
Breaking the MapReduce Stage Barrier∗

Abhishek Verma, Nicolas Zea, Brian Cho, Indranil Gupta, Roy H. Campbell

{verma7, nzea2, bcho2, indy, rhc} @ illinois.edu

University of Illinois at Urbana-Champaign

ABSTRACT

The MapReduce model uses a barrier between the Map and Re-
duce stages. This provides simplicity in both programming and
implementation. However, in many situations, this barrier hurts
performance because it is overly restrictive. Thus, we develop a
method to break the barrier in MapReduce in a way that improves
efficiency. Careful design of our barrier-less MapReduce frame-
work results in equivalent generality and retains ease of program-
ming. We motivate our case with, and experimentally study our
barrier-less techniques in, a wide variety of MapReduce applica-
tions divided into seven classes. Our experiments show that our
approach can achieve better performance times than a traditional
MapReduce framework. We achieve a reduction in job completion
times that is 25% on average and 87% in the best case.

1. INTRODUCTION
Inspired by the map and reduce primitives present in func-

tional languages, Google proposed MapReduce [9]. The MapRe-
duce framework simplifies the development of large-scale distributed
applications on clusters of commodity machines. It has become
widely popular, e.g., Google uses it internally to process more than
20 PB per day [10]. Yahoo!, Facebook and others use Hadoop, an
open-source implementation of MapReduce [1].
The MapReduce model has become popular because a program-

mer can harness the processing power of large data centers for very
large parallel tasks in a simple way. The programmer only needs to
write the logic of a Map function and Reduce function. This elimi-
nates the need to implement fault-tolerance and low-level memory
management in the program; the MapReduce framework takes care
of these concerns for general programs.
The execution of a MapReduce program across a datacenter is

illustrated in Figure 1. The framework itself divides the program
execution into a Map and Reduce stage, separated by the transfer
of data between machines in the cluster. In the first stage, each
machine in the cluster executes a Map function on a distinct region
of the input data. The Map execution produces records that consist
of a key and value. Each record is stored on the local machine it
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Figure 1: Illustration of MapReduce stage barrier.

was created on. The records for any given key, which are spread out
on many machines, are aggregated at each Reducer for the Reduce
stage. This involves a remote data transfer between the machines
in the cluster.

In current implementations of MapReduce, the two stages are
separated by a barrier. This prevents the Reduce stage from pro-
gressing until all the data from the Map stage has been remotely
transferred to the appropriate machine. The barrier ensures that
all relevant input data is available to the Reduce function before it
proceeds.

In this paper, we break the barrier between stages in MapRe-
duce. The result is a barrier-less version of MapReduce, which
can have significantly improved performance. At the same time,
we take special care to maintain the simplicity and generality of
the MapReduce framework. To this end, we investigate a broad
set of categories of MapReduce programs, differing in the struc-
ture and the memory usage of the Reduce function. Based on these
observations, we develop memory management techniques that are
general and yet require minimal additional effort by the MapRe-
duce programmer.
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Our main contributions are as follows:

1. We present techniques for supporting general purpose appli-
cations in a barrier-less MapReduce framework.

2. For seven different categories of MapReduce algorithms, we
show how they can be converted to their barrier-less forms.

3. We identify and address the memory management concerns
that arise from removing the barrier.

4. We experimentally evaluate the benefit of converting algo-
rithms to their barrier-less version. Our results show an av-
erage improvement of 25% (and 87% in the best case) in the
job completion times, with minimal additional programmer
effort.

In this paper, for concreteness, we focus on the Hadoop frame-
work because of its open source nature. However, our contributions
are not limited to this particular instance. The technique of using
write-local read-remote data transfer with a stage barrier is also
used in Google’s MapReduce, as well as related parallel process-
ing frameworks such as Dryad [16]. Barrier-less implementations
of these frameworks using our techniques should be able to reap
benefits similar to the ones in this paper.
The rest of the paper is structured as follows. We first examine

the role of the MapReduce barrier in Section 2. We then discuss
our design for breaking the barrier in Section 3. We observe that
this improves performance in many cases, but can present a mem-
ory management problem. In Section 4, we investigate the memory
usage patterns of MapReduce applications, and produce a catego-
rization based on the structure of the Reduce function. Based on
these observations, in Section 5 we develop new techniques that are
able to manage memory for general applications while breaking the
barrier. In Section 6, we present experimental results that show a
significant improvement in Hadoop performance when these tech-
niques are applied. We then discuss related work in Section 7 and
finally conclude in Section 8.

2. MOTIVATION:MAPREDUCEBARRIER
The execution of a MapReduce program is divided into a Map

stage and a Reduce stage, as we illustrated in Figure 1. TheMapRe-
duce framework writes the Map output locally at each machine and
then aggregates the relevant records at each Reducer by remotely
reading from the Mappers. This process of transferring data is
called the Shuffle stage.
In current open sourceMapReduce implementations (i.e., Hadoop),

the Shuffle stage contains a distributed barrier. Figure 2 shows a
step-by-step illustration of the Shuffle process from the perspective
of a single Reducer. In this example, the Reducer works on records
with three different keys. Each record is represented as a shape in-
dicating its key. First, the Reducer reads the relevant records from
many Map nodes. These entries are not in a sorted order, and are
buffered at the Reducer. The barrier is reached when the Reducer
has received all Map output. The Reducer then sorts the buffered
entries, effectively grouping them together by key. Finally, the Re-
duce function is applied to each group of entries with the same key,
one by one.
The barrier is useful for several reasons, most prominent being to

provide simplicity and efficiency by allowing the Reduce function
to atomically operate on all records for a particular key. This in turn
means that once a key is processed all partial results for that key can
be disposed of and the output may be written. For example, Fig-
ure 2(d) shows a snapshot of the Reduce function being executed,
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Figure 2: MapReduce Shuffle and Reduce stages as seen at a Re-
duce node. Each record is shown as a shape representing its key.
This shape is also used to show the key for the Reduce output. Par-
tial output is represented with a small portion of the shape.

