
Copyright 2009 by Firat Kiyak



PROTECTING DNS FROM SOFTWARE ERRORS

BY

FIRAT KIYAK

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Adviser:

Assistant Professor Matthew Caesar



Abstract

The ability to forward packets on the Internet is highly intertwined with the availability

and robustness of the Domain Name System (DNS) infrastructure. Unfortunately, the DNS

suffers from a wide variety of problems arising from implementation errors, including vul-

nerabilities, bogus queries, and proneness to failure. In this work, we present a preliminary

design and early prototype implementation of a system that leverages diversified replica-

tion to increase tolerance of DNS to implementation errors. Our design leverages software

diversity by running multiple redundant copies of software in parallel, and leverages data

diversity by replicating requests to multiple redundant servers. Using traces of DNS queries,

we demonstrate our design can keep up with the loads of a large university’s DNS traffic,

while improving resilience to DNS’s availability problems.
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Chapter 1

Introduction & Motivation

1.1 Introduction

The Domain Name System (DNS) is a hierarchical system for mapping hostnames (e.g.,

www.uiuc.edu) to IP addresses (e.g., 128.174.4.87). The DNS is a ubiquitous and highly

crucial part of the Internet’s infrastructure. Availability of the Internet’s most popular

services, such as the World Wide Web and email rely almost completely on DNS in or-

der to provide their functionality. Unfortunately, the DNS suffers from a wide variety of

problems, including performance issues [1, 2], high loads [3, 4], proneness to failure [5], and

vulnerabilities [6]. Due to the propensity of applications and services that share fate with

DNS, these problems can bring significant harm to the Internet’s availability.

Much DNS research focuses on dealing with fail-stop errors in DNS. Techniques to

more efficiently cache results [1], to cooperatively perform lookups [7, 8], to localize and

troubleshoot DNS outages [9], have made great strides towards improving DNS availability.

However, as fail-stop errors are reduced by these techniques, Byzantine errors become a

larger bottleneck in achieving availability. Unlike fail-stop failures, where a system stops

when it encounters an error, Byzantine errors include the more arbitrary class of faults

where a system can violate protocol. For example, software errors in DNS implementations

lead to bogus queries [3], and vulnerabilities, which can be exploited by attackers to gain

access to and control DNS servers. These problems are particularly serious for DNS –

while the root of the DNS hierarchy is highly physically redundant to avoid failures, it

is not software redundant, and hence multiple servers can be taken down with the same

attack. For example, while there are 13 geographically distributed DNS root clusters, each

comprised of hundreds of servers, they only run two distinct DNS software implementations:
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BIND and NSD (see [10] and references therein). While coordinated attacks to DoS these

servers are hard, the fact these servers may share vulnerabilities makes these attacks simpler.

Not as much work has been done in dealing with such problems in the context of DNS.

In this paper, we revisit the classic idea of using diverse replication to improve system

availability. These techniques have been used to build a wide variety of robust software,

especially in the context of operating systems and runtime environments [11–16]. Several

recent systems have also been proposed to decrease costs of replication, by skipping redun-

dant computations [17], and by eliminating storage of redundant state [18]. However, to

the best of our knowledge, such techniques have not been widely investigated in improving

resilience of DNS. Applying these techniques in DNS presents new challenges. For example,

the DNS relies on distributed operations and hence some way to coordinate responses across

the wide area is required. Moreover, the DNS relies on caching and hence a faulty response

may remain resident in the system for long periods of time.

In this paper we present the initial design and an early prototype DNS service that lever-

ages diverse replication to mask Byzantine errors. In particular, we design and implement

a DNS hypervisor, which allows multiple diverse replicas of DNS software to simultaneously

execute, with the idea being that if one replica crashes or generates a faulty output, the

other replicas will remain available to drive execution. To reduce the need to implement

new code, our prototype leverages the several already-existing diverse open-source DNS

implementations. Our hypervisor maintains isolation across running instances, so software

errors do not affect other instances. It uses a simple voting procedure to select the ma-

jority result across instances, and includes a cache to offset the use of redundant queries.

Voting is performed in the inbound direction, to protect end hosts from errors in local

implementations or faulty queries returned by servers higher up in the DNS hierarchy.

Roadmap: To motivate our approach, we start by surveying common problems in DNS,

existing work to address them, as well as performing our own characterization study of

errors in open-source DNS software (Section 1.2). We next present a design that leverages

diverse replication to mitigate software errors in DNS (Section 2.1). We then describe

our prototype implementation (Section 2.2), and characterize its performance by replaying
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DNS query traces (Chapter 3). We then consider an extension of our design that leverages

existing diversity in the current DNS hierarchy to improve resilience, and measure ability of

this approach in the wide-area Internet (Chapter 4). Next, we consider Content Distribution

Networks and their effects on DR-DNS (Chapter 5). We then compare the reliability of

DNS with other building blocks of internet (Chapter 6). We finally conclude with a brief

discussion of related work (Chapter 7) and future research directions (Chapter 8).

1.2 Motivation

In this section, we make several observations that motivate our design. First, we survey

the literature to enumerate several kinds of Byzantine faults that have been observed in the

DNS infrastructure. Next, we study several alternatives towards achieving diversity across

replicas. Finally, we study the costs involved in running diverse replicas.

Errors in DNS software: The highly-redundant and overprovisioned nature of the DNS

makes it very resilient to physical failures. However, the DNS suffers from a variety of

software errors that introduce correctness issues. For example, Wessels et al. [3] found large

numbers of bogus queries reaching DNS root servers. In addition, some DNS implementa-

tion bugs are vulnerabilities, which can be exploited by attackers to compromise the DNS

server [6]. While possibly more rare than physical failures, incorrect behavior is potentially

much more serious, as faulty responses can be cached for long periods of time, and since

a single faulty DNS server may send incorrect results to many clients (e.g., a single DNS

root name server services on average 152 million queries per hour, to 382 thousand unique

hosts [3]). With increasing deployments of physical redundancy and fast-failover technolo-

gies, software errors and vulnerabilities stand to make up an increasingly large source of

DNS problems in the future.

Approaches to achieving diversity: Our approach leverages diverse replicas to recover

from bugs. There are a wide variety of ways diversity could be achieved, and our architecture

is amenable to several alternatives: the execution environment could be made different for

each instance (e.g., randomizing layout in memory [11]), the data/inputs to each instance
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Figure 1.1: Number of overlapping bugs across code bases, with MOSS scores given in parenthe-
sis, for (a) different versions of BIND (b) latest versions of different code bases. We find a high
correlation between MOSS score and bug overlap.

could be manipulated (e.g., by ordering queries differently for each server), and the software

itself could be diverse (e.g., running different DNS implementations). For simplicity, in this

paper we focus on software diversity. Software diversity has been widely used in other areas

of computing, as diverse instances of software typically fail on different inputs [11–15].

