8 65.7 86.7
(0.4%, 0.4%) 30.7 26.7 46.3 45.6 48.7 66.0 87.2
(0.5%, 0.5%) 29.8 27.3 49.0 51.4 50.6 68.9 87.5

TABLE 6
Comparison of classification accuracy on papers (%)

(a%, p%) of authors
and papers labeled

nLB
(P-P)

nLB
(A-C-P-T)

wvRN
(P-P)

wvRN
(A-C-P-T)

LLGC
(P-P)

LLGC
(A-C-P-T)

GNetClass
(A-C-P-T)

(0.1%, 0.1%) 49.8 31.5 62.0 42.0 67.2 62.7 79.2
(0.2%, 0.2%) 73.1 40.3 71.7 49.7 72.8 65.5 83.5
(0.3%, 0.3%) 77.9 35.4 77.9 54.3 76.8 66.6 83.2
(0.4%, 0.4%) 79.1 38.6 78.1 54.4 77.9 70.5 83.7
(0.5%, 0.5%) 80.7 39.3 77.9 53.5 79.0 73.5 84.1

TABLE 7
Comparison of classification accuracy on conferences (%)

(a%, p%) of authors
and papers labeled

nLB
(A-C-P-T)

wvRN
(A-C-P-T)

LLGC
(A-C-P-T)

GNetClass
(A-C-P-T)

(0.1%, 0.1%) 25.5 43.5 79.0 81.0
(0.2%, 0.2%) 22.5 56.0 83.5 85.0
(0.3%, 0.3%) 25.0 59.0 87.0 87.0
(0.4%, 0.4%) 25.0 57.0 86.5 89.5
(0.5%, 0.5%) 25.0 68.0 90.0 94.0

When the entire heterogeneous information net-
work (A-C-P-T) is taken into consideration, the task
actually becomes more challenging, because the total
number of objects rises to 14376(paper) + 20(conf) +
14475(author) + 8920(term) = 37791, out of which
at most 4 × 3(conf)/37791 × 100% = 0.03% objects
are labeled. Similar results have been reported [10]
that when the percentage of labeled objects is less
than 20%, the classification accuracy can drop below
random guess (here 25%). In this way, nLB performs
less well due to the lack of labels. And increasing
the label ratio from 0.01% to 0.03% does not really
improve the prediction accuracy of nLB. Overall,
GNetClass performs the best when classifying authors
and papers, which are more difficult tasks due to the
sparse links. Although the parameters for different
types of objects and links are set the same, i.e., we
treat all the types as equally important, and labels
are given on only one type of objects, GNetClass still
outperforms its homogeneous reduction (LLGC) by
transferring the label information to other types of
objects in a more effective way.

5.4 Infer from multiple types of objects

In a real heterogeneous information network, a user
may have prior knowledge for multiple types of
objects rather than a single type. Therefore, here
we label both authors and papers to test the perfor-

mance of learning from multi-typed labels. In or-
der to address the label scarcity problem, we ran-
domly choose (a%, p%) = [(0.1%, 0.1%), (0.2%, 0.2%),
. . . , (0.5%, 0.5%)] of authors and papers, and use their
label information for transductive classification. For
each given (a%, p%), we average the results over 10
random selections. Note that the very small percent-
age of labeled objects here are likely to be discon-
nected, so we may even not be able to extract a fully
labeled sub-network for training, making many state-
of-the-art algorithms inapplicable.

As label information is given on authors and pa-
pers, the results on conferences of wvRN, nLB and
LLGC can only be obtained by disregarding the type
differences between objects and links, denoted by (A-
C-P-T). While classifying authors and papers, we also
tried constructing homogeneous author-author (A-A)
and paper-paper (P-P) sub-networks in different ways,
where the best results presented for authors are given
by the co-author network, and the best results for
papers are generated by linking two papers if they
are published in the same conference. We show the
classification accuracy on authors, papers and confer-
ences in Tables 5, 6 and 7, respectively.

