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Abstract

This thesis aims to characterize microcantilevers with integrated heater-thermometers. This research

concentrates on characterization for use in data storage, sensing, surface science, and nano-manufacturing.

The first objective seeks to understand the specific thermal interactions between a heated microcantilever

tip and various substrates. The experiments investigate thermal conductance, thermal time constant, and

temperature-dependant adhesion force between and cantilever tip and substrates of silicon, quartz, and

polyimide. The second objective is to utilize a heated microcantilever as a heater-thermometer. The

experiments investigate the thermal calibration sensitivity and resolution under steady and periodic

conditions near room-temperature. The results were compared to the Raman spectroscopy, which measures

the local temperature at the cantilever tip.
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Chapter 1

Introduction

1.1 Atomic Force Microscopy

Atomic Force Microscopy (AFM) has become one of the most widely used tools for sensing and actuating

on the nanometer scale [1]. An AFM uses a microcantilever with a sharp tip in order to obtain a

topography. A vertical piezoelectric actuator under the substrate maintains either constant contact force

between the cantilever and the substrate (contact mode) or oscillating amplitude of the cantilever force

(tapping mode) using an appropriate feedback mechanism. As the tip is raster-scanned across the surface,

it is deflected as it moves over the surface contours and optical sensing is used to track the deflection. The

optical sensor employs a laser that is reflected from the back of the reflective AFM cantilever and onto a

position-sensitive detector (photodiodes).

1.2 Heated Microcantilevers

Advances to this field have lead to the development of the heated microcantilever which was originally

designed for thermomechanical data storage [2, 3], but its capabilities have since been expanded to include

nanoscale thermal instrumentation, nanomanufacturing, nanometrology, nanotopography [4, 5, 6], thermal

reading and writing. A heated microcantilever that was fabricated from doped single crystal silicon is

shown in figure 1.1. Electrical current in the cantilever induces resistive heating at the cantilever free end.

The fabrication and characterization of these cantilevers is well understood, and are discussed below.

1.2.1 Design and Fabrication

The heated microcantilevers were made using a standard silicon-on-insulator (SOI) process [7], and their

fabrication is briefly stated as follows. The cantilevers are made from an SOI wafer of orientation 〈100〉,

and n-type doping at 2× 1014 cm−3 having a resistivity of approximately 4 Ω-cm. The cantilever tip was
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formed using an oxidation sharpening process [8], and has a height between 500 nm and 1 µm, with a tip

radius of and had a radius of a curvature near 20 nm. The cantilever was doped using two phosphorous

steps: first, the two parallel cantilever legs were doped to 1× 1020 cm−3 and then the heater region near

the free end of the cantielver was doped to 1× 1017 cm−3. The doping makes the heater region of size of

8× 16 µm2 more resistive than the rest of the cantilever.

Figure 1.1: Scanning Electron Microscopy image of a Heated Microcantilever

In this “U-Shaped” configuration, when an electrical current is applied through the cantilever the

cantilever tip will heat up. More than 90% of the power is dissipated in the highly resistive heater region,

resulting in a temperature increase that can exceed 1300 K [9]. Figure 1.2 shows an infrared image of the

heated microcantilever, which verifies that heating occurs only near the free end of the cantilever [9].

1.2.2 Device Characterization

The electrical characterization of the heated microcantilever is well understood [9] and was conducted

using a simple “sense” circuit, shown in Figure 1.3. The cantilever was mounted in the circuit, where it

was connected in series to a resistor in order to protect it by limiting the current at high power as well as

to measure the current during excitation. A resistor with a high resistance of 10kΩ was used. Figure 1.4

depicts the DC response of a cantilever with a 10kΩ resistor in air, without interacting with a substrate,

and it can be seen that the electrical resistivity response of the cantilever is nonlinear. The resistance of

the cantilever increases as the applied voltage increases because of the decreasing electrical mobility of

doped silicon with temperature. As the DC response of the cantilever peaks around 600◦C it begins to
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Figure 1.2: Infrared image of a heated microcantilever confirming heating at the tip

decrease, which is called “thermal runaway” due to the thermally generated intrinsic carriers outnumbering

the doped carriers [7].

Figure 1.3: “Sense” circuit used to characterize the cantilever. There is a sense resistor connected to the
cantilever in series to protect the cantilever at high power and to sense the current during excitation.

