
Open Source Interface Politics: Identity, Acceptance, Trust,
and Lobbying

Roshanak Zilouchian
Moghaddam

University of Illinois
Urbana, IL

rzilouc2@illinois.edu

Kora Bongen
University of Illinois

Urbana, IL
kbongen2@illinois.edu

Michael Twidale
University of Illinois

Urbana, IL
twidale@illinois.edu

ABSTRACT
A study of the Drupal open source project shows the rather
problematic status of usability designers with respect to the
larger developer community. Issues of power, trust, and
identity arise and affect the way that usability
recommendations are acted on or ignored. A political view
of these aspects can help in interpreting the situation. We
found that making a straightforward case for a particular
interface design can be insufficient to convince developers.
Instead various additional lobbying strategies may be
employed to build up a quorum of support for the design.

Author Keywords
Open source, usability, politics, lobbying.

ACM Classification Keywords
H5.2. User Interfaces: User-centered design

INTRODUCTION
Various open source projects have made efforts to improve
the usability of their application by recruiting usability
experts. However this does not magically solve the
problem. Similar to experiences in commercial software
development, a usability expert can face challenges of
persuading the organization as a whole and software
developers in particular of the value of adopting good
usability practices. Despite the implications of the religious
and legal metaphors of “usability evangelist” or “user
advocate”, this is not simply a matter of a charismatic
individual making a compelling rational or empathic
argument and the audience being persuaded. Additionally
there are various inherently political aspects of assembling
alliances and appealing to different sub-groups’ mutual
self-interest. The case is typically not made in a moment,
but requires an ongoing series of arguments, and indeed
lobbying of others to help continually make the case. This
can be made more difficult when usability experts are not
fully accepted as equal members of the larger community.
In this paper we consider these issues in the context of the
Drupal project.

INTERFACE DESIGN IN DRUPAL
Drupal [4] is a content management platform which started

in 2000 and released as an open source project in 2001.
Anyone can contribute to the Drupal core code by
submitting a patch. A contributor opens an issue for a patch
in the issue queue (a database of bugs and feature requests),
or she can submit a patch for an open issue. The issue
queue is monitored by the community. Patches submitted to
the issue queue are peer reviewed and then either Drupal’s
founder or one of the core committers, who have write
access to the Drupal code repository, decides on including
the patch in the next version. Drupal is a developer
dominant community, but in the past four years several user
interface (UI) designers have joined including two
employed to work on Drupal.

As part of a larger study of interface design in a number of
different open source projects we interviewed seven
designers working on Drupal. One question in particular
triggered the issues we report here: “What are the main
challenges in the process of designing an open source UI?”
Initial findings from the interviews were supplemented by
studying usability related issues in the Drupal issue queue,
posts in the usability group forum, and certain Drupal
designers’ blogs. We quote from these sources below.

Most informants reported substantial barriers in getting the
ideas of usability accepted within Drupal. Many challenges
were similar to those observed in introducing usability into
commercial software development settings [2, 3]. Usability
can be misunderstood as pointless, an expensive overhead,
something that can be done at the last minute, all about
making the interface look nice, hopelessly subjective, or a
distraction from what is considered the main objective of
delivering working code with powerful functionalities.

MAKING THE CASE FOR USABILITY
In the interview most designers mentioned as a main
challenge the need to convince developers that a proposed
design is worth implementing. A Drupal designer who has
been in the community for 3 years commented: “Everybody
has an opinion on designs [...] It’s hard to keep discussions
on track, because by nature design discussions are pretty
broad in scope. [...] It’s hard to convince developers.”

Because designers do not create code, they have to persuade
a developer to implement a design: “We had to get the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4824122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

people, the developers from the community, on board with
our design approach because they were the ones who were
going to build it and if they aren’t motivated to build it, it
wouldn’t get built.”

The problem of convincing developers exists partially
because developers lack familiarity with designers’ work:
“The vast majority of people within the community don’t
have much of a history or background or kind of real
empathy for the work that designers do and the way that
they design - and the challenge is getting them to see why
what you are doing is important.”