Remote read Reduce
from Mappers Execution Output

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

Figure 3: Barrier-less Reduce stage in-progress. Each record and
output is shown as a shape, representing its key. Partial output is
represented with a small portion of the shape.



where records of the square key are currently being processed. The
triangle results have already been output, and therefore do not need
to be maintained. The circle records have not yet been operated on,
so there are no results to be maintained. Only the square results
need to be maintained at this point.
However, despite these apparent advantages, we argue that re-

moving the barrier is, in many practical cases, much more effi-
cient. Figure 3 illustrates what the Reduce stage may look like in
a barrier-less execution. The Reduce operation no longer needs to
wait for all records to be remotely read and grouped by key (steps
(a)-(c) in Figure 2). Instead, the Reduce operation can be imme-
diately invoked on each input entry, as it becomes available. This
relaxation can significantly improve the efficiency of the Reduce
function execution.
More concretely, by removing the barrier, we eschew two wait-

ing intervals before the Reduce operations are executed: (1) the
time interval between remote read of the first and last records, and
(2) the time taken for sorting the records. The time it takes to read
all records depends on the relative speed between theMapper nodes
and the speed of data transfer from the Mapper nodes to Reducer
nodes. Datacenters with commodity hardware often show differ-
ences in performance between machines, and they have oversub-
scribed links between machines. This can further extend the first
interval of waiting. The barrier-less model removes these intervals,
thus improving performance.
By removing both waiting intervals, the records in the barrier-

less model are no longer sorted in key order. Our investigation of
seven classes of MapReduce applications summarized in Table 1
(detailed in Section 4) reveals that, in practice, a significant num-
ber of applications do not require the full key sorting provided by
the MapReduce framework. The main role of sorting by key is to
group records with the same key together. Grouping is necessary in
traditional MapReduce, because it requires all records for a key to
be present when the Reduce function is executed. The barrier-less
approach removes this requirement, and the Reduce function is run
on records one by one. This approach raises an important problem:
partial results for each key must be maintained.
Our investigation shows that the number of partial results that

must be maintained differs widely across MapReduce applications
(see column “Size of partial results” in Table 1). Thus, for the
barrier-less model to work with general MapReduce applications,
we require techniques for maintaining and updating these partial re-
sults. Before we develop these techniques in detail (see Section 5),
we first describe the structure and usage of our basic framework for
barrier-less MapReduce.

3. BREAKING THE BARRIER
In this section, we describe our implementation of barrier-less

MapReduce, and illustrate how to modify an existing MapReduce
application to be used in this framework.

3.1 Barrier-less Hadoop Implementation
We implemented barrier-lessMapReduce bymodifying the open-

source Hadoop implementation. The original Hadoop implementa-
tion employs a barrier as described in the previous section. In or-
der to break the barrier, we had to incorporate two primary design
decisions: (1) bypass the sorting mechanism, and (2) modify the
invocation of the Reduce function so that it can be called with a
single record (instead of a key and all values corresponding to it).
Hadoop’s Shuffle stage is implemented to work in an efficient

and asynchronous manner, since it is critical to exit the stage as fast
as possible. To avoid I/O interference at the Reducer, Hadoop des-
ignates an asynchronous thread and local buffer for each Mapper.

Application Key sort Size of
(Reduce Classification) required partial results

Distributed Grep No O(1)
(Identity)

Sort Yes O(records)
(Sorting)

Word Count No O(keys)
(Aggregation)

k-Nearest Neighbors No O(k ∗ keys)
(Selection)

Last.fm unique listens No O(records)
(Post-reduction processing)

Genetic Algorithms No O(window_size)
(Cross-key operations)

Black Scholes No O(1)
(Single Reducer Aggregation)

Table 1: Sort and Memory requirements of MapReduce Jobs.
Records and keys denote respectively, the total number of records
and keys, executed at a single Reducer.

Algorithm 1 Original WordCount

function map(key, value):

// key: document name

// value: document contents

for each word in value do
Emit intermediate (word, 1)

end for

function reduce(key, values, context):

// key: a word

// values: a list of counts

result← 0
for each v in values do

result← result + v
end for

Write (key, result) to context

function run():

while context has more keys do
key← current key from context
values← current values from context
reduce(key, values, context)

end while

The thread polls its Mappers for new records, and when the records
are available fetches them to the local buffer. When all threads
have retrieved their data from their Mappers, the barrier has been
reached and the local buffers are merge-sorted. Finally, each key
and all its values are passed into the Reduce function, one by one.

For barrier-less MapReduce, the remote read of records and the
Reduce execution on these records are pipelined. Therefore, the
impact of I/O interference is minimized. In our barrier-less Hadoop
implementation, we use one asynchronous thread per Mapper as in
the original Hadoop, but retrieve the records into a single buffer
instead. A separate thread executes the Reduce function on the
records in the buffer in a first-in first-out manner. The Reduce
function called in this manner is only passed a single record, as
opposed to a key and all its corresponding values in the origi-
nal Hadoop. This subtle difference in the framework compared
to original Hadoop changes the way applications are implemented
slightly, as we show with an example in Section 3.2.