Temperature around the cantilever tip, collected using Raman spectroscopy, is shown in figure 1.5.

Raman scattering has been used to determine temperature distribution with micron spatial resolution in

silicon [10, 11, 12]. Overall, the cantilever can reach temperatures > 600 ◦C and the cantilever resistance is

a strong function of temperature. In order to accurately measure the temperature rise in the cantilever

many aspects of the Raman optical scattering signature must be utilized. The position of the Stokes peak,
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Figure 1.4: Cantilever DC response of cantilever resistance vs input voltage and power vs input voltage

the width of the Stokes peak, and the ratio of the Stokes peak to the anti-Stokes peak are all methods for

determining the temperature. The first of these methods is the least accurate due to the fact that the

Stokes peak contains both stress data and temperature data; however, the other two methods require

extremely long accumulation times. Because the stresses are small upon the cantilever we can measure the

Stokes peak quickly and accurately to get a good value for the temperature by assuming that the stresses

are negligible.

The interaction between the cantilever and the substrate requires precise mechanical properties of the

cantilever such as the spring constant and resonance frequency. A thermal noise calibration technique is

the method used in the commercial AFM system (MFP-3D, Asylum research) to address these calibration

issues. The spring constant is given by k = kBT
〈x2〉 , where k is the cantilever spring constant, kB is

Boltzmann’s constant, T is the cantilever temperature, and 〈x2〉 is the mean square deflection of the

cantilever, which can be determined from integrating a simple harmonic oscillator model fit of the power

spectrum of the cantilever thermal vibrations. At room temperature, the measured resonant frequency was

∼ 70 kHz, as shown in the Figure 1.6, and the spring constant was found to be ∼ 0.6 N/m. At higher

temperature, the spring constants was found decreases specifically at 400 ◦C to be ∼ 0.3 N/m. The

interaction between the cantilever and substrate, and how it is affected by cantilever properties, is

discussed in further detail in Chapter 2.
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Figure 1.5: Cantilever DC response of cantilever resistance vs. temperature

Figure 1.6: The mechanical characteristics of the cantilever when it is suspended in quiescent air, without

interacting with the substrate. The noise density spectrum of the cantilever provides the fundamental

mechanical resonance frequency of the cantilever.
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1.3 Objectives

Chapter 2 investigates the specific thermal interactions between a heated microcantilever tip and various

substrates. The utilization of heated microcantilevers for surface science, nano-manufacturing, data

storage, and sensing were widely investigated and require improved understanding of their fundamental

thermal and mechanical behavior while interacting with different substrates. The heat flow from a thermal

microcantilever changes with respect to different surfaces and their individual properties, which must be

adequately characterized. These results aid new applications of heated cantilevers in surface analysis and

metrology that may allow for the recognition of polymorphic changes upon undetermined substrates.

Chapter 3 describes how an atomic force microscope microcantilever, having an integrated solid-state

resistor, can be used as a heater or a resistive thermometer. The thermal calibration sensitivity and

resolution of these cantilevers was investigated under steady and periodic operation near

room-temperature. Overall, the temperature coefficient of resistance of the cantilever is 0.0029 K−1 near

300 K. When the cantilever is placed under periodic heating conditions the temperature resolution is

measured as low as 5 mK. This characterization of heated cantilevers enables precise measurement of small

temperature changes, and could improve nanoscale thermal measurements.
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Chapter 2

Substrate Dependance of Thermal
Conductance, Time Constant, and
Temperature-Dependant Adhesion of
Heated Microcantilevers

2.1 Introduction

Microcantilever heaters, AFM cantilevers having integrated solid-state heating elements, have been widely

investigated for uses in data storage, sensing, surface science, and nano-manufacturing [3, 13]. These

applications require improved understanding of the fundamental thermal and mechanical behavior of

heated microcantilevers while interacting with different substrates. Cantilever thermal and mechanical

characterization in air [9] as well as heat flow between a microcantilever tip and a semiconductor surface

have been closely examined [14]. However, much less work has been done to understand the specific

thermal interactions between a heated microcantilever tip and different substrates, even though relevant

substrates can have physical properties spanning several orders of magnitude. This chapter reports

measurements of substrate thermal conductance, thermal time constant, and temperature-dependant

adhesion force between and cantilever tip and substrates of silicon, quartz, and polyimide (with the aim of

creating new opportunities for the use of heated AFM cantilevers).

