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1. INTRODUCTION 

1.1 Background Information 

To house a gas-cooled nuclear reactor which requires a 

large core space the use of prestressed concrete reactor vessels 

(PCRV's) has been adopted. The shapes for prestressed concrete 

reactor vessels have varied from a cylinder bounded by two 

inverted hemispherical heads to a spherical shell. The present 

trend in the design of PCRV's is towards cylindrical barrels 

capped with flat, end slabs. 

The PCRV's with flat, end slabs may fail in one or 

more of the four major failure modes: a longitudinal cracking 

in the wall, a circumferential cracking in the wall, a flexural 

failure in the end slab, and a shear failure in the end slab. 

The wall failures are well defined and can be prevented by using 

adequate circumferential and longitudinal prestressing. The 

design of end slabs has been hampered by a lack of sufficient 

understanding of the end slab failure mechanism. Several 

investigators have studied the complex end slab behavior in the 

hope of obtaining a better understanding of the failure modes. 

A series of tests on small-scale cylindrical prestressed 

concrete reactor vessels has been conducted at the structural 

Research Laboratory of the University of Illinois Department of 

Civil Engineering (1, 2). Figure 1 shows the typical cross

section of the vessels which were tested. The primary object of 
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the test series was to define the behavior of the end slab. The 

major variables were the thickness of the end slab and the magni

tudes of the longitudinal and circumferential prestressing force. 

Both types of structural failure of the end slabs were 

observed: a flexural failure and a shear failure (see Fig. 2). 

In the flexural failure the end slab breaks into wedge shaped 

segments which pivot about the outer edge. The vessel ultimately 

fails by fracture of the circumferential prestressing. The end 

slab deflection at failure is considerable. A numerical solution 

to the flexural failure has been obtained using the lumped

parameter model (3). The elastic-crack solution presented in 

Reference 3 predicts with reasonable tolerances the physical 

behavior of the test vessel. 

In the shear failure inclined cracks develop in the end 

slab at about middepth of the slab. These cracks propagate toward 

the top and bottom of the slab. The vessel fails as a result of 

the failure of the concrete near the end of the inclined crack. 

The punching failure of the circul~r portion of the slab at the 

center was abrupt. The end slab deflection was generally less for 

vessels failing in shear but even in these cases was still a 

relatively large value. 

Reinforcing the end slab can improve the flexural capac

ity of the vessel. However, the use of reinforcement to control 

shear failures has been found to be ineffective for deep 

slabs (4). The slab in the experimental phase of the pressure 

vessel study was not reinforced because the presence of 
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reinforcement would make the understanding of the complex con

crete behavior much more difficult. 

Other small-scale experimental work has been performed 

to study the behavior of end slabs of cylindrical pressure 

vessels. Campbell-Allen and Low (5) conducted a series of tests 

on isolated circular concrete slabs with clamped edges. They 

obtained shear failures. Brading and Hills (6) investigated 

the behavior of isolated circular end slabs and end slabs with 

cylindrical skirt. Flexural and shear failures were observed 

on the isolated slabs. The cylindrical vessels failed because 

of excessive elongation of vertical prestressing causing cir

cumferential crack in the wall. 

Hornby, Verdon and Wong (7) tested a 1/8th scale model 

of the cylindrical prestressed concrete pressure vessel used 

for the Oldbury nuclear power~station. The ultimate structural 

failure could not be obtained because the vessel liner failed 

and the pressure could not be increased. Price and Hinley (8) 

studied the behavior of a cylindrical concrete pressure vessel 

under prestress and various conditions of internal pressure and 

thermal loading. A plug type failure of the unreinforced end 

slab was obtained. 

Many other investigations have been carried out in the 

area of prestressed ·concrete nuclear pressure vessels. Tan (9) 

has compiled an extensive bibliography of investigations con

ducted through 1968 on this subject. 
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1.2 Object and Scope 

The object of this investigation is to develop an 

analytical procedure that would predict the crack propagation 

of a shear type failure in the end slab of cylindrical pre

stressed concrete reactor vessel. The investigation is limited 

to the elastic-crack solution for static loads and isothermal 

conditions. 

The lumped-parameter model developed at University of 

Illinois is used in a form extended to solve the axisymmetric 

solid problem of the cylindrical vessel. Some of the problems 

which have been studied using this model are: axisymmetric 

solids (3), plane problems of solid media (10), shells (11, 12, 

13), plates (14) and contained plastic flow (15). 

The numerical problem is formulated using the displace

ment method of analysis where the element stiffnesses are 

derived by the application of the principle of virtual dis

placement. Displacements, strains and stresses are computed 

at discrete points for various stages of loading. The maximum 

principle strain at each point is checked for each stage of 

loading to determine which pOints if any have attained the 

cracking tensile strain of the concrete. New stiffness proper

ties of an element are derived whenever a node reaches the 

limiting tensile strain. 

A solution to a prestressed concrete vessel is obtained 

and it is compared with the experimental result. 
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1.3 Notation 

The following symbols have been used throughout the 

text: 

A sh 

AS~ 

[C ] 

D 

E c 

E s 

H 

k 

k er 

L z 

= transformation matrix relating strains 

to displacements 

= area of the hoop prestressing 

= area of the longitudinal prestressing 

= elasticity matrix in the global 

coordinates 

= elasticity matrix in the principal 

directions 

= out to out diameter of the vessel 

= modulus of elasticity of concrete 

= modulus of elasticity of steel 

= total height of the vessel 

= a factor which extrapolates to the inter-

nal pressure causing next cracking 

= an equivalent spring stiffness in the 

longitudinal direction 

= an equivalent spring stiffness in the 

radial direction 

= stiffness matrix of an element 

= grid length in the r-direction 

= grid length in the z-direction 

= change in confining pressure from the 

hoop prestressing 
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R = radius to the element under consideration 

R = radius to the exterior face of the wall 
0 

!:::.T = change in the hoop prestressing force 

u = displacement in the r-direction 

v = displacement in the z-direction 

\) = Poisson's ratio 

E = concrete cracking strain in tension 
cr 

E
I

, E
2

, E3 = principal strains at a point 

E 
r' E z' E e ' E = strains at a point in global coordinates 

rz 

i i i i strains at point under applied E 
r' E z' E e ' E = a an rz 

pressure p. 
~ 

pr pr pr pr 
strains at a point from prestressing E , E , 

E e ' E = r z rz 

t t t t strains at a point from prestressing and E 
r' E z' E e ' E = rz 

applied internal pressure p. 
~ 

a 
r' 

a z, a e, a = stresses at a pOint in the global 
rz 

coordinates 
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2. DESCRIPTION OF THE MODEL 

2.1 Governing Equations 

For an axisymmetric solid of revolution loaded syrnrnetri-

cally the deformation of the body is symmetric with respect to 

the axis of revolution. Referring to Fig. 3, Z denotes the axis 

of symmetry, r the axis perpendicular to z axis and 8 the central 

angle from an arbitrarily selected plane containing the axis of 

symmetry. The components of displacement in the radial and 

vertical directions are denoted by u and v respectively. The 

notations cr , 0 , 0 8 , 0 ,£, E , E8, £rz are used to denote r z rz r z 

stresses and strains in r-, z-, and 8-directions. 

Because of symmetry the displacement and stress components 

are independent of 8. Likewise all derivatives with respect to 8 

vanish. The strain components for small displacement theory are 

related to the displacements by the following equations (16): 

E = ~ E = 
dV 

£8 = ~ 
r dr , 

z dZ 
, r , 

£ = 
dU 

+ 
dV E = E8z = 0 rz d Z dr , r8 

The differential equations of equilibrium are written as: 

dO 
r 

dr + 

for the r-direction, and 

+ = o 

(2.1) 

(2.2) 
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+ + = ° (2.3) 

for the z-direction. 

