
E E 
STRUCTURAL RESEARCH SERIES NO. 386 

ISSUED AS A TECHNiCAL 
REPORT OF A RESEARCH 
PROGRAM SPONSORED 

I 

The National Science Foundation 
Grant No. GK 11190 

1972 



FINITE ELEMENT APPROACH FOR THE PREDICTION 

OF INELASTIC BEHAVIOR OF SHEAR WALL-FRAME SYSTEMS 

BY 

O. YUZUGULLU 

and 

W. C. SCHNOBRICH 

Issued as a Technic~J 
Report of a Research 

Program Sponsored 

by 

The N?tional Science Foundation 
Grant No. GK 11190 

UN IV E R S I TY 0 F ILL IN 0 r S 
URBANA, ILLINOIS 

MAY 1972 





iii 

Acknowledgments 

The results reported herein were developed in a research study 

supported by the National Science Foundation under Grant NSF GK 11190. 

The contributions of Professors Bijan Mohraz, D.A.W. Pecknold 

and S. L. Paul are gratefully acknowledged. Also the discussions with 

M. A. Salem Research Assistant in Civil Engineering were quite helpful. 

The computational work was carried out on the IBM System 360/75 of 

the Computing Services Office of the University of III inois. 





CHAPTER 

2· 

3 

4 

iv 

TABLE OF CONTENTS 

Page 

INTRODUCTION 

1.1 
1.2 
1.3 
1.4 

General 
P reV j 0 us Wo r k ............................................. . 
Obj ect and Scope .......................................... . 
Nota t ion •....•....•......•.•..•....... f1 ............ " ••• 

2 
4 
5 

DESCRIPTION OF THE MODEL ........•.•••••..•.• ~ •..•.• ~ .•....• 7 

2.1· Description of the Finite Elements Used •• ....•........ 7 
2.·1.1 Reinforced Concrete Wall Elements .p............ 7 
2.1.2 Flexural Elements for the Frame .•••...•. •....... 8 
2.1.3 Link· Elements .................................... 9 

2.2 Material Properties .••.• ~...................... ...•... 9 
2.3 Behavior of the Wall Elements .....•..•.••...•.••...•••. 10 

2.3.1 Elastic Behavior up to Crackirig .•....•.•.•..•... 10 
2.3~2 Elastic Behavior After Cr~cking .••...•.•........ 13 
2.3·.3 Crack Modes ..................... "...... •.••.•....••. 15 
2.3.4 Definition of a "Crack Width" •••..•......•.••••• 15 
2.3.5 Plastic Behavior After Cracking .•........•••.... 16 
2.3.6 Plastic Behavior of Uncracked Concrete •.•....... 16 
2.3.7 Termination of Plastic Behavior of Concrete ••... 17 

2.4 Behavi"or of the Frame Elements ••.•.••..•....• ~ •........ 18 
2.5 Behavior of· the Link Elements ••.....•....•.•.•.•...... 19 

METHOD OF SOLUTION ••••.•••..•. ~ •....••••.••.•..•••.••...... 21 

3. 1 E 1 as tic Ana 1 ys is ......•..•••••.••..•••••..••..•..•.• " • • 21 
3.2 Incremental Analysis •••.•.••.•••.••.•.•••.••.••••..•..•. 22 

3 III 2 .• 1 G en e r·a 1 ............. ' ••••••• ,. ••• , e· • • • • • • • • • • • • • • • • 22 
3·.2.2 Cracking •.•.••••.•••••.••.•••.••••••..••• ~ .••.•. ·23 
3.2.3 ·Plasticity •.•.••.•••.••..••.••.••••••.••.••.•.•. 25 
3.2.4 Mathematical Correspondence of Method 1 and 

Me,t hod 2 •••...•. " ....................... III • • • .. • • • • • 28 
3.3 Computation of Pseudo Stresses and Pseudo Loads •...•.. 28 

3.3.1 Pseudo Stresses Due to Cracking .••••.•.• ~ .•• . r... 28 
3.3.2 Pseudo Stresses Due to Uniaxial Plasticity .•.••. 29 
3.3.3 Pseudo Stresses Due to Plasticity of Uncracked 

Concrete •...•.• " .•.•..•...•...••......•.. ~ 0 • • • • • • 29 
3.3.4 Computation of the Pseudo Loads •....•.•.•....•.. 29 

NUMERICAL RESULTS..... •..•........•....•.......•..•.•..•.... 31 

4.1 General ........................•....•.•..•...•........ 31 
4.2 Deep Beam ••••.•.....••.........•..•.•..•...••.•...••.. 31 

4.2.1 Experimental Behavior ..•.•.......•. ~............. 32 
4.2.2 Behavior Predicted from the Analysis ••••........ 32 
4.2.3 Variation of Stresses •.•.•.••••.••...••...•..•... 34 



4.3 
4.4 

v 

Shea r P a· n e 1 ...•.••...........•.....•....•••.••........ 
Reinforced Concrete Shear Wall-Frame System ••......... 
4.4.1 General ••...•..•.......•••..•.......•.•.......•. 
4.4:2 Behavior of the Specimen During the Text ••....•. 
4.4.3 Solution 1 .•........•....•......................• 
4 .. 4.4 Solution 2 ....................................... . 

Page 

34 
37 
37 
38 
38 
41 

·5 SUMMARY AND CONCLUSiONS .....•.......•.•.. 0·................. 44 

FIGURES .•••• 0 •••••• · ........ 0· •••••••••••• " •••••••••••• " ••• "..... ••••••••.•• 49 

APPENDIX 

A DEVELOPMENT OF THE ELEMENT STIFFNESS MATRICES ANDCOMPUTA-
.TION OF STRESSES AND STRAINS ................................ 101. 

B 109 

REFERENCES ...................•...•..........•••....•......•..........•. 123 

VITA ••..•..•••...•.•..••...••..•...•..........••..•....•......•.•..•.... 126 

LIST OF TABLES 

TABLE 

B.l Behavior of the Deep Beam (G24S-11) ....•..•.•••..•.•..•. ~ •••. 109 
B.2 Momen~, Shear and Axial Forces·Acting at the Reference 

Axis ( P = 100 tons, Solution 2) ...•....•..•.•..•.•..•. 110 

LIST OF FIGURES 

FIGURE 

1. Constant Strain Triangle' •••.••...•.. P ••••••••••••••••••••• 49 
2 Quadrilateral Element Composed of Four Constant Strain 

T ria n g 1 e s ••••.•..• ~ . • . . . . • . • • •.• · • . 0, • • • • • • • .• • • • • • • • • • • •• 49 
3 Comparison of Mesh Detai ls .................................. 50 
4 Stiff~ess Comparison of the Built-up Quadrilateral and 

Rectangular Elements ...•••...•...•..•......•.• G....... 51 
5 Frame El ements ......••... G" •••• • • •••• • • •.••••• • • • • • •••••• • •• 52 
6 Link Elements" •.••.•...• G." •••••••••••••••• • ••• •••••• ~...... 53 
7 Biaxial Strength of Concrete .••••••.•.••.•...••.•...•.....• 54 
8 Stress-Strain Diagrams " ......•.••.•••..•...•..•.••.••.•.... 55 



vi 

Page 

9 D j.st r i but i on of the Re i nforcement •......•.................• 56 
10 Princi~al Stresses and Cracking .................•.•..•..... 56 
11 Crack Modes for Wall Elements ••..•...•..................... 57 
12 Assumed Strain Distributions for the Flexural Elements ....•• 58 
13 Assumed Crack Modes for the Flexural Elements ••••.••....... 59 
14 Schematic Diagram to Illustrate Crack Propagation 

(Method 1: Initial Stress Method Using Variable Stiff
~ess Within an Increment) •••..•.•...•.•.•...••.•••.... 60 

15 Schematit Diagram to Illustrate Crack Propagation 
(Method 2: Initial Stress Method Using Constant Stiff-
n e ssW i t h ina· n Inc rem e n t ) ..••....••.•.•..•............• 6 1 

16 Comparison of Paths of Deformation......................... 62 
17 Schematic Illustration of the Distribution of Pseudo 

Stresses Due to Biaxial Plasticity of Concrete .•..•... 63 
18 .Pseudo Stresses Released Due .to Cracking................... 64 
19 Schematic Illustration of the Pseudo Stresses Released Due to 

P1astici ty of a Component Material (Cracked Concrete or 
Rei n for c em en t ) •.•.. . . . . . • . . . . • . . . . . .. . • . • . . . • . • . . . • . • • . .. 65 

20 Deep Beam G24S-l1 [20J ••...••.•.•.. ~ .•.....••.••...•.•..•... 66 
21 Discretized Model (Specimen G24S-11) .......•.•...•......•.• 67 
22 Crack Propagation (Specimen G24S-11) ....••.•.•...•.•....•.. 68 
23 Crack Propagation (Specimen G24S-11) •...•..•.•••....•.•••.• 69 
24 Experimental Crack Pattern (Specimen G24S-11) [20J ••••....• 60 
25 Comparison of Analytical and Experimental Loa~-Displacement 

Diagrams (Specimen G24S~11) .•......•.•..•••.• ~ •......• 71 
26 Comparison of Load Versus Tension Steel Strains (Specimen 

G 24s - 1 '1) •••••••••••••••••••••••••••••••••••••••••••••• 72 
27 Geometry and the Cross-Sectional Properties of Specimen W2 

[17J ...•••..• , •........•.•....•.•.•.....•..•..••.••... t!I •• 73 
28 Comparison of the Load-Displacement Curves (Specimen W2) ... 74 
29 Layout of Mesh J (Specimen W2) ......•.....••.•..•.•....•.. .75 
30 Layout of Mesh 2 (Specimen W2) .•••....•...•..•...•..•......• 76 
31 Region of Cracking for Two Different Values of Shear Factor 

(Specimen W2, Mesh 1) .................................. 77 
32 Comparison of the Experimental and Analytical Crack 

Patterns (Specimen W2, Mesh 1) ••..•.•...•••••••••..••• 78 
33 Details of Specimen A-l [21J •.••.•....•..•.•.•.•.••....•... 79 
34 Physical Properti·es of the Materials Used in Specimen A-1[21] 80 
35 Load Versus Relative Vertical Displacement of the Supports 

[21J •.•••. ~ •..••.•.•..• a •••••••••••••••••••••••••••••••• 81 
36 Load Versus Horizontal Displacement of the Supports [21J •.• 82 
37 Comp~rison of the Load-Displacement Curves (Specimen A-I, 

Solution 1) ...•.•.....•••••.•.•.•..••.•...•..•...•..•. 83 
38 Experimental Cra·ck Pattern (Specimen A-1) [21 J ....•••...•.. 84 
39 Discretized Model (Specimen A-l) •••........•............... 85 
40 Link E1 ements (Spec imen A-1) •..•...•...........•..........• 86 
4f Comparison of Load-Displacement Curves (Specimen A-1, 

Solution 1) .............................................. 87 
42 Effect of Shear Transfer on Cracking (Specimen A-1, 

Solution 1) •••..•.•...•.•..•.••..•.•.................. 88 
43 Crack Pattern at 100 tons of Load (Specimen A-l, Solution 1) 89 



44 

45 

46 

47 
48 
49 

50 

51 

52 
53 
54 
B. 1 
B.2 
B·3 
B.4 
B.5 

B.6 

B·7 

vi i 

Crack Pattern 'at 140 tons of Load (Specimen A-l, 
Solution 1) ........................................... . 

Crack Pattern at 180 tons of Lqad (Specimen A-l, 
Solution 1) ........................................... . 

Comparison of the Load Displacement Curves (Specimen A-I, 
Solution 1) ........................................... . 