The experiments were performed using heated AFM microcantilevers, which have an integrated resistor

heater at the free end and are described in more detail in Chapter 1. A simple sense circuit, which is

shown figure 1.3, is used to operate and characterize the microcantilever and is explained in more detail in

the previous chapter. A general DC analysis in quiescent air at 25 ◦C was performed, and the results are

displayed in figure 1.3 which shows the nonlinearity of the cantilever resistance with respect to the total

input voltage. As an applied electrical current flows through the microcantilever it induces resistive

heating at the free end which is measured using Raman spectroscopy (described in more detail in the

previous chapter) and the cantilever resistance as a function of the cantilever heater temperature is shown

in figure 1.4.
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2.2 Experiments

2.2.1 Force versus Distance Curves

One technique for analyzing substrate properties (i.e. elasticity) is force versus distance curves, which are

used to measure the tip-substrate interaction force that the cantilever tip applies to the surface. A force vs.

distance curve is actually a plot of the deflection of the cantilever, which has been converted based on the

spring constant of the cantilever against the extension of the z-direction piezo. Therefore, it can be clearly

seen how the cantilever approaches, contacts, and the retracts from the surface. These different steps can

be seen in figure 2.1 which shows a schematic of how the force of the cantilever tip applied to the surface

varies with distance.

Figure 2.1: As the probe approaches a substrate the dissipated heat from the cantilever will increase, while

maintaining a constant temperature (thermal resistance). The fluctuation in power across the cantilever is

the obtained thermal signal.

In brief, the principles of the force-distance measurements involve the probe approaching the substrate,

which may cause the probe to bend upwards due to repulsive forces (step 1), until it jumps into contact

with the surface, or “snaps-in,” by local Coulombic forces (step 2). Then the force is increased in the

contact region, which in turn increases the cantilever deflection (step 3). The probe begins retraction (step

4) until the tip is freed from the surface (step 5) and then returns to the equilibrium position (step 6). The

force-distance curve often shows a hysteresis, seen in step 5, referred to as the “pull-off” force, which can

be used to estimate the surface energy or the binding forces.
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2.2.2 Tip-Substrate Thermal Conductance

Thermal microcantilevers measure the heat dissipated on a surface in response to resistive heating by an

applied voltage. Using this, in combination with knowledge about heat transfer, we are able to infer

information about the topography as well as some surface properties of a material that is brought into

close proximity to the microcantilever. Heat flow from a cantilever is a strong function of the air gap,

therefore changes in position can be measured through the changes in thermal resistance caused by the

heaters integrated into the cantilevers. The inset of figure 2.1 describes how a microcantilever senses a

surface. As the probe approaches a substrate the air gap closes and the thermal resistance will decrease,

causing the cantilever temperature to vary while maintaining a constant heating power. As the probe then

moves away from a substrate, the thermal resistance between the cantilever and the substrate increases,

again causing a change in the cantilever temperature. The thermal signal acquired from the

microcantilever can then be used to produce a thermal image and perform other thermal analyses. Using

the measurement of the force vs. distance curve the thermal conductance between the cantilever and

substrate can be investigated as a function of cantilever-substrate distance.

Figure 2.2: This is the sense circuit used with a PID control in order to maintain a constant resistance
to watch the power fluctuate. There is a sense resistor connected to the cantilever in series to protect
the cantilever at high power and to sense the current during pulse excitation. A high-speed amplifier is
configured when the cantilever is operated with a sense resistor having high resistance.

Experimental setup used is the same “sense” circuit, but with a proportional-integral-derivative (PID)

controller. A PID controller is a generic control loop feedback mechanism used to correct the error of a

desired setpoint by calculating and then outputting a corrective action that can adjust the process

accordingly and rapidly, to keep the error minimal. As described above, the cantilever approaches and

retracts from contact with the substrate causing both the cantilever resistance and dissipated power to

9



fluctuate. To remove one variable from the system the PID controller was used to maintain the resistance

of the cantilever in order to ensure that the power is the only fluctuating value in the system, shown in

figure 2.2. Force vs. distance data was acquired simultaneously with the thermal signal from the cantilever.

Knowing that only the power was dissipated, the thermal conductance, G, can be calculated from the

power dissipated, q, and the change in cantilever temperature, ∆T , by dividing cantilever heating power by

the temperature difference between cantilever temperature and room temperature (q/∆T ).

