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Chapter 1

INTRODUCTION AND BACKGROUND
1.1 General Remarks

The assurance of adequate structural reliability is a principal:
consideration in the process of design. As calculations for engineering
designs are based on mathematical models of reality, this may be a difficult
task. Unavoidably, when idealizfng a real situation, there are factors that
may be neglected, Load models, for example, contain uncertainties resulting
from lack of information or knowledge. Variabilities in structural capacity
may arise from nonuniform or careless fabrication and construction procedures.
The laws of structural mechanics relating loads and structural response are
based on simplificatioﬁs and idealizations. The design process is thereby
c]ouded with uncertainties from a lack of complete information. Moreover,
loads and resistances usually exhibit statistical dispersions. In this con-
text, absolute safety cannot be realized.

The designer must insure .that the resistance provided by his de- .
sign exceeds potential load effects by a sufficient amount to insure ade-
quate safety under adverse conditions. This is currently done within the
context of working stress or ultimate strength design. These two methods,
while having different philosophies, share the common feature of treating
the design parameters deterhinistica]ly. The allowable stresses, or load
factors, are chosen so that the likelihood of failure is deemed (intuitive-
ly) to be acceptably small. Traditionally, the allowable stresses or load

factors have been determined by the profession on the basis of judgment and



experience. The risks associated with a de%ign are not and cannot be eval-
uated quantitatively.

Central to a rational approach to safety is the concept of an ac-
ceptable risk of failure [17, 31]. In view of the randomness of many of the
design parameters, relevant criteria for safety should provide an explicit
measure of the likelihood of unfavorable design response.v This requires
that a statistical analysis be made of those data that are random. More-
over, uncertainties associated with possible errors in modeling, estihation,
and prediction also contribute to the underlying risk [8]; the assessment of
the effects of these uncertainties on the reliability of a structure proper-
ly requires probabilistic analysis.

The consideration of.uncertainties in prediction is invariably
necessary in practice [8]. A lack of data generally makes it impossible to
ascertain the exact statistical distributions of the design variables. The
estihatioh Qf the modeliﬁg uncertainties underlying a mathematical solution
often must be made on the basis of experience. In short, the safety criter-
ia should be the result of a combination of statistical analysis and goodt
judgment, in which all factors are treated in a consistent manner.

Finally, the design criteria should be simple in form. The format
should preferably be similar to existing procedures; however, the allowable
stresses, or load factors, should be selected more logically and systemati-

cally than is presently done.
1.2 Criteria Based on Acceptable Risk
1.2.1 Classical Reliability Analysis

Considerable research effort has been directed toward developing



the classical reliability theory [31,32]._This method assumes that loads
and resistances are statistical variables, and that the necessary statisti-

cal information is available., Safety is assured by assigning a sufficiently

small probability to the event that the resistance will be less than the
applied load effect. |In other words, the risk of failure
pe = Pr(R <) (1.1)

is specified to be acceptably éma]l. DenotingkR and S as the mean resis-
tance and mean load, respectively, a Eequiréd load factor vy = R/S may be
computed, at least conceptually, from an inversion of Eq. 1.1. The load
factor is thus a function of Pe and the variabilities of R and S.

In géneral, the required mean design resistance may be computéd

as

(1.2)

4|

Ro= v
Alternatively,

- = 2 2 .
R—S+BOR+OS (1.3)

where the ''safety index'" B is a function of the specified risk P> and gen-
erally also a function of the second-order properties of R and S; B is sim-
ply the number of standard deviations of the margin of safety (R-S) above
its mean for a particular risk level.

THis provides the proper theoretical basis for the evaluation of
the statistical quantities involved. The formulation tacitly assumes that
all uncertainties in design are contained in the probability laws of R and

S, which are presumed to be known, |In practice, however, the probability



distributions and their parameters are seldom known precisely; moreover,
there are invariably uncertainties of prediction and modeling which may
not be random.

Another difficulty is that the designs are sensitive to the choice
of the distribution functions at risk levels presently considered necessary
to assure safety (pf < 10-5) [8,9]. Ang and Ellingwood [If] have also shown
that B is distribution sensitive; furthermore, except for the normal case,

B depends on the coefficients of variation (c.o.v.) of R and S as well.

In most engineering analyses involving random phenomena, only the
first and second order moments, i.e., mean and variance, of‘the random vari-
ables are known. This information describes only the mid-range behavior
of the distribution, a region in which one distribution may be indistin-
guishable from another, but is insufficient to describe the probability law
of the variate completely. The regions of the probability distributions
pertinent to the calculation of risk are the extremes of the distributions.
A determination of their characteristics requires an extrapolation beyond
the range of observed values, a difficulty pointed out by Freudenthal [32].
Therefore, probability models are often chosen on the basis of convenience.
It is difficult to judge such a model with any degree of confidence, and
the probabilitieg thus obtained are somewhat uncertain. In spite of these

difficulties, classical reliability theory has served as the basis for some

design code proposals.
1.2.2 Extension

For a design concept based on an acceptable risk, Eq. 1.1 serves



as a fundamental starting point. |t has been recognized [9], however, that
an extension is necessary in order to resolve the guestions of sensitivity
and consistency arising from an imperfect state of knowledge. Bolotin [17]
notes that a risk measure is a characteristic of a random event, and is
useful in a comparative rather than an absolute sense. It is necessary,
then, that a viable basis for design should utilize the information that is
available as consistently as possible, with the primary objective of obtain-
ing a basis for comparison between design alternatives.

Provisions must be made for the statistical treatment of the data
that are inherently random. This should allow the use of particular distri-
butions for modeling R and S as suggested by available data. |In other cases,
the method should permit the use of arbitrary distributions with the know-
ledge that the modeling error thus fntroduced is acceptably small. Uncer-

tainties in prediction and modeling must be included explicitly in the for-

mulation of design. The delineation between the two basic types of infor-

mation is convenient, and sometimes even necessary, for evaluating the un-
certainty measures.

A model has been developed by Ang and others [10, 11] which ac-
complishes these objectives. In its basic form, a judgment factor is added
to the classical reliability format to reflect the effect of imponderables
on the associated risk. This is termed the ''extended reliability mode],”v

and will form the basis for the safety analyses performed in this study.
1.3 Objectives and Scope of Present Study

The purpose of this investigation is to illustrate how a design



format based on an acceptable risk criterion might be developed. The ex-
tended reliability model is used as the basis. An attempt is made to give
structural reliability analysis a sense of perspective.

Since present codes are formulated on an individual member basis,
efforts are directed at designing individual components for a prescribed
reliability. For illustrative purposes, the development will be made for
simple reinforced concrete members. Strength provisions only are considered,
although the theory can just as easily be applied to other requirements as
well, It is then possible to make a comparison between risk-based design
criteria and current.design code provisions, such as the American Concrete
Institute (ACI) Standard Building Code [5] which governs present reinforced
concrete designs in the USA.

Chapter 2 presents a discussion of the extended reliability model .
As the existing formulation is restricted to the simplest case of single
resistaﬁce and load, an extension is made to account for the more realistic
multiple loading case found in practice. It is shown how the basic variabil-
ities and prediction errors-may be handled in a consistent manner.

Chapter 3 .contains the formulation of the flexural and shear re-
sistance models for a concrete beam with tension reinforcement and a model
for studying columns subjecﬁed to eccentric loading. An analysis of the
first and second order statistics is made from existing data, and the sen-
sitivity of the resistances in the different modes to their dependent vari-
ables is investigated.

Chapter 4 considers load models for permanent, short, and long

term gravity loads, and lateral wind loads. The purpose is to obtain



representativé statistics from existing load surveys from which the implied
reliability of existing designs may be studied. This reliability analysis
is performed in Chapter 5, where designs obtained from current ACl code re-
quirements are evaluated from the standpoint of the underlying risk.

Chapter 6 contains some practical recommendations for the develop-
ment of reliability-based désign criteria.

't is hoped that this study will aid in the transition from a de-
terministic format to one based on acceptable risk by indicating what levels
of safety (in terms of risks) are implied in current standards, and by sug-
gesting representati&e statistical values appropriate for typical design
situations. Progress toward implementation of a risk based code has been
slow due partly to a seeming dichotomy between the comp}exityvof a rigorous
probabilistic analysis and the need for a simple form for design standards.

This is unfortunate because probabilistic analysis can be the underlying

basis for the formulation of design provisions, and yet the form of the de-

sign standard can_remain unchanged.

1.4 Notation

The following notation is used herein:

D random variable describing dead load (psf units).
Fx(x) cumulative probability distribution function of X.
L random variable describing live load (psf units).
N random variable representing required judgment.
Pr(E) probability of event E.

probability of failure.



risk measure associated with basié variability defined in Sec.
2.1.2.

risk measure associated with ‘errors in prediction defined in
Sec. 2.1.2.

random variable describing member resistance.

random load effect from load i.

random variable describing wind load (psf units).

generalized lcad factor defined in Sec. 2.1.3.

predicted mean value of random variable X.

nominal value of random variable X, defined at some cumulative
probability level.

proBaBi}ity éeﬁ;iéy %uﬁétion of X.‘

the number of standard deviations above the mean of a variate,

denoted the safety index.

ol - )

o}

central factors of safety.

measures of prediétion.error in X,
total predfction error in R and S.
coefffcient of variation (c.o.v.) of X.

total basic variability in R and S.

ratio of mean load effects; e.g., mean live load to dead load ratio.

mean value of X.

factor of engineering judgment used in design.



standard deviation of X.
standard normal probability distribution function evaluated at x.

the standard normal variable corresponding to a cumulative probabi-

lity Tevel p.

N

total uncertainty in X, equal to di + A

>
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Chapter 2
THEORETICAL FORMULATIONS
2.1 Extended Reliability Concept
2.1.1 Basic Formulation

The classical formulation of Sec. 1.2.1 can be generalized [10,11]
to include the prediction errors explicitly by multiplying R and S in Eq.

1.1 by factors of engineering judgment NR and NS’ i.e.,

w>
]

=

w

The uncerfainties in R.and S are those associated with their inherent ran-
domness.- Their first and second order statistical properties can be deter-
mined from available data, and some probability distributions may then be
assumed to model their natural variability. Because of errors in prediction,
modeling, and estimation of the parameters, the assumed distributions of.R
and S may not be correct. The purpose of NR and NS is to compensate for

the above errors. Presumably, then, R and S are the true resistance and
load, respectively. The correct values of NR and NS are unknown, and hence

N, and N. may be assumed to be random variables; the probabilities associated

R s |
with these factors are necessarily judgmental [46],

Failure is then defined as {R < S}, and the probability of failure

becomes



or, equivalently, with N = NS/NR’

Pe = Pr(R < NS) (2.1)

where N represents the required overall '"judgment factor.'' Assuming that
P J 9

R, S, and N are statistically independent,

= Pr(R < nS) f,, (n) dn (2.2)

u;N

N

From this relationship, design equations similar to Eq. 1.2 or 1.3 may be

obtained.

In the implementation of this concept, it is assumed that errors

in modeling and prediction are limited to errors in the predicted mean val-

ues of R and S, i.e., R and S. As the true means may be either greater or
less than those obtained from the data, it is assumed that the correct means

of R and S can be approximated by their predicted means, R and S. |t then

may be shown [10] that the mean judgment factor is

N E(N) = 1.0 (2.3)

1]

with c.o.v.

- 2, 42 ;
A = Ay = YA+ A (2.4)

where AR and AS are prediction errors representing the uncertainties in thé
predicted mean values R and S, respectively, and AN is the combined predic~
tion error. The distribution of N cannot be determined, and in the sequel

it is assumed to be lognormal for convenience. Also note that a more elab-

orate treatment of the prediction errors than the above second moment approach

would not be warranted.



With the introduction of the random variable N, the basic random-
ness and prediction errors may be treated separately. The statistics of R
and S need not include prediction errors, and their probability laws may
differ from that assumed for N. In the limiting case where N is unity with
probabi lity one, Eqs. 2.1 and 2.2 reduce to the c]assicalvre]iability for-
mulation. This is tantamount to assuming that there are no modeling and
prediction errors present.

Designs in terms of the central factor of safety y = R/S obtained
on the basis of Eg. 2.1 are shown in Fig. 2.1. As in the classical reliabil-
ity analysis, these.designs are not too sensitive to distributions when
_5? the designs are again quite distributionally

pf > 10-4, buF when Ps < 10

sensitive, This is not surpris}ng, for if NS is replaced by some variable

S* in Eq. 2,1, the equation has the same form as Eg. 1.1 and the difficulties

associated therewith would be expected. The problem of distributional sen-

sitivfty.must still be resolved if the risk model is to be useful for design.
One way to circumvent the sensitivity question is to specify that

a comparative estimate of the design risk be obtained on the basis of pre-

scribed distributions for R and S, as well as NR and NS' This provides a

convenient basis for comparison between design alternatives; however, there

will no longer be any flexibility for treating arbitrary distributions for

R and S.

I|f R and S, as well as N_ and NS’ are prescribed to independent

R

lognormals, R and § are also lognormals, with total uncertainties

_ 7 )
Qe = VY ogt i
, (2.5)
fig = ‘552 " Aé
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where GR and»cSs are measures of the basic variabilities in R and S, and A

R
and AS are measures of the prediction errors in R and S. The risk of fail-
ure is then

L //1 + Qé
In LR/S ———
S 2
vV 1+ Qp
Pe = 1 -3 ' (2.6)
L/ 10+ ad(+ed)]
R S
If QR and QS are not too large, say less than 0.30, Eq. 2.6 becomes
pp = 1 -0 ljiiffz_. (2.6a)
-2 2
/QR+QS
where ®(x) is the standard normal probability distribution function. Con-
versely, to determine the design corresponding to a specified risk Pes @n
inversion of Eq. 2.6a yields the required mean load factor as
Yy = RS = exp [ Voi+aleT (1-p) ] (2.7)

in which 5! (p) is the inverse of ®(x) at probability p.

The delineation between basic randomness and errors in prediction
also serves as a basis‘for the development of the following "alternative
risk model.'.l This is fnténded.to permit the use of any suitable distribu-
tions (e.g., favored by available data), and to c}rcumvent the question of

distributional sensitivity.
2.1.2 Alternative Risk Measure

{t may be observed from Fig. 2.1 that if designs are based on
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probabi lity measures of ]O_u or greater,vthé distribution sensitivity of
designs becomes much less pronounced. In this case, the choice of distri-
butions for R and S becomes less significant, and convenient substitutions
can be made when necessary.

The measure of risk developed by Ang and Ellingwood [11] is based

on this observation. It is given as
Pe = Pr(R < vS) = Pr(N > hv) (2.8)

in which v is a specific value of N used in design, and h is a parameter

introduced to obtain
Pr(R < vS) *Pr(N > hv) = Pr(R <NS) , , (2.9)

The first part of Eq. 2.8,

Py = Pr(R < ys) _ (2.10)

may be defined as a measure of the risk associated with basic randomness,

whereas the second part

p. = Pr(N > hv) ‘ (2.11)

is a probability associated with the prediction errors.
Assume, for convenience, that N, R, and S are lognormal; then

the solution of Eq. 2.9 for h yields
ho= exp (807 (1-p) 60 ' (1=p) - /6T 2ol - pe) ]

from which v can be found from Eq. 2.11. For small c.o.v., say less than

about 0.30,
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Vo= exp [ /22482871 - pe) - 60 (1 - p,)] (2.12)
where
/2 2 , e e
§ = v §p + 8¢ is the total variability
A = Y A; + Aé‘ is the total prediction error

Although Eq. 2.12 is derived from a lognormal assumption, the resulting v
will be used for other distributions of R and S. Then, using Eq. 2.10, the

required mean resistance is
R = v5 (2.13)
where v is a function of v, Pes 6R’ and 65. Alternatively,

R = vS + B, /cé + \)Zog (2.14)

in which Bo = ®_](] - pO). A compariéon of Figs. 2.1 and 2.2 indicates the
reduction in distribution sensitivity when the alternative risk measure is
employed; this is simply due to the fact that once V has been determined,
the designs are found from Eq. 2.10, in which Pq is generally greater than
10™% although pe = p, * P, may still be 1076 or less.

It is reasonable to assume that if the basic variability § is
‘much larger ;han the prediction error A, the risk associated with the basic
randomness should be less than that associated with modeling, and conversely.

Furthermore, if & and A are of the same order, the risk associated with each

part should be about the same. Accordingly, it may be assumed that



S
_ A+
pO = (Pf)
(2.15)
b
_ A+O
P, (pf)

For example, if A = 0, implying no prediction error, Po = P¢ and Eq. 2.12

yields v = 1.0; hence, the classical formulation is obtained.

2.1.3 The Case of Multiple Loads

The actions induced on a member are normally the result of several
externally app]igd forces; each load may be random, with its own statistics
and probability distribution. It is useful to be able to study their ef-
fects separately and in combinations. To this end; the alternative risk

may be generalized as follows:

= Pr(R<v(S, +S,+ . . .)) *Pr(N > hv) (2.16)

P ] 2

in which everything else of the preceding section remains applicable. In
particular, v is calcu]ated from Eq. 2.12, in which the determination of §
and A includes the uncertainties associated with all the variables in Eq.
2.16.

The question of distributional sensitivity is even more important
in the multiple load case. The evaluation of Eq. 2.16 requires integration
of the joint density of R,AS], Sz. . . Generally, this integration must be
performed numerically and rapidly becomes intractable as the number of vari-

ables increases. An important exception is when all variables are normal;

their resulting linear combination is then normal, and probabilities
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associated therewith may be easily evaluated. It will be useful to verify

that the distributional insensitivity illustrated in Sec. 2.1.2 carries over

to the multiple load case.

A well known result of probability theory states that if n ran-

dom variables Xi’ i =1, n, are normal and mutually independent, then their

sum

X = 1 X
i=1
2 2
o = L oy
i=1 I
It follows that
| ] R—v(s‘+s,2+f”),
P, = Pr(R<\)(S]+52+. L)) =0 /2 g (2.17)
gy + vi(og + ogc + )
R S S
] 2
where v is given by Eq. 2.12. In terms of the central load factors, the re-
quired mean value of R is
Ro= v S, + v,5, + ...+ v S (2.18)

In order to generalize the solution as far as possible, define the load
ratios,

6, = S /S, k=2, ..., n (2.19a)



and

w(B) = Yot Y8yt oy 6] (2.19b)

Then substituting Eqs. 2.18 and 2.19 into Eq. 2.17 yields

w(®) - v(1 + 62 + ... +en)

Pg T ¥ — (2.20)
— 2 2 2,.2 2 .2 2 2
J?;(e)) Sp + v (65 +0, 8 + ... +8 S )
] 2 n
in which w(B) is the cnly unknown. fnverting this vields
(1 +86, + +0)
W@ = v 2 n
(1 - B2 62 ) .
o R (2.21)
2.2 2 2.2 2.2 2.2
B y/(l + 8, +8.)°8; +_(cSS + 858, + + enés)(l - BOSR)
+ v 1 2 n
2 2
(v - 82 62)

For a specified Py the corresponding value of w(6) may be found.
When only one load is present, 6k =0, fork=2, ..., n, and w(®
reduces to the load factor discussed in the preceding sections. For non-

zero 8, , the separate load factors Yis Ygu eees Y, are not uniquely deter-

k
mined for a giveh risk level., This is true for any distributions; the load
factors are coupled by the requirement of a specified reliability, Eq. 2.16.
Therefore, any set of (y], Yoo "'.Yn) that satisfies Eq. 2.21 will yield
designs with precisely the same reliability. |

Currént specifications increase the design loads separately, through

applying load factors, to values where the likelihood of exceedance is suf-

ficiently small. |In a deterministic context, the only way to reflect the



greater uncertainty in a particular load is to increase the load factor as-

sociated with it. In a statistical sense, the true measure of safety is the

risk of failure associated with the sum of all loading effects. This sug-

gests that it is sufficient to apply one overall load factor to the sum of
the load effects. If one load contains more uncertainty than others, this

is reflected in its uncertainty measure, and this contributes more to the

overall load factor.

However, if it is deemed desirable to retain the multiple load
factor format for consistency with current deterministic criteria, suitable
values of (Y], Y, Ce yn) that satisfy Eq. 2.21 may be obtained as follows.

Equation 2.20 is inverted to yield,
non

Yy + yzez + ... +v8

= v(l + 92 + . + en)

‘ ‘ 7.2
+ Bov/(y] Y0, + o ynen) g+ vV

Such an equation applies also to nonnormal variates, with appropriate BO.

