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ABSTRACT 

Heterodera glycines, the soybean cyst nematode, is the major pathogen of Glycine 

max (soybean). Effective management of this pathogen is contingent on the use of 

resistant cultivars, thus screening for resistant cultivars is essential.  The purpose of this 

research was to develop a method to assess infection of soybean roots by H. glycines with 

real-time quantitative Polymerase Chain Reaction (qPCR), a prelude to differentiation of 

resistance levels in soybean cultivars.  Two experiments were conducted. In the first one, 

a consistent inoculation method was developed using to provide active second-stage 

juveniles (J2). Two-day-old soybean roots were infested with 0 and 1000 J2/mL. Twenty-

four hours after infestation, the roots were surface sterilized and DNA was extracted with 

the DNA FastKit (MP Biomedicals, Santa Ana, CA)). For the qPCR assay, primer pair 

for single copy gene HgSNO, which codes for a protein involved in the production of 

vitamin B6, was selected for H. glycines DNA amplification within soybean roots. In the 

second experiment, compatible Lee 74, incompatible Peking and cultivars with different 

levels of resistance to H. glycines were inoculated with 0 and 1,000 J2/seedlings. Twenty-

four hours post inoculation they were transplanted into pasteurized soil. Subsequently 

they were harvested at 1, 7, 10, 14 and 21 days post inoculation for DNA extraction. With 

the qPCR assay, the time needed to differentiate highly resistant cultivars from the rest 

was reduced. Quantification of H. glycines infection by traditional means (numbers of 

females produced in 30 days) is a time-consuming practice; the qPCR method can replace 

the traditional one and improve precision in determining infection levels.  
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CHAPTER 1 

HETERODERA GLYCINES – GLYCINE MAX INTERACTION 

LITERATURE REVIEW 

 

 Soybean, Glycine max (L.) Merr., is one of the oldest cultivated crops (Hymowitz, 

1970) with its origin tracing back to the northern and central regions of China (Gibson 

and Benson, 2002).  Soybean was successfully established in the United States as a crop 

due to an important demand for soybean oil and meal, and the possibility of integrating it 

in a crop rotation system with corn and other crops (Riggs, 2004).  After World War II, 

soybean production migrated from the southern part of the US to the “Corn Belt” where it 

is now a major cultivated crop, with 30,267,653.24 hectares planted in 2008 (United 

States Department of Agriculture, National Agricultural Statistics Service, 2008). 

  Soybean cyst nematode, Heterodera glycines Ichinohe, the most economically 

important pathogen of soybean in the north-central area of the United States (Workneh et 

al., 1999), was first detected in Illinois in 1959 (Noel, 1992).  In the north-central region, 

H. glycines does not necessarily cause the “typical” aboveground symptoms described as 

chlorosis and stunting (Agrios, 1997); it has the ability to cause 15 to 30% yield loss with 

no visible symptoms (Niblack, 1993; Niblack, 2005; Noel, 1992; Wang et al., 2003; 

Young, 1996).  The disease may have been mistaken for those caused by other 

environmental factors or simply not identified.  The ability to survive in cysts and 

undergo a period of dormancy allows H. glycines to be disseminated and infest diverse 
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environments (Schmitt, 2004).  This, and the fact that H. glycines can cause severe yield 

loss to soybean, makes this pathogen-crop association one of the most important and 

interesting in agriculture (Riggs, 2004).  Heterodera glycines affected US soybean yield 

more from 1997 to 2007 than any other disease (Wrather and Koenning, 2009) and it will 

be a problem associated with soybean production for the foreseeable future. 

Heterodera glycines - Soybean Cyst Nematode  

 Farmers in China gave the name of “fire-burned seedling” to a disease in soybean, 

but it was not until 1899 that a report from northeastern China indicated that this disease 

was caused by H. glycines (Liu et al., 1997).  If soybean has its origins in China, where 

farmers long ago identified a disease as “fire-burned seedling,” and the disease was 

proven afterwards to be caused by H. glycines, it seems likely that China is the origin of 

this pathogen and that both pathogen and crop evolved together (Riggs, 2004); however, 

there is controversy over the ancestral origins of H. glycines populations in the US (Noel, 

1992).  Heterodera glycines was not described as a species until 1952 (Ichinohe, 1952). 

Heterodera glycines in North America 

 In North Carolina during the 1930-1940‟s, soybean reportedly expressed 

symptoms that resembled those caused by nutritional deficiency, but it was not until 1954 

that H. glycines was determined to be the cause of the disease (Winstead, 1955). After 

this discovery the pathogen was reported in several other states in the US (Noel, 1992). 

 One of the most reasonable theories of how H. glycines arrived to the US is with 

the importation (from China) of infested soil that was used as a source of Bradyrhizobium 

inoculant (Riggs, 2004).  The nematode can survive in storage for more than 22 months 
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(Epps, 1968), and thus could easily have been viable once it arrived in the US.  The 

possibility of the nematode being indigenous to the US and simply adapting to the exotic 

legume (soybean) and the selection pressure imposed by agricultural practices is another 

strong theory (Riggs, 2004).  Moreover, there is evidence of the presence of the sugar 

beet cyst in both Asia and the US before H. glycines was discovered in 1954.  These two 

species are very similar and very closely related; in fact, they are able to interbreed 

(Colgrove et al., 2006; Miller, 1982). Heterodera glycines could have resulted from a 

selection of the sugar beet cyst (Riggs, 2004). 

 Whatever the means of arrival, once H. glycines became established in the US, 

different means of dissemination resulted in its distribution throughout soybean 

production areas.  Birds, with their migratory paths and the ability of the eggs to survive 

in cysts through the birds‟ digestive tracts help to disseminate the pathogen (Epps, 1971; 

Riggs, 2004; Smith et al., 1992).  Wind, flood water, and field runoff were other means of 

dispersion of the nematode (Riggs, 2004) 

 The known area of H. glycines infestation in the US increased steadily; surveys 

from 1961 confirmed the presence of the pathogen in 39 counties in 8 states (Spears 1964 

cited in Riggs 2004).  Now every state in the US where large hectarage of soybean is 

grown is infested with H. glycines.  In addition, H. glycines is present in most countries 

of the world where soybeans are produced (Riggs, 2004). 

Heterodera glycines Biology 

 Heterodera glycines is an obligate parasite, which means that it needs a living 

root to complete its life cycle. The infective unit of the H. glycines is not the cyst nor the 
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eggs, but the second-stage juveniles (Niblack et al. 1986; Wrather and Anand, 1988).  

However, the protective cyst and the ability of the eggs to become dormant enable the 

nematode to be passively dispersed to diverse environments (Koenning, 2004). 

 The life cycle begins with the egg which undergoes embryonic development 

following fertilization, leading to development of a first-stage juvenile (J1), with fixed 

cell numbers except for the cells associated with reproduction (Hirschmann, 2004).  The 

nematode grows and undergoes its first molt within the egg, becoming a second-stage 

juvenile (J2) (Koenning, 2004). Hatching is the next step in the nematode‟s life cycle. 

This process is regulated by the temperature of the soil, the presence of the host, and time 

(Yen et al., 1995).  After hatching, the J2 (infective units) will locate a root, attracted by 

CO2 gradients, thermal gradients, or host leachates (Dusenbery, 1987; von Mende et al., 

1998) and penetrate it with the help of cellulases and other enzymes that allow the 

nematode to migrate intracellularly through the cortical cells to the vascular tissue (Davis 

et al., 2004; Niblack, 2005). 

