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Abstract. We consider the verification of parameterized Boolean pro-
grams— abstractions of shared-memory concurrent programs with an
unbounded number of threads. We propose that such programs can be
model-checked by iteratively considering the program under k-round
schedules, for increasing values of k, using a novel compositional con-
struct called linear interfaces that summarize the effect of a block of
threads in a k-round schedule. We also develop a game-theoretic sound
technique to show that k rounds of schedule suffice to explore the entire
search-space, which allows us to prove a parameterized program entirely
correct. We implement a symbolic model-checker, and report on exper-
iments verifying parameterized predicate abstractions of Linux device
drivers interacting with a kernel to show the efficacy of our technique.

1 Introduction

Parameterized concurrent programs are concurrent programs with an unbounded
number of threads, executing similar code (or code chosen from a finite set of
programs). In the model-checking literature, parameterized programs have been
heavily investigated (see section of related work), as they are a natural extension
of concurrent systems, and a very relevant model for communication protocols
and distributed systems. Model-checking parameterized programs, even when
the data domain is finite, is, in general, undecidable.

In this paper, we propose a new technique to verify parameterized finite-
data-domain programs, or parameterized Boolean programs. The primary idea
is to iterate over k-round schedules of the parameterized program, for increasing
values of k, and detect termination by proving that all reachable configurations
have been reached at the k-th round, for some k.

More precisely, we work through phases, each phase for an increasing value
of k, and model-check if the parameterized program can reach the error state,
for some instantiation of n threads and in some k-round schedule. This task,
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though an under-approximation of the reachable state-space, is challenging, as
the number of threads is not fixed. We develop a novel construct, called linear
interfaces, that summarizes the effect of an arbitrary block of threads in a k-
round schedule. Linear-interfaces (as opposed to general interfaces), capture the
effect of a block of threads along a single run that context-switches into and out
of the block.

The lack of branching information and the finite description of linear inter-
faces helps us to build a compositional framework to search the state space, that
combines linear interfaces without blow-up. We develop a fairly intricate algo-
rithm that uses linear interfaces for blocks of threads scheduled at the right end
of each round (right-blocks), to ensure that we never leave the set of reachable
states in constructing linear interfaces. Further, the algorithm can be captured
as a fixed-point computation over an appropriate signature, and hence naturally
yields to symbolic BDD-based methods.

Our second contribution is an adequacy check that tries to prove that all
reachable states of a parameterized program are already reached under some
k-round schedule. This check, which is sound but not complete, is formulated as
a two-player reachability game on an (implicitly defined) graph. Intuitively, Eve
(player 0) aims to show that there is a global state reachable in the (k + 1)-th
round that is not reachable in the k-th round, and Adam (player 1) aims to
disprove this. The game works by Eve declaring a global state, by declaring one
at a time the local states on each thread, and Adam responds by reaching the
same states using only k rounds. If Adam has a winning strategy (and hence Eve
has none), then this proves that every global state reachable in the (k + 1)-th
round is already reachable in the k-th round. Thus, we can stop computing for
higher values of k and declare the program correct. The idea of formulating the
check as a game is a technical novelty, and is used to declare a state that involves
an arbitrary large number of threads step by step (she cannot very well declare
the global state in one stroke as then the game-graph will no longer be finite).
However, the fact that Eve declares the global state one thread at a time can
give her an advantage in the game, and if Eve has a winning strategy, we cannot
conclude that a configuration is reachable in the (k +1)-th round and not in the
k-th round. Hence our adequacy check is sound but incomplete. The game, and
finding whether Adam has a winning strategy (i.e. solving the game), can also
be formulated and computed symbolically.

The idea of slicing the reachable state-space in terms of the number of rounds
is non-traditional (classic approaches would induct over the number of threads)
and is motivated by recent work on slicing the state-spaces of concurrent pro-
grams using a bounded number of context switches. Bounded context-switching
is motivated by the belief that most errors (and, in fact, most reachable states)
will be already reachable in a few number of rounds [20]. Also, from an algorith-
mic perspective, model-checking under k-round schedules is decidable and can
be achieved using, at any point, only one copy of the local state of a thread, and
O(k) copies of the shared variables.
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Our work argues that the above can be exploited also for parameterized
systems, thus obtaining an effective decidable way of exploring search spaces.
Moreover, our adequacy check, which is entirely novel, can verify (soundly) that
searching beyond k-round schedules is useless, and hence terminate the search,
proving the parameterized program correct for any number of threads and any
schedule. We emphasize that the completeness check closely follows and relies
on the bounded-round schedule reachability algorithm.

While several approaches in the literature have explored bounded context-
switching as an under-approximation to find errors, to our knowledge ours is
the first to use this under-approximation to prove that the program is in fact
entirely correct. Our adequacy check works for parameterized programs, but no
similar check is known even for concurrent programs with finitely many threads.
We thus believe that the analysis of such programs would benefit from using it.

We report on a symbolic BDD-based implementation of both the k-round
model-checking for parameterized programs as well as the k-round adequacy
check. Our implementation is a succinct formulation of the algorithms using
fixed-points, and we use the Getafix framework [13] that we have developed
recently, to implement our algorithm by simply writing fixed-point equations.

We report on using our model-checker to verify a large suite of Boolean pa-
rameterized programs obtained from the DDVerify tool, that extracts Boolean
models of Linux device drivers and the OS kernel, using predicate abstraction, in
order to check them against rules of kernel API usage (similar to SLAM, which
is for Windows drivers). Our parameterized setting models an arbitrary number
of these drivers working with the OS. We report on experiments performed on
about 8500 programs and properties, and show that our tool can effectively find
reachable error-states, and furthermore prove that more than 80% of them are
entirely correct, using the adequacy check.