Figure 2.3: Force vs. distance curve for silicon, quartz, and polyimide at 200 ◦C.

Conductance measurements were made over a range of temperatures on three surfaces: quartz, silicon,

and polyimide. Figure 2.4 shows the force and thermal conductance between the heated cantilever and the

three different substrates for a cantilever heated to 300 ◦C. The cantilever speed was 2 microns per second

and it dwelled on the surface for 1 second.

There was some slight variation of the conductance to air of the cantilevers, because multiple

cantilevers need to be used with slightly different characteristics. It was found that for a cantilever far

from a substrate, the measured conductance to air was 0.03419 mW/K, 0.03601 mW/K, and 0.03481

mW/K for the cantilever associated with quartz, silicon, and polyimide substrates, respectively. For the

cantilever in contact with each of these substrates at 200 ◦C, the thermal conductance was found to be

0.03443 mW/K, 0.03624 mW/K, and 0.03497 mW/K, respectively. As temperature increased there was an

overall decreasing trend of the thermal conductance for all of the materials, which is to be expected for
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these materials.

Figure 2.4: Cantilever force and cantilever conductance vs. tip-substrate distance (Z-Position) for several
substrates. These experiments were repeated across all surfaces for varying cantilever temperatures and on
surface dwell times.

2.2.3 Pull-Off Force and Work Adhesion

From a force vs. distance curve there are two distinguishable regions to be noted. First of which is during

the approach, where as the cantilever gets close to the surface the tip will be first repulsed by the surface

then attracted to the surface by van der Waals forces. It is at this point of attraction that the van der

Waals forces will take over and the cantilever will “snap in” to the surface, or basically the point at which

the cantilever is now considered in contact with the surface, which can be seen in figure 2.1. The force

required to break tip-substrate contact is the “pull-off” force, shown in figure 2.1. Secondly, as the

cantilever retracts from the surface an adhesion force dominates the cantilever deflection until the

cantilever is released from the surface. The pull-off force, F , was calculated using Hooke’s Law by

multiplying the maximum cantilever deflection, d, before the tip is pulled off the surface, by the spring

constant of the cantilever, k. The work of adhesion is the energy required to overcome adhesion between

the tip and the substrate, and can be calculated by integrating the force-distance product during pull-off.

Figure 2.5 shows the force vs. distance curves of silicon at a range of temperatures.

The pull-off force and work of adhesion of silicon, polyimide, and quartz substrates were measured
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Figure 2.5: Force vs. distance curve of silicon at a range of temperatures. The experiments were repeated
with varying dwell times on the surface.

under different temperature conditions as well as varying on surface dwell time. The pull-off force and

work of adhesion results are presented in table 2.2.3. Overall, the trends between these two quantities

follow the same trends, which makes sense since both the pull-off force as well as the work adhesion are

related to the amount of hysteresis in the curve, which would make them proportional. Figure 2.7 and 2.6

show a decreasing trend of energy and pull-off force, respectively, for quartz and silicon with increasing

temperature, whereas polyimide showed an increasing trend. At higher temperatures adhesion decreases;

however in the case of polyimide the material becomes malleable above its melting temperature allowing

for the cantilever to become embedded into the material accounting for the increasing trends. It can be

seen from the results that silicon had a higher value for pull-off force than polyimide, but quartz had higher

than both of these substrates. These relationships held for work adhesion as well, which is to be expected.

2.2.4 Cooling Time Constant

In order to take thermal measurements accurately with the heated microcantilever, adequate timing for

heating and cooling will have to be accounted for. The proper time required to heat and cool the

microcantilever is directly related to the underlying physics of the device. The heating time constant of the

microcantilever has already been fully investigated, and measurements of cooling cycles were taken to

investigate the cooling time constant.
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Table 2.1: Pull-Off Force and Work Adhesion Results

Pull-Off Force

Substrate Temperature (◦C) Dwell 1s Dwell 2s Dwell 3s Dwell 4s Dwell 10s
Silicon 200 165.35 168.64 163.95 163.27 158.87
Silicon 300 143.19 118.33 115.99 128.65 123.83
Silicon 400 117.15 146.29 138.61 139.12 146.46
Silicon 500 60.737 37.64 31.54 34.50 29.22