 The J2 initiates the formation of a syncytium (Ross, 1958), a metabolic sink for 

the now sedentary nematode that will feed in the same location for the rest of its life 

(Niblack, 2005).  This process takes place in compatible hosts (susceptible plants), but 

with incompatible hosts (resistant plants), the plant fails to form the syncytium and the 

nematode cannot develop in the root (Acedo et al., 1984; Kim et al., 1987; Koenning, 

2004). 

 A J2 that successfully initiates a syncytium loses motility, begins feeding, and 

continues growing. Initial swelling transforms the J2 into a “sausage stage,” and 
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development continues with the formation of the next two juvenile stages (J3 and J4) 

(Lauritis et al., 1983; Niblack, 2005).  It is during the J3 stage that sexual differentiation 

is visible (Raski, 1950). This stage lasts 48 hours or less and the fourth stage likewise, 

lasting generally 24 hours for the males and 48 hours for the females (Lauritis et al., 

1983).  The J4 males and females are strongly dimorphic. The females continue swelling 

and remain sedentary while the males regain a vermiform morphology inside the fourth 

stage cuticle (Koenning, 2004).  The last molt will lead into adulthood, which takes 8 to 9 

days for males and 9 to 10 days for females (Lauritis et al., 1983; Niblack, 2005). Males 

have not been observed to feed after the J3 stage; they exit the root to locate females, 

whose posteriors protrude from the root at maturity.  Sexual reproduction is obligatory 

for this species (Niblack, 2005).  

 The ratio of male to female is approximately 1:1 but this can be skewed by 

several conditions such as host resistance or environmental conditions (Colgrove and 

Niblack, 2005).  After the female is inseminated, it will begin to lay fertile eggs in an 

external gelatinous matrix, and later to retain the eggs inside the body (Ichinohe, 1952).  

The range of egg production per female ranges from 40 to 600 or more (Sipes et al., 

1992). A general average is 200 eggs per female (Niblack, 2005). 

 Under optimum conditions (25 °C) the H. glycines life cycle is 21 days long 

(Lauritis et al., 1983). However, under field conditions the range is from 14 to 28 days 

depending on the soil temperature (Alston and Schmitt, 1988). 
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Interaction with soybean plants 

 After hatching, the J2 will infect the roots. Primarily, infection of the roots results 

in a physical or mechanical damage (Ross, 1958) as the nematode enters the epidermis 

and cortical cells and destroys them during movement toward the vascular tissue (Noel, 

2004).  Secondly, initiation of a syncytium results in physiological damage during the 

interaction between enzymes produced by the nematode and host responses (Noel, 2004). 

 What is very interesting and important here is that these physiological and cellular 

responses are different in resistant (incompatible host) and susceptible (compatible) 

soybeans.  Because penetration of roots by J2 takes place in both susceptible and resistant 

soybeans (Endo, 1970) and only the development (or not) of syncytia is associated with 

defense response, understanding of the development of these feeding sites is important. 

 After the J2 has chosen its feeding site, a “feeding plug” forms around the head of 

the nematode where it releases different enzymes (from amphids and stylet) (Endo, 1978, 

1991, 1998). The initial syncytial cells surrounding this feeding plug undergo 

cytoplasmic changes (Endo, 1998), resulting in the dissolution of the cell walls and 

fusion of protoplasts to create multinucleate cells (Noel, 2004).  Both hyperplasia and 

hypertrophy take place, the former very near the initial syncytial cells and the latter in 

cells distal to this place. This will contribute to the restriction of secondary phloem and 

xylem development (Noel, 2004). 

 As mentioned above, resistant soybean (incompatible hosts) differs from 

susceptible soybeans (compatible hosts) in cellular responses. In soybean and snap beans, 

a very typical incompatible response to H. glycines is similar to what is known as the 
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hypersensitive reaction – HR (Acedo et al., 1984; Melton et al., 1984). The result is a 

small syncytium that will later degenerate, allowing new parenchyma cells to develop. 

Nematodes cannot develop without a functional syncytium (Acedo et al., 1986). 

 Three important sources of resistance used in Illinois are “Peking” (Plant 

Introduction [PI] 548402), PI 437654, and PI 88788. The responses expressed by each 

one of them are very similar.  Five days after infection, the syncytia stop developing and 

the cells become necrotic (Kim and Riggs, 1996). In PI 437654, which expresses 

resistance to most H. glycines populations, the response is very similar to that of Peking 

(Noel, 2004).  In contrast, syncytial cells in PI 88788 accumulate cisternae and rough 

endoplasmic reticulum, reducing their function (Endo, 1998). In all resistant responses 

the nuclei degenerate (Kim and Riggs, 1992).  Consequently, responses from 

incompatible hosts result in a partial or complete reduction of the development of the 

syncytia resulting in delayed growth or death of the nematode. 

Screening Soybean for Resistance to Heterodera glycines 

 In plant pathology, the preferred means to reduce yield losses caused by 

pathogens is the use of resistant cultivars; H. glycines is no exception (Shannon, 2004). 

Soon after H. glycines was first identified in North America, an intense search to find 

resistance sources to this pest began (Shannon, 2004).  And because H. glycines was and 

continues to be the most important pathogen of soybean – one of the major agricultural 

crops -- breeding for resistant cultivars will continue to be needed. 

 One of the most important objectives in soybean breeding programs is to obtain 

resistant cultivars to H. glycines (Shannon, 2004).  Screening resistant cultivars in highly 
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infested areas showed that resistant cultivars yielded 56% more than susceptible cultivars 

(Wheeler et al 1997; Young and Hartwig, 1988). 

 Breeding for resistance to H. glycines will be a perpetual process. Alice was told 

by the Red Queen in Alice in Wonderland: “Now, here, you see, it takes all the running 

you can do, to keep in the same place. If you want to get somewhere else, you must run at 

least twice as fast as that!" (Carroll, 1872).  Applied to plant pathology, this idea is 

known as the Red Queen Hypothesis, expressing the idea that even though resistance to 

pathogens exists, efforts to develop resistant plants must continue as the pathogens adapt.  

Adaptation of the pathogen to a host is evident in H. glycines populations, which exhibit 

diversity for virulence (Niblack et al., 2002) both among (Niblack et al., 1993; Rao-Arelli 

et al., 1991; Sikora and Noel, 1991) and within populations (Colgrove et at., 2002; Zhang 

et al., 1998).  Fortunately, there are at least 118 plant introductions with resistance to H. 

glycines in the USDA soybean germplasm collection (Arelli et al., 2000) from which 

resistance to H. glycines can be obtained. 

Assessing resistance is based on a bioassay (Niblack et al., 2002). To classify the 

resistance of a cultivar, a greenhouse test using the Female Index (FI) is conducted. 

Female Index is defined as a percentage relating the number of females that develop on a 

test cultivar and those that develop on „Lee‟ (the susceptible standard). Four categories of 

resistance are commonly accepted for assessing breeding lines (Schmitt and Shannon, 

1992): FI < 10, resistant (R); FI 10 to 29, moderately resistant (MR); FI 30 to 59, 

moderately susceptible (MS); and FI 60 or more, susceptible (S).  An alternative scale has 

been used in screening released cultivars: FI < 10 highly resistant (HR); FI = 10 to 24, 
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resistant (R); FI = 25 to 39, moderately resistant (MR); FI = 40 to 59, low resistance 

(LR); and FI ≥ 60, non-effective resistance (N or NR) (Niblack, 2005). 

Methodology 

Initially, screening for resistance was very subjective, basing the preliminary data 

on symptoms during the reproductive phase of the soybean, either in the field or 

greenhouse (Young, 1998).  Screening in greenhouses will always be better due to the 

reduction in variability caused by external factors and because nematode population 

density can be uniform. However, screening for resistance in the field is crucial for yield 

evaluation (Shannon, 2004).  Currently a uniform protocol proposed by Niblack et al. 

