
MORE HOMOLOGY FLOWS

BY

APARNA SUNDAR

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Adviser:

Associate Professor Jeff Erickson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4823798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Flows and cuts have been the topic of much study since Ford and Fulkerson’s

original paper. The problem we look at is the computation of flows on some

generalizations of planar graphs. In particular, the input graph can be embedded

on a surface of genus g, and has the source and sink on the same face. We show

this problem can be reduced to a convex programming problem in dimension

2g, and also show some interesting properties of the feasible polytope.

ii

To Mother and Father.

iii

Acknowledgments

This project was made possible by the support of many people - my adviser, Jeff

Erickson, who read my numerous revisions and helped make some sense of the

confusion, my friends Pavithra Prabhakar and Sankar Gurumurthy, for reading

my revisions and offering useful criticism and my parents for all their support.

Thanks also to the Computer Science Department at the University of Illinois

for giving me a TA ship through the course of my education at the University

of Illinois.

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Definitions . 4

2.1 Graphs, planarity and duality . 4
2.2 Flows, circulations, and capacity 5
2.3 Graphs on surfaces . 5
2.4 Topology of flows on surfaces . 6
2.5 Convex functions and subgradients 7

Chapter 3 History and related material 9

3.1 Our results . 12

Chapter 4 Homology flows and circulations 14

4.1 Feasible homology classes of circulations 14
4.2 Best circulation in a feasible homology class 15
4.3 Optimization . 16

Chapter 5 Ellipsoid method . 18

5.1 Generic reduction from convex programming to linear programming 18
5.2 Ellipsoid method for convex programs 19
5.3 Ellipsoid method for our convex program 20
5.4 Required theorems . 21

References . 24

v

Chapter 1

Introduction

The problem of finding the maximum flow in a network has been well studied

for more than 50 years. In this problem, we are given a graph with capacities

on the edges and two specific vertices s and t, and we are to find the maximum

flow from s to t. There are many variants of the problem - some of these include

the case when the graph is directed, or the case when it is undirected, or when

the edge capacities are constrained to be integers, or when there is also a cost

associated with each edge. Ford and Fulkerson’s work in 1956 [15] was the first

in a long line of results on this topic, some of which we will describe in the next

section.

Flows in planar graphs are a natural topic of interest because many appli-

cations of flows, such as VLSI design or road transportation networks, involve

planar graphs. Also, algorithms for planar graphs can often be extended to

more general graph families such as graphs that can be embedded on surfaces

of higher genus, or graphs with forbidden minors. Examples include shortest

path algorithms [7], finding induced cycles [34], approximation algorithms for

NP hard problems [5] and subgraph isomorphism [13].

In the case of the maximum flow problem, studying the special case of st-

planar graphs inspired the development of algorithms for general planar graphs.

st-planar graphs are graphs where s and t are on the same face; we redraw

any st-planar graph such that the common face is the exterior face. st-planar

graphs received much early attention, and fast O(n logn) algorithms for the

maximum flow problem on st-planar graphs were discovered much before similar

algorithms were designed for general planar graphs. Ford and Fulkerson [15]

described the uppermost path algorithm to solve the st-planar maximum flow

problem. As s and t are both on the exterior face, the uppermost path is just the

uppermost path on the given drawing of the st-planar graph. The bottleneck

edge of the uppermost path can only be saturated once, after which it can safely

be removed from consideration. Because each iteration saturates at least one

edge, the algorithm terminates after O(n) iterations. Itai and Shiloach showed

that each iteration can be implemented in O(log n) time [29], which implies an

overall running time of O(n log n).

Weihe [44] described a O(n logn) algorithm for planar graphs that satisfy a

certain connectivity requirement. The first O(n logn) time algorithm for max-

1

imum flows on arbitrary directed planar graphs was given by Borradaille and

Klein [4]. They generalized uppermost paths in st-planar graphs to “leftmost

paths”. (For a more formal description of leftmost path, see Chapter 3.) They

also show that each edge can be saturated at most three times, and that each

pivot takes O(log n) time, thus resulting in an O(n log n) time algorithm.

Ford and Fulkerson [15] observed that for st-planar networks, the cuts found

in the primal network corresponded to a shortest path being computed in the

dual. In their own words, “chains of N joining source and sink correspond

to cuts (relative to two particular vertices) of the dual of N and vice versa”.

Hassin [24] proved that maximum flows in st-planar graphs can be found by

computing a shortest path in the dual network.

Hassin and Johnson [25] in turn generalized this approach and showed that

given the value of a feasible flow in a network, as well as some minimum cut

information, one shortest path computation of a derived network finds a flow

of that specified value. Later Erickson [14] showed that the maximum flow

problem in general planar graphs can be modeled as a parametric shortest path

problem in the dual, and he presented an algorithm using dynamic tree data

structures to keep track of the changes in the dual shortest path tree as the

parameter changes, yielding the same algorithm as Borradaille and Klein [4].

As mentioned before, algorithms for planar graphs have often been extended

to algorithms for graphs that can be embedded on higher genus surfaces. The

maximum flow problem seems to be an exception in that though there has been

a great deal of focus on st-planar and planar graphs, these algorithms had not

been generalized for higher genus graphs. In fact, the best algorithms for higher

genus graphs were the best algorithms for general graphs. One early algorithm

by Imai and Iwano [28] could be adapted to give a running time of O(n1.595 logC)

where C is the sum of edge capacities; however it can be outperformed by fast

maximum flow algorithms for general graphs. Recently, Chambers, Erickson

and Nayyeri [8] showed that the computation of flows in a graph embedded on

a surface of genus g, can be reduced to a linear program in 2g + 1 dimensions.

Using the ellipsoid method, leads to a O(g7n log2 n log2 C) algorithm for the

maximum flow problem. The maximum flow as parametric shortest path in

the dual approach also does not lead to an O(n logn)-time algorithm for higher

genus graphs because Ω(n2) pivots may need to occur in the dual shortest path

tree [14].

My thesis considers the maximum flow problem for surface embedded graphs,

where the source and sink are on the same face. We show this problem can be

reduced to a 2g dimensional convex programming problem using the same tools

as Chambers, Erickson and Nayyeri [8]. We use a standard reduction of flows

to circulations in order to look at the feasible classes of homology circulations

instead of feasible classes of homology flows. The reduction is as follows. By

adding an infinite-capacity edge t → s and finding a circulation φ, we can

find an s − t flow with value φ(t → s) by simply dropping the edge t → s.

2

We consider each feasible homology class of circulations, and show that one

shortest path computation in a modified dual graph is sufficient to find the

homologous feasible circulation carrying the largest flow across new edge t→ s.

If there is no feasible circulation in the given homology class, the shortest path

algorithm finds a negative cycle in the dual graph. We solve the maximum flow

problem using the ellipsoid method, using this shortest path algorithm as an

oracle. We present a general discussion of the method before applying it to

the maximum flow problem for surface graphs. The resulting algorithm runs in

O(g6n log2 n log2(nC)) time.