Flexural Deformations .................•..•..........•..•.•• 
Grading Mesh Suggested .•..........•.............•....•..... 
Crack Pattern at 140 tons of Load (Specimen A-1, 

Solution 2) ............•...•..•.•...••.........•..•...•.. 
Comparison of the Load-Displacement Curves (Specimen A...;l, 

Solution 2) ....•.......•..•....•.•...........•.•..... ' •. 
Comparison of the Load-Displacement Curves (Specimen A-1, 

·Solution 2) ••....••.••.•....•••.•• , ....................... . 
Suggested Layering of a Flexural Element [18J .•..•.....•..• 
Frame Moments at P = 100 Tons (Before Cracking) •.••.••..... 
Frame Moments at P = 100 Tons (Before Cracking) •..•.•....•. 
Stress Distribution at Section A-A (Speci~enG24S~11) ....•.. 
Stress Di'stribution at Section A-A (S~ecimen G24S-11) ....... . 
Stress Distribution at. Sec~iQn A-A (Specimen G24S~ll) ....•. 
Stress Distribution at Section A-A (Specimen G24S-11) ....•. 
Stress Distribution at Section A-A (Specimen A-l,' 

Solution 1) ............•••.•..•......•....•.•..•.••... 
Stress Distribution at Section A-A '(Specimen A-l, 

Page 

90 

91 

92 
93 
94 

95 

96 

97 
98 
99 

100 
111 
112 
113 
114 

115 

Solution 1) •••••••••• ~ •• ~ •••••••••••••••••••••••••••••• ·116 
Stress Distribution at Section A-A (Specimen A-1, 

Solution 1) .......•..•................................. 11 7 
B.8 Stress Distribution at Section A-A (SpecimenA-1, 

Solution 1) .•..•.•......•......••....••.............•. 118 
B.9 Stress Distribution at Section A-A (Specimen A-l, 

Solution 1) •....•....••..•......•....•....•........ ; .. 119 
B.I0 Stress·Di~tributron at Settion A-A (Specimen A-f, 

Solution 2) ...................................... ~ ..... 120 
B.l1 Stress Distribution at Section A-A (Specimen A-I, 

So 1 uti 0 n 2) ....•......•..•....•.............•...••... · •.. 1 2 1 
B.12 Link Forces at P= 100 tons (Before Cracking) .....•... ~ •... 122 



CHAPTER 1 

INTRODUCTION 

1.1 General 

In the active earthquake areas of the world destructive earth

quakes can always be expected. In the past they have caused enormous 

property damage and loss of 1 ife. The'primary objective of the structural 

engineer should therefore be to design the structure in such a way that 

it will resist moderate earthquakes without damage and should not collapse 

or cause loss of 1 ife even under severe earthquakes. To achieve this, a 

better understanding of the behavior of the structure as a whole and the 

behavior of each structural element is necessary. 

In the seismic design of framed structures it 'is general ly 

accepted that the inclusion of shear walls to the structure produces an 

economical des n. Shear walls are commonl used as the main elements in 

resisting the lateral loads especially in modern glass walled multistory 

bui ldings. They normally stiffen the str~cture agai nst mild earthquakes 

and wind but at the same time they may invite larger shear forces to be 

generated from earthquake motions. 

Knowledge of the interactive forces between the frames and the 

shear walls is important to the structural engineer since this knowledge 

of their magnitude is necessary in proportioning the lateral load carried 

by the shear walls and the framed portions of the structure. Determina-

tion of these interactive for6es presents a major difficulty in the analysis. 
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1.2 Previous Work 

Most of the previous analytical work on shear wal Is treated 

those wal Is as dee~ beams. Shear wal Is are weakened by vertical bands of 

openings such as for doors and windows. These arrangements of walls are 

called Ilcoupled shear walls. 11 They have been investigated in several 

recent publ ications. 

Rosman [1 J gave a continuous solution in which the discrete' 

system of connecting beams is replaced by an equival~nt continuous medium. 

Based on Rosmanls theory, Coull and Choudhury, [2J [3J and later Coull and 

Irwin [4J presented a graphical method for det~rmining the stresses and 

deflections in coupled shear walls r Rosenblueth and Holtz, [5J, Cardan [6J' 

and Gould [7J have analytically modelled the shear wal Is in the framed 

structures as a cantilever beam supported by elastic reactions. 

Khan and S~arounis·[8J suggested a method of analysi~ which 

attempts to satisfy the compatibil ity of displacement between the wall and 

the frame by an iteration process. 

A sum'ma ry of the exper imenta 1 rese~ rch performed on frames with 

fil ler walls is given in Ref.[9J. Although there has been considerable 

research on frames with filler, walls, tests on frames with reinfbrced or 

plain concrete walls are very limited [lOJ [lIJ. 

The prediction of load-deflection characteristics of shear wall

frame systems is of interest and importance in the design of structures to 

resist lateral loads such as those ~esulting,from'earthquake shocks. 

Most of the above-mentioned investigations are limited by various 

simplifying assumptions as to loading, boundary conditions and material 

properties. In all of these studies only elastic behavior was taken into 

consideration. Recent research has clearly demonstrated, however, that 
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inelastic behavior must be considered in order to approach the earthquake 

problem in a realistic manner. On the other hand recent earthquakes [12J 

have pointed out that although the behavior of a shear wall may be favorable 

under static loading conditions, the behavior of that wall may also be 

quite different under dynamic conditions. No rigorous analytical or accurate 

experimental study is available which deals with the behavior of shear wall

frame systems under statically repeated, alternating or actual dynamic con

ditions. Little is known about the stiffness degradation of shear wall

frame systems as the load~ng cycles. 

Recent development of the finite elemen't method of continuum mech

anics offers a convenient and versatile tool to be used in understanding the 

behavior of shear walls and their effect on the behavior of the structural 

f ram e . The fin i tee 1 erne n t met hod has bee nap p 1 i ed to va' rio us s tat i cpr ob 1 em s 

[13]. It has proved to be ,as effective and powerful in dynamic analysis as 

it has been in the static analysis [14J. 

Appl ication of the finite element method to the ideal ization of 

reinforced concrete was started by Ngo an~ Scordel is [15] and expanded later 

by Nilson [16]. Recently, using constant strain triahgular ,elements, 

Cervenka and Gerstle [17J investigated the behavior of reinforced concrete 

panels under monotonic and under cycl ic in-plane loads. The loads were 

carried well into the inelastic range. An experimental investigation Was 

also carried out for the above mentioned panels. The panels were 1 ike deep 

beams and did not have a frame around them. An analytical study of in

filled frames Was made by Frankl in [18]. Three special types of finite 

elements were used for the discretization. The infil 1 di~ not include any 

reinforcement. An approach was followed whereby it was possible to use the 

actual stress-strain relationship of' the materials in a multil inear form. 
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In this study the loads were appl ied in'one direction up to the disintegra

tion of the structure due to excessive cracking and no plasticity was con

sidered. 

A lumped parameter model has also been successively used by 

Fedrokiw [19J to study the behavior of masonry infilled frames. Here it is 

concluded that there is a general need for analytical and experimental work 

di rected toward predicting the stiffn~ss characteristics and the inelastic 

behavior of shear wall-frame structures. 

l.3 Object and Scope 

A shear wall basically o~cupies a two dimensional region and 

receives forces from the enclosing frame. These forces are in the plane 

of the wall thus the force system creates a plane stress problem. 

The object of this study is to approach the solution of reinforced 

concrete shear wall-frame systems analytically using the finite element 

technique as the tool. Tensile crack propogation in concrete and inelastic 

behavior of steel and concrete in compression are incorporated in the analy

sis. The behavior of the reinforced concrete shear wall-frame system is 

predicted under monotonically increasing loading conditions. 

In order totest the val idity of the assumptions made with regard 

to the material behavior and characteristics of the finite element method 

used, the analytical results are compared with the experimental results [20] 

[21J [17J. 
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1.4 Notation 

All symbols have been defined in the text where they appear first. 

Fol lowing is a summary of the symbols used. A letter with a single underl ine 

means a vector, with double underlines means a matrix. /::, is used to denote 

finite increments. 

B Transformation matrix relating strains to the nodal displacements. 

D Composite material property matrix in XV coordinate system. 

DC Uncracked material property matrix of concrete. 

Eep Elasto-plastic material .property matrii. 

DS Material property matrix of the reinforcement in XV coordinate =a 

system. 
IS 8a Material property matrix of the reinfocement i"n XlVI coordinate 

system. 

Modulus of elasticity of concrete. 

Modulus of elasticy of the reihforcement. 

Ft,Fs Strength of a link element in tension and shear. 

F(cr) Function defining the yield surface. 

Stiffness of a 1 ink element tangent and normal to the contact area~ 

Uncracked element stiffness matrix. 

K Stfffness matrix of the structure. 

k Cracked element stiffness matrix. =cr 

n 

p Percentage of reinforcement. 

p Vector of nodal forces of the structure. 

p Vector of pseudo nodal loads. 

T 
= € Strain transformation matrix. 



T 
=0 

u 

u 

(Jl,02 

c 
(J 

Q".. 
IS 

~ 

C 
E: 

I C 
e 
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Stress transformation matrix. 

Vector of nodal displacements of an element. 

Vector of nodal displacements of the structure 

Principal stresses. 

Tensile strength of concrete. 

Yield stress of concrete under uniaxial c6mpression.-

Yi~ld stress of the reinforcement. 

S tee 1 s t res s e s ref err ed- to con c ret ear ea i .n X I d i r ec t ion. 

Vector of total stresses. 

Vector of concrete stresses in XY c09rdinate system. 

V e c tor 0 f p s e u d 0 s t r e.s s e s- • 

Vector of steel stresses in XIYI coordinate system. 

Vector of total strains. 

Vector of c.oncrete strains in XY coordinate system. 

Vector of concrete strains in Xlyl coordinate system. 

Poissonls ratio. 
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CHAPTER 2 

DESCR'IPTION OF THE MODEL 

2.1 Description of the Finite Elements Used 

In this research the reinforced concrete shear wall-frame 

system is modeled by a finite element array. This array' is bui1t up 6f 

three types of elements: 

2. 1 • 1 

1) Quadrilateral elements for the wall or frame, 

2) special flexure elements for the frame, and 

3) 1 ink elements to connect the wall elements to the frame 

elements. 

Reinforced Concrete Wall Elements 

Constant strain 'triangular elements (Fig.l) have been widely used for, 

the analysis of plane stress problems. These elements work ~specially well 

for the ideal ization of bodies with irregular boundaries. Since the element 

is constant strain and henteconstant str~ss, the results obtain~d from it 

frequently require interpretation. The calculated stresses can be assumed 

to represent the stress state at the centroid of an element. However, a 

more uniform stress field normally results from averaging the stresses of 

the various elements connected at each node. Depending upon the arrangement 

of the elements, a triangular element may show directional ity; that is, the 

s truc tu re may behave' ina ce rta in way fo r one a rrangement and in another 

way for a different arrangement. This averaging procedure helps in an 

effort to suppress any directional ity present in the element layout. 

A quadri l~teral element composed of four constant strain triangles 
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was chosen to represent the wall elements (fig. 2). If a structure is 

discr~tized by the use of both constant strain triangular elements and also 

by the quadrilateral element~ assembled from the CST elements as shown in 

Fig. 3 , i tis 0 b v i 0 u s t hat i nth e ca s e 0 f qua d r i 1 ate r ale 1 eme n t sus ed , the 

band width of the system stiffness matrix is decreased, mesh details are 

simpl ified and the stress values are improved by averaging the stresses 

about the common interior meeting point of the four triangles. The deriva-

tion of the element stiffness matrix which is obtained by a simple conden-

sation of the center node is given in Appendix A. 

If rectangular plane stress elements are used instead of the 

built-up quadrilateral elements to dJscretize the wall there is some loss 
\ 

of accuracy. This can be anticipated from a comparison of the traces of 
---.--

the element' stiffness matrices (given in Fig. 4). A lower value is obtained 

for the quadrilateral element which indicates that the ~uadrilateral element 

is a more flexible element. Since these are both conforming elements and 

therefore too stiff, the more flexible element is the more desirable. 

The steel bar refnforcement for ,the wail is assumed to be smeared 

out and uniformly distributed over each quadrilateral element. 

2.1 .2 Flexural Elements for the Frame 

The quadrilateral elements transmit in-plane forces to the frame 

at the connecting nodes. One of these forces is normal io the frame member 

axis ·while the other is parallel to it. Bending moments and shear forces in 

the frame members are produced by the normal forces. On the other hand, para-

1 leI components not only produce axial forces but they also produce additional 

bending moments by virtue of the eccentricity of the line of action from the 

axis of the frame member. If frame members are considered as line elerrents in the 



usual manner, then the effect of the depth is apt to be neglected in the 

assembly phase of the structural stiffness matrix. Fig. 5 shows a flexural 

element [18] in which the above effect is taken into consideration by 

transforming the six general ized displacements acting at the member refer

ence axis as eight general ized displacements acting at the corners of· the 

element. Development of the element stiffness matrix is summarized in 

Appendix A. 

2. 1 .3 Link El ements 

A special type 1 ike element made out of two orthogona.l fictitiou·s 

springs is used to connect the wall to the frame as shown in Fig. 6.a. The 

idea was adapted by Frankl in [18J from the bond-l i.nk concept introduced 

-lJy-Ngu-crnd--Scord-el-j s- -[ 1-5-];- -_OW i-th--thi-s--typeof-- e-l-ement--i-t-i s-po-ss j-ble--to-----

lock or to release the two connected ·node~ depending upon the magnitude of 

1he interacting forces between the wall and the frame. The derivation of 

the element stiffness matrix is given in Appendix A. 

2.2 Material Properties 

Concrete and reinforcing steel constitute the materials for both 

the wall and the frame elements. 