(2002) is being used as a standard for screening for resistance to H. glycines. 

A standard procedure is: 

1. Small tubes filled with sterilized soil are inoculated with eggs of a determined HG 

Type (Anand et al., 1985; Niblack et al., 2002). 

2. Seed of each line to be screened are sown into each pot and replicated according 

to the experimental design chosen (Anand and Gallo, 1984; Hartwig, 1985). 

3. Environmental conditions are regulated: soil temperature at 27 to 28°C with 16 hr 

daylength. 

4. At 25-32 days after seeding, the soil is washed carefully and the roots are 

examined for females. 

5. FI is the preferred system for evaluating resistance (Niblack et al., 2002). 
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Assessing root infection with real-time PCR 

 Identification of H. glycines using the polymerase chain reaction (PCR) opened 

new possibilities in diagnosis (Subbotin et al., 2001).   With the utilization of the 

restriction enzyme AvaI in combination with ribosomal DNA (rDNA)-RFLPs, H. 

glycines can be distinguished from other species of the schachtii group, rendering PCR a 

very sensitive and specific tool (Subbotin, 2000).  This sensitivity was observed by 

Subbotin (2001) when detecting a single H. glycines J2 either alone or in mixture with 

different soil inhabiting nematodes or Pratylenchus spp. 

 Real-time quantitative PCR (qPCR) is a relatively new technology, first 

documented in 1993 (Higuchi et al., 1993), but the first qPCR assay for plant parasites 

was reported in 1996 (Okubara et al., 2002; Schaad and Frederick, 2002; Schoen et al., 

1996).  Advantages of qPCR over standard PCR have been demonstrated (Bustin, 2002; 

Mackay et al., 2002; McCartney et al., 2003; Okubara et al., 2002; Schaad et al., 2003), 

the main one being the possibility for the researcher to obtain quantitative data, which 

makes this technology a potential tool for substituting some traditional ones (Quader et 

al., 2008). Another advantage is its speed; it requires only two hours for the machine to 

accomplish a run in which 96 to 384 reactions can be accommodated in regular plates 

(Gao et al., 2004). 

 In order to replace the traditional time-consuming tools for reliable quantification 

of pathogens, it is necessary to relate the DNA quantities and the actual numbers of 

pathogens. Nematodes are ideal for this purpose, because they can be counted under 

magnification with dissecting scopes. Madani et al. (2005) demonstrated the high 
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correlation between DNA quantities of nematodes determined with qPCR and number of 

nematodes.   

 The current protocol for screening for resistance is very accurate. However, 

efficiency could be increased by reducing the time required to obtain results. Resistance 

is expressed much earlier than the formation of the females. The presence of a nematode 

in the root would not distinguish compatible and incompatible hosts, but quantitative 

differences in the levels of infection as the females begin to mature should allow us to 

predict the resistance level of the plant.  

The objective of this study was to develop a new and faster protocol to replace the 

traditional and time-consuming one for screening for H. glycines resistance in soybean. 
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CHAPTER 2 

A CONSISTENT METHOD TO ASSESS INFECTION OF GLYCINE MAX ROOTS BY 

HETERODERA GLYCINES WITH QUANTITATIVE POLYMERASE CHAIN 

REACTION 

 

Heterodera glycines is the most economically important pathogen of soybean in 

United States (Wrather and Koenning, 2009). Among the potential management options, 

the use of resistant cultivars is the most effective. Development of resistant cultivars 

requires screening for resistance through a combination of standardized and controlled 

techniques. One such technique, perhaps the most important, is the inoculation method. 

Previous works have reported variability and inconsistency in penetration of second-stage 

juveniles (J2) as the result of different inoculation techniques (Acedo et al., 1984; 

Colgrove and Niblack, 2005; Halbrendt and Dropkin, 1986; Mahalingam et al., 1998; 

Melton et al., 1986). 

To address this issue, I conducted the experiments described below with two main 

objectives: 1) to develop a consistent method of inoculation which could reduce the 

variability and inconsistency in J2 penetration of soybean seedlings; and 2) to develop a 

sensitive and efficient real-time qPCR assay to detect, amplify, and quantify H. glycines 

gDNA inside infected soybean seedlings.  
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MATERIALS AND METHODS 

Seed germination  

Seeds of soybean cultivars Lee 74, a compatible host of Heterodera glycines and 

Peking (PI 548402), an incompatible host of H. glycines, were obtained from the United 

States Department of Agriculture, Agricultural Research Service (USDA, ARS) Soybean 

Germplasm Collection, Urbana, IL. Seeds were germinated as described previously 

(Mahalingam et al., 1998). Briefly, with their hila facing downward, seeds were rolled in 

moist sterilized germination paper. Rolls of germination paper with seeds were placed in 

1,000 mL beakers containing 100 mL tap water to facilitate imbibition and germination. 

The beakers were covered with plastic wrap and incubated for 48 hours at 27 °C. 

Uniform 3 to 5 cm long seedlings were selected for inoculation.   

Nematode inoculum 

The H. glycines isolate used in this experiment was increased on susceptible 

soybean Lee 74 and maintained in the greenhouse in a water bath at 27 °C with 16-hr 

days.  The isolate (UIUC0) was HG Type 0 (Niblack et al., 2002), with all Female 

Indices less than 10.  For use as inoculum, the isolate was increased for 30 days, at which 

time females were dislodged from roots with high pressure water spray.  Eggs were 

released by maceration of the females with a rubber stopper on a 150-µm-aperture sieve, 

and washed onto a 25-µm-aperture sieve (Colgrove and Niblack, 2008). Eggs were 

concentrated by sugar centrifugation (Hooper, 1986) and the solution containing eggs 

was placed on a nylon sieve with 41-μm-apertures for hatching (Acedo and Dropkin, 

1982). J2 were collected every day from hatching sieves until the target inoculum level 

was reached. 12 hours before use, J2 were placed on a sterile sand column, and the active 
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J2 were collected in sterile distilled water (Lambert, 1999). Inoculum was prepared by 

suspending the active J2 in sterile distilled water at a concentration of 1,000/mL. 

Nematode inoculation 

Ten seedlings each of Lee 74 and Peking were inoculated with 0 or 1,000 

J2/seedling. Seedlings germinated as described in the seed germination section were 

placed horizontally in 15-cm-long polyvinyl chloride (PVC) tubes cut in half 

longitudinally. Half-tubes were placed horizontally in trays and filled with steam-

pasteurized soil mix: two parts sand to one part silty clay loam, giving a final mix of 77% 

sand, 11% silt, and 12% clay, with pH 7.8 and 0.9% organic matter. Seedlings were 

placed horizontally at one end of each half-tube for inoculation. 

Nematodes were kept in a homogenous suspension with either agitation or 

aeration. Either 1 mL of J2 suspension or 1 mL sterile distilled water was pipetted onto 

each seedling. Treatments were randomly distributed in the inoculation trays. All 

seedlings were covered with moistened, pasteurized sandy loam soil and incubated 

horizontally at 27 °C for 24 hours. Seedlings were removed and washed 24 hours post 

inoculation (hpi) and surface sterilized with 10% bleach for 30 seconds.  

Half of the seedlings were frozen for DNA extraction and the remaining seedlings 

were stained as described in Byrd et al. (1983) for enumeration under a stereoscope. This 

experiment was conducted twice for the DNA extraction and real-time qPCR assay and 

three times for the nematode counts. 
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DNA extraction 

DNA was extracted from infected and noninfected roots with the FastDNA
®
 SPIN 

Kit and the FastPrep
®

 instrument (MP Biomedicals, Santa Ana, CA). DNA was extracted 

in all experiments with a slight modification of the manufacturer‟s protocol as described 

by Malvick and Grunden (2005).  

