
Non-Interactive Hierarchical Pairwise Key
Predistribution Scheme with Multi-Level Key

Establishment

Qiyan Wang, Himanshu Khurana, Klara Nahrstedt

University of Illinois at Urbana-Champaign,
IL 61801,USA

Abstract. Networking environments with connectivity, bandwidth and compu-
tational constraints such as critical infrastructure networks or MANETs benefit
from non-interactive key predistribution capabilities. In these networks, nodes
can compute shared keys using public identities without the need for interactions
once basic key materials are distributed to them. Motivated by the electric power
grid, in this paper we propose a novel key predistribution solution for hierarchi-
cal networks, namely, Non-interactive Hierarchical pairwise Key Predistribution
(NHKP) that supports (1) hierarchical key predistribution and (2) non-interactive
multi-level key establishment. In NHKP each node of the hierarchy gets its key
materials from its parent node directly and any pair of nodes, even at different lev-
els, can establish a shared key without interactions. To the best of our knowledge,
this is the first scheme to date that supports direct multi-level key establishment.
NHKP is constructed using multivariate symmetric polynomials and specially
designed multivariate perturbation polynomials (PPs). It achieves perfect resis-
tance to collusion attacks at the lowest Q levels (Q is a tunable parameter) and
partial resistance at the upper levels. Our scheme provides a partial answer to
an open question posed by Gennaro et al. [1] who developed a hierarchical key
predistribution scheme with such resistance only at the leaf level. Furthermore,
NHKP is efficient in terms of computation and storage overheads. Our prototype
implementation shows that NHKP is practical.
Note that although our scheme uses a similar idea of PP, which was originally
proposed in [2] and recently broken in [15], our construction for PPs is in na-
ture different from previous constructions. We use multiple variables in PPs (in-
stead of a single variable as in [2]) to introduce more randomness and each PP
is constructed on the fly using random Langrange interpolation. Consequently,
the space of PPs in our scheme has T dimensions, where T is a large parameter,
rather than two dimensions as used in [2]. These make it very hard for the ad-
versary to break any of PPs or the master polynomial. This paper only provides
a security analysis of our scheme, and a formal security proof is the focus of our
future research.

1 Introduction

Networking environments with connectivity, bandwidth and computational constraints
such as critical infrastructure networks or MANETs benefit from non-interactive key
predistribution capabilities. In these networks, nodes can compute shared keys using

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4823474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Fig. 1. An example of four-level power grid

public identities without the need for interactions once basic key materials are dis-
tributed to them.

One of the largest critical infrastructure networks is the electric power grid, where
networks are constrained due to limited connectivity, low-bandwidth communication
links and a large number of computation-constraint devices. As shown in Fig. 1, the
power grid features a hierarchical structure with upper-level nodes (parent nodes) gov-
erning a number of lower-level nodes (child nodes). We believe that heavy-weight and
resource-intensive key management solutions like X.509 PKI are not suitable for such
environments. Instead, we propose a Non-interactive Hierarchical pairwise Key Predis-
tribution (NHKP) scheme that has two functional features. First, it enables each node
of the hierarchy to get its key materials from its parent node directly. Second, any pair
of nodes in the hierarchy, even at different levels, can establish a shared key without
interactions. This serves as a basis for secured multi-level communications, which are
crucial in the power grid to accommodate the coordination of power-load balancing and
close estimation of system states. For example, a control center may communicate with
some sensing devices in its domain or in other control center domains to collect sensed
current/voltage information so as to estimate the system state.

There are three key challenges of designing an effective NHKP scheme: 1) resis-
tance to collusion attacks1 at all levels of the hierarchy, 2) high computational effi-
ciency, and 3) small storage overheads. The collusion problem arises because the key
materials of any nodes are derived from the master key materials (held by the root node)
due to the hierarchical nature, and combining individual key materials may infer some
knowledge of the master key materials. Recently, Gennaro et al. [1] proposed a scheme
that partially addresses the problem in that their scheme provides hierarchical key pre-
distribution, but does not support multi-level key establishment. Moreover, this scheme
incurs very large computational overheads and is perfectly resistant to collusion attacks
only at the leaf level of the hierarchy. How to achieve perfect resistance at all levels is
posed by them as an open question.

1 Collusion attack refers to the case where the attacker compromises multiple nodes and com-
bines the secrets learnt from these victim nodes to infer other secrets of non-compromised
nodes.

3

Our Contributions. In this work, we develop a novel NHKP scheme, which sup-
ports (1) hierarchical key predistribution and (2) non-interactive multi-level key estab-
lishment. NHKP has strong resistance to collusion attacks and very low computation
and storage overheads.

We first develop a basic NHKP scheme that supports these two features but is par-
tially resistant to a threshold of node corruptions at each level. This scheme relies on
multivariate symmetric polynomial that is an extension of the scheme of Blundo et al.
[6]. Based on the basic NHKP scheme, we develop an advanced NHKP scheme that
retains all properties of the basic scheme and provides much stronger resistance to col-
lusion attacks. Our approach is inspired by the scheme proposed by Zhang et al. in
[2], where they use univariate PPs to design a non-interactive pairwise key predistri-
bution scheme for sensor networks. However, our analysis shows that the approach to
constructing univariate PPs in [2] cannot be directly applied to NHKP, because their
construction cannot be extended to build multivariate PPs that are necessary for the
NHKP scheme. To solve this problem, we design a novel construction algorithm for
multivariate PPs by making use of Lagrange Interpolation [4] and some structural fea-
tures of NHKP. The resultant scheme has perfect resistance to collusion attacks at the
lowest Q levels, where Q is a tunable security parameter, and retains partial resistance
at upper levels (one can view the scheme of Gennaro et al. [1] as a special case of NHKP
with Q = 1). The advanced NHKP scheme considerably raises the bar to collusion at-
tacks in that it allows one to choose a suitable Q to cover all those levels that contain
easy-to-compromise nodes, and forces attackers to attempt those nodes that are hard to
bring down.

We have a prototype implementation of the advanced NHKP scheme. Our perfor-
mance experiments indicate that NHKP is practical and substantially improves upon
prior work by Gennaro et al. [1] (hereafter referred to as Gennaro08). Gennaro08 in-
volves a large number of expensive exponential computations and thus suffers sub-
stantial computational overheads. In contrast, our schemes are constructed only using
simple modular additions/multiplications and hence are significantly more efficient. Ex-
periments show that the key generation in NHKP is at least thousands of times faster
than that of Gennaro08 for a moderately large hierarchy. This renders a significant ad-
vantage to NHKP for real-time applications and computationally constrained devices. In
addition, the storage overhead of NHKP is smaller than Gennaro08 as well, especially
for large hierarchies with strong collusion resistance. To secure a four-level large-scale
hierarchy with perfect collusion resistance to all levels, NHKP only incurs 28.7 KB
storage overhead at a leaf node, and less than 2.8 MB storage at any upper-level nodes.