Polyimide 200 15.79 15.35 5.35 18.17 33.92
Polyimide 300 17.42 18.53 18.80 14.64 19.43
Polyimide 400 32.47 24.84 42.29 25.35 34.23
Polyimide 500 33.60 8.61 34.78 27.91 30.12
Quartz 200 328.86 360.65 368.08 374.16 390.91
Quartz 300 188.30 210.45 219.33 229.38 235.53
Quartz 400 134.97 130.43 159.35 159.07 162.65
Quartz 500 99.45 97.83 106.46 105.19 103.53

Work of Adhesion

Substrate Temperature (◦C) Dwell 1s Dwell 2s Dwell 3s Dwell 4s Dwell 10s
Silicon 200 8.57 8.33 8.10 7.79 7.60
Silicon 300 4.32 3.86 3.74 3.65 3.23
Silicon 400 2.46 3.83 3.41 4.32 4.85
Silicon 500 1.02 0.55 0.29 0.48 0.31

Polyimide 200 1.45 1.29 1.01 1.36 1.33
Polyimide 300 0.69 0.84 0.88 1.02 1.04
Polyimide 400 2.28 1.75 1.68 1.70 1.53
Polyimide 500 3.34 3.81 3.88 3.52 4.62
Quartz 200 13.23 15.78 16.07 17.01 17.58
Quartz 300 6.15 7.69 8.36 8.92 9.44
Quartz 400 4.15 4.71 5.85 5.82 5.90
Quartz 500 2.90 2.82 3.35 3.35 3.17

To calculate the cooling time constant, a square voltage pulse was applied to the cantilever, and the

system response was recorded. After the pulse elapsed, the thermal response of the cantilever decayed

exponentially to its original temperature. The Agilent 33250A function generator supplied DC and square

pulse voltage excitation while the Agilent 34401A digital multimeter and Agilent Infiniium 54831B

oscilloscope measured the voltage drop across the sense resistor with DC and pulse excitation, respectively.

With this instrumentation, the cantilever electrical resistance and power dissipation was obtained. Square

pulses of amplitudes ranging from 1 V to 4 V, and duration times ranging from 1 µs to 30 ms were applied

to the cantilever with a 0.5 V DC offset to monitor the resistance before and after the pulse. Figure 2.8

displays an excitation pulse applied to the cantilever along with a generalized response. Experimental data

was fit exponentially to determine the cooling time constant, and figure 2.9 summarizes the the
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Figure 2.6: Pull off force vs. temperature for several substrates. The experiments were repeated across all
surfaces for varying cantilever temperatures and on surface dwell times.

measurement results for all three surfaces: quartz, silicon, and polyimide.

The heated cantilever can cool to room temperature from about 300 ◦C for a short heating time (1µs)

in approximately 50 ns. For long heating times, as fast as 0.1 ms in air as well as 0.1 ms, 0.3 ms, and 0.15

ms for silicon, quartz, and polyimide, respectively. Overall the time constant remained fairly steady for the

pulse widths less than 1 ms and amplitude, and appear to plateau after the jump at 1 ms.

2.3 Conclusions

Substrate thermal conductance, thermal time constant, and temperature-dependant adhesion force

between and cantilever tip and substrates were measured to enhance the understanding of thermal

interactions between a heated microcantilever tip and different substrates. These results aid new

applications of heated cantilevers in surface analysis and metrology that may allow for the recognition of

polymorphic changes upon undetermined substrates.

It was found that the conductance measurements showed a decreasing trend with an increase in

temperature with the cantilever in contact with each of the substrates. The results from the force distance

curves for depicting the pull-off force as well as the work adhesion showed some interesting trends as well.

For silicon and quartz there is a general decrease in both the “pull-off” force and work adhesion with an
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Figure 2.7: Work vs. temperature for several substrates. The experiments were repeated across all surfaces
for varying cantilever temperatures and on surface dwell times.

increase in temperature. Whereas, polyimide there is the opposite or reverse effect, due to the malleability

of the material as the temperature passes its melting point. These trends are related due to the nature of

the hysteresis of the force-distance curve in that as the pull-off force is increased so is the work adhesion.

Finally, the cooling time constant at long heating times were 0.1 ms, 0.3 ms, and 0.15 ms with the

cantilever tip placed on the silicon, quartz, and polyimide surfaces, which provides information about the

possible speed capabilities of these heated cantilevers for thermal reading and writing.

