
c© 2009 Mathieu Leconte

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4823614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE THROUGHPUT EFFICIENCY OF GREEDY MAXIMAL
SCHEDULING IN WIRELESS AD HOC NETWORKS

BY

MATHIEU LECONTE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Adviser:

Professor Rayadurgam Srikant

ABSTRACT

Due to its low complexity, Greedy Maximal Scheduling (GMS), also known

as Longest Queue First (LQF), has been studied extensively for wireless net-

works. However, GMS can result in degraded throughput performance in

general wireless networks. In this thesis, we derive performance bounds of

GMS for wireless networks under the general k-hop interference model. In

particular, we prove that GMS achieves 100% throughput in all networks

with eight nodes or less, under the two-hop interference model. Further, the

obtained performance bounds improve upon previous results for larger net-

works up to a certain size. We also provide a simple proof to show that GMS

can be implemented using only local neighborhood information in networks

of any size.

ii

To family and friends

iii

ACKNOWLEDGMENTS

I want to thank my adviser, R. Srikant, whose patience I am testing on a

regular basis. Many thanks also go to my friends here at the University of Illi-

nois, and especially Christophe and Nicolas, with whom sharing experiences

has always been a great source of enjoyment.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

LIST OF SYMBOLS . ix

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 4

CHAPTER 3 NETWORK MODEL 6

CHAPTER 4 PRELIMINARIES . 10

CHAPTER 5 THROUGHPUT OPTIMALITY OF GMS IN SMALL
NETWORKS . 13
5.1 Main Result and Outline of the Proof 13
5.2 Properties of the Unstable Subsets of Links 16
5.3 Throughput Optimality for Node-Exclusive Models 20

CHAPTER 6 PERFORMANCE OF GMS UNDER K-HOP IN-
TERFERENCE MODEL . 21
6.1 Efficiency in Cycles . 21
6.2 Performance Bounds of GMS in Larger Networks under

2-Hop Interference . 23
6.3 Performance Bounds for k-Hop Interference Model 25

CHAPTER 7 DECENTRALIZATION OF GMS 28
7.1 On the Equivalence of LGMS and GMS 32

CHAPTER 8 CONCLUSION . 38

APPENDIX A PROOF OF LEMMA 2 39

REFERENCES . 45

v

LIST OF TABLES

6.1 Efficiency of GMS in Small Networks (2-Hop Interference
Model) . 26

vi

LIST OF FIGURES

5.1 Two examples of networks of 9 nodes with σ∗ < 1. 15

A.1 Tree of cliques - the 3 possible cases. 42

vii

LIST OF ABBREVIATIONS

ACK Acknowledgment

CTS Clear to send

FH-CDMA Frequency Hopping - Code Division Multiple Access

GMS Greedy Maximal Scheduling

LGMS Local Greedy Maximal Scheduling

LGS Local Greedy Scheduling

LQF Longest Queue First

MAC Media Access Control

MWS Maximum Weight Scheduling

NP Non-polynomial

OLoP Overall local pooling

RTS Request to send

SLoP Subset local pooling

viii

LIST OF SYMBOLS

k Minimum number of hops that separate two non-interfering links

n Number of nodes of the network

G Network graph

V Set of the vertices (or nodes) of G

E Set of the edges (or links) of G

U An unstable subgraph of G

I(l) Set of links interfering with link l

GI Interference graph associated with the network graph G

VI Set of vertices of GI

EI Set of edges of GI

ML Set of the rate vectors of all maximal schedules of L

Co(ML) Convex hull of the set ML

Λ Capacity region of a network

w(x) Weight of a x, where x can be a single link or a schedule

γ∗ Efficiency ratio of a scheduling policy

σ∗ Local pooling factor of a graph

Tl Backoff time

GMS(L) Schedule produced by GMS when applied to the set of links L

GMS(L) Schedule produced by LGMS when applied to the set of links L

π Tie-breaking mechanism

d(x, y) Distance between x and y

ix

CHAPTER 1

INTRODUCTION

In wireless communication networks with limited resources, efficient resource

allocation plays an important role in achieving high performance and pro-

viding good quality of service. In this thesis, we study link scheduling for

wireless networks, where all links (node pairs) may not be able to simul-

taneously transmit due to transceiver constraints and/or radio interference.

A scheduling algorithm determines which links can transmit at each time

instant so that no two active links interfere with each other.

The performance metric of interest in this thesis is throughput and we

restrict our attention to MAC layer (or link-level) throughput as opposed

to end-to-end throughput. It is well known that the queue-length based

Maximum Weighted Scheduling (MWS) algorithm is throughput optimal [1],

in the sense that it can stabilize the queues in the network for all traffic

rates in the capacity region of the network. However, MWS has a high

computational complexity. In addition, MWS is not amenable to distributed

implementation. These drawbacks greatly limit the deployment of MWS

in real networks. Even in small networks, MWS can require quite a lot of

operations because its complexity is tied to the number of maximal schedules

of the network. As an example, we can observe that an 8-cycle and a complete

graph of 8 nodes have respectively 48 and 56 distinct maximal schedules if we

consider directed links and the 2-hop interference model. So, although those

networks are small, decentralization of MWS is still not practical for them.

1

Therefore, it is of interest to find simple, distributed scheduling algorithms

which can achieve optimal or near optimal performance.

While much attention has been focused in the literature on finding near-

optimal algorithms for very large networks, many currently used ad hoc or

mesh networks are of moderate size ranging from a few nodes to a few tens

of nodes. Applications of this type include military and civilian networks.

Thus, we focus our attention in this thesis on obtaining performance bounds

for small to moderately sized networks although our results on information

complexity apply to general networks.

Our contributions in this thesis are as follows:

• We prove that GMS is throughput optimal in small networks. Specifi-

cally, we show throughput optimality in networks with 8 or fewer nodes

under the 2-hop interference model. This result is tight in the sense

that we can find networks with 9 nodes where GMS is not throughput

optimal under the 2-hop interference model.

• As a by-product of the above result, we also establish the throughput-

optimality of GMS in networks with up to 5 nodes under the 1-hop

interference model. This rigorously proves a numerical observation in

[2].

• We derive bounds on the efficiency ratio of GMS for arbitrary networks.

These bounds improve previous results [3] for networks with up to 26

nodes.

• We show that GMS, which requires global knowledge of link weights,

is equivalent to an algorithm called Local GMS (LGMS) [4], which

uses only local neighborhood information and thus is amenable to dis-

tributed implementation.

2

This thesis is organized as follows. In Chapter 2 we introduce the related

work. We describe the network model in Chapter 3 and provide some useful

notions in Chapter 4. In Chapter 5, we prove that GMS is throughput

optimal in small networks with up to 8 nodes under the 2-hop interference

model. Chapter 6 provides a lower bound on the efficiency ratio of GMS as a

function of the network size under the k-hop interference model. We consider

decentralization of GMS and prove the equivalence of GMS and LGMS in

Chapter 7.

3

CHAPTER 2

RELATED WORK

The Greedy Maximal Scheduling (GMS) algorithm, also known as the Longest-

Queue-First (LQF) algorithm [5], has low complexity and hence can be de-

ployed in practical systems. Its performance has been observed to be close

to optimal for a variety of network scenarios in simulations and experiments

(e.g., [6]). Hence it is intriguing and important to analyze and understand

the performance of GMS for networks with common topologies; this task

may include providing sufficient conditions for GMS to be throughput op-

timal, and calculating/bounding the efficiency ratio of GMS when it is not

throughput optimal.

To identify sufficient conditions for GMS to be throughput optimal, the

concept of local pooling (will be defined formally later) was introduced in [7].

The authors showed that if the network satisfies the local pooling condition

then GMS is throughput optimal. In particular, if the interference graph of

the network is a tree, then the local pooling condition is satisfied and GMS is

throughput optimal. In addition to tree (interference) graphs, [2,8] identified

several classes of graphs (e.g., trees of cliques, perfect graphs, chordal graphs)

which also satisfy the local pooling condition. Independently [3] and [8]

showed that the local pooling condition is satisfied for tree networks (note

that the interference graph of a tree network may not be a tree) under the

k-hop interference model.