Roots were placed in 2.0 mL lysing matrix in tubes containing garnet particles 

and ¼ ceramic sphere, 1000 µl Cell Lysing Solution (CLS-TC) extraction buffer, 80 µl 

polyvinylpyrrolidone solution (PVP in 1 mg/10 µl stock solution). A second ¼ ceramic 

bead was added and homogenized twice in the FastPrep
®
 instrument for 30 seconds at a 

speed setting of 4.5 in intervals of 5 min. Samples were centrifuged for 7 min at 11,500 

rpm.  The supernatant was transferred to a new 1.5 mL tube and the same procedure 

repeated; 600 µl of the supernatant was transferred to 1.5 mL tubes containing an equal 

volume of the binding matrix. From this point onward, steps were followed as described 

in the manufacturer‟s protocol. For extraction of DNA from the J2 suspension, 1 mL 

suspended J2 was delivered to a lysing tube and the same procedure as used for the 

infected roots was performed. DNA concentrations were measured with a Nano Drop 

(ND-1000, Thermoscientfic, DE, USA) and stored at -20 °C. 

Selection of primers, test for inhibitors and efficiency of the primers 

To specifically detect H. glycines gDNA, a primer pair for amplification of the 

single copy gene HgSNO was selected. This nematode gene codes for a protein involved 

in vitamin B6 metabolism (Craig et al., 2008). The qPCR primers were designed with 

ABI‟s Primer Express 2.0. DNA extraction was verified with primers for the soybean 
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lectin gene, as described in Berdal and Holst-Jensen (2001).  All oligos were purchased 

from Invitrogen, Carlsband, CA (Table 2.1). 

The efficiency of the HgSNO primer pair was tested as described in Livak and 

Schmittgen (2001).  Briefly, qPCR was performed on a ten-fold dilution series starting at 

89.6 ng/µl H. glycines gDNA and the ΔCt were calculated between each dilution. The 

efficiency of the primers was evaluated by observation of ΔCt for each ten-fold dilution.  

To test for PCR inhibitors in the DNA samples, five 10-fold dilutions of soybean 

gDNA was prepared starting at 71 ng/µl. Each dilution was mixed in a 1:1 ratio with 7.8 

ng/µl of H. glycines gDNA.  QPCR assay was performed to amplify HgSNO from H. 

glycines gDNA mixed with 71, 7.1, 0.71, 0.071, 0.0071, and 0.00071 ng/µl of soybean 

gDNA. 

Real-time qPCR assay 

The SYBR Green real-time qPCR assay was conducted on an ABI PRISM 7000 

sequence detection system instrument (PE Applied Biosystems, Foster City, CA). The 

amplification reactions were performed on a 96-well Optical Reaction Plates where 25 µl 

reaction mixture was used in each well. Amplification reactions contained 12.5 µl SYBR 

Green PCR Master Mix (Applied Biosystems), 0.25 µl of 20 pmoles/µl of each primer 

pair. In both the inoculation and primer efficacy tests, 5 µl template DNA and 7.25 µl 

molecular grade water were used. For the inhibition test,  5µl H. glycines and soybean 

gDNA was used in a 1:1 mixture, adjusting the water volume to 2.25 µl to maintain the 

overall 25 µl reaction mixture per well. A negative control with no DNA template and a 

positive control with pure H. glycines gDNA were included in each experiment. The 
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reaction cycles were: pre-incubation at 50°C for 2 min; template denaturation and 

activation of Taq polymerase at 95°C for 10 min; 40 cycles of 95°C for 15 s each; and 

finally, annealing and extension at 60°C for 1 min.  

Duplicates or triplicates of each reaction were run on each plate. Analysis was 

based on absolute quantification generating amplification curves for each reaction with 

ABI sequence detection software. Cycle threshold (Ct) values were calculated with the 

automatic baseline analysis option (Madani et al., 2005).    

Statistical analysis 

The experiment was completely randomized with each tube in the inoculation tray 

being the experimental unit and the treatments, the four cultivar × inoculation 

combination. Analysis of variance (ANOVA) was conducted with the MIXED procedure 

in SAS (SAS 9.2, SAS Institute, Cary, NC). The UNIVARIATE procedure was used to 

verify the normality of the residuals. Homoscedasticity was checked with the GLM 

(general linear model) procedure with the MEANS statement on the residuals. Brown and 

Forsythe's HOVTEST option was used to compute statistics to test for the homogeneity 

of variance assumption.    

RESULTS 

Root infection  

In a preliminary study to test the inoculation method, inconsistent results were 

obtained when J2 were taken directly from the hatching sieve and collected until the 

target inoculum level was reached because the inoculum is composed of both active and 
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inactive nematodes (Figure A.1).  However, following movement through the sand 

column, only active J2 were obtained, which gave more consistent infection (Figure 2.1). 

Stained nematodes inside infected seedlings were counted 24 hpi.  Infection of Lee 74 

(compatible) and Peking (incompatible) did not differ (P ≤ 0.05) within each experiment 

(Table 2.2). Consistency of the inoculation method showed no differences (P ≤ 0.05) 

among three experiments (Table 2.2). The percentage of infection in both compatible and 

incompatible hosts within 24 hpi ranged from 30 to 41%. The mean number of J2 

penetrating the seedlings ranged from 333 to 401/seedling (Table 2.2).  

Sensitivity and efficiency of primers for HgSNO and inhibitors tests  

The primer pair for HgSNO detected, amplified, and quantified H. glycines gDNA 

from infected Lee 74 and Peking soybean seedlings, and from pure J2 DNA. However, 

there was no amplification of H. glycines gDNA from noninfected seedlings and sterile 

distilled water in qPCR plates. 89.6 × 10
-5

 ng/µl was the lowest H. glycines gDNA 

concentration detected and quantified (average Ct value = 32.72) on a ten-fold dilution 

series (Figure A.2).  

Serial ten-fold dilutions were amplified with real-time qPCR and the efficiency of 

the primers was determined based on the ΔCt between each dilution. The highest 

concentration was 89.6 ng/µl H. glycines gDNA. The ΔCt between dilutions were similar, 

ranging from 3.49 to 3.66 (Figure 2.2). 

The inhibition test showed that a known and constant concentration of H. glycines 

gDNA (7.8 ng/µl) in 1:1 ratio mixture with different concentrations of soybean gDNA 

(71, 7.1, 0.71, 0.071, 0.0071 and 0.00071 ng/µl) was amplified and quantified at similar 
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Ct values, ranging from 19.31 to 19.83. Amplification and quantification of mixed 

reactions did not differ at α = 0.05 (P = 0.6374) (Figure 2.3).    

Real-time qPCR assay 

The results obtained with the SYBR Green real-time qPCR assay coincided with 

the results obtained in number of nematodes counted in stained infected roots. The 

content of H. glycines gDNA in Lee 74 and Peking roots did not differ (P ≤ 0.05) within 

or between experiments (Table 2.3). Amplification plots for real-time qPCR showed a 

tight band of amplified reactions (Figure 2.4). The means of qPCR threshold cycle (Ct) 

values were compared for Lee and Peking within each experiment and a delta Ct was 

calculated (Table 2.3).  The range of Ct values was similar between the first experiment 

(Ct values 22.25 to 25.40) and the second (Ct values 22.38 to 24.88). An endogenous 

control for soybean lectin gene was used to verify successful DNA extraction. 

Amplification and quantification of the lectin gene was observed in every reaction where 

amplification of H. glycines gDNA was recorded, with Ct values ranging from 17.67 to 

35.80.   