Test r~sults concerning the material under biaxial states of 

stress are very I imited. Those tests that have been reported were primarily 

directed towards defining failure or yield rather than the determination of 

a stress-strain law. The most recent investigation for the failure enve

lope of concrete under biaxial states of stress is the experimental study 

carried out by Kupfer, Hilsdorf and Rusch [22]. Fig. 7 shows the experi

mental failure envelope obtained. Mikkola and Schnobrich [231 presented a 
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yield crit~rion to approximate the experimental envelope given by Kupfer, 

Hilsdorf and Rusch. In this study the Von Mises yield criterion as shown 

i n Fig. 7 i sad apt ed, for the b i a x i a 1 com pre s s ion 0 f con c ret e . Inc a s e 0 f 

uniaxial state of stress (reinforcement and the cracked concrete) the 

Von Mises yield criterion corresponds to an elastic-perfectly plastic 

stress-stra in relationship (Fig. 8). 

Maximum normal stress theory is assumed for tension cracking 

of the concrete (Fig. 7). Cracked concrete is assumed to carry normal 

stresses in the direction of the crack. Also, due to the irregular surface 

of the cracks, some shear can be transferred across a crack. This pheno

mena is termed aggregate interlock .. 

Deformation is assumed to be uniform, that is, concrete and the 

reinforcement have the same strains, which impl ies that full bond is main

taIned. This full bond is assumed to remain even in the crack regions. 

2.3 Behavior of the Wall Elements 

During the loading process the material can behave in various 

ways. 

2.3. 1 Elastic Behavior up to Cracking 

Referring to Fig. 9, consider a concrete wall with unit dimen

sions. Up to cracking or yielding ~he concrete is assumed to be isotropic 

and l.inearly elastic. Therefore the mate~ial property matrix which relates 

the stresses and the strains can be written from Hooke1s Law for plane 

stress: 

(2. 1 ) 
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where 
(J e: 

={ 
x 

}concrete { 
x 

} concrete 
c c 

Q:. (J !. = e: y y 

"-xy Yxy 

and 

[: ~] 
v 

DC EC 

(2.1a) ---
1-v 

2 
0 

E
C

: modulus of elasticity of concrete 

v: Poisson's ratio of concrete 

DC: uncracked material property matrix of concrete. 

This wall element contains reinforcement parallel to the X' axis, which 

makes an angle a. with the X axis. 

Defining the percentage of reinforcement as 

p = area of r~inforcement 
concrete area 

the stress-strain relation of the reinforcement in the XlVi coordinate 

system can be written as: 

Q:. 
IS DIs e:IC 

:::(X -
(2.2) 

where S 
0' I 

IS 
= { OX } 

Q:. 

0 

and 

= { 

ex l 

lconcrete 
IC e: e: yl 

Yxyl 

I 
PEs 0 

:] DIs 0 0 =ex 
L 0 0 
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and 

. s 
E :. me d u 1 us 0 f e 1 as tic i t y 0 f the rei n for c em e'n t 

steel stress referred to concrete area. 

The f 0 1 1 ow i n g t ran s form a t ion r u 1 e s [l 3 ] are val i d tor 0 tat e the s t res s e s 

and the strains from the global coordinate system to any other cartesian 

s~stem X~yf positioned at an angJe a relative to the or'iginal global system~ 

I = T Q. a, 
=(J 

(2.3) 

.if T ~ =€ 
(2.4) 

where 

2 2 ,2cs-c s 

T 2 2 -2cs s c 
=cr 

cs 2 ,2 
-cs c -s 

and 

2 2 c s cs 

T 2 2 s c -cs 
=~ 

-2cs 2cs 2 2 c -s 

c cos a. 

s sin a. 

Applying the above transformation rules to the material prope~ty matrix of 

the reinforcement DIS the following global material property mat~ix OS is 
~' ~ 

obtained: 

'ft tan',be ~hownb~ th~ pr~nciple ~f cdntr~gradience that 

-1 TT 
b =€ 

(2.5) 
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Composite material property matrix for the reinforced concrete 

model is obtained' as the sum of the material property matrices of concrete 

and reinforcement: 

(2.6) 

If additional reinforcement is present at an angle 01 from the X-axis then 

th~ material property matrix takes the following for~: 

D (2.7) 

With this procedure any number of reinforcement directions can be accommo-

dated. Due to the presence of reinforcement, the reinforced concrete model 

is no longer isotropic. The directions of the principal stresses and the 

principal strains may be different [24]. The magnitude of the deviation 

depends on the re i nforcement ra t io and the app 1 i ed total's tresses. For 

the range of stresses which are 1 ikely to occur in practice this deviation 

is relatively small [25J [24J [17]. 

2.3 .. 2 Elastic Behavior After Cracking 

Concrete is assumed to crack when a principal stress 01 or 02 

reaches the tensile strength 0t of concrete, Fig. 10. It is assumed that 

the cracked concrete can no longer carry any tensile forces perpendicular 

to the crack but maintains some amount of shear stiffness because of the 

irregular surface of. the crack. Therefore for an open crack, the material 

property matrix of the cracked concrete, Fig. 10, can be written in the 

U, V-coordinate system as follows: 

o o 

o o (2.8) 

o o 



where 

2(1 + v) 

14 

(for full shear transferabi 1 ity across the 
crack) . 

The cracked material proper. ty matrix D'c can be transformed into the =cr 

global system through the use of I€ and T matrices which were def·ined 
=CY . 

in Eqs. 2.3 and 2.4, respectively_. H~n~e the material property matrix·of the 

cracked ·concrete·takes the fol1owlng form in the global coordinate system: 

the exp1 icit form of which is: 

4 2 2 
c d 11 +4c s d 1 1 

·2 2 2 2 
c s d ll -4c s d

33 
322 c sd

1l
-2cs(c _so )d

33 

= 
2 2 2 2 

.s c d ll -4c s d
33 

422 
s d 1 1 + 4c s d 33 

3 . 2 2 
cs d11 +2cs(c -s )d

33 

322 c sd 1 1- 2cs (c ~s )d
33 

3 . 2 2 
cs d1l+2cs(c -s )d

33 
2 2 2 2 2 

c s d l l+(c -s ) d
33 

where 

c cos 13 

5 sin 13 

If the material contains reinforcement in two orthogonal directions 

para11e1 to the global coordinate system, then the composite material 

property matrix takes the fol lowing form: 

where 

n = ES/Ec 

p : percentage of reinforcement in X direction 
x 

P percentage of y reinforcement in Y direction 



Cracked concrete is highly anisotropit especially for ~oderate reinforce-

ment ra t i as [17].. 

Crack Modes 

Figure 11 summarizes the types of crack modes that can possibly 

occur during different types of loading conditions, .that is mo~otonical ly 

increasing loads, ~nloadingor alternate loading. Closing of cracks and 

opening of a new set of cracks in an element which contains closed cracks 

and .also dpening of two sets of cracks are especially important when the 

loads are reversed or unloading occurs. 

2.3.4 Definition of a "Crack Width" 

Referring to Fig. la, the strain normal to the cracks can be 

written as: 

where 

2 .2. 
€~ = €x cox Y + €y sin y - Yxy cosy slny 

A _ 'IT 
Y = 'r-' 2 

as defined in the figure. 
c The cracked concrete carries a stresses which 
v 

are acting parallel to the cracks. These stresses cause strains in the 

di rectioli norma.l. to the crack because 'of the Poisson's effect, that is: 

where 

c . 2 2 . 
a~ = ax sin y + cry cos Y - 2~xy slny cosy 

A "closed crack" can be assumed if: 
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otherwi se·the crack is open. The difference between the two strains, 

namely tre difference between €J,. and €u' is defined as "crack width. 11 

Note th~t this crack width is only relative since it is defined in terms 

of stra ins. 

It is possible to establish the varying value assigned for' the 

shear term d
33 

defined in Eq. 2.8 as a function of the crack w~dth defined 

above. If closing of cracks occurs then the uncracked material property 

matrix, Eq. 2.la, should be used. 

2.3.5 Plastic Behavior After Cracking 
--_.'--'-- - .. --.-.---- - - - --_. __ ._-_._----- ----.--- -- _.- ---------_._-_ .. --. -

The elastic behavior of a cracked element is terminated if com-

pressive yielding occurs in the cracked concrete and/or yielding occurs 

in the reinforcement under tension or compression. Uniaxial perfect plasti-

city is ~ssumed for both the cracked concrete 'and the reinforcing steel. 

Hence the modulus of elasticity for a yielding component materic:J1 is set 

equal to zero in the computation of the material property matrices. 

Plastic Behavior of Uncracked Concrete 

The uncracked concrete is in a biaxial state of stress .. Associ-

ated with the initial stress method (explained in Chapter 3) a special 

elasto-plastic material property matrix is used. This matrix is developed 

. in Ref. [26]. For ideal p-lasticity the general form of the 'elasto-plastic 

matrix is given as: 

where 

D : 

F 1(0) 

D =ep 

elastic material property matrix 
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'F(cr): function of the yield surface. 

If the Von Misesyield condition and the associated flow rule is assumed 

for the plasticity of the uncracked concrete under biaxial stresses, then 

the yield surface F(cr) is defined by: 

F (0) c2 c c c2 + 3"'" c2 _ rT' c2 
= 0 - 00' + cr I V 

X X Y Y xy 0 
= 0 (2.11) 

w her e o~ i s the un i a x i a 1 y i e 1 d s t res s . A 1 sot he e 1 as to - p 1 a s tic rna t r i x 

s pee i ali zes to: 

where 

c 
o o 

(2. 12) 

DC is defined by Eq. 2.1 and aC is defined by'Fig. 8a. Note that 
o 

the term CtT~C tJ is nothing more than a scaling factor. 

2.3·7 Termination of Plastic Behavior of Concrete 

Concrete can sustain compressive strains only up to a certain 

strain. At that time it crushes. This crushing strain can be determined 

from uniaxial compression tests of concrete. However} to" use that, value 

in the biaxial state of stress, an equivalent strain must be defined. If 

the Von Mises yield criterion is us~d this equivalent strain' is: 

2 
e == (e: - e: e x x y 

Once concrete crushes it cannot sustain any further load and its stiffness 

i s dis rega rged. 
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2.4 Behav·ior of the Frame El ements 

Axial and bending deformations are a1 lowed for the frame elements. 

Constant strain distribution is assumed along the length of a frame element. 

Since the bending deformations involve variations through the depth of 

the frame element, the method for introducing an adjustment in material 

properties based on the stress level requires some approximatiqn. One 

possibi 1 ity of handl ing this would be to consider the frame element made 

up of a number of layers. By retaining the assumption of normals remaining 

normal it would be possible to allow progressive penetration of cracking 

and/or plasticity. Such an approach Was discarded,however, as being too 

costly in computation time. 

It Was decided that a more approximate treatment of the frame 

elements is adequate for this study. Based on the stress levels at key 

locations, the behavior of each frame element is defined. The various 

combinations of strains possible in the frame element are shown in Fig. 12. 

If both the top and bottom strains are positive as shown in Fig. 12a, 

then the average of the top and bottom fiber stresses is used to determine 

cracking. In that Case the whole section is assumed to crack. If both 

the top and bottom strains are negative as shown in Fig. 12b, then the 

average of the top and bottom stresses is checked against the yield stress. 

For this type of strain distribution, the cracking check is not made. 

Yield of the whole section is assumed if the center 1 ine va1ue'reaches 

yield. Yielding ,can continue until the concrete crushes. For the other 

two remaining strain distributions of Fig. 12, concrete is assumed to 

crack down to the mid-depth of the section if the tensile stress either at 

the top (Fig. l2.c) or at the bottom (Fig. l2.d) reaches the cracking 

stress. Assumed crack modes and the associated transformed areas are shown 

in Fig. ,13. 
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'If an underreinforced section is assumed, the plasticity and 

crushing of concrete in the compression zone is preceded by yielding of 

reinforcement in the tension zone. Uniaxial failure limits are assumed 

for both concrete and reinforcement. 

2.5 Behaviot of the Link Elements 

The contact area between the wall and the frame represented by one 

1 ink is called the tributary area of that 1 ink. Strength of a 1 ink 

element in 'tension and shear can be computed as: 

where 

Strength in tension F = A 
t 

c , 
er .' tens Ion 

c 
Strength in shear, F s = A, (J shear 

A: the tributary area 

c er .: ten si Ie streng th of conc rete tension' 

ere . shear strength of concrete (assumed to be. shea r' 
,.. 

2 er- . ). 
tension 

Initially very stiff values are assigned for the spring constants kh and kv 

which represent the stiffness of the 1 ink element in the directions tangent 

and normal to the contact area respectively (Fig. 6). A crack between the 

wall and the frame may be caused either due to shear or to tension. The 

occurrence of a crack is determined by'comparing the strengths Ft and Fs 

with the forces acting between the wall and the frame. It is assumed that 

a crack can maintain some shear stiffness [27J. 

