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Abstract

Cloud computing applications require a scalable, elastic and

fault tolerant storage system. In this paper, we describe how

metadata management can be improved for a file system

built for large scale data-intensive applications. We imple-

ment Ring File System (RFS), that uses a single hop Dis-

tributed Hash Table, found in peer-to-peer systems, to man-

age its metadata and a traditional client server model for

managing the actual data. Our solution does not have a single

point of failure, since the metadata is replicated and the num-

ber of files that can be stored and the throughput of meta-

data operations scales linearly with the number of servers.

We compare against two open source implementations of

Google File System (GFS): HDFS and KFS and show that

our prototype performs better in terms of fault tolerance,

scalability and throughput.

1. Introduction

The phenomenal growth of web services in the past decade

has resulted in many Internet companies having the require-

ment of performing large scale data analysis like indexing

the contents of the billions of websites or analyzing terabytes

of traffic logs to mine usage patterns. A study into the eco-

nomics of computing [1] published in 2003, revealed that

due to relatively higher cost of the transferring data across

the network, the most efficient computing model is to move

computation near the data. As a result, several large scale,

distributed, data-intensive applications [2, 3] are used today

to analyze data stored in large datacenters.

The growing size of the datacenter also means that hard-

ware failures occur more frequently and that applications

need to be designed to tolerate such failures. A recent pre-

sentation about a typical Google datacenter reported that up

to 5% of disk drives fail each year and that every server

restarts at least twice a year due to software or hardware

issues [4]. With the size of digital data doubling every 18
months [5], it is also essential that applications are designed

to scale and meet the growing demands.

Distributed data storage has been identified as one of the

challenges in cloud computing [6]. An efficient distributed

file system needs to:

1. provide large bandwidth for data access from multiple

concurrent jobs

2. operate reliably amidst hardware failures

3. be able to scale to many millions or billions of files and

thousands of machines

The Google File System (GFS) [7] was proposed to meet

the above requirements and has since been cloned in open

source projects like Hadoop Distributed File System (HDFS)

[8] and Kosmos File System (KFS) [9] that are used by com-

panies like Yahoo, Facebook, Amazon, Baidu, etc. The GFS

architecture comprises of a single GFS master server which

stores the metadata of the file system and multiple slaves

known as chunkservers which store the data. Files are di-

vided into chunks (usually 64 MB in size) and the GFS

master manages the placement and data-layout among the

various chunkservers. The GFS master also stores the meta-

data like filenames, size, directory structure and information

about the location and placement of data in memory. One

of the direct implications of this design is that the size of

metadata is limited by the memory available at the GFS mas-

ter. This architecture was picked for its simplicity and works

well for hundreds of terabytes with few millions of files [10].

With storage requirements growing to petabytes, there is a

need for distributing the metadata storage to more than one

server.

Clients typically communicate with a GFS master only

while opening a file to find out the location of the data

and then directly communicate with the chunkservers to re-

duce the load on the single master. A typical GFS master

is capable of handling a few thousand operations per sec-

ond [10] but when massively parallel applications like a

MapReduce [2] job with many thousand mappers need to

open a number of files, the GFS master becomes overloaded.

As datacenters grow to accomodate many thousands of ma-

chines in one location, distributing the metadata operations

among multiple servers would be necessary to increase the

throughput. Though the probability of a single server failing

in a datacenter is low and the GFS master is continuously

monitored, it still remains a single point of failure for the

system. Having multiple servers to handle failure would in-

crease the overall reliability of the system and reduce the

downtime visible to clients.
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Handling metadata operations efficiently is an important

aspect of the filesystem as they constitute up to half of file

system workloads [11]. While I/O bandwidth available for

a distributed file system can be increased by adding more

data storage servers, scaling metadata management involves

dealing with consistency issues across replicated servers.

Motivated by the above limitations, our goal is to de-

sign a distributed file system for large scale data-intensive

applications that is fault tolerant and scalable while ensur-

ing a high throughput for metadata operations from multiple

clients. We propose RingFS, a filesystem where the meta-

data is distributed among multiple replicas connected using

a Distributed Hash Table (DHT). Metadata for all the files in

a directory is stored at one primary server, whose location is

determined by computing a hash of the directory name, and

then replicated to its successors.