In summary, our theoretical and experimental results suggest a new technique
for verifying parameterized programs: to effectively under-approximate them
using a few round schedules (but with arbitrary number of threads), summarized
and analyzed using linear interfaces, and build effective techniques to prove a
few rounds suffice to reach the entire reachable state-space.

Details of the implementation of the idea presented in this paper is at the
Getafix website: http://www.cs.uiuc.edu/∼madhu/getafix.

Related work. Compositional verification using interfaces for modules has been
investigated before: e.g. the work in [4] computes interfaces for modules using
learning for compositional verification. However, these interfaces are modeled
as finite transition systems, and will not help in verifying unboundedly many
threads as the interfaces, when composed, will keep increasing in size.

The idea of exploring search-spaces of concurrent programs with finitely many
threads, using a small number of context-switches for finding bugs has been well
studied recently [20, 17, 19, 21, 16, 13, 14]. The Chess tool from Microsoft es-
pouses this philosophy by testing concurrent programs by systematically choos-
ing schedules with a small number of context-switches/pre-emptions.
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A recent paper [1] proposes a (theoretical) solution to the model-checking
problem of reachability in concurrent programs with dynamic creation of threads,
where a thread is context-switched into only a bounded number of times. This
dynamic thread creation can model the unboundedly many threads in our set-
ting. However, dynamic thread creation requires keeping track of the number
of threads that are in a local state, even under bounded switching. The paper
in fact shows 2-way reductions between this reachability problem and Petri-net
coverability, establishing Expspace-completeness. In contrast, it follows from
our fixed-point formulation that the model-checking problem in our setting is
Pspace-complete. More importantly, our fixed-point formulation actually yields
a practical symbolic BDD-based solution, while it is not clear how to build a sym-
bolic model-checker using the Petri-net reduction given in [1] (the paper does
not report any implementation or experiments).

There is a rich history of verifying parameterized asynchronously commu-
nicating concurrent programs, especially motivated by the verification of dis-
tributed protocols: sample research includes network invariants (see [12] and
references therein) and its abstractions [3, 10, 6]; regular model-checking [11],
using small-model theorems [7]; split invariants followed by abstractions based
on this invariant and model-checking [5]. Symmetry in replicated concurrent
processes [8] has been exploited in the Murϕ tool [10].

Approaches for verifying several replicated components (though finite) have
used counter abstraction [18], and recent work has used counter abstraction
combined with cartesian representations of local and global state in order to
verify a fixed number of Linux device drivers working in paralell [2]. The model-
checking work we report in this paper handles the same device drivers but with
an unbounded number of them working in parallel and restricted to a bounded
number of round schedules.

Predicate abstraction for parameterized systems have also been investigated
where the predicates capture global invariants with index variables [15]; methods
using abstract-interpretation techniques over standard abstraction domains have
also been investigated [9].

2 Parameterized Boolean programs

We are interested in concurrent programs composed of several concurrent pro-
cesses, each executing on possibly unboundedly many threads, with variables
ranging only over the Boolean domain (parameterized programs). All threads
run in parallel and share a fixed number of variables.

Each parameterized program consists of a sequential block of statements
init, where the shared variables are initialized, and a list of concurrent processes.
Each process is essentially a sequential program (namely, a Boolean program)
with explicit syntax for nondeterminism and (recursive) function calls, along
with the possibility of declaring sets of statements to be executed atomically.
Functions are all call-by-value. Variables can be scoped locally to a function,
globally to a process in a thread or shared amongst all processes in all threads.
The statements in a parameterized program can refer to all variables in scope.
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A parameterized program is initialized with an arbitrary finite number of
threads, each thread running a copy of one process. Dynamic creation of threads
is not allowed, but it can be modeled by having the threads in a “dormant” state
until a message from the parent thread is received.3

An execution of a parameterized program is obtained by interleaving the
behaviors of the threads which are involved in it. For a concurrent process we
assume the standard semantics of sequential programs (the request of executing
atomically a block of statements has no meaning when executing a single thread).
Formally, let P = (S, init, {Pi}

n
i=1) be a parameterized program where S is the

set of shared variables and Pi is a process, i ∈ [1, n]. We assume that each
statement of the program has a unique program counter labeling it. A thread T

of P is a copy (instance) of some Pi, i ∈ [1, n]. At any point, only one thread is
active. For any m > 0, a state of P is denoted by a tuple (map, i, s, σ1, . . . , σm)
where: (1) map : [1, m] → P is a mapping from threads T1, . . . Tm to processes,
(2) the currently active thread is Ti, i ∈ [1, m], (3) s is a valuation of the shared
variables, and (4) for each j ∈ [1, m], σj is a local state of Tj . Observe that each
such σj is composed of a valuation of the program counter, and of the local and
global variables of the corresponding process, along with a call-stack of local
variable valuations and program counters to model function calls.

At any state (map, i, s, σ1, . . . , σm), the valuation of the shared variables s is
referred to as the shared state. A localized state is the view of the state by the
current process, i.e. it is (σ̂i, s), where σ̂i is the component of σi that defines the
valuation of local and global variables, and the local pc (but not the call-stack),
and s is the valuation of the shared variables in scope. Note that when a thread
is not scheduled, its local state does not change.

The interleaved semantics of parameterized programs is given in the obvious
way. We start with an arbitrary state, and execute the statements of init to
prepare the initial shared state of the program, after which the threads become
active. Given a state (map, i, ν, σ1, . . . , σm), it can either fire a transition of
the process at thread Ti (i.e., of process map(i)), updating its local state and
shared variables, or context-switch to a different active thread by changing i to
a different thread-index, provided that in Ti we are not in a block of sequential
statements to be executed atomically.