3

Chapter 2

Definitions

We first define the terms that we will be using. Much of this material is from

Chambers, Erickson, and Nayyeri [8]. More detailed references to texts on al-

gebraic topology include Hatcher [26] and Massey [36]; standard references in

topological graph theory include Gross and Tucker [20] and Mohar and Thom-

masen [37]. Some of this material is also from lecture notes by Boyd [6] made

available by Stanford as part of their Stanford Engineering Everywhere initia-

tive. For more details on the ellipsoid method, see the textbook by Grötschel,

Lovasz and Schrijver [22].

2.1 Graphs, planarity and duality

An undirected graph is an ordered pair G(V,E) where V is a set of vertices and

E is a set of undirected edges, where an undirected edge is an unordered pair of

vertices. We use uv to denote the edge between vertex u and vertex v. Usually

the size of V is denoted by n and the size of E by m. A directed graph is an

ordered pair ~G(V, ~E) where V is defined as before and ~E is a set of directed

edges. A directed edge is an ordered pair, which we denote u → v. We can

transform any undirected graph G into a directed graph ~G by replacing each

edge uv with two oppositely directed edges u → v and v → u. Both G and ~G

can be represented by the same adjacency matrix.

A planar graph is a graph that can be drawn in the plane or on the sphere

such that vertices are mapped to distinct points and edges to curves that inter-

sect only at common endpoints. Any embedding of a planar graph divides the

plane into regions called faces.

The dual graph of an embedded planar graph G is another graph G∗, which

has a vertex for each face of G and an edge for each edge of G separating two

neighboring faces. For any face f of G, let f ∗ denote the corresponding vertex

in G∗. If u → v is an edge with face fl to its left and face fr to its right in G,

we can denote this edge by fl ↑ fr; we denote its dual edge as f∗
l → f∗

r . Duality

is an involution as (G∗)∗ is isomorphic to G.

Suppose G is fixed and H is a subgraph of G. We will use the notation H∗ to

denote the subgraph of G∗ containing the edges dual to the edges of H . When

the edges of H∗ form a cycle in G∗, the subgraph H of G is called a cocycle.

4

2.2 Flows, circulations, and capacity

Let s and t be two vertices on G, called the source and target respectively.

A flow is a function f : ~E → R that satisfies the following equations: the

conservation constraint
∑

v∈V

f(u → v) = 0 for every vertex u ∈ V \ {s, t} and

the skew symmetry constraint. f(u → v) = −f(v → u) for every edge u → v.

We extend any flow to a function on E, by fixing an arbitrary direction u → v

for each undirected edge uv, and then let f(uv) = f(u → v). The value of the

flow is
∑

sr∈E f(s→ r) which is the net outgoing flow at s. If the conservation

constraints also apply at s and t, then f is called a circulation.

Let c : E → R+ be a capacity function such that c(uv) ≥ 0. We extend the

capacity function to c : ~E → R by defining c(u → v) = c(v → u) = c(uv). A

flow f is feasible if |f(uv)| ≤ c(uv) for every edge uv in E. The residual capacity

of an edge is cf (u→ v) = c(u→ v)−f(u → v); the residual graph Gf (V, ~Ef) is

the subgraph of edges in ~G with nonzero residual capacity. A flow f is feasible

if and only if every edge in Gf has nonnegative residual capacity. A maximum

flow f is a feasible flow of maximum value. f is a maximum flow if and only if

there are no directed paths in Gf from s to t.

As mentioned earlier, a circulation is a flow where the conservation con-

straint holds at every vertex. Every circulation is a point in R2m satisfying n

conservation constraints and the m skew symmetry constraints. This subspace

is called the circulation space and is denoted by Z(G). Z(G) is a subspace of

R2m with dimension 2m − (m + n − 1) = m − n + 1 because, of the n con-

servation equations, only n − 1 are linearly independent. Thus the circulation

space Z(G) is isomorphic to Rm−n+1. Similarly, a flow is a point R2m satisfying

n−2 conservation constraints (which are linearly independant and) and m skew

symmetry constraints. Thus, the flow space Z(G; s, t) is isomorphic to Rm−n+2.

2.3 Graphs on surfaces

A surface is a Hausdorff topological space in which every point has an open

neighborhood homeomorphic to R2. We consider only compact, connected, and

orientable surfaces with no boundary. The genus of a surface Σ is the maximum

number of simple, disjoint, non-separating cycles γ1, γ2, . . . γg in Σ, where a cycle

is defined as the (the image of) a continuous map γ : S1 → Σ.

An embedding of graph G on a surface Σ is a drawing of the graph on Σ, with

the vertices mapped to points and edges to non-crossing curves. This definition

generalizes embeddings of planar graphs on the sphere. A face is a maximal

connected subset of Σ that does not intersect the image of any edge or vertex.

An embedding is cellular if every face is an open topological disk. The dual

graph of a graph embedded on a surface is defined exactly as for planar graphs.

Suppose G is a simple n vertex graph that has a cellular embedding on Σ.

5

Euler’s formula |V | − |E|+ |F | = 2− 2g implies that G has at most 3n− 6 + 6g

edges and at most 2n− 4+4g faces, with equality if each face of the embedding

is a triangle. Thus for any graph that can be embedded on a surface of genus

g = o(n), the overall complexity of any embedding is O(n). Our input will

consist of a graph G(V,E) embedded on Σ. F is the set of faces on Σ.

2.4 Topology of flows on surfaces

We now redefine flows and circulations in the language of homology.

A 0-chain is a function w : V → R; a 1-chain is a function φ : E → R; and

a 2-chain is a function α : F → R. Note that we are using real coefficients in

our definition of chains; later in this section, when we define homology, we will

also use real coefficients. Most standard texts use integral coefficients in both

cases.

A 1-chain assigns both an orientation and a non-negative value to each

undirected edge: for each undirected edge uv in E, choose one of the two

corresponding directed edges, say u → v, and set φ(u → v) = φ(uv) and

φ(v → u) = −φ(uv).

The boundary of 1-chain φ is the 0-chain ∂φ : V → R defined as

∂φ(v) =
∑

u:u→v∈~E

φ(u → v).

A circulation is a 1-chain φ such that ∂φ(v) = 0 for every vertex v in V . The

equation ∂φ(v) = 0 is just the conservation constraint at vertex v. An st-flow

is a 1-chain φ such that ∂φ(v) = 0 for every vertex v except s and t . The value

of the flow φ is ∂φ(t) = −∂φ(s); a circulation is simply a flow with value 0.

The boundary of 2-chain α : F → R is the 1-chain ∂α : E → R defined as

∂α(u→ v) = α(fr)−α(fl), where fr is the face to the right of u→ v and fl the

face to the left. The set of all incoming edges to any vertex z forms a cocycle

λ. We have
∑
u→v∈λ ∂α(u → v) =

∑
fl→fr∈λ∗ ∂α(fl → fr) = 0, because for

every vertex v in λ∗, the term α(v) occurs once with a positive sign and once

with a negative sign. Thus the net incoming flow to any vertex z is zero, and

the conservation constraint at z is met and the boundary of α is a circulation.

A boundary circulation is the boundary of some 2-chain. For planar graphs,

every circulation is a boundary circulation, but this is not the case for graphs

on higher genus surfaces. The boundary space B(G) is the vector space of all

boundary circulations; this is a linear subspace of Z(G). The space of 2-chains

has dimension F , but two 2-chains, that differ by a constant, have the same

boundary. Thus, B(G) is isomorphic to R|F |−1.