However, these changes do not affect other aspects of the ex-
ecution of Hadoop. In other words, assignment of tasks, fault-



Algorithm 2 Barrier-less WordCount
Changes made to Algorithm 1 are boldfaced and italicized.

function map(key, value):

// key: document name

// value: document contents

for each word in value do
Emit intermediate(word, 1)

end for

function reduce(key, values, context):

// key: a word

// values: a list of counts

result← 0
for each v in values do

result← result + v
end for

Insert (key, result) in the TreeMap

function run():

Create a new TreeMap
while context has more keys do

key← current key from context
values← current values from context
if TreeMap does not contain key then

Insert (key, 0) in the TreeMap

end if

reduce(key, values, context)
end while

// After all the reduce invocations are done

for each (key, value) in TreeMap do

Write (key, value) to context

end for

tolerance, scheduling, etc., are handled in the same way as original
Hadoop.

3.2 Barrier-less WordCount
As previously mentioned, when executed with barrier-less Hadoop,

the Reduce function does not have the guarantee of atomically re-
ceiving all records for a given key. Therefore, the application must
be modified to handle records one by one. To do this, a programmer
must code, in addition to the Map and Reduce function, a custom
run function. In the original Hadoop, the run function invokes the
Reduce function once per key. For barrier-less Hadoop, the pro-
grammer additionally specifies in this function how partial results
are stored and reused across Reduce invocations.
In the rest of this section, we present a concrete example of

the difference between an application coded for the original and
barrier-less MapReduce frameworks. For this, we use the Word-
Count application provided with the Hadoop distribution. The orig-
inal program is shown in pseudo-code in Algorithm 1. In the Map
function, each output entry is simply a word and a count of 1. In the
Reduce function, the number of output entries with the same key is
counted. The run function, which is part of the Hadoop framework,
ensures that the Reduce function is called once for each key, with
all the values as input.
To runWordCount without a barrier, the programmer has to mod-

ify the run and Reduce functions as presented in Algorithm 2. The
run function calls Reduce on each entry that is received. In other
words, the Reduce function no longer assumes that all values for

a key are passed in at once. This means that the Reducer must
maintain partial results for every key it has received. For our pur-
poses, we use the Java implementation of Red-Black trees [15]

called TreeMap. A TreeMap can quickly access partial results
while maintaining key ordering. As a record (which is a key/value
pair) arrives, the run function reads the previous partial result, and
passes it to the Reduce function. The Reduce function performs the
computation, and stores the new result back into place. Once there
are no more records and all the Reduce invocations have completed,
the output is generated by the run function.

Figure 4 shows the system-wide progress of the WordCount pro-
gram with and without a barrier on the same datacenter. (Details
of the experimental setup are provided in Section 6.) The y-axis
represents the number of CPU cores executing at each stage. In
the original MapReduce, we can see the barrier in the delay be-
tween the Map tasks finishing at 155 seconds and the Reduce tasks
beginning at 170 seconds. In the barrier-less version though, the
combined Shuffle and Reduce stage begins at 50 seconds, when the
first mappers begin to complete. We refer to the time gap between
when the first mappers complete and when the shuffle stage com-
pletes as themapper slack. It is indicative of the extra time taken by
the buffering and sorting parts of the Shuffle stage (see Figure 1).

In barrier-less MapReduce, there is no distinct barrier between
Shuffle and Reduce. Instead, each Reducer works on individual
records as the Shuffle process pulls them in. Because these two
stages are combined, we see an improvement in job completion
time. We observe that the job finishes within 160 seconds, or only
10 seconds after the final Map task completes. This is a 30% im-
provement in the job completion time for WordCount. This benefit
arises because we can perform meaningful work in the form of Re-
duce operations during the mapper slack time, in which the barrier
version is performing the shuffle/sort operation. At the same time,
since our modifications were idempotent, the correctness and the
completeness of the MapReduce execution is not compromised.

Finally, we observe that depending on the application, the amount
of memory consumed at each Reducer by partial results may vary.
In the worst case the number of partial results may become very
large and cause the Reducer to run out of memory. This motivates
the development of new memory management techniques that can
prevent overflows. We address this in Section 5.

4. CLASSIFYING REDUCE OPERATIONS
In order to understand the general implications of breaking the

barrier in the general case, we need to understand concrete MapRe-
duce applications. Hence, we performed a case study of a wide
variety of published MapReduce applications and investigated how
to break the barrier for each of them. The applications we stud-
ied were the following: MapReduce example benchmarks [9]; ma-
chine learning benchmarks [7]; statistical machine translation [6,
11]; optimization algorithms [20]; finance algorithms[5]; and sim-
ilarity scoring [12].

We classified these applications based on the type of Reduce op-
erations they perform. The result is a list of seven types: Identity,
Sorting, Aggregation, Selection, Post-reduction processing, Cross-
key operations and Single reducer aggregations. This information
is summarized in Table 1. In the rest of this section, we present
our classification. For each type, we discuss a representative appli-
cation and how partial results must be stored and updated during
execution in barrier-less MapReduce. Note that applications may
combine one or more Reduce operations.

4.1 Identity
Identity operations are Reduce operations that perform little to

no explicit work. An example of an Identity operation is a Dis-
tributed Grep application [9]. The Map function emits a line of text
if it matches a pattern. The Reduce function is merely used to write
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Figure 4: Progress of MapReduce which performs a word count on a 3GB Wikipedia data set

the final output.
Identity operations are the simplest kind of Reduce operation.

They do not require the Reduce input to be sorted by key. There
is also no need to keep partial results for any keys, because the
results are written immediately as final output. Hence, there is no
difference between implementing this operation for original and for
barrier-less MapReduce.

