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Abstract 

Because children are becoming increasingly overweight, unhealthy and unfit, understanding the 

neurocognitive benefits of an active lifestyle in childhood has important public health and 

educational implications.  Animal research has indicated that aerobic exercise is related to 

increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-

dependent learning and memory.  Recent evidence extends this relationship to elderly humans by 

suggesting that high aerobic fitness levels in older adults are associated with increased 

hippocampal volume and superior memory performance.  The present study aimed to further 

extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent 

children.  To this end, magnetic resonance imaging was employed to investigate whether high- 

and low-fit 9- and 10-year-old children showed differences in hippocampal volume and if the 

differences were related to performance on an item and relational memory task.  Relational but 

not item memory is primarily supported by the hippocampus.  Consistent with predictions, high-

fit children showed greater bilateral hippocampal volumes.  Furthermore, hippocampal volume 

was positively associated with performance on the relational but not the item memory task.  The 

findings are the first to suggest that aerobic fitness can impact the structure and function of the 

developing human brain. 
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Introduction 

 Children in today’s industrial and technological society are becoming increasingly sedentary 

and unfit, leading to an increase in the incidence of obesity and illness (Olshansky et al. 2005; 

Baker et al. 2007; Ludwig 2007).  A sedentary lifestyle also influences neurocognitive function 

and academic performance.  For example, children with low physical activity levels show poorer 

academic achievement scores, diminished neuroelectric activity, and inferior cognitive 

performance compared to physically fit children (Sibley and Etnier 2003; Hillman et al. 2005, 

2009; Castelli et al. 2007; Buck et al. 2008; Chomitz et al. 2009).  This evidence is consonant 

with a growing research initiative in older adults which indicates that increased aerobic fitness can 

be neuroprotective and can enhance brain structure and function (Kramer et al. 1999; Colcombe 

and Kramer 2003; Colcombe et al. 2004, 2006; Heyn et al. 2004; Etnier et al. 2006; Pereira et al. 

2007; Erickson et al. 2009).  In one recent study, aerobically fit older adults had larger 

hippocampal volumes than less fit older adults, and this was associated with superior spatial 

memory performance (Erickson et al. 2009).  The present study applies these findings to a youth 

population by exploring the association between aerobic fitness, hippocampal volume and 

memory function in preadolescent 9- and 10-year-old children.  

 Rodent and human studies provide a number of reasons to explore the link between aerobic 

fitness levels and hippocampal structure and function.  To begin, rodent models have 

unequivocally demonstrated that voluntary aerobic exercise positively affects the hippocampus.  

Specifically, wheel-running (1) increases cell proliferation and survival in the dentate gyrus of the 

hippocampus in young adulthood through old age (van Praag et al. 1999, 2005; Eadie et al. 2005), 

(2) enhances hippocampal-dependent learning and memory processes (Fordyce and Wehner 
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1993; Vaynman et al. 2004; van Praag et al. 2005), and (3) increases hippocampal levels of brain-

derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and vascular endothelial-

derived growth factor (VEGF), molecules involved in neuronal survival, synaptic development, 

learning, and angiogenesis (Barde 1994; Neeper et al. 1995; Lu and Chow 1999; Cotman and 

Berchtold 2002; Lopez-Lopez et al. 2004; Vaynman et al. 2004; Berchtold et al. 2005).  Although 

the histological, cellular, and chemical basis for exercise-induced changes in the human brain is 

unknown, the broad hippocampal effects observed with exercise training in rodent populations 

suggest that greater aerobic fitness level may be associated with increased hippocampal volume 

during development. 