Once a crack forms kh and kv values should be altered depending 

upon the condition of the crack. If a crack forms ~ue to shear and the 

normal force is tension then kv is set equal to zero and kh is set equal 

to the friction stiffness; it however, the normal force is compression, 
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k is kept at its initial large value. If a crack forms due to tension 
v 

first, then agaih kv is set equal to zero and kh is set equal to the friction 

value. 



21. 

CHAPTER 3 

METHOD OF SOLUTION 

Elastic Analysis 

Finite element method used in this investigation is of the dis-

placement or stiffness appro~ch. General features of the finite element 

method are now well known. The concepts and steps in the development are 

~plained in detail elsewhere [13J [14J and will not be repeated here. 

Basical ly the method begins with dividing the continuous structure 

into a number of regions or subdomains known as· ll elE;!ments." On the basis of 

an assumed displacemeht field, stiffness properties of each element are 

determined in terms of values of the displacements and their derivatives 

at selected points called the "nodes." The stiffness characteristics of 

the whole structure is' then constructed from the assembly of the stiffnesses 

of the individual elements. Finally, the following force-displacement re-

lation is obtained: 

P K U 

where 

P: vector of 'noda 1 fo rces (known) 

U: vector of nodal displacements (unknown) 

K: stiffness matrix of the structure (known) • 
= 

Equation 3.1 is a system of linear simultaneous algebraic equations which 

express the equil ibrium of the structure. The displacement boundary con-

ditions can. easily be incorporated by either including or deleting the 

appropriate degrees of freedom from Eq. 3.1. 

If a direct stiffness approach is followed in the assembly of ~J 
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a compact· array of equations is obtained. This array of equations can be 

efficiently solved because of the banded and symmetric nature of K. 

In this research Gauss EI imination method is used for the solution 

of the equil ibrium equations. 

After salving Q, the strains € and stresses·0 within each element 

can be computed by: 

B u (3.2) = --. 

and 

o = D e: 

where 

u nodal dis~lacem~nt vector of the element. 

3.2 Incremental Analysis 

3.2. I General 

Initially the structure is uncracked and el.astic. This elastic 

state continues until first cracking or plasticity occurs. By loading the 

structure in increments and through the use of an iterative procedure it 

is possible to extend the elastic solution into the study of the propaga-

tion of cracks and plasticJty of concrete or reinforcement. 

When an element cracks or plasticity of any component material 

o c cur s , the reI ea sed 1/ p S e u do s t res s e s I lor the "i nit i a 1st res s e s " ( see 

Section 3.3) should be distributed to the surrounding elements. Within 

one load increment the distribution of the initial stresses can be achieved 

in several ways. The following two alternatives can be mentioned: 

Met ho d I: use s the up d ate d ,or cur r e n tel a s tic s t iff n e s s • T hi· s 

procedure can be called "the initial stress method using a variable stiff-

ness.1! 
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Method 2: uses the initial stiffness throughout each iterative 

cycle. This adaptation can be called (fthe initial stress method using 

constant ·stiffness. 11 

Both methods can be used to study crack prop~gation and plasticity. 

3.2.2 Cracki ng 

Figures 14 and 15 are schematic illustrations of the methods 

mentioned in Section 3.2.1 in relation to crack propagation~ 

~eferring to Fig. 14, assume that when the load is incremented 

from Po to Pl some elements ~rack and the stiffn~ssof the structure changes 

from K1 to K
2

" Initial loads pll) are released. At the same deflected 

configuration Ul the structure can only support a load which corresponds to 

point 01' In order to reach the same external load leve'l Pl , the structure 

must reabsorb the initial load pll) causing further displacement of the 

structure by an amount Ofl1U~l). This additional displacement is calculated 

as: 

,,-' ( 1) - 1 - ( 1) 
Do UA = K2 . P A (3.4) 

The inverse sign on K2 is symbol iconly. If now this additional deformation 

causes cracking of new elements and the stiffness changes to K3 then new 

pseudo loads, ~l2), are rele~sed and the structure deforms further to U
3 

by an amount 

"U-(2) = -1-(2) 
Do A K3 P A (3.5) 

Assuming that cracking stops at point A
3

, then the next load 

increment is appl ied. Note that in the distribution of ~~l) and ~~2) the 

current cracked stiffnesses K2 and K3 are used respectively. 

Figure 15 illustrates the same cracking process by Method 2. Again 
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assume that at the load level Pl some elements crack and the pseudo loa'ds 

~(l) are released. The fol lowing iterative scheme is used to distribute 
A 

the pseudo loads: 

6 G.l 1
) 

6 U (2) 
A 

6tJ.(3) 

6 U(4) 

etc. 

-1 
KI 

-1 
KI 

-1 
Kl 

-1 
KI 

- (1 ) PA (3.6) 

-(2) 
(3. 7) p. 

A 
-(3) P
A (3.8) 

- (4) PA (3.9) 

Iteration continues until all the pseudo loads· diminish to within aspeci-

f i ed 1 im it. 

Final displacement LOA caused by tt-e pseudo loads is obtained as 

the sum of the displacements 60~1)) 60~2)) 60~3)) etc. Assuming again that 

cracking stops at point A
3

) then the next load.incremert is applied. If 

in the next increment further cracking occurs) the iterative scheme de-

scribed by Eqs. 3.6,3.7, etc.) is repeated but using K3 as the stIffness· 

properties this time. Note that in Method 2 the stiffness of the structure 

at the beginning of an increment is used for the distribution of the initial 

stresses. 

The effect. of cracking on the load-displacement diagram is non-

I inear but the cracking process itself is elastic) that is the structure 

remains elastic before and after cracking [17J [28J. 

In the real behavior of the structure cracking process continues 

.gradually and the stiffness of the structure c~anges slowly. The path of 

deformation of the mathematical model has a stepped configuratioR as shown 

in Fig. 16. The approximated path of deformation of the mathematical model 

. ::' 
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using fin·ite sfze load increments is also shown on the ~ame figure. Only 

the points I, A3 and 8 are common to both of the paths. The detailed real 

path is approximated by a less detailed path which includes points I, AI' 

A
3
, B

l
, 8

3
, etc. 

Ref err i n g to Fig. 1 6, i f a sin g 1 e I a r gel 0 ad inc rem en tis a p p 1 i e d 

between points I and 8
3

, the analysis may indicate crac~ing of. a number of 

elements at the same time. In real ity these should not occur at the same 

time but should occur more or less sequentially. The cracked stage achieved 

by the small load increment process may differ from that found with the 

large load step. In order to keep the solution to within reasonable 1 imits 

of accuracy of the mathematical model, care must be experienced in selection 

of the size of load increment. 

3.2·3 Plasticity 

The distribution of the pseudo-loads due to plasticity again 

r e qui res ani t era t i ve s cherne. I nth i s res ea r c h wit h ina t yp i ca i loa d 

increment Method I is use~ for the plasticity of reinforcement and the 

cracked concrete, and Method 2 is used for biaxial plasticity. Computation 

of pseudo stresses and determination of yielding for the cracked ·concrete 

and the reinforcement are given in Section 3.3.2. In the case of a biaxial 

state of str~ss the determination of the yielding st~ge is more complex 

than the uniaxial case, since various combinations of stress are possible 

causes for yielding to start. All. such combinations are expressed by a 

yield surface (e.g., Eq.2.11 defines the Von Mises yield surface). Within a 

typical load increment the fol lowing steps should be taken to compute and 

distribute the initial stresses due to plasticity developing in an uncracked 

concrete element [26J (see Fig. 17): 
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1) Apply the load increment and determine the elastic stress 

and strain increments (6.~" 6.§). 

2) Add the increments to the existing values of stress and 

strain at the beginning of the increment. Thus current total 

Va 1 u es are ob ta i ned (0 1" e: 1 ) . 

3) Evaluate F(0) from the total value of stresses computed in 

Step 2: 

a) If F(0) < 0, the element is elastic" no pseudo stresses 

are released. Stop the process. 

b) If F(0) > 0 and also at the b~g~nnihg of the increment 

F(0) = 0 (which means_element was at yJe1d at the beginning 

of the increment) set ~1 = ~" 6.~1 = 68. Compute ~2 using 

6._8
1 

and the elasto-plastic matrix D (see Eq. 2. 12)~ 
=ep 

6.0 = D 68 -2 =ep-l (3. 10) 

----------- --------- -------W-ne-re-D- -i-s-oas-eo oh-th-e -- fcftar--sTres-ses----c>l5-ti~nnecr-Tn-STep--Z:----- --- -------- -
=ep 

Therefore" the pseudo stresses (the stresses which cannot 

b~ supported by the e1asto~p1astic concrete) are computed 

as: 

(3. 11 )" 

c) If F(a) < 0, but at the beginning of the increment 

F(o) > 0 (which means the -element Was elastic)" -find the 

intermediate value of stress and strain at which yield starts 

(9:0' ~O) by interpolation and compute the incremental stresses 

and strains which have taken place above the yield point as: 

6_01 = a - a -1 ~ 

6_81 = 8 - 8 - -0 

(3. 12) 

(3.13) 
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Again compute the' pseudo stresses 6IT using Eqs. 3.10 and 3.11. 

4) C6mpute the-pseudo loads I (see Section 3.3.4) corresponding 

to 6£ and analyze,the structure using the ini'tial stiffness at 

the beginning of the increment which will give a new set of incre-

ments, ~i and 6~1· 

5) Repeat steps 2 through 4 until the pseudo stresses reach 

sufficiently small values. 

Figure 17 is a schematic illustration of the process described 

above in a'two-dimensional space. Note that the yield surface is artifically 

shifted away from its initial position. In order to prevent this shift 

the state of stress represented ,by point 2 should be projected on the yield 

s'urface (point 3) during the iterations. 

When plasticity occurs the state of stress does not uniquely define 

the state of strain, ~t is path dependent. The same stat~ of stress cannot 

be reached if different paths are fo1 lowed. Also the process is irreversible, 
. '-"'.~-•• ---.. - ...... -.---.--:--... --... -.-.• ~.----.---'"'-"-~-"'----'---~---"""'-'-"""--"""""'" .••...• __ .•.... __ .. __ ..••.......• _. __ ............. _ ........ _ .... _-... _ .... __ . __ .-.. _ .... __ .. j-.... _._ .... _ .... _-_._--._-_ ••••••••••. _-_._ ... __ .... _-_. __ ..... . 

which means there is an energy loss during plastic action. 

If within an increment only biaxial plasticity takes place, the 

initial stiffness of the st,ructure is not altered 'and the pseudo loads are 

iterated by the use of th~ initial stiffness at the beginning of 'the incre-

mente If, however, within an increm.ent ,cracking .occurs' in some elements 

and concrete plasticity occurs in some other element, then only the element 

stiffness matrices of tl-e cracked elements are changed; the element stiff-

ness matrices of the uncracked yielding elements are not changed. Hence 

the .structural stiffness matrix reflects only the changes occurring due 

to cracking. 
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3.2.4 -Mathemat ical Correspondence of Method 1 and Method 2 

Mathematically Method 1 corresponds to the solution of nonl inear 

equations of equil ibrium (nonl inear sinc'e the computed initial loads are 

the functions of the state of stress reached) by employing Newton's r-13] 

approach where tangential slope is used. Method 2, however, corresponds 

to the Modified Newton-Raphson [13] approach with constant slope being used 

during the iterations. 

The convergence of the -initial stress method has been illustrated 

by various practical appl ications [26] [13] [17] [29J. It has been success-

fully used to study cracking as well as plasticfty proble~s. 

3.3 -Computation of Pseudo Stresses and Pseudo Loads 

Pseudo (or initial) stresses_may be releaseddue t:o cracking or 

plasticity. In the following paragraphs the definition of the pseudo 

stresses and the nodal forces (pseudo loads) corresponding to them are given. 

3.3. 1 Pseudo Stresses Due to Cracking 

When an element cracks a sharp change in the material property 

matrix occurs at ihe instant the element goes from an uncracked state to 

the cracked state. Assuming that the element keeps the same deformed con-

figuration at that instant of cracking (see Fig. 18), the cracked element 

can only support ~ value of stress which is computed from: 

0' - = D € -cr - =cr ..... (3. 14) 

The difference between the previously a~tained stress ~ and the new value 

of stress 0' is called the rrpseudo" or "initial" stress, that is 
-cr 

~ = 0' - Q:.c r = (D - D ) € 
= =cr 

(3.15) 
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3.3.2 Pseudo Stresses Due to Uniaxial Plasticity 

When a component material (either concrete or reinforcement) 

reaches such a state of stress that yielding begins) the element cannot 

sustain any additional stress) that is stress in excess of the yield stress. 