In [2,8], the local pooling condition was tested for small interference graphs

4

via exhaustive numerical search. They found that local pooling is satisfied

(GMS is throughput optimal) for networks with up to 5 links under the 1-

hop interference model and for networks with up to 7 links under the k-hop

(k ≥ 2) interference model.

In [3,9], the notion of local pooling was generalized to σ-local pooling and

the concept of local-pooling factor was introduced. They showed that the

efficiency ratio of GMS is equal to the local-pooling factor of the network and

proposed a recursive procedure to estimate/bound the local-pooling factor

of a network. Our results primarily build upon the results in [7] and [9].

Compared with GMS, the Local GMS (LGMS) algorithm [4] has an even

lower complexity (its computational complexity is linear in the number of

links in the network), and is amenable to distributed implementation [10].

In this thesis, we show that LGMS and GMS are equivalent in the sense that

they produce the same set of schedules for arbitrary networks.

5

CHAPTER 3

NETWORK MODEL

We assume a time-slotted system, with time slots of unit duration. In ad-

dition, here we focus on the MAC layer and thus we only consider 1-hop

traffic.

We model a wireless network by a graph G = (V,E), where V is the set

of nodes/vertices and E is the set of directed links/edges. Nodes are wireless

transmitters/receivers and there exists a link between two nodes if they can

directly communicate with each other. For any link l ∈ E, we can define the

set of its interfering links as

I(l) =
{
l′ ∈ E | l′ interfers with l

}
. (3.1)

Associated with a network graph G, we can define an interference graph

GI = (VI,EI), where VI = E and there is an edge in GI from l to l′ if

l′ ∈ I(l). This graph contains all the information regarding the interference

model used.

A schedule of G = (V,E) is a subset of links M ⊆ E that can be acti-

vated/scheduled at the same time according to the interference constraint,

i.e., no two links in M interfere with each other. We assume that all links

have unit capacity, i.e. a scheduled link can transmit one packet per unit

time. Associated with a schedule M is a rate vector −→m ∈ {0, 1}|E|. The lth

element of −→m is equal to 1 (ml = 1) if link l is scheduled (l ∈ M); ml = 0

6

otherwise. Then, a convex combination of schedules will be an element of

[0, 1]|E|.

A schedule is said to be maximal if no link can be added to it without

violating the interference constraint. Denote by ME the set of the rate

vectors of all maximal schedules of E and by Co(ME) its convex hull.

A scheduling algorithm is a procedure to decide which schedule should be

used (i.e., which subset of links should be activated) in every time slot. The

capacity region of the network is the set of all arrival rates
−→
λ for which there

exists a scheduling algorithm that can stabilize the queues, i.e., the queues

are bounded in some appropriate stochastic or deterministic sense depending

on the arrival model used. For the purposes of this thesis, we will assume

that if the arrival process is stochastic, then it is a stationary, ergodic process

with finite first and second moments, and the resulting queue length process

admits a Markovian description. Alternatively, one can also assume that

the arrival process is deterministically bounded like the well-known (σ, ρ)

process. It is known from [1] that the capacity region is given by

Λ =
{−→

λ | ∃−→u ∈ Co(ME),
−→
λ < −→u }

. (3.2)

(When dealing with vectors, inequalities are interpreted component-wise.)

We say that a scheduling algorithm is throughput optimal, or achieves the

maximum throughput, if it can keep the network stable for all arrival rates in

the capacity region Λ.

Suppose each link l ∈ E is associated with a non-negative weight w(l).

Let w(M) =
∑

l∈M w(l) be the weight of schedule M. A maximum weighted

schedule of G is a schedule which has the maximum weight among all sched-

ules of G. Note that if all link weights are strictly positive, then a maximum

7

weighted schedule must be a maximal schedule.

It is well known that the Maximum Weighted Scheduling (MWS) algo-

rithm, which selects a maximum weighted schedule in every time slot with

the link weights being the link queue lengths, is throughput optimal [1].

However, finding a maximum weighted schedule of a network is equivalent to

finding a maximum weighted independent set of the associated interference

graph, which is known to be NP-hard for general interference graphs [11]. In

addition, MWS is centralized in nature and is very difficult to decentralize.

The Greedy Maximal Scheduling (GMS) algorithm, which is a natural low-

complexity alternative to MWS, proceeds as follows: in each time slot the

schedule that will be used is built sequentially; start with an empty schedule;

at each step, choose a link l with maximum weight among the non-disabled

links and add it to the current schedule, then disable all links which interfere

with l; continue until all the remaining links are disabled. Note that any

schedule obtained by GMS is maximal.

Greedy Maximal Scheduling (GMS) Algorithm

GMS(E) := ∅
E′ := E

WHILE (E′ 6= ∅)
Pick a globally heaviest link l:

w(l) = max
l′∈E′

w(l′)

GMS(E) := GMS(E) ∪ {l}
E′ := E′ \ {l} \ I(l)

8

ENDWHILE

Since GMS is a greedy algorithm, in general, it may not achieve the full

capacity region of the network. The efficiency ratio γ∗ of a scheduling algo-

rithm is the largest fraction of the capacity region that is stabilized by the

algorithm.

γ∗ = sup
{
γ | ∀−→u ∈ Co(ME),∀−→λ ≤ γ−→u , the system

is stable under arrival rate
−→
λ

}
. (3.3)

Throughout this thesis, we will often focus on the k-hop interference model.

This model says that two links interfere with each other if and only if the

shortest path in E between them is of length at most k − 1. The 1-hop

and 2-hop interference models are of special practical interest. Under the

1-hop interference model (also called the node-exclusive or primary inter-

ference model), any two links sharing a common node cannot be active si-

multaneously. This can be used to describe and analyze wireless networks

which use FH-CDMA with only one transceiver per node [12]. The 2-hop

interference model is well suited to model networks that use RTS/CTS and

link-level ACKs, which many practical communication schemes do (such as

IEEE 802.11 [13], [14]).

9

CHAPTER 4

PRELIMINARIES

In [7], the notion of local pooling was introduced. Local pooling is better

explained when broken down into two parts [2]: subset local pooling (SLoP)

and overall local pooling (OLoP).

Definition 1 (subset local pooling - SLoP) A set of links L satisfies subset

local pooling if ∃−→α ∈ R|L|+ and c > 0, such that ∀−→u ∈ Co(ML), −→α T−→u = c.

Note that the interference constraints used to compute maximal schedules

of L ⊆ E are given by the interference graph GI of G.

One way to understand the subset local pooling condition is to view αl ≥ 0

as the utility obtained when receiving a unit of service on link l. Then

−→α T−→u = c is the total utility associated with the service rate vector −→u ∈
Co(ML). If the total utility for any rate vector is a constant, then there is

no way a vector −→u ∈ Co(ML) can strictly dominate another vector −→v ∈
Co(ML), because otherwise −→u would provide a strictly larger total utility

than −→v .

Definition 2 (overall local pooling - OLoP) A graph G = (V,E) satisfies

overall local pooling if all subsets of E satisfy subset local pooling.

It was proved in [7] that GMS is throughput optimal for a network if the

network graph satisfies overall local pooling. Although local pooling is useful

when trying to determine whether GMS is throughput optimal for a network,

10

it is also of interest to get a sense of how well GMS performs when it is not

optimal. To answer this question, the local pooling factor σ∗ of a graph was

introduced in [9]. This factor gives a bound on how bad the schedules picked

by GMS can be, compared to the optimal ones. As for local pooling, this

notion is better explained when broken down into parts.

Definition 3 (σ-local pooling) A set of links L satisfies σ-local pooling if

∀−→u ,−→v ∈ Co(ML), σ−→u � −→v .

Definition 4 (local pooling factor) The local pooling factor of a graph G is

the supremum of all σ such that every subset L of E satisfies σ-local pooling.

σ∗ = sup{σ|∀L ⊆ E, ∀−→u ,−→v ∈ Co(ML), σ−→u � −→v }

= inf{σ|∃L ⊆ E, ∃−→u ,−→v ∈ Co(ML), σ−→u ≥ −→v }.

It was proved in [9] that the efficiency ratio γ∗ of GMS in a graph is equal

to its local pooling factor σ∗. Note that if a set of links satisfies subset local

pooling, then it satisfies σ-local pooling for all σ < 1.