 Furthermore, exercise has been shown to impact memory function across the human lifespan 

(Pereira et al. 2007; Hillman et al. 2008; Erickson et al. 2009).  During development, high levels of 

aerobic fitness have been associated with superior response accuracy on a relational memory 

behavioral task in 9- and 10-year-old children, a finding which suggests that physically fit 

children exhibit stronger executive control abilities and flexible use of memory via prefrontal-

hippocampal interactions (Hillman et al. 2008).  No preadolescent fitness effects were found for 

items studied non-relationally.  This conclusion highlights the role of the hippocampus in the 

formation of new relational memories and in the “relational binding” process involved in 

successful retrieval while memory for single objects or items (i.e., item memory which requires 

little relational binding) is said to depend on the perirhinal cortex of the middle temporal lobe, 

prefrontal regions or parahippocampal circuits (Cohen and Eichenbaum 1993; Henke et al. 1997; 

Maguire et al. 1997; Cohen et al. 1999; Rombouts et al. 1999; Eichenbaum and Cohen 2001; 

Brassen et al. 2006).  The current study extends Hillman et al.’s (2008) behavioral results by 
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using a task more suitable for studying hippocampal function and by employing magnetic 

resonance imaging (MRI) techniques to examine the relationship between aerobic fitness, memory 

performance and hippocampal volume. 

 Most imaging investigations of the developing brain focus on the structural development of 

the cortex rather than subcortical regions (Giedd et al. 1999; Gogtay et al. 2004).  However, 

medial temporal lobe gray matter structures, including the hippocampus, are said to increase in 

volume during childhood and adolescence (Durston et al. 2001; Toga et al. 2006).  In terms of 

memory performance, most developmental neuroscientists have explored how changes in 

dorsolateral prefrontal cortex and parietal regions map onto working memory abilities (Bunge and 

Wright 2007) rather than the link between the developing hippocampus and memory abilities.  

The present investigation extends previous neurocognitive investigations by specifically 

exploring the development of hippocampal structure and function. 

 Given (1) the positive impact of physical activity and aerobic fitness on cognition in children, 

(2) the link between aerobic exercise, memory, and the hippocampus in rodent and human 

populations, and (3) the maturational trajectory of hippocampal development, the present study 

hypothesizes that children with high aerobic fitness levels will show larger bilateral hippocampal 

volumes and superior relational memory performance compared to low-fit children.  
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Method 

Participants 

Preadolescent 9- and 10-year-old children were recruited from East-Central Illinois.  Children 

were screened for several factors that influence physical activity participation or cognitive 

function.  To begin, the Kaufman Brief Intelligence Test (K-BIT; Kaufman and Kaufman 1990) 

was administered to each child to obtain a composite intelligence quotient (IQ) score including 

both crystallized and fluid intelligence measures.  Subjects were excluded if their scores were 

more than 1 standard deviation below the mean (85%).  Next, a guardian of the child completed 

the ADHD Rating Scale IV (DuPaul et al. 1998) to screen for the presence of attentional 

disorders.  Participants were excluded if they scored above the 85th percentile.  Pubertal timing 

was also assessed using a modified Tanner Staging System (Tanner 1962; Taylor et al. 2001) with 

all included prepubescent participants at or below a score of 2 on a 5-point scale of 

developmental stages.  In addition, socioeconomic status was determined by creating a 

trichotomous index based on three variables: participation in a free or reduced-price lunch 

program at school, the highest level of education obtained by the mother and father, and the 

number of parents who worked full-time (Birnbaum et al. 2002). 

Furthermore, eligible participants were required to (1) qualify as high-fit or low-fit (see 

Aerobic Fitness Assessment section), (2) demonstrate right handedness (as measured by the 

Edinburgh Handedness Questionnaire) (Oldfield 1971), (3) report no adverse health conditions, 

physical incapacities or neurological disorders, (4) report no use of medications that influenced 

central nervous system function, (5) have a corrected visual acuity of 20/20 and no color-

blindness, (6) successfully perform a “mock MRI” session to test for body size compatibility 
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with an MRI machine and to screen for claustrophobia, and (7) sign an informed assent approved 

by the University of Illinois at Urbana-Champaign.  A legal guardian also provided written 

informed consent in accordance with the Institutional Review Board of the University of Illinois 

at Urbana-Champaign.  Subjects were compensated for participation. 