Here again the excess stresses released) that is the elastic computed 

stress less the yield stress) are the pseudo or initial stresses. Yielding 

may begin at any point within an increment (see Section 3.2.3 for the 

incremental procedure). Change from an el~stic to a plastic state of 

stress (loading) or from a plastic to an elastic state of stress (unloading) 

can be determined from the sign of the plastic w6rk increment: 

if 6W > 0 loading occurs) material is plastic) 
p -

if 6W < 0 unloading occurs) material is elastic. 
p 

Figure 19 schematically illustrates the amount of pseudO stresses released 

due to uniaxial plasticity.of the cracked concrete or plasticity of tffi 

s tee 1 re info rcemen t. 

3.3.3 . Pseudo Stresses Due to Plasticity of Uncracked Concrete 

The computation of the stresses released due to biaxial plasticity 

of the uncracked concrete is given in Section 3.2.3 in relation to the 

plastic analysis where Method 2 is employed. 

Computation of the Pseudo Loads 

Forces corresponding to the pseudo stresses can be computed from 

the equation [26J: 

P = S B Ta dA 

A 

(3. 16) 

where B is the matrix which relates the nodal displacements to the element 
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strains (see Appendix A). , 

It is also possible to compute the pseudo loads directly from the 

difference of the element stiffness matrices: 

P == (k - k ) u 
- == ==c r -

(3.17) 

where 

k: uncracked element stiffness matrix 

k cracked element stiffness matrix =cr· 

u nodal displacement vector of the element. 
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CHAPTER' 4 

NUMERICAL RESULTS 

4.1 General 

To demonstrate the applicability of the analysis presented in 

the previous chapters and also to investigate the adequacy of the finite 

elements suggested a reinforced concrete deep beam, a reinforced concrete 

panel and a reinforced concrete shear wall-frame system are numerically 

~nalyzed. Experimental results are already availabl~. 

All. the computations are carried on the IBM 360/75 'system 

operated by the Department of Computer Science of the University of III inois. 

4.2 Deep Beam 

0 __ 0- _0 -..-.~Va-r:i-ous.-.ionvest.iog ators---have-s-tudred-th e-he h av-i-o r-an ds-tress-d-i- s-tr.:. i.~:.--

bution in reinforced concrete deep beams, both theoretically and experimen

tally. Oneof the deep beams tested at the University of ,'llinois [20] 

. was selected and analyzed by the incremental finite element method outlined 

in th~ preVious chapters~ 

The geometry and the cross:-sectional.properties of the selected 

specimen, designated G24S-1l in Ref. [20], are shown in Fig. 20. The average 

compressive strength of the concrete used in the model beam was 5600 psi. 

The modulus of rupture of the concrete is estimated as 580 psi. The specimen 

had no web reinforcement and contained a single # 4 intermediate grade de

formed bar (yield stress ~ 45.7 ksi, yield strain ~ 0.170%) as the tension 

reinforcement. Also a .sing1e # 3 intermediate grade deformed bar (yield 

stress ~ 48.9 ksi, yield strain 0.178%) was used as compression reinforcement. 
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The tensio'n reinforcement had a special anchorage as shown in Fig. 20. 

4.2. 1 Experimental Behavior 

The experimental data provided the following information: 

1) the details of the geometry and materia·l stress-strain laws, 

2) cracking pattern, 

3) variation of concrete and steel strains versus load. 

The specimen Was tested both statically and dynamically but only the static 

results are used here as a basis for comparison. 

The beam behaved as a tied'arch in whi6h the tension steel acted 

as a tie and the concrete abov~ and puts ide the cracks served as the arch 

r1b. Both vertical and incl ined cracks formed and at advanced stages of 

loading they became well developed. The inclined cracks advanced approxi

mately 45 degrees toward mid-span and then rose almost vertically to the 

compression zone. Final failure of the heam occurred by the yield of 

tension reinforcement (yield load P 27.8 kips).-y 

4.2~2 Behavior Predicted from the Anaiysis 

The layout of the finite element array used to model the beam 

is shown in Fig. 21. Due to symmetry only one half of the beam is analyzed. 

Discretization required 42 quadrilateral elements and 56 nodes. The load 

is app1 ied uniformly over the nodes 29, 36 and 43 and a single support is 

used· at node 14. (.shown on Fig. 21) .which provides a couple arm of 8 inches. 

Elastic material properties used in the analysis are: 

E
C 3,540,000.0~psr for concrete 

ES 
= 27,300,000.0 psi for the reinforcement 

v = 0.10 for concrete 
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Real izing that the surface of the crack in the concrete is not 

smooth it is assumed that cracked concrete maintains 25% of its full shear 

capacity.' This phenomenon is termed aggregate interlock. 

First cracking started almost in a vertical direction in element 

7 at the load of 15 kips and propagated through the structure as illustrated 

by the sequential pl~ts of cracks at each load level as shown in Figs. 22 

and 23. The experimental crack pattern. is reproduced in Fig. 24. There is 

a good ag-reement between the experimental and analytical crack patterns} 

both in location and direction (Figs. 23, 24). 

The load is applied in increments of 5·kips up to failure. Load 

versus displacement'diagrams obtained from the analysis and the experiment 

are compared in Fig. 25. The' points corresponding to a single load level 

show the increase of displacement due to propagation of the cracks. Good. 

agreemen~ between the experimental and analytical bahavior is found. From 

the test it was observed that the flattening of the load displacement diagram 

was initiated by yielding ,of the tension reinforcement. This' type of be

havior was very well predicted by the analysis. Figure 26 shows the' com

parison of the load versus steel strains. The initial slopes of both the' 

experimental and the ~nalytical curves are st~ep. This stage corresponds 

to the elastic behavior before cracking. After formation of cracks in the 

tension zone, stresses carried by the concrete are transferred to the rein

forcement which causes the steel strains to increase and produces a change 

in the slop of the curves. Inelastic behavior starts ~y yielding of the 

reinforcement where the strains increase more rapidly with load. It is ob

served that the load versus steel stra i n curves have simi lar shapes as the 

stress-strain curve for the tension reinforcement. 



4.2.3 Variation of Stresses 

From the output of the analysis it is possible to trace the 

variation of stresses at any section of the beam at any load level. In 

Figs. BJ through B~ such a sequential plot is given for section A~A which 

is designate~ in Fig. 21. The diagrams exhibit stepped configuration be-

cause the stresses are assumed to be constant within an element. The sol id 

1 ines show, the .distribution of stresses at the beginning of the indicated 

load level and the dotted 1 ines show .. the distribution at the end. From 

the variation of cr stresses it is poss'ible to observe shifting of the 
·x 

neutral axis towards the compression zone when cracking occurs in the tension 

zone. With the increase of th~ load~ compressive cr blocks grow larger and . . x . 

larger to balance the stresses developed in the tension reinforcement. 

cr stresses don't show considerable change except for the cracked elements. 
y 

A decrease in cr stresses is noticed due to cracking. Section A~A lies 
y . 

in a constant moment region where zero shear stresses should exist according 

to the beam theory .. Small magnitude and sl ight va~iation of the shear 

stresses is in agreement with the above consideration. 

4.3 Shear Panel 

One of the shear panels tested at the University of Colorado [17] 

was analyzed. Two panels were combined to form a beam-l ike specimen which 

Was tested as a simply s~pported beam with mid-point load as sho~n in 

Fig. ·27a. The sel'ected specimen was designated as W2 in Ref. [17]. The 

three vertical ribs shown in Fig. 27a transmit the concentrated forces 

at the support points and at the load point to the panels. They also pro-

vide lateral stabil ity to the panels. The geometry and the cross-sectional 

properties of the selected specimen are given in Fig. 27athrough Fig. 27c. 
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The fol lowing data was listed for the materials used in specimen W2: 

Average compressive strength of concrete 3387 psi 

Modulus of elasticity of concrete 2900 ksi 

Tensile strength of concrete 483 psi. 

Yield strength of the reinforcement 51.2 ksi 

Modulus of elasticity of the reinforcement 27300 ksi 

Betause of symmetry only one half of" the specimen had to be 

analyzed. Poisson1s ratio for concrete is assumed to be 0.10. 

The failure mechanism reported from the tests was a flexural 

failure where yielding of the tension reinforcement Dccurred first and 

plasticity of concrete in the compression zone followed. The analysis 

also predicted the same type of failure. The analytical and the experi-

mental lead-displacement diagrams are compared in Fig. 28. The agreement 

between the computed and the experiment~l results is considered good. 

Two types of finite element meshes are used. They are shown in 

Figs. 29 and 30. Mesh 1 required 35 quadrilateral elements and 48 nodes. 

Mesh 2 required 63 quadrilateral ~lements and 80 nodes. In both meshes the 

failure of the specimen started by the yielding of the tension reinforce-

mente "When the fin~r mesh was used (Fig. 28, curve"b) yielding occurred at 

"a lower load than with the coarse mesh (Fig. ~8, curve a). The analysis 

indicated plasticity developed in the concrete in the compression zone when 

the finer mesh was used, while no plasticity Was detected in ~e concrete 

when the Coarse mesh was used. Thls difference can be expl~ined by the 

abil ity of the finer mesh to better reproduce stress concentrations than the 

coarse mesh. 

Three types of load intervals were tried in the three different 

solutions ( 6P l = 2 kips, 6P 2 = 4 kips, 6P3 = 8 kips). Load-displacement 
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diagrams obtained from"6P 1 and 6P
2 

are shown in"Fig. 28 (curves a and c). 

The numerical values of the displacements at points A, B, C, D (designated 

i n Fig. 28) a re a s fa 11 ows : 

Load P Displacement for 6P 1 for 6P2" 
(kips) at Point 

10 A 0.01073 in. 0.01073 1&1. o . 0 1 073 i; n . 

14 B 0.02326 in. 0.02335 in. 

18 C 0.03815 in. 0.03829 in. 0.03769 in. 

22 D 0.05678 in. 0~05710 in. 

No crackLng took place at point A. At point C the number and 

location of elements cracked during ~he appl ication of load by 6Pl or 6P 2 

increments is exactly the same (elements 29, 30, 32, 33, 34 and 35 cracked). 

However, an additional element (element no. 28) Was cracked when the incre-

ment used was 6P
3

" It, is concluded that the effect of the size of load 

increment on the values of displacements and on the sequence of cracking is 

slight. 

Curves a and d shown on Fig. 28 "compare the load~displacement 

behavior when two different shear stress transfer values are used to transfer 

stress across a crack (12.5% shear and no sheaG respectively). The two 

diagrams compare well except i:n the value of the failure load. In the no 

shear case, failure requires a higher load than the 12.5% shear case. 

Figure 31 compares the cracked regions at· P ~ 24 kips. The number of cracked 

elements in the no shear case is less than the 12.5% shear case, thence 

the transfer of sttesses from concrete to the tension reinforcement occurs 

at" a higher load. 

Experimental and analytical crack patterns are compared in Fig. 32. 

Good agreement exists between the two patterns. 
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4.4 Reinforced Concrete Shear Wall-Frame System 

4.4. 1 General 

T~e shear wall-frame system used in thi s analysis (designated 

as Specimen A-l in Ref. [2IJ) is adapted from a series of prototype models 

which were experimentally tested at the University of Tokyo in 1964 [21J. 

Two one-story shear wall-frame systems were cast together to f~rm a beam-l ike 

specimen as shown in Fig. 33 and tested as a simple beam which is loaded 

at mid-point with a 2000 ton capacity Universal-type testing machine. 

The geometry and the cross-sectional details of the selected 

specimen are shown in Fig. 33. Physical proper~ie5 of the materials used 

are given in Fig. 34. The experimental data did not contain information 

about the tensile strength of concrete hence it is computed from the com-

pressive strength: 

where 

(J 
ruptu~e 

(l . 25 ~ I. 75) 

(J l"t = (6 ~ 7) /f ' sp I c 

(J 

sp lit 

f': compressive strength of concrete in psi. Substituting 
c 

the numerical values in the above formulas the modulus of rupture is ob-

tained as (J ~ 40· kg/cm2 (570 psi). 
rupture 

Two systems of finite elements are used for the discretization: 

Solution l: Quadrilateral elements for the wall and the frame, 

link elements for the connection of the wall to the frame. 

Solution 2: Quadrilateral elements for the wall, flexural elements. 

for ·the frame, 1 ink elements for the tonnections of the wal 1 to the frame. 

The beam-to-column connections of the test specimen are quite 

.stiff due to the presence of crowded reinforcement. Analytical model 
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'simulates this by us.ing stiffened quad'rilateral el.ements,at those locations 

( e 1 em e n t s (, 8, 21, 28). 