DESIGNERS VERSUS DEVELOPERS
Unlike many open source projects which may have no
usability experts or just one, Drupal enjoys several, and
support for greater usability comes from the highest source
– the project founder. Nevertheless, problems of identity
remain, and something of an us-versus-them attitude made
visible in the use in the project of two distinct terms:
developers (those who develop code) and designers (those
who argue for usability and specify and draw interface
elements but typically do not code them).

Drupal is a developer dominant community. There are 2416
people who have contributed to Drupal modules whilst 184
people use the “usability” tag. Given the large variance in
levels of contribution, and the fact that some developers
also use the usability tag, these numbers only give a very
rough sense of relative proportions. As another indication,
one respondent claimed there were 4-5 active designers
compared to 300 developers.

Developers used to implement different functionalities for
Drupal without seriously considering their associated
usability issues. Since developers built the whole system
and contributed code to Drupal, they feel ownership over
Drupal. Although some of them accept designers as part of
the community, a lot of them do not want designers to
change or throw away the code they have implemented. A
similar situation was witnessed by Mirel in a commercial
setting, where designers were brought in from the outside
and clashed with an existing developer culture [6]. There is
also a clash with the ethos of open source development
which encourages adding your own code but has problems
with advocating the deletion of others’ code or functionality
on the grounds of usability through simplicity.

There are numerous explicit developer-designer conflicts in
the issue queue. In an issue about removing the breadcrumb
navigation and not displaying a menu, a developer wrote a
comment in which he said that he disagreed with the
proposed design change. He then adds “D7UX [the Drupal
version 7 usability experience team] are not the Drupal
community. They are missing the point on a lot of usability
issues, which are well proven. I believe that we must
improve on their design and not be stuck with their
shortsightedness.”

Many designers see cultural differences between developers
and designers as a challenge. One designer, involved in
Drupal for seven years said: “They are not much
recognizing the importance of design and there is not
enough communication.” The concern with communication
is widespread amongst designers. One subpart of that
concern is that the issue queue (the main communication
channel in Drupal) is not ideal for discussing issues about
interface design and the user experience.

One issue reported recurs in many open source projects [7]:
“One of the biggest challenges for the Drupal project is that
the people who we were designing for, were not necessary
the same as the people who were most active within the
community. … people in the community had been
designing for themselves for a long time and that had
resulted in an interface that had become pretty much
unusable to anybody else.”

Designers and developers can seem to represent different
constituencies - designers often speaking on behalf of
novice or less technically sophisticated users (or intended
potential users) and developers speaking on behalf of power
users (very much like themselves) When this clash leads to
contradictory design implications we see discussions such
as this: “For newcomers I assume X's proposal suits them
well, but for advanced users, like Drupal developers (which
is 80% of the users who visit the module page), this surely
isn't preferable.” Resolution in such circumstances may
revolve around relative weighting of the importance of the
issue. In this case the degree to which the two
constituencies would use that interface element is used in
the argument.

TALK IS SILVER, CODE IS GOLD
Within a discussion about the use of high and low fidelity
prototypes to communicate with developers, one designer
noted: “Historically there is a saying in Drupal community
that talk is silver, code is gold meaning, you know, show
me your code first and then we start talking [...] whatever
improvements you try to make the best way to
communicate those ideas is to provide actual code.”

This slogan is widely quoted in the Drupal community. As
such it emphasizes the problematic status of designers who
just talk and do not code. They are using a different,
devalued currency and so can struggle to make their case
heard amongst competing arguments for code ideas from
actual coders.

A Drupal developer wrote in his blog: “The developer
writes the code and ultimately gets a piece of functionality,
whatever it is, to work. In fact, the services of a designer
are never required to make this code work. The fact that the
services of a designer is a really good idea doesn’t really
come into this... The converse, however, is not true. If a
designer desires a particular piece of functionality, the
services of a developer are required... Design isn’t as easy

to abstract and make into reusable components the way
code can. Designers, in general, have less to contribute not
because they do less, but because the volume of work that
designers do isn’t reusable. There’s no point to contributing
non-reusable work. That isn’t what open source does.”

A consequence of not coding is a lack of power. Designers
struggle with a lack of ownership over their design: “... You
have no ownership over your design [...] you can make
something and then go like “well this is how it should be
implemented” and then the community just [unclear] with it
and change all kinds of stuff [...] and your table becomes
like six pages long but that’s not what I intended.”