Reachability. Given a parameterized program P = (S, init, {Pi}
n
i=1) and a

target program counter pc, the reachability problem asks whether there exist an
integer m > 0 and an execution of P that reaches a state (map, i, ν, σ1, . . . , σm)
such that pc is the program counter of σi for some i ∈ [1, m]. Since two threads
communicating through a finite shared memory suffice to simulate a Turing ma-
chine, this problem is clearly undecidable. Here we also consider the reachability
under bounded-round schedules. For threads T1, . . . , Tm, a k-round schedule of
T1, . . . , Tm is a schedule that, for some ordering of such threads, activates them
in k rounds, where in each round each thread is scheduled (for any number of
events) according to this order. Observe that, restricting to executions under any

3 Note: in this scheme, each thread creation causes a context-switch; true thread cre-
ation, without paying such cost (like in [1]), cannot be modeled in our framework.
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k-round schedule does not place any bound on the number of threads which are
involved. Given a k ∈ N, the reachability problem under bounded-round schedules
is the reachability problem restricted to consider only executions under k-round
schedules.

3 Linear interfaces

We now introduce the concept of linear interface, that captures the effect a block
of threads has on the shared state, when involved in an execution of a k-round
schedule.

In the rest of the paper, we fix a parameterized programP = (S, init, {Pi}
n
i=1)

and a bound k > 0 on the number of rounds. We also use the notation u to refer
to a tuple (u1, . . . , uk) of shared states of P .

A linear interface of length k is a pair (u, v) of tuples of k shared states, such
that there is an execution of some ordered block of threads T1, . . . , Tm of P where
in k rounds, for i = 1, . . . , k, when starting the first thread in the shared state
ui, the round ends in state vi. Note that this execution within the block must
preserve the local state of threads across consecutive rounds. In the following,
we will often refer to u as the input and v as the output of (u, v).

Formally, we have the following definition (illustrated by Figure 1).

Definition 1. (Linear interface) Let u = (u1, . . . , uk) and v = (v1, . . . , vk)
be tuples of k shared states of a parameterized program P (with processes P ).
The pair (u, v) is a linear interface of P of length k if there is some number of
threads m ∈ N, an assignment of threads to processes map : [1, m] → P and
states s

j
i = (map, i, x

j
i , σ

i,j
1 , . . . , σi,j

m ) and t
j
i = (map, i, y

j
i , γ

i,j
1 , . . . , γi,j

m ) of P for
i ∈ [1, m] and j ∈ [1, k], such that, for each i ∈ [1, m] and j ∈ [1, k]:

– x
j
1 = uj and yj

m = vj ;

– t
j
i is reachable from s

j
i using only local transitions of process map(i);

– σ
i,1
i is an initial local state for process map(i);

– σ
i,j+1
i = γ

i,j
i except when j = k (local states are preserved across rounds);

– x
j
i+1 = y

j
i , except when i = k (shared states are preserved across context-

switches of a single round);
– (tji , s

j
i+1), except when i = k, is a context-switch.

When m = 1, (u, v) is also called a thread linear interface. ⊓⊔

Note that the definition of a linear interface (u, v) places no restriction on
the relation between vj and uj+1— all that we require is that the block of
threads must take u as input and compute v in the k rounds, preserving the
local configuration of threads between rounds.

Linear interfaces compose. Let I = (u, v) and I ′ = (u′, v′) be two linear
interfaces of length k. If the output of I matches the input of I ′, i.e., v = u′

holds, then the composition of I and I ′ is the pair (u, v′).

Lemma 1. The composition of linear interfaces of length k is a linear interface
of length k. Moreover, each linear interface is either a thread linear interface or
a composition of two or more thread linear interfaces. ⊓⊔
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Fig. 1. A linear interface

An execution of a parameterized program under a k-round schedule can al-
ways be seen as a composition of thread linear interfaces that form a unique
linear interface that have the following properties.

A linear interface (u, v) of length k is wrapped if vi = ui+1 for each i ∈
[1, k − 1]. A linear interface (u, v) is initial if u1, the first component of u, is an
initial shared state of P .

Thus, an execution of a parameterized program under a k-round schedule
always corresponds to a wrapped initial linear interface (u, v). Such an execution
is said to conform to (u, v). The following lemma is straightforward:

Lemma 2. Let P be a parameterized program. An execution of P is under a
k-round schedule iff it conforms to some wrapped initial linear interface of P of
length k. ⊓⊔

4 Reachability under bounded-round schedules

In this section we give a fixed-point algorithm to solve the reachability problem
under a bounded-round schedule for a parameterized program. From Lemma 2, it
follows that all that is required is to compute, for a given parameterized program,
all possible linear interfaces of size k, and then check among those that are both
initial and wrapped. Since for a fixed k the number of linear interfaces of a
program is finite, this can be computed as suggested by Lemma 1, starting with
thread linear interfaces, and then composing them till a fixed-point is reached.
However, it turns out that this does not work well in practice, as the computation
of thread linear interfaces starts from arbitrary tuples of k shared states and then
determines all the states reachable from them, and hence unreachable parts of
the state-space can be explored. Early implementation results of this algorithm
in fact failed miserably on our benchmarks. We now propose a more intricate
algorithm that ensures that linear interfaces are computed and explored only on
reachable states.

