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Chapter 1 

INTRODUCTION AND BACKGROUND 

1.1 Genera 1 Remarks 

The assurance of adequate structural reI iabi 1 it'y is a principal 

consideration in the process of design. As calculations for engineering 

designs are based on mathematical models of real ity, this may be a difficult 

task. Unavoidably, when idealizing a real situation, there are factors that 

may be neglected. Load models, for example, contain uncertainties resulting 

from lack of information or knowledge. Variabilities in structural capacity 

may arise from nonuniform or careless fabrication and constructIon proce~ures. 

The laws of structural mechanics relating loads and structural response are 

based on simp1 ifications and ideal izations. The design process is thereby 

clouded with uncertainties from a lack of complete information. Moreover, 

loads and resistances usually exhibit statistical dispersions. In this con­

text, absolute safety cannot be real ized. 

The designer must insure that the resistance provided by his de­

sign exceeds potential load effects by a sufficient amount to insure ade­

quate safety under adverse conditions. This is currently ~one within the 

context of working stress or ultimate strength design. These two methods, 

whi Ie having different philosophies, share the common feature of treating 

the design parameters deterministically. The allowable stresses, or load 

factors, are chosen so that the likelihood of fai lure is deemed (intuitive-

1 y ) to be a c c e pta b 1 y sma 1 l. T r a d i t ion all y, the allow a b 1 est res s e s 0 r 1 oa d 

factors have been determined by the profession on the basis of judgment and 
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experience. The risks associated with a design are not and cannot be eval­

uated quantitatively. 

Central to a rational approach to safety is the concept of an ac­

ceptable risk of fai lure [17, 31]. In view of the randomness of many of the 

design parameters, relevant criteria for safety should provide an expl icit 

measure of the likel ihood of unfavorable design response. This requires 

that a statistical analysis be made of those data that are random. More­

over, uncertainties associated with possible errors in model ing, estimation, 

and p red i c t i on a 1 s 0 con t rib ute to t he u n de r 1 yin g r i 5 k [ 8 ]; t he ass e 5 s men t of 

the effects of these 'uncertainties on the rel iabi 1 ity of a structure proper­

ly requires probabil istic analysis. 

The consideration of uncertainties in prediction is invariably 

necessary in practice [8]. A lack of data generally makes it impossible to 

ascertain the exact statistical distributions of the design variables. The 

estimation of the model ing uncertainties underlying a mathematical solution 

often must be made on the basis of experience. In short, the safety criter­

ia should be the result of a combination of statistical analysis and good 

judgment, in which all factors are treated in a consistent manner. 

Finally, the design criteria should be simple in form. The format 

should preferably be simi lar to existing procedures; however, the allowable 

stresses, or load factors, should be selected more logically and systemati­

cally than is presently done. 

1.2 Criteria Based on Acceptable Risk 

1 .2. 1 C 1 ass i ca 1 Re 1 i a b i 1 i ty Ana 1 ys i s 

Considerable research effort has been directed toward developing 
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the classical reliability theory [31,32]. This method assumes that loads 

and resistances are statistical variables, and that the necessary statisti-

cal information is available. Safety is assured by assigning a sufficiently 

small probabi 1 ity to the event that the resistance will be less than the 

appl ied load effect. In other words, the risk of fai lure 

Pr(R < S) (1. 1) 

is specified to be acceptably small. Denoting Rand S as the mean resis-

tance and mean load, respectively, a required load factor y = R/S may be 

computed, at least conceptually, from an inversion of Eq. 1.1. The load 

factor is thus a function of Pf and the variabi 1 ities of Rand S. 

In general, the required mean design resistance may be computed 

as 

R Y S ( 1 • 2) 

Alternatively, 

R = S + B / a~ + 
2 

as ( 1. 3) 

where the "safety index" B is a function of the specified risk Pf' and gen­

erally also a function of the second-order properties of Rand S; B is sim-

ply the number of standard deviations of the margin of safety (R-S) above 

its mean for a particular risk level. 

This provides the proper theoretical basis for the evaluation of 

the statistical quantities involved. The formulation tacitly assumes that 

all uncertainties in design are contained in the probabi 1 ity laws of Rand 

S, which are presumed to be known, In practice, however, the probabil ity 
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distributions and thei r parameters are se-ldom known precisely; moreover, 

there are invariably uncertainties of prediction and model ing which may 

not be random. 

Another difficulty is that the designs are sensitive to the choice 

of the distribution functions at risk levels presently considered necessary 

-5 to assure safety (Pf :; 10 ) [8,9]. Ang and Ell ingwood [11] have also shown 

that S is distribution sensitive; furthermore, except for the normal case, 

S depends on the coefficients of variation (c.o.v.) of Rand S as well. 

In most engineering analyses involving random phenomena, only the 

first and second order moments, i.e., mean and variance, of the random vari-

abIes are known. This information describes only the mid-range behavior 

of the distribution, a region in which one distribution may be indistin-

guishable from another, but is insufficient to describe the probabi I ity law 

of the variate completely. The regions of the probabi lity distributions 

pertinent to the calculation of risk are the extremes of the distributions. 

A determination of their characteristics requires an extrapolation beyond 

the range of observed values, a difficulty pointed out by Freudenthal [32]. 

Therefore, probabi I ity models are often chosen on the basis of convenience. 

It is difficult to judge such a model with any degree of confidence, and 

the probabi I ities thus obtained are somewhat uncertain. In spite of these 

difficulties, classical reI iabi lity theor~ has served as the basis for some 

design code proposals. 

1.2.2 Extension 

For a des ign concept based on an acceptable ri sk, Eq. 1. I serves 
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as a fundamental starting point. It has been recognized [9], however, that 

an extension is necessary in order to resolve the questions of sensitivity 

and consistency arising from an imperfect state of knowledge. Bolotin [17J 

notes that a risk measure is a characteristic of a random event, and is 

useful in a comparative rather than an absolute sense. It is necessary, 

then, that a viable basis for design should uti I ize the information that is 

avai lable as consistently as possible, with the primary objective of obtain-

ing a basis for comparison between design alternatives. 

Provisions must be made for the statistical treatment of the data 

that are inherently random. This should allow the use of particular distri-

butions for modeling Rand S as suggested by avai lable data. In other cases, 

the method should permit the use of arbitrary distributions with the know-

ledge that the modeling error thus introduced is acceptably small. Uncer-

tainties in predictiQD_and model ing must be included explicitly in the for-

mulation 6f design. The del ineation between the two basic types of infor-

mation is convenient, and sometimes even necessary, for evaluating the un-

certainty measures. 

A model has ~een developed by Ang and others [10, llJ which ac-

compl ishes these objectives. In its basic form, a judgment factor is added 

to the classical reliabi I ity format to reflect the effect of imponderables 

on the associated risk. This is termed the "extended reI iabi Ii ty model ,11 

and wi I I form the basis for the safety analyses performed in this study. 

1.3 Objectives and Scope of Present Study 

The purpose of this investigation is to illustrate how a design 
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format based on an acceptable risk criterion might be developed. The ex­

tended reliability model is used as the basis. An attempt is made to give 

structural reliabi 1 ity analysis a sense of perspective. 

Since present codes are formulated on an individual member basis, 

efforts are directed at designing individual components for a prescribed 

reliability. For illustrative purposes, the development will be made for 

simple 'reinforced concrete members. Strength provisions only are considered, 

although the theory can just as easi ly be appl ied to other requirements as 

well. It is then possible to make a comparison between risk-based design 

criteria and current design code provisions, such as the American Concrete 

Institute (ACI) Standard Building Code [5] which governs present reinforced 

concrete designs in the USA. 

Chapter 2 presents a discussion of the extended rel iabi 1 ity model. 

As the existing formulation is restricted to the simplest case of single 

resistance and load, an extension is made to account for the more real istic 

multiple loading case found in practice. It is shown how the basic variabil-

ities and prediction errors may be handled in a consistent manner. 

Chapter 3 contains the formulation of the flexural and shear re­

sistance models for a concrete beam with tension reinforcement and a model 

for studying columns subjected to eccentric loading. An analysis of the 

first and second order statistics is made from existing data, and the sen­

sitivi ty of the resistances in the different modes to their dependent vari­

ables is investigated. 

Chapter 4 considers load models for permanent, short, and long 

term gravity loads, and lateral wind loads. The purpose is to obtain 
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representative statistics from existing load surveys from which the implied 

reliability of existing designs may be studied. This reliability analysis 

is performed in Chapter 5, where designs obtained from current ACI code re­

quirements are evaluated from the standpoint of the underlying risk. 

Chapter 6 contains some practical recommendations for the develop­

ment of reliability-based design criteria. 

It is hoped that this studywill aid in the transition from a de­

termi nistic format to one based on acceptable risk by indicating what levels 

of safety (in terms of risks) are implied in current standards, and by sug­

gesting representative statistical values appropriate for typical design 

situations. Progress toward implementation of a risk based code has been 

slow due partly to a seeming dichotomy between the complexity of a rigorous 

probabilistic analysis and the need for a simple form for design standards. 

This is unfortunate because PI..Q..Q,Ebi I istic analysis can be the underlying_ 

basis for the form~tion of ~esign provisions, and yet the form of the de­

sign standard can~a.in unchanged. 

1.4 Notation 

The fol lowing notation is used herein: 

o random variable describing dead load (psf units). 

FX(X) cumulative probabi I ity distribution function of X. 

L random variable describing live load (psf units). 

N random variable representing required judgment. 

Pr(E) probabi J i ty of event E. 

Pf probabi lity of fai Jure. 
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risk measure associated with basic variabi 1 ity defined in Sec. 

2.1.2. 

risk measure associated with 'errors in prediction defined in 

Sec. 2.1.2. 

R random variable describing member resistance~ 

S. random load effect from load i. 
I 

W random variable describing wind load (psf units). 

w(~) generalized load factor defined in Sec. 2.1.3. 

I .predicted mean value of random variable X. 

XI nominal vafue of random variable X, defined at some cumulative 

f X (x) 

S 

y, y. 
I 

8 

v 

probabi 1 i ty level. 

probabi1 ity density function of X. 

the number of standard deviations above the mean of a variate, 

denoted the safety index. 

-1 
<I> (1 - p ) 

o 

central factors of safety. 

measures of prediction. error in X. 

total prediction error in Rand S. 

coefficient of variation (c.o.v.) of X. 

total basic variabi 1ity in Rand S. 

ratio of mean load effects; e.g., mean live load to dead load ratio. 

mean va 1 ue of X. 

factor of engineering judgment used in design. 



9 

standard deviation of X. 

cp (x) standard normal probabi 1 ity distribution function evaluated at x. 

the standard normal variable corresponding to a cumulative probabi-

1 i ty 1 eve 1 p. 

S'lX total uncertainty in X, equal to /0 2 + 62 
X X 
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Chapter 2 

THEORETICAL FORMULATIONS 

2.1 Extended Rel labl 1 ity Concept 

2.1.1 Basic Formulation 

The classical formulation of Sec. 1.2.1 can be general ized [10,11] 

to include the prediction errors exp11cit1y by multiplying Rand S in Eq. 

1.1 by factors of engineering judgment NR and NS ' i.e., 

The uncertainties in Rand S are those associated with their inherent ran-

domness. Their first and second order statistical properties can be deter-

mined from avai 1ab1e data, and some probabi 1 ity distributions may then be 

assumed to model their natural variabi 1ity. Because of errors in prediction, 

model ing, and estimation of the parameters, the assumed distributions of R 

and S may not be correct. The purpose of NR and NS is to compensate for 

the above errors. Presumably, then, Rand 5 are the true resistance and 

load, respectively. The correct values of NR and NS are unknown, and hence 

NR and NS may be assumed to be random variables; the probabi1 ities associated 

with these factors are necessari 1y judgmental [46]. 

Fai lure is then defined as {R < S}; and the probabi lity of failure 

becomes 

= Pr(R < S) = 



11 

or, equivalently, with N = NS/NR' 

Pr(R < NS) (2.1) 

where N represents the requi red overall "judgment factor." Assumi ng that 

R, S, and N are statistically independent, 

~ 

i 
I 

Pr(R < nS) fN (n) dn (2.2) 

From this relationship, design equations simi lar to Eq. 1.2 or 1.3 may be 

obtained. 

In the implementation of this concept, it is assumed that errors 

i n rna del i n g and p re d i c t ion are 1 i mit edt 0 "e r ro rs i nth e p re d i c ted me a n val-

ues of Rand S, i.e., Rand 5. As the true means may be either greater or 

less than those obtained from the data, it is assumed that the correct means 

of ~ and g can be approximated by their predicted means, Rand 5. It then 

may be shown [10] that the mean judgment factor is 

E (N) 1.0 (2.3) 

with C.O.v. 

(2.4) 

where ~R and ~S are prediction errors representing the uncertainties in the 

predicted mean values Rand 5, respectively, and ~N is the combined predic­

tion error. The distribution of N cannot be determined, and in the sequel 

it is assumed to be lognormal for convenience. Also note that a more elab-

orate treatment of the prediction errors than the above second moment approach 

would not be warranted. 
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With the introduction of the random variable N, the basic random-

ness and prediction errors may be treated separately. The statistics of R 

and 5 need not include prediction errors, and their probabi 1 ity laws may 

differ from that assumed for N. In the limiting case where N is unity with 

p roba b i 1 i ty one, Eq s. 2. 1 . and 2.2 red u ce to the c 1 ass i ·ca 1 re 1 i a b iIi ty fo r-

mulation. This is tantamount to assuming that there are no model ing and 

prediction errors present. 

Des i gns in terms of the centra 1 factor of safety y = 'R/S obta i ned 

on the basis of Eq. 2.1 are shown in Fig. 2.1. As in the classical reliabi 1-

ity analysis, these designs are not too sensitive to distributions when 

-4 -5 Pf 2: 10 ,but when Pf ~ 10 ,the designs are again quite distributionally 

sensitive. This is not surprising r for if N5 is replaced by some variable 

5 in Eq. 2.1, the equation has the same form as Eq. 1.1 and the difficulties 

associated therewith would be expected. The problem of distributional sen-

sitivity must sti 1 1 be resolved if the risk model is to be useful for design. 

One way to circumvent the sensitivity question is to specify that 

a comparative estimate of the design risk be obtained on the basis of pr~-

scribed distributions for Rand 5, as well as NR and N5 . This provides a 

convenient basis for comparison between design alternatives; however, there 

wi 11 no longer be any flexibi 1 ity for treating arbitrary distributions for 

Rand 5. 

If Rand 5, as weI 1 as NR and N5 , are prescribed to independent 

1ognorma1s, ~ and ~ are also lognorma1s, with total uncertainties 

= 

= 

/ cS~ + ~ 

/ cSs
2 

+ L}~ 
(2.5) 
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where oR and Os are measures of the basic variabilities in Rand S, and ~R 

and 6
S 

are measures of the prediction errors in Rand S. The risk of fai 1-

ure is then 

r r -- /' 1 + D2 J 
1 n IRIS S 

11 + D~ 
1 - q, (2.6) 

If DR and DS are not too large, say less than 0.30, Eq. 2.6 becomes 

1 _. q, [ 1 n (R"IS) 
. 2 2 

I DR + rtS 
] (2.6a) 

where cp(x) is the standard normal probabi lity distribution function. Con-

versely, to determine the design corresponding to a specified risk Pf' an 

inversion of Eq. 2.6a yields the requi red mean load factor as 

y (2. 7) 

in which q,-l (p) is the inverse of q,(x) at probability p. 

The delineation between basic randomness and errors in prediction 

a 1 so s e r v e s a s a bas i s for the de vel 0 p me n t 0 f the f 0 1 1 ow i n g I I a I t ern a t i ve 

risk model. 11 This is intended to permit the use of any suitable distribu-

tions (e.g., favored by avai lable data), and to circumvent the question of 

distributional sensitivity. 

2.1.2 Alternative Risk Measure 

It may be observed from Fig. 2. I that if designs are based on 
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-4 probabi 1 ity measures of 10 or greater, ,the distribution sensitivity of 

designs becomes much less pronounced. In this case, the choice of distri-

butions for Rand S becomes less significant, and convenient substitutions 

can be made when necessary. 

The measure of risk developed by Ang and Ell ingwood [11] is based 

on this observation. It is given as 

Pf = Pr(R < vS) a Pr(N > hv) (2.8) 

in which v is a specific value of N used in design, and h is a parameter 

introduced to obtain 

P r (R < vS) • P r (N > hv) Pr(R < NS) 

The first part of Eq. 2.8, 

= P r (R < vS) (2. 10) 

may be defined as a measure of the risk associated with basic randomness, 

whereas the second part 

Ps = Pr(N > hv) (2. 11) 

is a probability associated with the prediction errors. 

Assume~ for convenience, that N, R, and S are lognormal; then 

the solution of Eq. 2.9 for h yields 

from which v can be found from Eq. 2.11. For small c.o.v., say less than 

about 0.30, 
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/ 2 2-1 
exp [ 6 + 0 ¢ (1 - p f) 

-1 o ¢ (1 - p)] 
o 

(2. 12) 

where 

is the tota 1 va ria b i 1 i ty 

/62 +62 .. 
R S 

is the total prediction error 

Although Eq. 2.12 is derived from a lognormal assumption, the resulting V 

will be used for other distributions of Rand S. Then, using Eq. 2.10, the 

required mean resistance is 

R y S (2. 13) 

where y is a function of v, Pf' oR' and oS' Alternatively, 

(2. 14) 

in which B = ¢-1(1 - p ). A comparison of Figs. 2.1 and 2.2 indicates the 
o 0 

reduction in distribution sensitivity when the alternative risk measure is 

employed; this is simply due to the fact that once V has been determined, 

the designs are found from Eq. 2.10, in which Po is generally greater than 

4 -6 
10- , although Pf = P • P may sti 11 be 10 or less. o s 

It is reasonable to assume that if the basic variabi lity ° is 

much larger than the prediction error 6, the risk assQciated with the basic 

randomness should be less than that associated with model ing, and conversely. 

Furthermore, if ° and6 are of the same order, the risk associated with each 

part should be about the same. Accordingly, it may be assumed that 
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(2. 15) 

For example, if ~ = 0, implying no prediction error, Po"= Pf and Eq. 2.12 

yields V = 1.0; hence, the classical formulation is obtained. 

2.1.3 The Case of Multiple Loads 

The actions induced on a member are normally the result of several 

externally applied forces; each load may "be random, with its own statistics 

and probability distribution." It is useful to be able to study their ef-

fects separately and in combinations. To this end, the alternative risk 

may be generalized as fol lows: 

= Pr{R < v(5
1 

+ 52 + ... )) ·Pr(N > hv) (2. 16) 

in which everything else of the preceding section remains applicable. In 

particular, v is calculated from Eq. 2.12, in which the determination of 8 

and ~ includes the uncertainties associated with all the variables in Eq. 

2.16. 

The question of distributional sensitivity is even more important 

in the multiple load case. The evaluation of Eq. 2,16 requires integration 

of the joint density of R, 51' 52' .• Generally, this integration must be 

performed numerically and rapidly becomes intractable as the number of vari-

ables increases. An important exception is when all variables are normal; 

their resulting linear combination is then normal, and probabi J ities 
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associated therewith may be easily evaluated. It will be useful to verify 

that the distributional insensitivity illustrated in Sec. 2.1.2 carries over 

to the mUltiple load case. 

A well known result of probabi 1 ity theory states that if n ran-

dom variables X., i = 1, n, are normal and mutually independent, then their 
I 

sum 
n 

X I X. 
i=l 

I 

is also normal., wi th mean and variance 

n 
X I X. 

i=l I 

n 

I 
i =1 

I t f 0 1 1 ow s t hat 

~f 
R - V (5 + S2 + ... ) ] 1 

Po = Pr(R < v(Sl + S2 + . . ) ) = (2. 17) 

/ CJ~ + 
2 2 2 

V (a S + aS + ... ) 
1 2 

.where V is given by Eq. 2.12. In terr.1S of the central load factors, the re-

qui red mean value of R is 

R = + + ... + (2. 18) 

In order to generalize the solution as far as possible, define the load 

ratios, 

k 2, .. " n (2. 19a) 
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and 

w(e) + + Y 8 n n 

Then substituting Eqs. 2.18 and 2.19 into Eq. 2.17 yields 

w~ 
w(e) - V (1 + 8

2 + +8 ) 
n 

Po 
J (w (e))2 0

2 
+ v2(0~ + 8

2 
0

2 
+ ... + 8

2 
0

2 
R 2 52 n S 

1 n 

in I.lh: ,..h ,.,fA) IS the i""'n 1 \I unknown. Inverting this yields V'Y I I I '-" I I Y'I \ v I ....,,, . , 

w(6) 

For a specified p , the corresponding value of w(e) may be found. 
o 

(2.l9b) 

] (2. 20) 

(2.21) 

When only one load is present, 8 k = 0, for k = 2, ..• , n, and w(8) 

reduces to the load factor discussed in the preceding sections. For non-

zero 8k , the separate load factors Yl , Y2, ... , Yn are not uniquely deter-

mined for a level. This is true for any distributions; the load 

factors are coup1ed by the requirement of a specified reliabi 1 ity, Eq. 2.16. 

Therefore, any set of (Y 1' Y2 ' ... Yn) that satisfies Eq. 2.21 will yield 

designs with precisely the same rel iabi 1 ity. 

Current specifications increase the design loads separately, through 

applying load factors, to values where the 1 ikel ihood of exceedance is suf-

ficiently small. In a deterministic context, the only way to reflect the 
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greater uncertainty in a particular load is to increase the load factor as-

sociated with it. In a statistical sense, the true measure of safety is the 

risk of failur~~ith the sum of all loading effects. This sug-

~ s t 5 t hat i.t _ iss ~ i c i e n t to a p ply 0 n e 0 v era 1 1 loa d fa c tor tot he s um 0 f 

~he load effects. If one load contains more uncertainty than others, this 

is reflected in its uncertainty measure, and this contributes more to the 

overall load factor. 