Introducing

2.2 2,.2 2.2 2.2
¢/(y] + Yzez + ...+ ynen) SR + Vv (651 + 62652 + ... F enésn)
a = - - (2.22a)
(y] + yzez + ..t ynen)éR + v(cSS] + 82652 + .. F endsn)’

we have,
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(y] Y0, F o F ynen)

= v(1 + O, + o0 ¥ en)
+ B Ly + vy e Y BN \)(cssl "By et enssn)]
or

y](l - BoaéR) + yz(l - BSR)E, + o

= (] + Boaasl) + v(l + Boaasz)ez + ..
Equating coefficients of 0, vields
] +'Booc65k A
Y, =V TTETs : (2.22)
k 1 BOQGR

The overall load factor y may be found directly from Eq. 2.17.

In this form, the design equation is

R = y(5, +S F ... +5) , (2.23)

Substituting Eq. 2.23 into Eq. 2.17 and inverting gives

(1 + 8, + ... +‘en)

Y = v ‘ 2.2
(1 + 0y + ouu ¥ en)(l - BOSR)

1252 + (62 + o

BOV/(] + 62 + ...t Sn R

2.2
(1 + B, + .o ¥ en)(l - BOSR)



There is a unique relationship between Po and y.

Practically, the use of the separate load factors or the overall
load factor will result in exactly the same required mean resistance quor
a given risk. The results contained herein are presented in terms of the
multiple factors for consistency with current design formats. |t should
be recognized, however, that the specification of a sing]é load factor has
certain practical advantages.

The sensitivity of design; to distributions is illustrated below
for two loads. The expressions used in evaluating the nonnormal cases are
given in Appendix A. Since the distribution sensitivity of the alternative
risk model depends on the level of Py it will suffice to examine the be-

havior of designs obtained from

Py = Pr(R < S, + 52)

at risk levels of 10_3 or 10_4. Figures 2.3 and 2.4 illustrate the sensi-
tivity of load factor Yy and the overall load factor y to choice of distri-
bution for 6, = 1.0. The values are seen to be quite close, except in the
case where R is Weibull and S] and 52 are each Frechet. The sensitivity of
Y, and Bo to variations in aR with Py = 10—3 is shown in Figs. 2.5 and 2.6.
The results are of approximately the same sensitivity as in the fundamental
case [11]. Again, Bo_is a function of the statistics of R and S, except fn
the normal case. Fiéures 2.7 and 2.8 illustrate the sensitivity of Y, and
BO to 62. The designs are quite insensitive to this parameter, although

there is a slight tendency for Y, to decrease with 62 for all but one set

of distributions. This result indicates that the mean ratio of live to dead
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loads is not a significant parameter insofar as calculating the load factors,

or the underlying risk, is concerned,

Because of the distributioqal insensitivity exhibited, the load
and resistance quantities in the alternative risk model may suitably be
chosen as normal random variables. This assumption is consistent with the
amount of information usually available. The normality assumption makes
it possible to consider an arbitrary number of design variables without
significantly increasing the complexity of the analysis. |

Figures 2.9, 2.10 and 2.11 illustrate the variation of Y » Ypo Bo’
and v witH parametefs SR’ GL, A, and EVB} based on the assumption of normal

R, S and S with a specified risk of Pe = 10_6. The judgment factor v

L’ D’
is insensitive to 6R’ SL’ and EVB} implying that it could be treated as a
constant in a code implementation. YL and Yp are nonlinear with respect to
GR, but nearly linear with respect to 6L. Furthermore, Yo varies only
s1ightly with GL,’indicating that the load factor coup]ing is not signifi-
cant. Note that Bo varies with GR, 6L, and A, illustrating that BO is a

function of the risk and the uncertainties, as seen from Eq. 2.15. Figure

2.11 reveals that these design factors are all insensitive to the mean load

ratio, indicating that separate provisions for treating f]ﬁ'need not be consid-
ered in a reliability based code. Changes in Y o Ypo and v are affected most
by changes in 6R, especially when dR 2 0.10; control of this parameter is,
therefore, most important. |In all cases, BO implies that Ps is of the or-

der at which the question of distributional sensitivity does not arise.
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2.1.4 Risk Analysis of Existing Designs

[t has been demonstrated in Secs. 2.1.2 and 2.1.3 that reliability
theory provides a logical basis for the determination of designs. It also
furnishes a basis for analyzing the underlying probability of failure of
existing designs.

For prescribed lognormal distributions, the analysis phase is
relati?e]y simple and straightforward. |In a structure with a mean resis-
tance R subjected to a total mean load effect S, the associated risk is
given by Eq. 2.6 after the uncertainties QR and QS are determined.

In the case of the alternative risk model, the analysis phase is
more involved. Suppose first that the variables are normal. Since v and
p, are functions of Pe which is unknown,po cannot be computed from Eq. 2.20
directly; likewise, BO in Eq. 2.21 is unknown. |t is therefore necessary

to solve Eq. 2.20 or its ‘inverse numerically for Pe- The inverse js easier

to work with, and is

w(e)—v(1+ez+...+e)
- B =0 (2.25)

where v and Bo are functions of Pes and w(B) can be determined if the de-
sign is specified.

This equation, while admitting only one root for Pes is highly
nonlinear with respect to this variable. The root can be obtained using

the Newton-Raphson method of iteration. With
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(2.26)

In order to avoid calculations with very small numbers, it is preferable to
determine the solution in terms of the variable log]O Pes that is, with

x = log,q4 Pg> and f(pf) defined in Eq. 2.25,

dpf
f(X) = f[Pf(X)] _:B:
(2.27)
_ o f(x)
kel T %% T Fi(x)

f'(x) must be found numerically, and was computed using Lagrangian inter-
polation polynomials. Convergence is quite rapid, requiring only a few
cycles of iteration; Pe is then obtained by taking the antilogarithm of x.
If the variables are nonnormal, Eqs. 2.25 and 2.26 may still be
written for any arbitrary distributions. The determination of Pq and BO
becomes more complex, however. P, Mmust be evaluated by numerical integra-
tion, as in Appendix A, and its inverse BO must be found by some interpo-
lative scheme; BBO/Bpf required in Eq. 2.26 must also be found numerically.
This numerical integration-interpolation process must be performed for each
cycle in the Newton-Raphson iteration, as Pq is not available in standard

form except when all variables involved are normally distributed.
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2.2 Analysis of Uncertainties
2.2.1 First Order Approximations

In order to use the reliability equations of the previous section,

the statistics (i.e., mean and c.o.v.'s) of R, St S,s -+v» as well as the
c.o.v.'s of NR’ NSI, NSZ, ..., must be known. Frequently, these variables
are functions of other variables. For example, the flexural capacity of a
concrete beam with tension reinforcement is a function of the area and
strength of the steel, compressive strength of concrete, and the geometry
of the section. Each is a random variable with its own probability distri-
bution and related statistics.

In practice, only the first and second moments may be available;
the precise distributions are generally nét known., Consequently, the risk
must be determined on the basis of convenient distributions or of distri-
butions favored by available data. The main problem, therefore, in the
evaluation of risk requires the assessment and analysis of the uncertainties.
Although the exact statistical analysis of uncertainties is involved, an
approximate analysis is sufficient for practical purposes. This is based
on the Taylor series expansion of a function about the mean values of its
dependent variables [24,10].

|f Y is a function of n random variables X], Xz, ey X e,

the Taylor series about the mean value (X],-Yz, cee, X)) s
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n
= olx X 3 x
y = 9(X1’ , Xn) + Z (ax‘ )O (x XJ)
j=1 ]
Loy _ﬁfil__ - _
t 7 le kzl (8Xjaxk )o (X, - XJ)(Xk - Xk) + ... (2.29)

where the partial derivatives are evaluated at (7}, ...,'YF). Truncating
terms of order two and higher is tantamount to linearizing Y. By assuming

that X Xn are mutually uncorrelated and taking expectations of both

R

sides, the mean and variance of Y are found as

Y = g(X], caes xn) | : (2.30)
n 2 .
2 ag 2
% = .Z Sre )O %, (2.31)
j=1 J J '

|f the second order term in Eq. 2.29 is retained, the mean and

variance of Y are

A & TR S . (2.32)
~ g ]) s 98y n 2 J'=] 8)(% o GXJ .3.
J
2 i ag 2 2 0 ag 829' =\ 3
op = 1 B o o+ T G) 3 El - X))
j=1 joo j=1 jooaxy © I
n 2 n-1 n 2 2
29T C) e -xMen T T A B8y 2
j=1 BXJ © j=1 k=j+1 axj © 3, °© % Mk
n a2 2 4
- 1 =) oy (2.33)
j=taxy o ]

In this case, it Is necessary to have the third and fourth moments of Xj to
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evaluate ¢ however, these are usually unavailable in practice. |If all

y?

Xj are normal,

o

n 2 n=1 n 2 2
AR R R A DY R
j=1 J b J=1 k=j+1 BXJ ° axk 07 k
n 2 2
A
vy ) G2 o (2.34)
j=1 BXJ‘ o ]

If the c.o.v. of Xj are not large, and Eq. 2.28 is‘not highly
nonlinear, Eqs. 2.30 and 2.31 are sufficient for estimating the mean and
variance (or é.o.v.) of Y. As an example, consider the flexural equation
of a reinforced concrete beam. The dérivatives and c.o.v. are given in
Chapter 3; the purpose here is to indicate the error typically associated

with neglecting higher order terms. Using‘Eqs. 2,30 and 2.31,

MT = 0.879 As fy d

o = 0.010020 (A T 8’)2
sy

2
My |
Using Eqs. 2.32 and 2.3k,

MT = 0.876 As fy d
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o = 0.010032 (A F @2
MT s Yy

The differences are clearly not significant. Equations 2.30 and 2.31 are
used‘in the sequel to estimate the means, and uncertaiﬁty measures necessary
for evaluating Eq. 2.16. |

The predicted mean value of the resistance or ]béd may be found

from Eq. 2.30, and its basic variability (c.o.v.) by rewriting Eq. 2.31 as

2 noo, o5 : : »
8y = Z < 8y : ; (2.35)
j=1 A j ;
in which
¢ = L ey % O (2.36)
J V vaxj o j ; )

The prediction errors may be attributed entirely to the errors in
the mean hrediction; that is, the estimator of the true mean My is consider-
J
ed a random variable. Effectively, this means [10] .

N, = ux./?}‘

J

with mean 1 and variance A?. Thé true ﬁean ofFY méy be written app}oximately

as |
my o= g X, R, s, N X)) (2.37)

The prediction error in Hy is found by expanding Eq. 2.39 about (N}, N2, ce e

'N'n). The result is

Eln,] = Y (2.38)
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‘ A , S
2 ] 2 2
N R R Y (2.39)
UY Y J=] J' o]
Now, since
3¢ v - ég
(E2-) = X &)
'aN_j o J BXJ o
and A = A,, the prediction error fn Y is
My Y
2 D2 2 |
A, = c, A 2.40
VLS4 | o (2.40)

where Cj are the same constants defined in Eq. 2.36.

2.2.2 Estimation of Uncertainties

For purposes of analysis and design, the mean and_variance of a
variable are estimated from whatever data is available, Since the true
mean is unknown, a prediction error, A, is‘assigned to the predicted mean,
to account for inaccuracies in its estimation. |If information is available
to evaluate the accuracy of the estimated ﬁean, a rough estimate of A may
be obtained from this’information.

For example, suppose an engineer specifies that a certain param-
eter X, which has random characteristics, should have the value X in the
design of a certain product; and a number»of these products are fabricated
on this basis. When a sample:of the products is evaluated after their fabri-

cation, it is found that the values of X actually obtained take on a number
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of values, X1 Xgstvees Xy in which xj # % in general, and also in which
their mean ﬁx # x. The variability of (x], cees xn) about ﬁx is a measure
of the basic randomness of X. The difference between ﬁx and X is a measure
of the error in mean value prediction. When a number of samples are taken,
sample means of each may beé computed; in which ﬁX. # x in general. The
means ﬁx. define a-histogram for the true mean My of which the second or-
der statistic yields the prediction error AX.

Suppose the predicted mean value of a random variable X is denoted

- . . 2 .
x. The total variance is E[(X - X)“], the second moment of X with respect
to its predicted mean. The variance about the correct mean, ux,'is always

a minimum mean square value.[27] Hence

YE[(X-;)Z] 2 E[(X-UX)Z] | (2.41)

The difference between these two quantities is a measure of the prediction

. . : 2 .
error associated with the mean value. E[(X - x )°] may be written as

E[0C- %)% = ELOXC- . + uy = X))
and assuming E[(X - ux)(ux -x)] = o,
ey, - %)% = E[0C-X)%1 - Elx-w?l (2.42)

An estimate of E[(uX - §')2]‘is desired,

Suppose m sets of data are available on X, with N indépendent

samples in each set, i.e., (x]], Xygs wees x]h ) I (xm], .;.;'xmn ).
' 1 m
Then ‘
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"
T o(x,, - x.)° (2.43)

where

A similar equation arises in the theory of the analysis of variance [27]
when it is desired to test hypotheses regarding mean values obtained from
different sets of data describing a random phenomenan.

In the most frequent case where only one set of data is available,

m= 1, Then

B, - 0% = % ]zl (x; - x)2 -+ é] (x; = x)% (2.44)
The vafiabf]ity is given as

62 = E[(x - ﬁx)zi/?f | (2.45)
and the prediction error as

M~ Bl - X)/R N (2.46)

This provides a rough estimate of the prediction error as a systematic com-
parison is made between measured and predicted mean values. Intuitively,
if the predicted and true values are widely separated,AX will be large, as

indicated by Eq. 2.46. This method is useful when x in Eq. 2.42 is well
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defined, e.g., when test data corresponding to specified design values are
available. The prediction error may then be esfimated by systematically
comparing the test data, representing values actually obtained, with the
corresponding values origiha]]y specified for the design. An example of
this will be seen in Sec. 3.2.2, where field measurements for the effective
depth of longitudinal reinforcement are compared to the depth specified on

the working drawings.

In many situations, the available information may be more 1limited.

In such cases, probabilistic assumptions may be invoked to assess the errors

in the predicted mean values. For example, if only the range of the mean

is known, an estimate of A may be obtained by assuming some appropriate
distrithion for the mean over this range [12], say uniform, and A may be

found from its second moment.

If no data is available, A must be chosen on the basis of intui-

tion and professional judgment. In this case, the choice of A would reflect

the degree of confidence placed by the engineer in the accuracy of his pre-

diction, and his past experience in similar situations..
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Chapter 3

RESISTANCE MODELS

3.1 ObjectiVés and Scope

The purpose of this chapter is to formulate resistance models for
flexure, shear, and combined bending and axial thrust for use in the extend-
ed reliability formulation. The development is made for reinforced concrete
members.

For purposes of this study, member strength is considered to be
the governing design criterion. The primary objective is to statistically
analyze existing strength equations upon which current AC| provisions are
based. Conclusions can then be drawn from which future reliability based
codes can be developed. Questions regarding serviceability and stability
are not considered, although they can be resolved with the same approach
used for stfength. |

The members are prismatic, and resistances at arbitrary points
along a member are assumed to be perfectly correlated. It has been pointed
out [14] that within-member variébility is insignificant compared to that
among separate members. Correlation of strength within é member is usually
quite high, The imb]ication is that failure will occur at the point of
max imum load‘effect. Moreovér, it is aésumed that yield strengths and re-
inforcing Ear‘éréas aré also pérfect]y correlated within a member.

blt is assumed that existing expressions for strength upon which

present ACl provisions are based are sufficient to determine the random
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function describing the resistance. Some o% these expressions are entirely
empirical in nature. |t may be argued, however, that the expressions rep-
resent the best current estimate of the strength as a function of the vari-
ables known to affect it, and hence should be used to predict its mean val-
ue,

The reinforcement is assumed to have an elastic;perfectly plastic
stress-strain curve, and strain hardening effects are neglected. The modu-
lus of elasticity E is assumed constant. The reinforcement stress-strain
curve is hence statistically defined by the yield strength variable fy
Data for steel strength is usually available only in terms of its yield

stress [38] Moreover, the variation in Esyis small [1].

3.2 Flexure
3.2.1 Equations of Flexural Capacity

The beam is assumed to be reinforced in tension only. The equa-
tion for the flexural capacity may be derived from conditions of equilibrium,

together with assumptions discussed elsewhere [16,58]. It is

AS FS .
MéAsfsd(l-nB—J?c—) : (3.1)

in which n = kz/k]k3, a factor describing the concrete stress block prop-
erties, Jf the reinforcement yields before the concrete reaches its limit-
ing strain, a tension failure occﬁrs and fs = fy. [f the concrete reaches
its limiting strain before the steel yields, a compression fallure occurs;
the reinforcement stress is found by solving a strain.compatibility equation

simultaneously with the steel stress-strain curve. The solution is
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E e 2 ’ '
_ //ﬁfs cu bd 1
fo = ( 5 )+ k]k3 fooE. €y A 7 EE, (3.2)
The moment capacity is given by substituting this fs into Eq. 3.1. In.

practice, this kind of failure is to be avoided.

The reinforcement ratio is defined as

b

S .
P = %7 o . (3.3)

The value of p at which the steel reaches yield and the concrete reaches

its ultimate strain simultaneously is denoted the balanced reinforcement

ratio, Pp> and is

fC ESECLI ’
p, = kik, = - — ’ (3.4)
b 173 fy ES €l + fy

In the ACl provisions, a.tension failure is assured by requiring that

p < O.75pé , computed deterministically. However, p and P, are random vari-
ables, and hence there is a risk of a compression failure even when the beam
is designed to fail in tension. This has actually been observed [26]. It
occurs because variations in steel and concrete strength are sufficient to
produce sections where the actual balanced reinforcement ratio is less than

the one specified for design.

For a reliability based design, the value of P, must be less

than p with an acceptably small probability oy i.e.,

Prip, <p) < a (3.5)



36

Assuming lognormal Sb and 8,

In (E/Eb)

o 2 )| —— (3-53)
Jo? v 2 | o
P Py

b

This equation serves as a basis for selecting a reinforcement ratio for de-

sign. The required mean value p satisfying the above is

h o~ B a [ /Qz 2 (ﬁ"] (v ) 1 (2 £
p p,. exp i V¥ + 0 @ (LD \3.0)
o PPy b
where the statistics of p and P, are found from methods of Sec. 2.2.1 as
p = — (3.7)
b d
2 2 2
% = 2 S o+ 9 (3.8)
- S '?; Es —;u
Py = Kk, — —= — (3.9)
fE + f
y S Cu y
EET +2F 2 - F 2
2 2 , . .
2 Ssfeu ) 2 _
Rf = (Y ef +a; +o, +(—t—) @  (3.10)
b Esgcu + fy y c 173 Esgcu + fy cu

The failure of a reinforced concrete beam may be described as.

{Failure} = {Failure in Tension k~) Failure in Compression}

These events are assumed to be mutually exclusive and collectively exhaustive.
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Hence by the theorem of total probability,

Pr(Failure) = Pr(Fan}ure{S < Eb)= Prip < Eb)
+ Pr(Failure|p > Sb)- Prip > Sb) (3.11)

where the probabilities of failure are computed by Eq. 2.8 or Eq. 2.16, i.e.;

Pr(Failure|p < Sb) = Pr(MT < vT(s] + ...)) Pr(NT > th) (3.12)

v (S, + ...)) Pr(N. > hu.) (3.13)

Pr(FaiIure]B > Eb) = Pr(MC ¢ 2 C

A

It will subsequently be demonstrated that if cy in Eq. 3.5 is chosen suf-

ficiently small,
Pr(FaI]ure[Sb < S)-Pr(ab < p)
<< Pr(Failure|p ¢ Bb)-Pr(S < Eb) (3.14)

and reliability based designs may be found from consideration of tension

failures only.
3.2.2 Analysis of Uncertainties
Influence of Uncertainties of Individual Variables

The first and second order statistics of the flexural capacity M
are found by applying the methods of Sec. 2.2.]1. For a beam failing in a

tension mode,

.F

p]

- A g IS N 4
o= A d (g ) (3.15)
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where As’ fy, fc, b, d, and n are all random variables. The predicted mean

value of M_ is

T
R R
Mo = A Ff d0 -7 — ) (3.16)
T s Y 53 F '
C
Its corresponding variability is,
52 =;(—]——:-£_ﬁ—q)2(62+62)
MT 1 -1 . fy‘ AS
n q 2,.2 2 2 ] 2.2
+ (,_ﬁ.q)(6fc+ab+6n)+(-————lqu)sd_ (3.17)
where _
g = p L ~ (3.18)
: f
C

AM may be found by replacing the §'s of each variable in Eq. 3.17 with the
T .
corresponding A's.
The mean and variability of the capacity of a beam failing in com-

pression are estimated by first finding the statistics for fs from Eq. 3.2:

Ee 2 - —
¥ =/(SC“) + Kk Fee b4 .