DISCUSSION 

In order to evaluate the efficiency of inoculation methods and to provide data on 

the penetration of soybean seedlings by H. glycines, I conducted a set of experiments in 

vivo. I optimized a method to infect soybean seedlings consistently with active J2 and 

subsequently detect, amplify, and quantify H. glycines gDNA in infected soybean 

seedlings. The molecular method chosen for this purpose was real-time quantitative 

polymerase chain reaction. Highly specific primers for HgSNO were designed and 
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employed to detect and quantify H. glycines gDNA inside infected soybean. The 

consistent inoculation method and the high specificity of the qPCR assay allowed 

comparisons to be made reliably. 

Newly hatched J2 are the infective stage. However, if eggs are used for inoculum, 

variability in the hatching rate makes it difficult to collect enough J2 to reach a desired 

level in one day. Collecting J2 takes time, and results in inoculum of different ages and 

viability. Mahalingam et al. (1998) noticed that 7-day-old inoculum was composed of 

dead or starving nematodes, resulting in poor infection. Lambert et al. (1999) designed a 

sand column for the purpose of cleaning and surface-sterilizing nematodes by allowing 

them to crawl through the sand and be collected in sterile distilled water. An active J2 

will crawl through the sand column in about 12 hours. Less active, older J2 are retained 

in this sand bio-filter.  

 A sand column was used in all the experiments to obtain uniform, surface-

sterilized, active J2 which consistently infect soybean seedlings.  Incorporating the sand 

column in the inoculation technique allowed reduced variability of J2 penetration into 

seedlings. This variation in penetration rate has been a problem in many studies of this 

sort (Acedo et al., 1984; Colgrove and Niblack, 2005; Halbrendt and Dropkin, 1986; 

Mahalingam et al., 1998).  In my studies, about 30 to 40% of the J2 penetrated seedlings 

within 24 hours  ̶  an improvement, compared with the 10% infection rate reported by 

Acedo et al. (1984). The consistency of the method was demonstrated in three different 

experiments, performed with three different batches of hatched J2, in which no 

differences were observed within or among experiments. The sand column proved to be 

crucial to reducing the variability that previously was present even under standardized 
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and controlled inoculation conditions (Colgrove and Niblack, 2005; Halbrendt and 

Dropkin, 1986).  

Even though adding a sand column reduced the variation in infection, the number 

of nematodes counted inside infected soybeans may be variable, especially at high 

infection rates.  A molecular tool may help to reduce this source of variation. Previous 

studies demonstrated the use of qPCR to detect and quantify a specific target for 

subsequent comparison. Gao et al. (2004) developed a real-time qPCR protocol to 

quantify Fusarium solani f. sp. glycines in infected soybean root. Similarly, Malvik and 

Impullitti (2007) used qPCR to detect and quantify Phialophora gregata in soybean and 

soil samples. Madani et al. (2005) amplified DNA from Heterodera schachtii and 

Globodera pallida using qPCR in order to identify the species, and Motiul et al. (2007) 

identified different Globodera spp. using the same tool. Madani et al. (2005) reported a 

good relationship between the number of H. schachtii J2 and quantification of gDNA, but 

to my knowledge there are no reports on detection and quantification of H. glycines 

gDNA in infected roots. 

Validation of the qPCR assay was achieved by checking the efficiency of the 

primer pairs used in the experiment and by testing for PCR inhibition. The protocol used 

for DNA extraction provided soybean gDNA extracts with no PCR inhibition, allowing 

amplification of known and constant H. glycines gDNA in mixtures with different 

concentrations of soybean gDNA. Bessetti (2007) reported that soil and plant material 

may contain PCR inhibitors and Malvick and Impullitti (2007) expressed how critical it is 

to test for PCR inhibitors and account for them in qPCR assays. If PCR inhibitors are 

detected in DNA samples they must be addressed by further purification of the samples.  
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Livak and Schimittgen (2001) reported that the sensitivity and efficiency of the primers 

can be assessed by observing how Ct varies with each dilution.  The primers for HgSNO 

used in all the experiments were found to be highly sensitive and efficient.  

The robustness of the techniques described herein allows comparisons between 

compatible and incompatible hosts.  Detection and quantification of H. glycines gDNA 

with qPCR from infected soybean seedlings did not differ between Lee and Peking 24 

hpi. Therefore, J2 penetrated seedlings regardless of the level of soybean resistance. The 

same results were observed when infected seedlings were stained and nematodes counted. 

J2 penetration of compatible as well as incompatible hosts was observed in early studies 

(Acedo et al., 1984; Endo, 1965). Furthermore, when soybean lines with different sources 

of resistance were inoculated, J2 penetration 5 days after inoculation was equivalent 

(Colgrove and Niblack, 2005). 

Two achievements were described in this chapter. First, an inoculation method to 

reduce the variability in J2 penetration of soybean seedlings was generated and 

optimized. Variability in J2 penetration and inconsistent inoculation results observed in 

early works were major issues to be addressed, especially to prevent misleading results in 

breeding programs. With the inoculation method described herein, variation and 

inconsistency of J2 penetration were reduced. Second, a sensitive and efficient assay with 

SYBR Green real-time qPCR was developed to detect, amplify, and quantify H. glycines 

gDNA inside infected soybean roots. The combination of a consistent inoculation method 

and qPCR assay showed a tight band of amplified reactions demonstrating a consistent 

detection of H. glycines gDNA inside radicles and allowing comparisons to be made. The 

next phase of this research is to quantify differences in H. glycines gDNA content in 
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soybean cultivars with different resistance genotypes when observed at different time 

points after inoculation. 
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TABLES 

 

Table 2.1. Primers used for real-time quantitative polymerase chain reaction (qPCR) 

assays targeting Heterodera glycines and Glycine max. 

Amplicon Accession no. Primers (5' → 3') 
a
 Size (bp) 

HgSNO EU747298 F: AGGCAACGTGCAGCAACAT 76 

    R: CTGATCGCCAGTCTTCACTATGA  

       

Lectin K00821 F: CTTTCTCGCACCAATTGACA 102 

    R: TCAAACTCAACAGCGACGAC  
a 
F and R indicates the forward and reverse primers  
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Table 2.2. Penetration of compatible soybean host „Lee 74‟ and incompatible „Peking‟ 

(PI 548402) by Heterodera glycines second-stage juveniles (J2) 24hrs after inoculation 

with 1,000 J2/seedling.  

  
      Juveniles 

b
   

  

Experiment 
a
   Host   Range  Mean  Infection (%)  P  Pooled 

c
 

1 
  Lee 74   235 – 553 366 37 

0.6765 

0.272 

  Peking   221 – 589 401 40 

2 
  Lee 74   300 – 580 413 41 

0.2131 
  Peking   244 – 415 334 33 

3 
  Lee 74   255 – 350 306 31 

0.3447 
  Peking   280 – 398 333 33 

a
 In each experiment, 5 Lee 74 and 5 Peking (PI 548402) were inoculated with active J2, 

collected after being allowed to crawl through a sand column. 
b
 Infected seedlings were stained with acid fuchsin (Byrd et al., 1983) and nematodes 

were counted at × 64 magnification with a stereoscope. Range, mean, and infection rate 

were calculated from the nematodes inside the 5 replications for each host.  
c
 The data were pooled for the three experiments and did not differ at α = 0.05.  
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Table 2.3. Comparison of Heterodera glycines DNA content in compatible soybean 

„Lee74‟ and incompatible „Peking‟ (PI 548402) 24 hours after inoculation with 1,000 H. 

glycines second-stage juveniles/seedling according to a SYBR Green real-time 

quantitative polymerase chain reaction (qPCR) assay with a primer pair designed to 

amplify the HgSNO gene in H. glycines. 