2.2 Selection of Analytical Method 

The solution of the governing equations complete with 

satisfaction of boundary conditions is impractical for most 

axisymmetric solid problems. The numerical methods available 

for solving pressure vessel problems are the lumped-parameter 

(a solution procedure similar to finite difference and dynamic 

relaxation) and the finite element methods. The choice between 

these methods will depend on following factors: 

a. Ability of the chosen method to predict areas of 

high stress concentration. 

b. Ability of the method to permit simulated cracks 

to propagate naturally through concrete without 

undue influence from element geometry and arrange-

rnent selected to approximate the structure. 

c • Simplicity. 

The finite element method has been applied to solve 

problems of axisymmetric sOlids of revolution (17, 18, 19, 20, 

21). In this method the continuous body is subdivided into 

triangular or quadrilateral ring elements. Then the displace-

rnents and in some cases derivatives of the displacements are 

defined at the nodes as shown in Fig. 4a. An equilibrium 
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equation (really an equation relating the internal and external 

work) is written for each degree of freedom yielding a set of 

linear algebraic equations. This procedure reduces the problem 

from that of solving a system of differential equations to that 

of solving a set of linear algebraic equations. For the dis

placement model, only forced (geometric) boundary conditions can 

be treated. Since natural (stress) boundary conditions do not 

enter into the formulation of the problem, the boundary condi

tions are simply treated by including or deleting the appro

priate degrees of freedom as represented by the nodal displace

ments. 

In using the linear displacement triangular ring element 

the meridian plane stresses are constant over the element. Thus 

stresses computed at a node point are different for all the 

various elements meeting at that node. One interpretation for 

evaluating the stresses at a node is· obtained by averaging the 

nodal stresses. Another interpretation is to assign the com

puted stresses to the centroid of an element. The latter inter

pretation results in a certain amount of oscillations of stress 

values between elements and is in general a poorer approximation 

than the averaging of the nodal stresses. Other averaging 

methods have been tried. The best.averaging procedure seems to 

be to average the stresses for two elements and prescribe that 

stress to a point on the line joining the centroids of the two 

elements (22). Due to the averaging process, there is some 

question regarding the accuracy of stresses and the finite 
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clement method may not be able to find small variations in the 

tensile stresses in a field of high compression forces. Also 

th.3re is the question of wh.lt stress or strain, centroidal or 

averQge, is to be used to establish the cracking state. Depend

ing on the arrangement of the triangular elements, the behavior 

of the structure is biased in a particular direction, a factor 

which may affect the path of the simulated crack propag2tion. 

These comments are not so much a condemnation of the finite 

element method as a declaration of the sensitivity of the prob

lem. Rashid (24) employed the linear displacement triangula.r 

ring elements to obtain a cracking solution for a pressure 

vessel. 

Argyris et al (23) have developed various higher order 

displacement elements for axisymmetric problems. They have 

successfully applied these elements to solve elastic problems. 

There is no literature available to indicate that these elements 

have been used to solve cracking problems. 

The lumped-parameter method has also been used to solve 

problems of axisymmetric solids of revolution (3). In this 

method the continuous structure is divided into 2 system of sub

regions. The behavior of the subregions is approximated by 

assuming that the strain quantities are constant across each 

subregion. stress nodes alternate with displacement nodes in 

each coordinate direction in the manner indicated in Fig. 4b. 

Physically, the structure may be visualized as represented by a 

system of rigid bars interconnected by a series of deformable 
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nodes. In contrast to the triangular ring element of the finite 

element method, the lumped-parameter procedure is free of bias 

due to elemental arrangement. Also, there is no ambiguity in 

stresses because they are defined at a given node. 

Based on the reasons cited above and past experience with 

the model, the lumped-parameter method was selected as the 

anayltical model to be employed for the study of elastic-crack 

problem in this investigation. 

2.3 Details of Model 

The lumped-parameter model can be described as a network 

of b3rs with stress nodes and displacement nodes alternating 

along grid lines in each direction (Fig. 7). The bars connecting 

the stress nodes are assumed rigid and all deformations are 

defined at the stress nodes. It is only at these nodes that the 

stresses and strains are considered. The horizontal, r, and 

vertical, z, displacements are prescribed at the displacement 

nodes. On the r-z plane each stress node away from the boundary 

is bounded by four displacement nodes and each displacement node 

by four stress nodes. 

2.4 Strain-Displacement Relations 

Employing the notations shown in Figs. 7 and 8, the 

strains are expressed in terms of displacements by considering 

all deformations between displacement points concentrated at the 

stress node. A uniform grid length is used in each coordinate 
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direction. The strains in the coordinate directions are 

£ = ~ (u4 - u ) r L 2 r 

£ = --1. (v3 - v ) z L 1 z 
(2.4) 

£8 = -1. 
2R (u4 + u 2 ) 

where Lr is the distance between two adjacent stress (displace

ment) nodes in r-direction, 

L is the distance between two adjacent stress (displacez 

ment) nodes in z-direction, 

U
l

, u
2

, u
3

, u
4 

are the components of d~splacernent in 

r-direction at displacement nodes bounding a 

stress node, 

VI' v 2 ' v 3 ' v 4 are the components of displacement in 

z-direction at displacement nodes bounding a 

stress-node, and 

R is the radius from the axis of revolution to the stress 

node. 

The displacement components represent the corresponding dis-

placements at the same pOints in the real structure. They 

represent mathematically the first order central finite dif-

ference expressions for the usual strain-displacement relations 

for the continuum. 
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Equation 2.4 can be expressed in matrix form by 

{ E } = [ a] {u} (2.5) 

where 

E r 

E
Z 

{ E} = 
Ee 

Erz 

0 0 1 0 0 0 -1. 0 --
L L r r 

0 --1. 0 0 0 --1. 0 0 
L L z z 

[ a] = 
0 0 --1. 0 0 0 

1 0 2R 2R 

-1. 0 0 -1. -1. 0 0 .J.. 
L L L L and z r z r J 

, 

(u l 
T { u} = vI u

2 
v

2 
u

3 v3 u 4 v4 ) 

2.5 Material Properties 

Two materials, concrete and steel, are the structural 

components of the prestressed concrete pressure vessels. In 

contrast to the flexural failure, the shear failure is directly 

related to concrete properties. Therefore, a reliable triaxial 

failure criterion for concrete subjected to combinations of 

tensile and compressive stresses becomes important. 
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Numerous experiments have been conducted to determine 

the behavior of concrete under multiaxial state of stresses (25, 

26, 27, 28, 29). Most of the experimental work performed thus 

far have been limited to biaxial and triaxial compression tests. 

Much work hus been performed with the objective pointed 

toward the development of a failure criterion for concrete. How

ever, no data exist relative to the stress-strain characteris

tics for the multiaxial case. Hannant and Frederick (30) have 

evaluated the results of several investigators and developed a 

failure criterion for concrete in biaxial and triaxial compres

sion. The failure of concrete is described in terms of failure 

surfaces in three-dimensional stress space of concrete sUbjected 

to multiaxial compression. Another theory 2vailable is the 

Mohr1s failure criterion which is applicable to concrete in 

biaxial and triaxial compression. But as yet, there is no 

general triaxial failure criterion for concrete subjected to 

combinations of tensile and compressive stresses. 

For lack of a general triaxial failure criterion, the 

maximum tensile strain theory was adopted as the failure cri

terion for concrete in this investigation. There is a scarcity 

of information pertinent to the cracking strain of concrete 

under rnultiaxial states of stress. The cracking strain value 

of 0.0003 was adopted on the basis of the strains measured 

during the test of the small scale vessel. 

A linear stress-strain curve is assumed for concrete 

although it is known that the concrete in some localized portions 
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of the pressure vessel will be subjected to sufficiently high 

stresses that some form of nonlinear behavior is possible. The 

assumption of a linear stress-strain relationship for the full 

range of stresses was made for the following reasons: 

a. The portion of the cross-section subjected to stress 

magnitudes greater than the ultimate uniaxial com-

pressive stress of concrete is small and localized. 