Two flows φ and ψ are homologous if φ−ψ is a boundary circulation; homol-

ogous flows are said to belong to the same homology class. In particular, two

flows in a planar graph are homologous if and only if they have the same value.

6

The homology space H(G) is the vector space of all homology classes of circu-

lations in G, which is isomorphic to Z(G)/B(G) ∼= R|E|−|V |−|F |+2 = R2g by

Euler’s formula. We say a homology class of circulations is feasible if it contains

at least one feasible circulation. The set of all feasible homology classes can

be described by the solution space of a set of linear inequalities. This solution

space is called the feasible homology polytope Φ.

Similarly H(G : s, t) is the space of homology classes of flows. As before,

H(G : s, t) = Z(G : s, t)/B(G) is isomorphic to R|E|−|V |−|F |+1 = R2g+1 by

Euler’s formula. A homology class of flows is feasible if at least one of its

elements is feasible.

The homology space H(G) can be generated by 2g cycles in independent

homology classes as it is isomorphic to R2g. For any fixed basis (γ1, . . . , γ2g),

a basic circulation is a circulation φ that can be expressed as
∑2g

i=1 φi · γi for

some real coefficients φ1...φ2g . Every circulation in G is homologous to one basic

circulation. Likewise H(G; s, t) can be generated by homology classes of 2g+ 1

curves each of which is a (s, t) path or cycle. See Lemma 3.4 of Chambers,

Erickson and Nayyeri [8] for further details on the computation of one such

basis.

2.5 Convex functions and subgradients

A convex set is a set of points in a vector space such that given any two elements

of the set, the entire line segment joining the two points is also in the set. Let

A ⊂ Rn be a convex set. A function f : A → R is convex if for all θ ∈ [0, 1],

and for all x and y in A, we have f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

The graph of f is Gr(f) = {(x, y) ∈ A×R|f(x) = y}. The epigraph of f is

Epi(f) = {(x, y) ∈ A × R|f(x) ≤ y} which is the set if points on or above the

graph of f . The hypograph of f is Hyp(f) = {(x, y) ∈ A × R|f(x) ≥ y} which

is set of points on or below the graph of f .

A function f is convex if and only if Epi(f) is a convex set. Similarly, a

function f is concave if and only if Hyp(f) is a convex set. Also f is convex if

and only if −f is concave.

A vector g ∈ Rn is a subgradient of a convex function f : A → R at x ∈ A

if f(z) ≥ f(x) + gT (z − x) for all z ∈ A. If f is differentiable, then its gradient

∇f(x) is its only subgradient, but nondifferentiable functions can also have

subgradients. A function f is called subdifferentiable at x if it has a subgradient

at x. The set of subgradients of f at the point x is called the subdifferential

of f at x, and is denoted ∂f(x). A function is called subdifferentiable if it is

subdifferentiable at all points x ∈ A.

Grötschel, Lovasz and Schrijver [22] define the following strong separation

problem for convex sets: Given z ∈ Rn, decide whether z is a member of the

closed convex set A, and if not, find a hyperplane that separates z from A.

To be more precise, we need to find a vector g such that g ∈ Rn and gT z >

7

max{gT y|y ∈ A}.

8

Chapter 3

History and related

material

The maximum flow problem is the problem of finding the maximum feasible

flow from source to target in a network where the edge capacities are given.

Maximum flows and minimum cuts gained importance during the Cold War

when they were used to study the railway and transportation networks. The

seminal work in this area was by Ford and Fulkerson [15] in 1956, who credit

Harris with first posing the maximum flow problem on a railway network. Later,

in their book Flows in Networks [16], they give more details on the origin of the

problem and cite a secret report by Harris and Ross [23] as their original source

for the problem. Schrijver, in his review of the history of the transportation and

maximum flow problem [39], mentions this secret report as evidence of early

interest in computing a minimum cut. He also mentions the Soviet interest in

cargo transportation planning [42] as early as the 1930’s.

The classical maximum flow problem is defined as follows. We are given

a graph G(V,E), a specific source vertex s, and a sink vertex t. We are also

given a capacity function. The problem is to push as much flow from s to t

as possible, without violating any edge capacity. The maximum flow problem

can be modeled by a |V | = n dimensional linear program in |E| = m variables.

As such, the simplex method [10] to solve linear programs is the earliest known

algorithm for this problem. In fact, Ford and Fulkerson [15] point out that the

maximum flow problem “can be set up as a linear programming problem with

as many equations as there are vertices and hence can be solved by the simplex

method”. They motivate the uppermost path algorithm by pointing out that for

st-planar graphs, the uppermost flow algorithm is simpler and can be computed

by hand a lot easier than solving a linear programming problem.

Since then algorithms that solve the maximum flow problem have involved

looking at general graphs as well as (faster) algorithms for more specific families

of graphs. For general graphs, Table 3.1 compares the running times of some of

the better known algorithms.

The last two algorithms require the edge capacities to have integer capacities

less than some integer U . For sparse graphs, the best of these algorithms, by

Goldberg and Rao [18], runs in time O(n3/2 logn logU).

Algorithms have also being developed to solve the maximum flow problem in

9

Algorithm Author(s) Running Time
Augmenting path Ford and Fulkerson [15] O(mf ∗)
Edmonds-Karp Edmonds and Karp [12] O(nm2)
Blocking flow Dinic [11] O(n2m)
General push-relabel Goldberg and Tarjan [19] O(n2m)
Push-relabel with Sleator and Tarjan [41] O(nm log(n2/m))
dynamic trees

Binary blocking flow Goldberg and Rao [18] O(min(n2/3 ,m1/2)
m log(n2/m) logU)

Generalised flow using Daitch and Spielman [9] O(m3/2 logU logkm)
interior points

Table 3.1: Some maximum flow algorithms and their running time

planar graphs, partly motivated by the fact that planar graphs are used to model

real world situations and by the fact that these algorithms are comparatively

faster and simpler than algorithms for general graphs. The first maximum

flow algorithm was the uppermost path algorithm for st-planar networks. This

approach has since been generalized to general planar graphs.

Ford and Fulkerson [15] show that in an st planar graph G, there is always a

s to t path that meets each cut of G once. When the graph is drawn on the plane

with s and t at the left and right extremes of the outer face, the uppermost path

from s to t is one such path. They augment the flow along the this uppermost

path, deleting any saturated edges and updating the residual capacities of the

remaining edges. Note that unlike a general augmenting path algorithm, they

can delete a saturated edge entirely. They repeat the procedure until there is

no path from s to t in the residual graph.

Later in the same paper, Ford and Fulkerson point out the duality between

the problem of finding a shortest path from s to t in G, and finding the minimum

cut in the dual of G between two particular vertices. They propose the following

algorithm to find the shortest path between s and t in an st planar graph.

Add an edge t → s and let p and q be the regions separated by ts. Run the

uppermost path algorithm in dual network, and a minimum cut found from the

deleted edges is dual to a shortest path in the primal. Dijkstra’s algorithm to

find a single source shortest path in a given graph first appeared in 1959, a few

years after the publication of Ford and Fulkerson’s work [15]. Interestingly, if

we keep track of the dual edges to the saturated edges, we can see that the

uppermost path algorithm implements Dijkstra’s shortest path algorithm in the

dual graph.