4.4.2 Behavior of the Specimen During the Test 

The load-displacement diagrams obtained from the test are repro

duced in Figs. 35, 36 and 37., Figure 35 shows the canp1ete load-displace

ment behavior where the relative displacement between the mid-span and the 

right or left support is used. Figure 36 is a plot of load versus horizontal 

displacement of the right and left supports. Figure 37' -shows the initial 

portion of the load versus mid-span displacement.' 

During the test, the specimen was first loaded up to 110 tons, 

~n10aded and reloaded this time to failure~ Final crack app~arance after 

the failure ~f the specimen is reproduced in Fig. 38. After openfng of 

large diagonal cracks at 127 tons of load, the resistance of the test speci

men increased until 197 tons of load. At that time a shear-compression 

fa i 1 u re occu r red at the uppe r camp res s i on' co 1 umns.' No sepa ra t i on between 

the walland the,frame is reported. 

4.4.3 Solution 1 

The general layout of the, analytical model is given in Fig., 39:. 

Figure 40 shows the location and numbering of the 1 ink elements. Tner~ are 

64 quadri lateral and 28 1 ink elements used for the ideal ization. Each 1 i'nk 

element sho'wn on Fig. 40 represent ,a certain contact area depending upon 

its location. In this layout four magnitudes of contact areas are identified; 

wh ich are: 

1) Horizonta'l sides, non-corner.' Link E1~men:ts'9, '10, '1l, 12, 

13, 23, 24, 25, 26, 27. 
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'2) Horizontal sides, at corner. Link elements 8, 14,22,28. 

3 ) V e r t i ca 1 sid e s , non - co r n e r . Lin k e 1 em e n t s 2, 3 , 4, 5, 6 J 

16, 17, 18, 19, 20. 

4) Vertical sides, at corner. Link elements 1,,7, 15, 21-

Analysis identified first cracking of element 15 at a load of 

100 tons. From there on the loads are incremented by 10 tons. A cracked 

element is assumed to transfer some amount of shear stress across the cracks; 

two extreme cases being zero shear transfer and full shear transfer. De

pending upon the width of the crack the value of the shear stiffness assigned 

to a cracked element will vary between those two extreme cases. Four 

solutions are run with different values of shear stiffness: 

Case 1: in this solution a cracked element is assumed to 

transfer, no shear stress across a crack. 

'Case 2: 12.5% of the full shear stress is assum~d to be trans

ferred across a crack. 

crack. 

Case 3: 25% of tre full shear stress is assumed to be transferred. 

Case 4: full shear stress is a$sumed to be tran6ferred across a 

The load versus displacement diagrams obtained from the above men

tioned cases are given in Fig. 41. All of the four diagrams exhibit similar 

behavior. However, there is a difference in the size of the cracked regions 

as illustrated in Fig. 42. As the value of the shear stiffness assumed 

for a cracked element increases, the number of the cracked elements increase. 

The cracked region corresponding to no shear case (Case 1) is confined to 

a smaller area; hcwever, in the case of full shear tr~nsf.er (Case 4) the 

cracked region is wide spread. This is mainly'caused by the abil ity of the 

cracked element used in the latter Case (Case 4) to transfer shear stresses 
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through the cracks and thereby cause cracking of the nefghboring elements. 

Figures 43, 44 and 45 illustrate the appearance of the analytical 

cracks ~t three different load levels. Assumed shear factor for these 

plots is 0.125. There is a close agreement between the crack pattern ob

tained from the test (Fig. 38) and the one obtained from the analysis (Fig. 45), 

both in location and in directio~ of the cracks. 

A comparison between the analytical and the experimental load

displacement diagrams for a shear factor of 0.125 is given in Fig. 41. 

(curves b and f). Vertical displacement of node 9 is used for this plot. 

(Fig. 37 shows a similar compar-ison for the initial. portions of the load

displacement diagramsJ Analytical and experimental load versus ho~izontal_ 

dsplacement (horizontal displacement-of node 105) diagrams are compared in 

Fig. 46. The agreement between the analytical and the experimental load

displacement behavior is very good up to a load of 140 tons. From there 

on the analytical diagrams run with a steeper slope} indicating a stiffer 

analytical model than the test specimen~ The same stiff behavior is ob

served in all the four cases corresponding to different values of shear 

stiffness assumed for a cracked element (Fig. 4t). Thus it can be con

cluded that the cause of this stiff behavior is not due to the transfer 

of shear stresses across the cracks. A possible explanation is given in 

the following paragraphs. 

As the cracks spread in the structure and propagate towards the 

comp.ress ion zone}.' a cumulation of compress ive and shear stresses occur. in the 

compression zone. The elements of this zone are subject to high local 

bending moments caused by the frame act-ion. Now the so'Jution becomes 

sensitive to the behavior of this region. 

Consider a flexural element as shown in Fig. 47a. Under tl-e 
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action of a bending moment M, it would deform to the curved shape A'BIC'O' 

as shown in Fig. 47b. However, if the same bending moment is appl ied to a 

quadrilateral element it would deform to the trapezoidal shape as shown in 

Fig. 47c. Thus a quadrilateral element while trying to respond to a flexural 

action, will spend much of its energy in shear-type deformation' as impJ led 

bYe the trapezoidal shape. Therefore~ a stiff behavior is expec~ed from the 

quadrilateral element under the action of the ,fl,exural stresses. Furthermore, 

the flexural stresses are suppressed and initiation of plasticity postponed. 

From the above discussion it follows that the stiff behavior of 

the analytical model (after the load of 140 tons)' can be attributed to 

the poor behavior of the quadrilateral elements in the critical compression 

zone (designated in Fig. 48). 'This poor behavior of the quadrilateral 

elements can be avoided if the number of the elements cO'rresponding to the 

critical zone is increased. This can be achieved with a graded mesh which 

may look 1 ike the one shown in Fig. 48. 

Except for a few closed shear cracks (1 ink elements 2, 3, 11, 

12, 21), no separation took place between ~he wal I and the. frame during the 

course of loading. The forces acting on the 1 ink elements are given ih 

Fig. B.12. 

Sequential plots of the var,iation of global stresses (0 ,0', T ) 
X Y xy 

at a vertical section A-A (designated ,in Fig. 39) as a function of the 

appl ied forces are given in Figs. B.5 through B.9. 

4 .. 4.4 Solution 2 

General layout of the analytical model is given, in Fig. 33. The 

location an'd the numbering of the I ink elements is given in Fig. 34. In 

this solution, instead of the quadri lateral elements, flexural elements are 
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used for the frame. Discretization required 24 flexural elements, 40 

quadrilateral elements and 28 1 ink elements. Again four magnitudes of con

tact are~s are identified for the 1 ink elements (see Section 4.4.3). 

Analysis identified first cracking of element 15 at a load of 100 

tons. From there on the loads are appl led in increments of 10 tons up to 

fa i.l ureD 

A cracked quadrilateral element is again assumed to transfer 

12.5% of the shear stress across the cracks. The crack pattern obtained 

from the analysis at a load of 140 tons is shown in Fig. 49. There is a 

close agreement between the analytical and experimental (Fig. 38) crack 

patterns. 

Load-versus displacement responses obtained fran this analysis 

and the experiment are compared in Figs. 50 and ST. Agreement between the 

experimental and the analytical behavior' is very good up to 140 tons of 

load at which time the analysis indicated failure by yielding of reinforce-

ment and plastic be~avior of the concrete in the elements adjacent to the 

single support (elements 20~ 58, 64, 63). This local failure is caused 

mainly by the concentration of stresses due to the excessive rotation of 

the rigid corner element (element 28). Final failure of the specimen 

occurred first by yielding of the·teinforcement in elements 15, 16, 17, 

18, 19, 20, which is followed by yielding of the concrete in the compression 

zone and yielding of the elements aligned with the main diagonal. 

The earl.Y failure of the analytical mo~el can be attributed to 

the abrupt weakening of the flexural elements in the critical compression 

zone due to excessive y.ielding. If a sl icing or layering procedure [f8] is 

fol lowed for these flexural elements a gradual change of stiffness occurs and 

this provides the addttional strength to the analytical model which is 
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necessary to prevent the occurrence of the early failure~ Figure 52 i1 lus-

trates such a layered fle~ural element. 

The moments acting at the reference axis of the flexural elements 

are plotted in Figs. 53 and 54. It sho~ld be ,observed that high flexural 

action takes place directly under the appl ied loads (elements 9, 10) and 

also near the supporting point (el~ments 26, 27). Numerical values of the 

normal forces" shear forces a~ the b~riding moments acti ng at the member 

reference axis are given in Table B.2. 

Variation of the global stresses (0 , 0 ,T ) at the section , x y xy 

A-A (designated in Fig. 39) are given in Figs., B.'lOandB.ll. 

Similar to the experimental behavior no link element failures 

occurred except a few shear cracks (1 ink elements 11, 12, 13, 2, 3) which 

had a very insignificant effect on the 'general behavior.' 

It can be concluded that if flexural elements are used to repre-

sent the frame in a shear wall-frame system: 

a) a layering ,procedure is suggested for the elements which 

are subjected to high flexwra1 action, 

b) a better support should be used to prevent a local failure. 



CHAPTER 5 

SUMMARY AND CONCLUSIONS 

A discrete element method for the elastic and inelastic analysis 

ofc a reinforced concrete shear wall-frame system has been deve1?ped. This 

method uti1 izes fi.nite element techniqu~ as a tool of computation. An 

incremental procedure is used to study the non1 inear behavior due to 

cracking an·d plasticity. Within an increment of load the pseudo (or initial) 

----;-------s-rr-e-s-s e 5 w m-c-h-a r ere l-ecrs-e-cr----ttue-to-c-rcrc-kilTg-dnd--~hrrti-cTt yare d rs-tTtbutedr -------

to the surrounding elements of the s~ructure by either using the initial 

unchanged stiffness a·t the beginning of the .increment. (Method 2), or the 

current updated stiffness (Method 1). The analysis also incorporates trans-

fer of some amount of shear across the cracks. Only monotonic loading up 

to failure is considered. 

A computer program has been developed to permit high speed compu

tation of the resulting equations. 

Three types of structures (a deep beam, a shear panel and a 

shear wall-frame system) are numerically analyzed and the results .obtained 

are compared with the available experimental results. The analysis pro

vided a means to fol low the complete structural behavior under monotonical ly 

increasi~g loads. 

Aggregate interlock or the abil ity of a cracked element to transfer 

shear is included in the analysis. A constant value of shear stiffness is 

assumed for all the cracked elements. It is anticipated that a better physi

cal insight can be given to the problem of shear transfer if the value of 

the assigned shear stiffness is adjusted as a function of the crack width or 
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some other such similar function. In all ,the examples sOlved good agreement 

is obtained between the analytical and the experimental crack patterns both 

for coarse and for fine meshes used. The analytical nonl inear load-displace-

ment behavior caused by cracking compared well. with the available test 

results. The analysis can predict with acceptable reI iabil lty a failure 

mechanism which occurs due to bending action (for an und~r-reinforcedsection) 

where yielding,of the reinforcement 06c~rs first and compression plasticity 

of concrete follows (see the deep beam and ,shear panel exampl es). 

!f built-up quadrilateral ele~ents are used for both the frame 

frame example) initiation of plasticity is postponed in the critical com-

pression zone due to the stiff behavior of tl-e quadrilateral elements in the 

rectangular mesh used. In advanced stages of loading the solution becomes 

sensitive to the behavior of the 1 imited number of elements located in the 

criticai compression zone (Fig. 48) where stress concentrations occur due 

to the propagated cracks. To improve the analytical results the:following 

are suggested: 

1) use of a new grid with non-rectangular elements to provide a 

finer mesh in the critical compression zone (e.g., mesh suggested 'in Fig. 48). 

This type of a mesh provides improved stress values in the region whe~e high 

stress gradients occur. 

2) use of a four node (same as rectangular element) isopara-

metric element. The evaluation of the element stiffness matrix of such an 

isoparametric element requires the integration' of a triple matrix product 

of the following form 

s ~ T E ~ dA 

A 
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which is ap~roximated by a summation 

m n 
L: i: 

i=l j=l 
w •. 

IJ 
T (B . D B) (x.) y.) 

= = = I J 

w her e ea c h w.. i s t I-e i n t e g rat ion wei g h i n g fa c tor and x. and y. are the 
I J I 'J 

integration points selected for the numerical integration. Each term of 

the above summation represents in effect the contribution of the stiffness 

of a subregion to the overall element stiffness. If a procedure is fol-

lowed such th~t cracking or yielding criterion is evaluated at the integra-

tion points and each time a crack or yielding occurs the material property 

matrix D is updated to include the effect of the change, then it is possible 

to obtain a gradually cracking or yielding element. Here it should be 

noted that only the subregion which corresponds to that integration point 

is considered cracked or yielded. Peak stresses occurring within such an 

element results with the partial failure of the element at the same load 

level where the quadrilateral element still would not have failed. This 

partial failure results in a more flexible element, thus a more flexible 

overall behavior.' 