To the best of our knowledge, this is the first hierarchical key predistribution scheme
that supports multi-level key establishment. Our approach of using multivariate pertur-
bation polynomials to achieve perfect collusion resistance at the lowest Q levels pro-
vides a partial solution to the open question raised by Gennaro et al. [1] Although
our work is mainly motivated by the power grid, our solution is general in nature and
applicable to any hierarchical networks. For example, consider a hierarchical military
MANET where the root node of the hierarchy is the central commander and the second
level comprises a number of tanks, each of which has multiple affiliated foot soldiers
belonging to the leaf level. In this case, entities at a higher level predistribute key mate-

4

rials to lower-level entities and any two of them should be able to securely communicate
with each other to share battlefield information.

Note that although our scheme uses a similar idea of PP, which was originally pro-
posed in [2] and recently broken in [15], our construction for PPs is in nature different
from previous constructions. We use multiple variables in PPs (instead of a single vari-
able as in [2]) to introduce more randomness and each PP is constructed on the fly using
random Langrange interpolation. Consequently, the space of PPs in our scheme has T
dimensions, where T is a large parameter, rather than two dimensions as used in [2].
These make it very hard for the adversary to break any of PPs or the master polynomial.
This paper only provides a security analysis of our scheme (Appendix 2), and a formal
security proof is the focus of our future research.

The rest paper is organized as follows. Section 2 gives some background knowledge
and describes our basic NHKP scheme. Section 3 elaborates on the construction of
multivariate PPs and the advanced NHKP scheme. Section 4 evaluates the NHKP and
compares it against Gennaro08. Section 5 presents the related work. Section 6 concludes
the paper.

2 Basic NHKP Scheme

Before going into our design details, we first present the threat model, and briefly review
the non-interactive polynomial-based key predistribution scheme of Blundo et al. [6]
that is the basis of our scheme.

2.1 Threat Model

We assume the attacker can selectively compromise an arbitrary node at his choice, but
we assume the root node of the hierarchy is secured and free from compromise. We
believe this assumption is realistic since the root node, just like the top-level CA in PKI
and the key server in other key management schemes [1][2][3][6], generates all secrets
for the entire network, and compromising the root node is tantamount to breaking the
whole system. Hence, such key servers are usually fully safeguarded in practice.

Once a node gets compromised, the secrets it knows are revealed to the attacker.
Any compromised nodes can be used to launch collusion attacks. If the attacker com-
promises a (non-leaf) node that is responsible for distributing keys, we assume the at-
tacker can also learn the secrets that this node has distributed. In addition, we assume
that the attacker has considerably powerful but bounded computational capability. This
means that the attacker could access a very powerful machine or a cluster of machines
for parallel computing, but he cannot invert a secure hash function (such as SHA-256).

2.2 Background: A Non-Interactive Polynomial-Based Key Predistribution
Scheme

The polynomial-based key predistribution scheme was originally designed by Blundo
et al. [6] for conference key agreement. To achieve a n-party, (t + 1)-secure group key
agreement scheme, one needs a n-variable, t-degree symmetric polynomial (as defined

5

Table 1. Notations

L + 1 The number of levels of the hierarchy (The root is at level 0, and
the leaves are at level L)

Q The number of levels with perfect collusion resistance
q, c q is a large prime, c = dlog2 qe
tl The degree of variables xl, yl, 1 ≤ l ≤ L
Il The set of identifiers at level l, 1 ≤ l ≤ L
id〈l,u〉 The identifier of the u-th node at level l, 1 ≤ l ≤ L
null The reserved identifier with value equal to 1
F (x1, ..., xL; y1, ..., yL) The master polynomial over Fq

G〈l,i〉(xl+1, ..., xL; y1, ..., yL) The polynomial of i-th node at level l, 1 ≤ l ≤ L − 1
G〈L,i〉(y1, ..., yL) The polynomial of i-th node at the leaf level
φ〈l,i〉(xl+1, ..., xL; y1, ..., yL) The PP added to G〈l,i〉(xl+1, ..., xL; y1, ..., yL)
φ〈L,i〉(y1, ..., yL) The PP added to G〈L,i〉(y1, ..., yL)

below). Since our goal is to establish pairwise keys, for simplicity, we only discuss
the special case of [6] (n = 2), that is, pairwise key establishment using a bivariate
symmetric polynomial.

First, the key distributor randomly picks a t-degree bivariate symmetric polynomial
f(x, y) =

∑t
i,j=0 Ai,jx

iyj , s.t. f(x, y) = f(y, x), where Fq is a finite field and q
is a prime number that is large enough to accommodate cryptographic keys. For each
node u, the key distributor assigns it a unique identifier idu, and then computes and dis-
tributes a polynomial share of f(x, y), namely, f(idu, y), for this node. Consequently,
any pair of nodes u and v can compute a shared key using each other’s identifiers: node
u evaluates its polynomial f(idu, y) at point y = idv obtaining f(idu, idv), and node v
computes the key by evaluating f(idv, y) at y = idu. Since f(idu, idv) = f(idv, idu),
the keys generated by u and v are identical and can be used to encrypt/decrypt corre-
spondences.

The security proof in [6] ensures that this scheme is unconditionally secure and
(t + 1)-collusion resistant. That is, the coalition of no more than t compromised nodes
knows nothing about the pairwise key between any two non-compromised nodes.

2.3 Description of the Basic NHKP Scheme

We consider a (L+1)-level hierarchy, where the root is at level 0 and the leaves reside at
level L. At the initialization, the root node constructs a random 2L-variable symmetric
polynomial over Fq as the master polynomial.

F (x1, ..., xL; y1, ..., yL) =
t1∑

i1,j1=0

· · ·
tL∑

iL,jL=0

Ai1,...,iL;j1,...,jL
xi1

1 · · ·xiL

L yj1
1 · · · yjL

L

s.t. F (..., xi, ...; ..., yi, ...) = F (..., yi, ...; ..., xi, ...), ∀i ∈ [1, L]

This master polynomial (i.e., coefficients) is secretly kept by the root node.

Key predistribution. From the second level down to the leaf level, each node ob-
tains from its parent a unique polynomial share that is derived from its parent’s poly-

6

Fig. 2. Examples of key establishment in a four-level hierarchy

nomial according to its identifer. We let id〈l,u〉 denote the identifier assigned to the
u-th node at level l. For expression simplicity, we will use id〈l,u〉 to refer to nodes in
the remaining paper. For example, “id〈2,1〉 establishes a key with id〈3,4〉” means “the
1-st node at level 2 establishes a key with the 4-th node at level 3”. The detailed key
predistribution process is described as follows.

– For each node id〈1,i〉 at level 1, the root node computes and distributes a (2L −
1)-variable polynomial share G〈1,i〉(x2, ..., xL; y1, ..., yL) = F (id〈1,i〉, x2, ..., xL;
y1, ..., yL).

– For each node id〈l,u〉 at level l (2 ≤ l ≤ L − 1), its parent id〈l−1,v〉 calculates
and distributes a (2L − l)-variable polynomial G〈l,u〉(xl+1, ..., xL; y1, ..., yL) =
G〈l−1,v〉(id〈l,u〉, xl+1,..., xL; y1, ..., yL).

– For each leaf node id〈L,u〉, its parent id〈L−1,v〉 calculates and distributes a L-
variable polynomial share G〈L,u〉(y1, ..., yL) = G〈L−1,v〉(id〈L,u〉; y1, ..., yL).