The decreasing trend of the work adhesion and the pull-off force with increasing temperature can be

explained due to the increase in energy in the system in order to overcome adhesion. For the polyimide the

tip is actually penetrating the surface and therefore lifting out a mass with it which would change the

amount of initial deflection accounting for the approach slope that it is seen. Along with the additional

mass there will be a change in the tip radius which would increase the adhesion forces, leading to

inaccuracies or error in the measurements. Since the polyimide would be partially covering the tip, the

tip-surface interaction would change due to the fact that it is now a new material at the tip.
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Figure 2.8: Generalized square pulses and the cantilever response of varying amplitudes and varying duration
times.

Figure 2.9: Square pulses of amplitudes ranging from 1 V to 4 V, and duration times ranging from 1 µs to
30 ms were applied to the cantilever with a 0.5 V dc offset to monitor the resistance before and after the
pulse.
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Chapter 3

Room-Temperature Temperature
Sensitivity and Resolution of
Doped-Silicon Microcantilevers

3.1 Introduction

Recent advances of atomic force microscopy (AFM) have evolved nanoscale thermal instrumentation, such

as scanning thermal microscopy (SThM) [15], nano-thermal analysis (n-TA) [16, 17], and near-field

photothermal infrared spectroscopy (PTIR) [18, 19]. These techniques are capable of mapping thermal or

chemical information with unprecedented spatial resolution. The common key issue in realizing these

promising metrologies is the precise measurement of a small temperature rise in a highly localized manner,

and has motivated the development of a thermal AFM probe whose tip is functionalized as either a

thermocouple [20, 21, 22] or a resistive heater-thermometer [7, 9, 23]. The spatial resolutions achievable

with thermal probes have been well investigated, revealing 50 nm for the thermocouple probe [21] and 140

nm for the heater-thermometer probe [14] dominantly due to a sub-100 nm tip radius. The temperature

sensitivity near room temperature is very important for many types of measurements, but temperature

sensitivity has not been carefully studied below about 50 ◦C [9, 24]. The temperature resolution is also

very important, particularly near room temperature. Therefore the temperature resolution near room

temperature of thermal probes was a fully investigated for these emerging applications.

As shown in Figure 3.1, the doped-silicon probe has a low-doped region integrated at the free end that

functions as either a heater or a resistive thermometer [9]. This probe has been adopted for various

nanoscale thermal applications, including data storage [2], nanolithography [25, 26], self-cleaning

spectroscopic nanosampling [27], and electrothermal scanning gate microscopy [28], most of which require

the local heating capability above 200 ◦C. Previous studies have demonstrated that the doped-silicon probe

can increase the tip temperature up to 1000 ◦C, and function reliably in vacuum [29], cryogenic [30], and

liquid [31] environments. However, thermal behaviors of the probe near room temperature have not been

rigorously characterized. Several applications of thermal probes would benefit from room temperature

thermal characterization, especially infrared measurements and photothermal infrared spectroscopy
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(PTIR), which require sub-100 mK temperature measurements. The experimental investigation on the

room-temperature temperature sensitivity and resolution of the doped-silicon probe will thus facilitate its

further use as a sensitive thermometer near room temperature.

Figure 3.1: An SEM image of the heated microcantilever and the schematic diagram describing the ac and
dc characterization experiment. AC characterization is performed with a function generator and lock-in
amplifier. DC characterization is performed with a dc power supply and multimeter.

3.2 Experiment

Figure 3.2 shows the experimental setup where the doped-silicon microcantilever was attached to a

temperature-controlled heater stage. The experimental setup was insulated to exclude interference from

the environment. While the heater stage temperature was closed-loop controlled within a ∼20 mK

uncertainty, the cantilever signal was differentially measured in a Wheatstone bridge with 1 kΩ resistors

through the potential difference between A and B, i.e., ∆VC = VB − VA. The cantilever can be operated in

either steady (DC) mode or periodic (AC) mode when it is to be used as a thermometer. DC

characterization is straightforward to measure a steady ∆VC using a multimeter under a steady input

voltage. For the AC characterization, ∆VC has harmonic signals under a sinusoidal input voltage and thus

can be measured with a lock-in amplifier.