However, if it is deemed desirable to retain the mUltiple load 

factor format for consistency with current deterministic criteria, suitable 

values of (Y
l

, Y
2

, ... , Y
n

) that satisfy Eq. 2.21 may be obtained as follows. 

Equation 2.20 is inverted to yield, 

... + 8 ) 
n 

Such an equation appl ies also to nonnormalvariates, with appropriate S . 
o 

Introducing 

~(Yl + YZ8Z + ... + Ynen)Zo~ + vZ(o~l 
a 

(Y l + y282 + ... + Yn 8n)oR + v(oS 
1 

we have, 

+ 8
2

0
2 

2 S2 

+ 8
2

0S 2 

+ ... + 8202 ) 
n S n (2.22a) 

+ .. ' . + 8
n

oS 
) 

n 



- •• (, L 8 L -<- 8 \ 
= V\I T 2 T Q •• ' nl 

or 

Equating coefficients of 8k yields 

+ S a.0 S o k 

20 

(2.22) 

The overall load factor y may be found directly from Eq. 2.17. 

In this form, the design equation is 

Substit~ting Eq. 2.23 into Eq. 2.17 and inverting gives 

y = V 

+ V 

+ 8 ) n 

(2.23) 
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There is a unique relationship between p and y. 
o 

Practically, the use of the separate load factors or the overall 

load factor wi 1 1 result in exactly the same required mean resistance R for 

a given risk. The results contained herein are presented in terms of 'the 

multiple factors for consistency with current design formats. It should 

be recognized, however, that the $pecification of a single load factor has 

certain practical advantages. 

The sen sit i v i t y 0 f des i g n s to dis t rib uti 0 n sis ill u s t rat e d below 

for two loads. The expressions used in evaluating the nonnormal cases are 

given in Appendix A. Since the distribution sensitivity of the alternative 

risk model depends on the level of Po' it wi 11 suffice to examine the be­

havior of designs obtaine.d from 

at risk levels of 10- 3 or 10- 4 , Figures 2.3 and 2.4 illustrate the sensi-

tivityof load factor Y2 and the overall load factor y to choice of distri-

bution for 82 = 1.0. The values are seen to be quite close, except in the 

case where R is Weibull and Sl and S2 are each Frechet. The sensitivity of 

Y2 and So to variations in OR with Po = 10- 3 is shown in Figs. 2.5 and 2.6. 

The results are of approximately the same sensitivity as in the fundamental 

cas e [1 1 ]. A,g a in, S , i s a fun c t ion 0 f the s tat i s tic s 0 f Ran d S, ex c e p tin 
o 

the normal caSe. Figures 2.7 and 2.8 illustrate the sensitivity of Y2 and 

Bo to 82 , The designs are quite insensitive to this parameter, although 

there is a sl ight tendency for Y2 to decrease with 82 for all but one set 

of distributions. This result indicates that the mean ratio of 1 ive to dead 
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loads is not a significant parameter insofar as calculating the load factors, 

or the underlying risk, is concerned. 

Because of the distributional insensitivity exhibited, the load 

and resistance quantities in the alternative risk model may suitably be 

chosen as normal random variables. This assumption is consistent with the 

amount of information usually available. The normal ity assumption makes 

it possible to consider an arbitrary number of design variables wi thout 

signifi.cantly increasing the complexity of the analysis. 

Figures 2.9, 2.10 and 2.11 illustrate the variation of Yl , YO' SO' 

and \J wi th parameters oR' 0L' 6., and flo, based on the assumption of norma 1 

-6 
R, SL' and SO' with a specified risk of Pf = 10 . The judgment factor \J 

is insensitive to oR' 0L' and L/D, implying that it could be treated as a 

constantin a code implementation. YL and YO are nonlinear with respect to 

oR' but nearly 1 inear with respect to 0L' Furthermore, YO varies only 

sl ightly with 0l' indicating that the load factor coupling is not signifi­

ca n t . Not e t hat So va r i e s wit h 0 R' 0 L' and 6., ill us t rat i n g t hat So i s a 

function of the risk and the uncertainties, as seen from Eq. 2.15, Figure 

2.11 reveals that these design factors are all insensitive to the mean load 

ratio, indicating that separate provisions for treating riD need not beconsid-

ered in a reliabi lity based code. Changes in Yl , YO' and V are affected most 

by changes in oR' especially when oR ~ 0.10; control of this parameter is, 

therefore, most important. In all cases, S implies that p is of the or-
o 0 

der at which the question of distributional sensitivity does not arise. 
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2.1.4 Risk Analysis of Existing Designs 

I t has been demonstrated in Secs. 2.1.2 and 2.1.3 that rel iabi 1 ity 

theory provides a logical basis for the determination of designs. It also 

furnishes a basis for analyzing the underlying probability of failure of 

existing designs. 

For prescribed lognormal distributions, the analysis phase is 

relatively simple and straightforward. In a structure with a mean res is-

tance R subjected to a total mean load effect S, the associated risk is 

given by Eq. 2.6 after the uncertainties ~R and ~S are determined. 

In the case of the alternative risk model, the analysis phase is 

more involved. Suppose first that the variables are normal. Since v and 

Po are functions of Pf which is unknown, Po cannot be computed from Eq. 2.20 

d ire c t 1 y; 1 i ke w i s e, So i n E q. 2. 2 1 i sun know n . I tis the ref 0 r e n e c e s s a r y 

to solve Eq. 2.20 or its inverse numerically for Pf' The inverse is easier 

to work with, and is 

= o (2.25) 

where V and So are functions of Pf' and w(e) can be determined if the de­

sign is specified. 

This equation, whi le admitting only one root .for P
f

' is highly 

nonl inear with respect to this variable. The root can be obtained using 

the Newton-Raphson method of iteration. With 
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f(Pf) 0, 

(2.26) 
f(Pf. ) 

I 

Pf i+ 1 
Pf. 

I 
f I (p 

f. 
I 

In order to avoid calculations with very small numbers, it Is preferable to 

determine the solution in terms of the variable 10910 Pf; that Is, with 

x = 10g 10 Pf' and f(Pf) defined In Eq. 2.25, 

f(x) 
fITx") 

(2.27) 

f'(X) must be found numerically, and was computed using Lagrangian inter-

polation polynomials. Convergence is quite rapid, requiring only a few 

cycles of iteration; Pf is then obtained by taking the anti logarithm of x. 

1ft he va ria b 1 e s a re non nor ma 1, E q s. 2 . 25 and 2. 26 ma y s til 1 be 

wri tten for any arbitrary distributions. The determination of P and S 
o 0 

becomes more complex, however. p must be evaluated by numerical integra­
o 

tion, as in Appendix A, and its inverse So must be found by some interpo­

lative scheme; 8So/8Pf required in Eq. 2.26 must also be found numerically. 

This numerical integration-interpolation process must be performed for each 

cycle in the Newton-Raphson iteration, as p is not avai lable in standard 
o 

form except when all variables involved are normally distributed. 



25 

2.2 Analysis of Uncertainties 

2.2.1 Fi rst Order Approximations 

In order to use the rel iabi 1 ity equations of the previous section, 

the statistics (i.e., mean and c.o.v.ls) of R, 51' S2' ... , as well as the 

c . o. v . ISO f N R' N S ' N S ' ..., m u s t be know n . F r e que n t 1 y, the $ e va ria b 1 e s 
1 2 

are functions of other variables. For example, the flexural capaci ty of a 

concrete beam with tension reinforcement is a function of the area and 

strength of the steel, compressive strength of concrete, and the geometry 

of the section. Each is a random variable with its own probabi 1ity distri-

bution and related statistics. 

In practice, only the first and second moments may be avai lable; 

the precise distributions are generally not known. Consequently, the risk 

must be determined on the basis of convenient distributions or of distri-

butions favored by avai lable data. The main problem, therefore, in the 

evaluation of risk requires the assessment and analysis of the uncertainties. 

Although the exact statistical analysis of uncertainties is involved, an 

approximate analysis is sufficient for practical purposes. This is based 

on the Taylor series expansion of a function about the mean values of its 

dependent variables [24,10], 

If Y is a function of n random variables Xl' X2 , ... , Xn; i.e., 

Y ( 2. 28) 

the Taylor series about the mean value (Xl' X2 , ... , X) is 
n 
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n 
+ I 

j=l 
,(~gx ) (x. - x.) 

a . 0 J J 
J 

+ (2.29) 

w her e the par t i a 1 de r i vat i ve s are e val u ate d a t eX l' ..., 'x n)' T run cat i n g 

terms of order two and higher is tantamount to 1 inearizing Y. By assuming 

that Xl' ... , Xn are mutual 1y uncorrelated and taking expectations of both 

sides, the mean and variance of Yare found as 

(2.30) 

n a9 2'2 
I (ax.)o Ox. 

j = 1 J J 
(2.31) 

If the second order term in Eq. 2.29 is retained~ the mean and 

variance' of Yare 

Oy2 ~ I (~)2 0
2 + 

• 1 ax. 0 x. 
J= J J 

+t{I (d2~/E[(X. 
j = 1 ax. 0 J 

J 

n 

I 
j=1 

n 

I 
j= 1 

n 
+ 2" I 

j=l 

2 
(~) 2 
aX~ 0 OX. 

J J 

(2.32) 

(2.33) 

In this case, it is necessary to have the third and fourth moments of X. to 
J 
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evaluate a y ; however, these are usually unavai lable in practice. If all 

X. a re norma 1 , 
J 

E [ (X. 
J 

E [( X. 
J 

- X.) 3] 
J 

X.) 4] -
J 

= 0 

4 - 3aX. 
J 

and the variance of Y then becomes 

2 n ag 2 2 
n-l 

ay ~ I (ax. )0 ax. + L 
j=l J J j=l 

n 2 2 4 
+ 2 I (~~ ) ax. 

j=l ax~ a J 
J' 

n 2 2 2 I (u) (U) 2 ax 
k=j+l ax~ a 3)(2 oaXj k 

J k 

(2. 34) 

If the C.O.v. of X. are not larg~J and Eq. 2.28 is not highly 
J 

nonlinear, Eqs. 2.)0 and'2.3l are sufficient for estimating the mean and 

variance (or c.o.v.) of Y. As an example, consider the flexural equation 

of a reinforced concrete beam. The derivatives and C.O.v. are given in 

Chapter 3; the purpose here is to indicate the error typically associated 

wi,th neglecting higher order terms. Using Eqs. 2.30 and 2.31, 

= 0.879 A T d s y 

Using Eqs. 2.32 and 2.34, 

= 0.876 A T d 
5 Y 



= 

28 

0.010032 eli: f d)2 
s Y 

The differences are clearly not significant. Equations 2.30 and 2.31 are 

used in the seque 1 to est imate the means, and uncerta i nty measu res nece'ssary 

for evaluating Eq. 2.16. 

The predi.cted mean value of the resistance or load may be found 

from Eq. 2.30, and its basic variability (c.o.v.) by rewriting Eq .. 2.31 as 

0
2 n 2 

8
2 

:: I c. y J X. j=l J 
(2.35) 

in which 

c. = (~ ) X. 
J Y ax. 0 J 

J 

(2.36 ) 

The prediction errors may be attributed entirely to the errors in 

the mean prediction; that is, the estimator of the true m~an ~x. is consider­
J 

ed a random variable. Effectively, this means [10] 

N. = ~X lx. 
J j J 

2 with mean 1 and variance 6 •• The true mean of Y may be written approximately 
J 

as 

(2.37) 

The prediction error in ~Y is found by expanding Eq. 2.39 about CNl , N2 , 

N). The result is 
n 

(2.38) 
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(2.39) 

(2.40 ) 

where c. are the same constants defined in Eq. 2.36. 
J 

2.2.2 Estimation of Uncertainties 

For purposes of analysis and design, the mean and variance of a 

variable are estimated from whatever data is avai lable. Since the true 

mean is unknown, a prediction error, ~, is assigned to the predicted mean, 

to account for inaccuracies in its estimation. If information is available 

to evaluate the accuraGY of the estimated mean, a rough estimate of ~ may 

be obtained from this information. 

For example, suppose an engineer spe~ifiesthat a certain param~ 

eter X, which has randqm characteristics, should have the value i in the 

design of a certain product, and a number of these products are fabricated 

on this basis. When a sample of the products is evaluated after their fabri-

cation, it i!;i found that the values of X actually obtained take on a number 
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of values, xl' xl'····' xn ' in which x. ~'x in general, and also in which 
J 

their mean GX ~ x. The variabi lity of (xl' .. 0, xn) about Ox is a measure 

of the basic randomness of X. The difference between Ox and x is a measure 

of the error in mean value prediction. When a number of samples are t~ken, 

sample means of each may be computed, in which aX. ~ x -in general. The 
J 

means OX. define a ·histogram for the true mean ~X' of which the second or-
J 

der statistic yields the prediction error 6X' 

Suppose the predicted mean value of a random variable X is denoted 

X. The total variance is E[(X - Xjl], the second moment of X with respect 

to its predicted mean. The variance about the correct mean, ~X' is always 

a minimum mean square value. [27] Hence 

- 2 E[(X'" x ) ] (2.41) 

The difference between these two quantities is a measure of the prediction 

E[(X ... -x )2] error assoc.iated with the mean value. may be written as 

= E[(X ... ~X +' ~ '_ X- ) 2] 
X 

and assuming E[(X ... ~X)(~X ... x)] = 0, 

= 

An estimate of E[(~X - x )1] is desired. 

2 E [ (X ... P
X

) ] (2.41) 

Suppose m sets 01 data ~re available on X, withn independent 
m 

samples in each set, i.e., (x l1 ' x 11 ' ••• , x
lnl

), ... , (xml ' 

Then 

... , . x ). 
mn 

m 
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n. 
'" - 2 m I - 2 
E[(llX - x ) ] :::! I I (x .. - x ) m n. IJ i=1 I j=1 

n. m I 
- ) 2 I \' (x .. (2.43) L. - x. m n. IJ I i=1 I j=l 

where n. 
I 

x. ::; I x .. 
I n. IJ 

I j=1 

A simi lClr equation arises in the theory of the analysis of variance [27] 

when it is desired to test hypotheses regarding mean values obtained from 

different sets of data describing a random phenomenon. 

In the most frequent case w~ere only one set of data is avai lable, 

m = I. Then 

'" - 2 E[(llX - x) ] 

The variabi I ity is given as 

and the prediction error as 

·1 
n 

n 

I 
i;:::1 

(x. - x ) 2 - 1. . 
I n (2.44) 

(2.45) 

(2. 46) 

This provides a rough estimate of the prediction error as a systematic com-

parison is made between measured and predicted mean values. Intuitively, 

if the predicted and true values are widely separated,6
X 

wi I I be large, as 

indicated by Eq. 2.46. This method is useful when x in Eq. 2.42 is well 
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defined, e.g., when test data correspondi'ng to specified design values are 

avai lable. The prediction error may then be estimated by systematically 

comparing the test data, representing values actually obtained, with the 

corresponding values originally specified for the design. An example of 

this wi 11 be seen in Sec. 3.2.2, where field measurements for the effective 

depth of longitudinal reinforcement are compared to the depth specified on 

the working drawings. 

In many situations, the avai lable information may be more limited. 

In such cases, probabil istic assumptions may be invoked to assess the errors 

in the predicted mean ~alues. For example., if only the range of the mean 

is known, an estimate of 6 may. be obtained by assuming some appropriate 

distribution for the mean over this range [12], say uniform, and 6 may be 

found from its second moment. 

lf no data is avai lable, 6 must be chosen on the basis of intui­

tion and professionCiI judgment .. In this case, the choice of 6 would reflect 

the degree of confidence placed by the engineer in the accuracy of his pre­

diction, and his past exper~ence in similar situations. 
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Chapter 3 

RESISTANCE MODELS 

3.1 Obj ect i ves and Scope 

The purpose of this chapter is to formulate resistance models for 

flexure, shear, and combined bending and axial thrust for use in the extend­

ed rel iabi 1 ity formulation. The development is made for reinforced cQncrete 

members. 

For purposes of this study, member strength is considered to be 

the governing design criterion. The primary objective is to statistically 

ana1yze existing strength equations upon which current ACI provisions are 

based. Conclusions can then be drawn from which future rel iabi lity based 

codes can be developed, Questions regarding serviceabi lity and stabil ity 

are not considered, although they can be resolved with the same approach 

used for str~ngth. 

The members are prismatic, and resistances at arbitrary points 

along a member are assumed to be perfectly correlated. It has been pointed 

out [14] that within-member variabi 1 ity is insignificant compared to that 

among separate members. Correlation of strength within a member is usually 

quite high. The impl ication is that fai lure wi 11 occur at the point of 

maximum load effect. Moreover, it is assumed that yield strengths and re­

inforcing bar areas are also perfectly correlated within a member. 

I t is assumed that existing expressions for strength upon which 

present ACI provisions are based are sufficient to determine the random 
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function describing the resistance. Some of these expressions are entirely 

empirical in nature. It may be argued, however, that the expressions rep-

resent the best current estimate of the strength as a function of the vari-

ables known to affect it, and hence should be used to predict its mean'val-

ue. 

The reinforcement is assumed to have an elastic-perfectly plastic 

stress-strain curve, and strain hardening effects are neglected. The modu-

lus of elBsticity E is assumed constant. The reinforcement stress-strain 
s 

curve is hence statistically defined by the yield strength variable f . 
Y 

Data for steel stren~th is usually avai lable only in terms of its yield 

stress [381 

3.2 F lexu re 

Moreover, the variation in E is small [1]. 
s 

3.2.1 Equations of Flexural Capaci ty 

The beam is assumed to be reinforced in tension only. The equa-

tion for the flexural capacity may be derived from conditions of equi 1 ibrium, 

together with assumptions discussed elsewhere [16,58]. It is 

M = 
A f 

Afd(l-n.2...2..) s s bd f 
c 

in which n = k2/klk3' a factor describing the concrete stress block prop­

erties. Jf the reinforcement yields before the concrete reaches its limit-

ing strain, a tension fai lure occurs and f = f 
s Y 

If the concrete reaches 

its limiting strain before the steel yields, a compression fai lure occurs; 

the reinforcement stress is found by solving a strain compatibility equation 

simultaneously with the steel stress-strain curve. The solution is 
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1 .- E € 2 s· cu 

The moment capacity is given by substituting this f into Eq. 3.1. In 
s 

practice, this kind of failure is to be avoided. 

The reinforcement ratio is defined as 

p 
A 

s 
bcf 

The value of p at which the steel reaches yield and the concrete reaches 

its ultimate strain simultaneously is denoted the balanced reinforcement 

ratio, Pb' and is 

f c 
f y 

E € 
S cu 

In the ACI provisions, a tension fai lure is assured by requiring ~hat 

(3.4) 

p $ O. 75p~ , computed deterministically. However, p and Pb are random vari­

ables, and hence there is a risk of a compression fai lure even when the beam 

is designed to fail in tension. This has actually been obs~rved [26]. It 

occurs because variations in steel and concrete strength are sufficient to 

produce sections where the actual balanced reinforcement ratio is less than 

the one specified for design. 

For a rel iabi lity based design, the value of Pb must be less 

than p with an acceptably small probabi 1 ity qb' i.e., 
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Assuming lognormal Pb and p, 

(3.5a) 

This equation serves as a basis for selecting a reinforcement ratio for de-

sign. The required mean value p satisfying the above is 

p Pb exp 
-1 

q) (3.6) 

where the statistics of p and Pb are found from methods of Sec. 2.2.1 as 

A 
P 

s 

bd 
(3. ?) 

r/ A + 
2 

ortb + rt
2 
d (3. 8) 

s 

T E E 
klk3 

c s cu 
Pb = 

f - f E E + 
Y s cu Y 

(3.9) 

? 
E E + if 2 

? 2 ? 
( 5 CU \I 

) rt- = 1 rt- + rtf + rtk k Pb - of f 
E sEcu + Y c 1 3 y 

f 
+ ( y 

E E + f s cu y 

The fai lure of a reinforced concrete beam may be described as 

{Fai lure} = {Fai lure in Tension U Fai lure in Compression} 

These events are assumed to be mutually exclusive and collectively exhaustive. 
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Hence by the theorem of total probabi 1 ity, 

Pr(Fai lure) Pr(Failure/p " \ - P r (p Pb) = < PbJ - < - -

+ Pr(Failurelp > p ) a 

b Pr(p > Pb) (3. 1 1) 

where the probabilities of failure are computed by Eq. 2.8 or Eq. 2.16, i.e., 

= (3. 13) 

It will subsequently be demonstrated that if O'.b in Eq~ 3.5 is chosen suf­

f i c i en t 1 y sma 11 , 

(3. 14) 

and rel iabi 1 ity based designs may be found from consideration of tension 

failure:; only_ 

3.2.2 Analysis of Uncertainties 

Influence of Uncertainties of Individual Variables 

The first and second order statistics of the ,flexural capacity M 

are found by applying the methods of Sec. 2.2.1. For a beam failing in a 

tension mode, 

A f 
= As fy d (1 .. n b~ l-

e 
(3. 15) 
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where A , f , f , b, d, and n are all random variables. The predicted mean 
5 y c 

value of MT is 

A f 
A f d (1 - n 5 .J... 

5 Y b d f 
(3. 16) 

c 

Its corresponding variability is, 

8
2 ' I - inq 2 

(8 2 82 ) = ( I ) + 
MT - rrq f A 

Y s 

+ ( I 
n 9 ) 2 (82 + 8

2 
+ 8

2 
) + (1 ) 28 2 

- n q f b n - 'IT q d c 
(3. 17) 

where 
T 

q = p .J... (3. 18) 
f c 

6
M 

may be found by replacing the 8 1 5 of each variable in Eq. 3.17 with the 
T 

corresponding 6 1 5. 