Multi-level key establishment. Using the predistributed polynomials, any pair of
nodes can establish a unique pairwise key. We first introduce the notion of Identifier
Vector (IV) that is necessary for the key establishment. Each node in the hierarchy has
a unique IV that comprises a sequence of L identifiers. Consider an arbitrary node
id〈l,u〉 at level l, 1 ≤ l ≤ L. Suppose the path from the root to id〈l,u〉 is “root
→ id〈1,v1〉 → · · · → id〈l−1,vl−1〉 → id〈l,u〉”. Then the IV of id〈l,u〉 is defined as
(id〈1,v1〉, ..., id〈l−1,vl−1〉, id〈l,u〉, null, ..., null) with the first l elements identical to the
identifiers of the nodes along the path and the last L− l elements equal to null, where
null is a reserved identifier with value equal to 12. For example, in Fig. 2, the IV of node
id〈1,1〉 is (id〈1,1〉, null, null), and the IV of node id〈3,2〉 is (id〈1,1〉, id〈2,1〉, id〈3,2〉).
Specially, the IV of the root node has all elements equal to null.

To compute a pairwise key, each participant evaluates its polynomial by fixing all
x’s (if any) to be null and setting all y’s as the elements of the peer’s IV. In par-
ticular, consider a pair of nodes id〈l1,u〉, id〈l2,v〉, 0 ≤ l1, l2 ≤ L, whose IVs are
(δ1, ..., δL) and (η1, ..., ηL) respectively. To setup a shared key, node id〈l1,u〉 calculates
G〈l1,u〉(null, ..., null; η1, ..., ηL), while node id〈l2,v〉 computes G〈l2,v〉(null, ..., null;

2 The value of null can be set to be any constant positive integer. To minimize the computational
cost of key generation, we choose null = 1.

7

Fig. 3. An example of key predistribution in the advanced NHKP scheme with four
levels and Q = 2

δ1, ..., δL). Because of the symmetry of the master polynomial, the two separately com-
puted results are identical and can be used as the shared key. Fig. 2 gives some examples
of the key establishment.

This basic NHKP scheme is resistant to a threshold number of node corruptions. If
the attacker compromises more than tl+2

2 nodes at level l (1 ≤ l ≤ L), then he may
learn the secrets of a node at level l−1; if there are more than

∏l
i=1

ti+2
2 compromised

nodes at level l, then the attacker could break the master polynomial and learn all the
secrets of the system. A straightforward method to improve collusion resistance is to use
high-degree polynomials (i.e., increasing ti), but this may incur huge storage overheads.
Sec. 3 will present an efficient way to strengthen the resistance to collusion attacks.

3 Advanced NHKP Scheme

In this section, we first introduce the key idea of the advanced NHKP scheme, and then
present the challenges and solutions to constructing multivariate perturbation polyno-
mials. Finally, we give a full description the advanced NHKP.

3.1 Basic Idea

The advanced NHKP is designed based on the basic scheme presented in Sec. 2. To
achieve strong resistance to collusion attacks, we introduce random Perturbation Poly-
nomials (PPs) in the key predistribution to randomize the key materials held by the
nodes. In particular, instead of giving each node the original polynomial share (e.g.,
G〈1,1〉(id〈2,2〉, · · ·) for node id〈2,2〉 in Fig. 3), the key distributor provides a perturbed
polynomial (G〈2,2〉(· · ·)) that is obtained by adding the original share (G〈1,1〉(id〈2,2〉, · · ·))
with a random PP (φ〈2,2〉(· · ·)). As a result, even if a node is compromised, the attacker
is unable to extract from the exposed perturbed polynomial (G〈2,2〉(· · ·)) the original
share (G〈1,1〉(id〈2,2〉, · · ·)), which is necessary to infer the secrets of non-compromised
nodes. In order to hide the original polynomial share behind the perturbed polynomial,
the PP should contain the same number of variables as the original polynomial. In par-
ticular, the PPs constructed for level l, 1 ≤ l ≤ L, should contain 2L− l variables.

For the correctness of key establishment, the construction of PPs must ensure that
any pair of perturbed polynomials (e.g., G〈2,2〉(· · ·) and G〈3,1〉(· · ·)) are still able to

8

Fig. 4. An example of key establishment in the advanced NHKP scheme (between
id〈3,1〉 and id〈2,2〉 according to Fig. 3)

derive an identical key even if they comprise totally different PPs (φ〈2,2〉(· · ·) and
φ〈3,1〉(· · ·)). One way to achieve this is to make the output length r (w.r.t. bits) of
each PP shorter than that of the original polynomials (c = dlog2 qe, c > r), so that the
most significant c−r bits of the results of perturbed polynomials are not changed by the
PPs and can be used as the shared key3. This property of PPs is called partial infection,
and r is referred to as infection length. Fig. 4 gives an example of key establishment
with the presence of PPs.

Due to the existence of PPs, the length of the truncated key segment (that is the
most significant c − r bits of the results of perturbed polynomials) may be not long
enough to be directly used as a cryptographic key. To solve this problem, multiple mas-
ter polynomials can be used simultaneously and each of them generates a (c − r)-bit
key segments; consequently, applying a hash computation on the concatenation of these
key segments can produce a sufficiently strong key.

3.2 Challenges of Constructing Multivariate Perturbation Polynomials

A desired construction for multivariate PPs should not only ensure the correctness of
key establishment, but also incur small storage and computation overheads and scale to
large hierarchies. This is a quite challenging problem. One way to construct k-variable
PPs is to multiply k univariate PPs together. That is, φ(z1, ..., zk) =

∏k
i=1 αi(zi), where

αi(zi) (1 ≤ i ≤ k) is a ri-bit univariate PP; φ(z1, ..., zk) is a (Σk
i=1ri)-bit k-variable PP

as long as Σk
i=1ri < c. Zhang et al. [2] designed an algorithm to construct univariate

PPs. However, the infection length of each PP generated by this algorithm is at least
c
2 , and thus the multiplication result of these PPs will not have the property of partial
infection (i.e., Σk

i=1ri ≥ c).
An alternative way to construct univariate PP is based on Lagrange interpolation,

which is defined as follows [4].
3 In some cases, the most significant c − r bits are changed due to the carry generated in the

addition of the least significant r bits, but the result is predictable and hence can be rectified.
We refer to Appendix 1 for more details.

9

Definition 1. Given a set of n + 1 data points (a0, b0), ..., (an, bn), where no two aj

are the same, the Lagrange interpolation polynomial is a linear combination L(x) =∑n
j=0 bj lj(x) of Lagrange basis polynomials lj(x) =

∏n
i=0,i 6=j

x−ai

aj−ai
.

The idea of using Lagrange interpolation to construct univariate PPs (with domain
I and infection length r) is quite simple. For each element ai ∈ I, we pick a random
bi from {0, ..., 2r − 1}, and use (ai, bi), xi ∈ I, as the data points to construct the
Lagrange interpolation polynomial that passes through all these points. Obviously, the
obtained polynomial is a satisfactory r-bit PP with domain I. Unlike the algorithm of
Zhang et al. [2] that requires r ≥ c

2 , Lagrange interpolation allows choosing an arbitrary
injection length r as long as the probability that the attacker can correctly guess all the
values of bi’s is negligibly small. At the downside, Lagrange interpolation is hard to
scale to a very large domain I, since the degree of the generated Lagrange interpolation
polynomial is determined by the size of I.