Ford and Fulkerson’s uppermost flow algorithm, is also referred to as Berge’s

algorithm [1], by whom it was simultaneously developed. Itai and Shiloach [29]

showed how to implement the uppermost path algorithm in O(n logn) time.

Hassin [24] demonstrated that the maximum st planar flow can itself be found

by building a shortest path tree in the modified dual described by Ford and Fulk-

erson, showing that for st planar graphs, finding the maximum flow is equivalent

10

to just one shortest path computation in the dual. As in Ford and Fulkerson’s

method [15], add an edge of very large capacity from t to s. Let p and q be faces

adjacent to the added edge in G. Let T ∗ be a shortest path tree in G∗ rooted

at p∗ where the cost of each dual edge e∗ is the capacity of the corresponding

primal edge e Define α(f) to be the length of the shortest path from p∗ to f∗

in T ∗. Let φ be the boundary of 2-chain α, ie φ(u → v) = α(fr) − α(fl), where

fl is the face to the left of edge u → v and fr the face to the right. Edges in

G that are dual to edges on shortest path tree T ∗, are saturated. For other

edges, φ(u → v) = α(fr) − α(fl) ≤ c(u → v). Thus φ corresponds to a fea-

sible circulation. The shortest p∗ to q∗ path does not include the added edge

and is dual to a minimum cut in the original primal graph G. Since φ(when

restricted to the original graph) sends a flow of value equal to the minimum cut

in the original graph, it must be a maximum flow in the original graph. When

Frederickson [17] and Henzinger et al. [27] came up with faster shortest path al-

gorithms for planar graphs, Hassin’s result immediately gave a faster maximum

flow algorithms for st planar graphs. Henzinger’s algorithm runs in O(n) time.

For undirected planar networks with s and t on different faces, Itai and

Shiloach [29] described a O(n2 logn) method to find a flow with a given value,

or report that no such flow exists. Itai and Shiloach’s algorithm was based on

the correspondence between shortest paths and minimum cuts. Reif [38] de-

veloped a divide and conquer method to compute a minimum cut, and thus

the maximum flow value, in O(n log2 n) time. Reif’s result was extended by

Hassin and Johnson [25] to compute the actual maximum flow in O(n log n)

additional time, so that the overall time was O(n log2 n). Frederickson [17] later

improved Reif’s algorithm to O(n log n) time using a faster shortest path algo-

rithm. Frederickson’s result [17] and the shortest path algorithm of Henzinger

et al. [27] can also be used with Hassin and Johnson’s algorithm to compute the

maximum flow in O(n log n) time for undirected graphs.

Johnson and Venkatesan [30] described a divide and conquer algorithm that

finds a flow of value v in a directed planar graph in time O(n
√
n logn), using

recursive separator decompositions. Venkatesan [43] also observed that a feasible

flow with a given value, if such a flow exists, can be computed in O(n3/2) time by

computing a single-source shortest path tree in a dual graph with both positive

and negative edge weights, using an algorithm of Lipton, Rose, and Tarjan [35].

Interestingly enough, Tolstoi [42], an early Russian researcher, had included

many solution approaches, one of which was the observation that an optimal

flow did not include any negative cycles in the residual graph, though he did not

give any sufficient conditions for optimality. Weihe [44] gives a planar maximum-

flow algorithm that runs in O(n log n) time, provided the input graph satisfies a

certain connectivity condition. However, the fastest known algorithm to enforce

this condition runs in O(n2) time [2]. Borradaile and Klein [4] describe an

O(n logn)-time algorithm to find maximum flows in arbitrary directed planar

graphs. Inspired by the uppermost path algorithm, they use an augmenting

11

path algorithm, where in each iteration the leftmost path in the residual graph

is chosen as the augmenting path. A leftmost path in the residual is defined to

be a path that does not have clockwise residual cycles in its dual. They start

with a “leftmost circulation” and augment the flow with a leftmost path each

time, so that at any point in time their algorithm computes the leftmost flow

of all flows of that same value. Thus, each leftmost flow is a canonical choice to

represent the class of flows of equal value.

Earlier, Khuller, Naor and Klein [32] showed that circulations in planar

graphs defined a finite distributive lattice, and the unique minimum of this

lattice was called the leftmost circulation. The residual graph of a leftmost

circulation did not have any clockwise residual cycles. It is also the boundary

circulation of a 2-chain that corresponds to shortest path distances of a face

from the external face of the given embedding. The last definition of leftmost

circulation can be extended to a higher genus setting. In higher genus graphs

that have s and t on the same face, we can set p∗ the dual vertex corresponding to

the face to the left of t→ s, and define a boundary circulation that corresponds

to a 2-chain defined by distances given by a shortest path tree based at p∗.

This boundary circulation is a canonical choice to represent the class of all

homologous circulations.

Finally, Erickson [14] formulates the maximum flow problem in planar graphs

as a parametric shortest path problem in the dual graph and gives an O(n log n)

algorithm using dynamic tree data structures to maintain the shortest path

tree. The resulting algorithm is in fact identical to the Borradaile and Klein

algorithm [4]. He also observes that on a torus, a similarly structured algorithm

can take Ω(n2) time.

Chambers, Erickson, and Nayyeri [8] show that the maximum flow problem

for graphs that can be drawn on a surface of genus g can be formulated as a

linear programming problem in 2g + 1 dimensions. Standard methods to solve

linear programming problems are then be used to get an O(g7n log2 n logC)

running time, where C is the sum of the edge capacities of the original graph.

3.1 Our results

Because both the uppermost path algorithm and Hassin’s dual shortest path

formulation (both of which work on st planar graphs) have inspired algorithms

for maximum flow in planar graphs, we look at surface embedded graphs where

both s and t are on the same face, to study any solution structure that could

be exploited.

Formally, we are given a graph G, embedded on a surface of genus g and

vertices s and t on the same face. We wish to find the maximum flow from s

to t. Add an infinite-capacity edge t → s to G to obtain a new graph G′. A

maximum flow in G is equivalent to a feasible circulation in G′ maximizing the

flow through the new edge t→ s.

12

Using the idea of feasible homology classes of circulations as introduced by

Chambers, Erickson, and Nayyeri [8], we show that we can formulate this cir-

culation problem as a convex programming problem in 2g dimensions. We first

show that a single shortest path computation in the dual residual graph tells

us whether a given homology class contains any feasible circulations. The sep-

aration oracle used to determine if an entire class of homologous circulations is

feasible or not is the same as that used by Chambers, Erickson, and Nayyeri [8]

to determine if an entire class of homologous flows is feasible or not, with the

only difference being that the homologous circulations are in H(G′) which is

isomorphic to R2g , while the homologous flows are in H(G; s, t) isomorphic to

R2g+1. If a class of homologous circulations is found to be feasible, we also find

the optimal feasible circulation ψ in that class. This is the canonical represen-

tative of this class of homologous circulations and we can use this circulation to

define a flow of value ψ(t→ s). To find the maximum flow we need to maximize

ψ(t→ s) over all basic circulations. As ψ(t → s) can be computed by a convex

function, we solve the problem using the ellipsoid method.

