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ABSTRACT 

 

We describe an atomic force microscope cantilever design for which the second flexural 

mode frequency can be tailored relative to the first mode frequency, for operation in contact with 

a substrate.  A freely-resonating paddle internal to the cantilever reduces the stiffness of the 

second flexural mode relative to the first while nearly maintaining the mass of the original 

cantilever.  This strategy allows the ratio of the first two resonant modes f2/f1 to be controlled 

over the range 1.6 – 4.5.  The ability to vary f2/f1 could improve a variety of dynamic contact-

mode measurements. 
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CHAPTER 1 

INTRODUCTION 

CHAPTER 1: INTRODUCTION 
The tip of an atomic force microscope (AFM) can measure nanometer-scale surface 

features and materials properties.1  Many AFM techniques have been proposed the use dynamic 

interaction of an AFM tip with a surface; the most widely used are those techniques that measure 

intermittent contact between an oscillating cantilever tip and a surface.2  Tapping mode is 

advantageous because it is gentle on the surface, making it ideal for biological imaging, as well 

as providing mechanical property information of surfaces through the phase difference of the 

probe with its actuator.  While this technique has been widely used to measure the properties of 

materials, there are some properties that cannot be well measured if the tip is not in constant 

contact with the surface.  For this reason, other dynamic approaches employ a tip in constant 

contact with a moving surface, in which mechanical energy is transferred from the surface, 

through the cantilever tip, and vibrates the cantilever.3   

This type of dynamic contact measurement is used in piezoresponse force microscopy 

(PFM)4, scanning joule expansion microscopy (SJEM)5, and for measuring adhesion, contact 

stiffness, and chemical interactions.6,7  These methods make use of a lock-in amplifier to 

measure the amplitude of the cantilever subjected to a sinusoidal input.  For the case of PFM, 

different polar orientations of the grains result in different expansions of those grains, which 

allows the cantilever to distinguish between differing orientations.  The concept is similar in 

SJEM, but now the expansion is due to thermal expansion of the materials as they are 

periodically heated by electrical power dissipation.  Although the input for most applications is 

sinusoidal, it need not necessarily be so.  One application, known as Photothermal Induced 

Resonance (PTIR), involves sending a nano-scale IR pulse to the sample and mapping the 
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frequency spectra for each material on the sample with sub 100 nm resolution.8  Although the 

nature of the forces imparted to a probe from the substrate vary widely, a limited amount of 

effort has been placed on tailoring AFM probes to specific dynamic contact mode applications in 

the commercial world. 

Some efforts have been made to research novel probe designs to improve the response of 

certain techniques, and most of the attempts have focused on the importance of the mechanical 

resonance spectra of the probe in measuring signals.  While most dynamic AFM measurements 

are made at the first resonant mode, f1, higher mode operation can improve contrast and 

resolution for many measurements.9 The relationship between f1 and cantilever spring constant k, 

as well as the ratios f2/f1 and f3/f1 are well known for rectangular cantilevers.  Other cantilever 

shapes provide different relationships between these cantilever characteristics.  A number of 

strategies have been suggested to tune higher mode frequencies through the selective removal of 

mass along the length of the cantilever, ranging from simple rectangular notches to intricate 

geometrical cutouts.10,11,12,13,14,15  Other strategies add mass to specific locations of the 

cantilever16,17 or vary the cantilever thickness along its length,18  although these designs are 

mostly theoretical as they are hard to batch manufacture. 

These geometrical alterations enhance probe response a number of AFM applications.  