The mean and variabi lity of the capacity of a beam fai ling in com-

pression are estimated by first finding the statistics for f from Eq. 3.2: 
. 5 

f 
5 

8
2 

= f 
S 

where 

= 

2 It EsEcu ) + k]k3 f 2 c 

2 (8 2 2 
9 1 +.8A f 

C s 

EsEcu ~ fc 

2 P fs 93 

+ 8
2 

+ b 

bd 1 -E E - - - E E s cu A 2 s cu 
5 

8
2 2 2 82 

+ 8k k ) + g2 d E 
1 3 cu 

(3.20) 
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1 1 
E E 2 

1 5 CU ) g2 = g +- - - E E 1 - g3 2 2 5 CU f 
5 

I( E E 2 f s cu ) E E klk3 
c 

g3 + 
2 s cu 

P 

Then replace T with f .In y s Eq. 3.18 and of (.6 f ) with of (.6 f ) in 

to find oM (.6M ) from Eq. 3.17. 
e e 

y y s s 
Eq. 3.17 

The uncertainties in the different variables above contribute to 

the uncertainty in MT or Me; however, their contributions are not uniform. 

The sensitivity of MT, oM and.6M (or statistics of Me) to their component 
T T 

variables may be analyzed by studying the behavior of the coefficients in 

Eq. 3.17. These coefficients indicate the local variation of MT with re-

spect to a parameter at their respective mean values, e.g., 

(3.21) 

. The i r behavior is ill us t rat e da s a function of q in Fig. 3. 1 . A sma 1 1 val-

ue of q impl ies a 1 ight1y reinforced section, low steel yield strength, or 

high concrete compressive strength. 

For lightly reinforced sections, the mean flexural capacity MT is 

affected most by the accuracy of the estimated values of T , ~ , and J; 
y s 

errors in T , ~, and ~ will have less effect. As the amount of reinforcement 
c 

is increased, these parameters and J become more significant. For a given 

ratio·f /f , this implies that p is approaching Pb , and the likelihood of y c 

a compression fai lure is increased. 
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Uncertainties in MT, i.e., oM 'and 6M ' depend primari lyon the 
T T 

respective uncertainties in f , A , and d. The coefficients for all param­
y s 

eters except d are less than unity; the effect of such a coefficient is to 

reduce the contribution of the associated variabi lity or prediction error. 

For sma 11 values of p, it is conceivable tha t o~1 wi 11 be less than of or 
T y 

of When q is sma 11, oM is re 1 a t i ve 1 y insensitive to of Th is imp 1 i es 
T c c 

tha t poor concrete qual ity control has a relatively sma 11 effect on the 

variability in flexural capacity. It is clear that poor workm~nship,re-

flected by large variabilities in d, wi 1 1 have a significant effect in in-

creasing the dispersion, especially when p is large. 

A similar analysis to determine the sensitivity of Pb and ~ to 
Pb 

their component variables may be performed by studying the coefficients in 

E q. 3, 1 0; . t his iss how n i n Fig. 3 . 2 . Estimates of f and 
y 

portant in determining Pb and Sl ; contributions from s 
'Pb cu 

significant. The concrete quality, reflected by Slf ' may 
c 

Slf. 
y 

and 

be 

are most im-

Sl are not 
s cu 

important to 

the uncertainties in Pb' This indicates that good concrete qual ity is sig-

n i f i can t to f 1 e xu r a 1 des i g n . f r'om the s tan d poi n t 0 f red u c i n g the pro ba b i 1 i t Y 

of failure occurring in the compression mode. 

Evaluation of Individual Uncertainty Measures 

The purpose of this section is to illustrate how the uncertainties 

underlying each design parameter may be evaluated from avai lable data. 

Information on the steel yield strength f is generally avai lable 
y 

from mi 11 tests. Ju1 ian [38] reported data from 171 tests on No.3 to No. 

lOb a r s wit han om ina 1 s t r eng tho f 40 k s i, Val u e s ran 9 e d from 38. 95 k s i to 

64.9 ksi with a mean of 47.7 ksi and a c.o.v. of 0.12. The C.O.v. is high 

due to lumping the test results of different bar sizes. Baker1s data [14] 
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for nominal 40 ksi reinforcement indicatei a decrease in mean value from 

50.4 ksi for No.3 bars to 44.1 ksi for No.8 bars. The associated c.o.v. do 

not vary consistently with size, and range from about 0.07 to 0.11. When all 

bars are obtained from the same manufacturer, a c.o.v. as low as 0.05 is pos-

sible. For high strength reinforcement with a nominal yield of 60 ksi, the 

mean values decrease from 71.8 ksi for No.3 bars to 62.2 ksi for No.9 bars, 

and the c.o.v. varies between 0.06 and 0.12, but again not according to size. 

Tests by Chow and Gardner [22] of 20 No.5 bars of intermediate grade steel 

show a mean of 49.9 ksi and c.o.v. of 0.073. 

The sample mean value is clearly affected by the size of the bar. 

A designer ~ay not know what size wi 11 be used, as several different com-

binations may yield the same A. To obtain a design from Eq. 3.16, a best 
s 

estimate of f is made and a prediction error may be applied to account for this 
.y 

size effect. On the basis of available data, it is assumed that T = 47.7 
Y 

ksi for intermediate grade reinforcement and f = 64 ksi for high strength 
y 

reinforcement. The uncertainty in the estimated mean strength due to size 

effects is about 0.04. 

'Commercial mi 11 testing procedures may give strengths somewhat 

higher than would be found under actual service conditions [38]. ASTM test 

methods determine the unstable upper yield point rather than the stable 

lower yield point; Julian estimates the error induced as 0.05-0.10. The 

high time rate of strain used in commercial testing causes an apparent in-

crease in the yield strength, with an overestimation of approximately 

O. I 0 [ 38 ]. Mea n y i e Ids t r eng t h s ma y va r y from mil Ito mil I for nom ina 1 I y 

identical material. Censoring test data for material fai ling to meet spec-

ifications [14] also tends to raise the reported test data. 
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On the basis of avai lable data~ representative values of the basic 

variabi 1 i ties are of = 0.09 for intermediate grade reinforcement, and 
y 

Of 
Y 

0.07 for high strength reinforcement. The prediction error would in-

clude the uncertainty due to bar sizes, errors in mi 1 1 test reporting,· and 

strain rate effect; this is estimated to be 6
f 

= 0.12, which is the result 
'i 

of 

/ (0.04)2 + (0.10)2 

representing the effects of the above three sources of uncertainty. 

Data on the compressive strength f of concrete is avai lable from 
c 

tests on standard cylinders. The distribution of f often exhibits ap­- c 

proximately normal behavior [1,3]. The nominal compressive strength f' is 
c 

impl ied by the ACI code to be the 10 percenti le val~e of f for ultimate 
c 

strength design. 

The report of ACI Committee 214 [3] contains results of 92 

tests of concrete cylinders with f' = 3000 psi. The mean was 3456 psi, with 
·c 

a c.o.v. of about 0.12. Further data is included of 164 field tests on 

nominal 3000 psi concrete s~pplied by a ready-mix company over a one year 

period. The dispersion of observed sample mean concrete strength can be 

obtained from data defining the mean f del ivered during each monthly period . . c 

Analysis of this data yields a prediction error for the measured f of 0.07. 
c 

The data based prediction error must be augmented by other factors. 

Strain rates and duration of load are important to strength [50]. A differ-

ence in strength of about 15 percent has been observed between high and low 

strain rates, with higher strengths corresponding to higher strain rates. 

The sustained load strength averages about 80 percent of the short time 
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strength. These factors are partially offset by the increase in actual 

concrete strength with time over the 28 day strength used to determine f . 
c 

Confinement of the concrete raises its strain capacity and its compressive 

strength [23]· Uncertainties in T arise from the direction of casting~ 
c 

which is particularly important in vertically cast members. Workmanship, 

degree of compaction, and curing conditions wi 1 1 also affect in-situ mean 

strength and its dispersion. A comparison of the strength of in-place con-

crete with strength derived from standard tests reveals that field-cured 

cyl inders indicate a strength 10 to 21 percent higher than the actual strength 

determined from dri lIed cores [15]· These must be used to augment the un-

certainties in the sample mean estimated above. Assuming that these latter 

factors contribute a combined uncertainty of 0.16, we obtain 

+ = 0.18 

When reasonable care is taken in the mixing, placement, and curing of the 

concrete, representative values of the uncertainties for f , therefore, are 
c 

8
f 

= 0.1.2 and 6
f 

= 0.18. 
c c 

The statistics.of the limiting concrete strain are needed to de~ 

termine the statistics of the balanced reinforcement ratio Pb' and the as­

sociated probabil ities of tension or compression fai lure. Test results in 

the form. of plots of E vs. T [42,33,58] indicate that E. is about 0.004. cu c cu 

There is asl ight tendency for ~ to decrease with f. The variabi 1 ity is cu c 

estimated from these plots to be between 0.10 to 0.15; Allen [1] suggested 

0.12. Confinement of the concrete tends to increase its ultimate strain 
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capacity [23]. The manner in which the strain is measured affects its magni-

tude; as strains tend to concentrate above the cracks [58], the strain will 

depend on the gage length used to measure it. The quality of the informa-

tion avai lab1e to evaluate the statistics of E is poor. It seems rea'son-cu 

able, however, to set E constant at 0.004. The value of 0.003 specified cu 

by the ACI code represents a conservative value of strain [351 The predic-

tion error in the assumed mean is estimated as 6 '= 0.10. 
E cu 

There is 1 imited data to evaluate the ~tatistical variabi lity in 

member dimensions band t and,effective depth to reinforcement d [36,37]. 

Indications are that these variables are approximately normal (within con-

straints furnished by member size). Uncertainti~s in d may be attributed 

to faulty construction of the reinforcement cage, deflection of the bars 

under their own weight, initial crookedness of the bars, and careless con-

struction practices on the site. Uncertainties in band t arise from erec-

tion of the, concrete formwork. As in the case of f , these variables are 
c 

dependent on the qual ity of workmanship employed. 

Nondestructive tes,ts have been used to obtain data on d for slabs 

constructed in Stockholm, Sweden [36]. 'The specified depth on the working 

drawings was 144 mm. This corresponds to the engineer's best prediction 

of the mean, J. The values measured in the field range from 121.0 mm to 

144.9 mm. Jhe variabi 1 ity and prediction error may be found from this data 

by the method described in Sec. 2.2.2. With J = 144 mm, and ~d = 140.2 mm, 

Eq. 2.42 becomes 

E[(d - 144)2] - E[(d - 140.2)2] 

62.26 - 48.03 = 14.23 
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from which 6d = 0.049 and ~d = 0.027. Values obtained in an earlier set of 

tests [37] give 6d = 0.079 and ~d = 0.053. 

For the total member thickness t, data obtained by Johansson and 

Warris indicates 6t = 0.042 and ~t = 0.01. Variabi lities in d and t can be 

signi ficantly reduced by using prefabricated units. Johnson's data gives 

6t = 0.044 and ~t = 0.01. No information is avai labJe for b, but it is rea­

sonable to assume that 6b ~ 6t and ~b ~ ~t' as the uncertainties arise from 

the same source. It is obvious that d represents the most unpredictable di-

mension; unfortunately it is also an important parameter in determining the 

statistics of MT. 

A report of the Bui lding Research Advisory Board [2lJ recommends 

allowable tolerances of -1/4 in. to 1/2 in. on overall member dimensions and 

in. wh~n d is less than 24 in. Under the assumption of normality and a prob-

abi lity of 95 percent that these tolerances will be met, the implied variabi 1-

ity in b (or t) is about 0.15yb and for d, 0.131d. This represents what is 

currently considered acceptable. The greater allowable dispersion in b is 

reasonable in that this variable is not as significant as d in assuring de-

sign adeq uacy. 

In further analysis, it is assumed that the c.o.v. IS and prediction 

errors in band tare 0.04 and 0.02 respectively, and for d, 6d = 0 07 and 

~d = 0.05; these may be slightly conservative. 

Variabi lities in the steel area* A may be found from the variabi I­
s 

ity of the individual bar areas a or bar dimmeters. If it is assumed that s. 

i', 

I 

It is recognized that with the new ASTM specification, A f should be taken 
as a single variable; accordingly, test data would be us~dYto evaluate the 
lumped variability in A f . 

s y 
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the individual areas are perfectly correlated within a member, then 

0A = 0a The assumption of perfect correlation is conservative and not 
s 5 • 

unreasonaSle if all bars come from the same manufacturer. 

Baker's results [14J indicate the c.o.v. of bar diameter is about 

0.015 for small bars, with a tendency to decrease for large bars; thus, 

~ 0.03. Analysis of certain data provided through the courtesy of o 
as 

Professor C. P. Siess [53] indicates that for No.5 bars, 0 = 0.015 
a 

s 
and 6. 

a 
s 

0.021; for No.8 bars, 0 = 0.012 and 6. = 0.025; and that for 
a a 

s s 
No. 14 bars, 0 = 0.014 and 6. 0.01. Prediction uncertainties arise 

a 
s 

a 
s 

from fabrication errors. There is a tendency for the bar sizes to increase 

as the rolls wear [14]. Carelessness in placement at the site may cause 

error. In addition, the mean areas of smaller di~meter bars are less pre-

dictable .. 

The ASTM acceptance criteria on bar sizes [6] are based on maximum 

al1owabl~ departures from specified nominal weights; for a single bar, the 

maximum is 6 percent under and by lot, 3 1/2 percent under. If it is as-

sumed that 95 percent of the bars meet required specifications, and the bar 

weights are approximately normally distributed, the implied variabi lity in 

weight with respect to the specified nominal value is about 0.021, and 

since area is proportional to unit weight, 0 ~ 0.021 also. These are of 
a 

s 
the same order as those obtained from the above data, and represent what is 

currently acceptable. 

therefore taken as 0A 
s 

the conservative side. 

Representative values of the uncertainties in A are 
s 

= 0.02 and 6.A 
s 

= 0.03. These estimates may be on 

The variables nand klk3 are related to the concrete stress dis­

tribution in the compression zone at failure. They are modeling variables 
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and are necessary because the distribution of the concrete stress at ulti-

mate and the locatfon of the resultant compression force are not known 

exactly. Hognestad, et. a1. [35] suggested a value n ~ 0.59 as adequate, 

as MT is insensitive to n. Figure 8 in thei r paper indicates that 0 ~ 0.05. 
n 

A statistical analysis by R. C. Elstner [42] of. beams failing in tension 

led to n ~ 0.593. Some of the uncertainty in n may be attributed to un-

certainty in the steel stress at fai lure. The equivalent stress factor klk3 

decreases with f [42,33]; analysis of data provided in these references 
c 

indicates that 0 ~ 0.12. 
kl k3 

f' < 4000 ps i . In s ubseq uen t 
c 

and that 6 is negligible. 
n 

The AC I code specifies that kl k3 = 0.72 when 

analysis, it is assumed that 6 
klk3 

~ 0.05 

The results of the above analyses are summarized in Table 3.1. 

These uncertainty measures wi 1 1 be used in later rel iab; lity analy?es. 
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TABLE 3. l' 

Uncertainties in Design Parameters 

Parameter Predicted Mean Basic Prediction 
Va ria b il i ty Error 

f 47.7 
Y 

ksi 0.09 0.12 

(Nom ina 1 40 ksi) 

f 64.0 ksi 0.07 0.12 
Y 

(Nomi na 1 60 ks i ) 

f c 3.5 ksi O. 12 0.18 

(Nominal 3 ks i) , 

f c 4.7 ksi O. 12 o. 18 

(Nom ina 1 4 ks i) 

A 0'.02 0.03 s 
b 0.04 0.02 

d 0.07 ; 0.05 

t 0.04 0.02 

klk3 0.72 0.12 0.05 

n 0.59 0.05 0.0 

E 0.004 0.12 0.10 cu 

3.2.3 Uncertainties of Flexural Capacity 

The statistics of MT, MC and Pb can be found using the uncertain­

ties defined in Table 3.1. The probabi 1 ity of occurrence of a tensi le or 

compressive fai lure is estimated from Eq. 3.5a. 

Table 3.2 shows the variation of 8 ,n and the probabi lity of 
Pb Pb 

a compression failure, a b , when p = 0.75Pb, with 8f ' the qual ity of the 
c 



of 
c 

0 
Pb 

n 
Pb 

Q',' 
b 

" of 
c 

0 
Pb 

n 
Pb 

Q',' 
b 

concrete. 

T y 

T y 
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TABLE 3.2 

Statistics of Pb and Probabi lity that 

Fai lure Wi 1 1 be Compressive 

47.7, f 3.5, Pb .0376, 0.75 Pb c 

0.10 0.12 0.15 0.20 

0.198 0.209 0.227 0.263 

0.315 . 0.321 0.334 0.359 

0.211 0.218 0.230 0.249 

= 64, f = 4.7, Pb = .0342, 0. 75Pb c 

0.10 0.12 0.15 0.20 

0.184 0.196 0.216 0.253 

0.311 0.318 0.330 0.356 

0.09 0.096 0.106 0.122 

= 0.0278 

0.25 

0.303 

0.389 

0.275 

0.0213 

0.25 

0.294 

0.386 

0.145 

P' i~ the ACI balanced reinforcement ratio computed with nominal 
b 

values of f' f', and E = 0.003. 
y' c cu Theprobabil ities Q',b as a function of 

p computed from Eq. 3.5aare shown in Figs. 3.3 and 3.4. Poor concrete 

quality control causes the uncertainties in Pb and the probabi 1 ity of a com-

pression fai lure to increase, but the increases in Q',b is not significant 
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except when p is smal1. Risks a~ associated with the value 0.75p~, as re­

qui red in the ACI code, range from 0.21 when of 
c 

= 0.10 to 0.27 when 

0.25, for T = 47.7 ksi and T = 3.5 ksi. 
y c Of 

c 
Simi lar values have been 

found by other investigators [1,26]. Probabilities of compression fai1l!res 

are reduced when high strength reinforcement is used, as indicated in Fig. 

3.4; this is attributable in part to a smaller of' 
y 

In the context of risk based design, the likel ihood that a se~tion de-

signed to fail in tension will actually fail in ,compression is controlled 

by specifying that the probabil ity of this unfavorable event is acceptably 
- - -. - - . -

small. Design values. of ~ at risk levels of 0.05, 0.01 and 0.001 are given 

in Table 3.3 (for various of ) for intermediate grade and high strength re­
c 

inforcement. All are less than the ACI values, and decrease as of increases. 
c 

TABLE 3.3 

Requi red p for Specified ab 

T 47.7 ksi T 3500 psi 
y c 

° ctb fc 0.10 0.12 0.15 0.20 0.25 

0.05 0.0213 0.0209 0.0204 0.0196 0.0185 

0.01 0.0170 0.0167 0.0162 0.0153 0.0143 

0.001 0.0134 0.0130 0.0126 0.0117 0.0106 

T = 64 ksi T = 4700 psi 
y c 

ctb 
of 

c 0.10 0.12 0.15 0.20 0.25 

0.05 0.0194 0.0191 0.0187 0.0180 0.0170 

0.01 0.0156 0.0153 0.0149 0.0140 0.0131 

0.001 0.0123 0.0120 0.0116 0.0107 0.0098 
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When the concrete quality is poor, the beam dimensions are forced to in-

c rea s e, res u 1 tin g j- n a los sin des i g n e co n 0 my . 

Figure 3.5 shows the behavior of oM and 6M as functions of p, 
T T 

resulting from the uncertainties of the individual variates of Table 3.1. 

From these results, we see that oM and 6
M 

are vi rtual ly constant for the 
. T T 

values of ~ of interest, and can be considered invariant wi th~. Further-

more, oM is not significantly affected by the quality control of concrete, 
T 

particularly when ~ is small. This can be inferred also from the coefficients 

of Eq. 3. 17. 

The magnitude of oM estimated herein is somewhat larger than 
T 

values obtained from beam test data. The latter typically range from 0.03 

to 0.05 [22,42,58]; these results, hqwever, are for laboratory specimens 

presumably fabricated under carefully controlled conditions, whereas the 

'above oM and 6M refe'r to uncertainties in a member fabricated under field 
T T 

conditions, and thus would be expected to be higher. 

Equation 3.17, Fig. 3.1 and the c.o.v. listed in Table 3.1.suggest 

that fy' d, and fc are the only signific9nt variables contributing to 0M
T 

and 6
M 

; moveover, when q is small, the uncertainties in f may also be 
T c 

neglected. For example, if p = 0.015, f = 47.7 and f = 3.5, q = 0.204, 
y c 

and 

= 

whence 

/ ~7450~ 
y 

2 
+ 1. 2920 d 

OM 1.00604+ .000272 + .00632 = 0.112 
T 

compared to oM 
T 

0.114 when all variables are included. If of is neglected 
c 
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inthe above,8t1 =0.111; ifon1y8f is considered, we have 8
M 

=0.078. 
T Y T 

When a member is fabricated under carefully control led conditions, the vari-

abi 1 ity in MT is primari ly due to c5 f . 
Y 

The basic variabi I ity and prediction error in MC are also shown 

in Fig. 3.5. Insensitivity to ~ is again apparent, but in this case, 8
f 

c 
is significant in determining 8M ' and thus concrete qual rty is important. 

C 
The uncertainties in flexural capacity are higher for compressive fai lures 

than for tension fai lures. This has also been found from laboratory tests 

[42] where 8M ~ 0.083 was reported. 
C 

3.3.1 Equations of Shear Capacity 

Current design phi losophy attempts to provide beams for which the 

ultimate strength is governed by flexure rather than shear. This is done to 

insure ducti lity and provide adequate warning of impending fai lure. This 

phi losophy can be retained in a reliabi 1 itY,based design, by insuring that 

the probabil ity of fai lure of a member in shear is less than that in flex'ure. 

The shear-diagonal tension failure mechanism is acombin~d stress 

problem in which both shear and flexural stresses have a part [2,19,40]. 

The distribution of shear stresses across the section is indeterminate. Web 

reinforcement is provided to transfer stresses across the diagonal cracks 

so that ful I flexural capacity can be developed. The contributions of the 

concrete compression zone and web'steel to shear capacity are also inter-

related. An interactive relationship between flexure and shear is not avail-

able, and in accordance with present practice, flexure and shear are treated 
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independently for design purposes. 