In addition the high compressive region is near the 

bottom of the slab where the multiaxial compressive 

stresses exist. The concrete in that region is 

expected therefore to remain linear beyond the 

attainment of maximum compressive stresses in excess 

of the ultimate uniaxial compressive stress (fl). 
c 

b. The mathematical model is stable to about 70-80 % of 

the ultimate load. The largest compressive stress 

within the vessel at 80 % of ultimate load is in 

the neighborhood of the ultimate uniaxial compressive 

stress of concrete. 

The stress-strain relationship for the prestressing 

steel is assumed linear. This assumption is justified for this 

study because: 

a. The experiment shows that prestressing remained 

linear up to about 75 % of the ultimate load. 

b. The mathematical model is not applicable beyond about 

70-80 % of the ultimate load because at that loading 

the mathematical model becomes unstable. 



16 

The mathematical instability occurs when a zero term 

appears on the main diagonal of the structure's stiffness matrix. 

At that point the stiffness matrix becomes singular and no solu-

tion is possible. 

2.6 General Stress-Strain Relationship 

The general stress-strain relations for the axisymmetric 

solids of revolution may be expressed in the following matrix 

notations: 

{cr } = [cJ {E} (2.6) 

where 

{cr} = 

[c] = 

, and 

= 
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2.7 Elastic Stress-Strain Relationship 

The stress-strain law for the homogeneous and linearly 

elastic, isotropic material is given by Hooke's Law. For plane 

strain problems of axisymmetric solids of revolution the stress-

strain relations are given in matrix form as: 

a 
r 

a 
z 

a 
rz 

= 
E 

c 
(l+v) (1-2v) 

or symbolically as: 

a 
BII Bl2 r 

° B21 B22 z 
= 

0
e B31 B32 

° B4l B42 rz 

I-v 0 

I-V v 0 

v I-v 0 

o o 1 -(l-2 V ) 
2 

o 

-

J :: 
Bl3 Bl4 

B23 B24 

B33 B34 E:e 

B43 B44 £: 
rz 

E: 
r 

E: 
Z 

E:e 

E: 
rz 

where E is the modulus of elasticity for concrete and v c 

Poisson's ratio. 

2.8 Treatment of Concrete Cracking 

is 

In an axisymmetric solid of revolution two types of 

crack formation are possible: 

(2.7) 

the 

a. A radial plane containing the longitudinal axis of 

the cylinder. 
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b. A circumferential crack symmetric about the longi

tudinal axis. 

Figure 5 shows the radial and circumferential cracks in a differ

ential element of the vessel. 

The radial crack is formed when the circumferential 

strain reaches the limiting tensile strain of concrete. Because 

of the axial symmetry this is a principal stress direction and 

the evaluation of the location of the critical hoop strain is a 

simple matter. Similarly, the circumferential crack occurs 

when the maximum principal strain in the r-z plane exceeds the 

limiting tensile strain of concrete. 

Two methods have been used by analysts in an attempt to 

include the effect of concrete cracking in their solution. The 

first of these methods involves the changing of material proper

ties which make up the structure (3, 24). One set of material 

properties is assumed to exist before cracking, a second set 

after cracking. Prior to cracking, concrete is assumed isotropic 

as given in Eq. 2.7. After a node has cracked, concrete takes on 

orthotropic properties. The modulus in the direction normal to 

the crack direction is reduced to a zero value. An orthotropic 

material has different elastic properties in three mutually 

perpendicular directions as in contrast to an isotropic material 

whose physical properties are the same in all directions. 

The alternate method is to account for cracking by 

changing the topology or nodal connectivity of the structure (31). 

This procedure is readily accomplished within the finite element 
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method but does restrict the cracking to following the element 

boundaries. When a node point cracks in the r-z plane that node 

splits into two nodes yielding two additional unknowns, the 

horizontal and the vertical displacements. Because the topology 

of the structure is changed whenever a node cracks the computer 

coding required for this method is much more complex than the 

material property procedure. 

This alternate procedure is not possible or at least is 

rather ill defined within the lumped-parameter method. Since 

points where the deformations are defined are separated from 

those where the displacements are defined, the application of a 

stress or strain criterion to mark the separation of a displace

ment point into two such points is not workable. 

2.9 orthotropic Stress-Strain Relationship 

When a stress node reaches the limiting tensile strain, 

a crack develops and the node assumes an orthotropic stress

strain relationship in the principal directions. In the direc

tion perpendicular to the plane of the crack the stress node 

loses its ability to carry any force, while in the direction 

parallel to the plane of the crack the stress node maintains its 

structural capacity to resist forces. The cracking thus alters 

the material property matrix for the node. 

The new orthotropic property matrix [cJ, in the r-, z

and 8-directions, can be obtained by the application of the 

principle of conservation of energy (24). Since energy is 
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independent of the coordinate system used as the reference base, 

the energy in the global (r,z,8) coordinate system is equated 

to that of the principal directions and the following relation-

ship is obtained: 

T 
{s} {a} = (2.8) 

where { s} are the strains in the global coordinate system, 

{ o} are the stresses in the global coordinate system, 

{ sp} are the strains in the principal directions, 

{op} are the stresses in the principal directions, and 

{s} T is the transpose of { s } . 

The stress-strain law as given by Eq. 2.6 in the global coordi-

nate system is: 

{a} = [C] {s} (2.9) 

Likewise, the stress-strain law written with respect to the 

principal directions is expressed by: 

ro 

J °1 
I-v v v s 

E 1 

° 
c 

V I-v v s = (l+v) (1-2v) 2 

I 
2 

°3 
v v 1- v s 

3 

or { ° } = [C ] { s } (2.10) 
p p p 

where 01 and 02 are the principal stresses in the r-z planei 

03 = oS' the principal stress in the hoop direction; sl and s2 



are the principal strains in the r-z plane; E3 = Ee , the 

principal strain in the hoop direction. 

The principal strains are related to strains in the 
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global coordinates by the following well known transformation: 

s 2 sin 2 
0 1. sin 2ex cos ex ex E 

1 2 r 

s sin 2 2 
0 1- sin 2ex = ex cos ex E 

2 2 z 

s 0 0 1 0 E e 
3 J 

E 
rz 

or = 1 T J {E} 
E 

(2.11) 

where TE is the strain transformation matrix and ex is the angle 

between the r axis and the plane of crack (see Fig. 6). 

substitution of Eqs. 2.9, 2.10 and 2.11 into Eq. 2.8 yields: 

= (2.12) 

From Eq. 2.12 the orthotropic property matrix [C] in the global 

coordinate system is seen to be related to the matrix in the 

principal directions by: 

[ cJ = [T JT [C ] [Tc-] 
E P Co. 

(2.13) 

If a node cracks in the r-z plane, the first column and 

the first row of the matrix [CpJ in Eq. 2.10 are set to zero 

prior to substituting into Eq. 2.13. For cracking in the radial 
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plane, the third column and the third row in Eq. 2.10 become 

zero. The orthotropic material properties for this latter case 

are given by: 

I-v v 0 0 

E v I-v 0 0 
[e] c (2.14) = (1+v)(1-2v) 0 0 0 0 

1 
0 0 0 -(1-2v) 

2 

When a node has cracked in the r-zand the radial planes, 

the only non-zero term in matrix [ep ] in Eq. 2.10 is the (l-v) 

term in the second row. The new orthotropic material properties 

are derived by substituting the revised [ep ] into Eq. 2.13. 
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3. ELEMENT STIFFNESSES AND 
BOUNDARY CONDITIONS 

3.1 General 

The stiffness of both typical elements and those elements 

along the boundary are derived using the principle of virtual 

displacement. 

Natural (stress) and geometric (forced) boundary condi-

tions are prescribed along the edges. Actual stresses are 

computed along the boundary. 