If GMS is not throughput optimal in a graph, we know that, under some

feasible arrival rate, there exist links whose queues will go up to infinity. To

analyze those links, [9] introduces the notion of unstable subset of links, which

is a subset of links whose queues can all go to infinity under GMS under some

feasible arrival rate. We use the following slightly different definition:

Definition 5 (unstable subset of links) Let G = (V,E) be a network graph

and U ⊆ E. We say that U is an unstable subset of links of G if ∃−→u ,−→v ∈
Co(MU) such that −→u > −→v .

Note that −→u > −→v if and only if ∃σ < 1 such that σ−→u ≥ −→v . Thus, the

unstable subsets of links of G are the subsets of E that fail σ-local pooling

11

for some σ < 1. This implies that the local pooling factor σ∗ (and thus the

efficiency ratio of GMS γ∗) of a graph G is strictly less than 1 if and only

if there exists at least one unstable subset of links of G. So, to prove that

GMS is throughput optimal in a graph G, we only need to show that G has

no unstable subsets of links.

Also, if a subset of links U is unstable, then there exists a feasible arrival

rate
−→
λ ∈ Co(MU) such that, for all l ∈ U, the average service rate ul of

l under GMS is strictly less than the average arrival rate λl of l. In other

words, there exists a feasible arrival rate such that the queues of all the links

of U go to infinity. Such a feasible arrival pattern can be constructed as in [9].

Moreover, it is clear that if a set of links L satisfies subset local pooling then it

cannot be an unstable subset of links, because otherwise ∃−→u ,−→v ∈ Co(ML)

such that −→u > −→v and then −→α T−→u > −→α T−→v for all nonzero −→α ∈ R|L|+ .

12

CHAPTER 5

THROUGHPUT OPTIMALITY OF GMS IN
SMALL NETWORKS

In this chapter we analyze the performance of GMS in small networks. In-

deed, most wireless ad hoc networks that one may encounter in reality are

small. More precisely, we want to find the maximum network size under

which GMS is guaranteed to achieve full capacity. Although some parts of

the reasoning apply to any interference model, we focus on the 2-hop inter-

ference model in this chapter. We only consider connected network graphs,

because the links in different components of disconnected graphs do not in-

terfere with each other under this interference model.

5.1 Main Result and Outline of the Proof

The main result of this section is the following theorem:

Theorem 1 Under the 2-hop interference model, GMS is throughput optimal

(achieves the full capacity region) in all network graphs with 8 nodes or less.

To prove that GMS is throughput optimal in graphs with 8 nodes or less,

our approach is to prove that such graphs cannot have any unstable sub-

sets of links. The entire proof of the above result is quite complicated. So

we provide an outline first, where we will assume the truth of certain inter-

mediate propositions. The proof of the theorem follows rather easily from

these intermediate propositions which will be proved later in Section 5.2.

13

The propositions essentially show that unstable subsets of links have certain

properties which imply that there must be at least some minimum number

of nodes in the network graph.

Proposition 1 Any unstable subset of links must contain at least 3 links

that can be simultaneously scheduled.

Proposition 2 Under the 2-hop interference model, if G has an unstable

subset of links U, then a maximal schedule of U of size 2 or more disables

at least 3 nodes of G.

We say that a node is disabled if it is exactly 1 hop away from a scheduled

link. Since the minimum distance between two scheduled links is 2 hops in

the 2-hop interference model, a disabled node cannot be scheduled.

The proof of Theorem 1 is quite straightforward assuming the validity of

the above two propositions.

Proof: (Theorem 1) Let G = (V,E) be a network graph and U be

an unstable subset of links of G. Let |V| = n. Because of Proposition 1,

we know there exists a maximal schedule of U that contains at least 3 links.

When using that particular maximal schedule, as each link involves 2 different

scheduled nodes, at least 6 nodes are scheduled. Moreover, Proposition 2 tells

us that this maximal schedule disables at least 3 other nodes of G. The total

number of nodes n must be greater than or equal to the number of scheduled

nodes + the number of disabled nodes, hence n ≥ 9. It implies that any

network graph of 8 nodes or less cannot have any unstable subset of links,

hence GMS is throughout optimal in those graphs.

Before we proceed to the proof of Propositions 1 and 2, we show that the

result in Theorem 1 is tight in the sense that there are networks with 9 nodes

for which GMS is not throughput optimal.

14

1

2

3

4

5

6

7

8

9

(b) 8-cycle with an open link

1

2

3

4
5

6

7

8
9

(a) 9-cycle

Figure 5.1: Two examples of networks of 9 nodes with σ∗ < 1.

5.1.1 What about 9 nodes?

We provide here two examples of networks with 9 nodes in which the efficiency

of GMS can be bounded away from 1.

The first example is a ring network with 9 links. Call it C9 = (V,E) and

label the links as in Figure 5.1(a). We can show that the local pooling factor

of C9 is at most 2
3
. Indeed, let us use the following maximal schedules for

equal amounts of time: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. The resulting vector

−→u ∈ Co(ME) is −→u = 1
3
−→eE. But we may choose to use the following maximal

schedules instead: {1, 5}, {2, 6}, {3, 7}, {4, 8}, {5, 9}, {6, 1}, {7, 2}, {8, 3}
and {9, 4}. The resulting vector −→v ∈ Co(ME) is then −→v = 2

9
−→eE. We have

15

−→v = 2
3
−→u , which shows that E fails σ-local pooling for σ = 2

3
, hence σ∗ ≤ 2

3
.

In addition, the bound provided by Lemma 4 in Section 6.2 tells us that

σ∗ ≥ 2
3
, so finally σ∗ = 2

3
. Note that this result also implies that the bound

of Theorem 2 is tight for n = 9 and 10.

The second example we analyze here is a size-8 ring network with one

additional open link. Let us call it G = (V,E) and label the links as in

Figure 5.1(b). As previously for C9, we will construct two vectors −→u ,−→v ∈
Co(ME) such that σ−→u ≥ −→v componentwise, with σ < 1. The maximal

schedules used for −→u are: {1, 4, 7} twice, {3, 6}, {5, 8} and {3, 8}. So −→u =

1
5
(2, 0, 2, 2, 1, 1, 2, 2, 0). The maximal schedules used for −→v are: {1, 5}, {1, 6},
{4, 8} twice and {3, 7} twice. So −→v = 1

6
(2, 0, 2, 2, 1, 1, 2, 2, 0). We have

−→v = 5
6
−→u , thus σ∗ ≤ 5

6
. Note that this second example also shows that the

bound provided by Lemmas 11 and 12 is tight for k = 2.

In Section 6.2 we will provide a lower bound on σ∗ for networks with 9

nodes or more.

5.2 Properties of the Unstable Subsets of Links

We will prove here the propositions that we used to derive Theorem 1.

5.2.1 Minimum size of a maximum schedule

We first establish the following lemma:

Lemma 1 Let G = (V,E) be a network graph and L be a subset of links of

G. If any two maximal schedules of L sharing a common link have the same

size, then L satisfies subset local pooling and hence cannot be unstable.

16

Proof: For all l ∈ L, let sl be the size of the maximal schedules contain-

ing l, and take αl = 1
sl

. Let ML = {−→mj}j be the set of maximal schedules in

L, where −→mj denotes a particular maximal schedule. Let −→u ∈ Co(ML), i.e.,

∃{µj}j such that −→u =
∑

j µj
−→mj,

∑
j µj = 1 and ∀j, µj ≥ 0. Then

−→α T−→u =
∑

j

µj
−→α T−→mj.

For all j, we have

−→α T−→mj =
∑

l∈−→mj

1

sl

= 1 (5.1)

because, if l ∈ −→mj, then −→mj has size sl. So

−→α T−→u =
∑

j

µj = 1, (5.2)

which is the definition of subset local pooling.

We now present some intuition behind the above proof. As GMS uses

only maximal schedules, when a link l is scheduled for an amount of time ul,

some service is also provided to some of the other links in the network. The

sum of the service provided to other links while scheduling l is proportional

to ul, because the size of the maximal schedules containing l is a constant.

More precisely, let Lk be the set of links with maximal schedules of size k.

Then, if M is a maximal schedule containing a link in Lk, M is of size k.