  
Average qPCR Ct value 

b
 

 
      

 

Experiment 
a
 Lee 74 Peking (PI 548402) SD

c
 Δ Ct 2 

–ΔCt d
  P Pooled 

e
 

1 23.33 22.84 0.5848 - 0.49 1.40 0.4264 
0.0653 

2 24.16 23.53 0.5010 - 0.63 1.55 0.2427 
a
 In each experiment, 5 Lee 74 and 5 Peking (PI 548402) were inoculated. 

b
 DNA extracted from soybean roots was amplified and quantified using primers for 

HgSNO. The cycle threshold (Ct) values were averaged. Ct = threshold cycle number 

when fluorescence of the sample exceeded background fluorescence. 
c 
SD: Standard deviation. 

d
 2 

–ΔCt 
, represents the fold difference in gDNA content between Lee 74 and Peking (PI 

548402). 
e
 The consistency of the inoculation method and the efficiency of the qPCR assay was 

corroborated when experiments were pooled and did not differ at α = 0.05.  
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FIGURES 

 

 

Figure 2.1. Numbers of Heterodera glycines second-stage juveniles (J2) within roots of 

compatible soybean host „Lee 74‟ and incompatible „Peking‟ 24 hrs after inoculation with 

1,000 J2/seedling when a sand column was used to obtain active inoculum. Pairs of 

means superscribed by „ns‟ are not significant at P ≤ 0.05.  
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Figure 2.2. ΔCt values (differences in cycle threshold values) in a quantitative PCR 

analysis of the efficiency of  a primer pair for the Heterodera glycines gene HgSNO 

tested with a ten-fold serial dilution of genomic H. glycines DNA (starting at 89.6 ng/µl). 
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Figure 2.3. Amplification plot of Heterodera glycines genomic DNA with SYBR Green 

real-time quantitative polymerase chain reaction (qPCR) and a primer pair designed to 

amplify the nematode HgSNO gene in serially diluted soybean genomic DNA combined 

in a 1:1 mixture with 7.8 ng/µl H. glycines genomic DNA. Distilled water was used instead 

of DNA for the negative control. 
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Figure 2.4. Amplification plot of Heterodera glycines genomic DNA with SYBR Green 

real-time quantitative polymerase chain reaction (qPCR) and a primer pair designed to 

amplify the nematode HgSNO gene from infected Lee 74 and Peking roots 24 hrs after 

inoculation with 1,000 H. glycines second-stage juveniles/seedling. Distilled water was 

used instead of DNA for the negative control, and 7.8 ng/μl H. glycines gDNA was the 

positive control. 
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CHAPTER 3 

DIFFERENTIATION OF SOYBEAN CULTIVAR RESISTANCE TO HETERODERA 

GLYCINES WITH QUANTITATIVE POLYMERASE CHAIN REACTION 

 

Endo (1965) reported the histological responses of resistant and susceptible 

soybean cultivars (Peking and Lee, respectively) to entry and development by Heterodera 

glycines. These soybean cultivars represent the extreme responses to H. glycines in the 

continuum from fully compatible to incompatible hosts. In this chapter, I describe a set of 

experiments intended to verify whether the methods developed in Chapter 2 could be 

used to detect differences in the responses of the H. glycines-compatible cultivar Lee 74 

(derived from Lee) and the incompatible Peking (PI 548402) without having to stain and 

count nematodes in infected roots or wait 30 days until adult females can be extracted 

and counted, as is currently done to evaluate resistance.     

Quantification of H. glycines infection by traditional means (numbers of females 

produced in 30 days) is a time-consuming practice. I hypothesized that the real-time 

qPCR assay reported in Chapter 2 can replace the traditional bioassay and improve 

precision in determining infection levels.  The objective of this experiment was to 

quantify differences in H. glycines gDNA content in roots of infected soybean cultivars 

with different resistance genotypes over time. 
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MATERIALS AND METHODS 

Soybean seeds 

Soybean seeds were obtained from the USDA, ARS Soybean Germplasm 

Collection, Urbana, IL. Cultivars Lee 74, a compatible host, and Peking (PI 548402), an 

incompatible host to H. glycines, were used in the first experiment. For the second 

experiment, soybean cultivars with three different levels of resistance to H. glycines HG 

Type 0 (highly resistant [HR], FI < 10; moderately resistant [MR], FI ≥ 25 and < 40; and 

susceptible [S],  FI ≥ 60) were selected from among entries in the 2008 and 2009 

Soybean Variety Testing program (Table 3.1) (http://vt.cropsci.illinois.edu). Three 

different soybean cultivars were used to represent each level of resistance. Resistance 

levels were based on previously determined and reported female indices (FI) 

(http://vipsoybeans.org). The source of H. glycines resistance for each selected cultivar is 

PI 88788. For seedling inoculation, uniform 3 to 5 cm long, straight seedlings were 

produced as described in the previous chapter.   

Nematode inoculum  

For both experiments, 1,000 J2/seedling was the inoculum level. The H. glycines 

isolate was HG Type 0, which was increased, harvested, and collected as described in the 

previous chapter.  All nematode J2 used were passed through a sand column 12 hours 

before seedlings were inoculated as described in the previous chapter.  

Nematode inoculation  

In the first experiment, uniform 3 to 5 cm long, straight seedlings of Lee 74 and 

Peking (PI 548402) were inoculated with 1,000 infective J2 pipetted onto each seedling.  
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Control seedlings received an equal amount of sterile distilled water.  Twenty-four hours 

post inoculation (hpi), all seedlings were lifted from the inoculation environment and 

washed under running tap water to remove free J2 that had not infected (Endo, 1965). 

Five each of Lee 74 and Peking, and 3 mock-inoculated soybean seedlings, were surface-

sterilized and frozen for DNA extraction at 1, 7, 10, 14, and 21 days post inoculation 

(dpi).  

Soybean cultivars with different levels of resistance to H. glycines were used in 

the second experiment. Uniform seedlings of nine cultivars with different levels of 

resistance, and control (mock-inoculated) soybean seedlings were used. Three 

replications of each cultivar were inoculated with 1,000 J2/seedling as described in 

chapter 2. Control seedlings were mock-inoculated with sterile distilled water. At 24 hpi, 

all seedlings were washed as describe above. Three replications of each cultivar and three 

mock-inoculated soybean seedlings were surface-sterilized and frozen for DNA 

extraction at 7, 10, 14, and 21 dpi.      

DNA extraction 

Single male and juvenile DNA extraction: Nematodes were individually digested 

for qPCR assay as described by Craig et al. (2008). Briefly, 10 males and 10 J2 were 

handpicked and individually digested in 5µl buffer (50 mM Tris-HCL pH 7.5, 50 mM 

NaCl) containing 4 mg/mL of fungal protease K (Invitrogen, Carlsbad, CA). The protease 

K was inactivated after 24 hours at 80°C for 30 min. 

Infected and noninfected soybean DNA extraction: DNA was extracted from 

surface-sterilized, frozen soybean roots at each harvest point with a FastDNA
®

 SPIN kit 
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and the FastPrep
®
 Instrument (MP Biomedicals, Santa Ana, CA). The protocol used for 

DNA isolation in these experiments was described in Chapter 2. Each root was 

standardized by the length at the moment of inoculation +2 cm (about 7 cm).   

Real-time qPCR assay 

On an ABI PRISM 7000 sequence detection system instrument (PE Applied 

Biosystems, Foster City, CA), SYBR Green real-time qPCR assay was conducted. A 25 

µl reaction mixture containing 5 µl target soybean DNA or 5 µl digested single nematode 

DNA was used in each well of a 96-well optical reaction plate for the amplification 

reactions. A duplicate of each reaction was run on each plate. Analysis and cycle 

threshold (Ct) values were calculated as described in Chapter 2.  Similarly, validation of 

the qPCR assay was the same as described in the previous chapter. Specificity and 

efficiency of the primers for HgSNO were verified as well as the absence of PCR 

inhibitors. 