To roughly estimate the level of diversity achieved across different DNS implementations,

we performed static code analysis of nine popular DNS implementations (listed in the

column headings of Figure 1.1b). First, to evaluate code diversity, we used MOSS, a tool

used by a number of universities to detect student plagiarism of programming assignments.

We used MOSS to gauge the degree to which code is shared across DNS implementations

and versions. Second, to evaluate fault diversity, we used Coverity Prevent, an analyzer that

detects programming errors in source code. We used Coverity to measure how long bugs

lasted across different versions of the same software. We did this by manually investigating

each bug reported by Coverity Prevent, and checking to see if the bug existed in other

versions of the same software. Our results are shown in Table 1.1. We found that most
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DNS implementations are diverse, with no versions sharing more than one bug, and only one

pair of versions achieving a MOSS score of greater than 2%. Operators of our system may

wish to avoid running instances that achieve a high MOSS score, as bugs/vulnerabilities

may overlap more often in implementations that share code. Also, we found that while

implementation errors can persist for long periods across different versions of code, code

after a major rewrite (e.g., BIND versions 8.4.7 and 9.0.0) tended to have different bugs.

Hence, operators of our system may wish to run multiple versions of the same software

in parallel to recover from bugs, but only versions that differ substantially (e.g., major

versions).
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Chapter 2

Design & Implementation

2.1 Design

Figure 2.1: Design of DNS hypervisor.

In this section we describe the details of the design of our DNS service, which uses diverse

replication to improve resilience to Byzantine failures. Our overall architecture is shown

in Figure 2.1. Our design runs multiple replicas of DNS software atop a DNS hypervisor.

The DNS hypervisor is responsible for mediating inputs and outputs of the DNS replicas,

to make them collectively operate like a single DNS server. Our design interacts with other

DNS servers using the standard DNS protocols to simplify deployment. The hypervisor

is also responsible for masking bugs by using a simple voting procedure: if one replica

produces an incorrect result due to a bug, or due to the fact that it is compromised by an

attacker, or if it crashes, and if the instances are sufficiently diverse, then it is likely that

another replica will remain available to drive execution. There are a few design choices

related to DNS replicas that may affect the DR-DNS operations.

1. How many replicas to run (r)? To improve resilience to faults, the hypervisor can
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spawn additional replicas. Increasing the number of replicas can improve resilience, but

incurs additional run time overheads (CPU, memory usage). In addition, there may be

diminishing returns after a point. For example, we were only able to locate nine diverse

copies of DNS software, and hence running more than that number of copies would not

attain benefits from increased software diversity (though data diversity techniques may

be applied, by manipulating inputs and execution environment of multiple replicas of the

same software code base [11,12]). Similarly, the hypervisor can kill or restart a misbehaving

replica. A replica is misbehaving if it regularly produces different output than the majority

result or if it crashes. In this case, the hypervisor first restarts the replica and if the problem

persists, then the replica is killed and a new replica is spawned. This new replica may have

different software or configuration.

2. How to select software that run in replicas? In order to increase the fault tolerance,

DR-DNS administrators should choose diverse DNS implementations to run in replicas. For

instance, using the same software with minor version changes (ex. BIND 9.5.0 and BIND

9.6.0) in replicas should be avoided since those two versions will likely to have common

bugs. Instead, different software implementations (ex. BIND and PowerDNS) or the same

software implementation with major version changes (BIND 8.4.7 and BIND 9.6.0) are more

suitable to run in replicas.

3. How to configure the replicas? Each DNS replica is independently responsible for

returning a result for the query, though due to implementation and configuration differences,

each replica may use a different procedure to achieve the result. For example, some replicas

may perform iterative queries, while others perform recursive queries. To determine the

result to send to the client, the DNS replicas may either recursively forward the request

towards the DNS root, or may respond immediately (if they are authoritative, or have the

response for the query cached). Furthermore, different cache sizes can affect the response

times of replicas. For instance, a query can be cached in a replica, whereas another replica

with a smaller cache may have to do a lookup for the same query.

4. How to select upstream DNS servers for replicas? Upstream DNS servers should

be selected such that the possibility of propagating an incorrect result to the client is
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minimized. For instance, if all replicas use the same upstream DNS server to resolve the

queries and if this upstream DNS server produces an incorrect result, then this incorrect

result will be propagated to the end-host. However, one can easily configure replicas to

select diverse upstream DNS servers that in result protects the end-users from misbehaving

upstream DNS servers. External replication and Path Diversity techniques are further

discussed in Chapter 4.

The hypervisor has a more complex design than replicas and it includes multiple mod-

ules: Multicast, Voter and Cache. Upon receiving an incoming query from the end host,

the hypervisor follows multiple steps. First, Multicast module replicates the incoming query

from the end-host and forwards the replicated queries to DNS replicas. Next, Voter module

waits for a set of answers received from the DNS replicas and then it generates the best

answer depending on the voting scheme. For instance, a simple majority voting scheme

selects the most common answer and returns it to the end-host. Finally, the answer is

stored in the cache. Cache module is responsible for storing the answers to common queries

to reduce the response time. If the cache already has the answer to the incoming query of

the end-host, then DR-DNS directly replies the answer without any further process.

To mediate between the outputs of replicas, we use a simple voting scheme, which selects

the majority result to send to downstream DNS/end-host clients. We propose a single voting

procedure with several tunable parameters:

How long to wait (t,k)? Each replica in the system may take different amounts of time

to respond to a request. For example, a replica may require additional processing time:

it may be due to a less-efficient implementation, because it does not have the response

cached and must perform a remote lookup, or because the replica is frozen/locked-up and

not responding. To avoid waiting for an arbitrary amount of time, the voter only waits for

a maximum amount of time t before continuing, and is allowed to return the majority early

when k replicas return their responses.

Even though DR-DNS uses the simple majority voting scheme as default, a different

voting scheme can be selected by the administrator. There are three main voting schemes

DR-DNS currently supports: Simple Majority Voting, Weighted Majority Voting, and Rank
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Preference Majority Voting. A DNS answer may include multiple ordered IP addresses. The

end-host usually tries to communicate with the first IP address in the answer. The second

IP address is used only if the first one fails to reply. Similarly the third address is used if

the first two fails, and so on.