4.2 Sorting
This is the only prominent kind of operation we found that re-

quires a strict ordering on the output keys. For sorting operations,
the Reduce operation must write output that is in a sorted order.
This is a popular application, e.g., a sort implemented in Hadoop
holds the record for the fastest sort of 100TB of data [18].
The implementation of a sorting operation is dependent on whether

or not a barrier is present. With a barrier, the implementation of a
sorting operation is identical to an Identity operation. The MapRe-
duce framework itself, rather than the Reduce operation, does the
job of sorting the output by key. If sorting by value is also required,
a secondary sort operation is easily performed using custom group-
ing and comparison operations. However, this is not the case when
the barrier is broken.
Effect of no barrier: To implement a sorting operation without

a barrier, the data must be sorted in the Reduce function, typically
through the use of an ordered data structure like a Red-Black tree.
None of the partial results can be emitted until all the values have
been seen and completely sorted. Thus, in the worst case each Re-
ducer must maintain a data structure of size O(records), the total
number of records executed at the Reducer.

4.3 Aggregation
Aggregation operations are commutative and distributive opera-

tions – they include addition and multiplication. They perform an
operation on all the values associated with a key, and emit an ag-
gregated value as output. Since the operations are commutative, the
ordering of the keys is not required.
An example is the WordCount application from Section 3. For

each key, the entries that contain the count of the key are summed
up into the aggregate word count. In the original version, the Re-
duce function is invoked with a key and all of its associated values.
Hence, it can aggregate them and emit the final count immediately.
Effect of no barrier: For the barrier-less version, a running ag-

gregate result must be maintained for each key. Thus, the Reducers
must maintainO(keys) state for storing the partial results. The Re-

ducer outputs the results only when all the keys and their associated
values have been processed.

4.4 Selection
Selection operations are those that select a subset of the values

associated with a key. Examples include finding the max, min, me-
dian, or top k values.

With a barrier present, implementations typically take advantage
of key/value ordering by doing a secondary sort, using the desired
metric for ordering. This allows the Reducer to finish after hav-
ing processed only those values scoring highest (or lowest) on the
metric. For example, when finding a minimum, the metric will be
distance, and thus the Reducer can finish after processing the first
value for every key.

Without a barrier, a sort operation would remove the benefit
of being barrier-less, so these operations must be performed on a
running basis. For example, a running minimum (or minimum k

values) is kept and updated as new values arrive. Therefore, the
barrier-less version of a selection operation maintains a per-key
context with the currently selected values, and emits the final output
once all values have been received.

To investigate selection algorithms, we implemented a k−Nearest
Neighbors algorithm. This is a classic algorithm that reads in two
sets of data, a training set and an experimental set, and finds the
k values in the training set closest to each value in the experimen-
tal set. It was first presented in [14] and is often used in statistical
analysis applications, such as finding pairwise similarity [12].

The distance between an experimental value (exp_value) and
the training value (train_val) is defined as the absolute value of
their difference. It is necessary to compare each experimental value
to every training value. The barrier version’s Map function emits a
tuple (exp_value, distance) for the key, and an integer train_value

for the value. A secondary sort is performed, sorting by the distance

value in the key, but grouping by exp_value. Then, in the Reducer,
the first k values are emitted.

Effect of no barrier: The barrier-less version maintains a k-
value-per-key context, stored as a TreeMap (a Red-Black tree im-
plementation in Java) of linked lists. The Mapper emits an integer
exp_value as the key and a tuple (train_value, distance) as the
value. This is done because no secondary sort is being performed,
so there is no need to emit a tuple as the key. Now, for each key,
the Reducer maintains a size-k ordered linked list, and decides if
the most recently received (exp_value, distance) tuple belongs in
the list, based on the distance value within the tuple. If this is the



case, it is inserted into the appropriate location within the ordered
linked list, evicting the tuple with the largest distance if the linked
list size exceeds k. Once all value tuples have been processed for a
key, the contents of the linked list (namely the top k exp_value’s),
are emitted.

4.5 Post-reduction processing
In post-reducer processing operations, the Reduce operation works

in two steps. First, the entries with a key are processed and inserted
into a temporary data structure. When all the entries for a key have
been processed, a post-processing operation is done on the tempo-
rary data structure to get the final output for the key.
An example application is the one used at Last.fm to track the

number of unique users that listen to each track of music in the ser-
vice [21]. Entries of the input data consists of a userId and trackId
(and other information). The trackId is the key of the record. The
number of unique users per track is counted in two steps. In the pro-
cessing stage, the userId of each record is added into a data struc-
ture that does not hold duplicate values e.g., the code presented
in [21] uses a Java Set. Then the post-processing step counts the
total number of entries in the data structure.
Effect of no barrier: With a barrier, the temporary data structure

will grow with the maximum number of records with a certain key.
This in itself could be a large amount of data. However, when the
barrier is broken, the structure can grow even larger. The temporary
data structure for each key must be maintained, in a partial result
structure such as a TreeMap. The total amount of partial results can
grow to O(records).

4.6 Cross-key operations
Typically a Reduce function processes its keys independent of

the other Reduce functions. However, in cross key operations, the
Reduce function can depend on other keys, for example the pre-
vious k keys. This can be implemented by maintaining a window
of k previously seen keys, operating over them and emitting the
final output. Since Reduce does not depend on other keys, it can
terminate after emitting its output.
To investigate cross-key operations, we use the example of ge-

netic algorithms; in particular we use [20]. Each individual is repre-
sented as a key and the map computes the fitness of each individual
and emits the tuple (individual, fitness). The Reducer maintains
a window of previously seen individuals and when the window is
full, performs the selection and crossover operations of the genetic
algorithm and finally emits the individuals as output.
Effect of no barrier: Only partial results for the window con-

taining the previous k keys need to be maintained. When a partial
result is removed from the window, it is written as a final result.
Thus, the memory requirement for storing partial results is O(k).