Rectangular cutouts have increased sensitivity to material boundaries in Kelvin probe force 

microscopy (KPFM)13. Square notches have been designed to amplify the response of elastic 

modulus measurements to determine local material properties.14  These probes also detected 

features unresolved in fundamental mode operation.  Secondary resonating structures loosely 

coupled to the contact mode probe improve the amplitude response in detecting piezo orientation 

in PFM by amplifying the probe input10. 
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While not all of the modified probes focus on the effects of tuning the mode frequencies, 

tuning modes can improve AFM imaging in some cases.  Tuning higher mode frequencies lower 

allows higher harmonics to pass through many electronic controllers that do not have the 

bandwidth to pass higher frequency information.  Adjusting higher mode frequencies to 

harmonic multiples of the fundamental also provides an additional amplification14.  Mode 

frequency tuning can additionally be useful for tuning the cantilever response to the input signal 

to the substrate in dynamic contact mode applications.  This paper reports an AFM cantilever 

design for contact mode operation where the ratio of second resonance frequency to first 

resonance frequency (f2/f1) is controllable over the range 1.61 – 4.56, with 3.25 being the ratio of 

a regular cantilever beam in contact. 
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CHAPTER 2 

DESIGN 

CHAPTER 2: DESIGN 
For a cantilever operating in intermittent contact with a surface, the frequency of a 

specific vibration mode can be reduced by removing material from the highest flexural stress 

locations of that mode.14  For a cantilever in contact with a surface, the locations of highest 

flexural stress are in different locations than a freely resonating cantilever.  Some mode tuning 

can be achieved by cutting notches of differing sizes at certain locations along the base of the 

cantilever beam, but initial results showed that the amount of tuning due to these notches was 

very minimal (see Figures A.1-A.3).  To decrease the f2/f1 ratio, mass must be removed from the 

two max stress locations of the second mode shape, while retaining as much mass as possible at 

high stress locations in the first mode shape.   

 Figure 1a shows the proposed AFM cantilever, which has a paddle in the middle of the 

cantilever that can vibrate freely.  The paddle ends are located in the region of maximum stress 

of the second resonant mode.  This strategy provides a larger tuning range over edge cutouts14 

since edge cutouts reduce the mass and do not greatly influence the resonance frequency for 

contact mode operation.  This is due to the fact that the frequency of a mode is roughly 

proportional to the stiffness and inversely proportional to the mass.  This resulted in the removal 

of stiffness for a mode to be counteracted by the removal of mass from the notches.  Thus, to 

effectively modify the frequency of a mode shape, a way must be found to reduce the stress of 

that mode without significantly altering the mass of the cantilever.  The present design reduces 

stress at the locations of maximum stress while mostly preserving the cantilever mass.   
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Figure 1b shows a fabricated cantilever, which was fabricated using an FEI Strata DB235 

focused ion beam (FIB) to etch the patterns in a commercial silicon cantilever.  The ion emission 

current was maintained at 2.2 µA with a lens voltage of 30 kV.  The emission current was 

reduced using a 7000 pA aperture to make the milling spot size 150 nm.  This aperture choice 

was chosen based on the feature sizes of the milled areas and time.  The etching pattern was 

constructed from a set of rectangles totaling 836 µm2, and the time to etch through 2 µm thick 

took approximately 1.5 hours.  The features were etched with a 1 µs dwell time and a beam 

overlap of 50%.  The cantilever has a length of 350 µm, a width of 35 µm, and a thickness of 2 

µm, with a nominal stiffness of 0.3 N/m before modification.  The internal paddle has a length of 

180 µm and a width of 27 µm, with the axis of rotation at the center of the paddle, located 197 

µm from the base of the cantilever beam. 

A finite element model simulated the modified cantilever deflection and resonance 

characteristics to predict cantilever mechanical behavior.  The three-dimensional model had an 

element size sufficiently small so that further decreases in element size resulted in negligible 

solution changes (see Figure A.4).  The boundary conditions of the cantilever fixed the 

displacement at the base and simply supported the point of the tip to simulate the cantilever in 

contact with a substrate.  A block Lanczos modal analysis produced the mode shapes.   