Notation: Let π be an execution of P under a k-round schedule and T1, . . . , Tm

denote a block of threads scheduled consecutively in π. We say that π covers a
linear interface (u, v) on T1, . . . , Tm if along π, ui matches the shared state on

7



TLI

(a)

− First thread −

u1

u2

u3

ui−1

ui

v1

v2

vi−1

vi

TLI′

RLI
w1

w2

wi−2

wi−1

TLI

(c)

− Forward phase −

u1

u2

ui−1

ui

v1

v2

vi−1

vi

TLI′

RLI
w1

w2

wi−1

WRLI

RLI′

(e)

− Backward phase −

TLI
u1

u2

ui

v1

v2

vi

WRLI

TLI

(b)

w1

w2

w3

wi−1

wi

u1

u2

ui−1

ui

RLI
v1

v2

vi−2

vi−1

WRLI′

TLI

(d)

w1

w2

wi−1

wi

u1

u2

ui−1

ui

RLI
v1

v2

vi−1

WRLI

WRLI′

TLI

(f)

u1

u2

ui

v1

v2

vi

RLI w1

w2

wi

WRLI

RLI′

Fig. 2. Graphical representation of the update rules of the algorithm.

context-switching into T1 and vi matches the shared state on context-switching
out of Tm in round i, for i ∈ [1, k]. Moreover, the localized state (σ, vk) of Tm,
which is visited along π when context-switching out of Tm in round k, is called
a final localized state of (u, v) in π. A right block is a block of threads scheduled
consecutively in the end of each round.

Description of the algorithm. The algorithm proceeds by computing for the
input program, linear interfaces of size 1, 2, . . . k, ensuring that each is computed
on reachable states only. In every iteration, we also compute the precise set of
linear interfaces for right blocks (right linear interfaces).

Let us now describe, intuitively, how the i-th round is explored and how
interfaces of length i are built when i > 1. We refer the reader to the diagrams
in Fig. 2. In these diagrams, boxes drawn with solid lines denote interfaces that
exist, while those with dotted lines denote new blocks that get created. Moreover,
TLI, RLI, and WRLI refer to thread-linear interfaces, right linear interfaces, and
“want blocks”. Arrows denote equality of the shared states at the endpoints.

We start the i-th round with the first thread (see Fig. 2.a). We take an initial
thread linear interface (TLI ) of length i − 1 and a right linear interface (RLI ),
still of length i− 1, which composes with TLI and such that the resulting linear
interface is both initial and wrapped. We then compute a localized state (σ, ui),
where σ is from the final localized state of TLI and ui is the shared state from
the end of the (i − 1)-th round in RLI. Using this, we can compute all possible
states which are reachable by the thread in round i, and hence compute all the
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thread linear interfaces of length i covered by a run on the first thread (Fig. 2.a).
Now the computation progresses on the second thread (see Fig. 2.b). For all the
newly reached shared states ui, we then create a want block (WRLI ′) with the
RLI ’s input, the new input ui, and the RLI ’s output, which captures our desire
that we want to continue the rest of the threads with this new input. Want
blocks are not quite linear interfaces, as they have i inputs and i − 1 outputs,
but are crucial in guiding the computation.

Next, we enter the forward phase (Fig. 2.c and 2.d), where a want-block
WRLI, a thread linear interface TLI, and a right linear interface RLI exist, and
where the inputs of WRLI and TLI match, the outputs of TLI match the input
of RLI, and the outputs of WRLI and RLI match. In this scenario, a new thread
linear interface of size i is formed from TLI (inheriting the shared state from
WRLI and the local state from TLI ) and explored locally to form new thread
linear interfaces of size i (Fig. 2.c). Further, these new thread linear interfaces
create further want blocks to further the computation (Fig. 2.d).

Want blocks can also (non-deterministically) stop when the inputs precisely
match the outputs, and create right linear interfaces (Fig. 2.e). This is the base
case of the induction capturing the formation of right linear interfaces (starting
from the last scheduled thread in each round) and starts the backward phase.
This computation takes a right linear interface RLI, combines it with a thread
linear interface TLI to the left of it, and provided a matching want block exists,
combines them to form a larger right linear interface (Fig. 2.f). These computed
right linear interfaces correspond to reachable blocks of computation (because
we have checked them against want blocks, which were in turn reachable), and
is used in the next iteration to ensure that only reachable states are explored.

Of course, the above three phases are not regulated sequentially, and are
explored arbitrarily by fixed-point computations.

Fixed-point formulation. We formally describe our algorithm as a system
of equations of the form R = Exp where Exp is a positive boolean expression
with first order quantification over relations and R is a relation which may also
appear within Exp (recursive definition of relations is admitted).

In such equations, we will use the following base relations. LocInit and ShInit
denote respectively the initial local states for each thread and the initial shared
states (computed by executing the init block). Wrap(u, v) holds true if and
only if vi = ui+1, for all i ∈ [1, k − 1]. We also use 〈 local reachability 〉 to denote
a formula expressing the clauses of a fixed-point formulation of the states that
are forward reachable using only transitions of a process. We omit the details on
this formula since it is essentially the same as for sequential programs (see [13]).

Denote with S the following system of equations:
1. TLI(i, σ, u, v) =

(i = 1 ∧ LocInit(σ) ∧ u1 = v1 ∧ (ShInit(u1) ∨ ∃w, σ′.TLI(1, σ′, w, u))) (1.1)
∨ (i > 1 ∧ ui = vi ∧ TLI(i − 1, σ, u, v) ∧ ∃w. (RLI(i − 1, v, w)

∧ ( (ShInit(u1) ∧ Wrap(u, w)) ∨ WRLI(i, u, w)))) (1.2)
∨ 〈 local reachability 〉 (1.3)
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2. WRLI(i, u, v) = i > 1 ∧ ∃σ, w.