3.2 Stiffness Matrix of a Typical Interior Element 

The principle of virtual displacement is employed in the 

development of an element stiffness matrix. A virtual displace-

ment in the amount of {ou} produces virtual strains of 

{os} c [a] {ou} 

Also, the external virtual work done by the loads as they 

experience the virtual displacement is 

{oW} = {ou}T {p} 
e 

In the same manner the internal virtual work becomes 

{oW. } 
1 

= J {oE}T {a} dV 
V 

(3.1) 

(3.2) 

(3.3) 
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substituting for {OE} and {a} into Eq. 3.3, following relation-

ship is obtained: 

(3.4) 

Equating the external virtual work to internal virtual work and 

cancelling {ou}T from both sides of the equation since the 

equality is true for arbitrary {OU}, an equilibrium equation 

for an element evolves: 

[Iv [a]T [C] [a] dV] {u} = {p} (3.5) 

Since the stresses and strains are assumed constant 

within a given region in the lumped-parameter model, they 

become independent of dV and the matrices [aJ and [C] can be 

taken outside of the integral. Then the integration in Eq. 3.5 

reduces to finding the volume integral at a given radius from 

the axis of revolution. The volume of the ring swept by the 

diamond shaped torus is easily obtained and it is equal to 

~ R L L where R is the radius from the vertical axis of r z 

symmetry to the stress node of the element under consideration. 

Equation 3.5 can then be expressed in the following form: 



kll k12 k 13 

k2l k22 k23 

k3l k32 k33 

u l 

vI 

u 2 

v 2 

u 3 

v3 

u 4 

v 4 
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Prl 

Pzl 

Pr2 

Pz2 
= 

Pr3 

Pz3 

Pr4 

p z4 

or (3.6) 

See Appendix for the element stiffness of a typical interior 

element. 

The lumped-parameter model used by Echeverria and 

Schnobrich (3) corresponds to the central finite difference 

form of the equilibrium equations. However, the model as formu

lated in that study requires special equations be developed to 

handle each different boundary condition. The stiffness method 

presented here does not correspond to a central finite differ

ence equation. The reason for this deviation is because in the 

stiffness method the circumferential stress could not be pre

scribed at the centroid of the differential element. It was 

possible to do this in the procedure used in Reference 3. 

Nevertheless, the compensating advantage of the stiffness method 

is the ease with which the different boundary conditions can be 

handled. 
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3.3 Boundary Conditions 

3.3.1 General 

Those stress and displacement nodes occurring on the 

bounding surfaces of the vessel being analyzed require special 

consideration. The behavior and movement of these points are 

governed by the natural and geometric boundary conditions 

associated with corresponding surfaces of the pressure vessel. 

The natural boundary conditions for the axisymmetric pressure 

vessel problem represent conditions on the stress quantities and 

are treated by setting the stress normal to boundary surface 

equal to the applied pressure. In the pressure vessel problem 

the applied pressure is either the internal applied pressure or 

the equivalent pressure resulting from the prestressing. This 

in effect achieves an alteration of the stress-strain charac

teristics of those stress nodes which lie on the boundaries. 

In physical terms this represents the influence on the Poisson 

effect for the boundary nodes. 

The geometric boundary conditions are handled by either 

deleting from the structure's stiffness matrix the appropriate 

columns and rows corresponding to zero displacements or hy 

writing the appropriate equations expressing the interrelations 

of displacement components. 

3.3.2 Along the Vertical Axis of Symmetry 

On the vertical axis of symmetry only vertical dis

placements are permitted. This restriction on the displacements 
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means the boundary condition becomes 

u = 0 (3.7) 

symmetry also requires that the shear stress be equal to zero 

for a second, in this case natural, boundary condition: 

(J = 0 
rz 

(3.8) 

Considering the boundary conditions and referring to Figs. 7 and 

9, the following relations are obtained: 

u l = u
3 = 0 

u
2 = - u

4 
(3.9) 

v
2 = v 4 

Taking Eq. 3.9 into consideration, the strain-displacement 

relations for a stress node on the vertical axis become 

E = --1. u 4 r L r 

E = ~ (v
3 - vI) z L z 

(3.10) 
Ee = E r 

E = 0 rz 

The equality of Ee and Er on the vertical axis can be shown by 

investigating the limit of the strain-displacement relations of 

small displacement theory: 
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E = ..aJ:! 
r ar 

u 
Ee = r 

as r goes to zero, 

Ee = limit (.-JL) = limit (auLar) 

0 
r 

0 
ar/ar 

r -+- r -+-

au 
Ee = = E ar r 

The strain-displacement relationship applicable to 

stress nodes on the center line thus simplifies to 

E 0 0 -1. tl r L r 

_L 1 
0 or {E} [a] {u} (3.11) E = 

'I:: 
= z L L z z 

Ee 0 0 -1. 
L r 

The stress-strain relationship with the shear strain deleted 

reduces to 

O'r Cll C
12 

C
13 

Er 1 
a = C

21 C22 
C23 

or {a} = [C] {E} (3.12) z 

E

Z 

J 
O'e C3l C

32 
C

33 Ee 

substituting [a] and [C] from the above relations into Eq. 3.5, 

the stiffness for an element where the stress node lies on the. 
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vertical symmetry is obtained. The Appendix lists the terms 

in the stiffness matrix for this type of element. 

3.3.3 Along the Top of Slab 

Along the top of the slab the boundary is free of normal' 

and shear stresses, that is 

= o and = o (3.13) 

Since 0
Z 

is equal to zero, E
Z 

can be expressed in terms of Er 

Then from stress-strain relations, Eq. 2.7, E becomes 
z 

E = 
Z 

(3.14) 

Substituting E
Z 

from Eq. 3.14 into or and 0e of Eq. 2.7, the 

following stress-strain relations are obtained: 

° = [Bll 
BIj1 B'I] E + [B13 

BI2 Bj13] 
Ee r B22 r B22 

0 e [B - B32 B2I J [ B32 B23 ] = E + B - Ee 
31 B22 r 33 B22 

(3.15) 

In matrix notation the above equations are written as: 

(3.16) 
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where ell = Bl1 - B12 B21 

B22 

e
13 = B13 - B12 B23 

B22 

e 31 = B31 - B32 B21 

B22 

e 33 = B33 - B32 B23 
B22 

Referring to Figs. 7 and 10, the following set of strain-

displacement relations are obtained: 

E L L 
u 2 ] r L L r r 

= 

u 4 [ 

(3.17) 

Ee 
L L 
2R 2R 

Incorporating these quantities into Eq. 3.5 and performing the 

integration, the stiffness matrix is obtained. This stiffness 

matrix is given in the Appendix. 

3.3.4 Along the Bottom of Slab 

The boundary conditions along the bottom of the slab 

involve specification of the levels of stress. These natural 

boundary conqitions are 

o = p 
z 

and 
0' = ° rz (3.18) 

where p is the applied internal pressure per unit area. The 

vertical stress O' z in Eq. 3.18 can be recast in terms of the 



31 

strains by using the symbols introduced in Eq. 2.7. This type of 

change of variable is in fact necessary because there are not 

sufficient displacement nodes to establish the strain from the 

displacement for the stress nodes on the boundary. The appro-

priate equation is 

° = z 

Solving for s in the above equation, the following relation
z 

ship is obtained in terms of 

E = z 

s , 
r 

(3.19) 

substituting s from Eq. 3.19 into ° and 0e of Eq. 2.7, the z r 
following stress-strain relations are attained. 

[Bll 
B12 B21 J E + [B13 

B12 B23 J 
se + 

B12 
cr = -p 
r B22 r B22 B22 

<18 = [B 31 - rB33 

(3.20) 

B32 B21 J E + 
_ B32 B23 ] B32 

Ee + -- p 
B22 r B22 B22 

I.. 

The coefficients of the strains in Eqs. 3.15 and 3.20 are 

identical. Therefore, Eq. 3.20 can be simply presented by 

employing the notations used in Eq. 3.16. 

(3.21) 
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The strain-displacement relations are derived by con-

sidering the displacement components shown in Fig. 11 . 

Er 
.L .L u

2 L L 
r r 

= (3.22) 

Ee 
.L .L u

4 2R 2R 

This relations are identical to Eq. 3.17. 