In Chapter 5, we describe the general ellipsoid method to solve a convex

programming problem, and mention the properties that must be satisfied by

the feasible region and the separation oracle. We also need a way to find a

subgradient of the objective function at any given point. For more details about

these results for the general ellipsoid method, please refer to the textbook by

Grötschel, Lovasz, and Schrijver [22]. A similar analysis for using the ellipsoid

method for linear programming was given by Chambers, Erickson, and Nayyeri

[8]. Finally, we plug in the details for our specific problem and find the running

time to be O(g6n log2 n log2(Cn)).

13

Chapter 4

Homology flows and

circulations

Recall that we are given an embedding of a graph G(V,E) on a surface of genus

g, a capacity function c : E → R, and two vertices s and t on the same face.

We are to find the maximum flow from s to t. We add an edge t→ s of infinite

capacity and call the modified graph G′. The face to the left of t → s is p and

the face to the right is q. F is the set of faces in G′.

The vector space H(G′) of homology classes of circulations in G′ has dimen-

sion 2g. We define a basis for H(G′) as follows.

Let p0 be the path from s to t along the boundary of face p. Let T be

a spanning tree of G′ that includes the path p0. Let C∗ be a spanning tree

of (G′ \ T)∗ including t → s. Euler’s formula implies that there are 2g edges

{e1, . . . , e2g} in E \ (T ∪ C). For each index i, let γi denote the unique cycle in

T ∪ ei.

Lemma 1 The cycles {γ1, . . . , γ2g} form a basis for H(G′) and H(G). Along

with p0, they form a basis for H(G′; s, t) and H(G; s, t).

Proof: That (γ1, . . . , γ2g) forms a basis for H(G′) follows from Lemma 3.4 of

Chambers, Erickson, and Nayyeri [8]. The same cycles also form a basis for

H(G), because we select T and C∗ such that no cycle γi contains the edge

t→ s. The proof of the other claim is similar.

Recall that a basic circulation is a circulation φ that can be expressed as
∑2g
i=1 φi · γi for some coefficients φ1 . . .φ2g . We can now also state that a

circulation is basic if and only if φ(e) = 0 for every cotree edge e in C.

We need to find the feasible circulation that maximizes the flow sent through

t → s. In Theorem 3 we show that given a basic circulation φ on G′, we can

find a circulation ψ homologous to φ such that ψ(t→ s) is maximized using one

shortest path calculation on G
′∗
φ . Finally we show how to set up our problem

as a convex programming problem.

4.1 Feasible homology classes of circulations

Theorem 2 There is a feasible circulation in G homologous to a given circu-

lation φ if and only if the dual residual network G∗
φ has no negative cost cycles.

14

Proof: Suppose there is some feasible circulation homologous to the given

circulation φ. Let λ∗ be an arbitrary cycle in G∗
φ and let λ be the corresponding

cocycle in G.

Let c(λ) =
∑
e∈λ c(e) denote the total capacity of λ and let φ(λ) =

∑
e∈λ

φ(e), denote the total flow through λ. The residual capacity of λ is, cφ(λ) =

c(λ) − φ(λ) =
∑

e∈λ c(e) −
∑

e∈λ φ(e). If this residual capacity is negative, the

total flow through λ is greater than its total capacity and so φ is not feasible.

For any 2-chain α : F → R in G, we have

∂α(λ) :=
∑

e∈λ

∂α(e) =
∑

fl↑fr∈λ

α(fl) − α(fr) =
∑

f∗

l
→f∗

r ∈λ∗

α(f∗
l) − α(f∗

r) = 0.

The last step follows from the fact that λ∗ is a cycle.

Any circulation ψ homologous to φ can be written as ψ = φ+ ∂α for some

2-chain α. We know ∂α(λ) = 0, hence ψ(λ) = φ(λ), which in turn means that

cψ(λ∗) = cφ(λ
∗). Thus, if G∗

φ has a negative cycle, no circulation homologous

to φ is feasible.

Suppose G∗
φ has no negative cost cycles. For any face f of G, let α(f) denote

the shortest path distance from p∗ to f∗ in G∗
φ.

Consider the circulation ψ = φ + ∂α, which is homologous to φ. The cost

of an edge f ↑ g in Gφ is cφ(f ↑ g) = cφ(f
∗ → g∗) ≥ α(g) − α(f), since α is

defined by shortest path distances.

Thus,

ψ(f ↑ g) = φ(f∗ → g∗) + (α(g)− α(f)) ≤ φ(f∗ → g∗) + cφ(f
∗ → g∗) = c(f ↑ g)

We conclude that ψ is feasible.

4.2 Best circulation in a feasible homology

class

Theorem 3 Let φ be a basic circulation in G′ whose homology class is feasible.

For all faces f of G′, let α(f) be the shortest path distance from p∗ to f∗ in

G
′∗
φ . Let ψ = φ+ ∂α. For any circulation χ homologous with φ (or with ψ), we

have χ(t→ s) ≤ ψ(t→ s).

Proof: Let λ∗ be the shortest path in G
′∗
φ , from p∗ to q∗. The corresponding

primal subgraph λ is actually a cocycle in G. The effect of removing the edge

t → s from G
′∗
φ is to fuse the path λ∗ into a cycle in G∗. From Lemma 1 we

know that we can use the same homology basis for H(G) and H(G′). Thus, φ

is also a basic circulation in G.

We are given that ψ = φ+∂α. Let χ = φ+∂β be a circulation homologous to

φ in G′, where β is some 2-chain on the faces of G
′

. We need to show that either

15

ψ(t→ s) ≥ χ(t→ s) or χ is infeasible. Assume χ is feasible since otherwise we

are done.

The edges of λ are saturated by ψ as they correspond to the edges of a

shortest path tree in the dual. Thus, c(λ) = ψ(λ).

Given the feasible circulation ψ in G′, we can construct a feasible flow in G

of value ψ(t → s) simply by dropping edge t → s. We will denote this flow by

ψG. Also, ψG ∼= φ+ψ(t → s) ·p0. In other words, ψG is a feasible flow in G and

its representative in the flow homology space of G is 〈φ1, . . . , φ2g , ψ(t → s)〉.
The total flow through the edges of any cocycle is the same for any two

homologous flows. Thus,

ψG(λ) = φ(λ) + ψ(t → s) · p0(λ).

Similarly, starting with the feasible circulation χ in G′ we construct a fea-

sible flow χG in G whose representative in the flow homology space of G is

〈φ1, . . . , φ2g , χ(t → s)〉. As before, we have

χG(λ) = φ(λ) + χ(t→ s) · p0(λ).

We also have ψ(λ) = ψG(λ) because λ does not include the edge t→ s.

The residual capacity of cocycle λ for the flow χG is:

cχG
(λ) = c(λ) − χG(λ)

= ψ(λ) − χG(λ)

= ψG(λ) − χG(λ)

= (ψ(t → s) − χ(t → s)) · p0(λ).

The first edge on λ∗ is dual to an edge on p0. So p0(λ) = 1.

Thus, cχG
(λ) = ψ(t → s)−χ(t→ s) ≥ 0, because χ is feasible. We conclude

that ψ(t→ s) ≥ χ(t→ s).