Therefore, ∀l ∈ M, l belongs to Lk because all maximal schedules containing

l must have the same size as M. Thus
∑

l∈Lk
ul = kτk(

−→u), where τk(
−→u) is

the fraction of time we use a maximal schedule of size k. It means that the

only way to provide more service to all the links in Lk is to spend more time

τk(
−→u) serving links of Lk. But we cannot spend more time serving links in

Lk for all k’s at the same time, so one vector in Co(ML) cannot strictly

17

dominate another. In other words, to have −→u > −→v , with −→u ,−→v ∈ Co(ML),

we must have ul > vl for all l ∈ L. In particular,
∑

l∈Lk
ul >

∑
l∈Lk

vl, thus

τk(
−→u) > τk(

−→v) for all k, which is not possible as
∑

k τk(
−→u) =

∑
k τk(

−→v) = 1.

We can now prove Proposition 1:

Proof: (Proposition 1) Let U be an unstable subset of links of G.

Suppose that the maximal schedules of U have size at most 2. We will simply

check that all the maximal schedules of U that share a common link have

the same size. Let l ∈ U. Consider all the maximal schedules in MU that

contain l. If one of them has size 2, which means that once l is scheduled, it is

still possible to schedule another link, then all those maximal schedules must

have size 2; otherwise, all the maximal schedules containing l are of size 1

(and actually {l} is the only such maximal schedule). Lemma 1 implies that

U satisfies subset local pooling, so it cannot be unstable, a contradiction.

Thus there must exist a schedule of U of size 3.

5.2.2 Minimum number of disabled nodes

To prove Proposition 2, we will use the following lemma and its proof is

included in the appendix.

Lemma 2 We consider the 2-hop interference model. Let U be an unstable

subset of links of G = (V,E). For any link l of U, there are at least 2 nodes

of V exactly 1-hop away from l.

This implies that any maximal schedule of U disables at least 2 nodes

and thus, using the same line of proof as for Theorem 1, it follows that

GMS achieves full capacity in any network of 7 nodes or less under 2-hop

interference. Note that, using Lemma 11, similar bounds can be obtained for

the k-hop interference model with any k > 2. However, these bounds may

18

not be tight without extra work, and deriving them is beyond the scope of

this thesis.

Proof: (Proposition 2) We consider the 2-hop interference model. Let

U be an unstable subset of links of G = (V,E). We want to prove that any

maximal schedule of U of size 2 or more disables at least 3 nodes of V. It

follows from Lemma 2 that at least 2 nodes are disabled. We will show that

all the links of a maximal schedule of U of size 2 or more cannot disable the

same 2 nodes.

By contradiction, suppose ∃{l1, ...lk} ∈ MU, with k ≥ 2, such that

{l1, ...lk} disables exactly 2 nodes. Denote by a and b these two nodes. Let

La and Lb be the set of links of U containing a and b respectively. We will

show U = {l1, ...lk} ∪ La ∪ Lb. Indeed, suppose there exists another link

l′ ∈ U . One of its extreme nodes has to be either disabled or scheduled, oth-

erwise l′ could be scheduled, which would contradict the fact that {l1, ...lk}
is maximal. If one of the extreme nodes of l′ is disabled, then it must be

a or b and l′ is in La ∪ Lb. Thus, one of the extreme nodes of l′ must be

scheduled, so the other one cannot be scheduled because otherwise {l1, ...lk}
is not feasible. If that second node is not scheduled, then, by definition, it is

disabled, which cannot be, as seen earlier. Thus there is no other link in U.

Now for any l ∈ U, we will show that the maximal schedules of U con-

taining l have the same size. If l ∈ La, then all the li’s interfere with l and,

either all the links in Lb interfere with l and then {l} is the only maximal

schedule containing l, or we can schedule exactly one additional link of Lb

and then all maximal schedules containing l have size 2. The case l ∈ Lb is

completely similar. If l ∈ {l1, ...lk}, then all the links in La ∪ Lb interfere

with l, and thus {l1, ...lk} is the only maximal schedule containing l. We have

considered all the possible cases. Thus, using Lemma 1, U satisfies subset

19

local pooling, which cannot be.

5.3 Throughput Optimality for Node-Exclusive Models

Note that Proposition 1 does not require any assumption on the interference

model. Thus it can be used to obtain performance bounds for interference

models other than the 2-hop interference model. One such example is pro-

vided in the corollary below.

Corollary 1 GMS is throughput optimal in all network graphs of 5 nodes

or less for any interference model that allows a node to be part of only one

scheduled link at any time (e.g., 1-hop interference model).

Proof: Proposition 1 directly implies that a graph with at least one

unstable subset of links must have at least 6 nodes under such interference

models.

In particular, this result confirms that GMS is throughput optimal in all

graphs of 5 links or less under the 1-hop interference model, which has been

obtained by exhaustive numerical search in [2]. Furthermore, we can find

network graphs with 6 nodes (e.g., a ring network of size 6) where GMS is

not throughput optimal.

20

CHAPTER 6

PERFORMANCE OF GMS UNDER K-HOP
INTERFERENCE MODEL

6.1 Efficiency in Cycles

In this section, we will derive the exact value of the efficiency of GMS in ring

networks for arbitrary number of nodes n and k-hop interference for arbitrary

k. Let us denote by C the cycle of size n. We can label the links with the

integers from 1 to n, such that consecutive links are labeled with consecutive

integers. We also refer to maximal schedules of C as vectors of size n with

0’s and 1’s, where a 1 at position i means that the link labeled i is in the

schedule and a 0 that it is not. We assume that the service rate on an active

link is 1. MC is the set of all maximal schedules of C, and Co(MC) is its

convex hull. The size of a schedule refers to the number of links it contains.

‖x‖1 =
n∑

i=1

|xi|.

Lemma 3 The maximum size of a maximal schedule of a cycle of size n is

b n
k+1
c. The minimal size is d n

2k+1
e.

Proof: Let
−→
M and −→m be maximal schedules of C of maximum and

minimum size respectively. Because of the k-hop interference model, two

consecutive active links of a maximal schedule must be separated by at least

k and at most 2k inactive links, which already implies that ‖−→M‖1 ≤ n
k+1

and ‖−→m‖1 ≥ n
2k+1

. But these numbers might not be integers, so in fact

‖−→M‖1 ≤ b n
k+1
c and ‖−→m‖1 ≥ d n

2k+1
e. Moreover, we can easily construct

21

schedules that achieve these values. For example, consider the schedule such

that the active links are the links labeled l0 = 1, l1 = k+2,...lL = L(k+1)+1

with L = b n
k+1
c − 1; the resulting schedule is of size b n

k+1
c and it is maximal

because k ≤ n − lL < 2k + 1. So ‖−→M‖1 = b n
k+1
c. Likewise, if the active

links are the links labeled s0 = 1, s1 = 2k + 2,...sS−1 = (S − 1)(2k + 1) + 1

with S = d n
2k+1

e− 1, the resulting schedule is of size d n
2k+1

e− 1 and we have

2k + 1 < n− sS−1 ≤ 4k + 2. Thus we can add exactly one more link to that

schedule, so that it will be maximal. So ‖−→m‖1 = d n
2k+1

e.

Proposition 3 The efficiency of GMS in a cycle of size n is σ∗ =
d n
2k+1

e
b n

k+1
c .

Proof: We will prove equality by showing that inequalities hold in both

directions. As any strict subgraph of C is a tree, we know that GMS has an

efficiency of 1 in those, so we need only worry about the whole cycle. Again,

let
−→
M and −→m be maximal schedules of C of maximum and minimum size

respectively. Also, let ϕ be the operator that ”shifts” a schedule of one link,

i.e., ϕ : (i1, ...in) 7→ (in, i1, ...in−1). Then we have ‖−→M‖1
n

−→
1 = 1

n
(
n−1∑
i=0

ϕi(
−→
M))

and ‖−→m‖1
n

−→
1 = 1

n
(
n−1∑
i=0

ϕi(−→m)), where
−→
1 is the all-1 vector of size n. Using the

lemma, the first of those two vectors dominates the second one by a factor

d n
2k+1

e
b n

k+1
c , so σ∗ ≤ d n

2k+1
e

b n
k+1

c . Moreover, ∀ε > 0, there exist two vectors −→µ , −→ν in

Co(MC) such that (σ∗+ε)−→µ ≥ −→ν componentwise. But then (σ∗+ε)‖−→µ ‖1 ≥
‖−→ν ‖1. As −→µ and −→ν are convex combinations of maximal schedules of C, we

have ‖−→µ ‖1 ≤ ‖−→M‖1 and ‖−→ν ‖1 ≥ ‖−→m‖1. Thus (σ∗ + ε) ≥ ‖−→m‖1
‖−→M‖1

=
d n
2k+1

e
b n

k+1
c .