By applying the principle of virtual displacement the 

stiffness matrix for the element with a stress node on the bottom 

surface of the slab is derived. If the second 'term, i.e. that 

involving the pressure p in Eq. 3.21 is neglected, the stiffness 

matrix for the element on the bottom becomes exactly equal to 

that at the top of the slab. For a zero Poisson's ratio the B .. 
1.J 

values are zero so the pressure term vanishes from Eq. 3.21. For 

Poisson's ratios other than zero, however, there will be a slight 

error introduced in an equilibrium equation written parallel to 

the surface of the edge if the second or pressure term is 

neglected. 

In this investigation the effect of the second term was 

neglected. This step was taken after a study showed that the 

effect of neglecting that term was small on the over-all 

behavior of the structure. 

3.3.5 Along the Exterior of Wall 

The stress nodes on the exterior face of the wall are 

subjected to an applied pressure due to prestressing. The 

natural boundary conditions along the wall are: 



a 
r 

= and 

33 

a = rz o (3.23) 

where Pe is the equivalent applied pressure per unit area due to 

hoop prestressing. The radial stress a in the above equation 
r 

can be expanded as: 

a 
r 

= = 

Solving for Er in terms of E
Z

' Ee and Pe' the following equation 

is obtained. 

E = 
r 

::.u 1 

Bll 
Ee + -B Pe 

11 
(3.24) 

The following stress-strain relations are obtained after sub-

stituting E from Eq. 3.24 into a and a e in Eq. 2.7. r z 

[B22 _ B12 B21] 
+ [B 23 

_ B13 B21] 
Ee + 

B21 
a = E --p z Bl1 z Bll Bll e 

[B32 
(3.25) 

a = _ B12 B31] E + [B _ B13 B31] Ee + 
B3l 
-p e Bll z 33 Bll Bll e 

By letting 

C22 B22 -
Bl2 B21 

C23 B23 -
B13 B21 

= = 
Bll Bll 

C32 B32 -
B12 B31 

C33 B33 -
B13 B3l 

= = 
Bll Bll 
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Eq. 3.25 can be simply presented as: 

(3.26) 

From a study of Figs. 7 and 13, the strain-displacement relations 

can readily be recognized to be expressible as: 

JE Z _L 0 

:Z 1 
vI L z 

= 

lEe 0 1. u 2 (3.27) 
R 

v3 

For the reasons given in the Section 3.3.4 the second 

term involving Pe in Eq. 3.26 is neglected in applying the 

principle of virtual displacement. The resulting element stiff-

ness matrix is given in the Appendix. 

3.3.6 Along the Interior Face of Wall 

The boundary conditions and the element stiffness along 

the interior face of the wall are treated exactly like the 

exterior face of the wall. 

3.3.7 Along the Horizontal Axis of SYmmetry 

On the horizontal axis of symmetry the vertical deflec-

tions are equal to zero and the geometric boundary condition 

becomes 

v = 0 (3.28) 
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Since the shear must vanish on a line of symmetry, 

a rz = o. (3.29) 

Taking symmetry into consideration and referring to Figs. 7 and 

14, 

= - v 
3 

(3.30) 

and the strain-displacement relationship takes the following 

form: 

Er -L a L u
2 L L r r 

E
Z = 0 L- a v3 L z 

Ee 
L a L u

4 2R 2R 

The stress-strain relationship given in Eq. 2.6 reduces to 

following: 

or CII C
l2 C13 

E 
r 

°z = C21 
C

22 C23 
E 
Z 

°e C3l 
C

32 
C

33 Ee 

See Appendix for the stiffness matrix of this element. 
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4. METHOD OF ANALYSIS 

4.1 Solution Process 

In the lumped-parameter method an assemblage of elements 

replaces the continuous body. The equations necessary to carry 

out a numerical analysis of the pressure vessel problem are 

generated ~ performing a direct stiffness analysis of this 

element assemblage. When solving the equations, the proper 

boundary conditions are taken into account by the procedures 

outlined in Chapter 3. 

The entire assembly and solution process was performed 

on the IBM 360/75 computer operated by the Department of Computer 

Science of the University of Illinois. At the outset the dimen

sions of the structure, the size of grids and the material 

properties of concrete and prestressing steel are input as 

data. The displacement node-stress node and the stress node

displacement node incidence tables are created. The numbering 

and ordering of the unknown displacements take place next. For 

the L-shaped cross section of the pressure vessels the ordering 

of the unknowns in the diagonal manner starting at the top of 

slab along the vertical axis of symmetry creates a tightly 

banded stiffness matrix as opposed to ordering horizontally or 

vertically. 

The stiffness of the structure is generated and stored 

in the computer an equation at a time by moving diagonally across 
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the L-shaped cross section. This method of generating the 

coefficients of the equilibrium equations facilitates the modi

fication of the coefficients in the post elastic range. 

Initially, the structure is subjected to prestressing 

loads; the displacements, strains and stresses are computed and 

stored in the computer. Then the stiffness of the structure is 

regenerated to take account of the stiffening effect on the 

structure from the prestressing steel as the structure expands 

to withstand the applied internal pressure. The solution for 

the internal pressure loading Po is obtained and it is super

imposed upon the solution obtained from prestressing loads. 

This stage of loading is represented by the point (do' po) on 

Line 1 in Fig. 16. 

The pressure PI at which the structure begins to crack 

is found by extrapolating along Line 1 from the previous 

pressure po. One or more nodes crack under this pressure. 

New material properties of the cracked nodes are obtained by 

the procedure outlined in Chapter 2. The coefficients of the 

equations affected by the cracked nodes are altered. With the 

pressure maintained at the level PI' the modified equations are 

re-solved and the cracking status rechecked. This stage corre

sponds to the pOint (d2 , PI) on Line 2 of Fig. 16. If more 

nodes crack, the coefficients of the affected equations are 

again modified and a solution is repeated for pressure Pl. This 

solution gives the point (d3 , PI) on Line 3. If no additional 
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node cracks under pressure PI' the next cracking pressure P2 is 

extrapolated along Line 3 from pressure PI-

The entire steps cited above are repeated until the 

lumped-parameter model becomes unstable or the desired load 

level is reached. The appearance of a zero on the main diagonal 

of the stiffness matrix is the cause of instability in the 

mathematical model. This does not necessarily mean that the 

structure has completely broken down. Physically, the structure 

may continue to resist loads beyond the point of mathematical 

instability if those zero values are for pOints no longer active 

in the structure. The appearance of zeros on the main diagonal 

occurs for equations describing the highly cracked region of 

the slab near the top center. Experiment has shown that the 

final load carrying mechanism is the inverted dome and the slab 

area near the top center is not structurally required in the 

final stages of loading. 

In summary the elastic-crack solution is simulated by 

series of linear algebraic equations whose coefficients are 

modified as the mathematical model produces cracks at various 

stages of loading. This solution procedure is depicted pictori

ally in Fig. 16. 

4.2 Extrapolating to Cracking Pressure 

In Chapter 2 the two possible types of crack formations 

are described. One type of failure occurs along the radial 

plane and is directly related to the hoop strain se which is one 
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of the three principal strains. The second type of failure 

yields a circumferential crack and is created by the maximum 

principal strain in the r-z plane. 

As mentioned earlier, the nodes are assumed to have 

cracked when the maximum principal strain reaches the assumed 

limiting concrete tensile strain. It would be advantageous to 

be able to extrapolate from one cracking pressure to the next 

as in contrast to increasing the internal pressure at a fixed 

rate. The fixed rate technique may result in excessive com-

puting time since it would require more cycles to converge on 

the cracking pressure as compared to extrapolating in one step. 

The extrapolating method works only because linear stress-strain 

relations are assumed for the materials. If the stress depended 

upon the previous condition, the method of course would not be 

applicable. In the -remainder of this section the formulae for 

the extrapolating factor are derived. 

