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CHAPTER 1

INTRODUCTION
1.1 General

In the active earthquake areas of the world destructive earth-
quakes can always be expected. |In thé past they have caused enormous
property damage and ioss of life. The primary objective of the structural
engineer should therefore be.to design the structure fn such a way that
it will resist moderate earthquakes without damage and should not‘co1]apse
or cause loss of life even under severe earthquakes. To achieve this; a
better understandiﬁg of the béhavior of the str@cture'as a whole and the
behavior of each structural element is necessary.

In the seismic design of framed structures it is gener?lly

accepted that the inclusion of shear walls to the structure produces an

economical design. Shear walls are commonly used as the main elements in

resisting the lateral loads especially in modern glaés wal]ea multistory
buildings.. They normally stiffen the structufe against mild earthqﬁakes
and wind but at the same timé they may invite larger shear forceé to be
genérated from eafthquake motions.

Knowledge of the interactive forcés between the frames and ‘the
shear walls is important to the'stru;tural eﬁgineer since this knowledge
of their magnitude is neceésary in proportioning the laferal load carried
by the shear walls and the framed porfions of the structure. Determina-

tion of these interactive forces presents é'major difficulty in the analysis.



1.2  Previous Work

Most of the previous analytical work on shear walls treated:
those Qa1ls as deep beams. Shear walls are weakened by vertical bands of
openings such as for doors and windows. These arrangements of walls are
called '"coupled shear walls.'"" They have been investfgated-fn severé]
recent publications.

Rosman [1] gave a continuous solution in which the aiscrete'
system of connecting beams is replaced by an equivalent continuous medium.
Based on Rosman?s theory, Coull and Choudhury,[2] [3] and Tater Coull and
Irwin [4] presented a graphical method for detéfmihingAthe stresses and
deflections in coupled shear walls. Rosenblueth and_Holtz,[S], Cérdan [6].
and Gould [7] have analytically modelled the shear walls in the framed
structures as a cantilever beam supported by elastic reactions.

Khan and Sbarounis-[8] suggested a method of ana]ysiSAwhich
attempts to satisfy the compatibifity of displacement betWeeh the wall and
the frame by an iteration process.

A summary of the experimental research performed on ffames with
filler walls is given in Ref.[9]. Although there has been considerable
research on frames with fil]er_walls, tests on frames with reinfbrced or
plain concrete walls are very limited [10] [11]. |

The prediction of load~deflection characterigtics of shear wall-
frame systems is of interest and impértance in the design of structures to‘
resist lateral lbads such as- those resulting.from earthquake shocks.

Most of the above-mentioned inQestigations are limited by various
simplifying assumptions as to loading, boundary conditions and material

properties. In all of these studies only elastic behavior was taken into

consideration. Recent research has clearly demonstrated, however, that



ine?astfc behavior‘must be considered in order to approach the earthquake
problem in a realistic ménnerf On‘the other hand recent earthquakes [12]
have poihted out that althouéh the behavior of a shear wall may be favorable
under static loading conditions, the behavior of that Wa]I may also be

quite different under dynamic conditions. No rigorous analytical or accurate
‘experimental study is aVailable which deals with the,behgvior of shear wall-
ffame systems under statically repeated, aTternating or actual dynamic con-
ditions. Little is known about the sfiffness degradation of shear wall-
frame systems as the loading cycles.

Recent development of the finite element method of continuum mech-
anics offers a convénient and versatile tool_toibe used in understanding the
behavior of shear walls and their effect on the behavior of the structural
frame. The finite element method haé been applied to various static problems
[13]. It has proved to be as effecfive and powerful in dynamié analygis as
it has been in the sta£ic anélysis [14].