Simple Majority Voting: In this voting scheme, the ranking of IP addresses in a given DNS

answer is ignored. IP addresses seen in majority of the replica answers win regardless of the

ordering in replica answers. The final answer, however, orders the majority IP addresses

according to their final counts. This voting scheme is a simplified version of the weighted

majority voting scheme with all weights being equal to one.

Weighted Majority Voting: This voting scheme is based on the simple majority voting. The

main difference of this voting scheme is that replicas have weights affecting the final result

proportional to their weights. Replicas with more weights contribute more to the final result.

Weights can be determined dynamically, or they can be assigned by the administrator

statically in the configuration file. A dynamic weight of a replica is increased if the replica

answer and the final answer has at least one common IP address. Otherwise, the replica is

likely to have an incorrect result and its weight is decreased. In the static approach, the

administrator may prefer to assign static weights to replicas. For instance, one may want

to assign a larger weight to the replica using latest version of the same software compared

to replicas using older versions. Similarly, an administrator may trust more to replicas

using well-known software such as BIND than replicas using other DNS software. Dynamic

approach can adjust to transient buggy states much better than the static approach, but it

includes an additional performance cost. Finally, a hybrid approach is also possible where

each replica has two weights: a static and a dynamic weight. As a result, static weight is

assigned by the administrator, whereas the dynamic weight is adjusted as DR-DNS processes

queries.

Rank Preference Majority Voting: This voting scheme is also based on the simple majority

voting. In the simplest rank preference voting, the IP addresses are weighted based on

their ordering in the DNS answer. For instance, the first IP address in a replica answer is

weighted more than the second IP address in the same answer. The final answer is generated
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by applying simple majority voting on the cumulative weights of IP addresses.

2.2 Implementation

To better understand the practical challenges of our design, we built a prototype imple-

mentation in Java, which we refer to as “Diverse Replica DNS” (DR-DNS). We had several

goals for the prototype. First, we would like to ensure that the multiple diverse replicas

are isolated, so that incorrect behavior/crashes of one replica do not affect performance of

the other replicas. To achieve this, the DNS hypervisor runs each instance within its own

process, and uses socket communication to interact with them. Second, we wanted to elimi-

nate the need to modify the code of existing DNS software implementations running within

our prototype. To do this, our hypervisor’s voter acts like a DNS proxy, by maintaining a

separate communication with each running replica and mediating across their outputs. In

addition, we wanted our design to be as simple as possible, to avoid introducing potential

for additional bugs. To deal with this, we focused on only implementing a small set of basic

functionality in the hypervisor, relying on the replicas to perform DNS-specific logic. Our

implementation consisted of 2391 lines of code, with 1700 spent on DNS packet processing,

378 lines on hypervisor logic including caching and voting, and the remaining 313 lines on

socket communication. (by comparison, BIND has 409045 lines of code, and the other code

bases had 28977-114583 lines of code). Finally, our design should avoid introducing exces-

sive additional traffic into the DNS system, and respond quickly to requests. To achieve

this, our design incorporates a simple cache, which is checked before sending requests to the

replicas. Our cache implementation uses the Least Recently Used (LRU) eviction policy.

On startup, our implementation reads a short configuration file describing the location

of DNS software packages on disk, spawns a separate process corresponding to each, and

starts up a software instance (replica) within each process. Each of these software packages

must be configured to start up and serve requests on a different port1. The hypervisor then

binds to port 53 and begins listening for incoming DNS queries. Upon receipt of a query, the

1As part of future work, we are investigating use of virtual machine technologies to eliminate this re-
quirement.
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hypervisor checks to see if the query’s result is present in its cache. If present, the hypervisor

responds immediately with the result. Otherwise, it forwards a copy of the query to each

of the replicas. The hypervisor then waits for the responses, and selects the majority result

to send to the client. To avoid waiting arbitrarily long for frozen/deadlocked/slow replicas

to respond, the hypervisor waits no longer than a timeout (t) for a response. Note each

replica’s approach to processing the query may be different as well, increasing potential

for diversity. For example, one replica may decide to iteratively process the query, while

others may perform recursive lookups. In addition, different implementations may perform

different caching strategies or have different cache sizes, and hence one copy may be able

to satisfy the request from its cache while another copy may require a remote lookup.

Regardless, the responses are processed by the hypervisor’s voter to agree on a common

answer before returning the result to the client.

Our implementation has three main features to achive high scalability, fast response

and correctness. First, DR-DNS is implemented using threads with a thread pool. Upon

start up, DR-DNS generates a thread pool including the threads that are ready to handle

incoming queries. Whenever a query is received, it is assigned to a worker thread and run

in parallel to other queries. The worker is responsible for keeping all the state information

about the query including the replica answers. After the answer to the query is replied,

the worker thread returns to the pool and waits for a new query. High scalability in our

implementation can be reached by increasing the size of the thread pool as the load on the

server increases. Second, DR-DNS is implemented in an event-driven architecture. The

main advantage of the event-driven architecture is that it provides flexibility to process

an event without any delay. In our implementation, almost all events related to replicas

are time critical and need to be processed quickly to achieve fast response time. Finally,

our hypervisor implementation consistently checks replicas for possible misbehavior. The

replica answers are regularly checked against the majority result to notice any misbehavior

to achieve high correctness.
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Chapter 3

Evaluation on a Single Node

Setup: To study performance under heavy loads, we replayed traces of DNS requests

collected at a large university (the University of Illinois at Urbana-Champaign, which has

roughly 40,000 students) against our implementation (which we refer to as “Diverse Replica

DNS”, or DR-DNS) running on a single-core 2.5 GHz Pentium 4. The trace contains two

days of traffic, corresponding to 1.7 million requests. Since some of the DNS software

implementations we use make use of caches, we replay 5 minutes worth of trace before

collecting results, as we found this amount of time eliminated any measurable cold start

effects. We configure DR-DNS to run four diverse DNS implementations, namely: BIND

version 9.5.0, PowerDNS version 3.17, Unbound version 1.02, and djbdns version 1.05. We

run each replica with a default cache size of 32MB. Some implementations resolve requests

iteratively, while others resolve recursively, and we do not modify this default behavior.

Since modeling bug behavior is in itself an extremely hard research topic, for simplicity we

consider a simple two-state model where a DNS server can be either in a faulty or non-faulty

state. When faulty, all its responses to requests are incorrect, and the interarrival times

between faulty states is sampled from a Poisson distribution with mean rate λnf = 100000

milliseconds. The duration of faulty states is also sampled from a Poisson distribution with

mean rate λf = µ ∗ λnf . While for traditional failures µ is on the order of 0.0005 [19], to

stress test our system under more frequent bugs (where our system is expected to perform

more poorly), we consider of µ = 0.01, µ = 0.003, and µ = 0.001.