Letting ε → 0 completes the proof.

22

6.2 Performance Bounds of GMS in Larger Networks

under 2-Hop Interference

As we have seen in Section 5.1 that GMS may not achieve the full capacity

in network graphs with more than 8 nodes, in this section we derive a lower

bound on the efficiency ratio of GMS for larger networks.

Let ‖−→u ‖ denote the l1-norm of −→u , i.e., ‖−→u ‖ =
∑

i |ui|. In particular, if

−→
M is the rate vector associated with a schedule M of E, then ‖−→M‖ is the

number of links in M. We will use l ∈ −→u to say that ul > 0. We first prove

the following lemma.

Lemma 4 Let G = (V,E) be a network graph, L ⊆ E and

ρ = min
l∈L

min{‖−→u ‖|−→u ∈ML and l ∈ −→u }
max{‖−→u ‖|−→u ∈ML and l ∈ −→u } , (6.1)

then L satisfies σ-local pooling for all σ < ρ.

Proof: Suppose that L does not satisfy σ-local pooling for some σ.

Then, ∃−→u ,−→v ∈ Co(ML) such that σ−→u ≥ −→v componentwise. We can write

−→u =
∑

l∈L ul
−→el ,

−→v =
∑

l∈L vl
−→el , where −→el is the vector with a 1 at position

l and 0’s everywhere else. Writing ML = {−→mj}j, we also have −→u =
∑

j µj
−→mj

and −→v =
∑

j νj
−→mj, with

∑
j µj =

∑
j νj = 1 and ∀j, µj ≥ 0, νj ≥ 0.

For all l ∈ L, let

αl = min{‖−→u ‖|−→u ∈ML and l ∈ −→u }

and, similarly,

βl = max{‖−→u ‖|−→u ∈ML and l ∈ −→u }.

Then, for all l, we have αl

βl
≥ ρ.

23

Expanding
∑

j µj and
∑

j νj and using the notations introduced above, we

obtain the following inequalities:

1 =
∑

j

µj =
∑

l∈L

∑

j:l∈−→mj

1

‖−→mj‖µj

≥
∑

l∈L

1

βl

∑

j:l∈−→mj

µj =
∑

l∈L

ul

βl

≥ ρ
∑

l∈L

ul

αl

(6.2)

and

1 =
∑

j

νj =
∑

l∈L

∑

j:l∈−→mj

1

‖−→mj‖νj

≤
∑

l∈L

1

αl

∑

j:l∈−→mj

νj =
∑

l∈L

vl

αl

≤ σ
∑

l∈L

ul

αl

. (6.3)

Combining Equations (6.2) and (6.3), we get σ ≥ ρ, which means that L

satisfies σ-local pooling for all σ < ρ.

Note that, if p is an upper bound of the size of the maximal schedules of

L and l ∈ L, then

ρl =
min{‖−→u ‖|−→u ∈ML and l ∈ −→u }
max{‖−→u ‖|−→u ∈ML and l ∈ −→u } ≥

2

p
. (6.4)

Indeed, if min{‖−→u ‖|−→u ∈ML and l ∈ −→u } = 1, then we know that max{‖−→u ‖|−→u ∈
ML and l ∈ −→u } = 1 too, thus ρl = 1. And if min{‖−→u ‖|−→u ∈ ML and l ∈
−→u } ≥ 2, then immediately ρl ≥ 2

p
. As a consequence of Lemma 4 and the ob-

servation above, we can derive the following lower bound on the local pooling

factor of a graph.

Theorem 2 Under the 2-hop interference model, let G be a network graph

of size n = 8 + 2k or 8 + 2k− 1 for some k ∈ N∗. The local pooling factor σ∗

of G is at least equal to 2
2+k

.

24

Proof: We want to prove that any unstable subset of links U of G have

ρ = min
l∈U

min{‖−→u ‖|−→u ∈MU and l ∈ −→u }
max{‖−→u ‖|−→u ∈MU and l ∈ −→u } ≥

2

2 + k
. (6.5)

We need only consider unstable subsets of links of G because all other subsets

of links satisfy σ-local pooling for all σ < 1. Then, using

σ∗ = inf{σ|∃L ⊆ E, ∃−→u ,−→v ∈ Co(ML), σ−→u ≥ −→v },

it will follow that σ∗ ≥ 2
2+k

.

Let U be an unstable subset of links of G = (V,E). Suppose that |V| =
n ≤ 8 + 2k for some k ∈ N. Let p be the size of the maximal schedule of

U. It is enough to check that p ≤ 2 + k. As we saw earlier, we must have

2p + 3 ≤ n ≤ 8 + 2k, so p ≤ k + 5
2
. As p and k are integers, it follows that

p ≤ k + 2. Then ρ ≥ 2
p
≥ 2

2+k
, which completes the proof.

As an example, for n ≤ 20, which is the case in many applications of

wireless ad hoc and mesh networks, we get that σ∗ ≥ 1
4
. Recall that the best

lower bound so far is σ∗ ≥ 1
6

(it is derived in [3] and applies to geometric

network graphs under the 2-hop interference model). Thus, the lower bound

we provide here strictly improves on previous results for networks of up to 26

nodes. Table 6.1 shows the current best lower bound on the efficiency ratio

γ∗ of GMS, with 2-hop interference, as a function of the number of nodes in

the network.

6.3 Performance Bounds for k-Hop Interference Model

This section is an extension of the results obtained for the 2-hop interference

model in the previous section to the k-hop interference model for arbitrary k.

25

Table 6.1: Efficiency of GMS in Small Networks (2-Hop Interference Model)

Number of Nodes Lower Bound on γ∗

≤ 8 1
9-10 2/3
11-12 1/2
13-14 2/5
15-16 1/3
17-18 2/7
19-20 1/4
21-22 2/9
23-24 1/5
25-26 2/11
27-28 1/6
≥ 29 1/6 in geometric graphs [3]

However, note that the extra work that made the result tight for the 2-hop

model has not been done for the k-hop model.

We can observe that, under the k-hop interference model, a node can be

within dk
2
e − 1 hops of only one active link at a time. Indeed, otherwise, the

distance between the two active links would be at most 2(dk
2
e − 1) ≤ k − 1.

We will say that the nodes within dk
2
e− 1 hops of an active link are disabled

by that link. It is then clear that any active link disables at least dk
2
e − 1

nodes.

Proposition 4 Under the k-hop interference model, let G be a network

graph of size n ≤ (1 + dk
2
e)(3 + m) − 1 for some m ∈ N. The local pool-

ing factor σ∗ of G is at least equal to 2
2+m

.

The results for the efficiency in cycles show that the smallest cycle in which

GMS is not throughput optimal under the k-hop interference model is of size

3(k + 1). The proposition above shows that at least an order of 3(k
2

+ 1) is

required for GMS to fail. Hence, there is at most a size factor of 2 between

the smallest graph for which GMS is not throughput optimal under the k-

26

hop interference model and the smallest cycle for which we know GMS is not

throughput optimal for that same interference model.

27

CHAPTER 7

DECENTRALIZATION OF GMS

If the links have the perfect carrier sensing capability (once a link begins

to transmit, all its interfering links can sense the transmission with zero

delay), then there exists a simple scheme to implement GMS in a distributed

manner. We can divide each time slot into a scheduling period followed by

a transmitting period. At the beginning of a time slot, every link l with a

positive link weight (queue length) wl will select a (deterministic) backoff

time Tl, with Tl being a decreasing function of wl (e.g., Tl = T
wl

), and will

begin to transmit data after time Tl if it senses that none of its interfering

links are transmitting. Without loss of generality, we can assume that the link

weights are distinct (each link can add a random number uniformly selected

in [0, 1] to its weight so that, with probability one, the link weights will be

distinct). It is easy to see that the generated schedule after the scheduling

period is a schedule returned by GMS. If the length of the scheduling period

is much less than the length of the transmission period, then the scheduling

overhead is negligible.