1 =
s 2 1”3 ¢ "sTcu g iiEsEcu (3.19)
S
22 2 2 2 2 2 2.2
8¢ = 9y (8¢ +684 +6 +68,+8 ) + g; 6 (3.20)
s c s 173 cu
where _ _
Ee k,k, f
s cu | o
g, = ——
2pf_g



_ 11 sty 1 L=
8, = 9 * : [ g ( 2 ) 2 Esecu ]
3
s
/ ET T
_ s cu - T _C
93' = ( 7 ) + ESECU k]kB E‘

Then replace fy with fs in Eq. 3.18 and Sfy(Afy) with st(AFS) in Eq. 3.17

to find 8, (A, ) from Eq. 3.17.

MM

o C
The uncertainties in the different variables above contribute to

~the uncertainty in MT or MC; however, their contributions are not uniform.
and A, (or statistics of M_.) to their component

MT MT C

variables may be analyzed by studying the behavior of the coefficients in

The sensitivity of E%; §

Eq. 3.17. These coefficients indicate the local variation of MT with re-

spect to a parameter at their respective mean values, e.g.,

o

f

L /~L = —-————: - N g | ' (3.21)
- nNnq
MT fy

Their behavior is illustrated as a function of g in Fig. 3.1. A small val-
ue of q implies a lightly reinforced section, low steel yield strength, or
high concrete compressive strength.

For lightly reinforced sections, the mean flexural capacity ﬁ% is

affected most by the accuracy of the estimated values of ?;, E;,-and d;

errors in'?;, b, and n will have less effect. As the amount of reinforcement
is increased,; these parameters and d become more significant. For a given

ratioffy/?;, this implies that p is approaching EL, and the likelihood of

a compression failure is increased.,
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Uncertainties in M_, i.e.; §,, ‘and A, , depend primarily on the
T MT MT
respective uncertainties in fy’ AS, and d. The coefficients for all param-

eters except d are less than unity; the effect of such a coefficient is to
reduce the contribution of the associated variability or prediction error.

For small values of p, it is conceivable that SM will be less than 6f or
T v

f When q is small, SM is relatively insensitive to df . This implies

o . T c

that poor concrete quality control has a relatively small effect on the

S

variability in flexural capacity. |t is clear that poof workmanship, re-
flected by large variabilities in d, will have a significant effect in in-
creasing the diSpersfon, especially when E.is large.

A similar analysis to determine the sensitivity of EL and Qpb to
their component variab]es may be performed by studying the coefficients in
Eq. 3.10; this is shown in Fig. 3.2. Estimates of ?; and Qf' are most im-

Y

portant in determining EL and Qp ; contributions from E;u and Qs are not
b cu

significant. The concrete quality, reflected by Qf , may be important to

c .
the uncertainties in Py - This indicates that good concrete quality is sig-
nificant to flexural design . from the standpoint of reducing the probability

of failure occurring in the compressioh mode.
Evaluation of Individual Uncertainty Measures

- The purpose of this section is to illustrate how the'uncertainties
underlying each design parameter may be evaluated from available data.
Information on the steel yield gtrength fy is generafly available
from mill tests. Julian [38] reported data from 171 tests on No. 3 to No.
10 bars with a nominal strength of 40 ksi. Values rénged from 38.95 ksi to
64.9 ksi with a mean of 47.7 ksi and a c.o.v. of 0.12. The c.o.v. is high

due to lumping the test results of different bar sizes. Baker's data [14]



4

for nominal L0 ksi reinforcement indicates a decrease in mean value from
50.4 ksi for No. 3 Ears to 44.1 ksi for No. 8 bars. The associated c.o.v. do
not vary consistently with size, and rénge from about 0.07 to 0.11. When all
bars are obtained from the same manufacturer, a c.o.V. as low as. 0.05 ié pos-
sible. For high strength reinforcement with a nominal yield of 60 ksi, the
mean values decrease from 71.8 ksi for No. 3 bars to 62.2 ksi for No. 9 bars,
and the c.o.v. varieé between 0.06 and 0.12, but again not according to size.
Tests by Chow and Gardner [22] of 20 No. 5 bars of intermediate grade steel
show a mean of 49.9 ksi and c.o.v. of 0.073.
The sample ﬁean value is clearly affected by the size of the bar.

A designer may not know what size will be used, as éevera] different com-
binations may yield the same K;. To obtain a design from Eq. 3.16, a best
estimate of ?; is made and a prediction error may be applied to account for this
size effect."0n~the basis of available data, it is assumed that ?; = 47.7
ksi for intermediate grade reinforcement and ?; = 64 ksi for high strength
reinforcemént. The uncertainty in the estimated mean sfkength due to size
effects is about 0.04. |

“Commercial mill testing procedures may give strengths‘somewhat
higher than would be found under actual service conditions [38]. ASTM test
methods determine the unstable upper yield point rather than the stable
lower yield point; Julian estimates the error induced as 0.05-0.10. The
high time rate of strain used in commercial testing causes an apparent in-
crease in the yield strength, with an overestimation of approximately
0.10 [38]. Mean yield strengths may vary from mill to mill for nominally
identical material. Censoring test data fqr material failing to meet spec-

ifications [14] also tends to raise the reported test data.
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On the basis of available data, representative values of the basic

variabilities are 6f = 0.09 for intermediate grade reinforcement, and
Y

6f = 0.07 for high strength reinforcement. The prediction error would in-
y .
clude the uncertainty due to bar sizes, errors in mill test reporting, and

strain rate effect; this is estimated to be Af = 0.12, which is the result
y .
of

J0.0m? + (0.05)% + (0.10)2

representing the effects of the above three sources of uncertainty.

Data on th¢ compressive strength fc of concrete is available from
tests on standard cylinders. The distribution ofAfc often exhibits ap-
proximately normal behavior [1,3]. The nominal cbmpressive strength fé is
implied by the ACl code to be the 10 percentile value of fc for ultimate
strength design.

- The report of ACI Committee 214 [3] contains results of 92
tests of concrete cylinders with fé = 3000 psi. The mean was 3456 psi, with
a c.o.v., of about 0.12. Further data is ihéluded of 164 field tesés on
nominal 3000 psi concrete supplied by a ready;mix company over a one year
period. The dispersion of observed sample mean concrete strength can be
obtained from data defining the mean ?; delivered during each monthly period.
Analysis of this data yields a prediction error for the measured ?; of 0.07.

The data based prediction error must be augmented by other factors.
Strain rates and duration of load are important to strength [50]. A differ-
ence in strength of about 15 percent has been observed between high and low
strain rates, with higher strengths corresponding to higher strain rates.

The sustained load strength averages about 80 percent of the short time
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strength. These factors are partially offset by the increase in actual
concrete strength with time over the 28 day strength used to determine ?;
Confinement of the concrete raises its strain capacity and its compressive
strength [23]. Uncertainties in ?; arise from the direction of casting,

which is particularly important in vertically cast members. Workmanship,
degree of compaction, and curing conditions will also affect in-situ mean
strength and its dispersion. A comparison of the strength of in-place con-
crete with strength derived from standard tests reveals that field-cufed
cylindérs indicate a strength 10 to 21 percent higher than the actual strength
determined from drilled cores [15]- These must be used to augment the un-

certainties in the sample mean estimated above. Assuming that these latter

factors contribute a combined uncertainty of 0.16, we obtain

A, = /(o'.oz)2 + (0.16)% = 0.18

When reasonable care is taken in the mixing, placement, and curing of: the

concrete, representative values of the uncertainties for FC, therefore, are

§, =0.12 and Af = 0.18,
c c

The statistics.of the limiting concrete strain are needed to de-

f

termine the statistics of the balanced reinforceﬁent ratio Ph> and the as-
sociated probabilities of tension or compression failure. Test results in
the form,of»ploks of E;u Vs. ?; [42,33,58] indicate that E;u is about 0.004.
There is a slight tendency for E;u to decrease with ?;. The variability is
estimated from these plots to be between 0.10 to 0.15; Allen [1] suggested

0.12. Confinement of the concrete tends to increase its ultimate strain
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capacity [23]. The manner in which the strain is measured affects its magni-
tude; as strains tend to concentrate above the cracks [58], the strain will
depend on the gage length used to measure it. The quality of the informa-
tion available to evaluate the statistics of Ecu is poor. It seems reason-
able, however, to set E;U constant at 0.004. The value of 0.003 specified
by the AC| code represents a conservative value of strain t35l The predic-
tion error in the assumed mean is estimated as AE = 0,10,

There is limited data to evaluate the éggtistical variability in
member dimensions b and t and effective depth to reinforcement d I36,37].‘
Indications are that these variables are approximately normal (within‘con-
straints furnished by member siza). Uncertainties in d,may be attributed

to faulty construction of the reinforcement cage, deflection of the bars

under their own weight, initial crookedness bF the bars, and careless con-
struction practices on thg site. Uncertainties in b and t arise from erec-
tion of tHeAconcrete formwork. As in the case of fc, these variables are
dependent on the quality of workmanship emp}oyed.

Nondestfuctive tests have been used to obtain data on d for slabs
constructed in Stockholm, Sweden [36] The specified depth on the working
drawings was 144 mm. This corresponds to the engineer's best pfediction
of the mean, d. The values measured in the field range from 121.0 mm to

144.9 mm. The variability and prediction error may be found from this data

by the method described in Sec. 2.2.2. With d 144 mm, and My = 140.2 mm,

Eq. 2.42 becomes

12
1

E[(d - 144)%] - E[(d - 140.2)?]

62.26 - 48.03 = 14,23
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from which Gd = 0.049 and Ad = 0.027. Values obtained in an earlier set of
tests [37] give dd.= 0.079 and Ad = 0.053.

For the total member thickness t, data obtained by Johansson and
Warris indicates St = 0.042 and At = 0.01. Variabilities in d and t can be
significantly reduced by using prefabricated units. Johnson's data gives
§ = 0.044 and At = 0.0]. No information is available for b, but it is rea-

t

sonable to assume that Gb o Gt and Ab o At, as the uncertainties arise from

the same source. It is obvious that d represents the most unpredictable di-
mension; unfortunately it is also an important parameter in determining the
statistics of My

A report of the Building Research Advisory Board [21] recommends

allowable tolerances of -1/4 in. to 1/2 in. on overall member dimensions and

+174 in. on effective depth d. The ACI code specifies tolerances of * 1/4

in. when d is less than 24 in. Under the assumption of normality and a prob-
ability of 95 percent that these tolerances will be met, the implied variabil-
ity in b (or t) is about 0.15v/b and for d, 0.13/d. This represents what is
currently considered acceptable. The greater allowable dispersion in b is
reasonable in that this variable is not as significant as d in assuring de-
sign adequacy.

In further analysis, it is assumed that the c.o.v.'s and predictipn

errors in b and t are 0.04 and 0.02 respectively, and for d, 6d = 0 07 and

A, = 0.05; these may be slightly conservative.

d
Variabilities in the steel area¥® AS may be found from the variabil-

ity of the individual bar areas a, or bar dimmeters. |If it is assumed that
; v

ala
7

Tt fs recognized that with the new ASTM specification, Asf should be taken
as a single variable; accordingly, test data would be uséd’to evaluate the

Tumped variability in Asfy.
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the individual areas are perfectly corre}atéd within a member, then

6A = 63 . The assumption of perfect correlation is conservative and not
s s .

! . 1 i g it ~
unreasonablie if all bars come from the same manufacturer.
Baker's results [14] indicate the c.o.v. of bar diameter is about

0.015 for small bars, with a tendency to decrease for large bars; thus,

da = 0.03. Analysis of certain data provided through the courtesy of

s ,
Professor C. P. Siess [53] indicates that for No. 5 bars, 6a = 0.015
s

and Aa = 0.021; for No. 8 bérs, Ga = 0.012 and Aa = 0.025; and that for
. s ' s 5 ‘
No. 14 bars, da = 0.014 and Aa = 0.01. Prediction uncertainties arise
s s .
from fabrication errors. There is a tendency for the bar sizes to increase

as the rolls wear [14]. Carelessness in pfacement‘at the site may cause
error. In addition, the mean éreas of smaller diameter bars are less pre-
diﬁtable.A

The ASTM acceptance criteria on bar sizes [6] are based on maximum
allowableé departures froh specified nominal weights; for a single bar, fhe
maximum is 6 percent under and by lot, 3 1/2 percent under. If it is as-
sumed that 95 percent of the bars meet requfred specifications, and the bar
weights are approximétejy normally distributed, the implied variability in
weight with respect to the specified nominél value is about 0.021, and
since area is proportional to unit weight, 6a ~ 0,021 also. These are of -
the same order as those obtained from the aboje data, and represent what is
currently écceptable. Répresentative values of the uncertainties in As are
therefore taken as 6A = 0.62 and AA = 0.03. These estimates may be on

s s
the conservative side.

The variables N and k,k. are related to the concrete stress dis-

173

tribution in the compression zone at failure. They are modeling variables
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and are necessary because the distribution of the concrete stress at ulti-
mate and the location of the resultant compression force are not known
exactly. Hognestad, et. al. [35] suggested a value n = 0.59 as adequate,

T
A statistical analysis by R. C. Elstner [42] of beams failing in tension

as M. is insensitive ton. Figure 8 in their paper indicates that 6n = 0.05.

led ton = 0.593. Some of the uncertainty in n may be attributed to un-
certainty in the steel stress at failure. The equivalent stress factor k]k3
decreases with fc [42,33]; analysis of data provided in these referenées

indicates that Gk " = 0,12. The ACl code specifies that k]k3 = 0.72 when
173 )

Fé < L4000 psi. In subsequent analysis, it is assumed that Ak K = 0.05
173

and that Aﬂ is negligible.
The results of the above analyses are summarized in Table 3.1.

These uncertainty measures will be used in later reliability analyses.
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TABLE 3.7

Uncertainties in Design Parameters

Parameter Predicted Mean Var?:i::ity Pr;fig:ion
fy 47.7 ksi 0.09 0.12
(Nominal 40 ksi) v ’
fy | 64.0 ksi . 0.07 0.12
(Nominal 60 ksi)
fc 3.5 ksi 0.12 0.18
(Nominal 3 ksi) - '
fo b7 kst 01z 0.18
(Nominal 4 ksi) ’
Ag | 0.02 0.03
0.04 0.02
d 0.07° 0.05
t : 0.04 0.02
kikg 0.72 0.12 0.05
no 0.59 . 0.05 0.0
Ecu . 0.004 0.12 0.10

3.2.3 Uncertainties of Flexural Capacity

The statistics of MT’ MC and Py can be found using the uncertain-
ties defined in Tabfe 3.1. The probability of occurrence of a tensile or
compréssive failure is estimated from Egq. 3.53.

Table 3.2 shows the variation of §_ , 2 and the probability of

b Pb
a compression failure, o/, when p = 0.75p,, with 6. , the quality of the
b b fc
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TABLE 3.2

Statistics of Py and Probability that

Failure Will be Compressive

f = 47.7, fé

y = 3.5, p, = .0376, 0.75p] =0.0278
S¢ 0.10 0.12 0.15 0.20 0.25
Cc
Sy 0.198 0.209 0.227 0.263 0.303
b
Qpb 1 0.315 0.321 0.334 0.359 0.389
o 0.211 0.218 0.230 0.249 0.275
fy = 64, f. = 4,7, P, = .0342, 0.75p = 0.0213
8¢ 0.10 0.12 0.15 0.20 0.25
C‘ .
5, 0.184 0.19 0.216 0.253 0.294
b
2 0.311 0.318 0.330 0.356 0.386
b .
o) 0.09 0.096 0.106  0.122 0.145

concrete. pé i.s the ACl balanced reinforcement ratio computed with nominal
values of f!', fé, and Ecu = 0.003. The probabilities ag as a function of
p computed from Eq. 3.5a are shown in Figs. 3.3 and 3.4. Poor concrete

quality control causes the uncertainties in Ph and the probability of a com-

pression failure to increase, but the increases in ay is not significant
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except when p is small. Risks aé associated with the value 0.75Pé, as re-

quired in the ACl code, range from 0.21 when Gf = 0.10 to 0.27 when
C

§¢ = 0.25, for ?; = 47.7 ksi and ?; = 3.5 ksi. Similar values have been

c
found by other investigators [1,26]. Probabilities of compression failures

are reduced when high strength reinforcement is used, as indicated in Fig.
3.4;Vthis is attribﬁtab]e in part to a smaller éf .

In the context of risk based design, the likelihood that a section de-
signed to fail in tension will actually fail in compression is controlled

by specifying that the probability of this unfavorable event is acceptably

small. Design values of p at risk levels of 0.05, 0.0l and 0.001 are given
in Table 3.3 (for various GF ) for intermediate grade and high strength re-

C

inforcement. All are less than the AC! values, and decrease as 6F increases.

TABLE 3.3

Required p for Specified o

?; = 47.7 ksi ?; = 3500 psi
5 |
%, fe |_0.10 0.12 0.15 0.20 0.25
0.05 | 0.0213  0.0209  0.020k  0.019  0.0185
0.01 ! 0.0170  0.0167  0.0162  0.0153  0.0143
0.001 é 0.0134  0.0130  0.0126  0.0117  0.0106
?; = 64 ksi F_ = 4700 psi
o e
b 010 0.12 0.15 0.20 0.25
0.05 . 0.0195  0.0191  0.0187  0.0180  0.0170
0.0  0.0156  0.0153 0.014k9  0.0140  0.013]
/ 0.001 0.0123  0.0120  0.0116  0.0107  0.0098




51

When the concrete quality is poor, the beam dimensions are forced to in-

crease, resulting in a loss in design economy.

Figure 3.5 shows the behavior of dM and AM as functions of El
T T

resulting from the uncertainties of the individual variates of Table 3.1,

From these results, we see that SM and AM are virtua]ly éonstant for the
T T

values of p of interest, and can be considered invariant with p. Further-

more, SM is not significantly affected by the quality control of concrete,
T

particularly when P is small. This can be inferred also from the coefficients

- of Eq. 3.17.

The magnitude of 6M estimated herein is somewhat larger than
T .
values obtained from beam test data. The latter typically range from 0.03

to 0.05 [22,42,58]; these results, however, are for Iéboratory specimens
presumably fabricated under carefully controlled conditions, whereas the

M and AM refer to uncertainties in a member fabricated under field
T T

conditions, and thus would be expected to be higher.

‘above §

Equation 3.17, Fig. 3.1 and the c.o.v. listed in Table 3.1 suggest

that fy, d, and fc are the only significant variables contributing to GM ,
T
and AM ; moveover, when q is small, the uncertainties in fc may also be
T . C
neglected. For example, if p = 0.015, ?; = 47.7 and ?; = 3.5, g = 0.204,

and
5. = ¥ 74582 + .018982 + 1.29262
M f f d
T y c
whence
6M = vr100604'+ .000272 + .00632 = 0.112
T
compared to GM = 0.114 when all variables are included. If éf is neglected

T c
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in the above,§, = 0.111; if only 6. is considered, we have 6, = 0.078.
: MT fy ' : MT
When a member is fabricated under carefully controlled conditions, the vari-

ability in M. is primarily due to Sf .

T

Y
The basic variability and prediction error in MC are also shown

c

is significant in determining 6M , and thus concrete quality is important.
c
The uncertainties in flexural capacity are higher for compressive failures

in Fig. 3.5. Insensitivity to p is again apparent, but in this'case, éf

than for tension failures. This has also been found from laboratory tests

[42] where SM ~ 0.083 was reﬁorted.
C

3.3 Shear
3.3.1 Equations of Shear Capacity

CUfrent design philosophy attempts to provide beams for which the
ultimate strength is éoverned by flexure rather than shéar. This is done to
insure dﬁcti]ity and provide adequate warning of impending failure. This
philosophy can be retained in a reliability based design, by insuring"that
the probability of failure of a member in shear is less than that in flexure.

The shear-diagonal tension failure mechanism is a .combined stress
problem in which both shear and flexural stresses have a part [2,19,40],

The distribution of shear stresses across the section is indeterminate. Wéb
reinforcement is provided to transfer stresses across the diagonal cracks

so that full flexural capacity can be developed. The contributions of the
concrete compression zone and web'steel to shear capacity are also inter-
related. An interactive felationship between flexufe and shear is not avail-

able, and in accordance with present practice, flexure and shear are treated
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independently for design purposes.
The shear capacity of a section is determined from a modification

of the '"'truss analogy' model, written as [16]
V o= V. + V ' (3.22)

in which VC is the shear at inclined cracking in a member without web rein-
forcement, and VWS is the shear carried by the web reinforcement when it is
at incipient yield, In the absence of other statistical models for analyzing
shear capacity, Eq. 3.22 will serve as the basis for the reliability analy-
sis.