Corollary 4 Given a basic circulation φ, we can either compute a feasible cir-

culation ψ homologous to φ maximizing ψ(t → s), or determine that no circu-

lation homologous to φ is feasible, in O(g2n log2 n) time.

Proof Given a basic circulation φ, we can either find the shortest path tree

based at p∗ or a negative cycle in G
′∗
φ , by a generalizing an algorithm by Klein,

Moses, and Weimann [33].

4.3 Optimization

Let Φ be the feasible homology polytope. Let F : Φ → R be a function such

that for any basic circulation φ, F (φ) is the maximum of ψ(t → s) over all

feasible circulations ψ homologous to φ.

16

Theorem 3 implies that F (φ) = mini Pi(φ1, . . . , φ2g), where Pi(φ1, . . . , φ2g)

is the length of parameterized path Pi, which is the ith path from p∗ to q∗ in

G
′∗
φ ; Pi : Φ → R is a linear function.

Theorem 5 F : Φ → R is a concave, piecewise linear function.

Proof: The length of any path Pi in G
′∗
φ depends linearly on φ1, . . . , φ2g , so we

can write Pi = ai,1φ1 + . . .+ai,2gφ2g + bi. Thus F is a piecewise linear function.

The hypograph of F is the intersection of the hypographs of Pi. The hypo-

graph of each Pi is a linear halfspace. As the intersection of convex sets, the

hypograph of F is also a convex set, and thus F is concave.

We have reduced computing the maximum flow in graph G to finding a

basic circulation whose dual residual graph has no negative cycle and that max-

imizes the concave function F : Φ → R. Thus, we have the following convex

programming problem,

maximize F (φ)

subject to φ(λ) ≤ c(λ), for every directed cocycleλ in G
′

.

Unfortunately, this convex program appears to be too complex to solve di-

rectly; there could be nO(g) non-redundant constraints. Instead we must solve

it using implicit methods, such as the ellipsoid method [21] or multidimensional

parametric search. In the next chapter we discuss how we can use the ellipsoid

method to solve our problem.

17

Chapter 5

Ellipsoid method

The ellipsoid method was originally devised for nonlinear nondifferentiable op-

timization. Shor [40] first stated the ellipsoid method as known today. It was

then modified by Khachiyen [31] to give the first polynomial time algorithm for

linear programming. Later, it was further modified to solve linear programs im-

plicitly. We now give a brief sketch of the central-cut ellipsoid method. Much of

this material is from Chambers, Erickson and Nayyeri [8] and Grötschel, Lovasz

and Schrijver [22] as well as from lecture notes made available by Boyd [6].

Grötschel, Lovasz, and Schrijver [22] offer the following example to explain

the basic idea behind the ellipsoid method. Suppose we know that there is

exactly one lion in the Sahara and that it can exist only in some specific region

of the Sahara where environmental conditions are satisfactory. We want to catch

the lion. We start by fencing in the entire Sahara. From our current location

we have a method named Oracle, to separate the currently fenced in portion

into two halves: one that does not contain the lion and therefore can be safely

discarded and the other half which must contain our lion. Having discarded one

half of the region, we need to refence the other half quickly. Thus, we always

have the lion within our fenced in region, which is shrinking. After a finite

number of steps we will catch our lion, as the fenced in region will become too

small for the lion to hide.

A few words about the method Oracle that we used to refine the region we

need to search. Given an arbitrary point x, the Oracle returns a halfspace h

whose bounding hyperplane contains x, such that the lion lies in h.

5.1 Generic reduction from convex

programming to linear programming

Here we describe a generic reduction from convex programs with piecewise linear

objective functions to linear programming.

Let F : Φ → R be a concave, piecewise linear function over the convex set

Φ, we formulate this generic problem as follows:

maximize f(φ)

such that φ ∈ Φ

18

We rewrite the convex program above as follows:

maximize z

subject to (φ, z) ∈ Hyp(f)

which is a standard linear program if F is a piecewise linear function and Φ

is a polytope.

Applying this tranformation to our convex program, we recover the LP

formulation of Chambers, Erickson and Nayyeri [8].

5.2 Ellipsoid method for convex programs

Now we describe the ellipsoid method as it can be applied to solve a convex

optimization problem,

minimize F (φ)

subject to φ ∈ Φ

Let φopt denote the optimum point of Φ. In general, the optimum vertex

need not be unique, so we can apply standard perturbation techniques described

by Grötschel, Lovasz and Schrijver [22] to perturb the objective function slightly

such that the perturbed objective function has a unique optimum, which is also

optimal for the original function. We assume that φopt is integral, but prove this

fact for our problem. In general, we may need to scale the problem to ensure

integrality.

For any ε > 0, let Φε = {φ ∈ Φ|F (φ) ≤ F (φopt) + ε}.
We need to choose ε such that Φε lies in a ball of radius 1/4 so that Φε

contains no integral points other than φopt.

Calculate a bounding ellipsoid E0 that is guaranteed to contain Φ. The

ellipsoid algorithm maintains an ellipsoid Ei that is guaranteed to contain φopt.

The separation oracle is an algorithm that decides correctly whether a given

point belongs to Φ or not. If not, it returns a hyperplane separating the point

from Φ.

The subgradient oracle is an algorithm that calculates a subgradient g of F

at a given feasible point x. The subgradient defines a halfspace 〈g, φ〉 ≤ 〈g, x〉
that must contain φopt because F (φopt) ≥ F (x) + 〈g, φopt〉 − 〈g, x〉.

We can use a single oracle, Oracleφ, to return a violated constraint if the

given point is infeasible, or return the halfspace described by the subgradient if

the point is feasible. In either case, the oracle returns a halfspace h containing

φopt. The ellipsoid method then updates Ei+1 to be the minimum volume

ellipsoid containing Ei ∩ h.
At each iteration, Oracleφ is queried at the center of the current ellipsoid

Ei. Thus the volume of the ellipsoid shrinks by a constant factor e1/O(d) each

time, where d is the dimension of Φ.

Finally, when the volume of Ei is less than the volume of Φε we stop and

19

round the last feasible query point, y, to the integer grid. Let Φ′
y = {z|F (z) ≤

F (y)}. We have Φ′
y ⊂ Ei and thus Vol(Φy) ≤ Vol(Ei). When Vol(Ei) <

Vol(Φε), then Vol(Φ′
y) < Vol(Φε) which implies that Φ′

y ⊂ Φε ⊂ B(1/4), and we

can round y to get the optimum point.

We assume that the oracle can be modeled by a linear decision tree. Grötschel,

Lovasz and Schrijver [22] show why this is necessary. Let Ts denote the num-

ber of arithmetic operations required for a single Oracleφ query. The running

time of this method depends on the volume of the initial ellipsoid and on a

lower bound for the volume of Φε, as well as the running time of the Oracleφ.

The method requires I = O(d log δ) iterations where d is the dimension and

δ = (volE0/volΦε) when Φ is represented by linear constraints Grötschel, Lo-

vasz and Schrijver [22]. Each iteration requires Ts arithmetic operations by

Oracleφ, plus O(d2) arithmetic operations to compute the new ellipsoid with

upto O(i) bits of precision being sufficient to preserve correctness in iteration i

Grötschel, Lovasz and Schrijver [22]; the running time of the general method is

thus O(Tsd
2 log2 δ+ d4 log2 δ log2(d log δ)) as also shown by Chambers, Erickson

and Nayyeri [8].