However, in practice, since we cannot achieve perfect carrier sensing, col-

lisions are possible which will degrade the throughput performance of the

above scheme. We want to find a distributed implementation of GMS that

does not require such strong assumptions. To this end, we show in this section

that GMS is equivalent to the Local Greedy Maximal Scheduling (LGMS)

algorithm which uses only local neighborhood information.

28

LGMS was first proposed by Preis [4] as a low-complexity approximation

algorithm for the maximum weighted matching problem (corresponding to

the 1-hop interference model). For a general scheduling problem, LGMS

computes a (maximal) schedule as follows. In each step, it adds a locally

heaviest link (a link with the largest weight compared to its non-disabled

interfering links) to the schedule; it then disables all the interfering links of

the added link. The process is repeated until the schedule is maximal.

Note that LGMS is different from the Local Greedy Scheduling (LGS)

algorithm presented in [15] which schedules only those links that are lo-

cally heaviest in the beginning and does not proceed iteratively to produce a

maximal schedule. However, the throughput analysis involving local greedy

scheduling in [15] is incomplete, so it is worthwhile to study LGMS as an

alternative.

Local Greedy Maximal Scheduling (LGMS) Algorithm

LGMS(E) := ∅
E′ := E

WHILE (E′ 6= ∅)
Pick a locally heaviest link l:

w(l) ≥ w(l′), ∀l′ ∈ I(l) ∩ E′.

LGMS(E) := LGMS(E) ∪ {l}
E′ := E′ \ {l} \ I(l)

ENDWHILE

29

The key difference between LGMS and GMS is that, in each step, LGMS

picks a locally heaviest link instead of a globally heaviest link. Since LGMS

only requires local neighborhood information, it is amenable to distributed

implementation. A distributed implementation of LGMS was proposed for

the weighted matching problem in [10].

For a general scheduling problem, we design the following distributed im-

plementation of LGMS. We assume that there exists a collision-free mecha-

nism1 for every link to send control messages to its interfering links. Each

time slot is divided into a scheduling period and a transmission period. At

the beginning of the scheduling period, each link will send its weight (queue

length) to its interfering links. Then every link will determine whether it will

be scheduled or not (to transmit data in the transmission period) according

to the following protocol (assume distinct link weights).

Distributed Protocol to Implement LGMS (At Link l)

ml := 0

N := I(l)

WHILE (ml = 0)

If w(l) > w(l′),∀l′ ∈ N :

ml := 1, send ml = 1 to all links in N
If received ml′ = 1 from l′ ∈ N :

ml := −1, send ml = −1 to all links in N
If received ml′ = −1 from l′ ∈ N :

1For example, we can color the links so that no two links interfering with each other
have the same color, and then the links can send their control messages in a round-robin
fashion based on their colors.

30

N := N \ {l′}
ENDWHILE

We can verify that after the execution of the above distributed protocol,

every link l will have either ml = 1 (which means that l is included in the

schedule) or ml = −1 (which means that l is disabled because one of its

interfering links is scheduled). During the transmission period, any link l

with ml = 1 can transmit data. While the computational complexity of

LGMS is low, the signaling and time overhead can scale with the size of

the network in the worst case (depending upon the topology). However, in

small to moderately sized networks, the overhead can be expected to be quite

small.

In a network with arbitrary link weights, it is possible that two interfering

links l1 and l2 have same weight. Then, those two links could stay indefinitely

with ml1 = ml2 = 0 and w(l1) ≥ w(l′),∀l′ ∈ Nl1 ∪ Nl2 . To prevent this from

happening, we assume that there is a tie-breaking mechanism that will allow

one of the links with equal weight to activate in such cases.

At first glance, one may think that LGMS and GMS are different algo-

rithms and could return different schedules because LGMS proceeds even

more greedily than GMS. For the weighted matching problem, Preis [4]

showed that, like GMS, LGMS returns a matching with a weight of at least 1
2

of the weight of a maximum weighted matching. However, a stronger result

can be obtained: we will show that the sets of schedules produced by GMS

and LGMS are identical, and this result holds for networks with arbitrary

interference graphs. While this fact may appear intuitive, it does not seem

to have been recognized previously.

31

7.1 On the Equivalence of LGMS and GMS

7.1.1 Networks with distinct link weights

Theorem 3 For networks with distinct link weights, LGMS and GMS pro-

duce the same schedule.

Let GMS(L) and LGMS(L) be the schedule produced by GMS and LGMS,

respectively, when applied to a set of links L ⊆ E. We first prove two lemmas.

Lemma 5 says that if we know that a certain link l is included in GMS(E),

then an alterative way to generate GMS(E) is to add l first and then apply

GMS on the remaining links that do not interfere with l.

Lemma 5 ∀l ∈ GMS(E), GMS(E) = {l} ∪GMS(E \ {l ∪ I(l)}).

Proof: GMS is a sequential algorithm. Let l1, l2, ..., lm be the sequence

of links selected by GMS when applied on E. GMS(E) = {l1, l2, ..., lm}2 and

w(l1) > w(l2) > · · · > w(lm).

For any li in the schedule produced by GMS, consider a two-step procedure

to produce a maximal schedule as follows: first add li to the schedule and

disable its interfering links I(li); then apply GMS on the remaining links

E \ {li ∪ I(li)}. Because l1, ..., li−1, li+1, ..., lm do not interfere with link li

(otherwise they cannot form a schedule), we know that l1, ..., li−1, li+1, ..., lm

will be in E \ {li ∪ I(li)}, i.e., selecting li in the first step will not affect the

eligibility of other lj’s in the second step. Therefore, since l1 has the largest

weight among the links in E \ {li ∪ I(li)}, GMS will select l1 and disable

its interfering links. Similarly, GMS will select l2 next, and so on. So, this

two-step procedure will produce exactly the same schedule as GMS(E), i.e.,

{li} ∪GMS(E \ {li ∪ I(li)}) = {l1, l2, ..., lm} = GMS(E).

2It is easy to verify that, for networks with distinct link weights, GMS produces a
unique schedule.

32

Lemma 6 Let l be the first link selected by LGMS. Link l must also be

selected by GMS.

Proof: Link l is a locally heaviest link in E; i.e., its weight is greater

than the weight of the links in I(l). Suppose l is not selected by GMS: then

at least one link in I(l) will be selected by GMS; otherwise, the schedule

produced by GMS is not maximal. Let l′ be the first link in I(l) selected by

GMS. At the time instant when GMS decides to select l′, l is also eligible and

has a greater weight than l′, a contradiction. Therefore, l must be selected

by GMS.

From the two lemmas we can prove Theorem 3.

Proof: (Theorem 3) We prove the theorem by induction on the cardi-

nality of GMS(E) (the number of links contained in GMS(E)).

Step 1. The theorem is clearly true for all E1 such that |GMS(E1)| = 1,

because in this case the globally heaviest link coincides with the (unique)

locally heaviest link which will be the only link selected by both GMS and

LGMS.

Step 2. Assume the theorem is true for all Em with |GMS(Em)| = m. Now

consider any Em+1 with |GMS(Em+1)| = m+1. Let l be the first link selected

by LGMS. By Lemma 6, l ∈ GMS(Em+1). Then by Lemma 5, GMS(Em+1) =

{l} ∪GMS(Em+1 \ {l ∪ I(l)}). Since |GMS(Em+1 \ {l ∪ I(l)})| = m, we have

LGMS(Em+1 \{l∪ I(l)}) = GMS(Em+1 \{l∪ I(l)}) by induction assumption.

Therefore,

LGMS(Em+1) = {l} ∪ LGMS(Em+1 \ {l ∪ I(l)})

= {l} ∪GMS(Em+1 \ {l ∪ I(l)})

= GMS(Em+1).

33

By induction argument, we show that LGMS(E) = GMS(E) holds for any

E.

7.1.2 An Alternate Proof

We will use Lemma 6 and give an alternate proof which may be more intu-

itive. Suppose we start with a network graph G = (V,E) and we run sepa-

rately GMS and LGMS and obtain the sets of links GMS(E) and LGMS(E)

respectively. For ease of notation, in this proof we will refer to GMS(E) as L

and to LGMS(E) as L̃. The proof relies on the following two simple lemmas:

Lemma 7 If there exists l ∈ L \ L̃, then there also exists l̃ ∈ L̃ \L such that

l̃ ∈ I(l) and w(l̃) ≥ w(l).