Fifty-nine subjects were initially eligible for the present study (after exclusions due to K-BIT 

scores, ADHD, pubertal timing, VO2 max criteria, etc).  Additional subjects were excluded due to 

poor scan quality because of excessive motion (n=4), hippocampal volume outliers (n=1), and 

less than chance memory performance (less than 30% accuracy on either the item or relational 

memory task) (n=5).  Analyses were conducted on a total of 49 subjects, including 21 high-fit 

children (10 boys, 11 girls) with an average age of 10.0 years (SD=0.6; range 9-10) and 28 low-fit 

children (10 boys, 18 girls) with an average age of 10.0 years (SD=0.6; range 9-10).  No 

statistically reliable differences in age, gender, socioeconomic status, or Kaufman Brief 

Intelligence Test (KBIT) scores existed between the fitness groups.  Table 1 provides a list of 

demographic and fitness information for the final sample. 

Aerobic Fitness Assessment 

 The aerobic fitness level of each child was determined by measuring maximal oxygen 

consumption (VO2 max) using a computerized indirect calorimetry system (ParvoMedics True 

Max 2400) during a modified Balke protocol (American College of Sports Medicine 2006).  

Specifically, participants ran on a motor-driven treadmill at a constant speed with increases in 

grade increments of 2.5% every two minutes until volitional exhaustion.  Averages for oxygen 

uptake (VO2) and respiratory exchange ratio (RER) (the ratio between carbon dioxide and oxygen 

percentage) were assessed every 30 seconds.  In addition, heart rate was measured throughout the 
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fitness test (using a Polar heart rate monitor [Polar WearLink®+ 31, Polar Electro, Finland]), and 

ratings of perceived exertion (RPE) were assessed every two minutes using the children's OMNI 

scale (Utter et al. 2002). 

 VO2 max was defined when oxygen consumption remained at a steady state despite an 

increase in workload.  Relative peak oxygen consumption was based upon maximal effort as 

evidenced by (1) a peak heart rate greater than 185 beats per minute (American College of Sports 

Medicine 2006) accompanied by a heart rate plateau (i.e., an increase in work rate with no 

concomitant increase in heart rate) (Freedson and Goodman 1993), (2) RER greater than 1.0 (Bar-

Or 1983), and/or (3) ratings on the children's OMNI scale of perceived exertion greater than 8 

(Utter et al. 2002).  Relative peak oxygen consumption was expressed in mL/kg/min.   

 Fitness group assignments (i.e., high-fit and low-fit) were based on whether a child’s VO2 max 

value fell above the 70th percentile or below the 30th percentile according to normative data 

provided by Shvartz and Reibold (1990).  Children who did not qualify as high-fit or low-fit were 

excluded from participation.  

MR Imaging Protocol and Image Processing  

 For all participants, high resolution (1.3 mm x 1.3 mm x 1.3 mm) T1-weighted structural brain 

images were acquired using a 3D MPRAGE (Magnetization Prepared Rapid Gradient Echo 

Imaging) protocol with 144 contiguous axial slices, collected in ascending fashion parallel to the 

anterior and posterior commissures (echo time (TE)=3.87 ms, repetition time (TR)=1800 ms, 

field of view (FOV)=256 mm, acquisition matrix 192 mm x 192 mm, slice thickness=1.3 mm, and 

flip angle=8º).  All images were collected on a 3T head-only Siemens Allegra MRI scanner.  
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 Segmentation and volumetric analysis of the left and right hippocampus was performed using 

a semi-automated, model-based subcortical tool (FMRIB’s Integrated Registration and 

Segmentation Tool) in FMRIB’s Software Library (FSL) version 4.1.4 (Patenaude 2007; 

Patenaude et al. 2007a; Patenaude et al. 2007b).  To begin, a two-stage affine registration to a 

standard space template (MNI space) with 1 mm resolution using 12-degrees of freedom and a 

subcortical mask to exclude voxels outside the subcortical regions was performed on each 

subject’s MPRAGE. 