A Do-ocracy
Much is made of the meritocracy of open source projects.
But again, a distinction is made between those who talk and
those who do (where ‘doing’ seems to only mean coding):

“There are a couple of propositions that are regularly
thrown at me as a designer working on Drupal.org and
d7ux. The first is: Ah, but that won’t work with contributes
modules. I call this the contrib grenade. It’s normally
thrown in when someone doesn’t agree with your design
direction and they’re using the power of contribution the
very life blood of open source as ammunition for their
argument. The second is: It’s a do-ocracy. Either contribute,
or get out of the way. And, in there lies the problem.”

ACCEPTANCE AND TRUST
There seem to be numerous issues about designers being
accepted by developers, and their suggestions being trusted.
One of the designers employed to work on Drupal blogged
about this: “Drupal 7 is the fruit of developer labour. And
lots of it. For a designer to even enter the fray requires trust
on behalf of the developer community. And buckets of the
stuff. As one developer put it: ‘You’ve come into our front
room, and, while we were making a cup of tea, you moved
all the funiture around. Not only that, but you redecorated,
changed the carpet, and removed all of our belongings.’”

Typically in open source projects, acceptance and trust is
built up over time, usually accompanied by an apprenticing
mode. Ducheneaut identified six steps to becoming a
developer (in Python) [5]. Along the way, the developer
must prove herself both technically and socially. Technical
skill is not sufficient for advancement. The developer must
navigate through the community by starting humble,
gathering allies, and offering gifts of code. Code is often
considered a form of currency in open source software.
People give code as a way to gain power and
recognition[1]. Before they do that they have to uncover the
hidden community social structure and where in the
community they might fit as well as how things are done.
There can be very little help in how to do this. Clearly if
you do not code you lack a crucial currency.

There is evidence that the Drupal community is not

particularly friendly to newcomers. A designer noted: “We
are … [trying to] open those things up and make them more
public and try to encourage some more people in, but
honestly you know I think the chances of getting a lot of
people to engage in that issue queue is fairly [unclear]
because it’s a hostile environment.” There is something
rather ironic (but not that unusual [5]) about an open source
community that is not particularly open to new members.
Gaining acceptance requires passing the ‘test’ of
understanding the community and its history as well as
demonstrating the ability to make valued contributions.
Even developers can struggle to be accepted as can be seen
by the relatively few numbers who make it to the upper
levels of the hierarchy. At times it even seems as if we have
the situation of ‘Open Source – Closed Community’.

Many of the problems in Drupal may be due to it going
through a transition of an influx of usability people into a
developer-centric community. The paid usability experts
may be in an especially awkward situation, being expected
to justify their salaries by dramatic interventions but in the
process being seen to be disruptive of the expectation of a
gradualist earning of trust and acceptance [5].

LOBBYING
Given all these challenges, designers cannot simply make a
case for a usability improvement and expect that the
argument will stand alone. As noted there are issues of
power and authority. In line with this political perspective,
it is not too surprising that we see activities analogous to
lobbying. That is, recruiting people to support your idea,
including drumming up support to increase the number of
supporters attending a meeting. Lobbying activities take
place in all the forums used by Drupal designers to discuss
design issues: IRC channels, the issue queue, and the
usability group forum. The following examples illustrate
various kinds of lobbying.

When we asked one designer how they overcome the
challenge of persuading a developer to develop the solution
he replied: “We beg, “please” and we make a lot of noise
[...] We post a lot of comments and we write to people and
we start new discussions and we say very loudly that this is
a big problem. We organize discussions like Skype
meetings, Net Meetings outside of Drupal.”

A blog post about being an open source designer notes the
challenge of a design that has been in the works for several
months, and is starting to change direction. Referring to
another designer he notes: “I can’t be sure, but I’m hoping
he’s rallying the troops to weigh in so that the design stays
on track.”

Similarly another designer noted “Very often in the issue
where these decisions are ultimately made there’ll be 40
developers and maybe two designers [...] so that’s a tough
battle [...]” Clearly if usability discussions were purely
rational, it should not matter that the usability advocates are

outnumbered 20 to one. And yet it is easy to see that such
socio-political issues do matter.