Metrics: There are several benefits associated with our approach. For example, running

multiple copies can improve resilience to Byzantine faults. To evaluate this, we measure

the fault rate as the fraction of time when a DNS server is generating an incorrect output.
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Figure 3.1: Effect of µ on fault rate, with t fixed at 4000ms.

At the same time, there are also several costs. For example, it may slow response time, as

we must wait for multiple replicas to finish computing their results. To evaluate this, we

measure the processing delay of a request through our system. In this section, we quantify

the benefits (Section 3.1) and costs (Section 3.2) of our design.

3.1 Benefits
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Figure 3.2: Effect of timeout on fault rate, with µ fixed at 0.001.

The primary benefit of our design is in improving resilience to Byzantine behavior.

However, the precise amount of benefit achieved is a function of several factors, including

how often Byzantine behavior occurs, how long it tends to last, the level of diversity achieved

across replicas, etc. Here, we evaluate amount of benefit gained from diverse replication

under several different workloads.

First, we injected synthetic bugs into DR-DNS, and measured the fraction of buggy
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responses returned to clients (i.e., the fault rate). In particular, we vary µ = λf/λnf . For

simplicity, since performance of DR-DNS is a function primarily of the ratio of these two

values, we can measure performance as a function of this ratio. We found that DR-DNS

reduces fault rate by multiple orders of magnitude when run with µ = 0.0005. To evaluate

performance under more stressful conditions, we plot in Figure 3.1 performance for higher

ratios. We find that even under these more stressful conditions, DR-DNS reduces fault rate

by an order of magnitude. We find a similar result when we vary the timeout value t, as

shown in Figure 3.2.

Our system also can leverage spare computational capacity to improve resilience further.

It does this by running additional replicas. We evaluate effect of the number of replicas

on fault rate in Figures 3.1 and 3.2. As expected, we find that increasing the number

of replicas reduces fault rate. For example, when µ = 0.001 and t = 1000, running one

additional replica (increasing r = 3 to r = 4) reduces fault rate by a factor of eight.

3.2 Costs

First, DNS implementations are often configured with large caches to reduce request traffic.

Our system increases request traffic even further, as it runs multiple replicas, which do not

share their cache contents. To evaluate this, we measured the amount of memory required

to achieve a certain desired hit rate in Figure 3.3. Interestingly, we found that reducing

cache size to a third of its original size (which would be necessary to run three replicas) did
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Figure 3.5: Effect of timeout on reducing delay.

not substantially reduce hit rate. To offset this further, we implemented a shared cache in

DR-DNS’s DNS hypervisor. To improve resilience to faulty results returned by replicas, DR-

DNS’s cache periodically evicts cached entries. While this increases hypervisor complexity

slightly (adds an additional 52 lines of code), it maintains the same hit rate as a standalone

DNS server.

Second, our design imposes additional delay on servicing requests, as it must wait for the

multiple replicas to arrive at their result before proceeding. To evaluate this, we measured

the amount of time it took for a request to be satisfied (the round trip time from a client

machine back to that originating client). Figure 3.4 plots the amount of time to service

a request. We compare a standalone DNS server running BIND with DR-DNS running

r = 3 copies (BIND, PowerDNS, and djbdns). We find that BIND runs more quickly than

PowerDNS, and DR-DNS runs slightly more slowly than PowerDNS. This is because in its
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Figure 3.6: Microbenchmarks showing most of delay is spent waiting for replicas to reach consensus.

default configuration, DR-DNS runs at the speed of the slowest copy, as it waits for all

copies to respond before proceeding. To mitigate this, we found that increasing the cache

size can completely offset any additional delays incurred by processing.

An alternate way to reduce delay is to vary t (to bound the maximum amount of time

the voter will wait for a replica to respond) or k (to allow the voter to proceed when the first

k replicas finish processing). As one might expect, we found that increasing k or increasing

t both produce a similar effect: increasing them reduces fault rate, but increases delay.

However, we found that manipulating t provided a way to bound worst-case delay (e.g., to

make sure a request would be serviced within a certain time bound), while manipulating k

provided a worst-case resilience against bugs (e.g., to make sure a response would be voted

upon by at least k replicas). Also, as shown in Figure 3.5, we found that making t too small

increased the number of dropped requests. This happens because, if no responses from

replicas are received before the timeout, DR-DNS drops the request (we also considered a

scheme where we wait for at least one copy to respond, and achieved a reduced drop rate

at the expense of increased delay).

To investigate the source of delays in DR-DNS, we performed microbenchmarking.

Here, we instrument DR-DNS with timing code to measure how much time is spent han-

dling/parsing DNS packets, performing voting, checking the local cache, and waiting for

responses from remote DNS servers. Figure 3.6 shows that the vast majority of request

processing time is spent on waiting for the replicas to finish communicating with remote

servers and to achieve consensus. This motivates our use of k and t: since these parameters
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control the amount of time required to achieve consensus, they provide knobs that allow us

to effectively control delay (or to trade it off against fault rate).

Under heavy loads, we found that DR-DNS dropped a slightly larger number of requests

than a standalone DNS server (0.31% vs. 0.1%). Under moderate and light loads, we found

DR-DNS dropped fewer requests than a standalone DNS server (0.004% vs. 0.036%). This

happens because there is some small amount of loss between DR-DNS and the remote root

servers, and since like other schemes that replicate queries [8], our design sends multiple

copies of a request, it can recover from some of these losses at the added expense of additional

packet overhead.
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Chapter 4

External Replication & Path

Diversity

Our work so far has focused on internal replication – running multiple DNS replicas within

a single host. Although internal replication improves the reliability of a single DNS server,

DNS query resolution process usually involves multiple DNS servers. For instance, a DNS

server can be configured to forward its queries to an upstream DNS server which in turn

forwards the queries to another DNS server. Hence, an incorrect answer can be propagated

from a buggy upstream DNS server to the end-user. In order to increase the reliability of

the whole DNS query resolution process, we use the existing DNS hierarchy and redundancy

as another form of diversity. In particular, we extend DR-DNS design to allow its internal

DNS replicas to send queries to multiple diverse upstream DNS servers and apply voting

for the final answer. Path diversity, the selection of the diverse upstream DNS servers,

can be considered as software diversity across upstream DNS servers. While this approach

presents some practical challenges, we present results to indicate the benefits of maintaining

and increasing diversity in the existing DNS hierarchy. The rest of the section is organized

as follows. The next section provides the design extensions of DR-DNS to support path

diversity. Section 4.2 presents the benefits and costs of path diversity. Finally, Chapter 5

discusses the path diversity in the existence of CDNs and DNS load balancing.