3.3 Novel Construction for Multivariate Perturbation Polynomials

As presented in Sec. 3.1, NHKP requires (2L − l)-variable PPs φ〈l,−〉(xl+1, ..., xL;
y1, ..., yL) for level l, L − Q + 1 ≤ l ≤ L (the leaf-level PPs φ〈L,−〉(y1, ..., yL) can
be viewed as a special case where no x−’s variables are contained). Sec. 3.2 shows that
constructing such multivariate PPs in a general case is quite hard. However, we can
make use of some structural features of NHKP to design specific multivariate PPs that
only serve NHKP.

Firstly, recall that in the key establishment the value of xj (l + 1 ≤ j ≤ L) is
always null; as for key predistribution, the inputs taken by xj (l + 1 ≤ j ≤ L) in
φ〈l,u〉(xl+1, ..., xL; y1, ..., yL) are the identifers of the descendent nodes of id〈l,u〉 that
reside at level j, which we denote as Ij,〈l,u〉 (e.g., in Fig. 2, I3,〈2,4〉 = {id〈3,7〉, id〈3,8〉}).
Therefore, the range of values of xj in any evaluation of φ〈l,u〉(xl+1, ..., xL; y1, ..., yL)
is Ij,〈l,u〉 ∪ {null}, which contains much fewer elements than Ij . Another observation
is that the number of nodes at one of few top levels is much smaller than that of nodes
at bottom levels. For example, in the power-grid hierarchy of a reliability coordinator,
there will be only tens of control centers at the second level but hundreds of thousands
of devices at the leaf level. In the following construction, we introduce a tunable pa-
rameter J to select those top-level domains (I1, ..., IJ) that contain a limited number
of elements. Consequently, based on these two observations, we construct the multi-
variate PPs as follows.

Construction 1.
φ〈l,u〉(xl+1, ..., xL; y1, ..., yL) =

λ∑
ω=1

L∏
τ=l+1

α
(τ)

ω,〈l,uη〉(xτ)

J∏
σ=1

β
(σ)

ω,〈l,uη〉(yσ)γω(yJ+1, ..., yL)

where

– α
(τ)
−,〈l,u〉(xτ) is a r1-bit univariate PP over domain Iτ,〈l,u〉 ∪ {null}, and is inde-

pendently computed using Lagrange interpolation by choosing random data points
(a, b), b ∈R {0, ..., 2r1 − 1}, a ∈ Iτ,〈l,u〉.

– β
(σ)
−,〈l,u〉(yσ) is a r2-bit univariate PP over domain Iσ ∪ {null}, and is indepen-

dently computed using Lagrange interpolation with random data points (a, b), b ∈R

{0, ..., 2r2 − 1}, a ∈ Iσ .

10

– γ−(yJ+1, ..., yL) is a r3-bit multivariate PP (where r3 < c − (Q − 1)r1 − J · r2)
with domains Ik, J + 1 ≤ k ≤ L. Its construction will be described later.

– λ, J , r1, r2 and r3 are tunable parameters. The selections of these parameters will
be shown in Sec. 4.

In Construction 1, we use Lagrange interpolation to cover those variables with rel-
atively small domains (i.e., xl+1, ..., xL, y1, ..., yJ), and consequently the generated
univariate PPs will have fairly small degrees and short injection lengths. The rest vari-
ables are covered by γ−(yJ+1, ..., yL) that must be able to scale to very large domains
(i.e., Ik, J + 1 ≤ k ≤ L).

Now we show how to build γ−(yJ+1, ..., yL). Our construction is based on another
characteristic of NHKP. That is, the input of (yJ+1, ..., yL) is always a part of some
node’s IV. Hence, instead of ensuring for any combination (δJ+1, ..., δL) ∈ IJ+1 ×
· · · × IL, γ−(δJ+1, ..., δL) ≤ 2r3 − 1, we only need to consider those combinations
that are parts of valid IVs. For instance, according to Fig. 2, it is not necessary to ensure
γ−(id〈2,4〉, id〈3,3〉) ≤ 2r3 − 1 (where J = 1), since (id〈2,4〉, id〈3,3〉) is not a part of any
node’s IV.

Based on this observation, we design an algorithm to select suitable identifiers for
a set Υ of pre-selected random polynomials {γi(yJ+1, ..., yL)} such that each of them
is a valid r3-bit PP with domains that are made up of the selected identifiers. This al-
gorithm selects the identifiers starting from level J + 1 down to level L. At each level
k ∈ [J + 1, L], it outputs the suitable Ik together with the “child-and-parent” relation-
ship between each identifier in Ik and some identifier in Ik−1, e.g., id〈k,u〉 ∈ Ik is
bound as a child to id〈k−1,v〉 ∈ Ik−1. Linking these identifiers enables the identifier
selection process to only focus on valid IVs, thereby considerably reducing the number
of testing cases. A concrete description of this algorithm is as below.

Construction 2: We first select a set Υ of λ random polynomials γi(yJ+1, ..., yL) over
Fq, s.t., γi(null, ..., null) ≤ 2r3 − 1, 1 ≤ i ≤ λ. For level J + 1, we form IJ+1 by
collecting identifiers δJ+1 ∈ {2, ..., q − 1} (recall that value 1 is reserved as null), s.t.,
∀i ∈ [1, λ], γi(δJ+1, null, ..., null) ≤ 2r3 − 1. For level l (J + 2 ≤ l ≤ L), for each
δl ∈ {2, ..., q − 1} we choose a random “parent” identifier δ∗l−1 from Il−1 for δl, and
test if ∀i ∈ [1, λ], γi(δ∗J+1, ..., δ

∗
l−1, δl, null, ..., null) ≤ 2r3 − 1 (if l = L, no null

is contained), where δ∗j is the parent of δ∗j+1 (J + 1 ≤ j ≤ l − 1). If δl meets the
conditions, we add δl into Il and bind it to δ∗l−1 as a child.

If the values of γi(yJ+1, .., yL), 1 ≤ i ≤ λ, are uniformly distributed over {0, ..., q−
1}, the expected size of each domain Ik, J + 1 ≤ k ≤ L, is 2c · (2r3

2c)λ = 2c−λ(c−r3),
which can support very large hierarchies with a large c and a medium λ. For those
upper levels (e.g., k = J + 1) that may contain a relatively small number of nodes, the
identifier selection process can terminate after collecting enough identifiers, instead of
exploring the entire identifer space {2, ..., q − 1}. The complexity of this algorithm is
O((L−J)q) (note that the algorithm of Zhang et al. [2] for constructing univariate PPs
has the complexity of O(q), but their algorithm only constructs a single domain).