 Next, the left and right hippocampus was segmented with 30 modes of variation.  To achieve 

accurate segmentation, the FIRST methodology models 317 manually segmented and labeled T1-

brain images from normal children, adults, and pathological populations (obtained from the 

Center for Morphometric Analysis, Massachusetts General Hospital, Boston) as a point 

distribution model with the geometry and variation of the shape of each structure submitted as 

priors.  Volumetric labels are parameterized by a 3D deformation of a surface model based on 

multivariate Gaussian assumptions.  FIRST searches through linear combinations of shape modes 

of variation for the most probable shape (i.e., brain structure) given the intensity distribution in 

the T1-weighted image, and specific brain regions are extracted (see Patenaude et al. 2007a,b for 

further description of the method).  Modes of variation are optimized based on leave-one-out 

cross-validation on the training set, and they increase the robustness and reliability of the results 

(Patenaude et al. 2007b).  

 The hippocampus included the dentate gyrus, the ammonic subfields (CA1–4), the 

prosubiculum, and the subiculum and did not include the fimbria / fornix behind the posterior 

commissure.  Hippocampal segmentations were visually checked for errors, and no errors were 
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noted.  Finally, boundary correction was run, a process which classifies boundary voxels as 

belonging to the structure (or not) based on a statistical probability (z-score >3.00; p < 0.001).  

The volume of each participant’s left and right hippocampus was measured in mm3, and these 

values were used in all subsequent analyses.  See Figure 1 for a sample FIRST segmentation of 

the left and right hippocampus.  

Item and Relational Memory Paradigm 

 The paradigm examined memory in successive encoding-then-recognition phases.  Each block 

included an encoding phase followed by a recognition phase.  Six blocks were included in the 

paradigm in the following order for all participants: "item (encoding and recognition)," “relational 

(encoding and recognition)," "relational," "item," "item," "relational."  The stimuli were novel 

visual objects (created using Bryce software; used in Konkel et al. 2008) to ensure that 

participants had no prior exposure to the images or previous representations of the stimuli.  See 

Figure 2 for an illustration of the stimuli and task.    

 During encoding, each participant was presented with a series of trials consisting of 

“scrambled stimuli” (to serve as a baseline) or “encoding stimuli” (to be recognized later).  The 

scrambled stimuli in each block were created using the same pixels as the encoding stimuli 

displayed during the block.  Stimuli were presented sequentially during “item encoding” (i.e., no 

fixation cross between stimuli) and in triplets (separated into groups of 3 via a 1000 milliseconds 

[ms] fixation cross) during “relational encoding.”  Specifically, participants viewed 18 scrambled 

stimuli followed by 18 encoding stimuli.  Each image was presented for 2000 ms, and the 

scrambled sequence and encoding sequence were separated by a 2000 ms fixation cross.  The 

identical sequence of scrambled and encoding item images was presented twice.   
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 "Relational encoding" blocks were distinguished from "item encoding" blocks in two ways.  

Firstly, in terms of subject instructions, for item blocks, subjects were instructed to "remember 

as many shapes as possible,” while for relational blocks, participants were instructed to 

"remember which shapes were in each group of 3."  Secondly, in terms of stimulus presentation, 

item stimuli were presented sequentially and individually, without intermixed fixation crosses, 

whereas an additional 1000 ms fixation cross separated the relational scrambled and encoding 

stimuli into triplets (i.e., 3 stimuli were presented individually and sequentially, then a fixation 

cross appeared for 1000 ms, followed by 3 new stimuli presented individually and sequentially).   

 During recognition, memory was probed for either individual test items ("item recognition") 

or associative relations of stimuli within a triplet ("relational recognition").  For both item and 

relational recognition, 3 test items were displayed simultaneously during the probe period, and 

participants were given 4 seconds to respond.  Each trial was separated by a fixation cross 

presented for 1 second.  Six recognition trials (i.e., 6 groups of 3) were presented.   

 Specifically, during “item recognition,” participants read the following instructions: "You will 

see 3 shapes appear at the same time.  If all 3 shapes were seen in the previous block of shapes, 

press your right index finger.  If any of the 3 shapes was not seen in the previous block, press 

your left index finger."  Right index finger responses (i.e., all 3 shapes were seen during item 

encoding) contained 3 studied stimuli (i.e., stimuli that had occurred in the 18 stimuli presented 

during encoding) while left index finger responses (i.e., all 3 shapes were not seen during item 

encoding) contained two never-studied stimuli and one studied stimulus.   