Figure 2 shows the cantilever flexural shape of the first 4 resonant modes.  The shapes of 

the modes provide insight into the high stress locations of the modified cantilever, as well as 

information about the slope of the cantilever response along the length of the beam, which is the 

dominant signal for the AFM laser detection.19  The first mode shape exhibits a half sine 

standing wave pattern with a maximum at the location of the paddle’s axis of rotation.  Because 

the slope at this maximum is always zero, the slope along the entire length of the paddle is 
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always zero.  The second mode shape resembles a full sine standing wave pattern with a 

maximum slope at the paddle axis of rotation.  Thus, the entire length of the paddle similarly 

contains this maximum slope along the entire length of the beam.  The third mode shape is 

similar to the first, but now the paddle and the cantilever are oscillating out of phase, causing the 

paddle to flap at each end.  The fourth mode shape is similar to the second, with the key 

difference again being the out of phase motion between the paddle and cantilever. 

The mode frequencies were simulated across a range of paddle lengths and widths to 

better understand the dynamics of the device and to predict the values of the mode frequencies.  

Figure 3 shows the 1st and 2nd mode frequency response of an internal paddle cantilever 350 µm 

in length, 35 µm wide, and 2 µm thick as a function of internal paddle length and width.  Figure 

3a shows the 1st mode frequency, and Figure 3b shows the 2nd mode frequency both as a function 

of paddle width and length.  Figure 3c shows the ratio of the second mode shape to the first.  

When the paddle width and length are both small, the f2/f1 ratio remains close to that of a normal 

cantilever, which is 3.25.  If the paddle width is small and the length is increased, there is a 

decrease in the second mode frequency as the notches begin to relieve stress in the points of 

maximum stress in the second mode, while the first mode frequency remains roughly constant.  

When the paddle is short and wide, most of the stress is relieved in the maximum stress point of 

the first mode shape, resulting in a spike of f2/f1 with a predicted value of 4.5.  The ratio is at a 

minimum when both the length and the width of the paddle are maximized at a value of 1.6.  

Varying the paddle center of mass and axis of rotation revealed that the ratio was optimized and 

the response behaved well when the center of mass was on the axis of rotation and when the axis 

of rotation coincided with the location of maximum slope of the cantilever’s second contact 

mode.  Overall, the predictions show that the ratio f2/f1 could be tailored over the range 1.6-4.5. 
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Figure 4 shows the 3rd and 4th mode frequency response of an internal paddle cantilever 

350 µm in length, 35 µm wide, and 2 µm thick as a function of internal paddle length and width.  

Figure 4a shows the frequency dependence on paddle width and length for the 3rd mode, and 

figure 4b shows the ratio of the 3rd mode to the 1st.  Similarly, figure 4c shows the frequency 

dependence on paddle width and length for the 4th mode, and figure 4d shows the ratio of the 4th 

mode to the 1st.    The cutouts reduce the ratios of both the 3rd and 4th modes in a similar fashion 

to the second, followed by increases in the ratio for long widths and lengths due to the inclusion 

of more maximum slope points along the cutouts. 
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Figure 1: a) Schematic of the cantilever having an internal paddle.  The paddle design reduces 

the high stress locations of the 2nd mode shape while retaining as much original mass as possible.  

b) Scanning electron microscope image of the modified cantilever fabricated using focused ion 

beam etching. 

 

 

a) 

b) 
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Figure 2: First four mode shapes for the internal torsion paddle cantilever fixed at the base and 

simply supported at the probe tip.  The shape of the mode shows where high stress locations are, 

as well as providing insight into how the laser deflection system of the AFM will detect the 

probe response along the probe length. 
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Figure 3: 1st and 2nd finite element mode shape frequencies for an internal paddle cantilever 350 

µm in length, 35 µm wide, and 2 µm thick as a function of internal paddle length and width.  a) 

The first mode shape frequency as a function of paddle width and length.  b) The second mode 

shape frequency as a function of paddle width and length.  c) The ratio of the second mode 

frequency to the first. 
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Figure 4: 3rd and 4th finite element mode shape frequencies for a cantilever 350 µm in length, 35 