4.1 Design Extensions

In the extended DR-DNS design each internal DNS replica (1) sends replicated queries

to multiple diverse upstream DNS servers and (2) applies voting on the received answers.

Hence, we extended each internal DNS replica with a replica hypervisor, i.e. a DNS hypervi-

sor without a cache. DNS hypervisor already has a Multicast module (MCast) to replicate
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the queries and Voter module to apply majority voting on the received answers. In this case,

we disabled the caches of replica hypervisors since DNS replicas include their own caches.

Whenever a DNS replica wants to send a query to upstream DNS servers, it simply sends

the query to its replica hypervisor. Then, the multicast module in the replica hypervisor

replicates the query and forwards copies to selected upstream DNS servers. Upon receiving

answers, the voter module simply applies majority voting on the answers and replies to its

DNS replica with the final answer.

4.2 Benefits and Costs

The primary benefit of our design extension is in improving resilience to errors that can

occur in any DNS servers involved in the query resolution. However, the amount of exact

benefit gained depends on the level of diversity achieved across upstream DNS servers. To

increase the reliability of DNS query resolution process, one needs to avoid sending queries

to upstream DNS servers that share software vulnerabilities. Hence, we select the upstream

DNS servers with either different software implementations (ex. BIND and PowerDNS) or

the same software implementation with major version changes (ex. BIND 8.4.7 and BIND

9.6.0). One can also select upstream DNS servers running different operating systems (ex.

Windows or Linux).

To measure diversity of the existing DNS infrastructure, we used two open-source fin-

gerprinting tools: (1) fpdns, a DNS software fingerprinting tool [20], (2) nmap, an OS

fingerprinting tool [21]. fpdns is based on borderline DNS protocol behavior. It bene-

fits from the fact that some DNS implementations do not offer the full set of features of

DNS protocol. Furthermore, some implementations offer extra features outside the protocol

set, and even some implementations do not conform to standards. Given these differences

among implementations, fpdns sends series of borderline queries and compares the responses

against its database to identify the vendor, product and version of the DNS software on the

remote server. The nmap tool, on the other hand, contains a massive database of heuris-

tics for identifying different Operating Systems based on how they respond to a selection

of TCP/IP probes. It sends TCP packets to the hosts with different packet sequences or
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packet contents that produce known distinct behaviors associated with specific OS TCP/IP

implementations.

First, we collected a list of 3000 DNS servers from the DNS root traces [22] on December

2008 and we probed these DNS servers to check their availability from a client within

the UIUC campus network. Then, we eliminated the nonresponding servers. Second, we

identified the DNS software and OS version of each available server with fpdns and nmap

tools. This gives us a list of available DNS servers with corresponding DNS software and

OS versions. One can easily select diverse upstream DNS servers from this list. However,

careless selection comes with major cost: increased delay due to forwarding queries to

distant upstream DNS servers compared to closest local upstream DNS server. Hence, one

needs to select diverse upstream DNS servers that are close to the given host to minimize

the additional delay. Here, we propose a simple selection herustic: for a given host, we

first find top k diverse DNS servers which have the longest prefix matches with the host IP

address. This results in k available DNS servers topologically very close to the host. Then,

we use the King Delay Estimation methodology [23] to order these DNS servers according

to their computed distance from the host. For practical purposes, we have used k = 5 in

our experiments. Finally, to evaluate the additional delay, we first collected a list of 1000

hosts from [24]. Then, for each host in this list we measured the amount of extra time

needed to use multiple diverse upstream DNS servers. Figures 4.1 (DNS software diversity)

and 4.2 (OS diversity) plot the amount of total time to service the queries as additional

diverse upstream DNS servers accessed.

The results show that BIND is the most common DNS software among DNS servers we

analyzed (69.8% BIND v9.x, 10% BIND v8.x). We also found that OS distribution among

DNS servers is more balanced: 54% Linux and 46% Windows. Even though the software

diversity among public DNS servers should be improved, the results indicate that current

degree of diversity is sufficient for our reliability purposes. However, there is a delay cost in

using multiple upstream DNS servers since we have to wait for all answers of the upstream

DNS servers. This extra delay is shown in Figures 4.1 and 4.2. We found that with an

average of 26ms delay increase, we can use additional upstream DNS servers with diverse
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Figure 4.1: Achieving diversity may require sending requests to more distant (higher-latency) DNS
servers. Effect of DNS software diversity on latency inflation.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50  100  150  200  250

C
um

ul
at

iv
e 

F
ra

ct
io

n

Rtt [miliseconds]

1 Closest
2 Closest
3 Closest

Figure 4.2: Effect of OS software diversity on latency inflation.

DNS software to increase the reliability. Similarly, upstream DNS servers with diverse OS

software can be used with an average of 19ms extra delay. We can use OS diversity with a

smaller overhead since OS distribution among DNS servers is more balanced. We conclude

that DR-DNS extensions to use path diversity improves the reliability and protects the

end users from software bugs and failures of upstream DNS servers. Moreover, the average

delay cost is small and can be tolerated by the end users. Finally, our design increases the

traffic load on upstream DNS servers, and this component of DR-DNS may be disabled if

needed. However, we believe that the increasing severity of DNS vulnerabilities and software

errors, coupled with the reduced costs of multicore technologies making computational and

processing capabilities cheaper, will make this a worthwhile tradeoff.
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Chapter 5

Content Distribution Networks

Content distribution networks (CDNs) deliver content to end hosts from geographically

distributed servers in multiple steps. First, a content provider provide the content to a CDN.

Next, the CDN replicates the content in replicas, multiple geographically distributed servers.

Finally, an end host requesting the content is redirected to one of the replicas instead of

the original content provider. There are numerous advantages of CDNs: scalability, load

balancing, high performance, etc. Some CDNs use DNS redirection technique to redirect

the end hosts to the best available CDN server for content delivery. Therefore, the CDN

replica providing the content to the end host may change dynamically depending on a few

paramaters including the geographic location of the end host, network conditions, the time

of the day and the load on the CDN replicas [25, 26]. As a result, a specific end host may

receive different DNS answers to the same query in subsequent requests. Hence, one might

ask the question: How does the existence of CDNs affect DR-DNS?