The shear capacity of a section is determined from a modification 

of the "truss analogy" model, written ~s [16] 

v v + V c ws (3.22) 

in which V is the shear at inclined cracking in a member without web rein­
c 

forcement, and V is the shear carried by the w~b reinforcement when it is ws 

at incipient yield. In the absence of other statistical models for analyzing 

shear capacity, Eq. 3.22 wi 11 serve as the basis for the re1 iabi lity ana1y-

sis. 

The shear at inclined cracking in a member without web reinforce~ 

ment can be written as 

V v bd (3.23) 
c cu 

in which v is the nominal shear stress at inclined cra~king; it is an cu 

average uniform stress over the area bd. It wi 11 be assumed that the web 

reinforcement consists of vertical stirr~ps, and that the stirrups are of 

the same size. If the ultimate load in shear is obtained when the web steel 

stress is at the yield level, the shear carried by the web reinforcement at 

ultimate load is v = n A f , where A is the area of the stirrup, and n ws c v y , v c 

is the number of stirrups crossing the diagonal crack. Assuming the diag~ 

onal crack to have a horizontal projected length of d [16], and with a stir-

rup spacing of Sst' 

v 
ws = A f v y (3.24) 



The shear capacity then is 

v v bd cu + A f 
v y 
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(3. 25) 

To insure that every potential diagonal crack is crossed by at least one 

s t i r r up, a rna x i mu m s t i r r ups pac i n g i s se tat [ 5 ] 

(3.26) 

3.3.2 Evaluation of Uncertainties in Shear 

A number of variables are common to the shear and flexural capac-

ities. To evaluate the statistics of shear capacity, then, it is necessary 

to define the uncertainties associated with A and. s t~ and to determine v s 

the mean and variance of v cu 

Stirrups are often formed from smaller sized standard reinforcing 

bars. In this tase Av = 2a s ' and therefore 8A = 8a ' and 6A = 6a ' wher~ 
v s v s 

uncertainties in a have already been evaluated for flexure. There is no 
s 

data avai lable to evaluate the uncertainties in Sst' but as these pertain 

to the fabrication of the reinforcing cage, it is reasonable to assume that 

the uncertainties in Sst are about ·the same as those of d. 

According to the ACI [5] the shear strength is calculated nomin~lly 

as, 

v ~u = 1.9 rr;+ 2500pd * < 3.5 1fT c (3.27) 

in which ~ is presumably a measure of the strength of concrete in tension. 
c 

Test results [2] indicate that v' of Eq. 3.27 underestimates the observed cu 
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nominal shear stress at a section when VIM is small; this equation was de-

1 iberately chosen to be somewhat conservative for the reason th9t shear 

fai lures tend to be quite sudden. For rel labi 1 ity analysis, therefore, the 

conservative bias in Eq~ 3.27 should be removed. This can be accompl ished 

by assuming that the equivalent shear stress on a section is 

v cu 
¢ Vi + 

1 cu 3.5 iT c 
(3.28) 

where ¢l is. a quantity reflecting the bias, v~u is given in Eq. 3.27 and El 

is a 4ero mean error. A sui table value of ¢l is 1.18, the overall mean 

ratio of test values ·to calculated values reported in Table 5.20 of reference 

2. The mean equivalent shear stress is then 

v ¢l Vi ::; 3,·5 IT cu cu c 

and its variance is 

2 -2 
0 4 0

2 
0 ¢l + v v' El cu cu 

2 
where a I is oqtCjineo through Eq. 3.27 CIS 

v cu 

2 1.9 )2 2 
°v l = Of + (2500 n cu 

2 
c 

c 

A V 2 2 (-2500 s ) + 
1)2 °b M 

1 V 2 
2 ..... ) 

°A b M s 

Using the ACI requirement that VIM ~ lid, a conservative and simpl ified 

2 
estimate of 0 I is v cu 
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0' I 

V 
cu 
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+ (3.31 ) 

0'2 can be evaluated from test data [2] avai 1ab1e in the form of 
8

1 
calculated versus test values of (v /.ffJ, giving a relationship 

cu c 

v 
cu 

If 
c 

Vi' 8
1 ¢ (~) +-

11f If 
c c 

Vi 

¢ ~ + 8 
IIf 

c 

From the data reported by Moody, et.al. [2], we obtain an average variance 

? 
of (J~ = 0.095. 

? 
Now sin ce 8

1 
= If 8 and E = 0, 0'-c . , 8

1 
Hence 

+ (2500p )2(<5~ + 82)] + 0.095 T 
b c 

s 

For example, suppose that T 
c 

3500 psi and p = 0.02. 

if Vi 
cu 

= 2/f , then v .= 140 p s L and <5 . c cu v ~ 0.15. 
cu 

Then 0'2 
v 

cu 

(3.32) 

= 409, and 

The prediction error in v arises from errors in ,using ¢1 = 1.18 
cu 

and in the mean va 1 ues of the q uan tit ies in' Eq. 3 ~ 49, as we 11 as the i mpe r-

fections of Eq. 3.29, and can be given as 

= + 

Reference 2 gives mean values of ¢1 for different sets of data; on this ba­

sis, we obtain 6¢ = 0.09, whereas 6~, is obtained as 
1 cu 

+ ~500p ) 2 (6 ~ + 6~)] / ( V~fU) 2 
s 
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For example, if p = 0.02, f = 3500 psi, Vi c cu 21 f , and us i n gun ce r t a i n tie s 
c 

previously determined, 62 , = 0.0083, and thus 6 ~ I .0081 + .0083 = 0.13. 
v v cu cu 

An inspection of data provided in Ref. 2 indicates that the shear 

capaci ty defined in Eq. 3.25 also consistently underestimates the observed 

capac i ty. Part of this bias is due to the bias in Vi " however, when this cu . 

effect is removed, Eq. 3.25 is still conservative with respect to observed 

data. This suggests that the statistics of shear capacity used in assessing 

the reI jabi 1 ity should be treated simi larly to those of v cu 

shear capacity is therefore assumed to be 

The total 

where ¢z is the bias arising from the truss analogy equation, V is defined 

in Eq~ 3.25, .and 22 is a mean zero error as before. A suitable value of ¢2 

is 1.15, obtained from comparing calculated to test values of V/bd in Table 

6.1 of Ref. 2, once the bias in v has been removed'. The mean is cu 

where, using the methods of Sec. 2.2. I, 

v 

in wh i ch 

r 
5 

v cu 

v 
c 

V ws 

bd(l+l 
r 

5 

v bd cu 
= 

d Af 
v y 

5 st 

When a value of r is found such that the probability of failure in shear 
5 
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is less than that in flexure, sets of (A ,5' ) can be found from Eq., 3.38 
v. s t 

that determine the web reinforcement needed; thus r is a shear design param­
s 

eter. The variabi 1 ity of Vr is 

where 0 2 is 
V 

(3.40) 

o~ can be obtained from test data avai lable [2] in the form of calculated 
2 

versus test values of (V/bd), giving the relationship 

= ~2 (~d1 + E 

2 
From these data, 0E 2097. Now since E2 

2 
= (bd)E, and E ~ 0, a 

E2 
= 2097 (1) d) 2. Hence 

0
2 

= 8
2 

+ 2097 
VT V ¢~ CV- (1 +_1 )]2 

cu r s 

If r 1 , .p = 0.02, and T = 3500 ps i , then °v ~ 0.15. 
s c T 

The prediction error in V
T 

is 

/::.2 = /::.2 + 62 
VT ¢2 V 

(--)2 2 
b d ° E 

(3.41 ) 

(3.42) 
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where LV is found from Eq. 3.40 by replacing 'the C.o.v. with the prediction 

errors, and Lcp 
2 

is estimated to be about 0.06. If r 
s 1, LV = 0.107, and 

/ 0.107 2 + 0.12 

The coefficients in Eq. 3.40 define the significance of the uncer-

tainties in the respective variables to the uncertainties in the shear capa-

city V. This is illustrated in Fig. 3.6 as a function of r. When a large 
s 

amount of web ~,einfo~,ce,m"en"~,,, ;.~ or,n\y/i,dpd (\sm",~l, 1, r) ~ =nrl A =rp hi hl ~ - ,- --- - - s'" .... "-~V-'-· .. g··,yoe-

pendent on the statistics of A , f , and s , but this dependency rapidly 
v y , s t 

decreases as r increases and v and b become more significant. For large, s cu 

rs ' corresponding to very light web reinforcement, 

+ 

thus, approaching a beam without web reinforcement. 

Figure 3.7 illustrates the behavior of 0V' 6V' 0v and 6V calcu-
T T 

lated from Eq. 3.40 and 3.41, as functions of r , using the uncertainties in 
s 

Table 3.1. For illustrative purposes, it has been assumed, that p = 0.02, 

and f 
c 

3500 psi. The uncertainties in shear capacity increase as the 

relative amount of web reinforcement is decreased. On the basis of this 

analysis, concrete qual ity control does not appear to be especially significant 

due to the dominance of the second term in Eq. 3.41, and that f enters the 
c 

expression for v in terms of its square root. It would be useful to have cu 

some test data to verify whether this is indeed the case. It may be observed 

that the variabi 1 ities are higher for the shear capacity than for the flex-

ural capacity. 
Metz Rfif~~r(m\ji"3 He'tm 
C i 'V' i 1 li3ng i TiS ~J r:, :r.l,g :D e 1!2"lct~;jr~iIJ 
BlD6 Go Eo EuJ.lding 
University of Illinoif§ 
TT."..1-.""'".,fi T11 i1'1t"l; ~ t:..l kn~i 
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3.4 Axi al Thrust and Bending 

3.4.1 I ntroductory Remarks 

The strength of a column subjected to an eccentric axial force may 

be visual ized with an interaction diagram for the section, a locus of pai rs 

of thrust and moment values which, according to ultimate strength theory, 

wi 1 1 cause fai lure. The interaction diagram for reinforced concrete sec-

tions has two distinct regions. For small load eccentricities, failure is 

governed by the concrete reaching its maximum useful strain while the rein-

forcement stress is s·ti 11 elastic; this is termed a compression fai lure. 

For large eccentricities, the reinforcement yields first, fol lowed by a 

secondary compression failure in the concrete; this is termed a tension 

fai lure. The point on the interaction diagram at which the concrete would 

crush at the same time the steel yields is termed the balanced point. 

The interaction dia~ram is found from considerations of equi 1 ib-

rium and strain compatibi lity. [45]· For a symmetrically reinforced rectan-

gular section, 

P = + A (f 
s s 

c 

M = Pe = !) (f 
2 s 

c 
+ f - k f ) 

s t 3 c 
( 3.44) 

where c is the depth to the neutral axis, and e is measured from the plastic 

centroid of the section. Proceeding from strain compatibility, f and f 
Sc St 

are obtained. from the stress-strain diagram for the reinforcement, and P 

and M are found from Eqs. 3.43 and 3.44 [45]. The curve is thus defi ned 
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implicitly, as there is no closed form function describing jointly the be-

havior of P and M, which is needed toevaluate the respective statistics. 

Moveove r, uncertainties in f 
s 

are not defined. 
c 

Alternatively [42], if it is assumed that the compression and ten-

s ion rei n for ce me nth ave y i e 1 de d, sol v i n g E q s. 3. 43 and 3. 44 s i m u 1 tan e 0 us 1 y 

for c and substituting back into Eq. 3.43 yields 

f bt {~ 1 2 _c_ (~ _ -) + 4n 
2n t 2 

(~ -l)} 
t 2 k3f A c s 

(3.45) 

for tension fai lures. For the compression case, an attempt to determine 

the steel stresses in a manner simi lar to that used for compression fai lures 

in beams leads to a complicated cubic equation to be solved for the stresses. 

In lieu of this, the strength in the compression zone may be taken as aline 

decreasing linearly from the concentrically loaded axial, capacity P to the 
o 

balanced point axial capacity Pb . Thus, 

P 
o (3.46) 

Equations 3.45 and 3.46 expl icitly define the axial capacity in terms of 

material strengths, section parameters, and load eccentricity, and are given 

in Section 19 of ACI 318-63. As it is necessary to have this explicit re-

lationship to evaluate the statistics of resistance, they wi 1 1 be used in 

the subsequent rel iabi 1 ity analysis, in spite of thei r approximations. 
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3.4.2 Analysis of Fai lure Events Under Combined Loads 

Little work has been done on the statistical theory of reinforced 

concrete members subjected to combined thrust and bending. Shah [52] per­

formed a regression analysis of existing column test data which. indicates 

the statistical adequacy of the ACI strength formulas. Tichy and Vorlicek 

[55] presented a .discussion of interaction curves in general; Rosenblueth 

and Esteva [49] indicated conceptually how probabi I ities associated there~ 

with might be determined. The statistical analysis is complicated by the 

resistance being a function of the relative load effects. Resistance and 

load are therefore no longer statistically independent, and simplifications 

must be sought before the reI iabi I ity can be assessed by Eqs. 2.8 and 2.16. 

An interaction curve for a reinforced co~crete section is shown in 

Fig. 3.8. The regions defining tensi Ie and compressive failures are denoted 

as G
T 

and G
C

' respectively. The load vector S is the resultant of applied 

thrust Sp and moment SM' Since S and the balanced point are random, it is 

not known which part wil I govern the design} particularly when the load ec­

centricity is close to the balanced eccentricity e b , 

Since the regions of tension and compression fai lures are mutually 

exclusive and collectively exhaustive, 

{Fa i lure} {Failure in Compression ~ Failure in Tension} 

where 

{Fa i lure in Compression} (Gc < sn~ < ~b) 

{Fa i lure in Tension} (G
T 

< sn~ > ~b) 



The probabi lity of fai lure is then given as 

P r ( Fa i 1 u re) P r (G
C < sl~ ~ ~ ). 

b P r (~ ~ ~b) 

'" '" '" '" '" + P r (G
T < S/e > e ). 

b P r ( e > eb) 

The density functions of GC and GT depend on the relative load effects; 

consequently, further simplifications are required. 

If the eccentricity e of the appl ied thrust is assumed to be 

known, then Sp and SM are perfectly correlated; moreover, the capacity is 

statistically independent of the appl ied load. This is tantamount to as-

suming that the vector S is random in magnitude but not in point of appl ica-

tion and direction. If the axial and moment capacities are perfectly cor-

(P
T 

< Sp)), i.e., axi ai capaci ty is less than appl i ed axi ai load. Then 

( 3. 48) 

If e
b 

is also known, the fai lure probabi 1 ities are simply 

A 

Sp) , p r (p C S e ~ e
b 

(3.49) 

p r(P T :5 Sp) , e > e
b 

The statistics of Pc and PT may be found from a systematic evaluation of 

Eqs. 3.45 and 3.46. 

When the variance of e b is small, Pr(e $ e b) is close to zero or 
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unity except in the neighborhood of the balanced point. In such cases, the 

safety criteria furnished by Eqs. 3.49 are a good approximation to that ob-

tained from Eq. 3.48. Furthermore, if the underlying risk is evaluated on 

the basis of 

pI 
f 

then Pf < Pf' For example, if Pe = Pr(~ < ~b)' 

(3.50) 

Suppose that PT > PC; then (PC - PT) < 0, and Pf < PT = Pf' A simi lar re­

sult is obtained when PC> PT' Conversely, if a design for a specified 

risk level Pf is obtained on the basis of 

o 
c 

max [0 '( comp ress ion), 0 (tens ion) ] 
c c 

then Pf(Dc) ~ Pf . This has been verified numerically. 

For simplicity, the design phase of the study (i.e., determining 

a design for a specified risk) wi 11 be based on Eq. 3.51. There are con-

ceptual as well as numerical difficulties in using Eq. 3.48 for this pur­

pose, because for a given risk Pf' Pr(~C < §p) and Pr(~T < gp) are not 

uniquely determined. For a given design, however, the total probabi lity of 

fai lure can be computed without difficulty using Eq. 3.48. 

3.4.3 Uncertainties in Thrust and Bending 

The balanced eccentricity eb is a function of the steel and 
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concrete strength and the member dimensions. For balanced conditions in a 

symmetrically reinforced rectangular section, in which the area of the con-

crete displaced by the compression steel is neglected, 

klk3 f cbC (f - k2c) + 2Asfy(d - f) 
klk3 f cbc 

where c is determined as 

E E: 
s cu 

d c 
E E: + f 

s cu y 

It is convenient to nondimensional ize the eccentricity and proceed in terms 

of the eccentricity ratio eb/t instead; whence 

E E: E E: + f 
S cu s cu Y 

E E: 
(3.52) 2 E E: + f 

s cu y s cu 

where p = As/bd (as in flexure). The mean of eb/t is found by evaluating 

Eq. 3.52 at the mean values of its variables; its basic variabi 1 ity is 

.t'2 .r- 2 ) 2.r- 2 2.r- 2 + 2.r- 2 
+ ub + uk k + c3ud + c4u t c5u E: 

1 3 cu 

2 
and simi larly for the prediction error 6

eb
/ t , where c 1' c2 ' c

3
' c4' and c

5 

are defined in Appendix B. The behavior of these coefficients as functions 

of P is illustrated in Fig. 3.9. All of these coefficients increase as the 

amount of reinforcement increases except c
S

' which remains approximately 

constant. Small variations in E therefore have 1 ittle effect on eb/t, cu 

and the contribution of uncertainties in E: to those of eb/t are practically cu 
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independent of p. The uncertainty in eb/t wi 11 increase as p increases. 

The probabi lity of a compression or tension fai lure, i.e., 

Pr(e/t < e~/t) or Pr(e/t > e~/t), can be computed assuming lognormal e~/t 
A 

and e/t. Thus, 

t . /1 + 
[22 

] In e/t 
eb/t 

1 ~ r eb/t / I + [22 
(3.54) '" 

A eft 
Pr(e/t > eb/t) = I 

L/ln [(1 + r2;, It) (1 + r2;/t)] J 
D 

The behavior of Pr(e/t > e~/t) as a function of e/t is illustrated in Fig. 

3.10. Table 3.4 shows the behavior of [2e

b
/t as a function of 8

fc 
and p. 

.y 47·7, f 

I 

P eb/t I 
~ 

0.01 0.436 i 
0.02 0.636 i 

1 0.03 0.835 

0.04 1.035 

0.05 1.235 . 

TABLE 3.4 

Total Uncertainty in eb/t ([2e It) 
b 

f 3.5, cu c 

0.10 0.12 0.15 0.20 

0.171 0.173 0.178 0.188 

0.224 0.228 0.234 0.249 

0.254 0.258 0.266 0.283 

0.27} 0.278 0.286 0.304 

0.286 0.291 0.300 0.318 

0.25 I 

0.200 

0.266 

0.302 

0.325 

0.341 
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Poor concrete quality increases the uncertainty in ebft, especially when 

the section is heavily reinforced. For a given load eccentricity ratio, 

poor quality control raises the probability of a compression type fai lure, 

but this increase is not significant. The addition of more reinforcement 

will also increase the probabi Iity of a compression fai lure for a given eft, 

as would be expected. 

The axial capacity in the compression and tension modes of failure 

is defined from Eqs. 3.45 and 3.46. The means are found by evaluating Pc or 

PT at the mean values of their dependent variables and the variabiiities and 

prediction errors are evaluated as 

where c are given in Appendix C. The probabi 1 lties of fal lure in combined 
k 

bending and thrust may then be investigated as functions of the material 

properties, geometry, and dimensionless eccentricity ratio eft. 

Figures 3.11 and 3.12 illustrate the variation of the constants 

ck in'Eq. 3.55 with eft; since the balanced point is random, the curves for 

tension and compression fai lure are shown for the enti re range of eft; note, 

however, that PT determined from Eq. 3.45 is not valid when the stress in 

the tensile reinforcement is less than f. For compression failures, estim~tes 
y 

in concrete strength and the section geometry are most significant in pre-

dieting the mean capacity. The uncertainty in the capacity depends primari 1y 

on those of fe' k1 k3' d, and fy; the contributions of the uncertainties in 

A , t, and E are insignificant. When the failure is tensi 1e, estimates of 
s cu 
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A , f , d, and t are most important in predicting the mean capacity, and f 
s y c 

and b become less significant as eft increases. Variations in e are important 

in both cases, except when eft is very small. A state of pure flexure is ap-

proached as eft becomes large; here, cf ~ cA and cf ~ cb ' consistent with 
y s c 

the flexural formulation. _ In this latter case, the un~ertainty in the capac-

ity is dominated by of ' 0A ' 0d and 0t. The coefficient c t becomes zero in 
y s 

the vicini ty of the balanced point, since at this point, the capacity is in-

dependent of t. 

_______________ J.!~~_b~ _ obs~ rv~iJ:~a-t~kTk3-~ni -~e-j n _ F i ~._h!l_t~n ds __ to_zer:.~~ 

eft ~ 0; this is a consequence of using Eq. 3.46 to evaluate the necessary 

derivatives. However, it is not reasonable that the uncertainties in k3 and 

e would have no effect on the uncertainties in Pc when eft = 0; this must be 

pointed out as a shortcoming in the use of Eq. 3.46 to evaluate op and 6p . 
C C 

Figures 3;13 and 3.14 show the variations of op and 6 p as functions 

of eft, using the uncertainties from Table 3.1.· The effect of poor concrete 

quality on the tension capacity is insignificant except for small eft, which 

is not a region of practical interest. When failure is compressive, concrete 

quality is more important, as op depends significantly on of in -this case. 
- c 

Avail~ble test data [22,42] indicate that the basic variabi lity in 

capacity ranges from 0.059 to 0.085. These values are less than those com-

puted from a systematic analysis of the uncertainties associated with each 

variable. The reason is the same ~s indicated previously in the flexural 

formulation, reflecting the difference between laboratory specimens and those 

constructed in the field. In particular, d may be carefully controlled in 

the laboratory, but may not be on the site, and, as shown in Figs. 3.11 
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and 3.12, contributes significantly to the overall variabi 1 ity in capacity. 

The problem of assuring adequate strength of a beam column in shear 

has not been considered. The presence of compressive axial load tends to in-

crease the shear capacity of a member. Conceptually, the problem can be re-

solved by replacing V in Eq. 3.22 and 3.23 by an expression reflecting this 
c 

increase in strength [16]. The probabi lity of fai lure in shear of a member 

designed for bending and thrust can then be computed and its adequacy in 

shear determined in a manner simi lar to the ~pproach used for beams. 
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Chapter 4 . 