Proof: l must be disabled (ml = −1) at the end of the execution of

LGMS. However, none of the links in L̃ ∩ I(l) with weights strictly smaller

than w(l) can be scheduled by LGMS before l is disabled. Hence, l must

be disabled because one of its interfering links of greater weight has been

scheduled.

Lemma 8 If there exists l̃ ∈ L̃\L, then there also exists l′ ∈ L\ L̃ such that

l ∈ I(l̃) and w(l′) ≥ w(l̃).

Proof: As GMS produces a maximal schedule, there must be a first link

scheduled among the interferers of l̃ during the execution of GMS. Call that

link l′ and consider the step of the execution of GMS at which it adds l′ to

the schedule. At that step, l̃ is still available, but GMS chooses to schedule

l′ instead, hence w(l′) ≥ w(l̃).

We can then prove Theorem 3 for networks with distinct link weights using

the two lemmas above and Lemma 6.

34

Proof: (Theorem 3) Combining the two lemmas 7 and 8, we get that,

if there exists a link l ∈ L \ L̃, there must exist another link l′ ∈ L \ L̃

with w(l′) > w(l). The inequality is strict here because the inequalities in

both lemmas are strict when the link weights are distinct. This is clearly

impossible as GMS schedules links in order of decreasing weight and there

must be a first link scheduled by GMS that is not scheduled by LGMS. We

conclude that L ⊆ L̃, which in turn implies equality because L̃ and L are

both maximal schedules.

7.1.3 Networks with general link weights

In the previous subsection we assumed that the link weights are distinct. We

can generalize the result to networks where two or more links may have the

same weight. One approach to handle this is to introduce a deterministic

tie-breaking mechanism. For example, we can associate each link with a dis-

tinct label.3 For the candidate links (globally or locally heaviest links) with

the same weight, preference is given to the link with the smallest (or largest)

label. If both GMS and LGMS use the same deterministic tie-breaking mech-

anism, then we can show that they will again produce the same schedule.

Formally, let π denote a deterministic tie-breaking mechanism (e.g., the

labelling mechanism described above). Let GMSπ(E) and LGMSπ(E) de-

note the schedule produced by GMS and LGMS on E using the tie-breaking

mechanism π, respectively. We can show:

Proposition 5 For networks with general link weights and under the tie-

breaking mechanism π, LGMSπ(E) = GMSπ(E).

The proof is similar to the proof of Proposition 3.

3Each link can generate a random real number uniformly in [0,1] as its label. With
probability one these labels are distinct.

35

On the other hand, if GMS/LGMS apply a randomized mechanism to

break the tie, i.e., they randomly select a link among the candidate links

with the same weight, then GMS/LGMS may produce different schedules.

Nevertheless, we can show:

Theorem 4 For networks with general link weights and under a randomized

tie-breaking mechanism, LGMS and GMS produce the same set of possible

schedules.

Let GMS(E) and LGMS(E) be the set of possible schedules produced by

GMS and LGMS on E, respectively. The proof of Theorem 4 consists of the

following two lemmas.

Lemma 9 GMS(E) ⊆ LGMS(E).

Proof: Let M ∈ GMS(E). Suppose l1, l2, ..., lm is the sequence of

links selected by GMS when generating M. In step 1 of LGMS, l1 is a

globally heaviest link because it can be scheduled by GMS, thus it is also a

locally heaviest link and could be scheduled by LGMS. Similarly, in step i of

LGMS, given l1, l2, ..., li−1 have been scheduled, li is a globally heaviest link

among the remaining eligible links because it can be scheduled by GMS; thus

it is also a locally heaviest link and could be selected by LGMS. Then, by

induction, LGMS could also select l1, l2, ..., lm in sequence under a randomized

tie-breaking mechanism, so M ∈ LGMS(E).

Lemma 10 LGMS(E) ⊆ GMS(E).

Proof: Let M ∈ LGMS(E). Suppose l1, l2, ..., lm is the sequence of links

selected by LGMS when generating M. We label the links in E as follows.

Link l1 is labelled 1, and the interfering links of l1 in I(l1) are labelled 2, 3, ...,

36

m1 (suppose |l1∪I(l1)| = m1); l2 is labelled m1+1, and the interfering links of

l2 in I(l2)\I(l1) are labelled m1+2, ..., m2 (suppose |l1∪I(l1)∪l2∪I(l2)| = m2);

and so on. Let π denote the deterministic tie-breaking mechanism using those

link labels; i.e., when a tie occurs, preference is given to the link with the

smallest label. Let GMSπ(E) and LGMSπ(E) denote the schedule produced

by GMS and LGMS on E under the tie-breaking mechanism π, respectively.

Based on Proposition 5 we know M = LGMSπ(E) = GMSπ(E). Note that

in every step of GMS, the selection made by π is one of the possible choices

of the randomized tie-breaking rule; thus GMSπ(E) can be selected by GMS

under the randomized tie-breaking mechanism, hence M ∈ GMS(E).

37

CHAPTER 8

CONCLUSION

GMS is a low-complexity scheduling algorithm which has been observed to

achieve near-optimal throughput and delay performance in a variety of wire-

less network simulations. However, theoretical bounds to date on the perfor-

mance of GMS only show that it can achieve a fraction of the capacity region.

In this thesis, we focused on networks of small to moderate size, which is the

case in many practical wireless ad hoc and mesh networks. We established

the throughput optimality of GMS in networks with up to 8 nodes under the

2-hop interference model. We also provided a lower bound on its throughput

efficiency in larger networks which improves previous bounds. Furthermore,

we showed that GMS is equivalent to LGMS, which is amenable to distributed

implementation. This means a simple, distributed scheduling algorithm like

GMS/LGMS is suitable for many applications in wireless networks.

38

APPENDIX A

PROOF OF LEMMA 2

In order to prove Lemma 2, we need to further characterize unstable subsets

of links. Indeed, in a general network graph G = (V,E) a scheduled link may

disable only one node or even no node at all. But not any link can be unstable,

i.e., belong to an unstable subset of links. For example, [3] and [8] proved

that tree networks cannot be unstable under the k-hop interference model,

which means that isolated links cannot be unstable and, thus, a scheduled

unstable link must disable at least one node. To be able to prove that a

scheduled unstable link disables at least 2 nodes, we will need to determine

additional properties of unstable subsets of links. More precisely, we will

prove the following lemma:

Lemma 11 Under the k-hop interference model, the maximum depth of an

unstable link in an open tree of cliques is bk
2
c.

We will now define all the notions required. In order to describe what

an open tree of cliques is, we will first explain the notions of tree of cliques

and open tree. Recall that a clique is a complete graph, which means that

it has an edge between any two vertices. Note that we can define a tree as

a connected graph without cycles. We use a similar definition for trees of

cliques:

Definition 6 A tree of cliques is a connected graph T such that, for any

cycle in T, there is a link between any two nodes of that cycle.

39

A tree of cliques can be viewed as a tree whose nodes can also be replaced

by cliques. In particular, a tree is a tree of cliques.

Definition 7 An open tree of a network graph G = (V,E) is a subgraph

T = (VT,ET) of G that is a tree and such that only one node r in VT is

linked to nodes in V \VT. We say that r is the root of T.

In other words, an open tree is a tree attached by its root to a graph. In

particular, a tree is an open tree. The definition of an open tree of cliques

follows naturally:

Definition 8 An open tree of cliques of a network graph G = (V,E) is a

subgraph T = (VT,ET) of G that is a tree of cliques and such that only one

node r in VT is linked to nodes in V \VT. We say that r is the root of T.

As mentioned earlier, we are interested in the depth of links in such struc-

tures. To define depth, we will use the following function: in a graph

G = (V,E), the “distance” d(a, b) between a and b is the minimum number

of links of E needed to connect a to b. Note that this can apply as well to

two nodes, two links, or a node and a link.

Definition 9 Let T = (VT,ET) be an open tree of cliques of root r. The

depth of a link l ∈ ET is δl = 1 + d(l, r).

In other words, if the shortest path in ET between l and r is of length

t = d(l, r), then we say that l is of depth t + 1. Note that if l is the link

connecting nodes a and b, then d(l, r) = min{d(a, r), d(b, r)}+ 1.