µm wide, and 2 µm thick as a function of internal paddle length and width.  a) The third mode 

shape frequency as a function of paddle width and length.  b) The ratio of the third mode 

frequency to the first.  c) The fourth mode shape frequency as a function of paddle width and 

length.  d) The ratio of the fourth mode frequency to the first.  
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CHAPTER 3 

EXPERIMENT AND DISCUSSION 

CHAPTER 3: EXPERIMENT AND DISCUSSION 
Separate experiments were performed on rectangular cantilevers and cantilevers having 

the internal paddle.  Figure 5 shows the experimental setup.  We mounted the cantilevers in our 

MFP-3D AFM system and we measured their resonance characteristics for the tip out of contact 

with a substrate and for the tip in contact with the substrate.  A piezoceramic actuator served as 

the substrate for the in-contact experiments, which was driven by a noise signal from a function 

generator.  The detection laser measures the deflection of the cantilever which is collected using 

the photodiode.  The AFM controller integrated the laser input to the photodiode over time to 

produce the resonance spectra shown.  The piezoceramic excitation was necessary to achieve a 

good signal to noise ratio in the response.   

We obtained the frequency spectra for an internal paddle cantilever with the deflection 

detection laser positioned at various points along the cantilever to compare to the model and to 

determine the optimal detection point.  Figure 6 shows the experimental relationship between 

position of the reflected laser spot on the cantilever and the measured resonant characteristics for 

the first two modes of an internal paddle cantilever. When the laser was directed at the end of the 

cantilever, the frequency spectrum showed a more pronounced first mode and a second mode 

response roughly 5 times smaller.  The third mode response was barely detected, and no higher 

modes were found.  When the laser was positioned on the end of the internal paddle, the 

frequency spectrum did not detect the first mode shape, confirming the simulation results that the 

paddle slope does not change at the frequency of the first mode.  The second mode response was 

almost an order of magnitude greater than when the laser was positioned on the tip, and two 

additional modes beyond the third were detected.  All subsequent experiments used a laser 
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position such that the spot size covered both the tip of the beam and the end of the paddle to find 

a good balance between detecting the first mode and detecting the larger signal of the second 

mode from the paddle. 

Also of interest is the dependence of substrate amplitude and tip force on mode 

frequency.  Figure 7 shows the first and second mode frequency for an internal paddle cantilever 

in contact with a poly (methyl methacrylate) substrate for a variety of different piezoceramic 

actuation amplitudes.  The response is very ordered at low powers, but higher powers cause the 

response to become highly non-linear.  0.04, 0.4, 4, and 40 nm correspond to input voltages 

across the piezo of 0.1, 1, 10, and 100 V, respectively.  These relatively small displacements 

cause such a high non-linearity because it is the maximum amplitude of a noise signal.   

The general influence of tip force on the mode frequencies was also inspected for the 

internal paddle cantilever.  Figure 8 shows the frequency response of the first two modes of the 

internal paddle cantilever on poly (methyl methacrylate) for a variety of tip-sample forces.  The 

first mode frequency occurs at 54.6 kHz for a 13 nN force, 56.8 kHz for a 39 nN force, and 57.9 

kHz for a 54 nN force.  The second mode frequency is 81.7 kHz for a 13 nN force, 83.2 kHz for 

a 39 nN force, and 84.2 kHz for a 54 nN force.  Based on this data, the frequency shifts on the 

order of 100 Hz per nN for the first two modes. 