 During “relational recognition,” participants read the following instructions: "You will see 3 

shapes appear at the same time.  If all 3 shapes are from the same group, press your right index 
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finger.  If any of the shapes do not belong in the group, press your left index finger."  Right index 

finger responses (i.e., the 3 shapes were in the same triplet) contained 3 stimuli that had occurred 

as a triplet (i.e., enclosed with 2 fixation crosses) during encoding while left index finger 

responses (i.e., if any of the 3 shapes were not seen together as a triplet) contained stimuli that 

had occurred in the 18 stimuli presented during encoding but were not presented as a sequential 

triplet.  Each recognition condition was designed to probe one type of memory or form of 

representation (i.e., item memory or relational memory), unconfounded by the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

Results 

Participant Demographics 

 Participant demographic and fitness data are provided in Table 1.  Demographic variables 

(i.e., age, IQ, SES, ADHD) did not differ between fitness groups.  Furthermore, fitness 

comparisons using independent t-tests indicated that high-fit participants (M=51.51 mL/kg/min, 

SD=4.31 mL/kg/min) had higher VO2 max scores than low-fit children (M=36.40 mL/kg/min, 

SD=4.03 mL/kg/min) (t (47) = 12.61, p < 0.001) which confirmed the aerobic fitness groupings.  

Aerobic Fitness and Hippocampal Volume 

 The results support the hypothesis that aerobic fitness influences hippocampal volume.  The 

hypothesis was examined by conducting two univariate ANCOVAs to compare left and right 

hippocampal volumes as a function of fitness group, with total intracranial gray matter volume 

(mm3) as a covariate to control for variation in head size.  High-fit children (M=3821.04 mm3, 

SD=554.07 mm3) showed greater left hippocampal volume compared to low-fit children 

(M=3388.91 mm3, SD=765.43 mm3) (F (1, 46) = 4.97, p=0.031).  Similarly, high-fit children 

(M=3951.56 mm3, SD=536.92 mm3) showed greater right hippocampal volume compared to low-

fit children (M=3465.18 mm3, SD=850.34 mm3) (F (1, 46) = 5.62, p=0.022) (See Figure 3). 

Hippocampal Volume and Memory Performance 

 The results support the predicted dissociation between item and relational memory 

performance with regard to hippocampal volume.  Left hippocampal volume was positively 

correlated with accuracy (percent correct) on the relational memory task (r= 0.432, p=0.003).  

Right hippocampal volume showed a similar trend (r= 0.244, p=0.1).  However, there were no 

significant correlations between hippocampal volume and item memory accuracy (left 
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hippocampus, r= -0.036, p=0.811; right hippocampus, r= -0.014, p=0.927).  There were also no 

significant correlations between hippocampal volume and response speed for either the item or 

relational memory condition (all r < -0.195, p>0.2). 

Aerobic Fitness and Memory Performance 

 The results of an independent t-test revealed a trend such that high-fit children showed 

superior accuracy (M=61.1%; SD=0.14) on the relational memory task compared to low-fit 

children (M=54.0%; SD=0.12) (t (44) = 1.86, p=0.06).  There were no fitness-based differences in 

accuracy on the item memory task (t (44) = 0.40, p=0.69), and there were no fitness-based 

differences in response speed for either the relational memory (t (44) = 0.47, p=0.64) or item 

memory (t (44) = 0.37, p=0.71) task. 
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Discussion 

 Prior research has demonstrated that elderly adults with higher aerobic fitness levels have 

larger hippocampal volumes compared to older adults with lower fitness levels (Erickson et al. 

2009).  The results from the present study demonstrate that children with high aerobic fitness 

levels also have larger hippocampal volumes compared to low-fit children.  Furthermore, left 

hippocampal volume was positively correlated with accuracy rates on the relational memory 

task, and right hippocampal volume showed a similar trend.  No association between 

hippocampal volume and item memory performance was observed, a finding consistent with the 

hypothesized specificity of the hippocampal-memory relationship (Cohen and Eichenbaum 

1993; Eichenbaum and Cohen 2001).  Finally, a trend indicated that high-fit children showed 

superior accuracy on the relational memory paradigm, and no fitness differences were reported 

for the item memory task.  Together, the structural imaging and behavioral results suggest that 

high-fit and low-fit children may exhibit differential hippocampal maturational trajectories which 

may impact relational memory function.  The results are important because they provide a 

starting point for a greater understanding of the neural underpinnings of cognitive enhancement 

through physical activity in preadolescent children as well as a potential neural correlate of the 

fitness-memory performance link in children (Hillman et al. 2008). 