The major contributions of our work include:

1. Rethinking the design of metadata storage to provide

fault tolerance, improved throughput and increased scal-

ability for the file system.

2. Studying the impact of the proposed design through a

mathematical analysis and simulations

3. Implementing and deploying the file system on a 16-node

cluster and comparison with HDFS and KFS.

The rest of this paper is organized as follows: Section 2

gives a background of the architecture of the existing dis-

tributed file system and its limitations. We describe the de-

sign of our system in Section 3 and analyze its implications

in Section 4. We then demonstrate the scalability and fault

tolerance of our design through simulations followed by im-

plementation results in Section 5. We discuss possible future

work and conclude with Section 6.

2. Related Work

Metadata management has been implemented in systems

like NFS, AFS by statically partitioning the directory hierar-

chy to different servers. This, however, requires an adminis-

trator to manually assign subtrees to each server but enables

clients to easily know which servers have the metadata for a

give file name. Techniques of hashing a file name or the par-

ent directory name to locate a server have been previously

discussed in file systems like Vesta [12] and Lustre [13].

Ceph [14], a petabyte scale file system, uses a dynamic meta-

data distribution scheme where subtrees are migrated when

the load on a server increases. Hashing schemes have been

found to be inefficient while trying to satisfy POSIX direc-

tory access semantics as this would involve contacting more

than one server. However studies have shown that most cloud

computing applications do not require strict POSIX seman-

tics [7] and with efficient caching of metadata on the clients,

the performance overhead can be overcome. Filesystems like

PAST [15] and CFS [16] have been built on top of DHTs like

Pastry and Chord but concentrate on storage management in

a peer to peer system with immutable files. A more exhaus-

tive survey of peer-to-peer storage techniques for distributed

file systems can be found here [17].

3. Design

Our architecture consists of three types of nodes: metaservers,

chunkservers and clients as shown in the Figure 1. The

metaservers store the metadata of the file system whereas

the chunkservers store the actual contents of the file. Ev-

ery metaserver has information about the locations of all the

other metaservers in the file system. Thus, the metaservers

are organized in a single hop Distributed Hash Table (DHT).

Each metaserver has an identifier which is obtained by hash-

ing its MAC address.

Chunkservers are grouped into multiple cells and each

cell communicates with a single metaserver. This grouping

can be performed in two ways. The chunkserver can com-

pute a hash of its MAC address and connect to the metaserver

that is its successor in the DHT. This makes the system

more self adaptive since the file system is symmetric with

respect to each metaserver. The other way is to configure

each chunkserver to connect to a particular metaserver alone.

This gives more control over the mapping of chunkservers to

metaservers and can be useful in configuring geographically

distributed cells each having its own metaserver.

The clients distribute the metadata for the files and di-

rectories over the DHT by computing a hash of the parent

path present in the file operation. Using the parent path im-

plies that the metadata for all the files in a given directory

is present at the same metaserver. This makes listing the
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contents of a directory efficient and is commonly used by

MapReduce and other cloud computing applications.

3.1 Normal operation

We demonstrate the steps involved in the creation of a file,

when there are no failures in the system. The sequence of

operations shown in Figure 1 are:

1. Client wishes to create a file named

/dir1/dir2/filename. It computes a hash of the parent path,

/dir1/dir2, to determine that it has to contact metaserver

M0 for this file operation.

2. Client issues a create request to this metaserver which

adds a record to its metatable and allocates space for the

file in Cell 0.

3. Before returning the response back to the client, M0

sends a replication request to r of its successors, M1,M2...

in the DHT to perform the same operation on their

replica metatable.

4. All of the successor metaservers send replies to M0. Syn-

chronous replication is necessary to ensure consistency in

the event of failures of metaservers.

5. M0 sends back the response to the client.

6. Client then contacts the chunkserver for the actual file

contents.

7. Chunkserver finally responds with the file.

Thus, in all r metadata Remote Procedure Calls (RPCs) are

needed for a write operation. If multiple clients try to create

a file or write to the same file, consistency is ensured by

the fact that these mutable operations are serialized at the

primary metaserver for that file.