DR-DNS applies majority voting to multiple DNS answers where each DNS answer

includes a set of ordered IP addresses. In the existence of CDNs, DNS answers include IP

addresses of CDN replicas which can deliver the content efficiently. Therefore, two DNS

answers to the same query may not have any common IP addresses. This results in no

winning IP set after the majority voting in DR-DNS. However, in this case DR-DNS can’t

make any final decision and simply returns all IP addresses to the end host. As a rule,

DR-DNS returns all IPs from the DNS answers if it fails to find the majority set. Note

that this approach still works correctly since any of the returned IP addresses will direct the

client to a valid CDN server, and DR-DNS ensures that one of those IP addresses is always

returned. However, DR-DNS heavily relies on the results of majority voting to improve

the reliability. To evaluate how CDNs affect the reliability of DR-DNS, we measured the
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variation in DNS answers from Akamai, a well known CDN.

Effect of geographic location:

CDNs use DNS redirection technique to redirect the end hosts to the best available

replicas. In DNS redirection, the end host’s query is handled by the DNS servers that belong

to the CDN, and the returned DNS answer includes the IP addresses of CDN replicas from

which the content can be delivered most efficiently. CDN replicas for content delivery is

chosen dynamically depending on the location of the end host. For instance, an end host at

UIUC network is more likely to be redirected to a replica in Chicago rather than a replica

in Seattle. Hence, in the existence of CDNs, DNS answers heavily depend on the location of

the upstream DNS server. Two geographically distant upstream DNS servers will likely to

return different IP sets in the DNS answers to the same query. However, DR-DNS relies on

the majority voting which elevates the common IPs in the returned DNS answers to improve

the reliability. To understand how often DR-DNS can’t do majority voting in the existence

of CDNs, we carried out the following experiment. First, we selected top 1000 domains

from [27] to use as queries since many content providers are in this list. Even though using

top domains as queries results in biased measurements, it helps us to get an upper bound

for the worst case. Next, for each query we randomly selected N = 3, 5, 7 upstream DNS

servers from (1) same state (Louisiana), (2) same country (USA) and (3) different countries.

For the third experiment, we selected the countries from distinct continents (USA, Brazil,

UK, Turkey, Japan, Australia, South Africa) to again evaluate the worst case. Table 5.1

shows the ratio of top domain queries that DR-DNS can’t find the majority set.

N = 3 N = 5 N = 7

State 0.3% 0.7% 0.8%

Country 1.0% 2.0% 1.7%

World 1.6% 2.4% 2.0%

Table 5.1: The ratio of top domain queries that majority voting fails. N is the number of
upstream DNS servers.

We found that CDNs affect the majority voting more if selected upstream DNS servers

are geographically distributed around the world. The results also show that CDN effects

can be minimized in DR-DNS by selecting upstream DNS servers from a smaller region.
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For instance, selecting upstream DNS servers from the same state guarantees that DR-

DNS improves the reliability of more than 99% of the queries. The main conclusion is that

one should choose upstream DNS servers close to end-host for better reliability. Moreover,

the herustic that we developed in the previous chapter for path diversity chooses diverse

upstream DNS servers close to the end host, so DR-DNS already minimizes CDN effects.

N = 3 N = 5 N = 7

USA - Top Domains 1.0% 2.0% 1.7%

USA - UIUC Trace 0.6% 0.9% 0.7%

Table 5.2: UIUC trace contains less queries to CDN clients. N is the number of upstream
DNS servers.

Next, to obtain more realistic results, we repeated the same experiment with 1000

queries randomly selected from the UIUC primary DNS server trace. Table 5.2 shows that

DR-DNS is less affected from CDNs in the UIUC trace.

Effect of number of upstream DNS servers: Next, we studied how the control

overhead and the resilience in DR-DNS changes as we increase the number of upstream DNS

servers. We found that control overhead increased linearly with the number of simultaneous

requests, as expected. To evaluate the resilience, we performed the following experiment:

we repeatedly send a random DNS query to multiple servers, and look at their answers.

In some cases, the IP addresses in DNS answers may differ due to CDNs. If the majority

voting fails, then DR-DNS doesn’t improve the reliability. We simply ignore these cases.

Majority voting finds a winning IP set if more than half of the upstream DNS servers

agree on at least one IP address. Let N be the number of upstream DNS servers DR-DNS

queries simultaneously. Then, the minimum number of upstream servers need to agree for

the majority result is Nmin = ⌈N
2
⌉. For a given query, let C be the maximum number of

upstream DNS servers that agrees on the winning IP set (majority voting succeeds). Since

there is a winning IP set, C >= Nmin. Now, we define the threshold T = C − Nmin to

measure how many extra upstream DNS servers agreed on the majority set. Note that if

T = 0, then majority result is agreed by Nmin number of upstream DNS servers. In this

case, if one server that contribute to the majority result becomes buggy, then majority

voting fails. However, if T = N − Nmin is at maximum value (all upstream DNS servers
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agree on the winning IP set), then to fail in majority voting, N −Nmin + 1 upstream DNS

servers need to become buggy simultaneously. Hence, to evaluate resilience, we measure

threshold T for every query. The reliability of the majority answer is directly proportional

to threshold value T . Figure 5.1 shows the increase in reliability as we increase the number

of upstream DNS servers.
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Figure 5.1: Number of failures that can be masked with N , number of upstream DNS servers.

Overall, we found that for most queries, DR-DNS enabled with our external replication

techniques could perform majority voting, hence increases the reliability. Moreover, DR-

DNS can’t do majority voting for only 0.3% of the top domain queries if three upstream

DNS servers are selected from the same state. While for these small number of queries it

does not mask the fault, it is important to note that it performs no worse than a normal

(uninstrumented) baseline DNS system. Finally, the reliability of the majority answer can

be increased by sending queries to more upstream DNS servers.
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Chapter 6

Reliability of DNS and Other

Servers in Internet

Our work so far has focused on improving the reliability of DNS. In this section, we study

other systems for several reasons: (a) to evaluate whether our DR-DNS techniques would

benefit these systems as well, (b) to understand what aspects of the nature of DNS failures

are unique to DNS, and which are part of other systems, and (c) to understand the hetero-

geneity of DNS and other software deployments in the wide-area. As a first step towards

these goals, we analyze the reliability of two other significant components of the internet:

HTTP and Mail servers. To evaluate this, we measure the diversity in these networked sys-

tems. To measure HTTP reliability, we evaluated the software diversity of top domain web

servers. Similarly, we measured the software diversity of top domain mail servers focusing

on different mail protocols: SMTP, POP3 and IMAP. The rest of the section is organized

as follows. The next section provides the details of HTTP server diversity experiments.

Similarly, Section 6.2 presents the diversity results of mail servers. Finally, we compare the

diversity in DNS, HTTP and Mail servers in Section 6.3.