The shear at inclined cracking in a member without web reinforce-

ment can be written as

Vc = chbd (3.23)

in which Vcﬁ is the nominal shear stress at inclined cracking; it .is an
average uniform stress over the area bd. It will be assumed that the web
reinforcement consists of vertical stirrups, and that the stirrups are of
the same size. |f the ultimate load in shear is obtained when the web steel
stress is at the yield level, the shear carried by the web reinforcement at
ultimate load is V. = n A f , where A 1is the area of the stirrup, and n

WS cVvy Y c
is the number of stirrups crossing the diagonal crack. Assuming the diag-

onal crack to have a horizontal projected length of d [I6],and with a stir-

ing of s
rup spacing of s_.,

. d
v = = Af (3.24)
ws Sct vy _ :
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The shear capacity then is

) L d
Vv o= vcubd + . Avfy | (3.;5)

To insure that every potential diagonal crack is crossed by at least one

stirrup, a maximum stirrup spacing is set at [5]

s, S d/2 L (3.26)

3.3.2 ‘Evaluation of Uncertainties in Shear

A number of variables are common to the shear and flexural capac-
ities. To evaluate the statistics of shear capacity, then, ‘it is necessary
to define the uncertainties associated with AV and.sst, and to determine

the mean and variance of Veu!

Stirrups are often formed from smaller sized standard reinforcing

= Sa , and AA = Aa , where
% s v s
uncertainties in as*have already been evaluated for flexure. There is no

bars. lh this case AV = Zas, and therefore 6A

data available to evaluate the uncertainties in sst’ but as these pertain
to the fabrication of the reinforcing cage, it is reasonable to assume that-

the uncertainties in sst.are about the same as those of d.

According to the ACI [5] the shear strength is calculated nominally

as,

cu Cc

vio= 1.9 /T + 2500pd < 3.5 /F (3.27)

in which? fé is presumably a measure of the strength of concrete in tension.

Test results [2] indicate that Véu of Eq. 3.27 underestimates the observed
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nominal shear stress at a section when V/M fs small; this equation was de-
liberately chosen to be somewhat conservative for the reason that shear
failures tend to be quite sudden. For reliability analysis, therefofe, the
conservative bias in Eg, 3.27 shouid be removed. This can Be accomplished

by assuming that the equivalent shear stress on a section is

v = 6, v., * g s 3.5 /‘fc (3.28)

cu

where ¢] is:a quantity reflecting the bjas, Véu is given in Egq. 3.27 and €
is a zero mean error. A suitable value of E} is 1.18, the overall mean
ratio of test values to calculated values reported in Table 5.20 of reference

2. The mean equivalent shear stress is then

cu

v = g] —éu < 3.5 ?C - (3.29)

and its variance is = |

-2 o= 2 . 2
-9, = d)] g0t 0 (3.30)
cu cu ]

m

where 03, is obtained through Eq. 3.27 as

cu
2 v,°

o2, = (e )%2 v (200l L) o
Veu Vpne c b M Ag

2/ f, '

A = 2
500 = L )7 42 '
+ (-2500 = =) 9 ]

Using the ACI requirement that V/M < 1/d, a conservative and simplified

. 2 ,
estimate of G, s
cu
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2 = L2 2 .2 L2 '
o= e §c + (2500p)% (&, + sb) o - (3.3
cu c S
oi can be evaluated from test data [2] available in the form of

calculated versus test values of (vcu/vfc>, giving a relationship

ch ch €l ch

_cu ¢] (<S4 & L = ) == + €

VEo o E v
c c c c

From the data reported by Moody, et. al. [2], we obtain an average variance
2

A

—_— — R = . ? _
of oé = 0.095. Now since € = /f_ e, and €= 0, o° = (v F)% ol = 0.095 F_.

1 | €
Hence
2 L =2 =2 — 2,2 . .2 ' - |
o, = ¢7 [ F8% + (2500p )7(S, + S)] + 0.095 F_ (3.32)
cu C S .
For example, suppose that ?E = 3500 psi and p = 0.02. Then 03 = 409, and
cu .
if v =2/F, then v. = 140 psi. and & = 0.15,
cu - c cu Veu
The prediction error in Veu arises from errors'in.using‘al =1.18

and in the mean values of the quantities in Eq. 3.29, as well as the imper-

fections of Eq. 3.29, and can be given as

2 .2 2 - |
p, = A¢ + A, , (3.33)
cu 1 cu

~ Reference 2 gives mean values of ¢] for different sets of data; on this ba-

sis, we obtain A, = 0.09, whereas Ai, is obtained as
¢] ’ cu
2 = 2 2,2 2 — 2 |
A, o= [ F_Ap +@500p )7 (a7 + A0)1/( v ) . (3.34)

cu Cc S
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For example, if p = 0.02, ?; = 3500 psi, Véq = 2y fc,'and using uncertainties

previously determined, Ai, "= 0.0083, and thus AV ~ y 0087 + .0083 = 0.13.
cu cu
An inspection of data provided in Ref. 2 indicates that the shear
capacity defined in Eq. 3.25 also consistently underestimates the observed

capacity. Part of this bias is due to the bias in v'
P cu

; however, when this
effect is removed, Eq. 3.25 is stjll conservative with respect to observed
data. This suggests that the statistics of shear capacity used in assessing

the reliabi]itybshou]d be treated similarly to those of Veu! The total

shear capacity is therefore assumed to be

Ve = 9,V + g, (3.35)

where ¢, is the bias arising from the truss analogy equation, V is defined
2 .

in Eg, 3.25, and €, is a mean zero error as before. A suitable value of 5&

2

is 1.15, obtained from comparing calculated to test values of V/bd in Table

6.1 of Ref. 2, once the bias in ch'héé been removed. The mean is

V. - 3,7 | (3.36)

where, using the methods of Sec. 2.2.1,

T 1 . ;
V= v, bd (1 + ;; ) (3.37)
in whicgh

V; V;u bd '
e oo e (3.38)

V d ==

WS - A f

s vy
st

When a value of re is found such that the probability of failure in shear



58

is less than that in flexure, sets of (Kp,ggt) can be found from Eq.:3.38

that determine the web reinforcement needed; thus re is a shear design param-

eter. The variability of VT is

2
9%

2 2 2
Sy = S8y * —=—— (3.39)

T (¢, V)

where 66 is
62 = ()26 w8l e (262 w62 w8k ) w6 (b0
v 1 +r v b I + r f A S d ’
s cu s y v st

02 can be obtained from test data available [2] in the form of calculated

)

versus test values of (V/bd), giving the relationship

v , €
T V 2 v
(gg) = “bz(E’J)* bd - % (B’d‘)+ €

From these data, Oé = 2097. Now since €, = (bd)e, and € = O, Gi = (E'E)zoé

— 2 2
= 2097 (b d)°. Hence
s2 = 52 i 2097 (3.41)
Vr v B0+ 112
2" cu rS
If r_ =1, p =0.02, and ‘f"C = 3500 psi, then 6§, = 0.15.

T

The prediction error in VT is

- (3.42)
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where AV is found from Eq. 3.40 by replacing the c.o.v. with the prediction

errors, and A¢ is estimated to be about 0.06. |If ry = 1, AV = 0.107, and
2

The coefficients in Eq. 3.40 define the significance of the uncer-
tainties in the reépective variables to the uncertainties in the shear capa-

city V. This is illustrated in Fig. 3.6 as a function of re- When a large

), V and A, are highly de-

amount of web reinforcement is provided (small r ), V an v h
; s

pendent on the statistics of Av’ fy’ and s but this dependency rapidly

st’
decreases as re increases and Veu and b become more significant. For large

re corresponding to very light web reinforcement,

cu

thus, approaching a beam Without web reinforcement.

Figure 3.7 illustrates the behavior of SV’ AV’ 5VT and AVT calcu-
lated from Eq. 3.40 and 3.41, as functions of res using the uncertainties .in
Table 3.1. For illustrative purposes, it has been assumed, that p = 0.02,
and ?; = 3500 psi. The uncertainties in shear capacity increase as the
relative amount of web reinforcement is decreased. On the basis of this
analysis, concrete quality control does not appear to be especially significant
due to the dominance’of the second term in Eq. 3.41, and that fc enters the
expressfon for Veu in terms of its square root. It would be useful to have

some test data to verify whether this is indeed the case. It may be observed

that the variabilities are higher for the shear capacity than for the flex-

ural capacity. Motz Refurenca Eor
ivill Hngiunsering
BiGs C. E. I diry
University of Ililinocis
TTwhann Tllinadie A1RAT
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3.4 Axial Thrust and Bending

3.4.1 Introductory Remarks

The strength of a column subjected to an eccentric axial force may
be visualized with an interaction diagram for the section, a locus of pairs
of thrust and moment values wHich, according to ultimate strength theory,
will cause failure. The interaction diagram for reinforced concrete sec-
tions has two distinct regions. For small load eccentricities, failure is
governed by the concrete reaching its maximum useful strain while the rein-
forcement stress is still elaétic; this is termed a compression failure.
For large eccentricities, the reinforcement yieldsrfirst, followed by a
secondary compression failure in the concrete; this is termed a tension
failure. The point on the interaction diagram at which the concrete would
crush at the same time the steel yields is termed the balanced point.

" The interaction diagram is found from considerations of equilib-

rium and strain compatibility. [45]) For a symmetrically reinforced rectan-

gular section,

-
i}

k]kaCbc + As(fsc - fst -k fc) (3.43)

4t t
]k3fcbc(5 - kye) + A(d - E-)(fsc + fst - k3fc) (3.44)

=
it

-
o
[
~

where ¢ is the depth to the neutral axis, and e is measured from the plastic
centroid of the section. Proceeding from strain compatibility, fs and fs

(ol t
are obtained. from the stress-strain diagram for the reinforcement, and P

and M are found from Eqs. 3.43 and 3.44 [45]. The curve is thus defined

v
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implicitly, as there is no closed form function describing jointly the be-
havior of P and M, which is needed toevaluate the respective statistics.
Moveover, uncertainties in fs and fst are not defined.

Alternatively [42], ?f it is assumed that the compression and ten-

sion reinforcement have yielded, solving Eqs. 3.43 and 3.44 simultaneously

for ¢ and substituting back into Eg. 3.43 yields

f bt A
o L e L2, 10 ; 4.1
Pr = 55 /(? 5) "+ hn F_ bt [kaC + (ny kaC)(t 5) ]
e 1 ,
- (E__ DL - 3 A (3.45)

for tension failures. For the compression case, an attempt to determine

the steel stresses in a manner similar to that used for compression failures
in beams leads to a complicated cubic equation to be solved for the stresses.
In lTieu of this, the strength in the compression zone may be taken as a line
decreasing linearly from the concentrically loaded axial capacity Po to the

balanced point axial capacity Pb' Thus,

P = o ' (3.46)

Equations 3}45 and 3.467explicitly define the axial capacity in terms of
material strengths, sectfon parameters, and load eccentricity, and are given
in Section 19 of ACI 318-63. As it is necessary to have this explicit re-
lationship to evaluate the statistics of resistance, they will be used in

the subsequent reliability analysis, in spite of their approximations.
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3.4.2 Analysis of Failure Eventstnder CQmBined Loads

Little work has been done on the statistical theory of reinforced
concrete members subjected to combined thrust and bending. Shah [52] per-
formed a regression analysis of existing column test data which.indicafes
the statistical adequacy of th¢ ACl strength formulas. Tichy and Vorlicek
[55] presented a .discussion of interaction curves in general; Rosenblueth
and Esteva [49] indicated conceptually how probabilities associated there-
with might be determined. The statistical analysis is complicated by the
resistance being a function of the relative load effects. Resistanqe and
load are therefore né longer statistically independent, and simplifications
must be sought before the reliability can be assessed by Eqs. 2.8 and 2.16.

An interaction curve for a reinforced concrete section is‘showh in

Fig. 3.8. The regions defining tensile and compressive failures are denoted

as GT and GC’ respectively. The load vector S is the resultant of applied
thrust SP and moment SM. Since § and the balanced point are random, it is
not known which part will govern the design, particularly when the load ec-

centricity is close to the balanced eccentricity e,

Since the regions of tension and compression failures are mutually

exclusive and collectively exhaustive,

{Failure} = {Failure in Compression k-) Failure in Tension}
where
{Failure in Compression} = (EC < § (ﬂ\ e < gb)

{Failure in Tension} = (GT < 8 ("1 e > gb)



63

The probability of failure is then given as

Pr(Failure) = Pr(G. < §|g <e)e Prie < e

C b) b)

~

+ Pr(G, <Sle>e ) Prie>e) (3.47)

The density functions of GC and GT depend on the relative load effects;

consequently, further simplifications are required.
I f the eccentricity e of the applied thrust is assumed to be

known, then SP and S,, are perfectly correlated; moreover, the capacity is

M
statistically independent of the applied load. This is tantamount to as-
suming that the vector S is random in magnitude but not in point of applica-
tion and direction. |f the axial and moment capacities are perfectly cor-
~

related, the event (aC <5) implies (SC < SP), (or (6T < §) implies

(ST < §P)), i.e., axial capacity is less than applied axial load. Then

= Pr(PC < SP,e < eb)~ Pre < eb)

Pt
+ Pr(PT < SP[e > eb)- Prie > eb) (3.48)
I £ ey is also known, the failure probabilities are simply
Pr = Pr(PC < SP), e < e
(3.49)
Pe = Pr(PT < SP), e > e,

The statistics of PC and PT may be found from a systematic evaluation of

Eqs. 3.45 and 3.46.

When the variance of e  is small, Pr(e < eb) is close to zero or
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unity except in the neighborhood of the baTanced point. In such cases, the
safety criteria furnished by Eqs. 3.49 are a good approximation to that ob-
tained from Eq. 3.48. Furthermore, if the underlying risk is evaluated on

the basis of
pL = max[(Pr(P. < 8,)r Pr(Pr < §,)] o (3.50)

then pe < p%. For example, if p_ = Prie < gb)’

Pg ¢ e T e

|
o
(en]
t
e
——.i
~
O
+
Bl
-—-I

Suppose  that pr > p.; then (pC - pT) < 0, and Pe <Pp = p%. A similar re-
sult is obtained when Pe > Pr- Conversely, if a design for a specified'

risk level p% is obtained on the basis of

Qc = max [Dcfcompression), Dc(tension)] (3.51)

then pf(Dc) < p%. This has been verified numerically.

For simplicity, the design phase of the study (i.e., determining
a design for a specified risk) will be based on Eq. 3.51. There are con-
ceptual as well as numerical difficulties in using Eq. 3.48 for this pur-
pose, because for a given risk Pes Pr(lgC < gp) and Pr(’fsT < §P) are not
uniquely determined. For a given design, however, the total probability of

failure can be computed without difficulty using Eq. 3.48.
3.4.3 Uncertainties in Thrust and Bending

The balanced eccentricity e, is a function of the steel and
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concrete strength and the member dimensions. For balanced conditions in a
symmetrically reinforced rectangular section, in which the area of the con-

crete displaced by the compression steel is neglected,

. t i _ ;c_
M k]k3fcbc(§- kzc) + ZASfy(d 5 )

b Pb k]k3fcbc

where ¢ is determined as

: Esecu
© % fe +rf ¢
s cu Y

It is convenient to nondimensionalize the eccentricity and proceed in terms

of the eccentricity ratio eb/t instead; whence

oo 1, sfeudy a0y (d o1y ety (3.52)
t 2 "2 Ee +f 't PRk.F. T 2 E e .
cu y 1"3 ¢ s cu

where p = As/bd (as in flexure). The mean of e /t is found by evaluating

Eq. 3.52 at the mean values of its variables; its basic variability is

2 2.2 2,.2 2 2 2 2.2 2.2 2.2
§ = 780 + co(8C + 87 + 8-+ 8 )+ co8T + 8T + cf8T

e /t 1 fy 2°°f A b k]k3 3°d 4t 5°€y, (3.53)
and similarly for the prediction error A2 , where s Sy c3, Ch>s and cS

_ e/t
are defined in Appendix B. The behavior of these coefficients as functions
of p is illustrated in Fig. 3.9. All of these coefficients increase as the
amount of reinforcement increases except CS’ which remains approximately

constant. Small variations in E;u therefore have little effect on eb/t,

and the contribution of uncertainties in €., to those of eb/t are practically
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independent of p. The uncertainty in eb/t will increase as p increases.
The probability of a compression or tension failure, i.e.,
Prie/t < eb/t) or Pr(e/t > e;/t), can be computed assuming lognormal e;/t

and e/t. Thus,

2
i+ |
e/t eb/t
In
~ ~ eb/t V/] +'9§/t (3.54)
Prie/t > eb/t) = & = -J A
2 2
S n [0 ag 000z,
The behavior of Pr(e?t > e;/t) as a function of e/t is illustrated in Fig.
3.10. Table 3.4 shows the behavior of Qe./t as a function of Gf and p.
b c -
TABLE 3.4
Total Uncertainty in e /t (er/t)
= 47f7’ F="35,€¢_, = 0.00h, p=A_/bd
6f
c
P e /t 0.10 0.12 0.15 0.20 0.25
0.01 0.436 §{ 0.171  0.173  0.178  0.188  0.200

0.02 0.636 0.224  0.228 0.234 0.249 - 0.266
0.03 ] 0.835 0.254 0.258 . 0.266 0.283 0.302
0.0h 1.035 0.273. 0.278 0.286 0.304 0.325

0.05 1 1.235 1 0.286 0.291 0.300 0.318 0.341
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Poor concrete quality increases the uncertaihty in eb/f, especially when
the section is heavily reinforced. For a given load eccentricity ratio,
poor quality control raises the probability of a compression type failure,
but this increase is not significant. The addition of more reinforcement
will also increase the probability of a compression failure for a given e/t,
as would be expected.

The axial capacity in the compression and tension modes of failure

is defined from Eqs. 3.45 and 3.46. The means are found by evaluating PC or

PT at the mean values of their dependent variables and the variabilities and

prediction errors are evaluated as

20 e 2 ’
'8p Lo 2 i) k\'
L - o PNt (3.55)
A2 / A2
Py B W k j

where ¢, are given in Appendix C. The probabilities of failure in combined
bending and thrust may then be investigated as functions of the material
properties,AgeOmetry, and dimensionless eccentricity ratio e/t.

Figures 3.11 aqd 3.12 illustrate the variation of the constants

¢, inEg. 3.55 with e/t; since the balanced point is random, the curves for

k
tension and compression failure are shown for the entire range of e/t; note,

however, that PT determined from Eq. 3.45 is not valid when the stress in

the tensile reinforcement is less than fy. For compression failures, estimates
in concrete strength and the section geometry are most significant in pre-
dicting the mean capacity. The uncertainty in the capacity depends primarily
on those of fc, k]k3, d, and fy; the contrfbutions of the uncertainties in

As’ t, and Ecu are insignificant. When the failure is tensile, estimates of
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K;, fy’ d, and t are most important in predicting the mean capacity, and ?;

and b become less significant as e/t increases. Variations in e are important
in both cases, except when e/t is very small. A state of pure flexure is ap-
proached as e/t becomes large; here, Ce - cA and cf - o consistent with
the flexural formulation. .In this lattZr casz, the unqertaintyvin the capac-
ity is dominated by Sf s 6A , 6d and dt; The coefficient‘ct becomes zero in

y s :

the vicinity of the balanced point, since at this point, the capacity is in-

dependent of t.

_It may be observed that ¢, , and c_in Fig. 3.11 tends to zero as
3 _zero :

e/t -~ 0; this is a consequence of using Eq. 3.46 to evaluate the necessary

derivatives. However, it is not reasonab]é that the uncertainties in k3 and

e would have no effect on the anerfainties in PC when e/t = 0; this must be

pofnted out as a shortcoming in the use of Eq. 3.46 to evaluate GPC and APC. ' R
Figures 3.13 and 3.14 show the variations of 6P and AP as functions

of e/t, USipg the uncertéinties from Table 3.1. . The effect of poor concrete

quality on the tension capacity is insignificant except for small e/t; which

is not a region of practica} interest. Wheﬁ failure is compressive, concrete

quality is more impoftant, as 6P depends significantly on Sf in this case. )
Available test data [22,42] indicate that the basig variabf]ity in

capacity ranges from 0.059 to 0.085. These values are less than those cdm-

puted from a systematic analysis of the uncertainties associated with each -

variable. The reason is the same as indicated previously in the flexural

formulation, reflecting the‘difference befween Iaboratory.specimens and those

constructed in the field. In particular, d may be carefully controlled in

the laboratory, but may not be on the site, and, as shown in Figs. 3.11
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and 3.12, contributes significantly to the oVeralI variabi]ity in capacity.
The problem of assuring adequate strength of a beam column in shear
has not been considered. The presence of compressive axial load tends to fn-
crease the shear capacity of a member. Conceptually, the problem can be re-
solved by replacing Vc in Eg. 3.22 and 3.23 by an expression refjecting this
increase in strength [16]. The probability of failure in shear of a member
designed for bending and thrust can then be computed and its adequacy in

shear determined in a manner similar to the approach used for beams.
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Chapter 4

LOAD MODELS

4.1 Introductory Remarks

A structure may be subje;ted to many types of Toads. These may
consist of permanent loads from the weight of the system and permanent
fixtures, live loads from occupancy, temporary equipment, and movable
partitions, lateral loads associated with wind and earthquake, temperatufe
stresses, residual stresses induced during fabrication, and stresses in-
duced by differential settlement. [48]. Such load effects occur in many
combinations.