LOAD MODELS 

4. 1 I n t rod u c tory R ema r k s 

A structure may be subjected to many types of Toads. These may 

consist of permanent loads from the weight of the system and permanent 

fixtures, 1 ive loads from occupancy, temporary equipment, and movable 

partitions, lateral loads associated \t,Jlth \t,Jind and earthquake, temperature 

stresses, residual stresses induced during fabrication, and stresses in­

duced by differential settlement. [48]. Su'ch load effects occur in many 

combinations. 

Normally, two cases are considered in design: 

1. 

2. 

Total Load 

Total Load 

= 

= 

Dead Load + Live Load 

Dead Load + Live Load + Lateral Load 

Traditional ly, ~he total design load is computed as the sum of the respec­

tive nominal maximum values. 

The loads are frequently variable in time, as well as random. 

The complete description of such a load history must be given as a stochastic 

process. The statistics necessary to define the process are unavailable, 

since they require continuous load monitoring throughout the 1 ifetime of 

the system. Instead, the time dependent effects may be included by 

determining the statistics of the distribution of maximum load with extreme 

value statistics [39,43]. Since the distribution of live loads is time­

variant, the time scale involved is important in combining various loads [10]. 
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In design against dead and live loads only, for example, the extreme value 

of the live load over the lifetime of the structure is of interest, since 

the time scale is long and the 1 ive load magnitude changes slowly with time. 

When wind loads are combined with dead and live loads, however, short-term 

live loads should be considered, as the duration of strong winds is from 

10 minutes to one hour [29]. 

In the following, dead, live and wind loads are considered. It 

is assumed in the re1 labi lity analysis that the load types are independent, 

and are mutually independent of the resistance. In this study, only 

simpl ified load models are used, although sophisticated stochastic process 

live load models may be available [34,44]. Existing load survey data [43] 

are used to obtain the required 1 ive load statistics. 

4.2 Dead Load 

Dead load is defined as resulting from the weight of the elements 

comprising the structure, permanent equipment, and installations. 

The weight of a structure is quite predictable when the geometry 

is specified, and depends on the unit weights of the elements and their 

dimensions. The weight per unit length of a reinforced concrete member 

is 

(4. 1) 

where Wc and wst are unit weights of concrete and steel, and Ac and Ast 

are the respective areas. The variabi lity in W is derived from the 
o 

variabilities of the unit weights and dimensions; thus, 



where 

= 

2 (02 
c 1 w 

w 
c 

c 

w 
c 

Ast· -
+ --w - st 

A 
c 

Ast 
-w A st 

c 

A t s -
W +-- W 

C - st 
A 

c 
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+ (4.2) 

and where 0b' at' and 0A are given in Table 3.1. Indications are [18] that 
s 

o is about 0.03; cS ranges from about 0.02 for. large bars to about 0.05 
Wc wst 

for small bars. From Eq. 4.2, with A t/A typically between 0.01 and 0.08, 
s c 

depending on the type of member, the variability in member weight is approxi-

ma tel y e·q u a 1 tot h e fir s t term i n E q. 4. 2; hen ceo W ~ a . 06 • 1ft he we i g h t 
o 

along a member is highly correlated, the uncertainty in the dead load 0
0 

for the member i~ approximately equal to Ow . 
o 

The prediction error in W is estimated as o 

where 6b and 6 t are taken from Table 3.1, and Ow is assumed to be 
c 

negligible. Equations 4.2 and 4.3 then represent the uncertainties in 

the dead weights of the structural members. 

The contribution of permanent equipment to the· overall load can 

be estimated accurately, as their specifications may be obtained from the 
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manufacturer. This source of uncertainty is expected'to be insignificant. 

Additional uncertainty in the permanent load arises from the weight of 

nonstructural elements, such as partitions [18] Such uncertainty can only 

be estimated subjectively, and may be combined with ~W. The total predic­
o 

tion error in the dead load is then assumed to be ~D ~ 0.10. 

The load-induced action resulting from the dead. load is 

(4.4) 

where D is the dead load acting on the member, and cD is an influence 

coefficient translating the appl ied load to a load effect acting on the 

member. Clearly, cD depends on the fai lure mode considered. As uncertainties 

in cD arise from errors pertaining to the structural analysis, they are 

assumed to be of the prediction type. 

The mean dead load effect is 

( 4.5) 

.and its variability is 

Cs cD 
D 

(4.6) 

The prediction error is 

~2 ~2 2 = + ~o So cD 

in which ~ reflects the degree of confidence attributed to the analysis 
cD 

procedure. Uncertainties in analysis are assumed to be on the order of 

0.05 - 0.10 (include assumptions in analysis, such as spatial distribution 

of loads, degree of continuity, etc.). 
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4.3 Live Loads on Bui ldings 

4.3. 1 Methodology 

Live loads are those arising from movable equipment and fixtures, 

occupants, and other nonpermanent effects. There may be a wide variety of 

loadings possible which may not be foreseen by the desigher. Also 

important is the time-dependency of the loads and their spatial correla-

tiona 

An early study [13] assumes that the floor load on an area is 

the result of a .large number of independent load intensities .. Then assuming 

the intensity w is normally distributed,' 

w w+Sa/1A w 
(4.8) 

where wand a are the mean and standard deviation of the intensity. The w 

-important result here is that- the c. o. v. of the intensity is a function 

of the tributary area A; this has been borne out ~y existing load sur~ 

veys [20, 43]· Hasofer's stochastic model [34] indicates a dependence of 

the C. o. v. of load intensity on the tributary area and the type of occu-

pancy. Pei r's [44] stochastic analysis considers load correlation and 

time dependency, and design loads are presented as a function of the 

number of stories and the tributary area. Neither model postulates a 

suitable equation for the design 1 i ve load. 

Surveys conducted by Dunham [30] indicate that as the loaded 

t r i buta ry area increases, the maximum load intensity decreases; further-

more, the equivalent column load intensity decreases significantly as the 
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number of floors above it increases. This is because, it is unlikely that 

al 1 floors or floor areas wi 11 be loaded to maximum values simultaneously. 

The des i gn ru 1e adopted by the Ameri can Standard Bu i 1 ding Code [7], a llowi ng 

a reduced live load of 

L nom Lspec (l = 0.0008 (A trib = 150)) ( 4.9) 

for tributary area greater than 150 ft 2 , with a reduction limited to 60 

percent, represents the current acceptable basis for live load evaluation. 

Within the present state of knowledge, a study of live loads 

based on the first-order approximate analysis should be more than adequate. 

However, a model suitable for common design usage that relates the factors 

known to affect the live load has yet to be developed, and more data is 

necessary before such a relationship can be found [20]. 

Existing load surveys do not reflect the time-dependency of the 

load, as the measurements are instantaneous ~alues ~n the overall context-

of the 'loading history. To reflect time variabi 1 lty, Karm~n [39] assumes 

that the occupancy changes a certain number of times during the lifetime 

of a structure, and that the load intensities in successive occupancy periods 

are identically distributed as the instantaneous intensity, and are statisti-

cally independent. The distribution of maximum load intensity during the 

lifetime then may be obtained using extreme value statistics, i.e., 

F (x) 
Qmax 

where N is the number of occupancies and FQ is the distribution function of 

the instantaneous load intensity. For a 50 year 1 ifetime, the number of 

occupancy changes may be expected to be between 5 and 20. 
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Statistics reported by Mitchell and Woodgate [43] from an 

extensive load survey of office bui ldings are used to define the live 

load in this study. The statistics for. instantaneous live load intensity 

on floors other than basement and ground levels are shown in Fig. 4. l, 

along with the extreme value statistics for maximum load found from 

K~rm~n's formulation, with 12 occupancy changes. The dependence of the 

statisti cs on the loaded area is clear. The data-based histograms show a 

definite positive skewness for small areas, a result also obtained by 

others [20]. For larger areas, the histograms exhibit approximately normal 

behavior. 

Determination of Column Loads 

To determine the column. load reduction for a general case, the 

correlation between loads on different floors must be known or assumed. 

There are reasons why these loads may be interdependent. Certain areas 

are consistently loaded on all floors. In office and apartment buildings, 

different users may use successive floors for simi lar functions, and floor 

loading patterns tend to b~ replicated. 

Suppose a column supports M fl06rs. The load intensity L. on 
. I 

the jth floor is distributed over an area A tributary to the column, 

assume.cJ to be the same on each floor. In an approximate sense, the column 

load Y is-

M 

Y = A I 
i=l 

L. 
I 

Its mean and variance are then 
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y A l. 
I 

i=l 

M M 
Var (Y) A2 \' > p .. 0 l . 0 l . i.., . I J 

i=l j=l I J 

where p .. is the correlation coefficient between the loads on floors 
IJ 

and j. Now if the load intensities on each floor are assumed to be 

i denti cal iy distributed; 

p .. = 0 .. , poO = 1, 
I J J I I I 

Y ~1 A l 

Var (y) M A2 2 = 0 l 

and 

Oy cR °l 
where 

cR ~ (M + 2 

i.e., L. = L, 
I 

M-l 

+ 2· A2 2 
L 0 l 

i = 1 

- n ~nrf - u L ' OIIU 

M 
) p .. 
L IJ 

j=i+l 

M-l M 1/2 
L L poo) 

IJ 
i= 1 j=i+1 

= 0l' and with 

(4. 12) 

( 4. 13) 

The Ilreduction coefficient ll cR is a function of the number of floors 

supported and the load correlation between them. If perfect correlation 

exists, Oy = 0l' and if the loads are statistically independent, 0y = 0l/liM; 

in real ity, Oy wi 11 fall somewhere in between. 
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cR has the effect of reducing the nominal live load intensity 

per floor in det~rmining the total load on a column; the mean column load 

intensity per floor does not change, however. The nominal design load per 

floor at a cumulative probabi lity q, S , wi 1 1 decrease as the number of 
q 

floors increases because the variance of the load decreases. It should be 

pointed out that c R is different from the conventional load-reduction 

factor, although it serves the same purpose. 

An estimate of the correlation is made by calculating the load 

reductions at the 99 percent level corresponding to several assumed corre-

lation functions and comparing these to data-based computed reductions [43]. 

Intuitively, p .. should depend inversely-on the separation between floors 
IJ 

i and j. Simple linear, quadratic, and exponential functions were assumed. 

On this basis, results show that sign)ficant cor~elation exists between 

floors that are less than four or five stories apart, but that the correla-

tions are negligible for floors that are more widely separated. 

-A linearly decreasing correlation function of the form 

p .. 
IJ 

1 - U - i)/4 (4,14) 

gives a reasonable and slightly conservative bound to the test results 

of Mitchell and Woodgate, and is used in the subsequent analysis. 

Figure 4.2 shows the variation of the reduction coefficient c
R 

with the number of stories supported by the column. The rate of reduction 

decreases as the number of floors increases, suggesting some value beyond 

which further reductions can be ignored. The rate is greatest when less 

t han ten s tor i e s are i n vol ve d . Fig u r e 4. -3 show s the va ria t ion 0 f the 
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reduced c. o. v. of column load intensity with tributary area. The rate of 

reduction decreases as the area increases. In a practical sense, values of 

M and A can be set beyond which no further reduction is allowed. From Figs. 

4.2 and 4.3, suitable cutoff points may be M = 15 - 20 stories, and A ~ 500 ft.2. 

The load effect on a structural element is obtained by integrating 

the product of the load intensity and the influence function over the 

tributary area. The effects of load concentrations can thereby be aSsessed. 

The equivalent uniformly distributed load (EUDL) that produces the same load 

effect may then be determined, which is actually the load of interest in 

design. Mitchell and Woodgate have computed the EUDL required to cause the same 

internal effect (beam shear, moment, etc.) as that resulting from actual 

loads measured in their survey. Load concentration factors (LCF) are com-

puted which, when multiplied by the 99 percentile intensity, yield the 99 

percenti Ie EUDL. 

It is assumed in the sequel that the load intensities are normally 

distributed. In the present study, the evaluation is in terms of mean 

values, but the LCF computed above are for 99 percentile values; it is 

assumed that the mean EUDL is obtained by multiplying the mean intensity 

by the LCF, and that the C.O.v. of this EUDL is 0L obtained from Fig. 4.1. 

The uncertainty in spacewise variabi lity is reflected in the choice of 

the prediction error 6Lo It is also assumed that the column load reduc­

tion factor cR is appl icable to bot~ the permanent and short-term live 

loads. 

It appears that additional study is required to obtain a more 

exact description of load correlation over different tributary areas and 

floor levels. 
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4.3.2 Analysis of Uncertainties 

The load-induced action resulting from live load is 

= (4. 15) 

where L is the EUDL intensity, and cL is an influence coefficient trans­

lating the appl ied load intensity to the required load effect. Uncer-

tainties in cL arise from errors pertaining to the structural analysis, 

and are assumed to be entirely of the prediction type. 

The mean live load effect is 

(4.16) 

For the design of a beam, the basic variabi lity in the load effect is 

and for column design, 

= 

where 0L is the C.O.v. of load intensity, which depends on the tributary 

are a . I f de a dan d 1 i vel 0 ado n 1 yare co n sid ere d , the 1 0 n 9 - term 1 oa d 

statistics should be used; however, if wind ~ffects are included, the in-

stantaneous live loads would be appropriate. cR is selected from Fig. 4.2, 

depending on the number of floors supported. 

The prediction error in SL' reflecting the imponderables in the 

loa d ma del san d the err 0 r sin the s t r u c t u r a 1 a n a 1 y sis, i 5 

= 
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where ~ is a measure of the degree of confidence attributed to the 
c L 

analysis, and ~L arises from the assumptions used to model the live loads, 

i.e., those regarding load concentration effects, load reduction and corre-

1ation, and time dependency. 

Rosenblueth and Esteva [49] estimated that the uncertainty due 

to spacewise variabi 1 ity and load concentration is approximately 

2 2 (1.2) VL/A; using Mitchell and Woodgate's survey, they found VL ~ 1.4. 

Uncertainties in time-dependent effects arise from approximating the 

extreme of the continuous load process using instantaneous load measure-

ments; the uncertainty associated with this is assumed to be ~T ~ 0.10. 

The load reduction is assigned a predJction error of ~LR ~ 0.15 for a beam, 

and ~LR ~ 0.20 for a column supporting more than one floor. Then 

The 99 percentile design loads computed with the method outlined 

above compare quite well with those obtained by Pei r [44] from a more 

sophisticated analysis. For the design of a beam with a tributary area 

of 500 ft 2 in which the support moment governs the design, the 99 percent 

EUDL is computed to be 

= 

(1.25) (27.4) (1 + 2.33x.27) ~ 56 psf 

Corresponding valu~ determined by pei r range from about 43 psf to 52 psf, 

depending on the load combinations considered. A slightly conservative 

result is simi 1arly obtained for columns. 



82 

4.4 Wind Loads 

4.4.1 I ntroductory Remarks 

Wind effects are often important in the design of tall bui ldings. 

An accurate analysis of wind-induced loads should consider th~ turbulent, 

random nature of wind and the dynamic response of the system to it. A 

reasonable way to do this is to introduce a gust factor reflecting the 

wind statistics and dynamic characteristics of the structure by which the 

static forces can be multiplied [29, 57]. The resulting wind pressure can 

then be used in a static analysis. 

Comprehensive analyses of wind-induced pressures and related 

structural responses are available [29, 57]. A brief discussion of the 

method ~f approach and its significance to design is given here. 

4.4.2 The Gust Factor 

Wind velocity is characterized by a steady-state mean velocity 

Us' obtained as the average ov~r duration t d , and a fluctuating component 

u(y,z,t), usually assumed to be a stationary Gaussian process. The 

total wind velocity is then 

U U + u(y,z,t) 
s 

(4.21) 

The stead~-state velocity increases with height approximately .in accordance 

with the power law profile· 

= (4.22) 
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where zG and UG are the gradient height and velocity; and a depends on 

the location; in cities, a ~ 0.4. 

The pressure acting on a point is related to the velocity by 

p 

where p is the mass densit~ of air (p = 0.0025 s 1 ugs/ft 3), and 'c is a 
p 

pressure coefficient. Denoting the reference velocity at 30 ft as 

U = u (30), the mean steady-state pressure at a height h on a bui lding o s 

is 

p 

and the mean wind pressure profile is 

The total static plus dynamic response of the structure is 

Y(z/h,t) Y ¢ (z/h) (1 + y ( t) ) 

where Y is a general ized coordinate, y(t) Is a dimensionless dynamic 

response function, and ¢(z/h) is the mode shape associated with the 

fundamental natural frequency f. It is assumed that the first mode 
o 

(4.23) 

(4.24) 

(4.25) 

dominates the response, and that the mode shape is 1:3 z/h. When the pressure 

is integrated over the area on which it acts, the statistics of y(t) maybe 

found in terms of those of u(YJz,t) from the theory of random vibration [4J]. 

Using approximations suggested by Davenport [29], 
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E [y(t)] 0 

( 4.26) 

where k is a surface rou9hness factor taken as 0.05 in cities, B is the 

total mechanical and aerodynamic dampin9, and 

+ 
cv .30 )0. fob ......J... ( __ _ 

2 h U 
o 

1 
92 = 

c 30 a f h 
+2.. (_) ...2-

3 h U 
0 

(4.27) 

f a 
2 

(4000 --.£ (1£) ) 
U h 

0 
93 = 

[ f a 2 4/3 
[1 + (4000 u: (3hO) ) 1] 

6 1 -

1500 2 1/3 
[1 + (-)] . 

h 

in which cy ~ 20 and Cz ~ 8. Terms 91 and 92 represent the effects of 

spatial correlation of u(y,z,t), and 9
3 

~s an empirical expression [29] 

for the spectral density of u. Collectively, they represent the contribution 
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to 0
2 from frequencies where f ~ f. The contribution from other fre-y 0 

quencies is given approximately by g4" 

The gust factor is defined from Eq. 4.25 to be 

G max [1 + y(t)] (4.28) 
o (: t < td 

Since G is a random variable, a suitable design value may be chosen such 

that the probability of exceedance is sufficiently small. Let 

M max y(t) 
o ~ t ~ td 

be a ran do m va ria b 1 e 0 fun know n dis t rib uti 0 n . I f y ( t ) i s G a u s s ian, i t 

may be shown [28] that the distribution function for M is approximately 

If x is specified such that q = 1 - FM(x ), the gust factor associated 
q . q 

with exceedan ce 1 eve 1 q is G = 1 + x. I f the exceedance 1 eve 1 is 
q q 

associated with the characteristic extreme xc' then FM(xc ) = lie, and 

x 12 In(f t) a 
cod y 

The design gust factor is then [29] 

= a 
y 

The design wind pressure profile is found by combining Eqs. 4.29 and 

4.24, i.e., 

W(z) G
D 

P (z/h)2a 

( 4.29) 

(4.30 ) 
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4.4.3 Wind Load Statistics and Uncertainti'es 

The mean gust factor is 

= (3, f , U , c , C ) 
o 0 y Z 

and its variability and prediction error are 

0
2 

fo~ GO 

L 
2 

= a. 
/:;,2 I 

l~~ GO 

(4.3]) 

(4.32) 

where the expressions for a. are given in' Appendix o. To determine the 
I 

terms of practical signiflcante, it is necessary to study the coefficients 

a. in Eq. 4.32. 
I 

Figures 4.4 and 4.5 show the variation of the gust factor GO 

and the various a. with f and S for a specified mean wind profi 1e on a 
I 0 

building of moderate height. It can be observed that the mean gust 

factor GO is insensitive to variations in fo and S. This is significant 

because these quantities are often estimated from empirical expressions. 

The implication is that refined estimates of the dynamic characteristics 

of the system will not improve the determination of the gust factor. 

Figure 4.6 shows the variation of a i and Go with the height of 

a building. For tall, slender buildings, the parameters S, IT , c , c , 
a y Z 

and f become more significant, and ~ and I lose some of their importance. 
o 

Shorter bui'ldings are more affected by the surface roughness,as reflected 

in k, and the wind profi le. For a lightly damped structure with a 
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response dominated by resonance, the specification of· the natural 

frequency f becomes important. The gust factor decreases as the height 
o 

increases up to 400 ft (in Fig. 4.6) because the turbulent components 

of velocity caused by surface roughness become less significant in com-

parison to the steady-state velocity. 

For lightly damped bui ldings of moderate height, the variations 

in the gust factor statistics attributable to c and c are small and can y z 

be neglected. Overall variations are dominated by those of k and a, and 

to a lesser extent U. Vickery [57] observed that the gust factor is rn­
o 

sensitive to the mode shape; hence, the actual mode shape is usually not 

too i mpo rtan t. 

Statistics for U are found from existing meteorological 
o 

information. For example, using Thom's data [54] the annual extreme 

fastest-mi1e-wind-speed at 30 ft height for the area around Chicago, 

Illinois is 80 mph for a return period of 100 years, and 70 mph for a 

return period of 50 years (for open country exposures). These values 

must be converted to averages over a time duration td suitable for 

determining the gust factor, and then translated to urban exposures. 

A suitable averaging time is 20 minutes. [48] The result of this com-

putation gives IT = 37 ft/sec and 33 ft/sec for return periods of 100 and 
o 

50 years, respectively. The c.o.v. 0u is about 0.15. 
o· 

The natural frequency f may be expressed in terms of the 
o 

dead and live load, assuming all floors are loaded identically, as 

1 

fo ~ c
f 

(N
s 

(L+ D)) 2 
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where c
f 

is a constant depending on the,stiffness of the fundamental mode. 

The mean of f is estimated approximately from f ~ lO/N , where N is 
o 0 s S 

the number of stories. From Eq. 4.33, the c.o.v. of f is found in terms 
o 

+ 
( ___ ) 02 2 ] 1/2 

1 + flo 0 

The appropriate ,mean live loads are those for short-term duration. 