6.1 HTTP Diversity

In order to measure software diversity among mostly used http servers, we focused on the

top domains. The procedure to measure the HTTP diversity contains multiple steps. First,

we collected 2345 top domains from [27]. Second, for all top domain names in our list, we

have queried DNS servers to obtain corresponding web server IP addresses. Some of the

top domains have more than one web server to serve many users simultaneously. We have

collected a total of 4034 web servers for the top 2345 domains. Next, for each domain name

we have used remote fingerprinting tool, nmap, to analyze the http software on all web
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servers belong to that domain. Among top 2345 domains, nmap classified 1865 domains

successfully. Finally, we have obtained geographical location of each web server to analyze

existing correlations among geographical locations and http software diversity.

Software Used in % domains

Apache 46.4

MS IIS 14.02

Nginx 6.27

Lighttpd 3.32

Google httpd 3.88

Table 6.1: Most common HTTP software in top domains

We found that the dominating HTTP software, Apache, is used in 46.4% of top domains.

In other words, almost half of the top domains are vulnerable to software errors in Apache

and any attacks exploiting these errors. One way to prevent outages in case of an attack

is the physical replication of servers. To evaluate physical redundancy of web servers in

top domains, we looked at the number of web servers used in each top domain. Figure 6.1

shows that more than 900 top domains don’t have physical redundancy.
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Figure 6.1: Number of web servers of top domains

In addition to physical redundancy, software diversity further improves the reliability of

web servers of a domain. To measure the software diversity of a given domain, we computed

HTTP diversity ratio in top domains as follows. For a given domain, let total be the number

of web servers of that domain. Also, let max be the maximum number of web servers of the

domain that use the same software. For instance, if a domain has 5 web servers with the

following distribution of software on servers: 3 Apache, 1 Microsoft IIS, and 1 Nginx, then
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total = 5 and max = 3. We set the diversity ratio ratio = total−max
total−1

. Note that ratio = 0

if all servers of a domain use the same software (total = max). In other words, there is no

diversity in that domain. Similarly, the ratio = 1 if all the servers of a domain use different

software (max = 1). This means that we have full diversity in that domain. Hence, the

diversity ratio increases in [0, 1] interval as the HTTP diversity of a domain increases. The

results shown in Figure 6.2 indicate that more than 94% of top domains have no diversity

and use the same HTTP software for all their web servers.
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Figure 6.3: Geographical distribution of dominating HTTP software in different countries:
Apache(Gray), Microsoft IIS(Dark gray) and Nginx(Light gray).

Next, it is well known that cyberwars have gained more attention by hackers and secu-

rity professionals. Furthermore, hackers focus on dominating software in target countries
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during cyberwars. To measure the dominating software in each country, we looked at the

geographical distribution of HTTP software in top domain web servers. Figure 6.3 shows

the most common HTTP software in different countries that host at least one web server

from top domains. For instance, most countries in Africa, shown in white, don’t host any

web servers belong to top domains. The map shows that in most of the well developed

countries such as USA, Canada, most of Europe, China and Japan, Apache is the dominat-

ing software. However, Microsoft IIS dominates around the Middle East (Greece, Turkey,

Iran, Israel, Egypt, Cyprus), in India, Vietnam and Australia. Note that most of these

developing countries are allies with the US (except Iran), and we think that strong political

and economical relations may have effects in the developing countries to choose one soft-

ware package over another. Finally, Nginx is more common in Russia, Belarus, Ukraine,

Indonesia and Portugal. Nginx is written by a Russian developer, and it has been widely

used in Russia and some countries around.

6.2 SMTP, POP3 and IMAP Diversity

In this section, we analyze the diversity of mail servers supporting different mail protocols

such as SMTP, POP3 and IMAP. First, to measure the software diversity in mail servers, we

collected top 1603 domains from [27]. Next, for each domain we obtained the IP addresses

of the corresponding mail servers with DNS MX queries. Finally, we used nmap remote

fingerprinting tool on the mail servers to obtain information about the running software as

well as supporting mail protocols. Nmap correctly classified 907 SMTP servers, 1140 POP3

servers, and 1164 IMAP servers. The results show that the dominating software in all mail

protocols is Postfix, used in 19.72% of top domains.

Figure 6.4 displays the distribution of the number of mail servers for individual top

domains. The physical redundancy is better in IMAP servers among mail protocols. More-

over, the physical redundancy is minimal on SMTP servers since most of the client side

mail applications use either IMAP or POP3 protocols.

Finally, we measured the software diversity in top domain mail servers. Figure 6.5 shows

that top domain SMTP servers have minimal software diversity. Although the results are
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Software Used in % domains

SMTP POP3 IMAP

Postfix 19.72 19.72 19.72

Sendmail 9.80 9.80 9.80

Exim 7.29 7.29 7.29

Qmail 5.02 6.43 6.43

Microsoft Exchange 3.12 3.12 3.30

GMail 0 11.45 12.80

Courier 0.06 8.39 10.66

Table 6.2: Most common mail software in top domains
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Figure 6.4: Number of mail servers of top domains

slightly better for POP3 and IMAP servers, the diversity definitely is not at the desired

level for mail servers.

6.3 Comparison of DNS, HTTP and Mail Servers

In this section we compare DNS, HTTP and Mail servers in terms of their vulnerabilities

to attacks. To evaluate this, we look at three important characteristics: (1) dominating

software usage, (2) physical redundancy of top domains, and (3) software diversity in top

domains. Table 6.3 summarizes our results. Dominating Software column shows the dom-
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Figure 6.5: Cumulative Distribution of SMTP, POP3 and IMAP diversity.

inating software and the usage among all servers. Physical Redundancy column shows the

ratio of top domains having at least two replicated servers. Similarly, Software Diversity

column shows the ratio of top domains which has at least two diverse servers.

Protocol Dominating Software Physical Redundancy Software Diversity

DNS BIND v9 (69.8%) N-A N-A

HTTP Apache (46.4%) 51% 5.4%

SMTP Postfix (19.72%) 64.8% 1.7%

POP3 Postfix (19.72%) 74.8% 21.7%

IMAP Postfix (19.72%) 78.2% 25.1%

Table 6.3: Comparison of protocols

First, DNS is extremely vulnerable to attacks targeted to dominating software. For

instance, an attacker exploiting a software error in BIND v9 can take out 69.8% of all avail-

able public servers resulting in a significant outage. However, DR-DNS running multiple

diverse software replicas can prevent these attacks to be successful. Similarly, web servers

are also vulnerable to these type of attacks. A successful attacker can damage 46.4% of

top domains by writing a successful exploit to Apache. Next, we evaluate the physical

redundancy in top domains for different protocols. Physical replication can prevent outages

in DoS attacks. It is well known that DNS servers are highly replicated, and resilient to in-

tense DoS attacks. However, physical redundancy of web servers is not at the desired level.