After determining the affect of laser position, substrate excitation amplitude, and tip-

sample force, we measured the frequency spectra for both an unmodified rectangular cantilever 

and a cantilever with an internal paddle.  Figure 9 compares the first 2 modes of the unmodified 

cantilever to the first 3 modes of the modified cantilever.  The original rectangular cantilever had 

in-contact mode frequencies f1 = 114.9 kHz and f2 = 333.1 kHz, with f2/f1 = 2.90 compared to 

3.25 from simulation.  The modified cantilever had mode frequencies f1 = 53.1 kHz, f2 = 86.9, 
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and f3 = 334.7 kHz, with f2/f1 = 1.64.  In addition to the greatly reduced ratio between the second 

and first mode, the modified cantilever showed a much stronger signal than the unmodified 

cantilever.  Table 1 compares the experimental frequencies with values predicted by finite 

element analysis, showing good agreement.   

Table 1 shows the frequency spectrum for one modified probe with a 350 µm, a width 35 

µm, and thickness of 2 µm, an internal paddle length of 180 µm and width of 27 µm, with the 

axis of rotation 197 µm from the base of the cantilever beam .  The cantilever stiffness was 

determined using the thermal method, and the experimental value was compared to the 

prediction from finite element analysis.  This method relies on the equipartition principle from 

classical thermodynamics to attempt to equate the mechanical fluctuations of cantilever with its 

thermal energy.20  Other methods to find the stiffness of the cantilever, such as utilizing nano-

indentation, proved problematic because the modified cantilever is softer than 1 N/m.21  The 

error in the thermal method is 45% for the normal cantilever and 100% for the modified 

cantilever.  The error comes from the assumptions that the cantilever geometry is rectangular and 

that a majority of the thermal energy in the cantilever is stored in the fundamental mode.  Even 

with this error, the modified cantilever has a spring constant about one order of magnitude softer 

than the unmodified cantilever.  

We produced additional cantilevers with a range of paddle widths and lengths and 

obtained their mode frequencies to compare to the finite element model.  Table II shows the first 

two mode frequencies and the ratio between the two for a cantilever with a length of 350 µm, a 

width of 35 µm, and a thickness of 2 µm.  The paddles were of size 75 µm to 235 µm in length 

and 10 µm to 29 µm in width.  Finite element simulations predicted the device mode frequencies 

by interpolating between data points.  The predictions showed that the experimental data agrees 
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well with the general contour of the models with less than 30% errors for all but two values.  

Deviations from the model are attributed to poor tolerances on commercial cantilever 

thicknesses, as well as FIB instrument alignment error.  This data demonstrates that the model is 

valid for a wide range of paddle sizes, allowing for customization of frequency values and ratios. 

This technique shows future promise in the many varied forms of contact atomic force 

microscopy.  The proposed AFM probe demonstrates the ability to tune the second mode 

frequency to the first, while additionally lowering the probe stiffness.  The resulting shape of the 

modes altered the optical measurement of deflection, so the internal paddle had the same slope 

along its length as its axis of rotation for the first two modes.  Focused ion beam etching allowed 

simple fabrication with commercially available cantilevers, although once the appropriate design 

is indentified such cantilevers could easily be batch fabricated.  The fabricated cantilever 

characteristics compared well with finite element simulations.  This technique to tailor f2/f1 over 

a large range is independent of the value of f1 and thus it could be applied to cantilevers of 

arbitrary stiffness for many applications of dynamic contact mode AFM.  
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Figure 5: The experimental setup for detecting cantilever frequency response.  A piezoceramic 

actuates the cantilever in contact, and the excitation deflection is captured using a laser and a 

photodiode.  The AFM controller integrated the laser input to the photodiode over time to 

produce the resonance spectra. 
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Figure 6: Frequency response of an internal paddle cantilever over the first two modes with the 

detection laser on the end of the cantilever and on the internal paddle.  The first mode is 

undetected when the laser is on the paddle, which agrees with intuition from the finite element 

mode shapes.  The displacements are typically in the nm range, and are normalized here. 
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Figure 7: Frequency response of the first two modes for an internal paddle cantilever as a 

function of input deflection of the piezoceramic actuation stage when the tip is in contact with 