As long as the temperature rise is small, the electrical resistance of the cantilever can be linearized as
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Figure 3.2: The measured results on the electrical and thermal responses of the cantilever. Relative Change
in cantilever voltage corresponding to temperature change relative to room temperature. The inset is the
normalized drop across the cantilever vs frequency at a maintained ∆T at 1 K.

RC = R0[1 + α∆T ], where R0 is the cantilever resistance at a reference temperature, α is the temperature

coefficient of resistivity (TCR), and ∆T is the temperature rise of the heater stage. In DC mode, if the

voltage drop across the potentiometer VC is set the same as that across the cantilever at the reference

temperature, the cantilever voltage change can be approximated as (∆VC/VC,0)dc ≈ [R1/(R1 + R0)]α∆T ,

where is the cantilever voltage at the reference temperature, and the sense resistance of the Wheatstone

bridge. Thus the temperature can be monitored in real time simply by measuring the cantilever voltage,

while the sensitivity is S = [R1/(R1 + R0)]α∆T . In order to prevent self-heating, the input voltage Vtotal is

maintained at 10 mV, corresponding to the cantilever power dissipation of 24 nW and, equivalently, the

cantilever tip temperature increase < 2 mK.

In AC mode, the cantilever voltage has three harmonics due to periodic power dissipation of the

cantilever and the resultant cantilever resistance oscillation [32]. The second and third harmonic signals

are two orders of magnitude smaller than the first harmonic signal [30, 32] and induce negligible

temperature rise. The first harmonic cantilever signal can then be approximated as

(∆VC/VC,0)ac ≈ (R1α∆T − jωR1CC)/(R1 + R0 + jωR1R0CC), where CC is the parasitic cantilever

capacitance connected in parallel with the cantilever resistance [30, 33]. The cantilever capacitance is

around 10−100 pF depending on the cantilever geometries and operation condition, and its effect on the
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cantilever electric behaviors is negligibly small up to 30 kHz [30, 33]. Although not shown here, the

out-of-phase cantilever voltage signal, the imaginary part of the above equation, is six orders of magnitude

smaller than the in-phase signal even at 100 kHz, consistent with the previous studies. Thus the AC

cantilever signal can be further simplified the same as the DC case, i.e.,

(∆VC/VC,0)dc ≈ [R1/(R1 + R0)]α∆T , suggesting that the AC cantilever signal be a linear function of the

temperature and have the same slope as the DC cantilever signal. However, the noise level will be much

lower in AC mode compared to DC mode, resulting in better temperature resolution.

Figure 3.2 shows the cantilever voltage change as a function of the temperature rise ∆T for both steady

and periodic signals. Note that for the periodic operations only the in-phase cantilever voltages are plotted

in figures, as the out-of-phase cantilever voltage is negligibly small. The slope of the temperature response

for the AC signals is similar to that of the DC temperature response, which confirms that the both signals

are linear functions of temperature with the same sensitivity. The inset of Figure 3.2 shows a snapshot at

∆T = 1K of the cantilever signal versus the measured frequency range.

Figure 3.3: Uncertainty of the percent change in cantilever voltage corresponding to temperature change
relative to room temperature.

The uncertainty of a signal is critical in determining the measurement resolution for a small

temperature change. Figure 3.3 shows the uncertainty of the cantilever signal as a function of temperature

rise, ∆T . The uncertainty of the periodic signal is an order of magnitude smaller than that of the steady

signal. This is expected since the lock-in amplifier can be relatively insensitive to noise because it is only
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retrieving one frequency at a time. The uncertainty was routinely measured without a special care and

thus includes all measurement and environment noise sources.

Figure 3.4: Comparison of the cantilever sensitivity vs frequencies with a fixed input voltage at 10mV-rms.
Across the frequency range the sensitivity maintains within 5% of its mean value.

The cantilever temperature sensitivity, or TCR, is the cantilever signal per change in temperature,

∆VC/VC/∆T , or in other words, the slope of the data displayed in Figure 3.2. The cantilever temperature

sensitivity (10−3/K) is compared at different frequencies of the AC signal and is shown in Figure 3.4.

Across the investigated frequency range the sensitivity has a small fluctuation within 5% of its mean value.