 The results are consistent with animal models that indicate aerobic activity positively 

impacts hippocampal structure and function (e.g., Cotman and Berchtold 2002).  Given that 

many of the neurochemical processes involved in hippocampal changes with exercise in rodents 

are also involved in human brain development and organization, it seems possible that aerobic 

fitness may impact the developing brain.  For example, changes in gray and white matter during 
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brain development are said to reflect the interplay among changes in cell proliferation / apoptosis, 

dendritic branching / pruning, synaptic formation / elimination, growth factors (e.g., BDNF, IGF) 

and myelination (Giedd et al. 1996; Giedd et al. 1999; Anderson 2003; Gogtay et al. 2004).  

These cellular underpinnings parallel exercise-induced neural effects including changes in cell 

number, dendritic complexity, synaptic plasticity, and growth factors (e.g., Cotman and 

Berchtold 2002).  The current study provides initial evidence for the impact of exercise on the 

developing brain by revealing that greater aerobic fitness level in preadolescents is related to 

greater hippocampal volume.  Importantly, the results also partially suggest that the 

hippocampal volume differences are associated with cognitive ability, and in particular relational 

memory.  

Future Directions and Conclusions 

 The results provide a foundation for future developmental research by suggesting that 

physical activity influences the development of the brain and cognition.  While the present cross-

sectional study provides a first step in understanding the relationship between fitness and 

developing neurocognition, a cross-sectional design raises the possibility that the observed 

behavioral and structural fitness-related differences were caused by another factor (e.g., 

motivation, genes, personality characteristics, nutrition).  Thus, randomized clinical trials are 

necessary to account for potential selection bias and to establish a direct relationship between 

aerobic fitness and hippocampal structure and function in children.  Future research should 

explore how a physical activity intervention relates to hippocampal structure and memory 

performance over time to gain a deeper understanding of cognitive development, neural 

organization and techniques which impact developing neurocognitive function.  
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 The current study focused on a 9- and 10-year-old preadolescent population, given that this 

age range is undergoing a critical phase of brain growth when brain circuitry is being fine-tuned to 

support the operations of the adult brain (Caviness et al. 1996).  Future explorations should 

examine the effects of fitness at different ages across development as well as track changes in 

cognition and brain patterns in the same individuals across time.  Given the evidence that 

physical activity is positively associated with preadolescent neurocognition, it is possible that 

high levels of fitness may affect adolescent brain development as well as the number of 

suboptimal, impulsive behaviors associated with this developmental stage (e.g., violence, drug 

abuse, unprotected sexual activity) (Casey et al. 2008).  Furthermore, given that the present 

study recruited healthy children without learning disabilities or ADHD, it is important to 

examine the impact of fitness on children with cognitive and social disorders.  

 Finally, while the investigation by Hillman et al. (2008) reported that high-fit children 

demonstrate significant performance benefits on a relational memory challenge compared to low-

fit children, the current study indicates a marginally significant trend for the fitness-relational 

memory relationship.  It is possible that task difficulty influenced the present results given the 

relatively low task accuracy rates for all preadolescent participants.  Across all subjects, average 

item memory accuracy was 75% (SD=0.18) while average relational memory accuracy was 57% 

(SD=0.13).  Future investigators should employ a task with graded levels of performance to gain 

a stronger understanding of the link between aerobic fitness and memory abilities.  