4.7 Single reducer aggregation
Single reducer aggregations involve the use of a single Reducer

to aggregate the outputs from multiple mappers. This is generally
used for determining measures of central tendency or dispersion
where global knowledge of all the map outputs is required.
We study single reducer aggregations through a Monte Carlo

simulation that computes the Black-Scholes option pricing value [5,
13]. Each mapper performs complex floating point operations like
exponentiation according to the Black-Scholes formula and the Re-
ducer computes the average and standard deviation of all the values
computed by the mappers.
Effect of no barrier: The average operation can be incremen-

tally computed by maintaining a running sum of the values and
performing a division at the end. In order to calculate the standard

deviation along with the average, the mapper emits the square of
the value along with the value itself. The Reducer maintains a run-
ning sum of the squares of the values along with a running sum
and a count of the values. Let x1, x2, . . . , xN be the values whose
mean is x̄. The standard deviation is computed as follows:
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As only the running sums have to be saved, only O(1) memory
is required for storing the partial results at the Reducer. Since sum-
mations are commutative operations, ordering of the keys is not
required.

5. MANAGING MEMORY OVERFLOWS
As noted in Section 3, an important change in our barrier-less

MapReduce framework is the need to manage the storage of par-
tial results. Depending on the category of the Reduce operation
involved (see Section 4), the partial result memory complexity can
be up to O(records), growing to the number of records executed
at the Reducer. For large datasets, which MapReduce caters to, this
can quickly overflow the in-memory capacity at a server. For in-
stance, Figure 5(a) shows a plot of the amount of heap space used
by a Reducer in a MapReduce job which performs a wordcount on
a 16GB dataset. The memory grew until the Reducer ran out of
available heap space before an exception was thrown and the job
was killed.

In order to address these memory overflow problems, we explore
two possible memory management solutions: a disk spill and merge
scheme (result: Figure 5(b)) and an off-the-shelf disk-spilling key/-
value store.

5.1 Disk Spill and Merge
In the disk spill and merge scheme, a customized partial result

storage structure is used that maintains an estimate of memory us-
age and supports serialization/deserializaton of the partial result
contents. When the memory usage reaches a predefined memory
threshold, the structure moves the partial results to a newly created
local spill file on the disk.

During the course of execution at a Reducer, the memory thresh-
old may be reached multiple times, creating many spill files. Partial
results for a single key may be spilled onto multiple different spill
files. When the Reduce stage is finished, the contents of these spill
files must be merged together to recover the final output. Thus, we
need an efficient technique to merge the partial results of the same
key together.

In the spill phase, partial results are sorted by key as they are
moved to a spill file. Then the merge phase merges all the partial re-
sults for each key in a straightforward manner: For every local spill
file, the first partial result is loaded into the memory and stored in a
buffer. Spill files containing the globally lowest key are then repeat-
edly read from until the lowest key’s partial results are all loaded
into memory. These partial results are then merged together, us-
ing a merge function. This merge function is often functionally the
same as the combiner method of MapReduce (as specified in [9]),
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(a) Having the complete TreeMap in memory leads to out of
memory error and the job fails at 80 seconds.

(b) Disk spill and merge uses less memory and the job
completes successfully. Partial results threshold is 240 MB.

Figure 5: Wordcount over a 16GB dataset with 10 Reducers.

but may be customized to operate on more complex methods for
maintaining partial results. Once all partial results for a key have
been merged, the result can be written as the final output. The next
globally lowest key is found and processed in the same fashion,
until all keys have been processed.

5.2 Disk spilling key/value store
Instead of flushing the entire contents of the memory to a file on

the disk, the partial results can be maintained in a key/value store
that has the capability of spilling to disk. Every invocation of the
Reduce function fetches the previous partial result from the key/-
value store, processes the current input and then stores the result
back into the key/value store. This read-modify-update cycle is
carried out for all the inputs to the Reducer. The key/value store is
capable of evicting some records out of memory and spilling to disk
according to policies like Least Recently Used (LRU), whenever it
runs out of memory.
We experimented with different key/value stores such as Berke-

leyDB [17], Tokyo Cabinet [4] and MongoDB [3]. Among these,
BerkeleyDB (Java Edition) exhibited the highest raw read and write
throughput in terms of operations per second. Thus, we chose it as
the key/value system to run our experiments on. We configured
BerkeleyDB for performance without guaranteeing fault-tolerance
of the data, because the MapReduce framework takes care of these
concerns. The transaction log buffers were maintained in memory
and only written to stable storage when BerkeleyDB determines
that they are full or it is out of main memory.

5.3 Qualitative Comparison
The disk spill and merge approach has the advantage of avoid-

ing the thrashing of in-memory data, unlike BerkeleyDB’s caching
scheme. Similarly, because it is intended specifically for manag-
ing partial result storage, it is more lightweight and efficient than
a generic disk-spillable key/value store. On the other hand, it will
not be able to take advantage of any prior knowledge of the distri-
bution of keys, as it treats each of them equally. Therefore, in situ-
ations where certain keys are significantly more common than oth-
ers, unnecessary spilling may occur. BerkeleyDB, like most key/-
value stores, performs caching and prefetching of common entries,
in order to minimize reading from disk, and can therefore exploit
temporal locality. We compare these approaches quantitatively in
Section 6.3.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance characteristics of

our implementation of barrier-less MapReduce. Our implementa-
tion is based on Hadoop 0.20. We measured the improvement over
the original Hadoop 0.20 for the seven classes described in Section
4.