5.3 Ellipsoid method for our convex program

Assume that the vertices of Φ have integral coordinates. This condition holds if

Φ is the feasible region of a maximum flow, or more generally if the constraint

matrix defining Φ is totally unimodular. In particular, this means that φopt is

integral. In our case, Φ is the projection of the feasible homology flow polytope

which has integral coordinates as shown by Chambers, Erickson, and Nayyeri [8].

The projection maps a feasible class of homologous flows to a feasible class of

homologous circulations and is achieved by dropping the last coordinate. As

such, the vertices of Φ are integral.

We express our problem as,

maximize F (φ)

subject to φ(λ) ≤ c(λ), for every directed cocycleλ in G
′

.

We negate the concave function to get a convex function (and abuse notation

by reusing the variable F) to get:

F (φ1, ..., φ2g) = max
i
Fi(φ1, ..., φ2g)

where Fi(φ1, ..., φ2g) = −Pi(φ1, ..., φ2g). Thus, F is now a convex, piecewise

linear function which we want to minimize over the feasible region.

20

The convex program to be solved can now be written in standard form as:

min(φ1,...,φ2g) maxi Fi(φ1, ..., φ2g)

subject to φ(λ) ≤ c(λ), for every cocycle λ in G′

We use the ellipsoid method as described in the previous section to solve

this problem. The convex function in this problem is F (φ) = maxi Fi(φ). The

bounding ellipsoid E0 is a ball of radius C
√

2g centered at the origin. We

set ε = 1/(4C
√

2g) so that Φε fits in a ball of radius 1/4. Also V ol(Φε) ≥
B(ε/

√
2gn) which implies that the number of iterations is O(g2 log(C)). The

running time of Oracleφ is O(g2n log2 n) and the overall running time of the

algorithm is O(g6n log2 n log2(C)). In subsequent theorems we show why these

statements are true. Oracleφ for this problem uses the algorithm described

earlier in Corollary 4 at the query point, φ. If we get a negative cycle, that is

the violated constraint. If the point is feasible, the shortest path from p∗ to q∗

defines a function Fi whose subgradient we can calculate. We now describe how

to find this subgradient.

Let k be an index at which Fk(φ) = F (φ). Let g = ∇Fk(φ).

We have Fk(x) = Fk(φ) + 〈g, x〉 − 〈g, φ〉, at all x ∈ Φ. Also F (x) ≥ Fk(x)

as F is the pointwise maximum of the functions Fi. Putting these together we

have, F (x) ≥ Fk(φ) + 〈g, x〉 − 〈g, φ〉 = F (φ) + 〈g, x〉 − 〈g, φ〉. Thus, g ∈ ∂F (x).

Theorem 6 The ellipsoid method finds the max flow in an st embedded graph

in O(g6n log2 n log2(Cn)).

Proof: The time to run Oracle once is Ts is O(g2n log2 n). The number of

iterations, I is O(g log(V olB(C
√

2g) /V olB(ε/
√

2gn))) which is O(g log(2Cgn/

ε)2g) which in turn is O(g2 log(8
√

2C2ng3/2)). Assuming that g = O(
√
n), the

number of iterations is O(g2 log(C2n2)) = O(g2 log(Cn)).

As the Oracle takes time O(g2n log2 n), and uses arithmetic operations which

take time proportional to the number of bits, the total time from running the

Oracle is O(g6n log2 n log2(Cn)). The total time spent maintaining the ellipsoid

Ei is O((gI log I)2) which is O((g3 log(Cn) log log(Cn))2) but this is dominated

by the rest of the algorithm if C = O(2n).

5.4 Required theorems

Lemma 7 Φ lies in a ball of radius C
√

2g.

Proof : The total capacity of any cycle is at most C, and so −C ≤ φi ≤ C.

Thus, the feasible region Φ lies in the hypercube [−C,C]2g which lies in a ball

of radius C
√

2g centered at the origin.

Lemma 8 For any ε ∈ [0, 1], Φε is the result of scaling Φ1 by a factor of ε about

φopt.

21

Proof: We shoot a ray from φopt into some direction and let x1 be the point

the ray meets Φ1 and xε be the point where the ray meets Φε.

Suppose that F (xε) = Fi(xε) and F (x1) 6= Fi(x1). Then there is a y in the

interior of Φ1 such that Fi(y) = Fk(y) = F (y) for some i 6= k.

Let Rik = {x|F (x) = Fi(x) = Fk(x)}. As y is strictly in the interior of Φ1,

F (y) < F (φopt) + 1. Every vertex in Rik is the projection of a vertex of the

feasible homology flow polytope Φ′ and is therefore integral.

Let rik be the optimal vertex of Rik such that F (rik) is minimized. Since

rik is not φopt, F (φopt) < F (rik). F (rik) is integral, but that means F (φopt) <

F (rik) < F (φopt) + 1, which is not possible. We conclude that Fi(x1) = F (x1)

and that as Fi is linear Φε is a scaled copy of Φ1 about φopt.

Corollary 9 If ε = 1/4C
√

2g, Φε lies in a ball of radius 1/4.

Proof: If ε = 1/4C
√

2g, Φε is the result of scaling Φ1 by a factor of ε about

φopt. Since Φ1 lies in a ball of radius C
√

2g, this means that Φε lies in a ball of

radius Cε
√

2g. Thus, Φε lies in a ball of radius 1/4.

Lemma 10 Vol(Φε) ≥ B(ε/
√

2gn).

Proof: Recall that Φi = {x|F (x) ≤ F (phiopt)+ i}. Φε is a convex set, bounded

by constraints in 2g dimensions. Recall that F (φ) = maxi Fi(φ) where Fi(φ) is

the negated length of some path from p∗ to q∗ in the dual residual graph. Each

function Fi is affine; that is, Fi(φ) = 〈ai, φ〉 + ci for some vector ai ∈ R2g with

||ai|| ≤ n
√

2g and some scalar ci ∈ R.

Let Li = F−1
i (Fi(φopt) + ε) ; this set is a hyperplane in R2g with equation

〈ai, φ〉 + ci = Fi(φopt) + ε.

The boundary of Φε is contained in the union of all hyperplanes Li such that

Fi(φopt) = F (φopt).

For each i, let ri denote the minimum distance from φopt to Li. If Fi(φopt) =

F (φopt), we have ri = ε/ ||ai|| ≥ ε/n
√

2g.

Thus, φε contains a ball of radius ε/
√

2gn centered at the origin.

Lemma 11 The vertices of Φ have integral coordinates.

Proof: Let Φ′ be the feasible flow polytope in H(G; s, t). Chambers, Erickson,

and Nayyeri [8] show that the vertices of the feasible homology flow polytope

Φ′ have integral coordinates. Φ is a projection of Φ′, with the projection map

simply dropping the last coordinate. Thus every vertex of Φ is a projection of

a vertex of Φ′ and hence has integral coordinates.