The read operation is similarly performed by using the

hash of the parent path to determine the metaserver to con-

tact. This metaserver directly replies with the metadata in-

formation of the file and where the chunks for the file are

located. The client then communicates directly with the

chunkservers to read the contents of the file. Thus, read op-

erations need a single metadata RPC.

3.2 Failure and Recovery

Let us now consider a case now where metaserver M0 has

failed . The chunkservers in cell 0, detect the failure through

heartbeat messages and connect to the next server M1 in the

DHT. When a client wishes to create a file its connection is

now handled by M1 in place of M0. As most of the server

failures in a datacenter notify a system administrator, we

assume that the failed server will come back shortly and

hence replicate the metadata to only r − 1 servers for this

request. M1 also allocates space for the file in cell 0 and

manages the layout and replication for the chunkservers in

cell 0.

Once M0 recovers, it sends a request to its neighboring

metaservers M1, M2 ... to obtain the latest version of the
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metadata. On receipt of this request, M1 sends the metadata

which belongs to M0 and also closes the connection with the

chunkservers in cell 0. The chunkservers now reconnect to

M0 which takes over the layout management for this cell and

verifies the file chunks based on the latest metadata version

obtained.

4. Analysis

In this section, we present a mathematical analysis compar-

ing the design of GFS and X with respect to the fault tol-

erance, scalability, throughput and overhead followed by a

failure analysis.

4.1 Design Analysis

Let the total number of machines in the system be n. In

GFS, there is exactly 1 metaserver and the remaining n − 1
machines are chunkservers that store the actual data. Since

there is only one metaserver, the metadata is not replicated

and the filesystem cannot survive the crash of the metaserver.

In RFS, we have m metaservers that distribute the meta-

data r times. RFS can thus survive the crash of r − 1
metaservers. Although a single Remote Procedure Call

(RPC) is enough for the lookup using a hash of the path,

r RPCs are needed for the creation of the file, since the

metadata has to be replicated to r other servers. Since m
metaservers can handle the read operations, the read meta-

data throughput is m times that of GFS. Similarly, the write

metadata throughput is m/r times that of GFS, since it is

distributed over m metaservers, but replicated r times. This

analysis is summarized in Table 1.

4.2 Failure Analysis

Failures are assumed to be independent. This assumption is

reasonable because we have only tens of metaservers and

they are distributed across racks and potentially different

clusters. We ignore the failure of chunkservers in this analy-

sis since it has the same effect on both the designs and sim-

plifies our analysis. Let f = 1/MTBF be the probability

that the meta server fails in a given time, and let RGFS be
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Metric GFS RFS

Metaserver failures that can be tolerated 0 r − 1
RPCs required for a read 1 1
RPCs required for a write 1 r
Metadata records X X · m/r
Metadata throughput for reads X X · x
Metadata throughput for writes X X · y

Table 1. Analytical comparison of GFS and RFS

the time required to recover it. The file system is unavailable

for RGFS ·f of the time. For example, if the metaserver fails

once a month and it takes 6 hours for it to recover, then the

file system availability is 99.18%.

Let m be the number of metaservers in our system, r be

the number of times the metadata is replicated, f be the

probability that a given server fails in a given time t and

RRFS be the time required to recover it. Note that RRFS

will be roughly equal to r ·RGFS/n, since the recovery time

of a metaserver is proportional to the amount of metadata

stored on it and we assume that the metadata is replicated

r times. The probability that any r consecutive metaservers

in the ring go down is mfr(1 − f)m−r. If we have m =
10 metaservers, r = 3 copies of the metadata and f =
0.1 per 3 days, then this probability is 0.47%. However, a

portion of our file system is unavailable if and only if all the

replicated metaservers go down within the recovery time of

each other. This happens with a probability of FRFS = m ·

f ·
(

f ·RRF S

t

)r−1

·(1−f)m−r, assuming that the failures are

equally distributed over time. The file system is unavailable

for FRFS ·RRFS of the time. Continuing with the example,

the recovery time would be 1.8 hours and the availability is

99.9994%.