The variabil ity in the design wind pressure is found from 

Eq. 4.30 to be 

in which 

where aU 
o 

0
2 

0
2 

+ 0
2 

W Go p 

0- = 2 °u , and 
p 

0 

. 2 2 
0

2 2 
0

2 
°G 

~ a·U + a
f U f 

0 0 0 0 0 

and af are the appropriate coefficients in Eq. 4.32. 
o 

(4.34) 

(4.35) 

Additional (prediction) uncertainties may arise from the assumed 

values of k and a, as well as in the value of S and the determination 

of f. In view of these, the prediction error in the calculated wind 
o 

pressure is 

= 

where 
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62 
6

2 -2 1 n 2 h 62 
~ + 4 a (}O) c a p p 

assuming 6U 
~ 0, and 

0 

6
2 2 2 2 62 2 2 2 2 

~ a, ... 6
k 

+ a + as 6S + a
f 

6f GO i". a a 
0 0 

where uncertainties in c and c have been ignored. In buildings of 
y z 

moderate height, Eq. 4.38 may be approximated by 

2 ,,2 a2 ,,2 
ak Llk + a u a 

(4.37) 

(4.38) 

Reasonable estimates [57] of the prediction errors are 6a = 0.10, 6k = 0.20, 

6
S 

= 0.25, 6c = 0.10, and 6f 0.10. Alternatively, 6f could be com-
p 0 0 

puted from Eq. 4.34 by substituting 6
L 

and 60 for 0L and °0 , 

The mean wind load effect is 

where W is defined in Eq. 4.30, evaluated at z = h, and Cw is an influence 

coefficient. Its variabi 1 ity is Os = oW' from Eq. 4.35, and the pre-
W 

diction error is 

where 6W is defined in Eq. 4.36, and 6 is the measure of inaccuracy 
Cw 

in the structural analysis. 
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Chapter 5 

CRITICAL APPRAISAL OF CURRENT DESIGN CRITERIA 

5. 1 General Remarks 

In this chapter, the resistance and load statistics found in 

Chapters 3 and 4.are used to evaluate the reliability of designs determined 

from present ACI provisions. The primary objective is to determine what 

risk levels are implied in current designs, or associated with d~signs ob­

tained with existing load factors. 

This evaluation is necessary to aid in the adoption of a prob­

abi lity based design format .. Code formulation is an evolutionary process, 

an~ new provisions seldom reflect abrupt changes from previous Codes. [49]· 

It is reasonable to expect that a reI iabi lity based code should initially 

give the same designs as. existing code provisions. This means that the 

current level of safety, or risk, should be maintained. The level of risk 

imp1 iclt in current designs, therefore, must be evaluated. 

in the present analysis, the resistance and load effects are as~ 

sumed to be mutually independent random· variables. The study is restricted 

to consideration ·of the adequacy of designs where strength is the governing 

criterion. Beams are examined with regard to their adequacy in flexure and 

shear, whereas columns are studied from the standpoint of the development 

in Sec. 3.4. Of particular. interest is the comparison of the risk levels 

implied in the different fai lure modes, and the effect of concrete qual ity 

on the member reliabi lity. 
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5. 2 Ap p r a i 5 a 1 0 f AC I De 5 i gn P rov i s ion s 

5.2.1 Analysis of loading Provisions 

To evaluat~ the adequacy of existing ACI designs, it is necessary 

to translate the nominal loads and resistanc~s to thei r mean values. The 

ACI code requires that the,design load be computed as [5]' 

U' 1.7l + 1.40 (5.1) 

when dead and live loads are considered, and 

U' = o. 75 (1 • 7 l + 1 .4 D + 1 .7 w) (5.2) 

when wind effects are included. A third loadrng condition, in which the 

live load is absent~ is also requi'reQ, but this w'i 1] not be considered here. 

The int~rnal' load effect U~d)mensional1y consistent with the response quan­
I 

tity sought is 

U! 
I 

ell (1~7+ 1.4 K) nom 

where 

K = 
c 0 o nom 

(5.4) 
cl L nom 

and cL and Co are influence coefficients for the desired load effects, 0 
nom 

is the nomin~l dead load in psf, and l is the nominal live load in psf, nom 

obtained from the ASA Sui Iding Code [7], or simi 1ar standards. Introduce 

factors aD and a l such that 
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(S. S) 

where [and ~ are predicted mean values of live and dead load (e.g., obtain-

ed from load surveys). Then 

U! 'c
L (XL L (1 .7 + 1.4 K) 

I 
(S.3a) 

in which 

cD aD 0 
K (S.4a) 

cL a L L 

a L may be computed by compari,ng L(A) from load survey data [43] to the nomi­

nal 1 ive load computed from Eq. 4.9. (XD may be found by comparing the 9S 

percent load value to the mean dead load, assuming D is normally di~tributed; 

with 8D ~ 0.06, aD ~ 1.10. Simi larly, when wind load effects are included, 

U! 
I 

= (5.6) 

in which 

= (5. 7) 

g is found from Eq. 4.30 evaluated at z = h, and aW is computed by comparing 

this value to the standard design wind pressure specified in the Uniform 

Bui ld i ng Code [S6]. 

S.2.2 Provisions for Flexure 

The nominal resistance of a section against flexure is 
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(5.8) 

where f' and f' are nominal steel and concrete strengths, and ¢F is a flex-
c y 

ural capacity reduction factor specified as 0.90. The conventional safety 

requ i remen t, M I ~ U i' i s then 

f' 
--1.. 0.59p f I ) 

C 

where ~ is the influence coefficient for flexure, and to find the required 

design for the section, 

(5. 10) 

OF represents a flexural design, given in terms of the mat~rial properties 

and the mean load ratio Qnly. A design may be obtained from OF -by multiply-

- -2 --F -ing OF, by the mean internal live load effect, i.e., b d = OF c
L 

l. When 

wind ~ffects are included~ 

= 
a L (0.75)(1.7 + 1.4 KF + 1.7 KWF ) 

¢F P fy' (1 - O. 59p f' If I) 
Y c 

(5. 11) 

The nominal values of p, b, and d have been chosen at their respective 

means. 

To compute the underlying risk of fai lure of a specified design 

using. the alternative risk measure, it is first necessary to determine the 

equivalent value of wF{~F) ~ from Eq. 2.18, the mean capacity and load ef­

fects are related as 



where 

A = pf (1 - O.S9q) 
Y 

if fal lure occurs in tension, and 

T 
A = p T (1 - O.S9p ~ ) 

s T 
c 
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(S.12a) 

(S.13a) 

(S.13b) 

if fai lure occurs in compression, where T is defined in Eq. 3.19~ Therefore, 
s 

= 
- -2 
b d 
-f­
c L L 

(S.12b) 

into which DF may be substituted from Eqs. 5.10 or 5.11. First; a tension 

fai lure is assumed; then using Eqs. S.13a and 5.12b, ~F(eF) is determined 

and the probabi lity of failure is computed from Eqs. 2.25 and 2.2"6. Next, 

a compressi6n failure is assumed and the process is repeated using Eqs. 

5.13b and 5.l2b. Alternatively, the prescri'ptive lognormal basis may be 

used instead of Eqs. 2.25 a~d 2.26 to compute the probabi lities of failure 

in tension and compression. The total prob~bi lity of failure may then be 

found from Eq. 3.11. 

5.2.3 Provisions for Shear 

The adequacy of a 'design OF against shear is investigated by 

checking the shear capacjty at a distance d.from· the beam support, in ac-

cordance with present ACI practice. The:mean shear capacity of the beam is 
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given in Eq. 3.36, in which v is defined in Eq. 3.29. cu The shear-moment 

ratio necessary fo~ its evaluation is found from 

-s - -s- -s -
V Co o + cL L + Cw W 

(5. 14) = 
-F - -F- -f-

M cD o + c
L 

L + Cw W 

w her e all i n flu en c e co e f f i c i en t s are e val u ate d a tad i s tan c e d from the sup -

port. When only gravity loads are considered, W = O. Although Eq. 3.27 

suggests that the mean shear capacity is a function of the mean loads, the 

shear resistance and applied load effects wi 11 be assumed to be independent 

in the evaluation of' the risk in shear. 

The nominal resistance provided by the ACI code against shear is 

given as 

VI = ~ - ( 1 ~ Vi b d I + --I ) 
't's cu r (5. 15) 

s 

where rl = VI/V' ¢ is the shear capacity reduction factor specified as s c ws' s 

0.85, and Vi is evaluated from Eq. 3.27. The nominal shear-moment ratio cu 

is determined from Eqs. 5.3a or 5.6 for the bending and shear loads at a 

distance d from the support, with the 1 imitation VI/M' $ lid, as required 

by the ACI code. 

On the basis of the tr~ss analogy, the value of rl provided in the 
s 

ACI code may be found from equating Eq. 5.15 to Eq. S.3a or 5.6 for shear. 

This yields 

rl 
s 

= 
Vi b d 

cu 

( I . 7 + 1. 4 Ks) 

(5.16a) 

- v b d cu 
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for dead and 1 ive loads, or 

rl 
s 

( 0 • 75) 0 . 7 + 1. 4 Ks + 1. 7 KWS) - Vi b d 
cu 

(S.16b) 

when wind load effects are included. To analyze the underlying rel iabi li ty 

for shear, it is necessary to translate rl to the parameter r based on 
s s 

mean values. This is done using the relation 

r 
s 

v cu 
vr-cu 

f' 
...:i.-
T 

y 

r' 
s (S. 17) 

To insure that every potential diagonal crack is crossed by at 

least one stirrup, the spacing of the stirrups must be 5 < -2
1 d. In terms st 

of r ,this implies that 
s 

v bd cu 
r = 

s A T d 
v y 

v bd 
< 

cu 
(S. 18) s st - 2 A- T 

v y 

To provide against sudden stirrup yielding and the resulting diagonal crack 

growth, the ACI code specifies a minimum allowable stirrup area 

A > v 

.b Sst 
50 f' 

y 

Translated to ksi un~ts, and in terms of the parameter r s ' this m~ans that 

v bd v bd A f' f' cu 
< 

·cu 20 ....:i..~ 20 .1 (S. 19) r = s v s st - cu 
A f d A T d b T v y v y y 
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Equations 5.18 and 5.19 place additional.l imitations on the value of r de­
s 

rived from strength considerations only. The minimum value of r computed 
s 

from Eqs. 5.17, 5.18 and 5.19 should be used to assess the probabi 1 ity of 

shear fai lure of a given design. 

The mean shear c.apaci ty and applied load effect are related, from 

Eqs. 2.18 and 3~36, as 

'P
Z

V bd(l+_l ) 
cu r (5.Z0) 

s 

To compute the underlying risk of shear failure of a fl~xural design, it is 

necessary to determine its equivalent value of wS(8S) in shear. From 

Eq. 5. 20, 

= v cu 
(1 + _1, ) 

r s 

This may be expressed in terms of DF as 

= 1 v cu 'P2 (1 + *- ) 
d s 

-f (bid r/3 DF 
cL 

¢2 = ...-S Vcu ..,f" ...... 
cL OF cL L 

wherein d is found from the flexural solution as 

d = (DF i r ) 1/3 

bid 

( 1 + _1,) 
r (5.z1) 
s 

(5.22) 
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Wi th Ws (8S) given above, the risk of fai 1.ure in shear may be compl.Jted from 

Eqs. 2.25 and 2.26 as a function of rand bid. 
s· 

5.2.4 Provisions for Axial Thrust and Bending 

Combin~~ bending and axial thrust is handled in a manner similar 

to flexure. For a given elt, the conventional safety requirement, Pi > UI 

- i' 

is 

-.--... - •..... - •... --.-. - .. - .....• - ... -.-..... - .... -.-.. --.-.. -----

when dead and live loads are considered, or 

rh K f' 'bTq' 
'+'c 3 c u (5.23b) 

when wind effects are included. ql is a dimensionless axial capacity de­
u 

fined in Append i xC, and is dependen t on e/ t and whe the r a· tens i on or com-

pression fai lure occurs. ¢ is the capacity reduction factor for tied col­
c 

umns, given as 0.70 by ACI 318-63. Thus,· a design is·determined as 

= 
'b t a L (1.7 + 1.4 KC) 

= -P - I.. 
c L L.. ¢ K f' ql 

; C 3 c u 

when dead and live loads are considered, or 

= 
a L (0 . .7 5) ( 1 · 7 + 1. 4 KC + 1. 7 KWC) 

¢c 1<3 f I q I 
C U 

(5. 24a) 

(5.24b) 

when wind effects are included. The ACI code places a lower limit on the 

allowable elt of 0.10; the effect is to prescribe a minimum DC' 
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The probability of fai lure of a,design is evaluated by first de~ 

t e r min i n g the ass 0 cia ted w C (8 c ) for com pre s s ion and ten s i On f a I 1 u res, com­

puting the conditional probabi 1 Itles of fal lure on the basis of the assumed 

fal lure mode, and applying Eq. 3.48 to determine the total probabi lity ,of 

fal lure. The mean capacity and appl ied load effects are related as 

b"tB 

where 

B = k f c( 
-----~--G-u,.-------------

iff ail u r e oc cur sin com pre 5 s ion, and 

B = 
- - -T 
k3 f q c u 

(5.25 ) 

-{ -,;T 
if fai lure occurs in tension; q and q are dimensionless mean values of u u 

axial capacity defined in Appendix C. Therefore, 

= '(5. f6) 

into which the design DC may be substituted to evalu~te its risk of fai lure 

under combined thrust and bending. 

5.3 Risks Associated With Current ACI Designs 

The levels of risk associated with current ACI provLsions for 

the design of beams and columns are determined herein for different loading 

conditions. For purposes of 11 lustration, elastic analysis is used through-

out. Assuming the members are prismatic, and the within·member resistances 
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are perfectly correlated, the ~esign is, ~herefore, determined at the point 

of maximum load effect. 

5.3.1 Beams Subjected to Specified Load Effects 

Consider a beam of 15 ft span supporting a tributary area of 

2 150 ft ; the loads consist of dead load and permanent live loads. The dead 

and 1 ive load statistics are found by the methods described in Secs. 4.2 

and 4.3. A summary of the pertinent quantities is given in Table 5.1.' 

TABLE 5.1 

Load Statistics for a Beam: Supporting a 
Tributary Area of 150 Ft 2 

Mean (psf) 

D.ead Load 100 0.06 0.10 

Live Load 45 0.29 0.23 ' 

1. 10 

1. 78 

Figure 5.1 shows probabi lities of· fal lure of ACI flexural designs 

in tension and compression modes, for varying reinforc~ment rati~~. Thes~ 

are actual Iy conditional probabi Ilties, in accordance with Eqs. 3,12 and 

3.13. However, if p 0.02, with intermediate grade steel, the probability 

of the occurrence of a compression fa.i lure is 0.0378.(0.0567), and the prob­

abil ity of th~ occurrenc~ of a te~sion fai lure is 0.~622 (0~9433); parenthet-

Ica1 quantities refer to poor concrete quality. As a result, the first term 

in Eq. 3.11 dominates, and the probability of failure of the section in 
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flexure is approximately equal to its probabi lity of fai lure in the tension 

mode. This suggests that if the reinforcement ratio is suitably chosen, 

the possibi 1 ity of a compression fai lure may be ignored in assessing the 

underlying risk. Commonly, reinforcement ratios are often chosen consider-

ably less than 0.75Pbo The total probabi 1 ity of fal lure computed from Eq. 

3.11 is also shown in Fig .. 5.1, and indicates the small difference when the 

possibi 1 ity of a compression fai lure is included. 

It can be observed from Fig. 5. 1 that the risk levels (in tension) 

are al 1 of the order of 10- 5 , and are not sensitive to p, for the range of 

P of interest. The lognormal-prescriptive risk evaluation provides conser-

vative but approximate agreement to that obtained from the ~lternative risk 

measure. Poor concrete quality does not have a significant effect on the 

probabi 1 ity of tension fai lure. (The probabi 1 ity of fai lure in the compres-

sion mode is significantly affected, but the 1 ikel ihood of its occurrence 

is very small). This was foreseen in Fig. 3.5, showing the insensitivity 

of 8
M 

and 6
M 

to ~ and the concrete qual ity. There is no significant dif-
T T 

ference when high strength s tee lis used ° 

Figure 5.2 illustrates the· relative safety against flexural fai 1-

ure when deterministic load factors other than the current values of 1.7 

against live load and 1.4 against dead load are used. ACI 318-63 provided 

values of 1.8 and 1.5. Provisions of ACI 318-71 imply an increase in risk of 

less than one order of magnitude; the margins of safety for f1exura1designs 

are thus not significantly different. If the load factors should decrease 

-4 to 1.5 and 1.2, the impl led risk would increase to about 10 , about one 

order of magnitude higher than that of current designs. 
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To examine the safety against s,hear failure, the end restraints 

must be considered, since the VIM ratio is r~qulred. For this purpose, sim-

pJy supported and fu 11 y fixed beams are examined. 

Figures 5.3 and 5.4 Illustrate the probabll ity of fai lure in shea r 

of ACI beams a s a function of the amount .of web reinforcement r s ' and the 

cross sectional pa rame te r bid. La rge r corresponds to 1 i ght web reinforce-s 

ment. Figures 5.3 and 5.4 also demonstrate the difference between simply 

supported and fully fixed end conditions. The probabi lity of shear fal lure 

is more sensitive to r when the beam is fully restrained, than when it is 
s 

simply supported; for a given risk-level and reinforcement ratiop, r is 
s 

also smaller for the restrained beam. This is because the flexural ~ections 

are smaller with full end restraint; hence, the resulting area for shear re-

sistance fs decreased accordingly, and more web reinforcement is needed to 

resist the same shear force. 

Figure 5.5 illustrates the effect of poor concrete quality on the 

risk of shear failure, with rs = 2. An increase of 8f from 0.12 to 0.20 
c 

increases the risk of a she~r fai lure only slightly; the reason for this may 

be seen from ·Fig. 3.7, wherein 8V is nearly the same for bot~ values of 
T 

8
f

. For given rs and p, beams with a low bid exhibit a greater risk in 
c 

shear than those where ~ and J are about the same. 

The fai lure probabi I ity in shear is extremely sensitive to the 

~mount of web reinforcement provided. A 20 percent change in r , implying 
5 

a 20 percent change in stirrup spacing, may change the shear risk level by 

one or two orders of magnitude. As an example of how the rel iabi lity in 

shear may be assessed, suppose a simply supported beam has been designed for 
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flexure according to ACI provisions, with. p = 0.025 and bid = 0.75; then 

DF = 8.91, with a probability of flexural failure of 1.14 x 10-5 . From 

Eq. 5.22, d = 12.2 inches and b = 9.15 inches, and from Eq. 3.29,v = 0.201 cu 

ksi. If No.2 bars are used as stirrups, A = 0.10 in. 2 A summary of·the v 

r required by different shear design criteria, the sti rrup spacing, and 
s 

the respective probabi 1 ities of fai lure in shear is given in Table 5.2. 

TABLE 5.2 

Design of Web Reinforcement 

C r iter ion r Sst ( in. ) Pf (s hea r) s 

Pf(Flexure) = Pf(Shear) 2.83 7.3 1.14 x 10- 5 

ACI - Truss Ana 1 o.gy 4.55 11.8 9.6 x 10- 5 

1- 2.36 6.1 3.7 10- 6 
s < -d x st - 2 

Min imum ,L\ rea 3.37 8.72 2.9 x 10- 5 

The web spacing , 11 db 1-d · h' IS contra ,e y Sst ~ 2 In t ;s example. 

Figure 5.6 shows the probabi 1 ities of fai lure in flexure and shear 

of ACI designs for the simply supported beam, when the truss analogy equa-

tion governs the design of the web reinforcement. The shear provisions 

using ¢s = 0.85 are seen to be clearly inadequate to insure that Pf(Shear) 

< Pf(Flexure), especial ly when p is small. It is necessary to reduce ¢ to 
5 

0.70 to 0.75 before the risk levels in flexure and shear are approximately 

equal. Figure 5.7 illustrates the modifying effect that the maximum spacing 
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and minimum web steel restrictions have 6n the adequacy of the web in shear. 

The stirrups are assumed to consist of No .. 2 bars. Assuming that ¢ = 0.85 
s 

the spacing restriction will govern the design of the web, and is seen to 

be a necessary additional restriction if adequacy in shear is to be main-

tained. 

~igure 5.8 compares the risks of fai lure in flexure and shear for 

the fully fixed beam, when the web design is determined from the truss an-

alogy. Here, the current ACI shear strength provisions are also inadequate 

to insure a flexural fai lure, but the disparity in the risk levels is not 

as pronounced. A reduction in ¢ to 0.75 pr 0.80 would be sufficient to s 

insure that Pf(Shear) < Pf(Flexure). Figure 5.9. shows the effect of the 

minimum spacing requirement. If No.2 bars are us~d, "the spacing r~quire-

ment has no effect; if No. 3 bars are chosen, the risk of shear fa i 1 ure is 

depressed by two orders of magnitude. 

The impl ication that the shear capacity reduction factor should 

be reduced from its present value of "0.85 should not be unexpected. Tests 

of beams fai 1 ing in flexure "and shear indicate that the variabi lity in 

shear capacity is considerably larger than that of flexural strength. In 

view of this, the decrease from ¢F = 0.90 to ¢s = 0.85, which is the only 

current reflection of the higher uncertainty, is probably neither consistent 

nor adeq ua te. 

The fully fixed beam appears to be more adequate in shear than 

the simply supported one, and the risk of a shear fai lure decreases as the 

amount of longitudinal reinforcement increases. In general, a large rein-

forcement ratio and/or a high degree of end restraint implies a smaller 
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beam cross sectional area. For a given shear effect, this wi 1 1 necessitate 

heavier web reinforcement; thus r wi 11 become small, and 8
V 

and the asso-
s T 

ciated risk wi 11 decrease. 