We performed our experiments on 16 nodes from the Cloud Com-
puting Testbed (CCT) [2]. The nodes are connected together with a
Gigabit ethernet switch running 64 bit Cent OS 5.4 operating sys-
tem. Each node has dual Intel Quad cores, 16GB RAM and 2TB
hard disks. A single node was configured to be the JobTracker and
the NameNode and the other 15 nodes were used as slaves. The
replication factor of the distributed file system was set to 3 and the
default chunksize was 64MB. The number of mappers and Reduc-
ers per node was set to 4, in order to utilize all the 8 cores on each
node.

6.1 Improvement with Input Data Size
We experimentally evaluated the improvements in the job com-

pletion times for six applications in the following subsections. These
applications correspond to the seven classes described in Section 4.
(We omit the Identity class because the original and barrier-less
versions are identical.) These results are summarized in Figure 7.

6.1.1 Sort

Our barrier-less sort implementation is similar to our WordCount
implementation. We use a Red-Black tree implementation (Java
TreeMap) to store a per-key count value. This count value is incre-
mented so that duplicate values do not consume memory. Then, we
emit the key count number of times in the end.

This is a degenerate case, because in the original MapReduce,
both Mappers and Reducers perform no work. The comparison
between the original and the barrier-less MapReduce versions be-
comes a competition between the two sorting mechanisms. In this
case the original merge sort is faster than performing insertions into
a Red-Black Tree. As a result, we observed slight slowdowns in the
barrier-less version as shown in Figure 6(a), up to 9% in the 8GB
case, and going down to 2% for the 16GB case.

6.1.2 WordCount

The WordCount application involves the aggregation operation

of summing the count of the word occurrences. Despite the rela-
tively small amount of non-sorting work performed in this bench-
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Figure 6: Job completion times of various case studies



mark, we observed that the barrier-less approach results in an av-
erage of 15% decrease in job completion times as shown in Figure
6(b). Although the work performed in the barrier-less WordCount
is essentially the same as in the barrier-less Sort, WordCount has
more room for improvement due to the extra aggregation work the
original version performs. This shows that, although Reducers per-
forming no work may not see gains from our barrier-less system,
even work as simple as aggregation can see notable gains. How-
ever, this improvement did not increase proportionally with the size
of the dataset, since writing the output to the distributed file system
is the bottleneck.

6.1.3 k-Nearest Neighbors

This application uses a selection operator which selects the top
k values from the input keys. For our experiments (Figure 6(c)), we
used a k value of 10. Our data values ranged from 0 to 1,000,000.
The barrier-less version of k-Nearest Neighbors must perform extra
work in maintaining a sorted list of the top k values, which is done
automatically by the Shuffle stage in the original framework.
Nevertheless, we observed an average decrease of 18% in job

completion times. This improvement slowly increased as the dataset
size was increased, since the number of map rounds increased,
thereby increasing mapper slack. In addition, the experimental val-
ues must be unique while training set values need not be. Therefore,
the number of keys did not grow at the same rate as the number of
values, resulting in less per-key data. This nature of the data affects
performance as it results in relatively lesser memory overhead for
the barrier-less version.

6.1.4 Last.fm Unique Listens

The calculation of unique listens uses post-reduction processing.
The application counts the unique number of users that listen to a
track. We ran our experiments on a dataset that generated track
listens, uniformly at random across 50 users and 5000 tracks. As
shown in Figure 6(d), for varying sizes of input data, we consis-
tently observed a 20% decrease in job completion time.

6.1.5 Genetic Algorithms

Genetic algorithms are used to exemplify cross-key operations.
The genetic algorithm required no change to perform barrier-less
calculation, as no per-key data had to be maintained. The algo-
rithm in both the original and the barrier-less versions only need to
maintain O(window_size) keys, since each key is independent of
the others.
In this experiment (Figure 6(e)), we executed a genetic algorithm

with a population of 50 million individuals per mapper and varied
the dataset size by increasing the number of mappers. The number
of Reducers was set to 40. We observed that the performance is
limited by the time spent in writing intermediate data to the local
disk or the output to the distributed filesystem. This resulted in a
benefit of about 15%, which stays relatively constant as the dataset
size increases.

6.1.6 Black-Scholes Options Pricing

The calculation of options pricing using Black-Scholes involves
using a single reducer aggregation to calculate the mean and stan-
dard deviation. In this experiment, we executed a million iterations
of the Black-Scholes algorithm per mapper. Black-Scholes, similar
to genetic algorithms, has a constant amount of memory in use at
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the Reducer (O(1) with relation to the input dataset size). How-
ever, unlike genetic algorithms, the output data is also constant in
size since it is just a single running average and standard deviation.
Figure 6(f) shows that our approach resulted in an average benefit
of about 56%, which continued to increase as the number of iter-
ations increased. The maximum improvement in completion time
observed was 87%. This is the best performance of our approach
across all application classes.

6.1.7 Comparing Improvement Across Applications

Figure 7 shows a box plot of the relative improvements of the
different case studies discussed. Black-Scholes showed the largest
improvement, due to theO(1)memory overhead and output dataset
size. In addition, because the improvement continued to increase,
it had the largest variation. The other benchmarks had improve-
ments that stayed consistent around the 20% mark, which was the
common case due to the limitations imposed by mapper slack and
time spent writing to disk. In addition, sort was observed to be our
worst case with a small performance loss on average. It is possible
that exploring the effects of heterogeneity may likely yield larger
improvements, but this is outside the scope of this paper.