When classifying authors and papers, it is inter-
esting to notice that the performances of wvRN and
nLB on the author-author and paper-paper sub-networks
are better than working on the whole heterogeneous
information network, verifying the importance of ho-
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Fig. 2. Model Selection when (0.5%, 0.5%) of authors and papers are labeled
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(a) Varying αa
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(c) Varying λpa

mogeneousness in such homogeneous relational clas-
sifiers. However, the transformation from the origi-
nal heterogeneous network to the homogeneous sub-
network causes some information loss, as discussed
before. And only one type of label information can
be used in the homogeneous sub-network, even if
the prior knowledge of another type of objects is
available.

When the entire heterogeneous information net-
work (A-C-P-T) is taken into consideration, the task
actually becomes more challenging, since the percent-
age of labeled objects is at most (14475 (authors) +
14376 (papers)) × 0.5%/37791 = 0.4%. Similar results
have been reported [10] that when the percentage
of labeled objects is less than 20%, the classification
accuracy can drop below random guess (here 25%).
Therefore, wvRN and nLB perform less well due
to the lack of labels. And increasing the label ratio
from 0.1% to 0.5% does not make a big difference in
improving the accuracy of nLB.

Overall, GNetClass performs the best on all types
of objects via learning from labels on both authors
and papers. Even though the parameters for all types
of objects and links are set the same, GNetClass still
outperforms its homogeneous reduction, LLGC, by
preserving consistency on each subgraph correspond-
ing to each type of links separately and minimizing
the aggregated error, thus modeling the heterogenous
network structure in a more organized way.

5.5 Model selection

The αi and λij are essential parameters in GNetClass
which control the relative importance of different
terms. We empirically set all the αi as 0.1, and all the
λij as 0.2 in the previous experiments. In this subsec-
tion, we try to study the impact of parameters on the
performance of GNetClass when labels are given on
authors and papers. In that scenario, the αi associated
with authors (denoted by αa) and papers (denoted by
αp), as well as the λij associated with the author-paper

relationship (denoted by λpa) are empirically more
important than other parameters. So we fix all the
other parameters and let αa, αp and λpa vary. We also
change the α and λ in LLGC accordingly. Figure 2
shows the average classification accuracy on three
types of objects (author, paper, conference) as a func-
tion of the parameters, with (a%, p%) = (0.5%, 0.5%)
authors and papers labeled.

It can be observed that over a large range of
parameters, GNetClass achieves significantly better
performance than all the other algorithms, including
its homogeneous reduction, LLGC, with the param-
eters varying the same way. It is interesting to note
that the accuracy curve of αa is different from that
of αp, indicating that authors and papers do play
different roles in the classification process. According
to the figure, it is better to set αa smaller than other
αi(= 0.1). This is because many authors may work
in several areas concurrently, therefore assigning an
author strictly to one major area as prior knowledge
is not very accurate. So αa can be decreased a little to
model the distrust on the labeled authors. In contrast,
increasing αp a little can improve the performance,
as the area of one paper is usually accurate. Setting
λpa larger than other λij(= 0.2) also improves the ac-
curacy, as increasing λpa can enhance the knowledge
propagation between the two types of labeled data,
which is beneficial. Overall, the parameter selection
will not critically affect the classification accuracy in
GNetClass.

6 CONCLUSIONS

IN this paper, we develop a novel graph-based reg-
ularization framework to address the transductive

classification problem on heterogeneous information
networks. We propose that different types of objects
and links should be treated separately due to different
semantic meanings, which is then proved by both
theory and practice. By applying graph regulariza-
tion to preserve consistency over each relation graph
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corresponding to each type of links separately and
minimizing the aggregated error, we make full use of
the multi-typed link information to predict the class
label for each object. In this way, our framework can
be generally applied to heterogeneous information
networks with an arbitrary schema consisting of a
number of object/link types. Experiments on the real
DBLP data set illustrate the superiority of our method
over existing algorithms. Given a limited amount of
labels on different types of objects, we can do qualified
classification on all types of objects simultaneously.
This empirically shows that knowledge can propagate
through links effectively across the whole intercon-
nected network.

The presented framework classifies the unlabeled
data by labeling some randomly selected objects.
However, the quality of labels can significantly influ-
ence the classification results, as observed in many
past studies. In the future, we plan to automatically
detect the most informative objects, which can lead to
better classification quality if they are labeled. Objects
that will potentially have high ranks or lie in the
centrality of sub-networks might be good candidates.
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