Various strategies are used to add numerical weight to a
case. Designers try to participate in different usability
related discussions and vote in favor of a design change to
show the community that the proposed change is accepted
by more than one person: “You are going to IRC and [ask
other designers] ‘Please come in and comment on my
issue.’ What you see in the issue queue is generally a
fraction of the discussion that is actually going on.”

Issue postings can contain references to IRC discussions
where prior persuasion has occurred, e.g: “X’s proposal is
basically the summary of an IRC discussion I had with him
about this. So I’m in favor of this patch as well.” Similarly
from another issue: “I’m not in the IRC chat summary
above but was part of it, meaning, I’m in favor of this
happening.” In that same discussion, another designer
reported “Just want to register my support for this.”

Even when the case has been made to a developer to code
the design, further work can be needed to include the patch.
Code committers will not include the patch until they are
convinced that the code is good: “It’s reputation: sometimes
I have to provide links to other research or blog post where
[...] web professionals point out solutions to stuff or
research. Sometimes I have to do that, sometimes I say “yes
I think it's a good idea because this and this and this” and
sometimes it [convincing the code committer] needs one of
us [designers], sometimes three of us to do that. But we
have building enough trust now that our thumbs up are
enough.” In this case we see the marshalling of four
different resources to make the case: earned personal
reputation; external research; blog posts by professionals;
and additional Drupal designers weighing in.

Not all lobbying is or will be successful. Decisions have to
be made about using up effort and political capital. In an
issue about adding default values to a field, a designer
suggests it should be an option and the creator of the issue
agrees. But this will have an effect on another module. So,
the developer asks the designer to convince contributors in
that other issue that the change is a good idea. But the
designer replies “I will just give up. Battling a security
decision is rather useless, especially when you will also
have to battle an opt-in discussion.”

CONCLUSION
This preliminary study reveals various inherent political
processes in one open source project attempting to
incorporate greater usability. It is not surprising that a
collaborative activity dealing with scarce resources
(people’s time and willingness to work on a large number
of competing development tasks) should have a political
dimension. Issues of trust and acceptance arise that can be
problematic when there is a need to accelerate a typically
slow trust-building process. The various kinds of lobbying

show how a political analysis can inform a deeper
understanding of the design process and what would be
needed to support it. We do not know how much our
findings generalize to other open source projects and how
much are due to Drupal being in a process of transition to
embracing usability. It can seem to be inherent to open
source that designers have to cajole developers to
implement their designs. But do similar interactions occur
in commercial projects? Also, is there any reason why so
few designers actually create basic interface code such as
screen layouts? Would such a relatively basic
demonstration of coding skill help designers earn coding
gold to influence future discussions?

It may be that open source projects need to support more
explicit advocacy for the importance of usability as has
happened in various commercial settings, while
acknowledging that this is unlikely to be a one-shot
solution. There are indications of a mismatch of
expectations of what designers should ‘produce’ and why it
matters. Finally, the existing tools, optimized for efficiently
managing bugs and feature requests seem to be poor at
supporting usability discussions and the creation of
consensus around interface designs.

REFERENCES
1. Bergquist, M. and Ljungberg, J. (2001)The power of

gifts: organizing social relationships in open source
communities. Information Systems, 11(4) 305-320.

2. Bloomer, S. and Croft, R. (1997). Pitching usability to
your organization. interactions 4(6) 18-26.

3. Boivie, I., Gulliksen, J., and Goransson, B., (2006) The
lonesome cowboy: A study of the usability designer role
in systems development, Interacting with Computers,
18(4), 601-634.

4. Drupal, http://drupal.org

5. Ducheneaut, N. (2005) Socialization in an open source
software community: A socio-technical analysis.
Computer Supported Cooperative Work, 14(4) 323-368,

6. Mirel, B. (2000) Product, process, and profit: the
politics of usability in a software venture. Journal of
Computer Documentation. 24(4) 185-203.

7. Nichols, D.M. and Twidale, M.B. (2006). Usability
Processes in Open Source Projects. Software Process -
Improvement and Practice Journal: Special Issue on
Free/Open Source Software Processes. 11(2) 149 - 162