The ACI requirement regarding the maximum allowable shear stress 

on a sec t ion 

VI 
U 

VI 
cu < 8 m-

c 

where VI = V'/bd and VI is defined in Eq. 5.15, is not appl icable to these 
u 

r I > 
S 

VI 
cu 

8 1fT 
c 

If rl is less than this value, then the section area must be increased; and 
s • 

rl wi 1] therefore increase. 
s 

Since 8 V will 
T 

off ail u rei n she a r wi 1 1 -a 1 so -j ncr e as e . 

increase with r , the probabi lity 
s 

Rat her t ha n p 1 a c i n gal owe r lim ito n r s' are 9 ion i n w h i c h 8 V 
- T 

is relatively small, it is more consistent to place an upper limit on r to 
s 

insure that 8 V does not become too large. One way to accompl ish this is 
T 

with a minimum web area requirement, such as that in Eq. 5.19, provided by 

the ACI code. Figure 5.7 indicat~s that the present requirement may not be 

adequate to achieve this objective in al 1 cases, and perhaps should be 

made somewhat more restrictive. 

On the basis of the above analysis, it is clear that the shear 

strength provision derived from the truss analogy model is inadequate to 

assure greater safety in shear than in flexure. However, when the additional 

requirements of minimum web reinforcement and maximum stirrup spacing are 
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imposed, the probability of a shear failure is greatly reduced, and is 

generally less than or equal to the risk of flexural fai lure. Therefore, 

the intent and purpose of the ACI shear provisions appear to be satisfied. 

Beams in a Tall Building 

In this example, a beam is designed from a preli'minary structural 

analysis of a twenty story office bui Iding. A comparison of the adequacy 

of the ACI provisions against dead and 1 ive loads with those pertainirig to 

combined effects of gravity and wind is made. To obtain the influence co= 

efficients, a STRUDL ·analysis of the structure was performed for dead and 

live loads only, and for combined gravity and wind loads. The height of the 

building is 240 ft and the alo~g-wind and cross-wind dimensions are 60 ft 

and· 100 ft respectively. The main floor beams are 20 ft in the alo~g-wind 

di recti on, and support a tributary loaded area of 500 ft2. The dead and 

live load statistics are found by the methods described in Secs. 4.2 and 

4.3. For purposes of combining the live loads with wind loads~ a differen-

tiation must be made between short term and permanent live loads. The wind 

load statistics are found from Sec. 4.4. The fundamental natural frequency 

is estimated to have a mean f o 0.5 cps, and the total dam~ing is assumed ~o be 

0.015, whence ~ = 2.77 from Eq. 4.31. A summary of the pertinent statistics 

is contained in Table 5.3. 

Figures 5.10 and 5.11 compare the probabi lities of fai lure of ACI 

flexural designs for the two loading cases considered. Although the live 

load statistics and the live load-dead load ratio have changed, the proba-

bility measures in Figs. 5.1 and 5.10 are almost the same. With prescribed 
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TABLE 5.3 

Load Statistics for Beams in a Tall Bui lding 

Mean(psf) oS. 6S. a 
I I 

Dead L'oad 100 0.06 0.10 1. 10 

Permanent Live Load 34.25 0.27 0.19 1.68 

Short Term Live Load 15.63 0.,54 0.19 3.69 

Wind Load 20.37 0.30 0.21 2.21 

lognormals, the risk measures are in close agreement with the alternative 

risk measure, as would be expected. The risk of fai lure under combined 

gravity and wind loads is slightly less than for gravity loading only, but 

not enough to be significant. It may, therefore, be concluded that the 

levels of safety underlying current ACI flexural requi~ements are about 

equal for these two loading conditions. 

The ACI tode requires that the governing design be determined from 

the maximum of the two loading conditions. The risk of this design under the 

noncontroll ing load condition may also be computed, e.g., if gravity and wind 

loads ~ontrol the design, determine the probabiLity of failure of this de-

sign against dead and live loads alone. An illustration of this is given 

in Table 5.4, where p has been assumed to be 0.02. The combined effect of 

gravity and wind governs the ACI flexural design; its probability of failure 

under dead and lrve loads is 2.1 x 10- 7. If the controlling flexural design 

had been based on the consideration of dead and live loads only, its failure 
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TABLE 5.4 

Flexural Design Risks Under Different 
Loading Conditions 

DF Pf (D + L) Pf (D + L + 

11.96 1. 6 x 10-5 5.1 x 10- 4 

D + L + w 14.83 2.1 x 10- 7 1.1 x ]0- 5 

w) 

probabil ity against combined load effects would have been an order of magni-

tude higher than for the loading condjtio~ for which it was designed, in-

dicatin that some care shoul be exercised in determinin the_gg_,{~T~Jr.!_9 

load combination. 

Figures 5.12 and 5.13 ~ompare the probabi 1ities of fai lure in flex-

ure and shear of designs _obtained according to ACI provisions for these two 

modes, assuming cp = 0.85. The behavior is similar to that previously en­
s 

countered. These results indicate that present ACI code provisions are rea-

sonably consistent with regard to thei r treatment of beams with different 

end conditions and loading effects. If the shear capacity reduction factor 

is reduced to about 0.75, the shear strength provisions derived from the 

truss analogy would usually be adeguate to insure that beam failure is gov-

erned by flexure. 

5.3.2 Columns Subjected to Eccentric Loads 

A column with an eccentricity fr6m applied loads of 20 inches is 

studied. It is assumed that the column supports one floor and the loaded 
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tributary area is 150 ft2. Dead and live loads are considered, and thus the 

load statistics are' the same as in Table 5.1. ~- is assumed negligible in 
e 

this case. This example illustrates the effect that quality control of the 

concrete, and the amount and strength of the longitudinal reinforcement have 

of the underlying risk of failure of column designs prescribed by the ACI 

code. 

The parameter p has the same interpretation as in the flexural 

case. The total percentage of longitudinal reinforce·ment, Pt' may be de­

duced from p. For the symmetrically reinforced rectangular section, 

= 
Total Steel Area 
Section Area = 2 P 

t 

For purposes of illustration, it is assumed that Cf/t"= 7/8, from which 

p = 1.' 75 p. 
t 

Figures 5~ 14 and 5.15 compare the underlying risk of ACI prescribed 

designs for good and poor concrete quality, with intermediate grade rein~ 

forcement. The probabi I ity measures increase rapidly when elt is small, 

and change more gradually as elt becomes large and tension fai lures are 

more 1 ikely. As elt becomes very large, a state of pure flexure is approach-

ed, with the attendant insensitivity to p of beams. The probabil ity of 

failure when elt is large is of the order 10-5, about the same as for a be.am; 

note, however, that a capacity reduction factor of ¢ = 0.]0 for tied columns 
c 

instead of the value of 0.90 for flexure was applied, and the uncertainties 

in the column capacity are somewhat larger than the uncertainties in flex-

ural capacity. The lower capaci.ty reduction factor and1higher uncertainties, 

therefore, compensate for one another. The increase in ¢ al lowed by ACI 
c 
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318-71 when eft is large wi II cause the prob'abi 1 i ty of fai lure in Fig. 5.14 

to increase further, and does not appear to be consistent with the objective 

of maintaining a lower risk level for beam~columns. 

A comparison of Figs. 5. 14 and 5.15 reveals that poor concrete 

qual ity control could increase the risk of failure by two or thr~e orders of 

magnitude when the load eccentricity is small, and compression fai lure is like-

lye This sensitivity is particularly noticeable when the section is l,ightly 

reinforced; in such cases, the axial capacity is primarily dependent on the 

compressive strength of the concrete. For larger values of eft, the sensi-

tivity disappears, as- in the flexural case. There is a clear implication 

that when an analysis suggests that a column is close to being concentricaJ-

Iy loaded, particular care should be exercised to insure high standards of 

control in its construction. 

The irregularity in Pf in the mid range of eft is particularly 

noticeable for small reinforcement ratios and for poor concrete quality. 

It has been observed that this irregularity occurs in the vicinity of the 

me a n b a 1 an ce d poi n t for the val u e 0 f P s e 1 e c ted. Its e e ms 1 ike I y t hat t his 

behavior is due to the use of the approximate expression, Eq. 3.46, to de-

fine the axial capacity when failure is governed by compression. 

. . \. . 

The significance of high strength reinforcement is illustrated in 

Fig. 5.16. The probability measures are not much different from those in 

Fig. 5.14 signifying, therefore, that the level of safety implicit in the 

ACI code is uniform for the two grades of reinforcing steel used. 

The ACI safety provisions attempt to assign a greater reliability 

to members in which fai lure may occur suddenly and have catastrophic 
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consequences. It is clear from the present statistical analysis that this 

objective has been satisfied. Assuming a simi lar level of quality control 

throughout, the probabil ity of compression fal lure in a column is two or 

three orders of magnitude less than the probabi lity of flexural failure. 

As the load eccentricity increases and the column behavior becomes more 

ducti Ie, the difference in the risk levels decreases. 

Columns in a Twenty Story Office Building 

Two columns from the twenty story office building described in 

Sec. 5.3J are considered. A STRUDL analysis was used to determine the load 

influence coefficients for dead and live loads, and combined· gravity and 

wind loads. One column is chosen from the fi rst level, and supports twenty 

loaded floors; the other column is chosen having six loaded floors above it. 

The loadings on each floor are assumed identically distributed. The loaded 

area tributary to the interior columns is 500 ft2. This example illustrates 

how the levels of safety implied by the ACI provisions compare for the two 

columns, and compares the risks underlying the provisions on gravity loads, 

herein denoted loading I, and gravity and wind'loads combined, herein denoted 

loading I I. 

The dead and wind load statistics have already been defined. 

The variability of the column live load intensity must include the second' 

order reduction dependent on the number of stories the column supports, as 

discussed in Sec. 4.3. A summary is presented in Table 5.5. From Eq. 4.20, 

15 pe rcen t. 

The prediction .error in the load eccentricity is assumed to be 

For illustrative purposes, it is assumed that fl = 40 ksi and 
y 
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TABLE 5.5 

Live Load Statistics for Columns 
in a Twenty Story Building 

Mean (ps f) Variabi 1 ity 

Story 34.25 0.12 

Sto ry 34.25 0.20 

Story 15.63 0.23 

Story 15.63 0.39 

and f' = 3000 psi; Figs. 5.14 and 5.16 suggest that the level of reliabil ity 
c 

would be about the same, regardless of the strength of the materials chosen. 

The STRUDL analysis indicates the mean eccentricity of appl ied 

axial force on the lower st9ry column is 0.02 inch ~nder loading I, and ~s 

1.62 inch under loading I I. The column is nearly concentrically loaded, and 

the ACI requi rement that eft ~ 0.1.0 may be expected to govern the determi-

nistic design. This restriction significantly increases the safety margin 

provided w~en eft is actually less than 0.10, as shown in Fig. 5.17, because 

DC is forced to increase to its value corresponding to eft = 0.10. The in­

crease in the margin of safety becomes more pronounced as the amOunt of lon-

gitudinal reinforcement provided increases, as illustrated in Fig. 5.18. 

The additional margin of safety provided is about the same for both loading 

configurations. 
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Suppose that a column is designed with p = 0.03, corresponding to 

Pt = 5.25 percent, -and it is desired that the column be desinged with b= t. 

For loading I, _ the S T R U 0 Lan a 1 y sis and E q s. 5. 24 y i e 1 db = t::::! 3 1 j n ch e s . 

The probabi1 ity of fai lure of this design, P~(D~), with e/t ::::! 0.02/31 ::::! 0, 

is of the order 10- 13 . Under loading II, b = t::::! 27.2 inches; with e/t 

II II -9 = 1.62/27.2 ::::! 0.06, Pf (DC) ::::! 1.75 x 10 . These probabil ities may be 

taken from Eq. 5.17. From a deterministic standpoint, loading I wi 1 1 

govern the design. The probability of failure of D~ under loading I I, 

P ~ I (D ~ ), i sal so show n i n Fig. 5. 1 7; wit h e / t = 1. 62/3 1 = o. 052, P ~ I (D ~ ) 

is of the order 10-1~ also. Thus although the ACI design is governed by 

loading I, the risk of failure of this controlling design is about the same 

for both load configurations. 

This example points out the difficulty with a strict interpreta-

tion of risk measures. The probabi 1 ities are of such small magnitude that 

it is impossible to assign any physical meaning to them. Such measures 

should be interpreted on a comparative basis only, i.e., it was shown that 

the design risk levels are about the same for loading I and loading I I. 

Without the restriction e7t:: 0.10, for loading I, b= t= 27.5 

inches, and p~(D~) = 9 x 10- 10 . The probabi 1 ity of fai lure of D~ against 

loading II, with e/t = 1.62/27.5 = 0.06, is p~1 (D~) == 1.75 x 10-9, about the 

same magnitude. 

For the loadings considered in this example, the minimum eccentric-

ity ratio restriction imposed by the ACI code forces the designs for small 

eTt to be excessively conservative. Without this restriction, designs have 

underlying fai l~re risks of the order 10-9 - 10- 10 , which should furnish 
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adequate safety in most circumstances. !n reliability based design, it 

would be more reasonable to account for possible uncertainties in the load 

eccentricity by adjusting the prediction error 6- than to place an arbitrary 
e 

lower bound on eft. 

The STRUDL analysis of the upper story column indicates that the 

mean eccentricity of appl ied axial force is 1.08 inches under loading I and 

3.20 inches under loading II. Results of the risk analysis are presented 

in Fig. 5.19. If p= 0.03 and b= t, the requirement eft ~ 0.10 will again 

govern the design against loading I, and load'ing I will govern the deter-

ministic design. Th~ probabil ities of' failure for the upper story column 

wi 11 be larger becasue the load eccentricities are larger. With'~ = 'T 
-' I I -10 

= 17.3 inches, and e/t=1.08/17.3 = .0625, Pf(DC) ~ 1.~ x 10 from Fig. 5.19. 

The risk of fai lure of D~ under loading I I is also shown in Fig. 5.19; with 

- II ( I) -8 I I eft = 3.2/17.3 = 0.185, Pf DC = 5.1 x 10 > Pf(DC)' It is therefore con-

ceivable that the risk of fai lure of a "governing" design may be higher for 

nongoverning load configurations than for the loadlng for which it was de-

signed. The dimensions of a design must be selected with care to insure 

adequacy against other possible load configurations; in the above case, re­

ducing bit would cause p~1 (D~) to decrease relative to P~(D~). 
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Chapter 6 

FORMULATION OF RELIABILITY-BASED DESIGN CRITERIA 

6. 1 Gene ra 1 Rema rks 

This chapter is "devoted to the formulation of design criteria 

on the basis of. specified acceptable risk measures, with special reference 

to reinforced concrete members. The form of the traditional design 

equations may remain unchanged; however, the determination of the 

appropriate factors in these equations is based on the specified design 

risk. In this manner, the significance of uncertainties can be reflected 

properly in design, and the load factors will vary with the degree of 

uncertainty and the level of risk. Uncertainties in current designs and 

their implied risk levels have been evaluated in order to furnish a 

starting point for this reevaluation. 

This formulation should enable future code revisions to be 

made in a more rational manner. The objectives of the ACI safety pro­

visions may be satisfied more consistently if design criteria are developed 

on a risk basis, e.g., this furnishes a basis for the design of beams in 

which the level of safety in shear is higher than that in flexure; this 

objective is not always achieved by the current provisions of the ACI 

code. If fabrication and construction practices change or improve~ or 

if more accurate modeling and analysis techniques become avai lable, their 

effect on the design safety may be properly reflected by modifying the 

uncertainty measures. Moreover, in future code revisions, the level of 
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design safety may be increased or decreased by adjusting the risk levels 

relative to those currently considered acceptable. The level of safety 

implied by the design ~rovisions, therefore, may be quantitatively defined 

and ca re fu 11 y con t ro 11 ed. 

The required strength may be found from anyone of several 

alternat·ive but equivalent design formats. The true m~asure of safety 

in reliabi lity-based design is the probability of failure. In this regard, 

when several loads are involved, it is the safety against the total 

load effect that is r~levant. Accordingly, in the load-factor format 

of design, it is the overall load factor that is important. In other 

words, the requ i red des i gn (i n terms of mean va 1 ues) is 

R = y S (6. 1) 

in which 5 is the total mean load effect, and y is the appropriate load 

factor. This may be evaluated on the basis of prescribed lognorma]s or using 

the alternative risk measure, corresponding to a specified risk. 

However, in order to comply with current code formats, a 

multiple load factor format-including a ~apacity reduction factor may also be 

used. Suitable values may be obtained when Eq. 2.18 is rewritten to 

include a cap~city reduction factor <p. In terms of mean values, when 

dead and live loads are considered, 

(6.2a) 

and when wind effects are included, 

cD R ( 6 . 2b) 
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One appropriate value of ¢ is suggested by Eqs. 2.22 and 2.22a, i.e., 

¢ = - So a oR' in which a is defined in Eq. 2.22a, and is commonly 

about 2i3. Theoreticaily, a is a function of the resistance and load 

statistics; hence, ¢ wi 1 1 depend on the loads as well as the resistance. 

Another way of defining ¢ is to assume that the "equivalentll res istance, 

¢ R, occurs at some cumulative probabi lity level p¢ of R; -if ¢ R is set 
I 

equal to the nominal value R defined in the ACI code, then ¢ = 1 - S¢ oR' 

This specification of ¢ is then independent of the load effects, 

Alternatively, if the probability levels for the resistance 

and loads are specif~ed, the required strength may be determined in 

terms of nominal (e.g., characteristic) resistance and loads. Under dead 

and 1 i ve loads, 

I I I I I 

ill R = v s. + y~ s~ 
T iL L 'U u 

(6.3a) 

and when wind effects are included, 

, I I I I 

¢ R = YL SL + YD So + Yw Sw ( 6 .3b) 

in which 

I ¢ ¢ = 
1 - SR oR 

( 6.3 c) 

Yk 
k 0, L, W Yk (Sk 

= 
+ Sk 

, 

and Sk depend on the probabil ity levels chosen. 



118 

6 . 2 F 1 e xu reo 

To insure a tension mode of flexura} failure, the maximum 

allowable' tensile reinforcement ratio ~ for beams may be found by re-

qui ring that 

P r (Pb < p) < .... 
(6.4) 

where su'j table values of cxb range from 0.01 to 0.05. Assuming 

of 0.12, - 0.45 - when 0.01 , and - 0.57 Pb when = p < Pb cxb = P ~ .... 
c -cxb = 0.05; Pb is computed from Eq. 3.9. This requirement makes a 

tension fai lure nearly certain. It also implies that the member cross 

section wi 1 1 be large enough that serviceability will be a lesser cori-

sideration. 

In Chapter 5, it was found that the probability of failure of 

flexural designs was of the order of 10-5 , and the designs were v~rtually 

independent of the longitudinal reinforcement ratio, and of the quality 

of concrete. Initially, then, ,the design criterion for flexure should be 

based on a risk level of lO~5. 

Table 6.1 compares overall load factors for flexure, corresponding 

to different risk levels, computed on the basis'of lognormal prescription 

and with the alternative risk basis. The two risk bases show 'close 

ag reemen t D-
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TABLE 6.1 

Mean Overall Load Factors for Flexure 

Lognormal Presc::ription Alternative Ri sk 

Pf 
D + ~ D + L + W D + L D + L + w 

10.,..4 2.19 2.26 2,24 2.29 

10""5 2~46 2.55 2.54 2.61 

10,..6 2~72 2.84 2.85 2.94 

10- 7 2·99 3. 13 3.1(> 3.29 

In terms of mean values, the multipl~ load and capacity 

reduction factors fqr flexure, obta{ned from the alternative risk basis, 

are given in Table 6.2 .. 



TABLE 6.2 

Mean Load Factors for Flexure 

Dead and Live Loads Dead, Live and Wind Loads 

CP=l-S 0 
cP M CP=l-S ao o M cP = 1 - S 0 

cP M CP=l-S ao o M 

Pf ¢ YL YO ¢ YL YO ¢ YL YO YW ¢ YL YO YW 

10- 4 .84 2.25 1. 76 .83 2.23 1. 73 .84 2.70 .1.68 2. 19 .82 2.64 1. 64 2. 14 N 
0 

10-5 .84 2.62 1. 97 .80 2.50 1. 87 .84 3.20 1 .-87 2.'54 .79 3.02 1. 76 2.39 

10-6 .84 3.01 2.18 .77 2.76 2.00 .84 3.74 2.07 2.90 .76 3.38 1 .87 2.63 

10- 7 .84 3.42 2.41 .75 3.06 2. 15 .84 4'.30 2.27 3.28 .74 3.79 2.00 2.89 
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'-S¢ has been found to be 1.37 for flexure by solving 1 - S¢ oM M 1M 

for S¢' using nominal 40 ksi reinforcement and nominal 3000 psi concrete. 

Table 6.3 il lustrates the requi red factors for nominal loads and strength, 

where an acceptance level of 10 percent on Rand exceedance levels of . 

95 percent on dead load and 99 percent on live load and wind load have 

been selected. 

From a reliabil ity standpoint, it is advantageous to use mean 

values and corresponding load factors. The exceedance values for the 

nominal quantities depend on the distributions of the load and resistance 

variables. In addition, the necessary statistical information is 

usual ly available in terms of mean values and variances. Designs given 

in terms of mean values, therefore, are more convenient to obtain; more-

over, they are more directly associated with risk, and thus are less 

ambiguous. 

uncertainty measures; the factors given in the above tables correspond 

to the uncertainty measures determined in Chapters 3 and 4. However, if 

these uncertainties should change, either as a result of change in the 

basic variabilities or the prediction errors, the load factors ought to 

be reevaluated~ 

A comparison of the flexural designs, i.e., OF' that would be 

obtained for various risk levels with those obtained from current ACI 

provisions for flexure is shown in Fig. 6. 1 for dead and live loads. 

The decrease in DF with p reflects the smaller beam cross sections that 

would result when larger amounts of longitudinal reinforcement are 

provided. 