49% of top domains have only a single web server and subject to DoS attacks. Finally, we

measured the vulnerability of top domains to attacks causing outages which can only be

prevented by software diversity. The results indicate that SMTP and HTTP servers are
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more vulnerable to these attacks since only a small percentage (1.7% SMTP, 5.4% HTTP)

of top domains use diverse software in its replicated servers.

The results show that attacks targeting the dominating software can cause crucial out-

ages in DNS network. Even though DNS network is resilient to DoS attacks due to high

replication and redundancy, it is extremely vulnerable to attacks exploiting a software er-

ror in BIND which can result in outages. However, DR-DNS resolves this problem and

increases the reliability with multiple internal diverse replicas.

The software diversity results indicate that top domains usually have the same software

in replicated servers. The main reason is that top domains can avoid extra costs due

to installation, configuration and management of distinct software packages. However,

installation and configuration costs can be dramatically reduced by more advanced installers

and configuration translation software. Even though more research needs to be done in this

area, there has been already some work on translating router configuration files [28].

The idea of software replication is very general and can be applied to any protocol.

One can easily adapt DR-DNS to other protocols by simply rewriting the hypervisor. Even

though a similar design for HTTP and Mail protocols can slightly increase the management

costs, it dramatically increases the reliability, which is crucial for top domains.
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Chapter 7

Related Work

DNS suffers from a wide variety of problems. Reliability of DNS can be harmed through

a number of ways. Physical outages such as server failures or dropped lookup packets

may prevent request processing. The DNS also suffers from performance issues, which can

delay responses or increase loads on servers [3]. DNS servers may be misconfigured, which

may lead to cyclic dependencies between zones, or cause servers to respond incorrectly to

requests [9]. Also, implementation errors in DNS code can make servers prone to attack,

and can lead to faulty responses [5, 6].

Dealing with failures in DNS is certainly not a new problem. For example, DNS root

zones being comprised of hundreds of geographically distributed servers, and anycast ad-

dressing used to direct requests to servers, reducing proneness to physical failures. Re-

dundant lookups and cooperative caching can substantially reduce lookup latencies and

resilience to fail-stop failures [7, 8]. Troubleshooting tools that actively probe via moni-

toring points can detect large classes of misconfigurations [9]. Our work does not aim to

address fail-stop failures, and instead we leverage these previous techniques, which work

well for such problems.

However, these techniques do not aim to improve resilience to problems arising from

implementation errors in DNS code. A vulnerability in a single DNS root server affects

hundreds of thousands of unique hosts per hour of compromise [3,4], and a single DNS name

depends on 46 servers on average, whose compromise can lead to domain hijacks [5]. The

DNS has experienced several recent high-profile implementation errors and vulnerabilities.

As techniques dealing with fail-stop failures become more widely deployed, we expect that

implementation errors may make up a larger source of DNS outages. While there has been

work on securing DNS (e.g., DNSSEC), these techniques focus on authenticating the source
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of DNS information and checking its integrity, rather than masking incorrect lookup results

from hosts. In this work, we aim to address this problem at its root, by increasing the

software diversity of the DNS infrastructure.

Software diversity techniques have been used to prevent attacks on the large scale net-

works in multiple studies. It has been shown that reliability of single-machine servers to

software bugs or attacks can be increased with diverse replication [29]. In another work,

diverse replication is used to protect large scale distributed systems from internet catastro-

phes [30]. Similarly, to limit malicious nodes to compromise its neighbors in the internet,

software diversity is used to assign nodes diverse software packages [31]. In another work, to

increase the defense capabilities of a network, the authors suggest increasing the diversity of

nodes to make the network more heterogenous [32]. To the best of our knowledge, our work

is the first to directly address the root cause of implementation errors in DNS software, via

the use of diverse replication. However, our work is only an early first step in this direction,

and we are currently investigating a wider array of practical issues as part of future work.
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Chapter 8

Conclusions

Today’s DNS infrastructure is subject to implementation errors, leading to vulnerabilities

and buggy behavior. In this work, we take an early step towards addressing these problems

with diverse replication. Our results show that available DNS software packages have differ-

ent code bases resulting in minimal number of common bugs. However, DNS software with

minor version changes share most of the code base resulting in less diversity. We have also

found that the number of bugs is not reduced in later versions of the same software since

usually new functionality is added to software introducing new bugs. Our system masks

buggy behavior with diverse replica. DR-DNS reduces the fault-rate by an order of a mag-

nitude. Moreover, increasing the number of replicas further decreases the fault rate. The

preliminary results indicate that DR-DNS runs quickly enough to keep up with the loads of

a large university’s DNS servers. Redundancy also exists in current DNS server hierarchy

(replicated DNS servers, public DNS servers, etc.). We can use this redundancy to select

diverse upstream DNS servers to protect the end-host from possible errors existing in the

upstream servers. Selecting a different upstream DNS server may increase response time.

However, our results show that selecting diverse upstream DNS servers slightly increase

the response time while improving the reliability significantly. CDNs and Load Balancing

usually result in DNS queries to be resolved to different sets of IP addresses. Even though,

one expects these to cause problems for DR-DNS, our results indicate that DR-DNS is not

affected by the existence of CDNs and Load Balancing. Finally, we have studied the diver-

sity in different protocols. The software diversity results for DNS, HTTP and mail servers

(SMTP, POP3 and IMAP) indicate that top domains usually have the same software in

replicated servers. For each protocol, there is usually one dominating common software

(DNS-Bind, HTTP-Apache, SMTP-Postfix, etc.), which are usually more stable, well doc-
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umented, maintained and supported. However, bugs in these common well known software

packages affect lots of servers and can cause significant outages. Furthermore, hackers may

target these applications to get into lots of servers at once. The idea of software replication

is very general and can be applied to any protocol to increases the reliability, which is

crucial for top domains.

While our results are promising, much more work remains to be done. First, we plan

to design a server-side voting strategy, to protect the DNS root from bogus queries [3],

and to reduce lookup traffic. Also, we plan to investigate whether porting our Java-based

implementation to C++ will speed request processing further. We are also currently in the

process of deploying our system for use within the campus network of a large university,

to investigate practical issues in a live operational network. Finally, we plan to extend our

study to include many other protocols to investigate how diversity changes among protocols.

This helps us to generalize our method for other protocols.
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