(TLI(i, σ, w, u)∧RLI(i−1, u, v)∧(WRLI(i, w, v)∨(ShInit(w1)∧Wrap(w, v))))

3. RLI(i, u, v) = (i = 1 ∨ WRLI(i, u, v))
∧ ∃σ.(TLI(i, σ, u, v) ∨ (∃w. (TLI(i, σ, u, w) ∧ RLI(i, w, v)))

Observe that S is a system of positive equations. Thus by Tarski’s fixed-point
theorem, it has a unique least fixed-point, and the relations are well defined. The
evaluation of S is graphically described in Fig. 2.

After computing the above relations, the last step of our algorithm consists
of evaluating the formula:

ϕ ::= ∃i, σ, u, v.(1 ≤ i ≤ k) ∧ TLI(i, σ, u, v) ∧ Target(σ),
where the predicate Target(σ) holds if and only if σ corresponds to a target
program counter in the reachability query.

Correctness of the algorithm. The following lemma is crucial to prove our
algorithm correct.

Lemma 3. Let u = (u1, . . . , uk), v = (v1, . . . , vk), σ such that (σ, vi) is a local-
ized state of P, k ∈ N, and i ≤ k.

1. TLI(i, σ, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a thread linear interface covered by π and (σ, vi) is a final
localized state of (ui, vi).

2. RLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a right linear interface covered by π.

3. WRLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that T1, . . . , Tm are scheduled at the end of each round, ui is the shared
state on context-switching to T1 along π in round i, i > 1, and (ui−1, vi−1)
is a right linear interface covered by π on T1, . . . , Tm. ⊓⊔

Note that, when computing the fixed point of S, the relations TLI, RLI and
WRLI grow monotonically, and once a tuple is added, it is never removed from
the set. Thus, from the lemma, we get that in our computation, we only explore
the reachable state space of the parameterized program. Therefore, we have:

Theorem 1. Given an integer k ≥ 0, a parameterized program P and a program
counter pc, pc is reachable in P under k-round schedules if and only if the formula
ϕ is satisfiable. Moreover, while computing the least fixed-point of system S, only
reachable localized states of P are explored. ⊓⊔

5 An adequacy check: proving program correct

The algorithm to solve the reachability problem under a k-round scheduling,
given in the previous section, can be used to show a parameterized program
incorrect (when an error state is reached). However, when the algorithm’s answer
is negative (i.e., an error state is not reachable) nothing can be inferred on the
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correctness of the input program. In this section, we present an adequacy check
that attempts to make our verification scheme complete. In particular, for a
parameterized program without recursive function calls, we design a test that
gives a sufficient condition to show that the reachable states of the program under
a k-round schedule are indeed all its reachable states. Though the proposed test
is sound but incomplete, in next section, we show by reporting our experimental
results that it is indeed quite effective in practice.

Fix a parameterized program P and k ∈ N. We wish to ensure the following:
“For any state s of P , if s is reachable under a (k + 1)-round schedule then it is
also reachable under a k-round schedule” (k-rounds-suffice condition).

Note that checking this condition may be computationally hard, and hardness
mostly resides in the fact that the number of threads in the executions under k-
round schedules is a priori unbounded (and thus handling entire program states
is by itself a problem). We propose a game-theoretic algorithm that essentially
refers to portions of states which are local to threads (localized states) and keeps
summaries of the performed computation (linear interfaces), and thus does not
need to refer to the entire state of the program, but rather parses it thread-by-
thread.

In particular, we wish to define a two-player game Gk where player 0 (Eve)
selects a state of P by revealing with each move a localized state which is visited
along an execution under a (k + 1)-round schedule in round k + 1, and player
1 (Adam) attempts to match every move of Eve along an execution under the
same schedule but in round k. A typical play in Gk is as follows.

Eve starts selecting a localized state λ1 which is final for an initial thread
linear interface I1 of length k + 1 (we recall that this means that there exists a
program execution under a k-round schedule which covers I1 and context-switch
out of the first thread in round k + 1 at λ1). Then, Adam matches this move by
showing that λ1 is a final localized state of an initial thread linear interface L1

of length k. The play continues with Eve selecting a final localized state λ2 of a
thread linear interface I2 of length k + 1 such that the output of I1 matches the
input of I2. Then, Adam reacts by showing that λ2 is also a final localized state
of a thread linear interface L2 of length k such that the output of L1 matches the
input of L2. Let I ′2 be the composition of I1 and I2, and L′

2 be the composition
of L1 and L2. In the next iteration, Eve makes a selection expanding over the
next thread in the schedule the linear interface I ′2, and similarly, Adam tries to
matches this selection by expanding L′

2, and so on until Adam cannot match a
move of Eve. Then starting from this point till the end, only Eve is allowed to
move and she will keep expanding the constructed linear interface as above.

A play is winning for Eve if she can select a sequence of moves that cannot be
matched by Adam and doing so she can construct a wrapped and initial linear
interface, thus proving that the selected localized states are indeed visited in the
(k+1)-th round of an execution under a (k+1)-round schedule. Eve also wins if
Adam matches all her moves, but the linear interface she constructs is wrapped
while that by Adam is not. In all the other cases, Adam wins.

11



Technically, we can store in the states of the game the interfaces which are
constructed by the two players and thus express such winning conditions as
reachability goals. Also note, that fixing k, the size of Gk is bounded.

We can formally describe a decision algorithm to solve such a game using
equations as in Section 4. In our formulation, we model a state of the game as a
tuple of the form s = (pl , in, al , u, v, σ, x, y) where pl denotes the player which
is in control of the state (0 for Eve and 1 for Adam), in = 1 iff player pl has
not moved yet in the current play, al = 1 iff Adam is still in the play (i.e., he
has matched all Eve’s moves so far), (u, v) is the linear interface of length k + 1
constructed by Eve in the play, (σ, vk+1) is a final localized state of (u, v), and
(x, y) is the linear interface of length k constructed by Adam.