If flexural elements are used for the frame, however, early 

failure of the structure occurred (see Solution 2 of the shear wall-frame 

example). This is attributed to the early weakening of the flexural elements. 

A layering procedure is suggested for the flexural elements positioned at 

the critical compression zone. 

From the study of the behavior of the 1 ink elements it was con-

eluded that the analyzed reinforced concrete shear wall-frame system can 

be considered as a single integral unit rather than a wall and a frame. 

Another version of the program used in this research may include 

alternating or cyel ic loading. This type of loading is of interest in 
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order to establ ish the stiffness properties of the an~lyzed shear wall-frame 

system under seismic loads. Under cycl ic loading a degradation of stiffness 

occurs, that 'is, the stiffness of the structure decreases as a function 

of the maximum deformation imposed in previous, cycles. Therefore, analy-

tical prediction of the complete load-displacement behavior is necessary to 

determine the nonlinear response of the structure under repeated loads 

such as resulting from earthquakes. 

In the ideal ization of the stress-strain diagram of the concrete, 

compressive strength provided from the tests of cyl inders was used as the 

maximum stress (0~, see Fig. 8a). The area covered by the ideal ized diagram 

is larger than t~ experimental diagram, indicating that more energy is 

required for the ideal ized material for its failure. Use of an ideal ized 

diagram which has a balanced area with the experimental diagram is suggested 

in order to avoid the additional imposed energy requirements. This can be 

achieved by lowering the maximum value of the stress and decreasing the 

initial modulus of elasticity. However, difficulty arises in interpreting 

the counterpart of the above adjustment in the case of biaxial state of 

stress. 

The assignment of shear stiffness to a cracked element was made 

arbitrarily in 'th~ absence of the test data in this area. Experimental 

information is necessary about "the amount of shear transferred across a 

crack as a function of the crack width or whatever other variables are 

being used. Also experimental i"nformation about how well an open crack 

closes may be helpful if the type of the problem to be solved is such that 

closing of cracks is expected (such a~ cycl ic loading). 

The analysis included the nonlinearities caused by cracking and 

plasticity only. However, it is real ized that nonlinear behavior may occur 
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due to bond failure also. In all the examples solved such a nonlinearity did 

not occur elther due to the provisions taken (e.g., the anchor pl~tes in 

the deep 'beam example) or the types of the structures analyzed where bond 

failure was not criticai. If cracking of an aiready cracked eiement occurs 

(e.g., under cycl ic loading) bond failure may occur due to the destru6tion 

of the element. Hence the analysis should incorporate suitable bond 

elements in case bond failure is expected. 
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Figure 1, Constant Strain Triangle 
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Figure 2, Quadrilateral Element Composed of Four 
Constant Strain Triangles 
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50 

Triangul~~ Elements (40 CST) 
Number of Nodes '= 28 
Band Width = (5 + 1)2 = 12 

9 

Quadrilateral Elements (10 Q) 
Number of Nodes 18 
Band Width = (4 + 1)2 10 

Figure 3, Comparison of Mesh Details 
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a) 

b 

a 

b) 

Properties Common to Both Elements: 

Rectangular Element 
Trace of the Stiffness Matrix 

(8.652) 106 lb/in 

Built-up Quadrilateral 
Element 

Trace of the Stiffness Matrix 

(7.920) 10
6 

lb/in 

a = 5.0 in 
b = 3.0 in 
Modulus of Elasticity 
Poisson's Ratiol = 0.0 
Thickness = 2.0 in 

(2.4) 106 psi 

Figure 4, Stiffness Comparison of the Bunt-up Quadrilateral 
and Rectangular Elements 
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a) Fictitious Link b) Sp ring Constants for the Link 
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Figure 6, Link Elements 
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Stress Theory 
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Figure 38, Experimental Crack Pattern (Specimen A-l) [21J 
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Figure 48, Grading Mesh Suggested 
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Figure 53, Frame Moments at P 100 Tons (Before Cracking) 
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APPENDIX A 

DEVELOP~ENT OF THE ELEMENT STIFFNESS MATRICES AND COMPUTATION OF STRESSES 
AND STRAINS 

A.l Quadri lateral Element [30] [31] 

Consider the quadrilateral shown in Fig. 1. 'It is s'ubdivided 

into four triangles, taking the oommon or fifth node at the centroid of the 

quadrilateral.' Each triangle is a constant strain triangle, that is, a 

linear displacenient field is assumed over each triangle. The displacements 

are continuous across the interior boundaries,· but the strains are discon-

tinuous. 

The equil ibrium equations for the element system can be expressed 

as: 

F - k u (A. 1 ) 

lOxl lOxlO lOxl 

Let us partition Eq. A.l as follows: 

F ~11 
I 

~l2 u I 
I 

8xl 8x8 I 8x2 8xl I 
I 

= 
_____ .1. ____ 

I 
I 

fa ~21 
I 

~22 ~ I 
I 

2xl 2x8 I 2x2 2xl I 

where.E.o and l!.o are the load and displaceroent vectors for the centroidal 

node of the quadrilateral element. Then: 

F ~11 u + ~12 ~ (A.2) 

8xl 8x8 8xl 8x2 2xl 

and 

fa = "~21 ~ + k .!:!O - =22 
2xl 2x8 8xl 8x2 2xl 
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So 1 v i n 9 l:!o. from E q. A • 3 : 

(A.4) 

and substituting in Eq. A.2: 

.. 1 -1 
£. =. ~ 1 1 ~ + ~ 1 2 . (~2 2 fa .. ~2 2 ~21 ~) (A .5) 

so tha t 

or 

(A ~ 6) 

·where k"i'\' is the "condensed stiffness matrix" ·of. the quadri later·a1 

. e1 ement .. 

If .Eo ~ 0 (i.e., no load applied at the centroidal·node) then 

if, 

F = F 

Once the structure is solved for given loads,. the displacements ·of the four 

CGrners of each .quadrilateraL element ar.e recovered from ·the displacement 

vector of the structure. In order to find the strain w·ithin each triangl·e 

the displacement· ~ of the.centroidal node should be canputed first (Eq. A.4). 

Next step is to compute the strain of each subtriangle using the strain 

displacement rel~tionship: 

B 
e. 

(A. 7) .t = ·u 

3xl 3x6 6x1 

where 

Y23 0 Y31 0 Y12 
0 

B - 2A 
0 x32 0 x13 0 . x

2l 

x32 Y23 x13 Y31 xiI Y12 

. ; 
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e 
"u nodal displacement vector for a subtriarigle and A is the" 

area of th~ triangle (Fig. 2), also 

Average strain 

where 

x .. = 
IJ 

y ... = 
IJ 

of 

£ 

3xl 

the 

x. - X. 
I J 

y. ... y. 
I J 

centroidal node 

( i = 1, 2, 3) , (j = 

is then: 

3xl 

1. , 
II III IV h'· •• • h. .! ,. € ,..t. are tile straIns eXIstIng 'v'Jltliln 

1, 2, 3) 

(A.8) 

each subtriangle . 

Thfs average strain is used to compute the average stress of concrete: 

£c ._ ~c . g" (A.9) 
3xl 3x3 3xl 

where Dc is the materia,l prop'erty matrix of concrete. 

The same strain is assumed for the reinforcement to6, thus the 

stress in the reinforcement is: 

s 
~ = 
3xl 3x3 3xl' 

where OS is the material property matrix of the reinforcement. 

A.2 Frame El ements 

(A. 10) 

The structural frame is divided into segments as shown in Fig. Sa. 

Two layers of reinforcement are assumed at a' distance of d' from the top 

and bottom. Let1s 60nsider the axial forces; shear forces and moments 

acting at the reference axis as shown in Fi~. Sb. The co~respofiding dis-

placements are numbered':from I to 6. This element has the usual 6~6 

stiff~ess m~trix: " 
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AE 
L - SYMMETR I C 

0 .llil 
L3 

0 
6E I 4EI 

L2 L k == (A. 1 1 ) 
== AE AE 

---C 0 0 
L 

0 .. .llil 6E J 0 .llil 
L3 L2 L3 

0 6E I 2EI 0 6E I 4EI 
L2 L -7 L 

where 

-A: tra~sformed area -of -the uncracked section, 

I : moment of inertia of the uncracked section wi-th respect to 

the refererice axis, 

E: Young's modulus for concretej 

L: length of the element. 

Assuming the displacements of the reference axi-s are related to 

the d i sp 1 acemen.ts of the corners of the element by the fo 11 ow i ng re 1 a t ion: 

u aU (A.12) -r ==rq -q 
.~ 

6xl 6x8 8xl 

where 

0·5 • 0 0 0 0 0 0·5 0 

o· 0.5 0 0 0 0 0 0.5 

D 
0 0 0 0 0 

D 
0 

a == ==rq 0 0 0·5 0 0.5 0 0 0 

0 0 0 0.5 0 0·5 -0 0 

0 0 
1 0 

1 
0 0 0 

D D 
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'D: the depth 'of the element 

u: displacement vector of the corners of the frame element (two --q 

at each corner as shown in Fig. 5c). 

By the appl ication of principal of virtual work one can arrive at the 

stiffness matrix of the new frame element which has 8 degrees of freedom: 

k =aT ka ::::;q ::::;rq::::; =rq (A. 13) 

The above development of the stiffness matrix was used in Ref. [18J. There, 

however, 10 ~l ices of concrete were assumed through the depth of the cross-

section whereas in this investigation ~6 such s1 icing is included and to 

simpl ify the calculations the properties of the section as a whole are cori-

sidered. 

In the computation of tre 8x8 'stiffness of the frame element it is 

implicit'ly assumed that the displacements 2,4,6 and 8 are independent, 

which impl ies the possibil ity of expansion or contraction of the element 

across its depth. In fact, this type of behavior, has been assumed to be 

negligible in the behavior of the real element. If displacements in the 

directions 2 and 8, and similarly 4 and'6'can be made equal to each other, 

,then the cross-section will remain unchanged across the depth. 

The equil ibrium equation of the frame element may then be written' in the 

f 0 11 ow i n g form: 

S 

8xl 

= k u 
::::;q -q 

8x8·8xl 

(A. 14) 

where S is the nodal force vector. Without changing the 8x8 form of. the 

stiffness matrix and also preserving the symmetry (necessary for the equation 

solver used) it is possible to equate the displacements 2 and 8 by simply 

adding the second row of the stiffness matrix to the eighth row and then 

adding thi second col~mn to the eighth column and set~ing all the terms on 
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the second row and co I umn to zero and add i ng a (+1) on the pos it ions k
ZZ 

and k88 and a ~l) on the positions kZ8 and k
8Z

• Also the load term corre

sponding to the second row should be set equal to zero. By doing so the 

second row of the stiffness matr~x is replaced by an equation which reads 

Vz = v8. Th~ same procedure can be repeated for the fourth and sixthd1rec

tians. This procedure is exact but it has t~ disadvantage of not ~eing 

able to apply any external load in ih~ direction where the equil ibrium 

equation is replaced. There is, however, another method in which large 

stiffness terms are added into the posi:tions kZZ' kZ8 ' k82 and k88" Physi

cally this can be visual ized as if a fictitious, very rigid bar exists 

between nodes i and t (simila~ly for j and k). This second procedure is 

approximate but it is easy to apply and does not have the limitation of 

the-f irs t-metliod~ In -thi s-reseafch tliesecorid.,.approxTmale mefhOd is used. 

From the displacement solution of the whole structure the displace-

ments of the corners of each element are recovered. Assuming a'l inear stra,in 

distribution, the strains, thence the stresses at the top and bottom fibers 

and a 1 soa t the" reinforcement layers, are comput'ed. These strains and 

stresses are assumed to be constant along the length of the segment. 