5. Experiments

In this section, we present experimental results obtained

from our prototype implementation of RingFS. Our imple-

mentation is based on the KFS implementation and modified

the metadata management data structures and added the abil-

ity for metaservers to recover from failures by communicat-

ing with its replicas. To study the behavior on large networks

of nodes, we also implemented a simulation environment.

All experiments were performed on sixteen 8-core HP

DL160 (Intel Xeon 2.66GHz CPUs) with 16GB of main

memory, running CentOS 5.4. The MapReduce implemen-

tation used was Hadoop 0.20.1 and was executed using

Sun’s Java SDK 1.6.0. We compare our results against

Hadoop Distributed File System (HDFS) that accompanied

the Hadoop 0.20.1 release and Kosmos File system (KFS)

0.4. A single server is configured as the metaserver and the

other 15 nodes run the chunkservers. RFS is configured with

3 metaservers and 5 chunkservers connecting to each of

them. The metadata is replicated three times.

5.1 Simulation

Fault tolerance of a design is difficult to measure without

a large scale deployment. Hence, we chose to model the

failures that occur in datacenters using a discrete iterative

simulation. Each metaserver is assumed to have a constant

and independent failure probability.

The results show that RFS has better fault tolerance than

the single master (GFS) design. In the case of GFS, if the

metaserver fails, the whole filesystem is unavailable and the

number of successful lookups is 0 till it recovers after some

time. In RFS, we configure 10 metaservers and each fails in-

dependently. The metadata is replicated on the two successor

metaservers. Only a part of the filesystem is unavailable only

when three successive metaservers fail. Figure 3 shows plot

of the CDF of the number of successful lookups for GFS

and RFS for different probabilities of failure. As the failure

probability increases, the number of successful lookups de-

creases. Less than 10% of the lookups fail in RFS in all the

cases.

5.2 Fault Tolerance

The second experiment demonstrates the fault tolerance of

our implementation. A client sends 150 metadata opera-

tions per second and the number of successful operations

is plotted over time for GFS, KFS and RFS in Figure 6.

HDFS achieves a steady state throughput, but when the

metaserver is killed, the complete filesystem become un-

available. Around t = 110s, the metaserver is restarted and

it recovers from its checkpointed state and replays the logs

of operations that couldn’t be checkpointed. The spike dur-

ing the recovery happens because the metaserver buffers the

requests till it is recovering and batches them together. A

similar trend is observed in the case of KFS, in which we

kill the metaserver at t = 70s and restart it at t = 140s.

For testing the fault tolerance of RFS, we kill one of the

three metaservers at t = 20s and it does not lead to any

decline in the throughput of successful operations. At t =
30s, we kill another metaserver, leaving just one metaserver

leading to a drop in the throughput. At t = 60s, we restart

the failed metaserver and the throughput stabilizes to its

steady state.

5.3 Throughput

The third experiment demonstrates the metadata throughput

performance. A multithreaded client is configured to spawn

a new thread and perform read and write metadata operations

at the appropriate frequency to achieve the target qps. We

then measure how many operations complete successfully

each second and use this to compute the server’s capacity.

Figure 4 shows the load graph comparison for HDFS, KFS

and RFS. The throughput of RFS is roughly twice that of

HDFS and KFS and though the experiment was conducted

with 3 metaservers, the speed is slightly lesser due to the

replication overhead.
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5.4 MapReduce Performance

We ran a simple MapReduce application that counts the

number of words on a wikipedia dataset and varied the input

dataset size from 2GB to 16GB. We measured the time taken

for the job to compute on all three file system and a plot

of the same is shown in Figure 5. We observed that for a

smaller dataset the overhead of replicating the metadata did

increase the time taken to run the job, but on larger datasets

the running times were almost the same for KFS and RFS.

6. Conclusion

We presented and evaluated RingFS, a scalable, fault-tolerant

and high throughput file system that is well suited for large

scale data-intensive applications. RFS can tolerate the fail-

ure of multiple metaservers and it can handle a large number

of files. We have shown how the idea of using a single hop

Distributed Hash Table to manage its metadata from Peer-to-

peer systems can be combined together with the traditional

client server model for managing the actual data. Our tech-

niques for managing the metadata can be combined with

other filesystems.
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