We will first state and prove a weaker version of Lemma 11 because this

proof should convey the main intuition. Then, proving Lemma 11 is only

technical details.

40

Lemma 12 Under the k-hop interference model, the maximum depth of an

unstable link in an open tree is bk
2
c.

Proof: Let U be an unstable subset of links of G. There exists a

feasible arrival rate
−→
λ in the interior of Co(MU) such that the queues of

all links in U increase to infinity. Let T = (VT,ET) be an open tree of G

and let UT = U ∩ ET. Let l∗ be a link in UT of maximum depth δ with

respect to T. Assume, towards a contradiction, that δ > bk
2
c, so in fact

δ ≥ bk
2
c + 1. Consider the set of all interfering links of l∗ in U, and call

it IU(l∗) = I(l∗) ∩U. We want to prove that the queues of all the links in

IU(l∗) cannot increase to infinity. By definition of IU(l∗), it is clear that,

at every time instant, at least one link of IU(l∗) is scheduled. Indeed, all

the links that are not in U have no packet to transmit; and since all the

links of U that interfere with l are in IU(l∗), if none of them is scheduled,

then l∗ should be scheduled. Furthermore, we will check that any two links

a and b of IU(l∗) interfere with each other. If a, b /∈ UT, then we have

d(a, r) = d(a, l∗)− d(l∗, r) ≤ (k − 1)− (δ − 1) ≤ k − 1− bk
2
c = dk

2
e − 1 and,

similarly, d(b, r) ≤ dk
2
e−1. Thus, d(a, b) ≤ d(a, r)+d(b, r) ≤ 2dk

2
e−2 ≤ k−1

and a and b interfere with each other. If a ∈ UT and b /∈ UT, then d(a, b) =

d(a, r) + d(r, b) ≤ d(l∗, r) + d(r, b) = d(l∗, b) and again a and b interfere

with each other. Finally, if a, b ∈ UT, the proof in [3] applies and we get

that a and b interfere with each other. So any two links of IU(l∗) interfere

with each other, and thus it is not possible to schedule more than one link in

IU(l∗) at every time instant. Since
−→
λ is in the interior of the capacity region,

∑
l∈IU(l∗) λl < 1. As one link of IU(l∗) is scheduled at every time instant, it

is not possible that all the queues of the links of IU(l∗) increase to infinity,

so δ > bk
2
c cannot be true.

We will now prove Lemma 11.

41

r

a l* b

A=B

case 1

r

A

a

bl*

case 2

B

r

B

a l*

b

case 3

A

Figure A.1: Tree of cliques - the 3 possible cases.

Proof: (Lemma 11) The proof is identical to that of Lemma 12 except

when we want to prove that two links a, b ∈ IU(l∗) ∩UT interfere with each

other. To that end, define a nearest common ancestor of a and b as a node

with smallest depth in T that belongs to a shortest path in ET between a

and b. As T is a tree of cliques, a and b may have many nearest common

ancestors, but they will all belong to the same clique C. In that case, we

say that C is the nearest common ancestor of a and b in T. Let A be the

nearest common ancestor of a and l∗ in T and B be that of b and l∗. We

will consider all possible cases for the relative locations of A and B. Those

cases are represented in Figure A.1. The case A = B corresponds to case 1.

If A 6= B, then either A is an ancestor of B, or B is an ancestor of A. These

last 2 cases are symmetrical, so we will consider only one of them.

For any c ∈ T, denote by Ac the node of A that is closest to c, i.e., Ac is

such that d(c, Ac) = minn∈A d(c, n). Note that this definition is valid whether

c is a node or a link.

We consider case 3 first because it is simpler and case 1 does not bring any

new idea. d(a, b) = d(l∗, b) + d(a,Ab)− d(l∗, Ab) = d(l∗, b) + d(a, r)− d(l∗, r)

and d(l∗, r) ≥ d(a, r) because l∗ is of maximum depth in T. So d(a, b) ≤
d(l∗, b) and thus a and b interfere with each other.

42

In case 1, d(a, b) = d(l∗, b)+d(a,Aa)+d(Aa, Ab)−d(l∗, Al∗)−d(Al∗ , Ab) =

d(l∗, b) + d(a, r) − d(r, Ar) − d(Ar, Aa) + d(Aa, Ab) − d(l∗, r) + d(r, Ar) +

d(Ar, Al∗) − d(Al∗ , Ab) ≤ d(l∗, b) + d(Aa, Ab) + d(Ar, Al∗) − d(Ar, Aa) −
d(Al∗ , Ab) because d(a, r) ≤ d(l∗, r). We can switch the roles of a and b

and get another expression. So, we have the following two inequalities:

d(a, b) ≤ d(l∗, b) + d(Aa, Ab) + d(Ar, Al∗)

−d(Ar, Aa)− d(Al∗ , Ab) (A.1)

d(a, b) ≤ d(l∗, a) + d(Aa, Ab) + d(Ar, Al∗)

−d(Ar, Ab)− d(Al∗ , Aa) (A.2)

We now check that in any case we can use one of the previous equations

to prove that a and b interfere with each other.

If Ar = Aa, then d(Aa, Ab) = d(Ar, Ab) and d(Ar, Al∗) = d(Al∗ , Aa) so we

can conclude using (A.2).

If Al∗ = Ab, then d(Aa, Ab) = d(Al∗ , Aa) and d(Ar, Al∗) = d(Ar, Ab) so,

again, we can conclude using (A.2).

If Ar 6= Aa and Al∗ 6= Ab, then we use (A.1).

We are now ready to prove Lemma 2.

Proof: (Lemma 2) We consider the 2-hop interference model. Let U be

an unstable subset of links of G and l be a link of U. We want to show that

there are at least 2 nodes of V exactly 1-hop away from l. We will consider

all possible cases. If l is an open link, then Lemma 12 implies that one of

the extreme nodes of l is in a cycle of G, so its two neighboring nodes in

that cycle are disabled. If l is in a cycle C of size 4 or more, each extreme

node of l disables a neighboring node in C. If l is in a cycle C of size 3,

then, firstly, it disables the third node of C. But since a cycle of size 3 is

43

a clique, Lemma 11 implies that at least one of the extreme nodes of l will

disable a node in the rest of G. Finally, if l is not an open link and not in

a cycle, then there are two subgraphs of G, both with more than one node,

that are connected only through l. Link l will disable one node in both those

subgraphs.

44

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximal throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, December 1992.

[2] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed
throughput maximization in wireless mesh networks - A partitioning
approach,” in Proceedings of ACM MOBICOM’06, September 2006, pp.
26–37.

[3] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless net-
works,” in Proceedings of IEEE INFOCOM’08, April 2008, pp. 1132–
1145.

[4] R. Preis, “Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs,” in Proceedings of STACS’99,
1999, pp. 259–269.

[5] N. McKeown, Scheduling Algorithms for Input-Queued Cell Switches.
Berkeley, CA: University of California, Berkeley, 1995.

[6] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer control in multihop wireless networks,” in Proceedings of IEEE
INFOCOM’05, 2005, pp. 302–315.

[7] A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid lim-
its,” Advances in Applied Probability, vol. 38, no. 2, pp. 505–521, 2006.

[8] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling
for distributed throughput maximization in wireless networks,” in Pro-
ceedings of IEEE INFOCOM’08, April 2008, pp. 1139–1147.

[9] C. Joo, X. Lin, and N. B. Shroff, “Performance limits of greedy maxi-
mal matching in multi-hop wireless networks,” in Proceedings of IEEE
CDC’07, December 2007, pp. 1128–1133.

45

[10] J.-H. Hoepman, “Simple distributed weighted matchings,” October
2004. [Online]. Available: http://arxiv.org/abs/cs.DC/0410047.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: W. H. Freeman,
1979.

[12] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Transactions on Information Theory, vol. 34, no. 5, pp. 910–917, 1988.

[13] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in Proceedings 43rd An-
nual Allerton Conference on Communication, Control and Computing,
September 2005.

[14] X. Wu and R. Srikant, “Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks,” in Proceedings of IEEE IN-
FOCOM’06, April 2006, pp. 595–605.

[15] C. Joo, “A local greedy scheduling scheme with provable performance
guarantee,” in Proceedings of ACM MOBIHOC’08, Hong Kong SAR,
China, May 2008, pp. 111–120.

46