Poly (Methyl Methacrylate).  The response is very ordered at low powers, but higher powers 

cause the response to become highly non-linear.  0.04, 0.4, 4, and 40 nm correspond to input 

voltages across the piezo of 0.1, 1, 10, and 100 V, respectively. 
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Figure 8:  Frequency response as a function of tip force on the substrate for an internal paddle 

cantilever on Poly (Methyl Methacrylate). The first mode frequency occurs at 54.6 kHz for a    

13 nN force, 56.8 kHz for a 39 nN force, and 57.9 kHz for a 54 nN force.  The second mode 

frequency is 81.7 kHz for a 13 nN force, 83.2 kHz for a 39 nN force, and 84.2 kHz for a 54 nN 

force. 
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Figure 9: Frequency Spectrum for both a modified (mod) cantilever and the original cantilever.  

The original cantilever has mode frequencies at 114.9 and 333.1 kHz, with an f2/f1 ratio of 2.90.  

The modified cantilever has mode frequencies at 53.1, 86.9, and 334.7 kHz, with an f2/f1 ratio of 

1.64 (color online). The displacements are typically in the nm range, and are normalized here. 
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Table I: Frequency Spectra data for unmodified and modified cantilevers. 

  f1 (kHz) f2 (kHz) f3 (kHz) k (N/m) 
Modified 
Probe 

Model 50 90 323 0.10 
Experiment 53 87 335 0.05 

Original 
Probe 

Model 106 345 717 0.29 
Experiment 115 333 - 0.20 

 
 

 

 

 

 

 

 

Table II: First two modes across a range of paddle widths and lengths 
 

Paddle Dimensions Experiment Prediction 
Paddle 
Length 
(µm) 

Paddle 
Width 
(µm) 

f1 
(kHz) 

f2 
(kHz) 

f2/f1 
 

f1 
(kHz) 

f2 
(kHz) 

f2/f1 
 

75 10 108 354 3.28 99 335 3.39 
75 29 64 250 3.91 61 204 3.33 

155 10 93 231 2.48 93 266 2.85 
155 29 56 101 1.80 46 90 1.98 
235 10 107 139 1.30 87 161 1.85 
235 29 38 51 1.34 32 52 1.62 
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APPENDIX 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1:  a) 3D model of an AFM cantilever probe with rectangular cutouts at locations of 

maximum stress of the second mode with the tip in contact with a substrate.  The cantilever is 

300 µm long, 50 µm wide, and 2 µm thick.  b)  Variation of the first mode frequency as a 

function of both the width and the length of the cutouts.  c)  Variation of the second mode 

frequency as a function of cutout width and length.  d) The ratio of the second mode frequency to 

the first for all evaluated rectangular areas.  
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Figure A.2:  a) 3D model of an AFM cantilever probe with trapezoidal cutouts at locations of 

maximum stress of the second mode with the tip in contact with a substrate.  The cantilever is 

300 µm long, 50 µm wide, and 2 µm thick.  b)  Variation of the first mode frequency as a 

function of both the width and the length of the trapezoidal cutouts.  c)  Variation of the second 

mode frequency as a function of notch width and length.  d) The ratio of the second mode 

frequency to the first for all evaluated notch areas. 
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Figure A.3:  a) 3D model of an AFM cantilever probe with diamond cutouts at locations of 

maximum stress of the second mode with the tip in contact with a substrate.  The cantilever is 

300 µm long, 50 µm wide, and 2 µm thick.  b)  Variation of the first mode frequency as a 

function of both the width and the length of the diamond cutouts.  c)  Variation of the second 

mode frequency as a function of diamond width and length.  d) The ratio of the second mode 

frequency to the first for all evaluated diamond areas. 
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Figure A.4:  Convergence test for the finite element analysis for the internal paddle probe.  The 

element count was selected to balance accuracy with time.  The maximum error for the element 

count used is less than 2% as compared to the numerical solution for a model with an order of 

magnitude more elements.  
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