11

Table 2. Advanced NHKP scheme

Initialization
Inputs: Fq, c, r, r3, λ, χ // χ is the length of keys to be generated.
The root node picks π random master polynomials F (s)(x1,..., xL; y1, ..., yL) over Fq , 1 ≤
s ≤ π, where π = χ

c−r
. Then the root follows Construction 2 to generate a set of r3-bit

(r3 < r) PPs Υ = {γi(xJ+1, ..., xL)}1≤i≤λ with domains IJ+1, ..., IL, and selects I1, ..., IJ

at random.
Key predistribution
At level l = 1:
The root assigns each node u at level 1 an identifier id〈1,u〉 ∈ I1, and then computes
G

(s)

〈1,u〉(x2, ..., xL; y1, ..., yL) = F (s)(id〈1,u〉, x2, ..., xL; y1, ..., yL), 1 ≤ s ≤ π, which are
distributed to id〈1,u〉 together with Υ and Ik,〈1,u〉 ⊂ Ik, 2 ≤ k ≤ L.
At level l ∈ [2, L − Q]:
Each node id〈l−1,u〉 at level l − 1 assigns each of its children an identifier id〈l,v〉 ∈
Il,〈l−1,u〉, and then computes G

(s)

〈l,v〉(xl+1, ..., xL; y1, ..., yL) = G
(s)

〈l−1,u〉(id〈l,v〉, xl+1, ...,

xL; y1, ..., yL), 1 ≤ s ≤ π, which are distributed to id〈l,v〉 together with Υ and Ik,〈l,v〉 ⊂
Ik,〈l−1,u〉, l + 1 ≤ k ≤ L.
At level l ∈ [L − Q + 1, L]:
Each node id〈l−1,u〉 at level l − 1 assigns each of its children an identi-
fier id〈l,v〉 ∈ Il,〈l−1,u〉, and then computes G

(s)

〈l,v〉(xl+1, ..., xL; y1, ..., yL) =

G
(s)

〈l−1,u〉(id〈l,v〉, xl+1, ..., xL; y1, ..., yL) + φ
(s)

〈l,v〉(xl+1, ..., xL; y1, ..., yL), 1 ≤ s ≤ π,

where φ
(s)

〈l,v〉(xl+1, ..., xL; y1, ..., yL) is constructed using Υ according to Construction 1.

The key materials distributed to id〈l,v〉 include {G(s)

〈l,v〉(xl+1, ..., xL; y1, ..., yL)}1≤s≤π ,
{Ik,〈l,v〉}l+1≤k≤L, and Υ .
Multi-level key establishment
Inputs: (δ1, ..., δL) // (δ1, ..., δL) is the peer’s IV.
If any node id〈l,u〉 (0 ≤ l ≤ L) wants to establish a shared key with the node having IV
(δ1, ..., δL), it first evaluates KS(s) = truncr(G

(s)

〈l,u〉(null, ..., null; δ1, ..., δL)), 1 ≤ s ≤ π,
where truncr(·) is a function that truncates a binary string into the first r bits. Then id〈l,u〉
computes Hash(KS(1)|| · · · ||KS(π)), which will form the shared key.

3.4 Full Description of the Advanced NHKP

Similar to the basic scheme, the advanced NHKP is also made up of three parts: initial-
ization, key predistribution, and multi-level key establishment (as shown in Table 2).
As we mentioned before, to generate sufficiently strong cryptographic keys, we need
multiple master polynomials, each of which produces a (c− r)-bit key segment. At the
initialization, the root node constructs a set Υ of PPs according to construction 2, which
are to be given to all nodes in the hierarchy. The key predistribution process at the top
L−Q levels is the same as that of the basic scheme. For the nodes at the lowest Q levels,
each of their polynomials contains a random PP that is constructed using Υ according
to Construction 1. Using these predistributed polynomials, any pair of nodes can estab-
lish multiple shared key segments, and concatenating these key segments generates the
shared key.

12

Like the basic NHKP, the advanced scheme provides each node residing at the top
L − Q levels with the original shares of the master polynomials and thus is partially
resistant to a threshold of node corruptions at these L − Q levels. The threshold is
the same as that of the basic scheme. Whereas, because of the existence of PPs at the
lowest Q levels, the advanced can tolerate any number of node compromises at these Q
levels as long as appropriate parameters are selected. Formally, we have the following
theorem.

Theorem 1. In the advanced NHKP scheme with parameters λ, J and {tk}1≤k≤L, the
attacker cannot learn any secrets of non-compromised nodes no matter how many nodes
at the lowest Q levels he can compromise, as long as λ ≥

∏L
k=J+1(tk + 1).

Proof. See Appendix 2. ut

4 Evaluation

In this section, we evaluate the performance of the (advanced) NHKP scheme and com-
pare it against Gennaro08 [1]. In particular, we measure how much storage and com-
putation costs are incurred in both schemes to achieve a certain level of resistance to
collusion attacks. To evaluate the collusion resistance, we adopt the metric of (collu-
sion) resistance factor, which represents what faction of children of a node u that the
attacker needs to compromise in order to learn the secrets of u. For the top L−Q levels
in NHKP and the non-leaf levels in Gennaro08, the resistance factor of level l is calcu-
lated as ρl = tl+2

2·Bl−1
, where tl+2

2 is the threshold for level l and Bl−1 is the maximum
number of children of any node at level l − 1. For those levels with perfect resistance
to collusion attacks, ρl = 1. Using resistance factor, we can also evaluate the hardness
to break the master polynomials. In particular, the attacker has to compromise at least a
fraction of

∏l
j=1 ρj of nodes at level l, 1 ≤ l ≤ L−Q, to break any master polynomial.

We let ρ = min{ρi : 1 ≤ i ≤ L}.
We implement a prototype of NHKP for four-level hierarchies of different sizes. We

choose Q = 2 and J = 1 to fully protect the lowest two levels. Since the resistance of
these two levels is guaranteed by the PPs instead of the thresholds (that are determined
by the degrees of master polynomials), we can choose small degrees for these two
levels (i.e., t2 and t3) to minimize storage overheads. Hence, we choose t2 = t3 = 1.
To obtain 128-bit keys, we use 4 master polynomials (i.e., π = 4) with output length
188 bits each (i.e., c = 188). We construct a set Υ of 4 bivariate PPs γi(y2, y3) with
infection length 146 bits (i.e., λ = 4, r3 = 146), and the infection length of each
univariate PP (i.e., α

(τ)
ω,〈l,u〉 and β

(σ)
ω,〈l,u〉 in Construction 1) is 5 bits (i.e., r1 = r2 = 5).

This configuration can support up to 220 nodes at each level. Tuning these parameters
to scale to even larger hierarchies is feasible.

We evaluate the storage overheads by measuring the size of polynomials stored at
a leaf node and the maximum storage cost at any non-leaf nodes. Fig. 5 shows that
the NHKP incurs small storage overheads at each node, even for very large hierarchies
with high requirement on collusion resistance. To achieve ρ = 1 in a hierarchy with 40
second-level nodes, 4,000 third-level nodes and 400,000 leaf nodes, the storage over-
head at each leaf node is only 28.7 KB and the storage at any other upper-level node

13

(a) Storage overhead at a leaf node (b) Maximum storage overhead at any non-leaf
node (including the root)

Fig. 5. Comparison between NHKP and Gennaro08 [1] on storage overheads

(a) Time to generate a shared key (b) Time to bootstrap a new leaf node

Fig. 6. Comparison between NHKP and Gennaro08 [1] on computational overheads

(including the root node) is less than 2.8 MB. Whereas, the storage overheads of Gen-
naro08 increase rapidly with the resistance factor ρ and the size of the hierarchies. In
the same case described above, the storage costs at a leaf node and the root node in
Gennaro08 are 498 KB and 1.9 GB respectively.