The winning conditions can be captured with a simple predicate characteriz-
ing the winning states. To solve the game, the attractor-set based algorithm can
be easily expressed using fixed points and therefore we can directly implement
it in our formalism. Due to the lack of space, we only give here the details of the
relation E -move which captures the moves of Eve (the relation for Adam being
similar).
E -move(s, s′) = ( pl = 0 ∧ x′ = x ∧ y′ = y ∧ (

(al = 1 ∧ pl ′ = 1 ∧ al ′ = 1∧
((in = 1 ∧ in ′ = 1 ∧ TLI(k + 1, σ, u′, v′) ∧ ShInit(u1)) (1)
∨ (in = 0 ∧ in ′ = 0 ∧ u′ = u ∧ TLI(k + 1, σ′, v, v′)))) (2)

∨ (al = 0 ∧ pl ′ = 0 ∧ al ′ = 0 ∧ in = 0 ∧ u′ = u ∧ TLI(k + 1, σ′, v, v′)))) (3)
In the above formula, (1) corresponds to the first move of Eve in a play, (2)

to her moves as long as Adam has matched all her previous moves, and (3) to her
moves in the remaining cases (i.e., Adam has failed to match a move by Eve).

Observe that, if we restrict to parameterized programs where only non-
recursive function calls are allowed, we can prove that if there is a winning
strategy of Adam then the k-rounds-suffice condition holds, and therefore, there
are no more reachable states to explore. However, the converse does not hold:
if Eve has a winning strategy, we cannot conclude that considering executions
under (k + 1)-round schedules will allow us to discover new reachable states of
the program. In fact, Eve could cheat by changing her selections depending on
Adam’s moves, and thus, even if a selected state is reachable within k rounds,
Adam could fail to prove it. Thus, we have the following theorem:

Theorem 2. Let P a parameterized program without recursive function calls.
For all k ∈ N, if the adequacy check holds then the k-rounds-suffice condition
holds, and therefore all reachable states of P are visited in executions under k-
round schedules. ⊓⊔

6 Implementation and experiments

Symbolic model-checker: We implemented a symbolic BDD-based model-
checker for reachability in parameterized programs in a bounded number of
rounds, as well as a symbolic adequacy checker that checks (soundly) whether k-
round schedules reach all reachable states, using the tool framework Getafix [13]
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2 thread Parameterized Analysis Parameterized Analysis
Analysis 4 rounds unbounded rounds

Proved Not proved
#Bool. Reach- Unreach- Reachable Unreach- Time- Unreach- unreachable Time-
pgms. able able able out able (Pl.0 wins) out

i8xx tco 765 460 305 314 (+13) 218 220 204 0 14
ib700wdt 492 330 162 208 (+13) 112 159 106 0 6
machzwd 568 341 227 274 (+23) 158 113 56 87 15
mixcomwd 429 276 153 213 (+23) 102 91 100 0 2
pcwd 256 171 85 171 ( +0) 85 0 81 0 4
sbc60xxwdt 425 276 149 174 (+23) 94 134 92 0 2
sc1200wdt 491 299 192 200 (+13) 135 143 135 0 0
sc520 wdt 438 272 166 173 (+23) 104 138 15 89 0
smsc37b787 wdt 719 428 291 280 (+13) 140 286 140 0 0
w83877f wdt 558 362 196 219 (+23) 103 213 15 88 0
w83977f wdt 850 495 355 366 (+13) 126 345 125 0 1
wdt977 799 486 313 338 (+13) 127 321 125 0 2
wdt 533 348 185 221 (+17) 107 188 105 0 2
wdt pci 892 800 92 378 (+23) 13 478 10 3 0

Total 8215 5344 2871 3529 (+233) 1624 2829 1309 267 48

Table 1. Experimental results.

that we have recently developed. Getafix allows writing BDD-based model-
checkers using a high-level fixed-point calculus, without having to write low-level
code. Getafix translates Boolean programs to logical formulas, implements
heuristics for BDD orderings, and furnishes the model-checker designer with
templates that capture the semantics of the program. High-level model-checking
algorithms written in a fixed-point calculus get implemented by Getafix using
the symbolic fixed-point model-checker called Mucke. We refer the reader to
the paper [13] for details on Getafix.

We adapted Getafix to translate parameterized Boolean programs and han-
dle DDVerify benchmarks. The algorithms for reachability in k rounds were
implemented using the fixed-point formulas outlined in this paper. The adequacy
check was also implemented using fixed-points: we captured the moves of player 0
and player 1 symbolically, and wrote a fixed-point backward attractor-based al-
gorithm to solve the reachability game.

Experiments on device drivers: We subject our parameterized model-checker
to a suite of Boolean programs derived from the DDVerify tool [22], which ab-
stracts Boolean programs from Linux device drivers, and also provides a fairly
accurate Boolean model of the OS kernel. The model of driver is obtained using
predicate abstraction, and appropriate translations of Spinlocks, timer functions,
and service routines that it may use. The kernel program models kernel code as
well as other OS related behavior such as interrupts, etc. using non-determinism.

Each DDVerify benchmark consists of a kernel module that interacts with
a device driver. We obtained our concurrent models by taking one copy of the
kernel module along with an unbounded number of copies of the device driver
module. We subject our tool to about 8000 Boolean abstractions of 14 device
drivers, abstracted to verify several (hundreds of) safety properties, at various
levels of refinement.
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The results are summarized in Table 1. The “2-thread analysis” columns
report the number of Boolean programs that had an error-state reachable and
those that did not, when considering just two threads, one modeling the OS and
one modeling the driver (these results are identical to DDVerify).