The status of strains existing in a node under an 

applied pressure p. and prestressing load are given by: 
~ 

t pr i 
S = £ + S 
r r r 

t pr + i 
S = £ £ 

Z Z z 

t pr 
+ 

i 
se = £e £e 

t pr + £i £ = S 
rz rz rz 

(4.1) 



where 
t 

sr' 

pr 
s , 

r 

t 
s z' 

t and s t se rz 

pr 
s , 

z 
s~r and 

i i s i s , s e and z rz 
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are the strains at a node due to 

prestressing and applied internal 

pres sure p., 
1. 

pr 
s 
rz are the strains corresponding to 

prestressing, and 

are the strains corresponding to 

internal pressure. 

The strains occurring at a cracking pressure ;;;:1.0 be 

expressed in terms of strains at pressure p. as follows: 
1. 

where 
T 

s , 
r 

.sT 
r 

sT 
z 

sT 
e 

= spr 
r 

= spr 
z 

= spr 
6 

= 

+ k si 
r 

+ k si 
z 

(4.2) 

+ k si 
e 

are the strains corresponding to 

prestressing and applied internal 

pressure Pcr' 

k is the extrapolating factor. 

When the radial crack forms, the cracking condition is 

= s 
cr (4.3) 
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where E is the allowable concrete tensile strain. The factor cr 

k in this case takes the form: 

k = (4.4) 

The maximum principal strain in the r-z plane determines 

the circumferential cracks. The factor k is derived for this 

case by investigating the maximum principal strain E1 and 

setting this value equal to 

E 
cr 

E 
cr 

T T T Substituting E ,E and E from Eq. 4.2 into Eq. 4.5 and r z rz 

(4.5) 

simplifying and rearranging, following quadratic equation in k 

evolves: 

Ak2 + Bk + C = o (4.6) 

Ei Ei 1 (E i ) 
2 

where A = 4 r z rz 

B 
i Ei + Epr Ei + Ei Epr 1 Epr Ei and = -E E - E , cr r cr z r z r z 2 rz rz 

2 pr Epr Epr Epr 1 ( Epr ) 
2 

C = E - E E - E + - 4 cr cr r cr z r z rz 

If a given node has not cracked yet, both Eqs. 4.4 and 

4.6 are evaluated. Equation 4.4 is solved when a radial crack 

has occurred in the previous step: likewise, Eq. 4.6 is solved if 
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a circumferential crack occurred. No equation need be evaluated 

when a node has cracked in two directions. 

The factor k to be used is the smallest positive value 

existing within the structure at a particular pressure p. 

4.3 stiffening Effect of Prestressing 

The prestressing force from post-tensioning can be 

categorized into two types: 

a. The force generated during prestressing operation 

and applied to the structure as loads. 

b. The force generated as a consequence of internally 

applied pressure and treated analytically as an 

equivalent spring stiffness. 

The derivation of the equivalent spring stiffness is presented 

in the following paragraphs. It is realized that this increase 

is a small percentage of the initial force; however, for a 

cracking analysis it may be significant. 

The equivalent spring constant for the longitudinal 

prestressing steel is obtained by considering the formulation 

below: 

where 

= E E A n 
Z S SN 

ke~ is the equivalent spring stiffness, 

(4.7) 

v is one half of the total elongation of prestressing 

caused by applied· internal pressure, 
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H is the total height of the vessel, 

ES is the modulus of elasticity of prestressing steel, 

and 

As~ is the area of prestressing steel. 

For post-tensioned system the strain E is expressed as: 
z 

E 
Z 

= 
v 

H/2 (4.8) 

substituting this value into Eq. 4.7 and solving for k ,the 
e~ 

equivalent spring constant for the longitudinal prestressing 

becomes 

= (4.9) 

This equivalent stiffness is distributed to the displacement 

nodes under the anchorage plate and added to the main diagonal 

elements corresponding to the vertical displacements. 

The equivalent spring stiffness in the radial direction 

is found by considering the effect of hoop prestressing. Refer-

ring to Fig. 17, the formula below is obtained: 

liT = (4.10) 

where RO is the original radius, 

lip is the change in confining pressure caused by hoop 

prestressing, and 

~T is the change in hoop prestressing force. 
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As the radius of the vessel increases under increasing applied 

internal pressure, the strain in the hoop prestressing becomes 

= 
2 TI (Ro + u) - 2 n Ro 

2 TI Ro 

~T can also be presented in terms of u as 

A sh f 
~T 

s 
= S 

E Es A sh 
= S 

u E A sh s = 
Ro S 

In the above formulations u, S and ASh are defined as: 

u = the increase in radius as a result of the 

increase in applied pressure 

s = the spacing of hoop prestressing 

ASh = area of hoop prestressing 

Equating Eq. 4.10 to 4.12 and solving for p, a relation in 

terms of other variables is derived. 

(4.11) 

(4.12) 

(4.13) 

The equivalent stiffness in the radial direction is given by: 
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k u 
1 = - ~p R L 

er 2 0 z 

1. 
E A 

= u s sh 
2 R S 

L R 
0 

z 0 

E A L 
or k 

s sh z = er 2 Ro S 
(4.14) 
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5. NUMERICAL RESULTS 

5.1 General 

To demonstrate the applicability and adequacy of the 

lumped-parameter model presented in the previous chapters test 

specimen PV16, one of the small-scale vessels tested at the 

University of Illinois, is analyzed. The vessel had an outer 

diameter D of 3 ft. 4 in., a total height H of 6 ft. 8 in., an 

end slab thickness t of 10 in., and a wall thickness t of s w 

7.5 in. 

The vessel was longitudinally post-tensioned with 

60 3/4 inch diameter stressteel rods placed in two rows of 

30 rods each. The diameters of the rows were 29 inches and 

34 inches, respectively. A 1/4 inch diameter prestressing wire, 

wrapped around the vessel, provided the circumferential pre-

stressing. A 1-1/4 inch thick plate at the top of the slab 

provided the anchorage for the longitudinal prestressing. This 

plate also provided additional constraint in the hoop direction 

as the structure expanded to resist the applied internal 

pressure. The modulus of elasticity of prestressing steel 

was taken to be 28 x 106 psi. 

The concrete had an ultimate uniaxial compressive 

strength of 7450 psi and a modulus of elasticity of 4 x 106 pSi. 

A tensile cracking strain of 0.0003 was adopted as the limiting 

value. 
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The magnitudes of stresses and strains are affected by 

the poisson's ratio. Since concrete is assumed to have cracked 

when the limiting tensile strain has been reached, the analysis 

says the structure cracks at different levels of loading and 

attains different maximum loads depending on the values of 

Poisson's ratio. The values of 0, 0.075 and 0.15 were selected 

as representing a reasonable range for Poisson's ratios in 

concrete. 

The amount of hoop constraint available influences the 

propagation of cracks through the structure. To study the effect 

of hoop constraint resulting from the anchorage plate placed at 

the top corner of the slab, three types or degrees of hoop con

straint were investigated: Type A having a zero spring constant, 

Type B with a finite spring constant approximating the anchorage 

plate resistance, and Type C with an infinitely stiff spring 

which prevents the radial movement of the top, outer corner of 

the vessel (see Fig. 18). The vessel with Type A constraint was 

subdivided into 1.15 in. x 1.82 in. grids yielding 643 unknowns. 

The grid sizes of 2.15 in. x 2.22 in. for Types Band C con

straint gave 399 unknowns. 

5.2 Discussion of Results 

In Figs. 19; 20 and 21 the load-deformation curves are 

shown for three Poisson's ratios of 0, 0.075, and 0.15, respec

tively. In each figure the influence of the different hoop 

constraints at the top, outer corner of the slab is shown. The 



curves are in terms of internal pressure versus the vertical 

displacement of the top center of slab. The origin for the 

displacement corresponds to a vessel under prestressing with 
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ze~o internal pressure. This datum was selected so as to have 

the same datum used in the experiment. The maximum load attained 

analytically is the internal pressure at which the mathematical 

model becomes unstable. A study of load-deformation curves 

indicates that for a given Poisson's ratio Type C always became 

unstable at the highest internal pressure, Type B at an inter

mediate pressure and Type A at the lowest pressure. For a 

given hoop constraint the largest pressure at the onset of 

instability was obtained for zero Poisson's ratio, an inter

mediate value for 0.075 and the smallest for 0.15. 