As for the computational overheads, we measures the computing times to generate a
shared key and to derive key materials to bootstrap a new leaf node. We implement the
prototype using Miracl [16] on a machine with dual 2.26 GHz CPUs and 2GB RAM.
The experimental results (Fig. 6) show that the NHKP is significantly more efficient
than Gennaro08. In NHKP, the computing time to generate a shared key or to bootstrap
a new leaf node increases slightly with collision resistance ρ and the hierarchy size.
For ρ = 1 and large-scale hierarchies, it only takes the NHKP less than 2 ms to gen-
erate a shared key, which is 10,000 to 100,000 times faster than Gennaro08. Table 3
summarizes the comparisons between NHKP and Gennaro08.

14

Table 3. Comparison between NHKP and Gennaro08 [1]

Schemes Multi-level Computational Collusion resistance Storage
key estab. efficiency Leaf level Non-leaf level overhead

Gennaro08 – Low Perfect Threshold Medium

NHKP X Very high Perfect Perfect to Q− 1 levels SmallThreshold to others

5 Related Work

Non-interactive key predistribution enables communication parties to compute the shared
key using public identities without need for interactions. Blom [5] proposed a matrix-
based non-interactive pairwise key predistribution scheme that is resistant to a threshold
of λ node corruptions. Blundo et al. [6] put forward a non-interactive group key predis-
tribution scheme that relies on multivariate symmetric polynomials and also achieves λ-
collusion resistance. Hanaoka et al. [7] show that if many pairs of nodes in the network
never communicate, one can improve the collusion resistance of these two schemes
[5][6] by a significant factor via removing unused communication links. Zhang et al.
[2] gave an alternative approach to strengthen the scheme of Blundo et al. [6] using uni-
variate perturbation polynomials. Sakai et al. [3] relied on pairing-based cryptosystem
to design a non-interactive pairwise key establishment scheme that achieves perfect
collusion resistance against any number of node corruptions. All the above schemes
[5][6][7][2][3] are flat-structured and do not support hierarchical key predistribution.
Consequently, each node has to get the key material from a central key distributor,
which makes them unsuitable for hierarchical networks.

Ramkumar et al. [8] constructed a hierarchical pairwise key predistribution scheme
by extending the probabilistic key predistribution scheme designed for sensor networks
[9]. In their scheme, each node recursively inherits a subset of keys (called key ring)
from its parent, and the common keys of two nodes serves the shared key. Strictly,
this scheme is not a non-interactive key predistribution scheme in that when two nodes
do not share any common key, they may need to contact an (or multiple) intermediate
node(s) to setup a shared key indirectly. Gennaro et al. [1] designed a non-interactive
hierarchical key predistribution scheme by combining the scheme of Blundo et al. [6]
with the identity-based key establishment scheme [3]. The resultant scheme is perfectly
resistant to collusion attacks of leaf nodes, and has partial collusion resistance for any
upper levels. This scheme incurs very large computational overheads, and does not
allow any non-leaf node in the hierarchy to securely communicate with other nodes.
Huang and Medhi [10] proposed a three-level hierarchical group key predistribution
scheme for MANETs, aiming for flexible group key establishment when a node moves
from one group to another group. However, this is not a non-interactive scheme since
communications between two groups are needed to agree on a roaming key. Matt [11]
described an identity-based pariwise key predistribution scheme by combining Sakai
et al.’s scheme [3] with Blundo et al.’s scheme [6]. Nevertheless, this is not a hierar-
chical key predistribution scheme in that it requires each node to contact the central
key authority directly in the key predistribution. Following the identity-based encryp-

15

tion scheme of Boneh and Franklin [12], Horwitz and Lynn [13] initiated a study of
hierarchical identity-based encryption schemes. They designed a three-level scheme
that is perfectly resistant against collusion attacks at the second level and has partial
resistance for the leaf nodes. Gentry and Silverberg [14] proposed a L-level hierarchi-
cal identity-based encryption scheme with perfect collusion resistance. However, their
scheme incurs larger communication and computational overheads. These encryption
functionalities [13][14] can be utilized to establish pairwise keys but require interac-
tions.

6 Conclusion

In this paper, we propose a novel NHKP scheme that provides hierarchical key predistri-
bution and multi-level key establishment. Our scheme has strong resistance to collusion
attacks. We achieve this by adding a random multivariate perturbation polynomial to
each polynomial share in key predistribution. The resultant scheme is perfectly resis-
tant to collusion attacks at the lowest Q levels and partially resistant to a threshold of
node corruptions at upper levels. We design an effective algorithm to construct such
multivariate PPs by making use of Lagrange interpolation and some structural features
of NHKP. The prototype implementation shows that the NHKP is efficient in terms of
storage and computation overheads and can scale to very large hierarchies.

References

1. R. Gennaro, S. Halevi, H. Krawczyk, T. Rabin, S. Reidt, and S. D. Wolthusen, “Strongly-
resistant and non-interactive hierarchical key-agreement in MANETs”, The 13th European
Symposium on Research in Computer Security (ESORICS’08), 2008.

2. W. Zhang, M. Tran, S. Zhu, and G. Cao, “A random perturbation-based scheme for pairwise
key establishment in sensor networks”, The 8th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc’07), 2007.

3. R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairings”, In Proceedings
of Symposium on Cryptography and Information Security (SCIS), 2000.

4. R. Séroul, “Lagrange interpolation”, §10.9 in Programming for Mathematicians. Berlin:
Springer-Verlag, pp. 269-273, 2000.

5. R. Blom, “An optimal class of symmetric key generation systems”, Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (Eurocrypt’84), LNCS,
vol. 209, pp. 335-338, 1985.

6. C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccard and M. Yung, “Perfectly-secure
key distribution for dynamic conference”, In Advances in Cryptology (CRYPTO’92), Springer-
Verlag, Berlin, pp. 471–486. 1993.

7. G. Hanaoka, T. Nishioka, Y. Zheng, and H. Imai, “A hierarchical non-interactive key-sharing
scheme with low memory size and high resistance against collusion attacks”, The Computer
Journal, 45(3):293-303, 2002.

8. M. Ramkumar, N. Memon, and R. Simha, “A hierarchical key predistribution scheme”, Elec-
tro/Information Technology Conference (EIT’05), 2005.

9. L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed sensor networks”,
The 9th ACM Conference on Computer and Communications Security (CCS’02), pp. 41-47,
Nov. 2002.

16

10. D. Huang, and D. Medhi, “A secure group key management scheme for hierarchical mobile
ad hoc networks”, Ad Hoc Networks, Elsevier, 6:560-577, 2007.

11. B. Matt, “Toward hierarchical identity-based cryptography for tactical networks”, Military
Communications Conference (MILCOM’04), pp. 727-735, 2004.