We analyzed the programs using our parameterized analysis tool and searched
the space reached within 4-round schedules for errors; the results are reported in
the second set of columns. Note that even when an error state is reachable in the
2-thread analysis, it may not be reachable in the parameterized analysis (as the
latter considers only a limited number of rounds); however this never occurred in
our experiments. Similarly, note that when an error state is unreachable in the
2-thread analysis, it may be reachable in the parameterized analysis (as the the
latter considers an unbounded number of threads); this did happen in several
examples, and is noted in parenthesis with a +-sign in the “Reach” column of
the parameterized analysis (e.g., for the first set of drivers, the error state was
reachable in 13 programs in the parameterized setting within 4 rounds, but not
in the 2-thread setting). The parameterized analysis is computationally more
expensive, and the model-checker ran out of resources (memory or time-out at
30sec) for the programs reported in the “Timeout” column.

The final set of columns report results for the adequacy check based on the
reachability game on those programs that were unreachable in 4 rounds. The
first column reports the number of programs our tool was able to prove entirely
correct (any number of rounds and threads); the second column reports the
number of programs that were not proved unreachable (this does not mean that
the error state is reachable, as our adequacy check is not complete); and the last
column gives the programs on which the tool ran out of resources (out of memory
or reached time-out at 30sec). For example, in the first set of drivers, out of the
218 programs in which the error state was not reachable in 4 rounds, our tool
was able to prove 204 of them completely correct, and 14 of them timed-out.

Observations from experiments: Several observations are in order:

– All error-states reachable in the 2-thread instantiation were found within
4 rounds in the parameterized system. This experimentally supports the
conjecture that error-states are often reachable within a few rounds, even on
Boolean program abstractions.

– There are several programs (∼ 225) where a predicate abstraction that can
prove a driver correct when working alone with the OS is not sufficient to
prove it correct in the parameterized setting.

– Most interestingly, most programs (∼ 1300 out of 1600, or ∼ 80%), when
the error state was not reachable in 4 rounds, were proved entirely correct
by our technique. In fact, our adequacy check was extremely effective in 11
of the 14 suites; 3 suites however have a significant percentage of programs
that we were unable to prove entirely correct.

Note that a sound predicate abstraction followed by a successful parameterized
verification proves the original driver correct for any number of threads and
schedule; our tool achieves this for about 1300 instances.
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Appendix

A Proof of Lemma 3

Lemma 3. Let u = (u1, . . . , uk), v = (v1, . . . , vk), σ such that (σ, vi) is a localized
state of P, k ∈ N, and i ≤ k.

1. TLI(i, σ, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a thread linear interface covered by π and (σ, vi) is a final
localized state of (ui, vi).

2. RLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a right linear interface covered by π.

3. WRLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that T1, . . . , Tm are scheduled at the end of each round, ui is the shared
state on context-switching to T1 along π in round i, i > 1, and (ui−1, vi−1)
is a right linear interface covered by π on T1, . . . , Tm.

Proof. The “only if” direction of the lemma is proved by induction on the number
of steps taken by the evaluation of the fixed-point equations defining TLI, RLI,

and WRLI. In the first iteration, only predicate TLI holds true for all tuples
(1, σ1, u, v) such that LocInit(σ1) holds, u1 = v1, and ShInit(u1) holds. Thus, any
k-round execution π of P starting from an initial state (map, i, ν, σ1, . . . , σm) in
which all the threads do not do any move along π is such that (u1, v1) is an
initial thread linear interface of π whose final localized state is (σ1, v1).

The inductive step is case-based and here we only consider one case for WRLI.
All the other cases can be shown similarly. Suppose that WRLI(i, u, v) is true
due to the fact that TLI(i, σ, w, u), RLI(i − 1, u, v), and WRLI(i, w, v) all hold
true, for some σ and w. By the inductive hypothesis, we consider (1) a run π′

witnessed by WRLI(i, w, v) which can be decomposed into two linear interfaces
L = (zi, wi) which is initial and R′ = (wi, vi), (2) the thread linear interface
(wi, ui) whose existence is due to TLI(i, σ, w, u) that holds true, and (3) the right
linear interface R = (ui−1, vi−1) which is guaranteed to exist by th! e fact that
RLI(i−1, u, v) holds true. Let R′′ be the pair (ui, v

′

i) which extend R as follows:
ui is the same as ui−1 except that in the last position contains ui, in similar
way let vi be the extension of v′i−1 having ui as last component. Intuitively, R′′

represent the same computation block of R except the in the last round all the
threads covered by R do not do any move and hence propagate the shared state
ui along the computation on round i in R′′. Since L, T and R′′ compose in this
order, the resulting linear interface B wraps and is also initial. Thus, by Lemma
2 applied to the linear interface B there is an execution π of P . Notice that π′

satisfies condition 3 of the lemma, by picking T1, . . . Tm as a sequence of threads
covered by R′′.
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Here we prove the “if” direction. The proof is by induction. For the first
assertion we indeed prove a stronger property: if there is an execution π of P
under a k-round schedule such that (ui, vi) is a thread linear interface covered
by π and (σ, v) is a final localized state of (ui, v

′

i) where v′i−1 = vi−1 and v′i = v,
then TLI (i, σ, u, v′) holds. In the following, we will refer to this property as
assertion 1, and as assertion 2 and 3 respectively the “if” part of the properties
stated respectively in part 2 and 3 of the lemma.

We fix a k-round execution π and let T 1, . . . , T h be the thread schedule in
each round of π.

In the induction, π is explored by increasing round indexes, and within each
round, in two phases: first from T 1 through T h (to show assertions 1 and 3), and
then from T h through T 1 (to show assertion 2).