 In conclusion, the present investigation is the first to employ MRI methodology to examine 

the link between aerobic fitness, brain structure, and cognition in preadolescent children.  For the 

first time, a study has shown that aerobic fitness may influence the structural and functional 
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maturational patterns of developing children.  The results extend previous research which has 

mainly focused on how fitness impacts the brain and cognition in elderly adults.  Not only does 

fitness protect against age-related brain tissue loss (Colcombe et al. 2006), it also seems to affect 

brain development and cognitive abilities.  According to Tomporowski, exercise may have a more 

long-lasting effect on brains that are still developing (Davis et al. 2007).  To strengthen this claim, 

the effect size of Sibley and Etnier’s (2003) children-fitness-cognition meta-analysis (ES=0.32) 

was slightly larger than the effect size of a meta-analysis of the effects of physical activity on 

cognition across the lifespan (6-90 years) (ES=0.25) (Etnier et al. 1997), a finding which suggests 

that physical activity may be especially beneficial for children.  Thus, although physical activity 

seems to be beneficial at all stages of life, early intervention might be important for the 

improvement and/or maintenance of cognitive health and function throughout the adult lifespan 

(Sibley and Etnier 2003).  Moreover, it is plausible that developing a love of sport and exercise as 

a child will encourage an active lifestyle during adulthood and old age. 

 The findings carry significant educational and public health implications.  Educators are under 

increased pressure to improve the standardized test scores of their pupils.  This pressure, 

coupled with the popular belief that physical education is of less educational value than academic 

work, has led to the elimination of physical education classes and recess in favor of “core 

academic subjects.”  However, as children are becoming increasingly sedentary, overweight, and 

unfit, recent estimates have indicated that younger generations may live less healthy and shorter 

lives than their parents (Olshansky et al. 2005).  Furthermore, inactivity during childhood can 

increase the prevalence of obesity as well as a number of diseases and disorders throughout the 

lifespan (e.g., depression, anxiety, cardiovascular disease, colon cancer, type-2 diabetes) 
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(Olshansky et al. 2005; Baker et al. 2007; Ludwig 2007).   

 The present results suggest that physical fitness programs should be integrated into 

educational curriculums not only for obesity and public health purposes, but because exercise 

seems to benefit brain structure and function.  It is possible that physical activity during 

childhood encourages optimal cortical development and results in long-term changes in brain 

structure and function.  Hopefully, the present findings will encourage modifications of 

educational and health care policies which emphasize the importance of physical activity on 

physical and cognitive health. 
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Table 

Table 1 

Participant mean demographic and fitness data (SD) by fitness group.  

Variable Low-Fit High-Fit 

n 28 (10 male) 21 (10 male) 

Age (years) 10.0 (0.6) 10.0 (0.6) 

VO2 max (mL/kg/min) 36.4 (4.0) * 51.5 (4.3) * 

K-BITa Composite Score (IQ) 115.0 (15.1) 114.4 (6.9) 

K-BITa Crystallized Score (Vocabulary) 111.0 (11.9) 108.5 (6.0) 

K-BITa Fluid Score (Matrices) 115.8 (17.8) 117.4 (8.9) 

SESb (median) 2.8 (0.6) 2.6 (0.7) 

ADHDc 5.9 (3.9) 6.7 (4.2) 

aKaufman Brief Intelligence Test (Kaufman & Kaufman 1990). 

bSocioeconomic Status.  SES was determined by the creation of a trichotomous index based on 

three variables: child participation in a free or reduced-price lunch program at school, the highest 

level of education obtained by the child’s mother and father, and the number of parents who 

worked full-time (Birnbaum et al. 2002). 

cScores on the ADHD Rating Scale V (DuPaul et al. 1998).   

*Significantly different at p < 0.001. 
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Figures 

Figure 1.  FIRST segmentation of the left (red) and right (blue) hippocampus on a structural brain 

reconstruction. 
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Figure 2.  Sample scrambled stimuli are presented on the left, and sample encoding stimuli are 

presented on the right.  A fixation cross only separated scrambled and encoding triplets during 

relational memory encoding trials.  Each image was presented individually and sequentially during 

encoding trials, and three images were presented simultaneously during item and relational 

recognition trials (see example at bottom of figure). 
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Figure 3.  Left and right hippocampal volume as a function of fitness group.  Error bars represent 

standard error. 
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