12. D. Boneh, and M. Franklin, “Identity-based encryption from the Weil Pairing”, In Advances
in Cryptology (CRYPTO’01), LNCS 2139, pp. 213-229, 2001.

13. T. Horwitz, and Ben Lynn, “Towards hierarchical identity-based encryption”, Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques (Euro-
crypt’02), LNCS 2332, pp. 466-481, 2002.

14. C. Gentry, and A. Silverberg, “Hierarchical ID-based cryptography”, Annual International
Conference on the Theory and Application of Cryptology & Information Security (Asi-
acrypt’02), pp. 548-566, LNCS 2501, 2002.

15. M. Albrecht, C. Gentry, S. Halevi and J. Katz, “Attacking Cryptographic Schemes Based on
“Perturbation Polynomials””, ACM CCS’09, Chicago, USA, April, 2009.

16. http://www.shamus.ie/

17

Appendix 1: Key Establishment in the Presence of Addition Carries

Whether the most significant c − r bits are changed depends on if a carry is generated
in the addition of the least significant r bits. For example, if the result of the PP is
(0101)2 (r = 4) and the output of the original polynomial is (10 1000)2 (c = 6),
then the most significant 2 bits are not “infected”; whereas, adding (10 1000)2 by
(1010)2 will change the most significant 2 bits. Consider a pair of nodes u and v,
whose perturbed polynomials output Ru and Rv respectively. If there is a carry gener-
ated in either Ru or Rv , then the most significant c− r bits of Ru and Rv will be differ-
ent. However, the difference is predicable. In particular, one of Ru, Ru+2r and Ru−2r

will have the most significant c − r bits identical with those of Rv . For example, sup-
pose the result obtained by node v is Rv = (10 1000)2 +(0101)2 = (10 1101)2
and Ru = (10 1000)2 + (1010)2 = 11 0010)2; then the most significant 2 bits
of Ru − 2r = 10 0010)2 are the same as those of Rv .

Zhang et al. [2] suggests a method to remove the jitters (if any) from the most
significant c− r bits and ensure the correctness of key establishment. In particular, they
let the first message that v sends to u piggyback a hash value that is computed using all
the (c− r)-bit key segments (recall that the final shared key is formed by concatenating
these key segments), based on which node u can determine which key v is using. By
using a secure hash function (such as SHA-256) and adding some random numbers into
the hash computation, this hash value does not reveal any information of the shared key.
For more details, we refer to [2].

Appendix 2: Proof of Theorem 1

Theorem 1. In the advanced NHKP scheme with parameters λ, J and {tk}1≤k≤L, the
attacker cannot learn any secrets of non-compromised nodes no matter how many nodes
at the lowest Q levels he can compromise, as long as λ ≥

∏L
k=J+1(tk + 1).

Proof. In this proof, we only consider the case where all compromised nodes are at
the same level. For the scenario where compromised nodes are scattered at multiple
levels, we consider a stronger case where any compromised node at level k < l is
replaced with its ancestor node at level l, where l is the highest level at which any
compromised nodes are located (note that an upper-level node holds more secrets than
a lower-level node). We assume the compromised nodes are id〈l,u1〉, ..., id〈l,un〉 residing
at level l ∈ [L−Q + 1, L], where n can be arbitrarily large.

Case 1: Breaking polynomials at higher levels. From level L − Q + 1 down to
level l, each level introduces random PPs, and the higher level the target polynomials
are located the more random PPs are accumulated at the compromised nodes. Hence, it
is easier for the attacker to break the polynomials (of some node) at level l−1 than those
at higher levels. For simplicity, we only consider this worst case of breaking polynomi-
als at level l− 1. On the other hand, to break the polynomials of any node id〈l−1,v〉, the
best strategy for the attacker is to compromise idl−1,v’s child nodes, whose polynomial

18

shares are derived directly from id〈l−1,v〉’s polynomials and thus carry more informa-
tion about the target polynomials. Hence, we assume that all the compromised nodes
are id〈l−1,v〉’s children. We express the target polynomial of id〈l−1,v〉 as follows.

G〈l−1,v〉(xl, ..., xL; y1, ..., yL) =
|Il,〈l−1,v〉|∑

il=0

· · ·
|I1|∑
j1=0

· · ·
|Ij |∑

jJ=0

tJ+1∑
jJ+1=0

· · ·

· · ·
tL∑

jL=0

B〈l−1,v〉,il,...,iL;j1,...,jL
xil

l · · ·x
iL

L yj1
1 · · · yjL

L

From each compromised node id〈l,uη〉, 1 ≤ η ≤ n, the attacker learns G〈l,uη〉(xl+1,
..., xL; y1, ..., yL) which is formed by

G〈l,uη〉(xl+1, ..., xL; y1, ..., yL) = G〈l−1,v〉(id〈l,uη〉, xl+1, ..., xL; y1, ..., yL)

+
λ∑

ω=1

L∏
τ=l+1

α
(τ)
ω,〈l,uη〉(xτ)

J∏
σ=1

β
(σ)
ω,〈l,uη〉(yσ)γω(yJ+1, ..., yL)

Combining the obtained polynomials, the attacker can form the following linear equa-
tion system.

B〈l,uη〉,il+1,...,iL;j1,...,jL
=

|Il,〈l−1,v〉|∑
il=0

B〈l−1,v〉,il,...,iL;j1,...,jL
idil

〈l,uη〉

+
λ∑

ω=1

L∏
τ=l+1

C
(τ)
ω,〈l,uη〉,iτ

J∏
σ=1

D
(σ)
ω,〈l,uη〉,jσ

Eω,jJ+1,...,jL

0 ≤ iτ ≤ |Iτ,〈l,uη〉|, τ ∈ [l + 1, L]
0 ≤ jσ ≤ |Iσ|, σ ∈ [1, J]
0 ≤ jσ ≤ tσ, σ ∈ [J + 1, L]

where,

– each B〈l,uη〉,il+1,...,iL;j1,...,jL
is known.

– each B〈l−1,v〉,il,...,iL;j1,...,jL
is unknown.

– α
(τ)
ω,〈l,uη〉(xτ) =

∑|Iτ,〈l,uη〉|
iτ=0 C

(τ)
ω,〈l,uη〉,iτ

xiτ
τ , and each C

(τ)
ω,〈l,uη〉,iτ

is unknown.

– β
(σ)
ω,〈l,uη〉(yσ) =

∑|Iσ|
jσ

D
(σ)
ω,〈l,uη〉,jσ

yjσ
σ , and each D

(σ)
ω,〈l,uη〉,jσ

is unknown.

– γω(yJ+1, ..., yL) =
∑tJ+1

jJ+1=0 · · ·
∑tL

jL=0 Eω,jJ+1,...,jL
y

jJ+1
J+1 · · · y

jL

L , and each
Eω,jJ+1,...,jL

is known.

This linear system comprises n ·
∏L

τ=l+1(|Iτ,〈l,uη〉|+1)
∏J

σ=1(|Iσ|+1)
∏L

k=J+1(tk +
1) equations, while it involves

∏L
τ=l(|Iτ,〈l−1,v〉|+1)

∏J
σ=1(|Iσ|+1)

∏L
k=J+1(tk+1)+

λ ·n ·
∏L

τ=l+1(|Iτ,〈l,uη〉|+1)
∏J

σ=1(|Iσ|+1) unknowns. When λ ≥
∏L

k=J+1(tk +1),
this linear system is unsolvable since there are more variables than equations. Hence,
the attacker cannot obtain any information about the target polynomial.