Statistical analysis   

Both experiments were completely randomized with each tube in the inoculation 

tray being the experimental unit and the treatments, the four cultivar × inoculation 

combination. Analysis of variance (ANOVA) for each harvest point was done with the 

MIXED procedure in SAS (SAS 9.2, SAS Institute, Cary, NC). The UNIVARIATE 

procedure was used to verify whether the assumptions of ANOVA were met. 

Homoscedasticity was checked with the GLM (general linear models) procedure with the 

MEANS statement on the residuals. Brown and Forsythe's HOVTEST option was used to 

compute statistics to test for the homogeneity of variance assumption. 
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RESULTS 

Single male vs. second-stage juvenile 

Males have four times more gDNA than J2. The results obtained with the SYBR 

Green real-time qPCR assay showed that the content of gDNA in fully developed males 

differed at α = 0.05 (P = 0.0001) from gDNA content of J2 (Figure 3.1). Mean average Ct 

values for 10 digested males was 25.3 compared with a mean of 23.3 for the same 

number of J2. The ΔCt value between an adult male H. glycines and a J2 was 2.  

Lee 74 vs. Peking (PI 548402)  

Heterodera glycines gDNA content in compatible host Lee 74 and incompatible 

Peking was compared at different days post inoculation with SYBR Green real-time 

qPCR (Figure 3.2). At 10 and 21 dpi, Lee 74 and Peking differed at α = 0.05. At 21 dpi, 

females were visible and countable; however, at 10 dpi Lee 74 and Peking roots showed 

no visible differences (data not shown). Lee 74 and Peking did not differ at α = 0.05 at 1, 

7, and 14 dpi. The same results were obtained when this experiment was repeated (Table 

3.2).   

Soybean cultivars with different level of resistance to Heterodera glycines 

The content of H. glycines gDNA in nine soybean cultivars with different levels 

of resistance (3 highly resistant cultivars, 3 moderately resistant, and 3 susceptible) was 

compared at 7, 10, 14, and 21 dpi with SYBR Green real-time qPCR. Even though the 

cultivars had different level of resistance, the source of resistance for all of them was PI 
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88788. Cultivars did not differ at α = 0.05 at 7 and 10 dpi; however, they differed at 14 

and 21 dpi (Table 3.3).  

Cultivars with the same level of resistance (highly resistant, moderately resistant 

and susceptible) were pooled; the means were calculated and single-degree-of-freedom 

contrasts were performed for each harvest point. Highly resistant cultivars differed from 

those both moderately resistant and susceptible at 14 and 21 dpi, at α = 0.05; however, 

cultivars with moderate resistance and susceptible did not differ (Table 3.4). The same 

result was obtained when the experiment was repeated.    

DISCUSSION 

Differences in DNA content of H. glycines were detected between Lee 74 and 

Peking at different days post inoculation with SYBR Green real-time qPCR. The 

difference between Lee and Peking was detected as early as 10 dpi.  Likewise, cultivars 

with different levels of resistance derived from PI 88788 differed at 14 dpi. For both 

experiments, there was no difference between cultivars at day 7 dpi.  

J2 of H. glycines generally penetrate roots of soybean irrespective of the level of 

resistance. In my study, H. glycines gDNA content did not differ 1 dpi in Lee 74 and 

Peking. Previous studies showed that in incompatible hosts such as Peking, nematodes 

rarely reach the J3 stage, and no adults are observed (Endo, 1965).  However, at day 7 

after penetration, the DNA of dying nematodes is still amplified and quantified, resulting 

in an inability to detect differences between cultivars at this harvest point. This was 

observed in both experiments. However, males were observed in cultivars with resistance 

derived from PI 88788.  Resistance effective against females in highly resistant soybean 
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cultivars (FI < 10) is not effective against male development (Colgrove and Niblack, 

2005).  Development of males may account for differences observed in these 

experiments.  

Endo (1964) and Lauritis et al. (1983) reported development of H. glycines in 

susceptible soybean plants and showed the presence of fully developed males inside the 

roots at 10 dpi. During 11-15 dpi, males started to gradually leave the root and were 

found in the proximities of adult females. By 10 days after root penetration, real-time 

qPCR assay revealed that compatible host Lee 74 differed from Peking suggesting that 

the former contained fully developed males as opposed to the latter.  

Colgrove and Niblack (2005) demonstrated that the female-male ratio in Lee 74 

does not differ from 1.  In contrast, nematodes do not complete their life cycle in 

incompatible host Peking; few reach the J3 stage (Endo, 1965). Results from SYBR 

Green real-time qPCR assay with single digested nematodes revealed that males contain 

4 times more gDNA than juveniles.  

By 10 days after penetration, Lee 74 contained more H. glycines gDNA amplified 

and quantified from adult nematodes, and differed from Peking in which H. glycines 

gDNA from dead J2 (and maybe a few J3) was still amplified and quantified. However, 

by 14 days after infection, H. glycines gDNA content in Lee 74 and Peking surprisingly 

did not differ anymore, even though big developed females were observed in stained 

roots. Since the female-male ratio in Lee 74 is 1:1, between 11 and 15 days, half of the 

nematodes (males containing four times more gDNA than juveniles) emerged from the 

roots to complete their reproductive life cycle.  On the other hand, gDNA from dead 
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juveniles in Peking were still detected, amplified, and quantified. At 14 days after 

infection the number of (dead) juveniles in Peking is twice the number of female 

juveniles in Lee 74, thus the gDNA content did not differ between the compatible and 

incompatible host. At 21 days after inoculation, the nematode gDNA content in Lee 74 

and Peking differed significantly, perhaps due to the content of fertilized eggs (each one 

containing H. glycines gDNA) inside females on the compatible host (Endo, 1965; 

Lauritis et al., 1983). 

Shannon et al. (2004) described resistance to H. glycines as a complex and 

multigenic process, requiring major genes and some minor genes to confer resistance to 

the nematode. Resistance in H. glycines is therefore quantitative. Based on the female 

index; resistance ranges from highly resistant to susceptible, passing through different 

categories such as moderately resistant and moderately susceptible (Schmitt and 

Shannon, 1992).  

In the second experiment, nine cultivars were used, all with PI 88788 as the 

source of resistance. Based on the female indices, three were highly resistant, three 

moderately resistant, and three susceptible to H. glycines. Nematode penetration at 10 dpi 

in both highly resistant and susceptible cultivars contained approximately the same 

amount of H. glycines gDNA and did not differ, contrary to the results observed in the 

first experiment. Differences were observed only at 14 and 21 days after infection 

between cultivars. In both cases, the qPCR assay could only detect differences between 

highly resistant and moderately resistant and between highly resistant and susceptible 

cultivars; however, moderately resistant and susceptible cultivars did not differ. Our 

results support findings by Colgrove and Niblack (2005) who reported that effective 
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resistance from PI 88788 does not reduce male development. Halbrendt and Dropkin 

(1986) also reported that the number of males produced on soybean with resistance to H. 

glycines differed from those of females.  

In conclusion, a method to detect, amplify, and quantify H. glycines gDNA in 

infected roots of soybean cultivars with different levels of resistance was developed. As 

nematodes develop inside infected soybean roots their DNA content increases. This 

observation was the basis of the two experiments described in this Chapter. I successfully 

detected differences in H. glycines gDNA content between compatible and incompatible 

hosts at 10 dpi, reducing by 20 days the time needed to distinguish these cultivars. With 

PI 88788 as a source of resistance, resistance could be distinguished by 14 dpi, but only 

highly resistant cultivars were different. Moderately resistant cultivars did not differ from 

susceptibles with the real-time qPCR assay.  