The base case corresponds to the start of π. Let (map, 1, ν, σ1, . . . , σh) be the
first state in π. Since clearly LocInit(σ1) and ShInit(ν) both hold, then for part
(1.1) of the definition of TLI, we get that TLI(1, σ1, u, u) also holds for u1 = ν.

The induction step has several cases: moving forwards in the execution along
a internal transition to a process (1), or across a context switch within a round (2)
or across rounds (3), or moving backwards within a round at the last scheduled
thread (4) or at any other thread (5). We observe that, in the cases correspond-
ing to the forward exploration of π, i.e., cases (1), (2) and (3), there are no new
right blocks of π which are discovered, therefore to show the induction step for
assertion 2 it is sufficient the induction hypothesis. Analogously, in the back-
ward exploration of π, the induction step for assertions 1 and 2 is by induction
hypothesis. Also, in case (1), there is no new thread linear interface of π which
is discovered, therefore assertion 3 follows from the induction hypothesis. In the
remaining cases, we reason as follows.

In case (1), for assertion 1, the induction step is ensured by part (1.3) of the
definition of TLI and on the fact that this formula refers only to tuples of TLI
which have been already computed by induction hypothesis.

Now, in the forward exploration of round i of π, consider the context switch
from state s = (map, j, ν, σ1, . . . , σm) to state s′ = (map, j + 1, ν, σ1, . . . , σm)
(case (2)). Denote with (σ, ν) and (σ′, ν) respectively the localized states at s

and s′, with (u, v) and (v, w) the thread linear interfaces covered by π respec-
tively on T j and T j+1, and with (v, z) the right linear interface covered by π on
T j+1, . . . , T h. Clearly, vi = ν holds.

If i = 1, by induction hypothesis, TLI(1, σ, u, v) holds, and by part (1.1) of
the definition of TLI, we get that TLI(1, σ′, v, v′) hold where v′1 = v1 (LocInit(σ′)
must hold since computation of thread T j+1 starts at s′ in π). (Also note that
for i = 1, the relation WRLI is not defined.) If i > 1 instead, by induction
hypothesis, TLI(i−1, σ′, v, w) and RLI(i−1, v, z) hold, and if j > 1, WRLI(i, u, z)
also holds. Observe that, if j = 1, ShInit(u1) must hold (initial shared state of
π) and zr = ur+1 for r ∈ [1, i − 1]. Therefore, from the definition of WRLI also
WRLI(i, v, z) must hold. Moreover, from TLI(i − 1, σ′, v, w), RLI(i − 1, v, z),
WRLI(i, v, z) and part (1.2) of the definition of TLI also TLI(i, v, v′) must hold,
for v′ such that v′

i−1 = wi−1 and v′i = vi.
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In case (3), consider the context switch from state s = (map, h, ν, σ1, . . . , σm)
in round i− 1 to state s′ = (map, 1, ν, σ1, . . . , σm) in round i. Denote with (σ, ν)
the localized state at s′, with (u, v) the thread linear interface covered by π on
T 1 and with (v, z) the right linear interface covered by π on T 2, . . . , T h. Clearly,
vi = ν holds. By induction hypothesis, TLI(i − 1, σ, u, v) and RLI(i − 1, v, z)
hold. Thus, since ShInit(u1) must hold (initial shared state of π) and zr = ur+1

for r ∈ [1, i−1], from part (1.2) of the definition of TLI also TLI(i, σ, u, v) holds.
(Observe, that only assertion 1 needs to be shown in this case.)

Now we consider the cases (4) and (5). Let (u, v) be the thread linear interface
covered by π on T j and (σ, vi) be a final localized state of (ui, vi). If j = h,
by induction hypothesis, TLI(i, σ, u, v) holds and if i > 1 then WRLI(i, u, v)
also holds (recall that the backwards phase follows the forwards phase in each
round). Therefore, from the definition of RLI, also RLI(i, u, v) must hold. If
j < h instead, denoting with (v, w) the right linear interface covered by π on
T j+1, . . . , T h, by induction hypothesis, TLI(i, σ, u, v) and RLI(i, v, w) both hold,
and if i > 1 then WRLI(i, v, w) also holds. Therefore, from the definition of RLI,
also RLI(i, u, w) must hold, and we are done with the “if” direction of the lemma.

⊓⊔

B Proof of Pspace-completeness

The fact that the reachability problem in our setting is in Pspace is very simple
and follows from our algorithm. We do not show it in the paper, as it makes sense
only in the explicit representation of programs as finite-state machines, while our
notation, exposition of the algorithm, the fixed-points, and the implementation
all are geared to work on programs that define state-spaces implicitly.

Here is a sketch the proof of Pspace-completeness. First, let us define the
precise problem. We are given explicit state-machines as processes with tran-
sitions of the form (s, l) → (s′, l′) which means that from shared state s, the
process in local state l can transform its local state to l′ and transform the
shared state to s′. The reachability problem is: given k (in unary), is the error
state reachable in k rounds. The fixed-point algorithm we give implements a
fixed-point of a relation over L × Sk, and is hence implementable in Pspace.
Pspace-hardness follows from a reduction of the membership problem for linear-
bounded automata (TMs with linear space) to this problem. Intuitively, we can
model the initial tape of the TM using the inputs ui to the first thread, model
one step of the TM using one thread that acts as a transducer to change the
tape by transforming the output shared variables, and the local states of a sin-
gle process help look at neighboring cells to effect the transformation correctly.
The Expspace-hardness of the model in [1], follows from the results in [1]. The
main difference between the two models is that in our model, we need to pay
a context-switch for every thread creation, while the model in [1] allows thread
creation without this price. See the section on Related Work and the footnote
on Page 4.
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