6.2 Improvement with Number of Reducers
In order to understand the sensitivity to the number of Reducers,

we varied the Reducer count in Figure 8 and observed the improve-
ment as the count rose from 30 to 70 (which is 10 more than the
number of available CPU cores for Reducers). This illustrates the
effect of applications or systems with an irregular amount of Re-
ducers, for example if nodes fail in the middle of computation.

Our results show that although job completion time decreased
as the compute utilization increased (as the number of Reducers
reached the compute capacity of 60), our improvement over the
barrier version decreased somewhat. When the number of Reducers
surpassed the amount of compute resources available (70 Reducers
running on 60 nodes), the job completion time increased, but our
improvement also increased.

The reason for our scheme having a larger improvement when
the system is underutilized (for example when there are only 30
Reducers), is that each Reducer has to shuffle respectively more
data than in the fully utilized case. This means that the shuffle



 160

 180

 200

 220

 240

 260

 280

 300

 20  30  40  50  60  70  80

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of reducers

Genetic Algorithm with varying reducers

With barrier
Without barrier

Figure 8: Varying the number of Reducers for genetic algorithms

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Reducers

BerkeleyDB
With barrier
Spill merge
In-memory

Figure 9: Wordcount with different memory management tech-
niques with increasing number of Reducers.

time is larger, and the mapper slack, during which the barrier-less
version can perform meaningful work, is also larger. As the uti-
lization becomes more full, the mapper slack decreases, limiting,
but not removing, the benefit gained from breaking the barrier. On
the other hand, once the system becomes over-saturated (the 70
Reducer case), a new round of Reducers is needed, which must
themselves undergo a shuffle stage, once again increasing the map-
per slack. In other words, the benefit of switching to a barrier-less
framework is closely tied to the amount of mapper slack in the run-
time.

6.3 Memory Management Techniques
We compared the different memory management techniques de-

scribed in Section 5. Figure 9 shows a plot of the job completion
times for wordcount with and without a barrier, while varying the
number of Reducers. The disk spill and merge scheme performed
slightly worse than storing the partial results in memory. However,
as the number of Reducers was decreased below 25, the in-memory
technique resulted in an out of memory exception and the job was
killed. The spill and merge technique continued to perform bet-
ter than the original MapReduce. BerkeleyDB on the other hand,
performed poorly on the wordcount. Even though we could ob-
serve about 30,000 inserts per second into the database, this was
not enough throughput to keep up with the millions of small records
handled at each Reducer. This result shows that off-the-shelf key/-
value stores may not be a suitable option for MapReduce work-
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niques with increasing dataset size.

Application
Lines of code

Original Barrier-less % increase

Sort 28 95 240%

WordCount 73 88 20%

k-Nearest Neighbors 195 208 10%

Post Processing 73 91 25%

Genetic Algorithm 532 533 0%

Black-Scholes 251 252 0%

Table 2: Programmer effort, in terms of lines of code, required to
convert MapReduce applications to their barrier-less versions.

loads.
Figure 10 shows a comparison with increasing dataset size. It

can be seen that as the dataset increases, both the disk spill and
merge, and the in-memory barrier-less versions, outperformed the
original version. Again, the BerkeleyDB key/value store can not
keep up with the high frequency of record accesses.

6.4 Programmer Effort
Table 2 summarizes the programmer effort required, in terms

of lines of code, to convert the MapReduce applications into their
barrier-less counterparts. The code for sorting in the original case
is very short due to the use of the Identity Mapper and the Identity
Reducer, since the framework does the job of sorting. However, we
had to add more functionality in the Reduce function of the barrier-
less version. WordCount, k-Nearest Neighbors and Post Processing
required small changes to compute and update the partial results.
For Black-Scholes and the genetic algorithm, the only change re-
quired was that a flag for barrier-less execution be turned on.

7. RELATEDWORK
MapReduce has been widely used for processing large data be-

cause of its simple model that is applicable to “embarrassingly par-
allel” problems – such as log processing. Current research looks to
push MapReduce by using it to solve harder problems. These in-
clude machine learning [7], statistical machine translation [6, 11],
optimization [20], finance [5], and similarity scoring [12]. MapRe-
duce is a logical choice because it allows the problems to be solved
on a loosely coupled set of machines, with less effort than produc-
ing custom parallel processing code. However, MapReduce does
not always give the most efficient parallel processing implementa-
tion. In this paper, we looked at the stage barrier in MapReduce and



showed how breaking it may result in making MapReduce more ef-
ficient for general MapReduce problems.
We are not the first to look at breaking the barrier. Previous work

has looked at using the MapReduce programming framework for
online processing [8]. Unlike batch processing, online processing
applications such as event monitoring or stream processing require
breaking the barrier to keep computations up-to-date. Unlike these
application specific solutions, we present a general framework for
breaking the barrier that can be used for both online and batch pro-
cessing. Our techniques solve memory issues that can appear when
processing large-scale data without a barrier, whether it is online or
batched.
Improving the efficiency of MapReduce has been of recent in-

terest to the systems community. Much of the research presented
has required changes to the MapReduce API [22]. Other work has
aimed to be completely transparent to the programmer [23]. Our
work is a combination of both categories. We have preserved the
baseline MapReduce API, while empowering the programmer to
improve performance by working under relaxed assumptions in the
Reduce function framework.
Dryad [16] is a distributed platform that has been developed at

Microsoft to provide large-scale, parallel, fault-tolerant execution
of processing tasks. It allows the execution of computations that
are expressed as directed acyclic graphs. Dryad also follows the
policy of writing locally and reading remotely and has a barrier
to control this process. The techniques in this paper can likely be
applied to break the barrier in a similar way to the MapReduce
barrier. Because Dryad is a closed system, we were not able to
make modifications to apply these techniques.