Apblicatibn of the finite element method to the idéalization of
reinforced concrete was started by Ngo and Scordelis [15] and expanded later
by Nilson [16]. Recently, uéing constant strain triahgularleleménts,
Cervenka and Gerstle [17] investigated the behavior of reinforced. concrete
panels under monotonic and under cycTic in-plane loads. The loads were
carried well into the inelastic range. An experimental investigation was
also carried out for the above mentioned panels. The panels were like deep
beams andvdid not have a frame around‘them. An analytical study of in-
filled frames was made by Franklin [18]. Three special types of finite
eleménts were used for the discretization. THe infi!l‘did not include any
reinforcement. An approach was followed whereby it was possible to use the

actual stress-strain relationship of the materials in a multilinear form.



In this_study the loads were applied in-one direction up to the disintegra-
tion of the structure due to excessive cracking and no plasticify was con-
sidered.

A lumped parameter model has also been successively used by
Fedrokiw [19] to study the behavior of masonry infilled frames. Hefe it is
concluded that there is a general need for analytical and experimental work
directed toward predicting the stiffness characteristics and the iﬁelastic

behavior of shear wall-frame structures. .

1.3 _ Object and Scope

A shear.Wall basical}y occupies a two djménsiona] region and
receives forces from the enclosing frame. These forées are in the plane
of the wall thus the force system creates a plane stress problem.

The object df this‘study is to approach the solution of reihforced
concrete shear wall-frame sysfems analytically using the finite element
technique as thé tool. Tensile crack propogation in concrete and inelastic

’behavior of steel and concrete in compfession are incorporated in fhe analy-
sis. The behavior of the reinforced concrete shear wa]l-frame-system is
predicted under monotonically increasing loading conditions.

_In order to test the validity of the assumptions made with regard
to the material behavior and characteristics of the finite element method

used, the analytical results are compared with the experimental results [20]

1] 7).



1.4 Notation

All symbols haQe been defined in the text where they appear first.
Following is a summary of thé symbols used. A letter with a single underline
means a vector, with double underlines means a matrix. £ is used to denote

finite increments.

B Transformation matrix relating strains to the nodal diép]acements.

D Composite material property matrix in XY coordinate system.

gc . Uncracked material property matrix of concrete.

er E]a;to—plastic material property matrix.

2; Material broperty matrix of the reinfércement in XY coordinate
‘ system. |

g;s Material property matrix of the reinfocement in X'Y' coordinate

system. |

EC Modulus of eiasticity of concrete.

E® Modulus of elasticy of the reihforéement.

Fo F, Strength of a Tink element in tension and shear.

F(d) Function defining the yield surface.

kh,kV Stiffness of a link element tahgent and normal to the contact area.
5 Uncracked element stiffness matrix.

K Stfffness'matrix of the structure.

Ker Cracked element stiffness matrix.

n Ratio of E° to EC.

p Percentage of reinforcement.

EA Vector of nodal forces of the structure.

P Vector of pseudo nodal loads.

T Strain transformation matrix.



ic

Stress transformation matrix.

Vector of nodal displacements of an element.
Vector of nodal displécements of the stru;ture
Principal stresses.

Tensile strength of concrete.

Yield stress of concrete under uniaxial compression.

Yield stress of the reinforcement.

Steel stresses referred to concrete area in X' direction.
Vector of total stresses.

Vector of concrete stresses in XY coordihate system.

Vector of pseudo stresses.

Vector of steel stresses in X'Y' coordinate system.

Vector of total strains.

Vector of concrete strains in XY coordinate system.
Vector of concrete strains in X'Y' coordinate system.

Poisson's ratio.



CHAPTER 2

DESCRIPTION OF THE MODEL
2.1 Description of the Finite Elements Used

In this research the reinforced concrete shear wall-frame
system is modeled by a finite element array. This array is built up of
kthfee tybes of elements: |

1) Quadrilateral elements for the wall or frame,

2) special flexure elementé for the frame; and

3) 1link elements to connect the wall elémenfs to the frame

elements.