Normally, two cases are considered in design:

Dead Load + Live Load

1. Total Load

2. Total Load Dead Load + Live Load + Lateral Load
Traditionélly, the total design load is computed as the sum of the respec-
tive nominal maximum values.

The loads are Fréquent]y variable in time, as well as random.
The complete description of such a load hfstory must be given as a stochastic
process. The statistics necessary to define the process are unavailable,
since they require continuous load monitoring throughout the lifetime of
the syste&. Instead, the time dependent effects may be included by
determining the statistics'of the distribution of maximum load with extreme

value statistics [39, 43]. Since the distribution of live loads is time-

variant, the time scale involved is important in combining various loads [10].



In design against dead and live loads only, for example, the extreme value
of the live load over the lifetime of tﬁe structure is of interest, since
the time scale is long and the live load magnitude changes slowly with time.
When wind loads are combined with dead and live loads, however, short-term
live loads should be considered, as the duration of strong winds is from
10 minutes to one hour [29].

In the following, dead, live and wind loads are considered. It
“is assumed in the reliability analysis that the load types are independent,
and are mutually independent of the resistance. In this study, only
simplified load models are used, although sonhisticated stochastic process
live load models may be available [34,44]. Existing load survey data [43]

are used to obtain the required live load statistics.

4.2 Dead Load

Dead load is defined as resulting from the weight of the elements
comprfsing the structure, permanent equipment, and installations.

The weight of avstructure is quite predictable when the geometry
is specified, and depends on the unit weights of the elements and their
dimensions. The weight per unit length of a reinforced concrete member
is

WO = W, AC W, ASt “ (4.1)

where W, and W, are unit weights of concrete and steel, and,AC and Ast'

t

are the respective areas. The variability in WO is derived from the

variabilities of the unit weights and dimensions; thus,
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2 = 2 +stesd) 4+ 282 o+ ) (4.2)
W 1 w b t 2
o c st st
where _
W
= —_—c
T L Agy -
W+ St W,
A
c
ASt -
A st
c, = s
2 -
- .St -
o
wc A Wst
c
and where Sb, Gt, and GA are given in Table 3.1. |Indications are [18] that

S . .
Gw is about 0.03;_6W ranges from about 0.02 for large bars to about 0.05
C st - .
for small bars. From Eq. 4.2, with Ast/Ac typically between 0.01 and 0.08,

depending on the type of member, the variability in member weight is approxi-

mately equal to the first term in Eq. 4.2; hence Sy = 0.06. |f the weight
o
along a member is highly correlated, the uncertainty in the dead load 6D

for the member is approximately equal to Sw .
o

The prediction error in Wo is estimated as

2 2,2 2 2
Ay = oy (B, a0+ Ay (4.3)
o c
where Ab and At are taken from Table 3.1, and 5W is assumed to be
’ c

negligible. Equations 4.2 and 4.3 then represent the uncertainties in
the dead weights of the structural members.
The contribution of permanent equipment to the.overall load can

be estimated accurately, as their specifications may be obtained from the
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manufacturer. This source of uncertainty is expected to be insignificant.

Additional uncertainty in the permanent load arises from the weight of

nonstructural elements, such as partitions [18] Such uncertainty can only

be estimated subjectively, and may be combined with Aw . The total predic-
o .

tion error in the dead load is then assumed to be AD = 0.10.

The load-induced action resulting from the dead load is

S. = ¢, D | ' (4.4)

where D is the dead load acting on the member, and p is an influence
coefficient translating the applied load to a load effect acting on the
member. Clearly, <p depends on the failure mode considered. As uncertainties

in c

0 arise from errors pertaining to the structural analysis, they are

assumed to be of the prediction type.

The mean dead load effect ig

LR 5 =

= C

0 DB ' (4.5)

|

‘and its variability is

S = & (L.6)

A2 = p% 4 A2 | (4.7)

in which AC reflects the degree of confidence attributed to the analysis
D

procedure. Uncertainties in analysis are assumed to be on the order of

0.05 - 0.10 (include assumptions in analysis, such as spatial distribution

of loads, degree of continuity, etc.).
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4,3 Live Loads on Buildings
L4L,3.1 Methodology

Live loads are those arising from movable equipment and fixtures,
occupants, and other nonpermanent effects. There may be a wide variety of
loadings possible which may‘not be foreseen by the designer. Also
important is the time-dependency of the loads and their spatial correla-
tfon. |

Aﬁ early study [13] assumes that the floor load on an area is
the result of a.large number of independent load intensities. Then assuming

the intensity w is normally distributed,

W= WerBo /R _ (4.8)

where W'énd g, are the mean and standard deviation of the Tntensity. The
important result here is that the c. o. v. of the intensity is a function
of the tributary area A; this has been borne out by existing load sur-
veys [20, 43]. Hasofer's stochastic model {34] indicates a dependence of
the c. 0. v. of load intensity on the tributary area and the type of océu-
pancy. Peir's [44] stochastic analysis considers load correlation and
time dependency, and design loads are presented as a function of the
number of stories and the tributary area. Neither model postulates a

suitable éduation for the design live load.

tributary area increases, the maximum load intensity decreases; further-

more, the equivalent column load intensity decreases significantly as the
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number of floors above it increases. This is because. it is unlikely that
all floors or floor areas will be loaded to maximum values simultaneously.
The design rule adopted by the American Standard Building Code [7], allowing

a reduced live load of

L = L (1 - 0.0008 (A - 150)) (4.9

nom spec trib

for tributary area greater than 150 th, with a reduction limited to 60
percent, represents the current acceptable basis for live load evaluation.
Within the present state of knowledge, a study of live loads
based on the first-order approximate analysis should be more than adequate.
However, a model suifable for common design usage that relates the factors
known to affect the live load has yet to be developed, and more data is

necessary before such a relationship can be found [20].

Existing ioad'surveyé do not reflect the time-dependency of the
load, as the measurements are instantaneous values in the overall context-
of the 'loading history. To reflect time variability, Karman [39] assumes
that the occupancy changes a certain number of times during the lifetime
of a structure, and that the load intensities in successive occupancy periods
are identically distributed as the instantaneous intensity, and are statisti-
cally independent. The distribution of maximum load intensity during the

lifetime then may be obtained using extreme value statistics, i.e.,

where N is the number of occupancies and F. is the distribution function of

Q

the instantaneous load intensity. For a 50 vear lifetime, the number of

occupancy changes may be expected to be between 5 and 20.
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Statistics reported by Mitchell and Woodgate [43] from an
extensive load survey of office bui]dingé are used to define the live
load in this study. The statistics for.instantaneous live load intensity
on floors other fhan basement and ground levels are shown in Fig. 4.1,
along with the extreme value statistics for maximum load found from |
Karman's formulation, witH 12 occupancy changes. The dependence of the
statistics on the loaded area is clear. The data-based histograms show a
definite positive skewness for small areas, a result also obtained by
others [20]. For larger areas, the histograms exhibit approximately normal

behavior.
Determination of Column Loads

To determine the column. load reduction for a general case, the
correlation between loads on different floors must be known or assumed.
There are reasons why these loads may be interdependent. Certain areas
are consistently loaded on all floors. In office and apartment buildings,
different users may use successivé floors for similar functions, and floor
loading patterns tend to be replicated.

Suppose a column supports M floors. The load intensity Li on
the ith floor is distributed over an area A tributary to the column,
assumed to be the same on each floor. In an approximate sense, the column
lbad Y is°

Y = A L (4,10)

Its mean and variance are then
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where Qij is the correlation coefficient between the loads on floors i

and j. Now if the load intensities on each floor are assumed to be

identicaily distributed; i.e., E} =1, o =0, and § =8, and with
i i
pl_j = OJ‘, D” = ],
Y = MAL
M-1 M
: 2 2 2 2
var(Y) = MA" o + 2A% o ) ] J¥
i=1 j=i+l
and
6Y = cp 6L (4.12)
where
] M=1 M 1/2
cg = g M+2 § ] pij) ' (4.13)
=1 j=i+]

The '"reduction coefficient' R is a function of the number of floors
supported and the load correlation between them. |[|f perfect correlation
exists, 6Y = SL, and if the loads are statistically independent, 6Y = SL/ﬂW;

in reality, 6Y will fall somewhere in between.
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Cp has the effect of reducing the nominal live load intensity
per floor in determining the total load on a column; the mean column load
intensity per floor does not change, however. vThe nominal design load per
floor at a cumu]étive probability q, Sq, will decrease as the number of
floors increases because the variance of the load decreases. |t should be
pointed out that Cr is different from the conventional load-reduction
factor, although it serves the same purpose.

An estimate of the correlation is made by calculating the load
reductions at the 99 percent level corresponding to several assumed corre-
lation functions and comparing these to data-based computed reductions [43].
Intuitively, pij should depend inversely.on the separation between floors
i and j. Simple linear, quadratic, and exponential functions were assumed.
On this basis, results show that significant correlation exists between
floors that are less than four or five stories apart, but that the correla-
tions are negligible for floors that are more widely separated.

‘A linearly decreasing correlation function of the form

p,. = 1-(j- i)/# | (L4.1k)

Figure 4.2 shows the variation of the reduction coefficient R

with the number of stories supported by the column. The rate of reduction
decreases as the number of floors increases, suggesting some value beyond
which further reductions can be ignored. The rate is greatest when less

than ten stories are involved. Figure 4.3 shows the variation of the
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reduced c. o. v. of column load intensity with tributary area. The rate of
reduction decreases as the area increases. In a practical sense, values of
M and A can be set beyond which no further reduction is allowed. From Figs.
k.2 and 4.3, suitable cutoff points may be M = 15 - 20 stories, and A = 500 ft.2.
The load effect on a structural element is obtained by integrating
the product of the load intensity and the influence function over the
tributary area. The effects of load concentrations can thereby be assessed.
The equivalent uniformly distributed load (EUDL) that produces the same load
effect may then be determined, which is actually the load of interest in
design. Mitchell and Woodgate have tomputed the EUDL required to cause the same
internal effect (beam shear, moment, etc.) as that resulting from actual
loads measured in their survey. Load concentration factors (LCF) are com-
puted which, when multiplied by the 99 percentile intensity, yield the 99
percentile EUDL. |
It is assumed in the sequel that the load intensities are normally
distributed. .In the present study, the evaluation is in terms of mean
vva]ues,vbut the LCF computed above are for 99 percentile values; it fs
assumed that the mean EUDL is obtained by multiplying the mean intensity
by the LCF, and that‘the c.o.v. of this EUDL is GL obtained from Fig. 4.1.
The uncertainty in spacewise variability is reflected in the choice of
the prediction error AL. It is also assumed that the column load reduc-

tion factor c, is applicable to both the permanent and short-term live

R
loads.

It appears that additional study is required to obtain a more

exact description of load correlation over different tributary areas and

floor levels.
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4.3.2 Analysis of Uncertainties
The load-induced action resulting from live load is
S, = ¢ L (k.15)

where L is the EUDL intensity, and L is an inf}uencercoefficiént trans-
lating the applied load intensity to the required load effect. Uﬁcer-
tainties in oL érise from errors pertaining to the structural analysis,
and are assumed to be entirely of the prediction type.

The mean live load effect is

T | (4.16)

For the design of a beam, the.basic variabi]ity in the load effect is

S = § (4.17)

8 = ¢, & : : (4.18)

where 6L is the c.o.v. of ioad intensity, which depends on the tributary
area. |f dead and live load only are considered, the long-term load
statistfcs should be used; however, if wind effects are included, the in-
stantaneous live loads wouldibe appropriate, R is selected from Fig, 4.2,
depending‘on the number of floors supported. “

The prediction efror in SL, reflecting the imponderables in thé

load models and the errors in the structural analysiss is

A2 = p? 4 a2 (4.19)
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where ACL is a measure of the degree of confidence attributed to the
analysis, and AL afises from the assumptions used to model the live Idads,
i.e,, those regarding load concentration effects, load reduction and corre-
lation, and time dependency.

Rosenblueth and Esteva [49] estimated that the uncertainty due
to spacewise variability ahd load concentration is approximately
(1.2)2 VE/A; using Mitchell and Woodgate's survey, they found VL = 1.4,
Uncertainties in time-dependent effects arise from approximating the
extreme of the continuous load process using instantaneous load measure-
ments; the uncertainty associated with this is assumed to be AT =~ 0.10.

The load reduction is assigned a prediction error of ALR = 0.15 for avbeam,

and ALR = 0.20 for a column supporting more than one floor. Then

2 _ (1.68)°

AL A

2 2 '
+ AT+ B (4.20)

The 99 percentile design loads computed with the method outlined
above compare quite well with those obtained by Peir [44] from a more
sophisticated analysis. For the design of a beam with a tributary area
of 500 ftz in which the support moment governs the design, the 99 percent

EUDL is computed to be

S

.99 (LCF) L (1 + 2.33 GL)

(1.25) (27.4) (1 + 2.33x.27) = 56 psf

Corresbonding values determined by Peir range from about 43 psf to 52 psf,
depending on the load combinations considered. A slightly conservative

result is similarly obtained for columns.
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4.4 Wind Loads
4.4.1 Introductory Remarks

Wind éffects are often important in the desigﬁ of tall builﬁings.
An accurate analysis of wind-induced loads should consider the turbulent,
random nature of wind and the dynamic réSponse of the,system to it. A
reasonable way to do this is to introduce a gust factor reflecting the
wind statistics and dynamic characteristics of the structufe by which the
static forces can be multiplied [29, 57]. The resulting wind pressure can
then be used in a static analysis.

Comprehensive analysés of wind=induced pressures and related
structural responses are available [29, 57]. A brief discussion of the

method of approach and its significance to design is given here.

L, 4,2 The Gust Factor

‘Wind velocity is characterized by a steady-state mean velocity
Us’ obtained as the average over duration tys and a fluctuating component
uly,z,t), usually assumed to be a stationary Gaussian process. The

total wind velocity is then
U = US + U(\/’Zat) (14.2])

The steady-state velocity increases with height approximately in accordance

with the power Taw profile’

Us _—
= = & | (4.22)
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where z. and UG are the gradient height and velocity, and o depends on

the location; in cities, o = 0.4.

The pressure acting on a point is related to the velocity by

1
p = > 0 cp U
where p is the mass density of air (p = 0.0025 s]ugs/Fts), and-cp is a

pressure coefficient. Denoting the reference velocity at 30 ft as

U, = U, (30), the mean steady-state pressure at a height h on a building
20,
= 1o 2k
P = 7pc, U 59 | (4.23)

and the mean wind pressure profile is
_ - 5 20,
p(z) = p (FJ (4.24)

The total static plus dynamic response of the structure is

Y(z/h,t) = Y o(z/h) (1 + y(t)) (4.25)

where Y is a generalized coordinate, y(t) is a dimensionless dynamic
response function, and ¢(z/h) is the mode shépe associated with the
fundamental natural freguency fo' It is assumed that the first mode
dominates the response, and that the mode shape is V3 z/h. When the pressure
is integrated over the area on‘which it acts, the statistics of y(t) may be
found in terms of th&se of u(y,z,t) from the theory of random vibration [41].

Using approximations suggested by Davenport [29],
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E [y(t)] = o0
(4.26)
2 16, ,30,%% ¢
o, = —-3-k(—5-) [?g, g, 93+94]

where k is a surface roughness factor taken as 0.05 in cities, B is the

total mechanical and aerodynamic damping, and

|

1T f b
C : (6}
Y 39y o
L+ = &) g
. (o]
g, = L
2 c, 30 o foh
b5 ) g
Ne) .
(4.27)
2 N
f o
o ,30
k(hooon— "h_))'
93 ~ : 73
£ 2
o ,30,% :
{[] + (AOOOU—' —F!—) ) ]}
. (o]
9, = 6|1 - !

1/3

1500, 2
[1+ (2292
in which ¢ =~ 20 and c,6 = 8. Terms 9, and g, represent the effects of
spatial correlation of u(y,z,t), and 93 is an empirical expression [29]

for the spectral density of u. Collectively, they represent the contribution
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to 03 from frequencies where f = fo. The contribution from other fre-
quencies is given approximately by 9y

The gust factor is defined from Eq. 4.25 to be

G = max (1 + y(t)] (L4.28)
O€t<td

Since G is a random variable, a suitable design value may be chosen such

that the probability of exceedance is sufficiently small. Let

be a random variable of unknown distribution. |f y(t) is Gaussian, it

may be shown [28] that the distribution function for M is approximately
F,(x) = exp[-f_t exp (-x2/2 02)]
M od y

| f Xq is specified such that g = 1 - FM(xq), the gust factor associated
with exceedance level q is Gq =1 + xq. If the exceedance level is

associated with the characteristic extreme X then FM(xC) = 1/e, and

[of

x = V2 In(f tJ o
. o Y
The design gust factor is then [29]
G, = 1+ v2 In(f t, cry (4.29)

The design wind pressure profile is found by combining Eqs. 4.29 and

L.24, i.e.,

W(z) = 6y 5 (2/m)® (4.30)
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4,4.3 Wind Load Statistics and Uncertainties
The mean gust factor is

G, = 6, (k, o, B, F, U, c,,c) (4.31)

2 2
%, 5

| 2 )

) =1 a4, (4.32)
A : A

where the expressions for a, are given in Appendix D. To determine the

terms of practical significance, it is necessary to study the coefficients

a in Eq. 4.32.

Figures 4.4 and 4.5 show the variation of the gust factor G,
and the various a; with ?; and B for a specified mean wind profile on a

building of moderate height. |t can be observed that the mean gust

factor GD is insensitive to variations in FO and B. This is significant

because these quantities are often estimated from empirical expressions.
The implication is that refined estimates of the dynamic characteristics
of the system will not improve the determination of the gust factor.

Figure 4.6 shows the variation of a, and Eb with the height of

50,5, 5,

and ?; become more significant, and o and k lose some of their importance.

a building. For tall, slender buildings, the parameters

Shorter buildings are more affected by the surface roughness, as reflected

in k, and the wind profile. For a lightly damped structure with a
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response dominated by resonance, the specification of the natural
frequency fo becomes important. The gusf factor decreases as the height
increases up to 400 ft (in Fig. 4.6) because the turbulent components

of velocity caused by surface roughness become less significant in com-
parison to the steady-state velocity. |

For lightly damped buildings of moderate height, the variations
in the gust factor statistics attributable to c? and c, are small and can
be neglected. Overall variations are dominated by those of k and a, and
to a lesser extent Uo' Vickery [57] observed that the gust factor is in-
sensitive to the modg shape; hence, the actual mode shape is usually not
too important.

Statistics for UO are found from existing meteorological
information. For example, using Thom's data [54] the annual extreme
fastest-mile-wind-speed at 30 ft height for the area around Chicago,
I11inois is 80 mph for a return period of 100 years, and 70 mph for a
return period of 50 years (for open country exposures). These values
must be converted to averages over a time duration ty suitable for
determining the gust factor, and then translated to urban exposures.

A suitable averaging time is 20 minutes. [48] The result of this com-
putation gives Ug = 37 ft/sec and 33 ft/sec for return periods of 100 and
50 years, respectively. The c.o.v. 6U is about 0.15.

o

The natural frequency fo may be expressed in terms of the

dead and live load, assuming all floors are loaded identically, as

]

foox e N, (L+0))? (4.33)

[¢]
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where Ce is a constant depending on the.stiffness of the fundamental mode.
The mean of fo is estimated approximately from ?g ~ lO/Ns, where NS is
the number of stories. From Eq. 4.33, the c.o.v. of fo is found in terms

of dD and éL as

51: = ';- (_l_._/_D_:_:) Sf + (————]':—_—_-) 5; ‘ (4314)
o 1 + L/D 1+ L/D ,

The appropriate mean live loads are those for short-term duration.
The variability in the design wind pressure is found from

Eq. 4.30 to be

+ 8 ’ (4.35)

where ay and ao are the appropriate coefficients in Eq. 4.32.
o o . .