19

Case 2: Breaking polynomials at the same level. We consider the attacker at-
tempts to break the polynomials of some node id〈l,v〉 at level l. Similarly, the best
strategy for the attacker is to compromise those nodes that share the same parent node
with id〈l,v〉.

We start with a special case of l = L − Q + 1, in which the parent node (say
id〈L−Q,p〉 of these compromised nodes has the original shares of the master polynomi-
als. The target polynomial in this case is

G〈L−Q,p〉(id〈L−Q+1,v〉, xL−Q+2, ..., xL; y1, ..., yL)

=

tL−Q+2∑
iL−Q+2=0

· · ·
tL∑

iL=0

t1∑
j1=0

· · ·
tL∑

jL=0

B′
〈L−Q+1,v〉,iL−Q+2,...,iL;j1,...,jL

x
iL−Q+2
L−Q+2 · · ·xiL

L yj1
1 · · · yjL

L

For each exposed polynomial G〈L−Q+1,uη〉(xL−Q+2, ..., xL; y1, ..., yL), 1 ≤ η ≤ n,
the attacker evaluates it at yL−Q+1 = id〈L−Q+1,v〉, and combines the results to form a
linear system as below.

tL−Q+1∑
jL−Q+1=0

B〈L−Q+1,uη〉,iL−Q+2,...,iL;j1,...,jL
id

jL−Q+1
〈L−Q+1,v〉

=

tL−Q+1∑
jL−Q+1=0

B′
〈L−Q+1,v〉,iL−Q+2,...,iL;j1,...,jL

id
jL−Q+1
〈L−Q+1,uη〉

+

λ∑
ω=1

L∏
τ=L−Q+2

C
(τ)

ω,〈L−Q+1,uη〉,iτ

J∏
σ=1

D
(σ)

ω,〈L−Q+1,uη〉,jσ

tL−Q+1∑
jL−Q+1=0

Eω,jJ+1,...,jL id
jL−Q+1
〈L−Q+1,v〉

0 ≤ iτ ≤ |Iτ,〈l,uη〉|, τ ∈ [L − Q + 2, L]

0 ≤ jσ ≤ |Iσ|, σ ∈ [1, J]

0 ≤ jσ ≤ tσ, σ ∈ [J + 1, L − Q] ∪ [L − Q + 2, L]

where,

– B〈L−Q+1,uη〉,iL−Q+2,...,iL;j1,...,jL
and Eω,jJ+1,...,jL

are known.

– B′
〈L−Q+1,v〉,iL−Q+2,...,iL;j1,...,jL

, C
(τ)
ω,〈l,uη〉,iτ

, and D
(σ)
ω,〈l,uη〉,jσ

are unknown.

There are n·
∏L

τ=L−Q+2(|Iτ,〈L−Q+1,uη〉|+1)
∏J

σ=1(|Iσ|+1)
∏L

k=J+1,k 6=L−Q+1(tk+
1) equations, and

∏L
τ=L−Q+2(tτ+1)

∏L
σ=1(tσ+1)+λ·n·

∏L
τ=L−Q+2(|Iτ,〈L−Q+1,uη〉|+

1)
∏J

σ=1(|Iσ|+1) unknowns. The number of unknowns is larger than that of equations
when λ ≥

∏L
k=J+1(tk + 1).

As for the case where l < L−Q+1, the target polynomial is no longer a symmetric
polynomial since the parent of these compromised nodes holds perturbed polynomials
instead of original polynomial shares. Consequently, more unknown variables are in-
troduced into the linear systems, which makes it even harder for the attacker to break
the target polynomial.

Case 3: Breaking polynomials at lower levels. We consider the worst case where
the compromised nodes reside at level L−Q + 1 and the attacker attempts to break the
polynomials of some node at level d ∈ [L − Q + 2, L] (say id〈d,v〉), whose ancestor

20

node id〈L−Q+1,b〉 at level L − Q + 1 shares the same parent id〈L−Q,p〉 with these
compromised nodes. The target polynomial in this case is

G〈L−Q,p〉(id〈L−Q+1,b〉, ..., id〈d,v〉, xd+1, ..., xL; y1, ..., yL)

=
td+1∑

id+1=0

· · ·
tL∑

iL=0

t1∑
j1=0

· · ·
tL∑

jL=0

B′
〈d,v〉,id+1,...,iL;j1,...,jL

x
id+1
d+1 · · ·x

iL

L yj1
1 · · · yjL

L

The attacker evaluates each learnt polynomial G〈L−Q+1,uη〉(xL−Q+2, ..., xL; y1, ..., yL)
at (yL−Q+1, ..., yd) = (id〈L−Q+1,b〉, ..., id〈d,v〉), obtaining the following linear system.

tL−Q+1∑
jL−Q+1=0

· · ·
td∑

jd=0

B〈L−Q+1,uη〉,iL−Q+2,...,iL;j1,...,jL
id

jL−Q+1

〈L−Q+1,b〉 · · · id
jd

〈d,v〉

=
tL−Q+1∑

jL−Q+1=0

B′
〈d,v〉,id+1,...,iL;j1,...,jL

id
jL−Q+1

〈L−Q+1,uη〉

+
λ∑

ω=1

L∏
τ=L−Q+2

C
(τ)
ω,〈L−Q+1,uη〉,iτ

J∏
σ=1

D
(σ)
ω,〈L−Q+1,uη〉,jσ

tL−Q+1∑
jL−Q+1=0

· · ·

· · ·
td∑

jd=0

Eω,jJ+1,...,jL
id

jL−Q+1

〈L−Q+1,b〉 · · · id
jd

〈d,v〉

0 ≤ iτ ≤ |Iτ,〈l,uη〉|, τ ∈ [L−Q + 2, L]
0 ≤ jσ ≤ |Iσ|, σ ∈ [1, J]
0 ≤ jσ ≤ tσ, σ ∈ [J + 1, L−Q] ∪ [d + 1, L]

where,

– B〈L−Q+1,uη〉,iL−Q+2,...,iL;j1,...,jL
and Eω,jJ+1,...,jL

are known.

– B′
〈d,v〉,id+1,...,iL;j1,...,jL

, C
(τ)
ω,〈l,uη〉,iτ

, and D
(σ)
ω,〈l,uη〉,jσ

are unknown.

This linear system is made up of n ·
∏L

τ=L−Q+2(|Iτ,〈L−Q+1,uη〉| + 1)
∏J

σ=1(|Iσ| +
1)

∏
k∈[J+1,L−Q]∪[d+1,L](tk +1) equations, and contains

∏L
τ=d+1(tτ +1)

∏L
σ=1(tσ +

1) + λ · n ·
∏L

τ=L−Q+2(|Iτ,〈L−Q+1,uη〉| + 1)
∏J

σ=1(|Iσ| + 1) unknowns. Again, the
equations are fewer than the unknowns and thus the attacker cannot infer any extra
secrets. ut