These results were encouraging because in both experiments the time needed to 

differentiate highly resistant cultivars from moderately resistant and susceptible cultivars 

was reduced by more than half the time needed for traditional screening based on the 

Female Index. Moreover, results showed that male development is a key factor when 

differences are observed between cultivars.  
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TABLES 

 

Table 3.1. Soybean cultivars
a
 distinguished by Female Indices (FI) and resistance rating 

selected for inclusion in a study of the use of quantitative PCR as a substitute for 

traditional means of screening for resistance to Heterodera glycines.    

 

Seed company Cultivars FI 
b
 Rating 

c
 Source of resistance 

d
 

FS HISOY HS 38C60 0 HR PI 88788 

KALTENBERG KB 2609 RR 0 HR PI 88788 

WILKEN W 2672 NSTS 0 HR PI 88788 

LG SEEDS C 4488 NRR 38 MR PI 88788 

NK BRAND S 23-N7 33 MR PI 88788 

STONE SEED GROUP 3A319 NRR 31 MR PI 88788 

MERSCHMAN MOHAVE 1029LL 107 S PI 88788 

MERSCHMAN OLYMPUS 1051LL 122 S PI 88788 

SOUTHERN STATES RT 4808 N 107 S PI 88788 
a
 2008 and 2009 Soybean Variety Testing program (http://vt.cropsci.illinois.edu) 

b
 Female index = (average number of females developed on an indicator line / average 

number of females developed on a standard susceptible) x 100. 
c
 Resistance level for each cultivar based on their female index: HR = highly resistant, 

FI<10;  MR = moderately resistant, FI>24<40; and S = susceptible, FI>59. 
d
 PI 88788 source of resistance to Heterodera glycines HG Type 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Table 3.2. Mean comparisons of real-time quantitative polymerase chain reaction (qPCR) 

cycle threshold (Ct) values for Heterodera glycines genomic DNA content in Lee 74 and 

Peking (PI 548402) at 1, 7, 10, 14 and 21 days after inoculation. 

    Average qPCR Ct value 
b
        

DAI Experiment 
a
 Lee Peking (PI 548402) SD 

c
 Δ Ct  2 

-ΔCt
 
d
 P 

1 
1 23.57 23.61 0.448 0.04 1.03 0.9345 

2 23.26 23.30 0.315 0.04 1.03 0.9068 

7 
1 21.47 22.12 0.484 0.65 1.57 0.2148 

2 21.80 22.99 0.433 1.19 2.28 0.0251 

10 
1 19.00 20.07 0.289 1.07 2.10 0.0059 

2 21.34 22.88 0.296 1.55 2.92 0.0008 

14 
1 23.74 26.31 1.829 2.57 5.93 0.1979 

2 19.97 20.40 0.211 0.43 1.35 0.0805 

21 
1 25.92 29.81 1.326 3.88 14.74 0.0191 

2 19.57 23.82 0.964 4.25 19.01 0.0031 
a
 In each experiment, 5 Lee 74 and Peking (PI 548402) were inoculated with 1,000 

Heterodera glycines second-stage juveniles/seedling. 
b
 Heterodera glycines genomic DNA content in infected Lee 74 and Peking (PI 548402) was 

determined using SYBR Green with a primer pair designed to amplify the HgSNO gene in 

real-time quantitative polymerase chain reaction (qPCR). Cycle threshold (Ct) values 

were averaged. Ct = threshold cycle number when fluoresce of the sample exceeded 

background fluorescence. 
c 
SD: Standard deviation.  

d
 2 

–ΔCt 
, represents the fold difference in H. glycines genomic DNA content between Lee 

74 and Peking (PI 548402). 
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Table 3.3. Probability values for the main effect of cultivars when Heterodera glycines 

genomic DNA content in soybean cultivars with different resistance levels was quantified 

with real-time quantitative polymerase chain reaction (qPCR) 7, 10, 14 and 21 days after 

inoculation. 
a
  

Days after inoculation 

Experiment 

1 2 

7 0.3509 0.2254 

10 0.2405 0.2151 

14 0.0178 0.0015 

21 0.0155 <.0001 
a
 Nine cultivars with different levels of resistant to Heterodera glycines (three highly 

resistant, moderately resistant, and susceptible) were inoculated in three replications with 

1,000 H. glycines second-stage juveniles/seedling and harvested at 7, 10, 14 and 21 days 

after inoculation. Heterodera glycines genomic DNA content in infected cultivars was 

determined using SYBR Green with a primer pair designed to amplify the HgSNO gene in 

real-time quantitative polymerase chain reaction (qPCR).   
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Table 3.4. Probability values and standard deviations of means for single-degree-of-freedom contrasts of Heterodera glycines DNA 

content in soybean cultivars with different levels of resistance at 7, 10, 14 and 21 days after inoculation with 1,000 second stage 

juveniles with real-time quantitative polymerase chain reaction (qPCR).  

    Days after inoculation 

    7   10   14   21 

Experiment Comparison 
a
 SD 

b
  P   SD 

b
  P   SD 

b
  P   SD 

b
  P 

1 

HR vs. MR 0.4592 0.4112   0.8595 0.1930   0.6344 0.0037   1.0196 0.0018 

MR vs. S 0.4592 0.3306   0.8595 0.0915   0.6536 0.6151   0.9191 0.8020 

HR vs. S 0.4397 0.0809   0.8595 0.0057   0.6808 0.0022   1.0510 0.0014 

                          

2 

HR vs. MR 0.4682 0.5342   1.6341 0.1630   0.3445 0.0021   0.6432 0.0001 

MR vs. S 0.4682 0.1708   1.6341 0.4752   0.3198 0.3293   0.6432 0.0507 

HR vs. S 0.4499 0.0463   1.6341 0.4777   0.3328 0.0002   0.6432 0.0001 
a
 Single-degree-of-freedom contrast between Highly resistant (HR) and Moderately resistant (MR), Moderately resistant (MR) and 

Susceptible (S), and  Highly resistant (HR) and Susceptible (S). 
b
 SD: Standard deviation. 
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FIGURES 

 

 

Figure 3.1. Real-time quantitative polymerase chain reaction (qPCR) amplification plots of 

genomic DNA of Heterodera glycines males and juveniles with SYBR Green and a primer 

pair designed to amplify the HgSNO gene. Distilled water was the negative control. 
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Figure 3.2. Heterodera glycines genomic DNA content in compatible host Lee 74 and incompatible host Peking (PI 548402) at 

different days after inoculation with SYBR Green real-time quantitative polymerase chain reaction (qPCR) and a primer pair designed 

to amplify the HgSNO gene. Soybean radicles were inoculated with 1,000 H. glycines J2 and transplanted to pasteurized soil for the 

designated number of days after inoculation.  Plants were maintained in a water bath at a constant 27 C and 16 hour daylength.  
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APPENDIX 

 

 

Figure A.1. Effect of different inoculum levels of Heterodera glycines second-stage 

juveniles (J2) on penetration of soybean roots 24hrs after inoculation. Nematodes were 

collected after hatching until the target inoculum level was reached and used directly to 

inoculate seedlings without further preparation. Bars labeled „ns‟ are not different at P ≤ 

0.05. 
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Figure A.2. Amplification plot for real-time quantitative polymerase chain reaction 

(qPCR) of a 10-fold dilution series of Heterodera glycines genomic DNA (starting at 

89.6 ng/µl) with SYBR Green and a primer pair designed to amplify the HgSNO gene. 

Distilled water was the negative control. 
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