For Type A constraint the structure remained linear up 

to approximately 1200 psi internal pressure. At this pressure a 

circumferential crack appeared at the reentrant corner and a 

combination of circumferential and radial cracks developed at the 

top center of the slab. While still at the initial cracking 

pressure, additional radial cracks appeared. This loading

cracking procedure was repeated as many times as necessary to 

obtain the maximum pressure at the onset of mathematical insta

bility_ From the load-deformation curves the maximum internal 

pressures are given as 1600 psi for a Poisson's ratio of 0.15 and 

1840 psi for 0.075. For a Poisson's ratio of 0.0 the computa

tion was terminated at 1650 psi because the results obtained for 

Poisson's ratios of 0.075 and 0.15 gave sufficient information 
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to evaluate the effect of Poisson's ratio on the vessel behavior. 

Another reason for terminating at 1650 psi was that about 10 

additional minutes of expensive computer time would have been 

required to attain the maximum load of about 1900 to 2000 psi. 

Type B constraint gave similar load-deformation curves 

as Type A. The structural response remained linear up to about 

1300 psi internal pressure when similar cracks as in Type A 

constraint formed at the reentrant corner and the top center of 

the slab. The nonlinear portion of the load-deformation curves 

followed the Type A curves and reached the maximum internal 

pressures of 2070 psi for a Poisson's ratio of 0.0, 1970 psi 

for 0.075 and 1740 psi for 0.15. These pressures were approxi

mately 125 to 200 psi higher than the maximum pressures attained 

for Type A constraint. 

Since Type C constraint prevents the radial movement of 

the top, outer corner of the vessel, the behavior of the vessel 

is different from Types A and B. The load-deformation curves for 

Type C ~ stiffer and remained linear to internal pressures of 

1800 psi for a Poisson's ratio of 0.15, 1900 psi for 0.075 and 

2030 psi for 0.0. Again, the initial cracks appeared simul

taneously at the reentrant corner and the top center of the slab. 

At the initial cracking pressure circumferential cracks propa

gated extensively into the area of the slab above the reentrant 

corner. This area is bounded by three lines: a 45 0 line 

originating at the inside edge of the anchorage plate and 

slanting downward toward the center of the slab; the bottom of 
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the slab; and an imaginary line corresponding to the extension 

of the inside wall line into the slab. Because many nodes 

cracked at the initial cracking pressure the change from a 

linear to a nonlinear behavior was rapid as indicated by the 

load-deformation curves. The maximum pressures of 2320 psi 

for a Poisson's ratio of 0.15, 2470 psi for 0.075 and 2570 psi 

for 0.0 were reached. These pressures correspond to about 8~1o 

of the ultimate pressure obtained in the experiment. 

In Figs. 22, 23, 24 and 25 the stress distribution 

through the depth of the slab is shown for Type B constraint 

and a Poisson's ratio of zero. The distribution is given at 

following points along the slab: the vertical axis of symmetry, 

a radius of 8.6 inches from the center, a radius of 12.5 inches 

(corresponds to inner face of the wall), and the outer face of 

the wall. The general shape of the distribution for each kind 

of stress was similar for Types A and B. The Poisson's ratio 

did not alter the shape of the stress distribution. The status 

of stress is given for the initial cracking pressure of 1330 psi 

and the maximum pressure of 2070 psi. A close look at the radial 

stresses at the initial cracking pressure shows that the slab 

acts as a partially clamped plate with tensile stresses at the 

top center of the slab and at the bottom of the slab adjacent to 

the reentrant corner. The compressive stress fields are present 

at the bottom center of the slab and along the top of the slab 

above the reentrant corner. A comparison of stress distributions 

for circumferential stress at the initial cracking pressure and 
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the maximum pressure shows the extent of radial cracks which 

propagated from the top center of the slab down into the slab. 

The zero stresses in the slab mean that the circumferential 

stiffness has become zero due to cracking of the concrete. The 

shear stress distribution is almost parabolic for the portion 

of the slab between the center of the slab and inner face of 

the wall. In a section above the inner face of the wall the 

shear stress distribution is practically uniform indicating 

that a block shear approximation may be used to estimate the 

magnitude of this shear stress. 

stress distributions for Type C cOtlstraint with a 

Poisson's ratio of zero are presented in Figs. 26, 27, 28 and 

29. Although the magnitudes of stresses differ the shapes of 

stress distribution at the initial cracking pressure are 

similar for Types A, Band C. On the other hand, the shape 

of stress distributions at the maximum calculated pressure for 

Type C differs significantly with those of Types A and B. The 

reason for this difference is due to the higher load levels 

reached in the vessel with Type C constraint. At an internal 

pressure greater than 7~1o of the ultimate load, the magnitudes 

of stresses and strains are high and the circumferential 

cracking becomes extensive. 

In Figs. 30~ 31, 32 and 33 the calculated strains for 

the Type B constraint with a Poisson 8 s ratio of zero are com

pared with the measured strains. The measured and the calculated 
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strain values are in good agreement with each other within the 

range of applicability of the mathematical model. 

As mentioned in Chapter 1, the two failure modes are 

the flexural and the shear types. For both types of failure the 

initial cracks are similar: the circumferential crack at the 

reentrant corner and the radial cracks at the top center of the 

slab. As the internal pressure is increased beyond the initial 

cracking pressure, additional circumferential and radial cracks 

appear. A certain combination of these cracks leads to either 

a flexural failure or a shear failure. Following paragraphs 

discuss the cracking pattern associated with each type of 

failure. 

References 1, 2 and 3 have discussed the nature of 

flexural failure. The first crack to form is the circumferential 

crack at the reentrant corner. Then, radial cracks appear at the 

top central region of the slab. As the load increases, the 

radial cracks extend slowly downward and rapidly sideward to 

the outside of the cylinder. When the radial cracks have become 

extensive and the slab is cut into pie-shaped pieces, the crack 

at the reentrant corner propagates toward the outside wall, 

initially at about 45° from the horizontal and flattening out 

and turning down beyond the middle of the wall. The failure is 

characterized by a large upward displacement of the slab turning 

about the outer portion of the wall. In the experiment this 

prying action forced the hoop prestressing at the top of the 

vessel to rupture culminating in a collapse of the structure. 
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The crack propagation for shear type failure is investi

gated in this study. Figure 34 shows the cracked pattern of 

the vessel as computed from the mathematical model. As men

tioned previously, the first cracks appeared at the reentrant 

corner and the top center of the slab. The cracks that formed 

next were the radial cracks which propagated from the center 

outward toward the edge and from the top downward into the 

central region of the slab. A further increase in internal 

pressure brought about the formation of circumferential cracks 

in the part of the slab above the reentrant corner toward the 

center of the slab. These cracks are principally in the 45° 

direction and are accompanied by radial cracks at the top. Each 

pressure increase causes additional circumferential and radial 

cracks. When the mathematical model finally fails, a series of 

45° cracks has propagated through the slab. The final failure 

mode could not be predicted by the mathematical analysis because 

at a pressure of 70-8~1o of the ultimate load the mathematical 

model became unstable due to the appearance of zeros on the main 

diagonal, as explained in Chapter 4. The crack patterns obtained 

analytically, however, did confirm the occurrence of inclined 

cracks at about 45° from the end of the anchorage plate toward 

the center of the slab as reported in Reference 2. 

The ultimate capacity of the vessel failing in shear is 

related to the strengths of the circumferential prestressing and 

the inverted dome carved out of the end slab. The experimental 

results in Reference 2 indicate that the 45° inclined cracks in 
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the end slab led to a formation of an inverted dome (see Fig. 