Additional (prediction) uncertainties may arise from the assumed
values of E'and'a, as well as in the value of B and the determination
of ?;. In view of these, the prediction error in the calculated wind

pressure is

A = A%+ pt - | (4.36)

where
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2 2 —2 .2 hy 2 '
45 = Acp + 4 g% 1n (gaa A, (4.37)

assuming AU = 0, and

o
2 . 2.2, 2.2 2.2 2.2
AGD = ey by oAy b+ oag bg +oal b (4.38)
, o o
where uncertainties in Cy and <, have been ignored. In buildings of

moderate height, Eq. 4.38 may be approximated by

A2 = g% A%+ a2 AP
8] Q

N

Reasonable estimates [57] of the prediction errors are A, = 0.10, 4, = 0.20,

A, = 0.25, AC = 0.10, and Af = 0.10. Alternatively, Af could be éom-

. P o ‘ o]
puted from Eq. 4.34 by substituting AL and AD for SL and GD.

The mean wind load effect is
W ' (4.39)

where W is defined in Eq. 4.30, evaluated at z = h, and Cy is an influence

coefficient. Its variability Is 8; =&, from Eq. 4.35, and the pre-
y |

diction error is

(4. 40)

where A is defined in Eq. 4.36, and AC is the measure of inaccuracy
‘ W
in the structural analysis.
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Chapter 5
CRITICAL APPRAISAL OF CURRENT DESIGN CRITERIA

5.1 General Remarks

In this chapter, the resistance and load statistics found in
Chapters 3 and 4 are used to evaluate the reliability of designs determined
from present ACl provisions. The primary objective is to determine what
risk levels are implied in current designs, or associated with designs ob-
tained with existing load factors.

This evaluétion is necessary to aid in the adoption of a prob-
ability based design format. Code formulation iévan evolutionary process;
and new provisions seldom reflect abrupt changes from previous codes. [49]
It is reasonable to expect that a reliability based code should initially
give the same designs as existing code provisions. This means that the
current level of safety, or risk, should be maintained. The level of risk
implicit in current designs, therefore, must be evaluated.

in the presént analysis, the resistance and load effects are as-
sumed to be mutually independent random variables. The study is restricted
to considerétion-of the adequacy of designs where strength is the governing
criterion. Beams are examined with regard to their adequacy in flexure and
shear, whereas columns are studied from the standpoint of the development
in Sec. 3.4. Of pérticu]ar-interest is the comparison of the risk levels

implied in the different failure modes, and the effect of concrete quality

on the member reliability.
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5.2 Appraisal of ACl Design Provisions
5.2.1 Analysis of Loading Provisions

To evaluate the adequacy of existing ACI designs, it is necessary
to translate the nominal loads and resistances to their mean values. The

ACl code requires that the,design load be computed as [5]

U = 1.7L + 1.4 | (5.1)
when dead and live loads are considered, and

u' = o.75(i.7 L o+ 1.4D + 1.7W) " (5.2)

when wind effects are included. A third loading condition, in which the
live load is absent, is also required, but thisbw7f1 not be considered here.
The intérnal load effect U; dimensionally consistent with the response quan-

tity sought is

ur = cLLnom(];7 + 1.4 K) : (5.3)
where
c.D
K = —2nom (5.4)
c, L '
L "nom

and EL and Eb are influence coefficients for the desired load effects, Dnom

is the nominal dead load in psf, and Lnom is the nominal live load in psf,

obtained from the ASA Building Code [7], or similar standards. Introduce

factors aD and o such that
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nom L

(5.5)

Dnom =, % D

where L and D are predicted mean values of live and dead load (e.g., obtain-

ed from load surveys). Then

U; = c o L (1.7 + 1.4 K) | , (5.3a)
in which
c.o. D ‘ ' ‘
« - D% (5.4a)
CL aL L

o may be computed by comparing L(A) from load survey data [43] to the nomi-

nal live load computed from Eq. 4.9. « may be found by comparing the 95

D

percent load value to the mean dead load, assuming D is normally distributed;

with 8 = 0.06, ay = 1.10. Similarly, when wind load effects are included,

D
Ul = T T(0.75) (1.7 + 1.h K+ 1.7 K) | (5.6)
in which
oo, W '
ko= W ' (5.7)
W co, L
L%L

W is found from Eq. 4.301evaluated at z = h, and o,, is computed by comparing

W

this value to the standard design wind pressure specified in the Uniform. -

Building Code [56]:
5.2.2 Provisions for Flexure

The nominal resistance of a section against flexure is
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.F I

a (1 - 0.595 #£) (5.8)
Cc

M= ¢ B d pf

i
Y
where fé and f; are nominal steel and concrete strengths, and O is a flex-

ural capacity reduction factor specified as 0.90. The conventional safety

requirement, M' > U;, is then

f [ ;
— Ef S 7 ek (5.9)

S ] \ _ -y
¢p b d pfy(] 0.59p 3 ) 2 a L

where Et is the influence coefficient for flexure, and to find the required
design for the section,
-d—2 OLL(].7+ 1.4 KF)

- A A (5.10)
LT opp Fy (- 059 /80

DF represents a flexural design, given in terms of the material properties

and the mean load ratioc only. A design may be obtained from~DF-by multiply-

ing DF by the mean internal live load effect, i.e., B-HQ = DF'Ef L[. When

wind effects are included,

o o B@ 07T LA K 1T K (5.11)
F -t = - _‘ o “ ‘ R
o op B f, (1 - 0.59 £ /f))

The nominal values of p, b, and d have been chosen at their respective
means.

To compute theAQUQerjyingrrisk Qf‘failgre of auspegifigd Qesign
using. the alternative risk measure, it is first necessary to determine the

equivalent valﬁe of w (5}); From Eq. 2.18, the mean capacity and load ef-

F

fects are related as
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- =2, _ =, =F — - '

b d"A = w (6.) c L | | (5.12a)
where

A = E?y(l - 0.59q) (5.13a)

if failure occurs in tension, and

A = BT (0 -0.5% (5.13b)

«q’ -
[¢] wn
S

if failure occurs in compression, where ?; is defined in Eq. 3.19., Therefore,

5 .
w(8) = bd_ A = D_A (5.12b)
L - '
¢ may be substituted from Eqs. 5.10 or>5.ll. First; a tension

failure is assumed; then using Eqs. 5.13a and 5.12b, wp(§;) is determined

into which-D

and the probability of failure is cdmputed from Eqs, 2.25 and 2.26. Next, -

a compression failure is assumed and the process is repeated using Egs.
5.13b and 5.12b. Alternatively, the prescriptfve lognormal basis may be
used instead of Egs. 2.25 and 2.26 to compute the probabilities of fai]uré
in tension and compression. The total probability of failure may then be

found from Eq. 3.11.
5.2.3 Provisions Fof Shear

The adequacy of a design DF against shear is investigated by
checking the shear capacity at a distance d.from the beam support, in ac- -

cordance with present ACl practice. The mean shear capacity of the beam is
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given in Eq. 3.36, in which ;;u is defined in Eq. 3.29. The shear-moment

ratio necessary for its evaluation is found from

- S F+ TV
1.2 L (5.14)
Ve -+ = =F - —F = )
M <p D+ < L + W W
where all influence coefficients are evaluated at a distance d from the sup-

port. When only gravity loads are considered, W = 0. Although Eq. 3.27
suggests that the mean shear capacity is a function of the mean loads; the
shear resistance and applied load effects will be assumed to be independent
in the evaluation of the risk in shear.

The nominal resistance provided by the ACl code against shear is

given as

Vo= o v BT+ ) (5.15)
S

where r; = Vé/V&S, ¢S is‘the shear capacity reduction factor specified as
0.85, and V;u is evaluated from Eg., 3.27. The nominal shear-moment ratio
is determined from Eqs. 5.3a or 5.6 for the bending and shear loads at a -
distance d from the support, with the limitatEOn V'/M' < 1/d, as required
by the ACl| code.

On the basis of the truss analogy, the value of r; provided in the
AC! code may be found from equating Eq. 5.15 to Eq. 5.3a or 5.6 for shear.

This yields

r' = - - cu — (5.168)



96

for dead and live loads, or

v Véu bd
ré = g (5.16b)
aLCL L ) R
__Cb_s__ (0.75)0.7 + 1.4 1\S+1.7 KWS) -vcubg

when wind load effects are included. To analyze the underlying reliability

for shear, it is necessary to translate r; to the parameter o based on

mean values. This is done using the relation

v f!

= &4 Y 1
ro = oo 5ol (5.17)
cu fy .

To insure that every potential diagonal crack is crossed by at

least one stirrup, the spacing of the stirrups must be §;t < %-E. In terms
of oo this implies that
V;u bd ;_ k | V;u bd ‘ :
r - ————-——_ _ S f - ——__'—_ __— (5-]8)
S R T T St T 2 K% , .; |
A vy

To provide against sudden stirrup yielding and the resulting diagonal crack

growth, the AC! code specifies a minimum allowable stirrup area

v, bd vo,bd - A f! _f!
g = o= S ¢ ——— 20—t = 20y L (519

AT d AT d b 47

vy vy - y
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Equations 5.18 and 5.19 place additional_]iﬁitations on the value of re de-
rived from strength considerations only. The minimum value of e computed
from Eqs. 5.17, 5.18 and 5.19 should be used to assess the probability of
shear failure of a given design.

The mean shear capacity and applied load effect are réIated, from

Eqs. 2.18 and 3.36, as

- = - ] ~\ =S
¢, v, b d (1 + — ) = ws(es) c L (5.20)

To compute the underlying risk of shear failure of a flexural design, it is

necessary to determine its equivalent value of ws(gg) in shear. From

Eq. 5.20,
- bd — - 1
w (8 = = b, v, (14—
c, L o s
L
This may be expreSsed‘in terms of DF as
. —F
-T2 ¢
sy o [BEdf|S 1 - = 1
L L '
e o7 VW3
= Dp =% B*—Efff %, Veu (1 + ?—-) (5.21)
‘L FOoLr §

wherein d is found from the flexural solution as

T\1/3

1

(5.22)
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With Ws(éé) given above, the risk of failure in shear may be computed from

Eqs. 2.25 and 2.26 as a function of r. and b/d.
5.2.4 Provisions for Axial Thruétvand Bending

Combined bending.and axial thrust.is handled in a manner similar
to flexure. For a given e/t, the conventional safety requirement, P' > U;,.
is

— _— - — '
. 33 Fé b t q; > o ¢ L (1.7 + 1.4 KC) | | <?'233?

when dead and live loads are considered, or

> o o T (0.75)(1.7 + 1.4 Ke + 1.7 ch)' (5.23b)

173 [ |
¢c 3 f:c bt qu - L L

when wind effects are included. q& is a dimensionless axial capaéity de-
fined in Appendix C, and is dependent on e/t and whether a tension or com-
pression.fai]ure occurs. ¢C is the capacity reductiqn factor for tied col-
umns, given as 0.70 by ACI 318-63;. Thus, .a desfgn'is'determined'as

_ o (1.7 + 1.4 k)
R c_ (5.2ka)

T 'E 1 1
‘L L ?c 3 fc 9

when dead and live loads are considéred, or

) (o.75)(iﬁ7’+ b K+ 1.7 K ) o
_oL ‘ c we’- (5. 24b)

when wind effects are included. The ACl code placeés a lower limit on the

allowable e/t of 0.10; the effect is to prescribe a minimum DC'
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The probability of failure of avdeéign is eQaluated by first de-
termining the associated wc(éb) for compression and tension failures, com-
puting the conditional probabilities of failure on the basis of the assumed
failure mode, and applying Eq. 3.48 to determine the total pfobabiiity'of

fajilure. The mean capacity and applied load effects are related as
L _ _ . .
Bes = w(@)e L | , . (5.25)
where

B = k. f

3 o W
-

if failure occurs in compression, and

. _— . . =L T . \
if failure occurs in tension; q, and q, are dimensionless mean values of

axial capacity defined in Appendix C. Therefore,

w(8) = 2%~ 8 =08 | (5.26)
. | |

into -which the design Dcvmay be substituted to evaluate its risk of failure

under combined thrust and. bending.
5.3 Risks Associated With Current ACI Designs

The levels of risk associated with current ACI provisions for
the design of beams and columns are determined herein for different loading
conditions. For purposes of illustration, elastic analysis is.used through-

out. Assuming the members are prismatic, and the within-member resistances
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are perfectly correlated, the design is, therefore, determined at the point

of maximum load effect.
5.3.1 Beams Subjected to Specified Load Effects

Consider a beam of 15 ft span supporting a tributary area of
150 ftz; the loads consist of dead load and permanent live loads. The dead
and live load statistics are found by the methods described in Secs. 4.2

and 4.3. A summary of the pertinent quantities is given in Table 5.1.

TABLE 5.1

Load Statistics for a Beam Supporting a
Tributary Area of 150 Ft2

Meah(psf) | §si | AS; | a
" Dead Load 100 0.06 0.10 1.10
Live Load hs - 0.29 0.23. 1.78

Figure 5.1 shows probabilities of failure of ACl flexural designs

in tension and compression modes, for varying reinforcement ratio p. These

are actually conditional probabilities, in accordance with Egs. 3,12 and
3.13. However, if p = 0.02, with intermediate grade steel, the probability
of the occurrence of a compression failure is 0.0378 (0.0567), and the prob-

ability of the occurrence of a tension failure is 0.9622 (0.9433); parenthet-

ical quantities refer to poor concrete quaTYty. As a result, the first term

in Eq. 3.11 dominates, and the probability of failure of the section in
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flexure is approximately equal to its probaﬁility of failure in the tension
mode. This suggests that if the reinforcement ratio is suitably chosen,

the possibility of a compression failure may be ignored in assessing the
underlying risk. Commonly, reinforcement ratios are often chosen consider-
ably less than 0.75pé. The total probégf]ity of failure computed from Eq.
3.11 is also shown in Fig. 5.1, and indicates the small dffference when the
possibility of a compression failure is included.

It can be observed from Fig. 5.1 that the fisk levels (in ténsion)
are all of the order of 10-5, and are not sensitive to p, for the range of
E'of interest. The lognormal-prescriptive risk evaluation provides conser-
vative but approximate agreement to that obtained from the alternative risk
measure., Poor concrete quality does not have a significant effect on the
probability of tension failure. (TheAprobabi]ity Qf failure in the compres-
sion mbde is significantly affected, but the likelihood of its occurrence
is very small). This was foreseen in Fig. 3.5, showing the insensitivify
of SMT and AMT to p and the concrete quality. There is no significant dif-
ference when high strength steel is used.

Figure 5.2 illusfrates the relative safety against flexural fail-
ure when deterministic load factors other than the current values of 1.7
against live ]éad and 1.4 against.dead load are used. ACI 318-63 provided
values of 1.8 and 1.5. Provisions of ACI 318-71 imply an iﬁcrease in'risk of
less than one order of magnitude; the margins of safety for flexural designs
are thus not significantly different. |f the load factors should decrease

to 1.5 and 1.2, the implied risk would increase to about IOfb, about one

order of magnitude higher than that of current designs.
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- To examine the safety against shear failure, the end restraints
must be considered, since the V/M ratio is required. For this purpose, sim-
ply supported and fully fixed beams are examined. |

Figures 5.3 and 5.4 illustrate the probability of fai]ure in shear
of ACI beams as a functfon'of»the amount .of web reinforcement Fos and the
Cross sectiohal parameter b/d. Large re corresponds to light web reinforce-
ment. Figures.5.3 and 5.4 also demonstrate the difference between simply
supported and fully fixed end conditions. The probability of shear féilure
is more sensitive to re when the beam is fully restrained, than when it is
simply supported; for a given risk-level gnd reinforcement ratio p, re is
also smaller for the restrained beam. This is because the flexural sections
are smaller with full end restraint; hence, the resulting area for shear re-
sistance is decreased accordingly, and more web reinforcement is needed to
resist the same shear force.

Figure 5.5 illustrates the effect of poor concrete quality on fhe
risk of shear failure, with‘rS = 2. An ianease of éf from 0.12 to OﬂZO
increases the risk of a shear failure only slightly; t§e>reason for this may
be seen from Fig. 3.7, wherein 6V is nearly the same for both values of

T

§ For given rg and p, beams with a low b/d exhibit a greater risk in

f
C — —

shear than those where b and d are about the same.

The failure probability in shear is extremely sensitive to the

amount of web reinforcement provided. A 20 percent change in Fes implying

a 20 percent change in stirrup spacing, may change the shear risk level by
one or -two orders of magnitude. As an example of how the reliability in

shear may be assessed, suppose a simply supported beam has been designed for
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flexure according to ACl provisions, with p = 0.025 and b/d = 0.75; then
-5

= 8.91, with a probability of flexural failure of 1.14 x 10 From

DF
Eq. 5.22, d = 12.2 inches and b = 9.15 inches, and from Eq. 3.29,7Cu = 0.201
ksi. |If No. 2 bars are used as stirrups, K; = 0.10 in.z A summary of the

Fe required by different shear design criteria, the stirrup spacing, and

the respective probabilities of failure in shear is given in Table 5.2.

TABLE 5.2

Design of Web Reinforcement

Criterion re St (in,) P (shear)
pf(F1exure) = pf(Shear) - 2.83 7.3 1.14 x 1072
ACl - Truss Analogy 4,55 1.8 9.6 x 1077
S, S %E : 2.36 6.1 3.7 x 107°
Minimum Area 3.37 8.72 2.9 x IO—S

The web spacing is controlled by E;t < %-E'En this example.

Figure 5.6 shows the probabilitieé of failure in flexure and shear
of ACI designs for the simply supported beam, when the truss analogy equa-
tion governs tHe design of the web reinforcement. The shear provisions

using ¢S = 0,85 are seen to be clearly inadequate to insure that pf(Shear)

< pf(Flexure), especially when p is small. It is necessary to reduce ¢S to

0.70 to 0.75 before the risk levels in flexure and shear are approximately

equal. Figure 5.7 illustrates the modiinng effect that the maximum spacing
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and minimum web steel restrictions have on the adequacy of the web in shear.
The stirrups are assumed to consist of No..2 bars. Assuming that ¢s = 0.85
the spacing restriction will govern the design of the web, and is seen to

be a necessary additional restriction if adequacy in shear is to be main-

tained.

Figure 5.8 compares the risks of failure in flexure and shear for
the fully fixed beam, when the web design is determined from the truss an-
alogy. Here, the current AC| shear strength provisions are also inadequate
to insure a flexural failure, but the disparity in the risk levels is not
as pronounced. A reductjon in ¢S to 0.75 or 0.80 would be sufficient to
insure that pf(Shear) < pf(Flexure). Figure 5.9 shows the effect of the
minimum spacing requirement. |If No. 2 bars are used, the spacing require-
ment has no effect; if No. 3 bars are chosen, the risk of shear failure is
depressed by two orders of magnitude.

The implication that the shear capacity reduction factor shoula
be reduced from its present value of 0.85 should not be unexpected. Tests
of beams failing in flexure and shear indicate that the variability in
shear capacity fs cbnsiderably larger than that of flexural strength. In
view of this, the decrease from ¢F = 0,90 to ¢s = 0.85, which is the only
current réflection of the higher uncertainty, is probably neither consistent
nor adequate. ' |

The fu]ly fixed beam appears to be more adequate‘in shear than
the simply suﬁported oné,‘énd the risk of a shear failure decreases as the
amount o%vlongitudinal reinforcement increases. In general, a‘large rein-

forcement ratio and/or a high degree of end restraint implies a smaller
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beam cross sectional area. For a given shear effect, this will necessitate
heavier web reinforcement; thus re will become small, and GV and the asso-

, T
ciated risk will decrease.

The ACI requirement regarding the maximum allowable shear stress

on a section

u cu - C

where v& = V'/bd and V' is defined in Eq. 5.15, is not applicable to these

examptes—However,—this—requirement—implies that B

VI
cu

J
8 VFT
c
I f ré is less than this value, then the section area must be increased, and
: . ) . . ®

r; will therefore increase. Since GV will increase with ro the probability
T

of failure in shear will also increase,

Rather than placing a lower limit on rgs @ region in which SV
‘ ' T
is relatively small, it is more consistent to place an upper limit on Fo to

insure that ¢ does not become too large. One way to accomplish this is

V1

with a minimum web area requirement, such as that in Eq. 5.19, provided by
the ACI céde. >Figure 5.7 indicates that fhe present requirement may not be
adequate to achieve this objective - in a]l cases, and perhaps should be
made somewhat more restrictive.

On the basis of the above analysis, it is clear that £he shear
strength provision derived from the truss analogy model is inadequate to'
assure greater safety in shear than in flexure. Howevér, when the additional

requirements of minimum web reinforcement and maximum stirrup spacing are
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imposed, the probability of a shear failure is greatly reduced, and is
generally less than or equal to the risk of flexural failure. Therefore,

the intent and purpose of the AC| shear provisions appear to be satisfied.