8. CONCLUSION
This paper demonstrated that general purposeMapReduce frame-

works without a barrier are feasible, and they can result in signifi-
cant performance benefits. By intelligently managing memory and
identifying which forms of Reduce functions see the most benefit,
our experiments with Hadoop demonstrate speedups of up to 87%
for well-suited applications, and an average of 25% for more typi-
cal applications. Our approach preserves the fault tolerance of the
original MapReduce model, and has similar ease of programming.
Our work opens up new avenues. Memoization, an optimization

similar to DryadInc [19] becomes feasible in the barrier-less model.
Exploring heterogeneity in systems and how much improvement
our barrier-less framework grants in the face of that heterogeneity
is another important line of investigation.
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APPENDIX

This section lists the source code of the Wordcount MapReduce
application which counts the number of occurences of each unique
word for all the files present in the input directory specified on the
command line.

import j a v a . i o . IOExcep t i on ;
import org . apache . hadoop . ∗ ;

pub l i c c l a s s WordCoun tWi thou tBa r r i e r {
pub l i c s t a t i c c l a s s TokenizerMapper
ex tends Mapper<Objec t , Text , Text , I n tW r i t a b l e >{

pr i v a t e f i n a l s t a t i c I n tW r i t a b l e one
=new I n tW r i t a b l e ( 1 ) ;

pr i v a t e Text word=new Text ( ) ;

pub l i c vo id map ( Ob j e c t key , Text va lue ,
Con t ex t c o n t e x t ) throws IOExcep t ion ,
I n t e r r u p t e d E x c e p t i o n {

S t r i n gT o k e n i z e r i t r =
new S t r i n gT o k e n i z e r ( v a l u e . t o S t r i n g ( ) ) ;

whi le ( i t r . hasMoreTokens ( ) ) {
word . s e t ( i t r . nex tToken ( ) ) ;
c o n t e x t . w r i t e ( word , one ) ;

}
}

}

pub l i c s t a t i c c l a s s In tSumReducer ex tends

Reducer <Text , I n tW r i t a b l e , Text , I n tW r i t a b l e > {
TreeMap<Text , I n tW r i t a b l e > hm =
new TreeMap<Text , I n tW r i t a b l e > ( ) ;
pub l i c vo id r educe ( Text key ,

I t e r a b l e < I n tW r i t a b l e > va lue s , Con t ex t c o n t e x t )
throws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {

i n t sum= ( ( I n tW r i t a b l e ) hm . g e t ( key ) ) . g e t ( ) ;

f o r ( I n tW r i t a b l e v a l : v a l u e s ) {
sum+= va l . g e t ( ) ;

}
hm . pu t (new Text ( key ) , new I n tW r i t a b l e ( sum ) ) ;

}

pub l i c vo id run ( Con t ex t c o n t e x t ) throws

IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
whi le ( c o n t e x t . nextKey ( ) ) {
Text key= c o n t e x t . g e tCu r r en tKey ( ) ;
i f ( ! hm . con t a i n sKey ( key ) )

hm . pu t (new Text ( key ) , new I n tW r i t a b l e ( 0 ) ) ;
r e duce ( key , c o n t e x t . g e tVa l u e s ( ) , c o n t e x t ) ;

}

t ry { f o r ( Ob j e c t key : hm . keySe t ( ) ) {
c o n t e x t . w r i t e ( ( Text ) ( key ) ,

( ( I n tW r i t a b l e )hm . g e t ( key ) ) ) ; }
} catch ( IOExcep t i on e ){ e . p r i n t S t a c k T r a c e ( ) ; }

}
}

pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s )
throws Excep t i on {

i n t numReducers =1;
C o n f i g u r a t i o n con f=new Con f i g u r a t i o n ( ) ;
S t r i n g [ ] o t h e rA rg s =new Gen e r i cOp t i o n s P a r s e r

( conf , a r g s ) . ge tRemain ingArgs ( ) ;
i f ( o t h e rA rg s . l e n g t h !=3 ) {
System . e r r . p r i n t l n ( " Usage : i n cwordcoun t " +

"< in > <out > <numReducers >" ) ;
System . e x i t ( 1 ) ;

}
con f . s e t I n c r em e n t a l R e d u c t i o n ( t rue ) ;
numReducers= I n t e g e r . p a r s e I n t ( a r g s [ 2 ] ) ;
Job job=new Job ( conf , "Wordcount w i t h ou t b a r r i e r " ) ;
j ob . s e t J a r B yC l a s s ( WordCoun tWi thou tBa r r i e r . c l a s s ) ;
j ob . s e tMappe rC l a s s ( TokenizerMapper . c l a s s ) ;
j ob . s e tR e d u c e rC l a s s ( In tSumReducer . c l a s s ) ;
j ob . s e tOu t pu tKeyC l a s s ( Text . c l a s s ) ;
j ob . s e tOu t p u tVa l u eC l a s s ( I n tW r i t a b l e . c l a s s ) ;
j ob . setNumReduceTasks ( numReducers ) ;
F i l e I n p u t F o rma t . a d d I n pu t P a t h ( job ,

new Pa th ( o t h e rA rg s [ 0 ] ) ) ;
F i l eOu t pu tFo rma t . s e tOu t p u t P a t h ( job ,

new Pa th ( o t h e rA rg s [ 1 ] ) ) ;
System . e x i t ( j ob . wa i tFo rComp l e t i on ( ) ? 0 : 1 ) ;

}
}