TABLE 6.3 

Nominal Load Factors for Flexure 

Dead and Live Loads Dead, Live and Wind Loads 

<p, = 1 - 8<p oM <p='l - 80.0 o M <p = 1 - 8 0 cp M <p = 1 - 8 a 0 o M 

I I I . I I 

Pf <p YL YD 
cp YL YD 

<p YL "'YD Yw cp YL YD Yw 

N 
N 

10- 4 
.99 1. 38 1.60 .97 1. 37 1. 57 .99 1.20 1 .53. 1.29 .96 '1.17 1 .49 1 .26· 

10-5 .99 1 .61 1. 79 .94 1. 53 1 .70 '.99 1. 42 1. 70 1 .49 .93 1. 34 1 .60 1. 41 

10-6 
.99 1. 85 1. 98 .90 1.69 1. 82 .99' 1.66 1.88 1 .71 .89 1 .50 1. 70 1 .55 

10- 7 .99 2.10 2.19 .88 1. 88 1.96 .99 1. 90 2.06 1. 93 .87 1 .68 1. 82 1 .70 
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The load factors are insensitive to the mean· load ratios (see 

Figs. 2.7 and 2.8) and, therefore, LID need not be considered as a design 

parameter. As the live load statistics depend on the tributary loaded 

area, 

area. 

[43] the load factors 'may be expected to vary with the tributary 

This is indicated in Table 6.4 for a risk level of 10-5 (with mean 

load factors). 

TABLE 6.4 

Mean Load Factors in Flexure As Functions 
of the Tributary Loaded Area 

Tributary Area (ft 2) 

25 .84 3.34 2.36 .80 3.18 

56 .84 2.81 2.12 .80 2.67 

151 ," .84 2.72 2.00 .80 2.59 

336 .84 2.63 1. 97 .80 2.51 

624 .84 2.62 1. 97 .80 2.50 

2.25 

2.02 

1. 90 

1. 88 

1. 87 

Higher values for small tributary areas are indicated because 0L and ~L 

are larger in this case. Further reductions when A ~ 625 ft 2 are not 

necessary. For tributary areas that are normally encountered in design, 

the load factors are relatively insensitive to A. 
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6.3 Shear 

To insure that failure of a beam will be in a flexural mode 

rather than the shear mode, the risk of shear fai lure should be prescribed 

to be at least one order of magnitude less than the risk of failure in 

flexure. On this basis, the required r may be determined, from which 
5 " 

the size of the stirrups Av and their spacing Sst are obtained from 

Eq. 3.38. To insure that each potential diagonal crack is crossed by 

1-
at least one stirrup, the provision that Sst ~ 2 d should be retained. 

For a given risk level, r depends on the amount of longitudinal 
s 

reinforcement p and the cross sectional a~pect ratio bid; as indicated in 

Figs. 5.3 and 5.4, a sma1 1 change in rs could result in a large change in 

the risk of failure in shear. The required amount of "web reinforcement 

for a specified risk of shear fai lure may be found by equating Eqs. 5.21 

and 2.21 and solving for ,r s ' The relationship is complicated, and the 

complexity of this procedure makes it unsuitable for design purposes. 

It is therefore not possible to prescribe one overall risk-

based design criterion for shear, as is done in the ACI code. At this 

time, it seems that to insure a risk-consistent treatment of shear, the 

designer must be permitted to choose the necessary r (or load factors) 
s 

directly from curves of the type illustrated in Figs. 5.3 and 5.4. To 

allow sufftcient flexibi lity in design, a large number of such curves, 

encompassing sufficient variations in p and bid as well as different re-

sistance and load statistics, must be furnished as part of the code format. 

Since present design formats are given by prescriptive equations, such 

a suggestion may not be very practical. 
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Any di rect requirement for shear, therefore~ would be exceed-

ingly complex. Simpl ified risk-based design provisions for shear ought 

to be investigated further. One immediate improvement that may be made 

in the current ACI code, suggested by the results of Chapter 5, is to 

reduce the present shear capacity reduction factor from 0.85 to 0.75. 

The current factor of 0.85 appears to be too high to maintain a lower 

risk of shear failure than that in flexure; reducing this to 0.75 should 

achieve this objective for the majority of design conditions. 

6.4 Axial Thrust and Bending 

As the eccentricity ratio increases, the probability of fai lure 

of ACI designs for combined bending and thrust increases rapidly when 

eft is small, and changes more gradually as eft becomes large (see 

Fig. 5.14). It is therefore proposed that beam-column designs be based 

on an acceptable risk increasing exponentially from 10-9 (when eft ~ 0) 

-6 ---
to 10 (when eft ~ eb/t), or 

:;:: 
3 (e/t) ~ 9, 

( 6.5) 

where Pf is the acceptable risk. The restriction eft ~ 0.10 has been 

removed; this condition seems overly conservative. A more consistent 

way of accounting for unexpected eccentricity is to increase the 

associated prediction error 6- when necessary. The risk of 10-6 when 
e 

eft ~ eb/t is prescribed at one order of magnitude less than the allowable 
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risk in flexure to reflect the general ly hi.gher consequence of a beam­

column failure. It is reasonable that the risk should be less when"e7t 

is smal 1, since such members wi 11 exhibit little ducti lity prior to fail-

ure; notwithstanding that spiral columns can have considerable ducti lity. 

As indicated in previous analysis, the reliabil ity of a beam-

column is a function of p and eft; accordingly, the load factors would 

depend on these parameters. An illustration of this is presented in 

Table 6.5 for dead and live loads and intermediate grade reinforcement; 

the capacity reduction factor has been computed from ¢ = 1 - So a op . 6; 
was assumed to be 10 percent, replacing the ACI requi rement of eft ~ 0.10. 

p 

0.10 

1.0 

2.0 

0.77 

0.68 

0.59 

0.02 

3.55 

3.58 

3.88 

TABLE 6.5 

Mean Load Factors for 
Combined Bending and Thrust 

= 3.5%) 

2.40 

2.50 

2.65 

p 

0.80 

0.69 

0.61 

= 0.04 

3.38 

3.40 

3.75 

2.29 

2.36 

2.56 

7%) 

A comparison with Table 6.2 for flexure shows that the strength reduction 

factor ¢ is smaller, whereas the load factors YL and YO are larger; these 

are due to the smaller risk level required of beam columns, as wel 1 as 

the larger uncertainties underlying such members. 
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It should be apparent from the three failure modes considered 

that the load factors depend on the degree of uncertainty and the 

specified level of risk. However, except for the flexural case, in which 

the load factors remain virtually constant for a given risk, there is no 

simple way of prescribing risk-based design requirements, e.g., for shear. 

One alternative may be to furnish a number of curves or tables for Yk 

and cpo This impl ies that whi le it is possible to maintain Eq. 6.2 as 

the design equation, it may not always be advantageous to do so in a 

reliability-based format. In some cases, it would be more reasonable to 

allow the designer to compute the required resistance directly from an 

expression such as Eq. 2.7, arising from the prescriptive-lognormal basis, 

wherein the uncertainties ~R and ~S would be furnished by the code 

writing group for different failure modes and load combinations. As 

another example, it would be easier to assure adequacy in shear by choosing 

a value of r directly from a curve of the type illustrated in Fig. 5.3, 
s 

rather than to compute the requi red load factors. 
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Chapter 7 

SUMMARY AND CONCLUSIONS 

A model is developed for formulating designs on the basis of 

acceptable risks, requiring only the first and second moments of the design 

variables. Errors arising from uncertainties in prediction and model ing 

are recognized by introducing a factor of engineering judgment into the risk 

analysis. Variabil ities in the design parameters are estimated from data, 

whenever possible. A systematic combination of the avai lable information 

results in a comparative estimate of the underlying design risk which is 

consistent with the state of present knowledge. 

The levels of risk i"mplied by current ACI design provisions for 

b~ams in flexure and shear and for eccentrically loaded columns are eval­

uated. Based on these levels of risk, specific suggestions are made for 

developing risk-based design criteria. These criteria permit a consistent 

treatment of uncertainties, and quantitative definition and control of the 

level of design safety. Difficulties arisirig in the practical implementa­

tion of such a design concept are also discussed. 

On the basis of this study, the following conclusions and recom­

mendations can be made: 

1. Current design provisions can be appraised in terms of risk 

measures. This requires a careful evaluation of the basic 

variabi1 ities and prediction errors associated with the 

design variables and the resistance and load models. This 

evaluation can be performed systematically using first-order 
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statistical analysis. Available data and reported experience 

provide valuable information, and should be used to determine 

real istic measures of uncertainties required for the evalua-

tion of risk. 

2. Practical rel labll ity-based design criteria can be developed; 

such criteria (specifically, design based on acceptable risk) 

can be cast in the format of current design provisions. These 

criteria ought to be specified in terms of mean values, as 

they are more convenient from a statistical standpoint. Al­

though .the multiple load factor format can be retained, there 

is no theoretical basis for such multiple factors. A single 

load factor appl led to the total multiple load effects is 

sufficient from a rel labi lity standpoint; in fact, this for­

mat .is simpler and more directly consistent ~ith statistical 

analysis. 

3. The implied risk of flexural failure in s beam designed ac­

cording to ACI provisions is normally of the order of 10- 5 , 

regardless of the reinforcement ratio, concrete qual ity, and 

load configuration. Risks associated with existing designs, 

or conversely, designs based on specified risks, may be deter­

mined from consideration of the tension failure mode, pro­

vided that the longitudinal reinforcement ratio is small. 

4. The 1 ikel ihood of a compression flexural fai lure may be 

control led with a probabil istic statement regarding the design 

reinforcement ratio. The uncertainty in flexural capacity 

is primarily.a function of uncertainties in the reinforcement 

yield stress and the effective depth to the reinforcement; 
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the quality of the concrete is not significant, except when 

the section is very heavi ly reinforced. A statistical anal-

ysis of shear capacity based on the modified truss analogy 

indicates that concrete qual ity is not significant in deter-

mining the shear capacity except when the web is very lightly 

reinforced. The variabil ity 'in shear capacity may be expected 

to be considerably larger than the variabi lity in flexural 

capacity. 

5. Current ACi PiOV1SIons for shear usually insure that the risk 

of a shear failure is less than the risk of a flexural failure. 

However,the strength requi'rement derived from the truss 

analogy is insufficient to accomplish this objective; provi-

sions for the maximum spacing and minimum area of the web 

reinforcement are usually necessary. To provide sufficient 

additional safety against shear failure, risk-based shear 

provisions should therefore be based on an acceptable risk 

-6 of 10 or less; to achieve this in the context of the pre-

sent ACI format, the capacity reduction factor for shear 

should be about 0.75. 

6. The impl ied risk of ACI designs for eccentrically loaded 

columns increases from less than 10- 9 when eft is very small 

up to the order of 10- 5 when eft becomes large. This is com-

patible with ACI intentions of providing a greater margin of 

safety when there is less ductility. The risk is less than 

that for beams when eft is small, reflecting the greater 
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importance attached to column ·rel iabi1 ity. The minimum ec­

centricity requirement (i .e., eft? 0.10) seems to be exces­

sively conservative. 

7. Uncertainty in the capacity of an eccentrically loaded column 

depends on the eccentricity of the appl ied load. When the 

Joad eccentricity is small, implying that failure occurs in a 

compression mode, the concrete qual ity and uncertainties in 

dimensions are significant to the overall uncertainty of a 

beam-column. When the eccentricity ratio is large, implying 

that fai lure will occur in a tension mode, the factors impor­

tant to flexure dominate. In all cases, good workmanship is 

essential. 
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APPENDIX A 

RISK CALCULATION FOR NONNORMAL VARIATES 

In cases where more than two nonnormal variables are involved, 

Pr(R < V(SI + S2)) cannot be evaluated in closed form. This probabil ity may 

be computed to an arbitrary degree of accuracy from 

lim 
N~ 

N 
I Pr(R < v(SI + xk)/Sz = xk)e Pr (S2 

k=1 

By assuming all variates 9re mutually statistically independent, 

N 
I im I Pr(R < v(Sl + xk))a pr (5 z = xk) 
N~ k=l 

(A. I) 

X k) may be found from discretizing 52 at N arbitrary points. Then 

( 6X ) (._ D.X ) F5 xk + -- - FS xk 2 2 2 Z 
(A.2) 

When 5z is discretized between exceedance values of 10- 8 , with 40-50 dis­

cretization points, the error in Eq. A.l is very small. For nonnormal R 

and S l' Pr (R < v (S I + x
k

)) must oe computed by numer i ca I i ntegrat i on. 

In what follows, 8 =.5 Z/5 1, and w = Yl +YZ8. 

If R, 51' and S2 are lognormal, then 

(A. 3) 
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6 here implies an increment in cumulative probabi 1 ity ¢. xk is discretized 

for ± 7 standard deviations of 52' and 

lnl
r 

v exp(~ In(1 + 05
2

1
)u) + V8XkJ~_ 

;'--1-+-0-'-2 

_1 ¢. _____ 5_1 _____________ _ 

ITT Iln(l 

/In(l + 

The integral in brackets is the standard Gauss-Hermite form. 

If R is Extremal III (Weibull) and 51 and 52 are Extremal 

(Gumbe 1 ) , 

where 

- v8x 
k 

N 

I 
k=l 

1 

-16-~-5- [r (I : _1 ) 
1 KR 

~ 
y 

(A. 4) 

(A.5) 

(A.6) 

the standard Gauss-Laguerre integration form. KR is a measure of the sta­

tistical dispersion in R. The discretized' probabi lity measure for 52 is 
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P 5 (x k) ~ exp [- exp {-
'IT 

~ 

2 $ °5 
2 

If R is Extremal III and 51 and 52 

N 

I 
K=l 

wh.ere 

and K5is a measure of dispersion in 51 ~ and 
1 

(xk - 1 + 0.45 Os )'~ ] (A.7) 
2 I 

...I 

are Extremal 1/ (Frechet). 

(A.5) 

(A.8) 

(A. 9) 
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APPENDIX B 

STATISTICS OF BALANCED ECCENTRICITY RATIO eb/t 

The statistics of the balanced point eccentrictty ratio must .be 

known to compute ~he probabi lity of tension or compression failures for com-

bined bending and axial thrust. The mean is 

1 
2 

and the c.o.v. is 

E E: 
S cu 

( ~) E E: + f s cu y 

2 

E E: + 7 
s c;:u Y 

E E: s cu 

02 2 82 2( 2 2 + 02 + 2 0'2.+ 2 02 + 2 02 
= c

1 + c2 of + °A ok k ) + c
3 

c4 Cs e b f b d t E: 
Y c 5 I 3 cu 

t 

where I c·1 
J 

c
l 

= 

eb/t 

are defi ned as 

E E: s cu {k2 
(E E: s cu 

f y 

+ 

7 
~+ 

2pf 

(~ -t) E E: + Zfy } y Y 5 cu 

f ) 2 t kl k 3 fc E.E: 
y S'cu 

(E E + f ) 
. 5 CU Y 

E E s cu 

E E: 
5 CU 

k 
2~- -) E: + f 

5 CU Y 

(8.1) 

(B.2) 
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{k2 
E E T E E + T l d 5 eu 

2p 
y 5 eu y '> e4 

eb/t + T klk3 fe E E J -E E t 
5 eu y 5 eu 

{k2 
fEE 

~+ 
T I~ _~) fy } c5 

y 5 eu iP- y (B.3) 
eb/t 

- 2 -
k 1 k3 Te \t 2 E E (f. + E E ) t 

Y 5 CU 5 eu 
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APPEND I X C, 

ANALYSIS OF COMBINED BENDING AND AXIAL THRUST 

C.l Compress ion Fai 1 ures 

The axial capacity of the member i's defined as 

= 
P 

o 

[ 

P . 

+ P: ~ 
= D C 

q~ (C. 1) 

in which D = k3fcbt, 'and where ihe concentrically loaded capacity Po for 

symmetrically reinforced sections is 

P 
o 

and the balanced point capacity Pb is 

= E E: +. f 
s cu Y 

If x is some parameter, 

8P
C 

aP
C 8P 8P

C 8P b 0 
= aP + 

8P b ' ax 8x 8x 
0 

(C.2) 

(C.3) 

+ 
dP

C deb 

8eb ax 

evaluated at the mean values to analyze the second order uncert9inties. 

With C = l/(eb/t), 
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c 

C \ r2 qu qo 
~ [I - C + q: - I) C ~ a

1 qo qb 

2 
{qo 

-2 
qo ~ r 

C ~ ] 2 C T II + \- - 1 ,a
2 

qb 
qb 

e C (q 0 ) [ (q 0 ) e] -2 
Oq 0 C t t q;:- - 1 I + \ q;;- - let 

The derivatives with respect to P are given as 
o 

ap 
0 

3A s 

ap 
0 

---ab 

ap 
o 

at 

2f 2k3fc = 
y 

k3 f ct 

= 

The derivatives with respect to Pb are 

.;33 
D -

t 

(c.4) 

(c.S) 



- k f 
3 C 

= f bd 
C 
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E E 
5 CU 

(E E + f )2 
5 cu y 

E E 
5 CU 

E E + f 
5 CU Y 

E.E 
5 CU 

E E + f 
s cu y 

E E 
S CU 

E E' + f 
s cu y 

E E 
S CU 

E E + f . s CU y 

- k A 3 5 

The derivatives with respect to e b are 

E E + f 

1 (d - -) 
2 

- 2p 
f 
y t (d - - ) 

2 
s cu y 
. E E: 

S cu 

(C.6) 

E E + 2f 
s cu y 
E E 

S CU 



where 

e. g. , 

deb 

at 

deb 

~ 
A 

1 
2 

s 

- k 
2 

[ 1 

-

E E 
S CU 

E E: + f 
s cu y 

f 
2p Y -

klk3 f c 

E s 
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E E: + f 
- s cu y 

E E 
S cu 

E E + f 
5 CU Y 
E E 

5 CU 

+ P 
f y 

E E + f 

] 5 CU Y 
E E s cu 

E E - + f 
s cu Y 

E E: 
S CU 

f f E 
Y [ f ] k Y d -2p (d _ !. ) Y s 

klk3 f c E 2 (f + E E: ) 2 2 (E E )2 cu s--cu ---s--cu------ ---y-

f 
- 2p ...:L 

f 
c 

t (d - - ) 
2 

E E: + f 
s cu Y 

E E 
5 CU 

The uncertainty in capacity is found from 

0
2 foq Pc 

C2 

6
2 L K 16~J Pc 

C
K 

Pc 
(~) dX K 

0 

x
K 

(C.7) 

(C.8) 
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E s f 
s cu y 

(E s + f )2 
s cu Y 

s cu Y t m 

{ 

E s f p 
+ a 3 k2 -----:...-2 -2 + 2p k 

(E s +. f ) . P 1 
s cu Y 

~] d f T y y 

(c. 9) 

in which all parameters are evaluated at their mean values in computing 

c f ' Pt = 2As /bt, and m = fy/k3 f c' 
y 

C.2 Tension Failures 

When e is measured from the plastic centroid, and the section is 

symmetrically reinforced, 

= 

·R = /( e 1) 2 4 As [ k f ~ + ( f ) (d 1 )J t - 2 + n btf c 3 c t 2 Y - k3 f c t - 2J 

The derivatives are 

2A 
s 

R 
d 1 (- - - ) 
t 2 

(C. 10) 
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2A f 
5 Y (~_ l) + ~ [R - (~- l)] - k A 

R f t 2 2n t 2 3 s c 

R 
e d 1 [k f - + (2f - k f ) (- - -)] -·k f 

3 c t y 3 c t 2 3 c 

R 

f bt 
c 

2Tl [
l {(~ - l) _ 
R t 2 t 

A 
5 

Rn 
e d 1 [k f - + (2f - k f ) (- - -)] 3 c t y 3 c t 2 

f bt 
c - --
2n

2 
[R - (~- 1. ) ] 

t 2 

-t] 

(c. 1 1 ) 
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The overa 11 uncertainty in capac'i ty is found simi lar1y to the compression 

case. The ck are given by 

ck = (aPT) _ (c. 12) 
PT 

ak k 

0 

e.g. , 

f 
·1 (~- t) -y-

IT c
f Pt 

k3f c 
R y qu 

in which Pt = 2 A /b t. 
5 
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APPENDIX D 

EVALUATION OF STATISTICS OF THE GUST FACTOR 

The gust factor to be used in design is defined by Eq. 4.29, 

repeated here. 

= (D. 1) 

in which fo is the fundamental frequency, td is the averaging period, and 

Ji k 
3 

30 2a 
(- ) 

h 
(D.2) 

and where g1' g2' g3' and g4 have been defined in Eq. 4.27. Its mean is 

found by substituting the mean values of the individual parameters into 

Eqs. 0.1 and 0.2. 

= GO (k,a,S, f ,U ,c ,c ) 
o 0 y Z 

and its second order statistics are found as 

in which 

a = 
m 

2 
a 
m 

m 

(0.3) 

(0.4) 



194 

and m is one of the variables in Eq. 0.3, 

otherwise 

Defining constants 

c = .; 2 In(fotdJ 

c 
(3~. f" f b 

J... 0 
t 1 = -U-2 

0 

c 
(12- ) 

a f h 
t2 

z 0 
= 3 -u-h 

0 

f 
(~)a 4000 0 

t3 = V-
0 

'h 

TI 
92 93 + 94 9 = S 9 1 

the derivatives are then 

aGO 1 
--ak = cO' (Tk ) y 

When m = f , 
o 

a 
y 

(0,5) 

(0.6) 

(D,7) 
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{I [2(3- 2 
3G O 'IT 

t
3

) 
= CO' + 2gB 9 1 92 93 3Ct Y 3 ( 1 2 

+ t
3

) 

- 9 t -1 1 9h ] } 1 n (3~) 

3G O 'IT (1) 
313 

- CO' 2gB gl 92 93 Y 13 

3G O 'IT {91t 1 + 

2(3 - t~) } _1 
3U CO' 

2gB 9 1 92 g3 g2 t 2 -
0 

y 3 (1 + t~) Uo 

3G O 'IT 
91 92 93 (gl t l) 8C - cO' 

2gB y c 
y y 

3G 'IT 
9 1 92 93 (9 2t 2) 3c 

- CO' 
. 2gB Y c 

z z 

3G {2~S 9 I 92 93 
[2(3 -

t 2) 
3 

9 1 t 1 aT cO' 
y 

3 ( 1 
2 

0 + t
3

) 

92t 2] + ci } 1 
(0.8) f 

0 

where all parameters in Eqs. 0.7 and 0.8 are taken at their mean values in 

the evaluation of a . m 