Beams in a Tall Building

In this example, a beam is aengned from a preliminary structural
analysis of a twenty story office building. A comparison of the adeqyacy
of the ACI provisions against dead and live loads with those pertaining to
combined effects of gravity and wind is ’ade. To obtain the influence co-
efficients, a STRUDL -analysis of the structure was performed for deadband

live loads only, and for combined gravity and wind loads. The height of the
building is 240 ft and the alohg-wind and cfoss-wind dimensions are 60 ft
and* 100 ft respectively. The main floor beams are 20 ft in the alohg-wiﬁd
direction, and support a tributary loaded area of 500 %tz. The dead and

live load statistics are found by the methods described in Secs. 4.2 and.
L.3. For pﬁrposes of combining the live loads with wind loads, a differen-
tiation must be made between short term and permanent live loads. The wind
load statistics are.found ffom Sec. 4.4. The fundamental natural frequenty
is estimated to Have a mean ?; = 0.5 cps, aﬁd the total démpfng‘is assumed to be
0.015, whence EE'= 2.77 from Eq. 4.31. A summary of the peftinent statistics
is contained in Table 5.3.

?igures 5.10 and 5.11 compare the probabilities of failure of ACI

flexural designs for the twd loading cases considered. Although the live

load statistics and the live load-dead load ratio have changed, the proba-

bility measures in Figs. 5.1 and 5.10 are almost the same. With prescribed
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TABLE 5.3

Load Statistics for Beams in a Tall Building

Mean (psf) dsi ASi o
Dead Load 100 0.06 0.10 1.10
Permanent Live Load 34,25 0.27 0.19 1.68
Short Term Live Load 15.63 0.54 0.19 3.69
Wind Load 20.37 0.30_ 0.21 2.21

lognormals, the risk measures are in close agreement with the alternative
risk measure, as would be expected. The risk of failure under combined
gravity and wind loads is slightly less than for gravity loading only, but

not enough to be significant. It may, therefore, be concluded that the

levels of safety underlying current AClI flexural requirements are about

equal for these two loading conditions.

The ACl code requires that the governing design be determined from
the maximum of the two loading conditions. -The risk of this design under the
noncontrolling load condition maylalso be computed, e.g., if gravity and wind
loads control the design, determine the probability of failure of this,def
sign against dead and live loads alone. An illustration of this is given
in Table 5.4, where p has been assumed to be 0.02. The combfned effect/of
gravity and wind governs the ACl flexural design; its probability of failure
under dead and live loads is 2.1 x 10_7. [ f the controlling flexural design

had been based on the consideration of dead and live loads only, its failure:
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TABLE 5.4

Flexural Design Risks Under Different
Loading Conditions

Loading DF pf(D + L) pf(D + L+ W
D+ L 11.96 1.6 x 1077 5.1 x 107"
D+ L+ W 14.83 2.1 x 1077 1.1 x 1072

probability against combined load effects would have been an order of magni-
tude higher than for the loading condition for which it was designed, in-

dicating that some care should be exercised in determining the governing

load combination.
Figures 5.12 and 5.13 compare the probabilities of failure in flex-
ure and shear of designs obtained according to ACl provisions for these two
modes, aésuming ¢S = 0.85. The behavior is similar to that previously en-
countered. These results indicate that present ACl code provisions are rea-:

sonably consistent with regard to their treatment of beams with different

end conditions and loading effects. If the shear capacity reduction factor

is reduced to about 0.75, the shear strength provisions derived from the

truss analogy would usually be adequate to insure that beam failure is gov-

" erned by flexure.

5.3.2 Columns Subjected to Eccentric Loads

A column with an eccentricity from applied loads of 20 inches is

studied. |t is assumed that the column supports one floor and the loaded
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tributary area is 150 ftz. Dead and ]ive_loéds are coﬁsidered, and thus the
load statistics are the same as in Table 5.1. Ag is assumed negligible in
this case. This example illustrates the effect that quality control of the
concrete, and the amount and strength of the longitudinal reinforcement have
of the underlying risk of failure of'column designs prescribed by the ACI
code.

The parameter E'Has the same interpretation as in the flexural
casg, The total percentage of longitudinal reinforcement, P.» may be de-
duced from p. For the symmetrically reinforced rectangular section,

Total Steel Area -

pt = Section Area = 2p

e

For purposes of illustration, it is assumed that d/t = 7/8, from which
p, = 1.75 p.

Figures 5.14 and 5.15 compare the underlying risk of ACl prescribed
designs for good and poor concrete quality, with intermediate grade rein*
forcement. The probability measures increase rapidly when e/t is small,
and change more gradually as e/t becomes large and tension failures are
more likely. As e/t becomes very large, a state of pure flexure is approach-

ed, with the attendant insensitivity to p of beams. The probability of
5

failure when e/t is large is of the order 107 , about the same as for a beam;
note, however, that a capacity reduction factor of ¢c = 0.70 for tied columns
instead of the value of 0.90 for flexure was applied, and the uncertainties
in the column capacity are somewhat larger than the uncertainties in flex-

ural capacity. The lower capacity reduction factor and.higher uncertainties,

therefore, compensate for one another. The increase in ¢C allowed by ACI
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318-71 when e/t is large will cause the probébility of failure in Fig. 5.14
to increase further, and does not appear to be consistent with the objective
of maintaining a lower risk level for beam=columns.

A comparison of Figs. 5.14 and 5.15 reveals that poor concrete
quality control could increase the risk of failure by two or three orders of
magnitude when the load eccentficity is’shal], and comp;ession failure is like-
ly. This sensitivity is particularly noticeable when the section is lightly

reinforced; in such cases, the axial capacity is primarily dependent on the

compressive strength of the concrete. For larger values of e/t, the sensi-
tivity disappears, as-in the flexural case. There is a clear implication
that when an analysis suggests that a column is t]ose to being concentrical-
ly loaded, particular carekshould be exercised to insure high standards of
control in its construction.

The irregularity jn Pe in the mid range of e/t is particularly
noticeable for small reinforcement ratios and for pobr concrete quality.
It has been‘observed that this irregularity occurs in the vicinity of the
mean balanced point for the value of p selected. It seems likely that this
behavior is due to the use of the approximate expression, Eq. 3.46, to de-
fine the axial capacity when failure is govérned»bykcompression.

The significaﬁce of high strehgth reinforcement is illustrated in
Fig. 5.16. The probability measures are not much different from those in

Fig. 5.14 signifying, therefore, that the level of safety implicit in the

AC! code is uniform for the two grades of reinforcing steel used.

The ACI safety provisions attempt to assign a greater reliability

to members in which failure may occur suddenly and have catastrophic
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consequences. It is clear from the,present‘statisticél analysis that this
objective has been satisfied. Assuming a similar level of quality control
throughout, the probability of compression failure in a column is two or
three orders of magnitude less than the probability of flexural failure.
As the load eccentricity increases and the column behavior becoﬁes more

ductile, the difference in the risk levels decreases.
Columns in a Twenty Story Office Building

Two columns from the twenty story office buiiding described in
Sec. 5-3. are considered. A STRUDL analysis was used to determine the load
infiuence coefficients for dead and live loads, and combined~gravity and
wind loads. One column is chosen from the first level, and supports twenty
loaded ffoors; the other column is chosen having six loaded floors above it.
The loadiﬁgs on each floor are assumed identically distributed. The loaded
area tributary to the interior columns is 500 ftz. This example illustrates
how the levels of safety implied by thg ACl provisions compare. for the two
columns, and compares tHe risks underlying the provisions on grévity loads,
herein denoted loadiﬁg I, and gravity and wind loads combined, hereihvdenoted
loading 1. |

The~dead and wind load statistics have already been defined.
The’variabi]ity of the column live load intensity must include the second’
order reduction dependent on the'number of stories the ;olumn supports, as
discussed in Sec. 4.3. A sﬁmmary is presentedvin Table 5.5. From Eq. 4,20,
A, = 0.24. The prediction error in the load eccentricfty is assumed to be

L
15 percent. For illustrative purposes, it is assumed that f; = 40 ksi and
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TABLE 5.5

Live Load Statistics for Columns
in a Twenty Story Building

Mean (psf) Variability
Long Term
Live Load
Lower Story 34.25 0.12
Upper Story 34.25 0.20
Short Term
Live Load
Lower Story 15.63 0.23
Upper Story ‘ 15.63 0.39

and fé = 3000 psi; Figs. 5.14 and 5.16 suggest that the level of reliabi]ityb
would bevabout the same, regérdless of the sffength of the materials chbsen.
The STRUDL analysis indicates the mean eccentricity-of appljed

axial force on the lower story column is 0.02 inch under loading |, and is
1.62 inch under loading Il. The column is nearly concentrically loaded, and
the ACl requirement that 57?'2 O.IQ may be expected to govern’the determi -
nistic design. This resfriction significantly increases the safety margin
provided Qhen‘€7¥'is actually less than 0.10, as shown in Fig. 5.17, because
DC is forced to increase to its value correspohding to e/t = 0.10. The in-
crease in the margin of safety becomes more pronounced as the amount of lon-

gitudinal reinforcement provided increases, as illustrated in Fig. 5.18.

The additional margin of safety provided is about the same for both loading

configurations.
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Suppose that a column is designed with p = 0.03, corresponding to

P = 5.25 percent,-and it is desired that the column be desinged with b =t.

For loading |, .the STRUDL analysis and Egs. 5.24 yield b = t = 31 inches.

~ ~

The probability of failure of this design, pL(Dé), with e/t = 0.02/31 = 0,

is of the order 10_]3. Under loading 11, b = t = 27.2 inches; with e/t

= 1.62/27.2 = 0.06, pL'(Dél) ~ 1.75 x 10—9. These probabilities may be

taken from Eq. 5.17. From a deterministic standpoint, loading | will

govern the design. The probability of failure of Dé under loading I,

pLI(Dé),is also shown in Fig. 5.17; with e/t = 1.62/31 = 0.052, pL’(Dé)

is of the order 10_13 also. Thus although the ACI design is governed by

loading I, the risk of failure of this controlling design is about the same
for both load configurations.

This example points out the difficulty with a strict interpreta-
tion of rfsk measures. The probabilities are of such small magnitude that
it is impossible to assign any physical meaning to them. Such measures
should be interpreted on a comparative basis only, i.e., it was shown that
the design risk levels are about the same for loading | and loading I1.

Without the restriction 57?.2 0.10, for loading I, b = E-é 27.5

O_]O. The probability of failure of Dé against

loading II, with e/t = 1.62/27.5 = 0.06, s pLI(Dé) = 1.75 x 10—9, about the

inches, and p;(Dé) =9 x 1

same magnitude.

For the loadings considered in this example, the minimum eccentric-

ity ratio restriction imposed by the AC| code forces the designs for small

e/t to be excessively conservative. Without this restriction, designs have

underlying failure risks of the order 1072 - 10719, which should furnish
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adequate safety in most circumstances. |In }e]iabi]ity based design, it
would be more reasonable to account for possible uncertainties in the load
eccentricity by adjusting the prediction error Ag-than to place an arbitrary
lower bound on e/t.

The STRUDL analysis of therupper story column indicafes that the
mean eccentricity of applied axial force is 1.08 inches uhder loading | and
3.20 inches under loading 1. Results of the risk analysis are presented
in Fig. 5.19. |If E-= 0.03 and b =, the requirement E7E-2 0.10 will-again '
govern the design against loading |, and loading | will govern the deter—.'
ministic design. The probabilities of failure for the uéper story column
will be larger becasue the load eccentric}ties are larger. Withb =7t
= 17.3 inches, and 572;}.08/17.3 = ,0625, ﬁL(Dé)‘; 1.3 x 10‘]O from Fig. 5.19.
The risk of failure of DI under loading'll‘is also shown in Fig. 5.19; with

C
e/t = 3.2/17.3 = 0.185, p::l(Dé) =51 x 10'8

> p#(Dé). It is therefore con-
ceivab]elthat the risk of failure of a ''governing' design may be hfgher for
nongoverning load configurations than for the loading for which it was de-
signed. TheAdimensions of a design must bé selected with care to insure.
adequacy against other possible load configﬁrations; in the above caée, re-

ducing b/t would cause pLI(Dé) to decrease relative to pf(DC)'
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Chapter 6
FORMULATION OF RELIABILITY-BASED DESIGN CRITERIA
6.1 General Remarks

This chapter is devoted to the formulation of design criteria
on the basis of specified acceptable risk measures, with special reference
to reinforced concrete members. The form of the traditional design
equations may remain unchanged; however, the determination of the
appropriate factors in these equations is based on the specified design
risk. In this mannef, the significance of uncertainties can be reflected

properly in design, and the load factors will vary with the'degree of

uncertainty and the level of risk. Uncertainties in current designs and

their implied risk levels have been evaluated in order to furnish a
startfng point for this reeva]uation.

This formulation should enable future code revisions to be
made in a more rational manner. The objectives of the ACI safety pro-
visions may be satisfied more consistently if design criteria are developed
on a risk basis, e.g., this furnishes a basis for the design of beams in
which the level of safety in shear is higher than that in flexure; this
objective is not always achieved by the current provisioﬁs of the ACI
code. |If fabrication and construction practiﬁes change or improve, or
if mofe accurate modeling and analysis techniques become available, their
effeéf on the design safety may be properly reflected by modifying the

uncertainty measures. Moreover, in future code revisions, the level of
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design safety may be increased or decreased by adjusting the risk levels
relative to £hose‘currently considered acceptable. The level of safety
implied by the design provisions, therefore, may be quantitatively defined
and carefdl]y controlled.

The required strength may be found from any one of several
alternative but equivalenf design formats. The true méasure of safety
in reliability-based design is the probability of failure. |In this regard,

when several loads are involved, it is the safety against the total

load effect that is relevant. Accordingly, in the load-factor format

of design, it is the overall load factor that is important. In other

words, the required desigh (in terms of mean values) is
T = v% - | (6

in which § is the total mean load effect, and vy is the appropriate load

factor. This may be evaluated on the basis of prescribed lognormals or using

the a]tefnative risk measure, corresponding to a specified risk.
However, in order to comply with current code formats, a
multiple load factor format-including a capacity reduction factor may also be
used. Suitable values may be obtained when Eq. 2.18 is rewritten to
include a capacity reduction factor ¢.' In terms of mean values, when

dead and live loads are considered,
$R = Yy S +vySy ., (6.2a)

and when wind effects are included,

R = ¥y, S_+*¥pSy* vy Sy (6.2b)



117

One appropriate value of ¢ is suggested by Eqs. 2.22 and 2.22a, i.e.,

o =1 - Bo o SR’ in which o is defined in Eq. 2.22a, and is commonly

about 2/3. Theoretically, o is a function of the resistance and load

statistics; hence, ¢ will depend on theiloads as well as the resistance.

Another way of defining ¢ js to assume that the "'equivalent'' resistance,

¢ R, occurs at some cumulative probability level p¢ of R; if ¢ R is set

equal to the nominal value R| defined in the AC! code, then ¢ = 1 - B¢ SR.

This specification of ¢ is then independent of the load effects.
Alteknaiive]y, if the probability levels for the resistance

and loads are specified, the required strength may be determined in

terms of nominal (e.g., characteristic) resistance and loads. Under dead

and 1ive loads,

S (6.3a)

O Ro= oy S|ty Sy ooy S, : (6.3b)
in which
Yo ¢
d) - 1 = BR GR
(6.30)
1 Yk

Y = W’k=D’L’W

and Bk depend on the probability levels chosen.
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6.2 Flexure

To insure a tension mode of f]exural'fai]ure, the maximum
allowable tensile reinforcement ratio p for.beams may be found by re-

quiring that

Pr (pb < p) < otb' L o (6.4)

" where suitable values of oy, range from 0.01 to 0.05. Assuming

S = 0.12, p < 0.45 Eb‘ when o = 0.01, and p < 0.57 Eb when

f' N
Cc

b

tension failure nearly certain. It also implies that the member cross

o, = 0,05; EL is computed from Eq.'3.9f This requirement makes a

section will be large enough that serviceability will be a lesser con-

sideration.
V In Chapter 5, it was found that the probability of failure of
5

flexural designs was of the order of 1077, and the designs were virtually

independent of the longitudinal reinforcement ratio, and of the quality
of concrete. Initially, then, .the design criterion for flexure éhouid be
based on a risk level of 10f5.

Table 6.1 compares overall load factors for flexure, éorresponding

to different risk levels, computed on the basis of lognormal prescription '

and with the alternative risk basis. The two risk bases show close

agreement.-
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TABLE 6.1

Mean Overall Load Factors for Flexure

Légﬁérmal Prés;ffpﬁfoﬁ - Alternétfve Rfék
Ps D+ L D+ L+W D+ L DL+ W
107" 2.19 2.26 2,2k | 2.29
1072 2,46 2.55 2.5k 2.61
107° 2.72 2.84 2.85 2.94
1077 2.99 3.13 3.16 3.29

In terms of mean values, the multiple load and capacity

reduction factors for flexure, obtained from the alternative risk basis,

are given in Table 6.2.



TABLE 6.2

Mean Load Factors for

Flexure

Dead and Live Loads

Dead; Live and Wind Loads

6=1-8,8 ¢=1-8 as, b =1~ 8, o, $=1-8, as,
Pe ¢ v Yp ¢ v Yp ¢ YL Y Yy L Yp Yy
10°% .84 2.25 1.76 .83 2.23 1.73 .84 2.70 1.68 2.19 .82 2.64 1.6k 2.1k
1072 .84 2.62 1.97 .80 2.50 1.87 .84 3.20 1.87 2.5k .79 3.02 1.76 2.39
|0~6 .84 3.01 2.18 .77 2.76 2.00 .84 3.74 2.07 2.90 .76 3.38 1.87 2.63
]0—7 .84' 3.42 2.4 .75 3.06 2.15% .84 4,30 2.27 3.28 , .7k 3.79 2.00 2.89

A
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B¢ has been found to be 1.37 for flexure_by'solving f - B¢ GM =M /M
for B¢, using nominal 40 ksi reinforcement and nominal 3000 psi concrete.
Table 6.3 illustrates the required factors for nominal loads and strength,
where an acceptance level of 10 percent on R and exceedance levels of .

95 percent on dead load and 99 percent on live load and wind ldad have
been selected.

From a reliability standpoint, it is advantageous to use mean
values and corresponding load factors. The exceedance values for the
nominal quantities depend on the distributions of the load and resistance
variables. In addition, the necessary statistical information is
usual ly available in terms of meanAvalues and variances. Designs given
in terms of mean values, therefore, are more conQenient to obtain; more-

over, they are more directly associated with risk, and thus are less

ambiguous.

We might emphaélze that the lToad factors are functions of the
uncertainty measures; the factors given in the above tables correspond
to the uncertainty measures determined in Chabters 3 and 4. However, if
these uncertainties should change, either as a result of change in the
basic variabilities or the prediction errors, the load factors ought to
be reevaluated,

A comparison of the flexural designs, i.e.,‘DF, that would be
obtained for various risk ]evels‘with those obtained from current ACI
provisioné for flexure is sﬁown in Fig. 6.1 for dead and live loads.

The decrease in DF with p reflects the smaller beam cross sections that

would result when larger amounts of longitudinal reinforcement are

provided.



~ TABLE 6.3

Nominal Load Factors for Flexure

Dead and Live Loads

Dead, Live and Wind Loads

b= 1By by b=1-8 sy b =1 -8y 8, o =1-8 oS,

Pe ¢I YL Y; ¢I YL Y; ¢f YL ‘ﬂ§; "_Y& ¢| YL y; YQ
16'9 .99 1.38 1.60 .97 1.37 1.57 .99 1.20 1.53 1.29 .96 1.17 1.h9v 1.26.
10_5 .99 1.61 1.79 .94 ]!53 1.70 ~99 1.42 ].70 1.49 | .93 1.34 1;60 1.1
0% 99 1.8 1.58 .90 1.69 1.82 .99 1.66 '1.88 1.71 .89 1.50 1.70 1.55
10_7 .99 2.10 2.19 .88 1.88 1.96 .95 1.90 2.06 1.93 | .87 1768 1.82 1.70

[4A4
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The load factors are insensitive to the mean load ratios (see
Figs. 2.7 and 2.8) and, therefore, L/D need not be considered as a design
parameter. As the live load statistics depend on the tributary loaded
area, [43] the load factors may be expected to vary with the tributary
area. This is indicated in Table 6.4 for a risk level of IO—S (with meén

load factors).
TABLE 6.4

Mean Load Factors in Flexure As Functions
of the Tributary Loaded Area

_ -5
P = 10
) d=1- B¢ SM ¢=1-8_ «a 5M
Tributary Area (ft°)

¢ YL Yp ¢ YL Yp
25 L84 3.34  2.36 .80 3.18 2.25
56 .84 2.81 2.12 .80 2.67 2.02
151 84 2.72 2.00 .80 2.59 1.90
336 .84 2.63 - 1.97 .80 2.51 1.88
624 .84  2.62 1.97 .80 2.50 1.87

Higher values for small tributary areas are indicated because GL and AL
are larger in this case. Further reductions when A > 625 ft2 are not
necessary. For tributary areas that are normally encountered in design,

the load factors are relatively insensitive to A.
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6.3 Shear

To insure that failure of a beam will be in a flexural mode
rather than the shear mode, the risk of shear failure should be prescribed
to be at least one order of magnitude less than the risk of failure in
flexure. On this basis, the required re may be determined, from which
the size of the stirrups Kp and their spacing ;;t are obtained from

Eq. 3.38. To insure that each potential diagonal crack is crossed by

at least one stirrup, the provision that s d should be retained.