The mean sensitivity of the microcantilever is 0.0011 K−1, or equivalently 0.0029 K−1 as the mean TCR of

the cantilever. This value is around 75% of the TCR of bulk platinum (Pt), 0.0039 K−1, and more than

twice as sensitive as previously reported micro/nano-thermometers such as a Pt nanothermometer (0.0007

K−1) [14], an electro-deposited Pt nanowire (0.0014 K−1) [34], and a polycrystalline Pt nanofilm (0.0013

K−1) [35]. The temperature resolution of the cantilever indicates the smallest step change in temperature

that could be measured in a given integration time and can be determined by the noise, or average

uncertainty Uavg, and the sensitivity S, i.e., Uavg/S. Figure 3.5 shows the cantilever temperature

resolution over a range of frequencies. When compared with the DC temperature resolution over 100 mK,

the AC measurement improves the temperature resolution by more than one order of magnitude, achieving

the smallest resolution of 5 mK at 10 kHz. For operation frequency over 20 kHz, the temperature

resolution begins to increase with a larger uncertainty because the electrical impedance plays a significant
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role in the cantilever response [33].

Figure 3.5: The cantilever resolution of temperature over different frequencies. This is found by the average
uncertainty divided by the sensitivity

A Raman spectroscope measured cantilever temperature with DC electrical excitation, yielding an

uncertainty of ±2.1 K for a temperature range of 300 to 500 K [?]. Comparing the above results to the

Raman calibration, the cantilever TCR obtained in the present study, 0.0029 K−1, falls within the

uncertainty of the TCR determined from the Raman experiment, K−1. Moreover, the impedance of the

cantilever can be calculated for the AC operation, and the change of the resistance remains stable with

respect to change in temperature. The relative stability of the resistance with respect to change in

temperature in combination with the small uncertainty suggests quantitatively that this method for

temperature calibration, near room temperature, is far more accurate than Raman spectroscopy.

3.3 Conclusions

This chapter reports the temperature sensitivity and resolution of a doped-silicon microcantilever probe

near room temperature. For both steady (DC) and periodic (AC) operation, the cantilever signal has a

linear relationship to the change in temperature relative to the room temperature. The temperature

resolution for the AC mode is estimated to be as small as 5 mK, more than 20 times smaller than that of

the DC mode. This temperature resolution is sufficiently low to measure infrared signals near room
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temperature, and will enable sensitive measurements for fundamental heat transfer studies and infrared

spectroscopy.
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Chapter 4

Summary and Conclusions

In this study, analyses of the substrate dependance of thermal conductance, time constant, and

temperature-dependant adhesion of heated microcantilevers, as well as the room-temperature temperature

sensitivity and resolution of doped-silicon microcantilevers, was presented in this work. A closer

examination of heated microcantilever tips and their fundamental thermal and mechanical behavior while

interacting with different substrates for use in surface science, nano-manufacturing, data storage, and

sensing was investigated in this thesis. The heat flow from a thermal microcantilever changes with respect

to different surfaces and their individual properties, and the characterizations presented previously will

allow for improved use of heated microcantilevers with all substrates. These results aid new applications of

heated cantilevers in surface analysis and metrology that may allow for the recognition of polymorphic

changes upon undetermined substrates.

The conductance measurements showed a decreasing trend with an increase in temperature with the

cantilever in contact with the all the substrates. The results from the force distance curves for depicting

the pull-off force as well as the work adhesion showed two important trends. For silicon and quartz there is

a general decrease in the “pull-off” force and the work adhesion with an increase in temperature. Whereas,

polyimide there is the opposite or reverse effect, due to the malleability of the material as the temperature

passes its melting temperature. These trends are related due to the nature of the hysteresis of the

force-distance curve in that as the pull-off force is increased so is the work adhesion. Also, the heated

cantilever can cool to room temperature from about 300 ◦C for a short heating time (1µs) in approximately

50 ns. And for long heating times, as fast as 0.1 ms in air as well as 0.1 ms, 0.3 ms, and 0.15 ms for silicon,

quartz, and polyimide, respectively.

The use of a heated microcantilever as a heater-resistive thermometer was used to investigate the

thermal calibration sensitivity and resolution under steady and periodic operation near room-temperature.

Overall, the temperature coefficient of resistance of the cantilever is 0.0029 K−1 near 300 K. When the

cantilever is placed under periodic heating conditions the temperature resolution is measured as low as 5
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mK. This characterization of heated cantilevers enables precise measurement of small temperature changes,

and could improve nanoscale thermal measurements.
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