Refer'r ing to Fig. 5c: 

Concrete s t ra in at the top fiber: 
t u5-u7 e = L 

Concrete s t ra in at the b'ottom fiber: b u3"7 u l. 
e = L 

Concre~e stress at the top fiber: t ECe t (J = 

Concrete stress at the bottom fiber: b ECeb (J = 

Strains at the top and bottom reinforcement layers are 'interpolated from 

the concrete strains e t 'and e
b

, then these are used to compute the steel 

stresses at the top and 'bottom reinforcements: 
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The moment, shear and axial 'forces acting at the reference axis can be 

computed by using the following relation: 

where 

M =·b S - =rq 

M: vector of forces acting at the reference axis (mom~nt, sh~ar, 

axial force) 

S: vector of nodal forces acting at the corners of the element 

b inverse ofa which is: =rq =rq 

o· D/2 0 0 0 

0 0 0 0 0 

0 0 0 0 0/2 

0 0 0 0 0 
b = =rq 

0 0 0 0 -0/2 

0 0 0 0 '0 

0 -0/2 0' 0 0 

0 0 0 0 0 

A.3 Link Elements 

Referring to Fig. 6, the stiffness of the link element' in the 

global coordinates can be written as: 

k = RT k R 
=m 

(A. 16) 

XV system UV system 

where R is the coordinate transformation matrix and 

4 
'Ill , 
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(A.17) 

where 

Forces acting between the frame and the wall depend upon the relative dis-

placements of the two ends of a'I-ink element connecting a n'ode of the frame 

to a node of the wall. Those interactive forces can be computed from the 

fo 11 owi ng equation: 

! :~ I = [k11 k12 ] f1 - U
3
) (A. 18) 

k12 k22 u
2 

u4 

where i and ~ are as defined in Fi g. 6. 
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APPENDIX B 

Table B.l, Behavior of theD~ep Beam (G24S-11) 

LOAD ,D J S PLAC EM ENT~'(1 ;~-;'\i'( 
CRACKED' STEEL 

{kips) (inches) 
t 

ELEMENTS PLAST I CITY 

.. r .... ..f .. 

STEEL ~'" 

STRAINS % 

15 -0.00'499 5,6,7 -- 0.0206 

-0.00607 12,13,14 -- 0.0357 

:"'0.00740 20,21 -- 0.,0557 

-0.00852 .. - -- 0.0742 

20 -0.01143 ,4,2],28 -- 0.1000 

-0.01273 ' 1 1 -- o ~ 1150 

-0.01318 3 -- 0.;1 140 

-0.01355 10 -- o. 1130 

-0.01392 18 ..... o. 1130 

~0.O1439 2,19,25 -- 0.1120 

-0.01589 32,9 ' -- o. 1100 

-0.01665 -- -- o. 1100 

25 -0.02105 17 -- o. 1400 

-0.02182 33 - .. o. 1400 

-0.02232 .. - -- o. 1420 

3D ... 0.02703 26 -- 0.1710 

-0.02908 34 6,7 0.2510 

-0.07140 35 5 3.0000 

Fa i 1 u re ... S tee 1 Yields 

~,~ 

" Vertical .,'dlsplacement of node 56 
... 1 ..... .1... '. 

"" Steel strains of element 7 
-J(-J-:k Yielding of the reinforcement .in the elements indicated 
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TableB.2, Moment, Shear andAxia1 Forces Actihg at the 
Reference Axis (p = 100 tons, Solution 2) 

L EFT S EC T JON R I G H T S E C T ION ---

Element -N VI Ml N2 V2 M2 
Number 1 

{ kg~ (kg~ {kg-cm~ {k9.2 -(kg} {kg-em) 

2 23277 1859 26577 -23277 -1859 . 29197 
3 18472 2021 30840 -18472 ·-2021 29787 
4 13868 1 Q1S2 ·?77C,f.-. _1 < At:. A -1818 "t,..,Ql 

IVI\:.I -I 1""- 1.,,1"""""''''''' L..Y/VI 

5 '9767 1587 24467 -9767 -1587 -23,139 

6 6418 1144 18713 -6418 -1144 15628 

7 3885 1187 16009 -3885 -1187 19627 

9 28843 9146 -259469 -28843 -9146 77177 
10 21951 10625 -:163299 -21951 -10625 ..;49209 
1 1 ·14818 5434 . -39953 -14818 -5434 -68732 
12 9309 3212- -125 -9309 -3212 -69124 
13 5141 2369 12045 -5141 -2369 -59441 
14 2178 1629 22405 -2178 ... 1629 -54986 
15 -30349 3120 -108359 ." 303!t9 -3120 459!-+2 
16 -28032 2278 -74922 28032 -2278 29347 
17 -25541 155r -60480 25541 -1551 29444 . 

18 .-23039 1061 -60723 23039 -1061 39992 
19 -20469 683 -71610 20469 -683 57948 .' ;-~ 

20 -17488 832 -95216 17488 -832 78571 
22 2471 . 2198 59199 -2471 -2198 . '9744 
23 .7427 27-41 55202 -7427 -2741 27034 . 

24 13951 3205 54517 -1-3951 -3205 41634 
25 21886 3971' 57544 -21886 -3971 - 61589 
26 31936 6409 64033 -31936 -6409 128240-

27 44151 13876 24446 -44151 -13876 391846 

y L K 
. 'J. 2 J Right 

Lx Ml~~Nl (11;z M: NZ 

K 
Section 

I 
Left L_ H Left 
Section Sect ron 
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Figure B.12, link Forces at p. 100 tons (Before Cracking) 

15 3500 
~ 

14 

13 

12 

11 

10 

9 

8 

.585 --t 
95 4 

t 6040 

~7630 

f43
0 

----4710 

t 5310 

............... 2120 N 

t 4210 

--.......1040 

t314O

. 
~691 

~585 

t514 

N 



123 

REFERENCES· 

2. 

3· 

4. 

5· 

6. 

7· 

8. 

9· 

10. 

11. 

12. 

13. --

Rosman, R., "Approximate Analysis of Shear Walls Subject to Lateral 
Loads," ACI-Journal, Proceedings, June 1964; pp. 717-733. 

Coul, A. and Choudhury, J. R., "Stresses and Deflections in Coupled Shear 
- WalJs;" ACI Journal, Proceedings, Feb.· 1967, pp .. 65-72 .. 

Coul, A. and Choudhury, J. R., IIAnalysis -of Coupled Shear Walls, ACI 
Jo~rnaJ, Proceedings, Sept. 1967,pp. 587-593. 
Discussion-by Anastasecu, D., Mirsu, 0., Munteanu, I.~ Chandra, R., 
Shultz, M., and Authors,ACI -Journal, Aug. 196]", pp. 515-519. 

Cou1, A.and Irwin, A. W., "Design of Connecting Beams in Coupled Shear 
Wal1s," ACI Journal, Proceed·ings, March 1969, pp. 205-209. 

Rosenblueth, E., and Holtz, I., "E1astic·Analysis of Shear Walls-in Tall 
Buildings," ACI Journal, Proceedings, ~June: 1960;:pp~ 1209-1222. 

Cardan, B., "Concrete Shear Walls Combined with Rigid Frames in Multi..;. 
story Buildings Subject -to Lateral Loads," ACI Jou-rnal, Proceedings, 
Sept. 1961, pp. 299-316. 

Gould, P., "Interaction of Shear Wall-Frame Systems in Multistory 
Bui1dings,'l ACI Journal, Proceedings, Jan. 1965. 

Khan, F. R. and Sbarounis, J. A., "Interaction of Shear Walls with 
Frames in Concrete Structures Under - Latera 1 Loads,'l Proceed i ngs, 
ASCE, June 1964, pp. ZS5-336. 

Fiorato, A. E., Sozen, M. A., Gamble, W. L., "An Investigation of the 
Interaction of Reinforced Concrete Frames with Masonry Fifler 
Walls," Ph.D. Dissertation, Nov.- 1970, University of I}linois, 
Urbana, III i no is. 

Benjamin, J. R. and Wi 11 iams, H. A., liThe Behavior of One-Story Rei.n
for c e d Con c ret e Shea r Wa 1 1 s, II P roc ee din g s 0 f AS _C E, May 1 957 , 
pp. 1254-1 - 1254-49. 

Blume, J. A., Newmark, N. M. and Coring, L. H., "Design of Multi-Story 
Reinforced Concrete Buildings for Earthquake Motions," Portland 
Cement Association, Chicago, 111 inois; 1961. 

Sozen, M. A., Jennings, P. C., Matthiesen, R.B., Housner, G. W., and 
Newmark, N. M., .l'Engineering Report on the Caracas Earthquake of 
July 29, 1967," National Academy of Sciences, Washington, D. C., 
1968. 

Zienkiewicz, o. C., liThe Finite Element Method in Structural Continuum 
Mechanics,·· McGraw-Hill, 1967. 



124 

14. Clough, W. R., "Analysis of Structural Vibrations and Dynamic Response," 
Japan-U.S. Seminar on Matrix Methods of Structural Analysis and 
Design, Aug. 1969, Tokyo, Japan. 

1 5 . N go, 0 • and S cor d i 1 e s ,A • C., "Fin i teE 1 em e n t Ana 1 y sis of Reinforced 
Concrete Beams," ACI Journal, Proceedings, March 1967. 

16. Nilson, A. H., 'INonlinear Analysis of Reinforced Concrete by Finite 
Element," ACI Journal, Proceeings, Sept. 1968. 

17. Cervenka, V. and Gerstle, K. H., "Inelastic Finite Element Analysis of 
Reinforced Concrete Panels under In-Plane Loads," Ph .. D. Disserta
tion, University of Colorado, Boulder, Colora'do, 1970. 

18. Frankl in, H. A., "Nonl inear Analysis of Reinforced Concrete Frames and 
Panels," Ph.D. Dissertation, March 1970, U~iversity of Cal ifornia, 

, Be r ke 1 e y , Cal i for n i a • 

19. Fedrokiw, J. P., and Sozen, M. A., "A Lumped-Parameter Model to Simulate 
the Response of Reinforced Concrete Frames with Filler Walls," 
Ph. D. D i·sserta t i on, June 1968, Un i vers i ty of III i no i s, Urbana, 111. 

20. Paiva, H.A.R. and Siess, C.P., "Strength and Behavior in Shear of Deep 
Reinforced Concrete Beams Under Static and Dynamic Loading," 
SRS No. 231, Civil Engineering Dept. University of Illinois, 
Urbana, III inois, October 1961. 

21. Umemura, H. Aoyama, H.,· Liao Ming'H., "Studies on Reinforced Concrete 
Shear Wall ·and Framed Masonry Shear Wa11s," Research Report, 
University of Tokyo, Tokyo, Japan, June 1965. 

22. Kupfer, H., Hi1sdorf, H. K., and Rusch, H., "Behavio'r of Concrete Under 
Biaxial Stresses,ll ACI Journal, Proceedings, Vol. ~, No, 8, August 
1969,· pp. 656-666. 

23. Mikkola, M. J., Schnobrich, W. C., "Material Behavior Characteristics 
for Reinforced Concrete Shells Stressed Beyond the Elastic Range," 
Civil Engineering Studies, S R S No. 367, Un i ve r si t y 0 fill ri 0 is, 
Urbana, Illinois, August 1970. 

24. Cardenas, A., "Strength and Behavior of Isotropical1y and Nonisotropi-
cally Refnforced Concrete Slabs Subjected to Combinations of 
Flexural and Torsional Moments," Ph.D. Dissertation, May 1968, 
University of III inois, Urbana, 111 inois. 

25. Lenschow, R~ J.,and Sozen, M. A., IIA Yield Criterion for Reinforced 
Concrete Under Biaxial Moments and Forces," Ph.D. Dissertation, 
July 1966, University of III inois, Urbana, Illinois. 

26. Zienkiewicz, o. C., Valliappan, S., and King, I. P., "Elasto-Plastic 
Solutions of Engineering Problems, I Initial Stress. I Finite Element 
Approach, II I nternat iona 1 Journa 1 for Numer i ca 1 Methods in Eng i n
eering, Vo1.1, pp. 75-100, 1969. 



125 

27. Mast, R. F., "Auxil iary Reinforcement in Concrete Connections," ASCE, 
·Journ~l of the Struct~ral Division, June 1968; pp. 1485. 

28. Mohraz, S.,· Schnobrich,. W. C., and Echeverria, G. A., "Crack Development 
in a Prestressed Concrete Reac~or Vessel ·as Determihed by a Lumped 
Parameter Method,!! Nuclear Engineering and Design, Vo1. 11, No.2, 
1970. 

29. Gupta, A. K., Mohraz, B., and Schnobrich, W. C.,IIE1asto-P1astic Analysis 
of Th ree-D i mens i ana 1 St ructu res Us i ng the I sopa ramet ric Element, II 
S R S No. 38 1, De par tm e n t 0 f C i v i lEn gin e e r i n 9 , Un i ve r sit y 0 f I 1 1 i no is, 
Urbana, III inois, August 1971" 

30. Connor, J. and Will, G., IICompute·r-Aided Teaching of the Finite Element 
Displacement Method," Department of Civil Engineering Research 
Re~ort No. 69-23, School of Engi·neering, MIT, Cambridge, Mass., 
February 1969. 

31. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., IIStiffness 
and Deflection.Analys is of Complex Structures·,11 Journal of Aero
nautical ·Scien6e, 23, 1956, pp. 805-B23. 