<
st ~

1
2

For a given risk level, re depends on the amount of longitudinal
reinforcement E'and fhe cross sectional aspect ratio b/d; as indicated in
Figs. 5.3‘and 5.4; a small change in rs could result in a large change in
the risk of failure in shear. The required amount of web reinforcement
for a specified risk of shear failure may be Found by equating Egs. 5.21
and 2.21 and solving for_rs. The relationship is complicated, and the
comp]exity of this procedure makeé it unsuitable for design purposes.

It is therefore hot possible to prescribe one overall risk-
based design cfiteribn for shear, as is done in the ACl code. At this

time, it seems that to insure a risk-consistent treatment of shear, the
designer must be permitted to choose the necessary re (or load factors)
directly from curves of the type illustrated in Figs. 5.3 and 5.4. To
allow sufficient flexibility in design, a large number of such curves,
encompassing sufficient variations in p and b/d as well as different re-
sistance and load statistics, must be furnished as part of the code format.

Since present design formats are given by prescriptive equations, such

a suggestion may not be very practical.
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Any direct requirement for shear,. therefore, would be exceed-
ingly complex. Simplified risk-based deéign provisions for shear ought
to be investigated further. One immediate improvement that may be made
in the current ACl code, suggested by the results of Chapter 5, is to
reduce the present shear capacity reduction factor from 0.85 to 0.75.
The current factor of O.8S‘appears to be too high to maintain a lower
risk of shear failure than that in flexure; reducing this to 0.75 should

achieve this objective for the majority of design conditions.

6.4 Axial Thrust and Bending

As the eccentricity ratio increases, the probability of failure
of ACI designs for combined bending and thrust increases rapidly when
e/t is small, and changes more gradually as e/t becomes large (see
Fig. 5.14). It is therefore proposed that beam-column designs be based

on an acceptable risk increasing exponentially from }0-9 (when e/t = 0)

to 10-6 (when e/t > eb/t), or

log,, Pe = 3 (e/t) - 9, e/t < e/t
eb/t
(6.5)
-6 —
Pf: = 10 3 E/t 2 eb/t

where Pe is the»acceptab]e risk. The restriction e/t > 0.10 has been
removed; this condition seeﬁs overly conservative. A more consistent
way of accounting for unexpected eccentricity is to increase the

associated prediction error A€~when necessary. The risk of 10-6 when

e/t > eb7t is prescribed at one order of magnitude less than the allowable



126

risk in flexure to reflect the generally higher consequence of a beam-

column failure. 1t is reasonable that the risk should be less when e/t
is small, since such members will exhibit little ductility prior to fail-

ure; notwithstanding that spiral columns can have considerable ductility.
As indicated in previous analysis, the reliability of a beaﬁ-
column is a function of p and e/t; accordingly, the load factors would
depend on these parameters. An illustration of this is presented in
Table 6.5 for dead and live loads and intermediate grade reinforcement;
the capacity reduction factor has been computed from ¢ = 1 - Bo o 6P : Ag

was assumed to be 10 percent, replacing the ACI requirement of e/t > 0.10.
TABLE 6.5

Mean Load Factors for
Combined Bending and Thrust

p = 0.02 (p, = 3.5%) p o= 0.0k (p, = 7%)
e/t ¢ \ Yp ¢ Y Yp
0.10 0.77 3.55 2.40 0.80 3.38 2.29
1.0 0.68 3.58 2.50 0.69 3.40 2.36
2.0 0.59 3.88 2.65 0.61 3.75 2.56

A comparison with Table 6.2 for flexure shows that the strength reduction
factor ¢ is smaller, whereas the load factors YL and Yp are larger; these
are due to the smaller risk level required of beam columns, as well as

the larger uncertainties underlying such members.
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It should be apparent from the three failure modes considered
that the load factors depend on the degree of uncertainty and the
specified level of risk. However, except for the flexural case, in which
the load factors remain virtually constant for a given risk, there is no
simple way of preséribing risk-based design requirements, e.g., for sHear.
One alternative may be to furnish a number of curves or tables for Yy
and ¢. This implies that while it is possible to maintain Eq. 6.2 as
the design equation, it may not always be advantageous to do so in a
re]iabi]ity-based format. In some cases, it would be more reasonable to
allow the designer to compute the required resistance directly from an
expression such as Ed, 2.7, arising from the prescriptive-lognormal basis,
wherein the uncertainties QR and QS would be furnished by the code
writing group for different failure modes and load combinations. As
another example, it would be easier to assure adequacy in shear by choosing
a value of re directly from a curve of the type illustrated in Fig. 5.3,

rather than to compute the required load factors.
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Chapter 7
SUMMARY AND CONCLUSIONS

A model is developed for formulating designs on the basis of
acceptable risks, requiring only the first and second moments of the design
variables. Errors arising from uncertainties in prediétion and modeling
are recognized by introducing a factor of engineering judgment into the risk
analysfs. Variabilitiesbin the design parameters are esfimated from data,
whenever possible. Alsystematic combination of the available information
results in a comparative estimate of the underlying design risk which is
consistent with the state of present knowledge.

The levels of risk implied by current ACl design provisions for
beams in flexure and shear and for eccentrically foadéd columns are eval-
uated. Based on these tevels of risk, specific suggestions are made for
deQeloping rigk?béséd'deSign criteria. These criteria permit a consistent
treatment 6f uncertainties, and quantitafive definftion and control of the
level of design safety. Difficulties arising in the practical imp]ementa—
tion of such a design concebt are also discussed.

On the basis of this study, fhe following conclusions and recom-
mendations can be made:

1. Currént design provisions can be appraised in terms of risk
measures. This requires a careful eva]uaﬁion of the basic
variabilities and prediction errors associated with the
design variables and the resistance and load models. This

evaluation can be performed systematically using first-order
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statistical analysis. Available data and reported experience
provide valuable information, and should be used to determine
realistic measures of uncertainties required for the evalua-
tion of risk.

Practical reliability-based design criteria can be developed;
such criteria (specifically, design based on acceptable risk)
can be cast in the format of current design provisions. These
criteria ought to be specified in terms of mean values, as
they are more convenient from a statistical standpoint. Al-
though the multiple load factor format can be retained, there
is no theoretical basis for such muitiple factors. A single
]éad factor applied to the totai multiple load effects is
sufficient from a reliability. s;andpoint; in fact, this for-
mat .is simpler and more directly consistent with statistical
analysis.

The implied risk of flexural failure in a beam designed ac-
cording to ACIl provisions is norma]ly of the order of 10—5,
regardless of the reinforcement ratio, concrete quality, and
load configuration. Risks associated with existing designs,
or conversely, designs based on specified risks, may be deter-
mined from consideratidn of the tension failure mode, pro-
vided that the longitudinal reinforcement ratio is small.

The ]ikelihoéd of a compression flexural failure may be
controlled with a probabilistic statement regarding the design
reinforéement ratio. The uncertainty in flexural capacity

is primarily.a function of uncertainties in the reinforcement

yield stress and the effective depth to the reinforcement;



un

130

the quality of the concrete is not sighificant, except when
thevsection is very heavily reinforced. A statistical anal-
ysis of shear capacity based on the modified truss analogy
‘indicates that concrete quality is not significant in deter-
mining the ;hear capacity except when the web is very lightly
reinforced. The variabi]fty'in shear cépacity may be expected
~to be considerably larger than the variability in flexural

' capacity. |
Current AC? provisions
of a shear failure is less than the risk of a flexural failure.
However, the strength requirement derived from the truss
analogy is insufficient to accomplish this objective; provi-
sions for the maximum spacing and ﬁinimum area of the web
reinforcement are usually necessary. To provide sufficient
’additfona1 safety against shear Failﬁrg, risk-based shear
provisions should therefore be based on an acceptable risk

of 10—6 or less; to achieve this in the context of the pre-
sent ACI forhat, the capacity reduction factor for shear

should be about 0.75.

The implied risk of AC| designs forbeccentrically loaded
columns increases from less than 10_9 when e/t is very small

up to the'order‘of IO-T5 when e/t becomes large. This is com-
patible with ACl intentions of providing a greater margin of
safety when there is less ductility. - The risk is 1ess than

that for beams when e/t is small, reflecting the greater
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importance attached to column reliability. The minimum ec-
centricity requirement (i.e;, e/t > 0.10) seems to be exces-
sively conservative.

Uhcertainty in the capacity of an eccentrically loaded column
depends on the eccentricity of the applied load. When the
load eccentricity is small, implying that failure occurs in a
compression mode, the concrete quality and uncertaintfes in
dimensions are significant to the overall uncertainty of a
beam-column., When the eccentricity ratio is large, implying
that failure will occur in a tension mode, the factors impor-
tant to flexure dominate. In all cases, good workmanship is

essential.
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FIGURE 2.10
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FIGURE 3.1
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: FIGURE 3,8 v
INTERACTION CURVE FOR A REINFORCED CONCRETE SECTION
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APPENDIX A
RISK CALCULATION FOR NONNORMAL VARIATES

In cases where more than two nonnormal variables are involved,
Pr(R < V(S] + 52)) cannot be evaluated in closed form. This probability may

be computed to an arbitrary degree of accuracy from

N v
p, = lim ] PrR < (s, + x.)[s, =x)Pr(s, = x)
N»oo k=1

By assuming all variates are mutually statistically independent,

N 4
p, = lim ) Pr(Rx v(S] + xk))-Pr(S2 =_xk) - (ALT)

N-oo k=1
Pr(52 = xk) may be found from discretizing 82 at N arbitrary points. Then

_ o o bxy WAy
Pr(s2 = xk) = Fsz(xk + 2) Fsz(x : )= AFSZ(xk) (A.2)

When Sz is discretized between exceedance values of 10_8, with 40~50 dis-

cretization points, the error in Eq. A.1 is very small. For nonnormal R

and S,, Pr(R < v(s, + xk)) must be computed by numerical integration.

]
{n what follows, © =-52/S], and w = Yo Y8

]

if R, S], and 52 are lognormal, then

o 22 tnlx, s,
n(u]xk)e du b AD ~ (A.3)
~oo L/ln(l+6§) _|
. 2 y

=

O
(]
i~
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A here implies an increment in cumulative probability &, Xy is discretized

for + 7 standard deviations of 52, and

I nj ——te— exp(y/2 In(1 + 6§ Ju) + vBx

' 2 1
1+ GS]

¢/1n(1 + az)

k

©

n(ulxk)

3 l-

W

In| ——

‘/1+<S§

- (A.4)
/(1 + 80)
' ' R
The integral in brackets is the standard Gauss-Hermite form.
If R is Extremal 111 (Weibull) and S, and S, are Extremal |
(Gumbel),
g A :
o = pix.) pe (x,) (A.5)
"0 ket k® TS, Tk
where
. i
K
w
plx, ) = 1 - exp| - exp <~ ul , y R
. vE S | T(1 + — )~
o : S] K
: : ‘R
- vex, - v(1 - b5 8 ) e Y dy (A.6)

]

the standard Gauss-Laguerre integration form. KR is a measure of the sta-

tistical dispersion in R. The discretized probability measure for 52 is
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=

T
P. (x,) = A expl| - exp<- (x, = 1+ 0.45 8_ ) L (A.7)
52 k V6—6S k 52 1
) 7
If R is Extremal |1l and S] and S2 are Extremal Il (Frechet)
)
p_ = plx ) po (x.) (A.5)
o] Ke 1 k S2 k
where !
o | ! T K
(T +g) ( 5
= - R Vy
p(xk) . | - exp| =<K~ 1 e
r(r - —)
o) : K
S
. ) I
]
A N e dy (A.8)
; J
and KS is a measure of dispersion in S], and
]
K
| 52.
p. (x,) = Aexp]|- — (A.9)
S K |
2 (1 = = ) x
KS k
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APPENDIX B
STATISTICS OF BALANCED ECCENTRICITY RATIO eb/t

The statistics of the balanced point eccentricity ratio must .be
known to compute the probability of tension or compression failures for com-

bined bending and axial thrust. The mean is

] Esgu d f T 1) B f '
eb/t = E—‘kz — < — - + 2p Y (:—f) —— Y (B.])
E + f t kok, f 1t E_€
s cu y 13 ¢ s cu
and the c.o.v. is
2 2.2 2,2 2 2, .2 2.2, 2.2 2.2
Ge = < GF + cz(df + dA + Sb +.(3k K ) + c3 6d'+ <, St + co 66 (B.2)
b % _ c s 173 7 , cu
. :
where |c.| are defined as
o ] ; E.€., fy §.+ 2p fy’ (E:- l) Ee, * 2fy
(. 2 - =12 = —/= |- 2| =
e/t (Es w fy) t k1k3 fo\t E€el
] E5 cu+fy (a_ I) Zp Tcy
o = — 2 R ——
eb/t Esecu t k]k fc
. . 1 p_ fy (ESECU + fy) ) ‘ ESECU E
LW KK, F. EE 2€F +F) T
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APPENDIX C.
ANALYSIS OF COMBINED BENDING AND AXIAL THRUST

C.1 Compression Failures

The axial capacity of the member is defined as

P

- o _ - c ‘
PC - [PO ] . D qU (C-I)
l | =~ 1] —
Py e

in which D=k fcbt,'and where the concentrically loaded capacity Po for

3

symmetrically reinforced sections is

Py = k3fc(bt - 2AS) + 2Asfy | (Cc.2)

and the balanced point capacity Pb is

E ¢ :
s”cu
P = k. k. fbd z————r - k,fA (c.3)
b 13 ¢ Esacu + fy 3 ¢cs
If x is some parameter,
BPC ] SPC BPO . BF’C BPb . BPC Beb‘
3 x aPO 93X 3Py 9x o€y X

evaluated at the mean values to analyze the second order uncertainties.

With C = ]/(eb/t),
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C
8PC 9y 9% e s} e "2
55—-‘: '—-—'—‘C?]'*‘ a——‘] C —
o o) b b
2 -2
aPC _ 99 e | /qo \ e _
W_TC?{]*- -q—-"])c?:- =
b 9%b b
aPC e ¢ |9 I/qo
—a~e*'~‘—" DqOC—L—?—-}[lﬁ-——] C
b b b
Feo s
de Ce

oP
STO = 2/—\
y S
BPO
é—f— = kB(bt - ZAS)
C
SPO
gﬂg- = ny - 2k3fc
BPO
ab B k3fct
BPO
5t - KafeP

The derivatives with respect to Pb are

(c.5)
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an Esecu
5t = T kkgfbd T o7
an Es cu
FOT Kiksbd g L T

c s cu y
oP
BAb =T k3‘cc

s
an secu
5 T %3Fd rea
oP

b _ s cu

od klk3fcb Ee +f

cu

P ,

b_ . k. k_f bd nys

8€ 13 ¢ >

_ cu IR (ESECU + fy) _ I
BPb ESECU
TR R,) fed % N (C.6)

The derivatives with respect to e, are

Je E e E e + 2f

b s cu ] b s cu y
57 kz[(E A >2}d *2p T (d -3 Ee

4 s cu
Beb } _~2p fy ( - E.) Esecu + fy
afc o k.,k f2 2 ’Esgcu
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Beb _ 2 fy - .t.) .Esecu + fy
oA A k,k,f 2 E €
s s 13 ¢ s cu
Beb _ 2 f | - E.) Esecu + f
ob b k]k3fc 2 Esgcu
Je E ¢ f Ee + f
b _ K s cu + y s cu ]
ad 2 Ee +f PRk T E e d/t
y 1 3¢ s ¢
de f E ¢ + f
b _ 1 1 9 y s cu
5t 2 Pk, T E e
3¢ s cu
Beb f ES " f ES
-k Y d -2 —te— (d-E)—Y=
Ecu 2 (f +E ¢ )2 kl 3fc 2 (E e )2
e e O Y - § ~CU - e et e — S CU T
% . 2p Ty (d - ) fsfeu T Ty I (c.7)
3 (k k) f 2 E e ‘ 2
173 c s cu (klkB)
The uncertainty in capacity is found from
2 : 2
§ § , ;
I
(c.8)

where

-
=~
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3P oP a de
1 r o b 3 b -
c = — |la, =— +a, 774/ + D= ~— f
f 5 1 f 2 9 t o
y P L °Ty y vl
1 Pt s cuy F
c = — | a,p.m a k, =——
f c 1"t 2 1 2p 2
Y q, : (Ege, *+ f)
p p Ee + 2f
s cuy t m t 1 s cu y
+a, {k =+ 2p |- (c.9)
317 (ESECu + f )2 2p ki \2p 2 Es€eu

in which all parameters are evaluated at their mean values in computing

= zAS/bt, and m = fy/k

3fc‘

¢ 0 Py
y

C.2 Tension Failures . _

When e is measured from the plastic centroid, and the section is

symmetrically reinforced,

- 1 IR RS - paT
PL = k3fcbt an3 R (t 2) . = Dq (c.10)

where D = kBFcbt’ n = kz/k]k3 as in flexure, and

A
_ e 1,2 s e - d _ 1
-R = /(-E- —2—) + Un BE—{;C— [k3fc r + (ny kEfC) (-E- E‘)

The derivatives are

S

of R
b
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[oF]
i

2A f
sy (@ _ 1, bt _(e sy
R T, T2+ a R- (T3] - kA
1 e d 1
7 oo (2F - kgf ) (3 - 2] - kg f
A

1 B e ) d _1

fct e ]

—"z-ﬁ‘ [R -. ('t- - 5)]
As 1
e (2f - kaC)( 't‘)
f b kn A

< L Je_ e s e

T R T T bet_ [ksfe 3

s (2F -k f ) (E - Pl o+ &)+ i R- (£- 3]
3¢/t & t 2N t 2

fcbt ] e 1 AS ]
IS UL Ty 3 S
As e d 1

f_bt e

7 [R - (;-- 3-)] (c.11)
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The overall uncertainty in capacity is found similarly to the compression

case. The ¢, are given by

k
5P :
o T )= ,
¢, = = | K | (Cc.12)
T 'S
€e.g.,
. Ny oa@o
£ Py T R T2 —T
y k3fc t q,
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APPENDIX D

EVALUATION OF STATISTICS OF THE GUST FACTOR

The gust factor to be used in design is defined by Eq. 4.29,
repeated here.

G. = 1+ ¥ 2 In(f t
o]

D

¢’ 9y (D.l)

in which fo is the fundamental frequency, ty is the averaging period, and

20
_16, 3008 1

and where g, g,, 935 and g, have been defined in Eq. 4.27. |lts mean is
found by substituting the mean values of the individual parameters into

Egs. D.1 and D.2.

GD = GD(k,a,B, fo,UO,c ,C_) : (D.3)

and its second order statistics are found as

2 2
§ §

) : _

2
> = z am (D.L})
2 | 2
AGDJ Am
in which

s = EEE. p

m *G" om
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of
o

otherwise

i
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and m is one of the variables in Eq. D.3. When m = f ,
) BGY !
Yy Z In(f_t + S (D.5)
od ¥, ¢ yTTRFE) Y ‘
o} o d
ST
2 ]n(fotd)~ - (D.6)
o otd:
fl(io_)d 'i‘?.i
2 h U
o
iE. (22_)a foh
3 h
o
] .
o
00 2 (22)
u h
o
(D.7)

the derivatives

ak

m

are. then

co

]
y ()
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36, - 2(3 - tg)
- = co 1+ 35— 49,9, 9 i
30 298 91 82 93 2
3(1 + t3)
0
T 9yt T 9,t, In (EFJ
?_GP_ = - cg T (=)
3B y 2g8 919293 '8
3G, - 2(3 - tg) |
30, T Oy 7g8 %1% 9% ¢ 9if T 9% 0+ (T
3
3G
b _ i 1
e, = -0, 355 9 9 93 (98) <
oG o o
o, <o, 355 9 9y 93 (9,1
. 2(3 - t3)
= = <O 9, 9, 9 - - gt
Bfo y 1 2gR 1 °2 73 3(] + tﬁ) 171
1 1 ,
9oty | + % e (D.8)
C o] .

where all parameters in Egs. D.7 and D.8 are taken at their mean values in

the evaluation of a. -