Lemma 12 The objective function attains its maximum at an integral point.

Proof: Chambers, Erickson, and Nayyeri [8] show that the maximum flow is

attained at an integral vertex of Φ′, say m. Consider the vertex of Φ to which

22

m is projected. Using Theorem 3 at this vertex, we find circulation maximizing

ψ(t → s) and thus the maximum valued flow which is integral as the dual

residual graph considered by theorem 3, has integral edge weights.

Theorem 13 When g = 1, the number of non-redundant constraints is O(n2).

Proof: When a non-redundant constraint is satisfied, it just means that one of

the constraints of the convex program P is satisfied with equality. ie. c(λ) −
ψ(λ) = 0. ie. ψ(λ) = c(λ) = d say.

Now ψ = xβ + yγ and ψ(λ) = x(β(λ)) + y(γ(λ)) where β(λ) = Number of

edges that λ shares with β and γ(λ) = Number of edges that λ shares with γ

Now as λ corresponds to co-cycles that are dual to simple cycles, and as

both β and γ which are a set of cycles forming the homology basis are simple,

β(λ) ≤ n and γ(λ) ≤ n. d is at most the sum of the capacities on G, some

constant.

Therefore the number of non-redundant constraints is O(n2).

Also, the maximum number of vertices’s in the convex polygon defined by

these O(n2) non-redundant constraints is also O(n2)

23

References

[1] C. Berge. Two problems in graph theory. Proc. Nat. Acad. Sci. 43:842–844,
1957.

[2] T. C. Biedl, B. Brejová, and T. Vinař. Simplifying flow networks. Proc. 25th
Symp. Math. Found. Comput. Sci., 192–201, 2000. Lecture Notes Comput.
Sci. 1893, Springer-Verlag.

[3] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: A survey.
Oper. Res. 29(6):1039–1091, 1981.

[4] G. Borradaile. Exploiting Planarity for Network Flow and Connectivity
Problems. Ph.D. thesis, Brown University, May 2008. 〈http://www.cs.
brown.edu/research/pubs/theses/phd/2008/glencora.pdf〉.

[5] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. A polynomial-time
approximation scheme for Steiner tree in planar graphs. Proc. 18th Ann.
ACM-SIAM Symp. Discrete Algorithms, 1285–1294, 2007.

[6] S. Boyd. Convex optimization ii, 2007. 〈http://see.stanford.edu/see/
materials/lsocoee364b/handouts.aspx〉.

[7] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus
g graph. SODA ’07: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, 89–97, 2007. Society for Industrial and
Applied Mathematics.

[8] E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomol-
ogy cuts. STOC ’09: Proceedings of the 41st annual ACM symposium on
Theory of computing, 273–282, 2009. ACM.

[9] S. I. Daitch and D. A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. STOC, 451–460, 2008. ACM.

[10] G. Dantzig. Maximization of a linear function of variables subject to linear
inequalities: Activity analysis of production and allocation(Cowles Com-
mission). Rand Corporation, 1951.

[11] E. A. Dinic. Algorithm for solution of a problem of maximum flow in
networks with power estimation. Soviet Math. Dokl. 11:1277–1280, 1970.

[12] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM 19(2):248–264. ACM, 1972.

[13] D. Eppstein. Diameter and treewidth in minor-closed graph families. Al-
gorithmica 27:275–291, 2000.

24

[14] J. Erickson. Maximum flows and parametric shortest paths in planar
graphs. To appear in SODA ’10: Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, 2010. ACM.

[15] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian J.
Math 8:399–404, 1956.

[16] L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[17] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM J. Comput. 16(6):1004–1022. Society for Industrial
and Applied Mathematics, 1987.

[18] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J.
ACM 45(5):783–797, 1998.

[19] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. Assoc. Comput. Mach. 35(4):921–940, 1988.

[20] J. L. Gross and T. W. Tucker. Topological graph theory. Dover Publications,
2001.

[21] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1(2):169–197,
1981.

[22] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization, 2nd edition. Algorithms and Combinatorics 2.
Springer-Verlag, 1993.

[23] T. E. Harris and F. S. Ross. Fundamentals of a method for evaluating rail
net capacities. Memorandum RM-1573, The RAND Corporation, Santa
Monica, California, October 24, 1955. Cited in [39].

[24] R. Hassin. Maximum flow in (s, t) planar networks. Inf. Process. Lett.
13(3):107, 1981.

[25] R. Hassin and D. B. Johnson. An o(n log2 n) algorithm for maximum flow
in undirected planar networks. SIAM J. Comput. 14(3):612–624, 1985.

[26] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001. 〈http:
//www.math.cornell.edu/~hatcher/〉.

[27] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-
path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1):3–23, 1997.

[28] H. Imai and K. Iwano. Efficient sequential and parallel algorithms for
planar minimum cost flow. Proc. SIGAL Int. Symp. Algorithms, 21–30,
1990. Lecture Notes Comput. Sci. 450, Springer-Verlag.

[29] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J.
Comput. 8(2), 1979.

[30] D. B. Johnson and S. M. Venkatesan. Partition of planar flow networks
(preliminary version). Proc. 24th IEEE Symp. Found. Comput. Sci., 259–
264, 1983. IEEE Computer Society.

25

[31] L. G. Khachiyan. A polynomial algorithm in linear programming. So-
viet Math. Dokl. 20(1):191–194, 1979. Translated from Doklady Akademiia

Nauk SSSR 244:1093–1996, 1979.

[32] S. Khuller, J. Naor, and P. Klein. The lattice structure of flow in planar
graphs. SIAM J. Discrete Math. 477–490, 1993.

[33] P. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar
graphs with negative lengths: a linear-space O(n log2 n)-time algorithm.
SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium
on Discrete Algorithms, 236–245, 2009. Society for Industrial and Applied
Mathematics.

[34] Y. Kobayashi and K.-i. Kawarabayashi. Algorithms for finding an induced
cycle in planar graphs and bounded genus graphs. SODA ’09: Proceedings
of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms,
1146–1155, 2009. Society for Industrial and Applied Mathematics.

[35] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM J. Numer. Anal. 16:346–358, 1979.

[36] W. S. Massey. A basic course in algebraic topology. Springer-Verlag, 1991.

[37] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univer-
sity Press, 2001.

[38] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n)
time. SIAM J. Comput. 12:71–81, 1983.

[39] A. Schrijver. On the history of combinatorial optimization (till 1960).
Handbook of Discrete Optimization, 1–68, 2005. Elsevier.

[40] N. Z. Shor. Cut-off method wth space extension in convex programming
problems. Cybernetics 13(1):94–96, 1977. Translated from Kibernetika

(1):94–95, 1977. Cited in [3, 22].

[41] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci. 26(3):362–391, 1983.

[42] A. N. Tolstoi. Methods of finding the minimal total kilometrage in cargo-
transportation planning in space. Transportation Planning, Volume I,
TransPress of the National Commissariat of Transportation, 1930.

[43] S. M. Venkatesan. Algorithms for network flows. Ph.D. thesis, The Penn-
sylvania State University, 1983. Cited in [30].

[44] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V | log |V |)-time.
J. Comput. Syst. Sci. 55(3):454–476, 1997.

26