35a). This inverted dome is supported by a prestressed ring 

beam made up of the portion of the sidewall above the horizontal 

cracking from the reentrant corner. Finally, the concrete 

failed in the dome by punching through a circular portion. 

Sozen, Schnobrich and Paul (32) have presented a method of 

calculating the ultimate load of the vessel failing in shear. 

The method is applicable if the shape of the dome is known or 

the correct shape can be assumed in advance. 

As long as the prestressing remains structurally sound, 

the vessel will probably fail in shear after the formation of a 

dome in the end slab. This type of failure is likely to occur 

even if the radial cracks penetrated to the outside wall to 

form a series of three-hinged arches. 

Figure 35a shows the cross section of the vessel after 

an idealized inclined crack has carved out an inverted dome. 

Points A, B and Care the assumed hinge points for the three

hinged arch illustrated in Fig. 35b. The loading on the arch 

comes from the sectorial area with an included angle of 12°. 

This angle was obtained by dividing 360 0 by 30, the number of 

rods in each row of longitudinal prestressing. Points A and B 

are assumed to be located 4.25 inches from the exterior face of 

the wall and 4 inches from the top. The horizontal dimension of 

4.25 inches corresponds to the location of the resultant of the 

longitudinal prestressing force. The hoop prestressing 

in the upper 10 inches of the wall is assumed to resist the 

horizontal reaction from the arch. 
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The ultimate pressure reached in the experiment was 

3200 psi. Based on this loading, the loading q on the arch 

becomes 21 kips/in. The horizontal reaction Rh and the vertical 

reaction Rv become 193 kips and 131 kips, respectively_ From 

the assumption that the hoop prestressing in the upper 10 

inches of the wall resists the horizontal reaction, the stress 

in 1/4 inch diameter prestressing wire becomes 180 ksi. This 

value is less than the ultimate stress of 230 ksi for the wire 

whose stress-strain curve is almost elasto-plastic. The stress 

in the longitudinal prestressing rod is 138 ksi based on the 

actual rod area of 0.475 sq. in. This value is slightly less 

than the yield strength of 143 ksi for stressteel rods. The 

tensile strength of this rod was 165 ksi. There is therefore 

adequate horizontal and vertical support for the arch. 
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6. CONCLUSION 

The development of a shear failure in the end slab of the 

cylindrical concrete pressure vessels can be described in terms 

of two stages. In the initial stage a series of 45° cracks are 

formed. These cracks lead to a formation of an inverted dome. 

The second stage is characterized by the ultimate failure of the 

dome that was created in the previous stage. 

The objective of this investigation has been the dev~lop

ment of an analytical method which would predict cracks similar 

to those associated with the formation of the inverted dome. To 

attain this objective a lumped-parameter method of analysis has 

been used. 

A computer program has been developed to permit a high 

speed processing of the resulting .equations. One of the small

scale cylindrical vessels tested at University of Illinois has 

been analyzed. The mathematical procedure as formulated in this 

study is applicable up to about 70-8~/o of the ultimate load 

obtained in the experiment. The analytical model predicts the 

crack patterns leading to an inverted dome, although the complete 

shape of the dome was not defined. The over-all structural 

behavior as predicted by the model, within the range of its 

applicability, agrees favorably with the experimental result. 

The absence of information on a general failure criterion 

for concrete presented a problem in trying to define a failure 
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criterion to be used in the analytical method. For lack of any

thing better the maximum strain theory has been used as a 

failure criterion in this study. Many investigators have 

pointed out an urgent need for a general failure criterion in 

the multiaxial state of stress. In order to further refine the 

lumped-parameter analysis to predict the behavior of the vessel 

in the later stages of its failure sequence the stress-strain 

relations for the multiaxial case must also be established. 

As this information becomes available, it can be incorporated 

into the analysis of PCRV·s. 
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FIGURE 34. CRACK TRAJECTORIES FOR TYPE B CONSTRAINT 
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APPENDIX 

STIFFNESS OF ELEMENTS 

General 

The general element stiffness matrix for a lumped

parameter model is 8 by 8. The e"quilibrium equations for an 

element is: 

kll k12 k 13 k lS u l Prl 

k2l k22 k23 k28 vI P z1 

u 2 Pr2 

v 2 Pz2 
V = u 3 Pr3 

v3 Pv3 

u 4 Pr4 

k8l k82 kS8 v4 Pz4 
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The symbol V in above formulation stands for the volume of an 

element. 

Typical Interior Element 

V = 1T R L L r z 



k27 = - C21/(Lr LZ } - C23/(2 R LZ }' 

k31 = C14/(Lr L
Z

} ,- C34/(2 R L
Z

>' 

k32 = C12/(Lr LZ } - C32/(2 R LZ }' 
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kS7 = - k 17 , kS8 = - k 18 , 

k61 = - k 2{, k62 = - k 22 , k63 = - k 23 , 

k64 = - k24' k6S = - k 2S ' k66 = - k 26 , 

k67 = - k 27 , k68 = - k 28 , 

k71 = - C14/(Lr L > - C34/(2 R L >, z z 

k72 = - C12/(Lr L
Z

> - C32/(2 R L >, z 

k73 
2 C31/{2 R L > + C13/(2 R Lr> 

2 = - Cll/Lr + C33/(4R ), r 

k74 
2 - C34/(2 R L >, = - C14/Lr k7S = - k 71 , r 

k76 = - k 72 , 

k77 
2 + C31/(2 R L2 > + C13/(2 R Lr> 

2 = Cll/Lr + C33/(4R ), 

k7S = - k74' 

kSl = - k 41 , k82 = - k 42 , k83 = - k 43 , 

kS4 = - k 44 , kSS = - k 4S ' kSG = - k46 , 

k87 = - k 47 , k88 = - k48 

Along Vertical Axis of Symmetry 

v = L L 2/12 r z 

2 
k22 = C22/Lz ' k26 = - k 22 , 

k27 = - 2(C 21 + C23 )/(Lr Lz >, 



Along 

Along 

k67 = 2(C21 + C23 >/(Lr Lz >, 

k72 = - 2(Cl2 + C32 )/(Lr Lz ), 

All other elements of the stiffness matrix are zero. 

Top and Bottom of Slab 

V = 0.5 Tr R Lr L z 

94 

2 C3l/(2 R L ) - Cl3/(2 R Lr> 
2 

k33 = ClI/Lr + C33/(4R ), r 

2 + C3l/(2 R L > - CI3/(2 R Lr) 
. 2 

k37 = - C11/Lr + C33/(4R ), r 

2 
- C31/(2 R Lr) + CI3/(2 R Lr> 

2 
k73 = - Cl1/Lr + C33/(4R ), 

2 2 
k77 = CII/Lr + C3l/(2 R Lr> + CI3/(2 R Lr> + C33/(4R > 

All other elements of the stiffness matrix are zero. 

Exterior and Interior of Wall 

At exterior wall: V = Tr Lr L (R - Lr /6)/2 z 

At interior wall: V = 'IT Lr L (R + L /3)/2 z r 

2 C23/(R L ), - k 22 , k22 = C22/Lz ' k23 = - k26 :3 z 

- C32/(R Lz >, 2 
k32 = k33 = C33/R , k36 = - k 32 , 

k62 = - k22' k63 = - k 23 , k66 = k22 

All other elements of stiffness matrix are zero. 
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Along Horizontal Axis of Symmetry 

v = 0.5 R L L r z 

2 2 = CII/Lr - C31/(2 R Lr> - CI3/(2 R Lr } + C33/(4R }, 

= - 2 CI2/(Lr Lz > + C32/(R Lz >, 

2 2 = - CII/Lr + C31/(2 R Lz } - CI3/(2 R Lr } + C33/(4R ), 

= - 2 C21/(Lr Lz > + C23/(Lz R}, 

2 2 = - CII/Lr - C31/(2 R Lr> + C13/(2 R Lr> + C33/{4R ), 

= CI2/{Lr Lz > + C32/{2 R Lz }, 

All other elements of the stiffness matrix are zero. 