2.1.1 Reinforced Concrete Wall Elements

Constant strain triangular elements‘(Fig.I) have been widely used for
the analysis of plane stress problems. These elements work especially well
for the idealization of bodies with irregular boundaries. Since thg element
is constant strain and hence constant stress, the resultsydbtained from it
frequently require interpretation} The calculated stresses can be assumed
to represent the stress state at the centroid of an element. However, a
more uniform stress field normally results from averaging the stresseé of
the various elements connected at each.node. Depending upon the arrangement
of the elements, a triangular element may show directioﬁality; that is, the
structure may behave in a certain way for one arrangement and in another
way for a different arrangement. Thjs averagiﬁg procedure helps in an

effort to suppress any directionality present in the element layout.

A quadrilateral element composed of four constant strain triangles



was chosen to represent the wall elements (Fig. 2). If a structure is
discrétized by the use of botﬁ constant strain triangular elements and also
by the qﬁadrilateraf elements assembled from the CST elements as shown in
Fig. 3, it is obvious that in the case of quadrilate?al elements used, the
band width of the system stiffness matrix is decreased, mesh details.are
simplified and the stress values are iﬁproved by averaging the stresses
about the common interior meeting point of the four triangles. The deriva-
tion of the element stiffness'matrix which is obtained by a simple conden-
sation of the center node is given in Appendiva. |
o “ lf_reétaﬁéular plane stresé eieﬁents~afe ugeg_iﬁsfead o% the
built-up quadri]atéra] e]emenfs to discretize the wall there is some loss
of accuracy. This can be anticipated from a comparisoﬁ of the tréces of
the element stiffness matrices (given in Fig. 4). A lower value is obtained
for the quadrilateral element which indicates that the quadrilateral efement
is a more flexible element. Since these are both conforming elements and
therefdre too stiff, the more flexible element is the more desirable.

The steel bar reinforcement for the wall is assumed to be smeared

out and uniformly distributed over each quadrilateral element.

2.1.2 Flexural Elements for the Frame

The quadrilateral elements transmit in-plane forces to the frame
at the connecting nodes. One of these forces is nérmal to the frame member
axis while the>other is parallel to it. Bending moments and shear forces in
the framevmembers are produced by the normal forces. On the other hand, para-
Tlel components not only produce axial forces buf they also produce additional
bending moments by virtug of the eccentricity of the line of action from the

axis of the frame member. |f frame members are considered as line elements in the



usual manner, then the effect df the-dépth is apt to be neglected in the
assembly phase of the structural sfiffness matrix. Figs 5 shows a flexural
element [18] in which the above effect is taken into consideration by
transforming the six generalized disp]acements acting at the member refer-
ence axis as eight generalized displacements acting at the corners of the
element. Development of the element stiffness matrix is summarized in

Appendix A.

2.1.3 Link Elements.

A special type like element made out of two orthogonal fictitious
springs is used to connect the wall to the frame'as shown in Fig. 6.a. The
idea was adapted by Frankl}n [181 from the bdnd—link concept ‘introduced
m“MW%”"““mbwagD“th”SCOTdETiS”{TS&T”foTh“thiﬁ”tYP&”Of“eﬂement"ft~fs~pOSSFb]e”tOww“"'"~>%~ :
]oék or to release the two conﬁected'nodes depending upon the ﬁagnifude 6f

the interacting forces between the wall and the frame. The derivation of

the element stiffness matrix'is given in Appendix A.

2.2 Material Properties
Concrete and reinforcing steel constitute the materials for both
the wall and the frahe elements.

Test résults concerning the material under biaxial states of
stress are very limited. Those tests that have béeh reported were primarily
directed towards defining failure or yfe]d rather than the determination of
a stress-strain law. The most recent investigation for the failure enve-

lope of concrete under biaxial states of stress is the experimental study
icarried out by Kupfer, Hilsdorf and Rusch f22].‘ Fig. 7 showé the experi-

mental failure envelope obtained. Mikkola and Schnobrich [23] presented a
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yield criterion to approximate the experimental envelope given by Kupfer,
Hilsdorf and Rusch. In fhis study the Von Mises yield criterion as shown
in Fig. 7 is adapted for the biaxial compression of concrete. {n case of
uniaxial state of stress (reinforcement and the cracked concrete) the
Von Mises yield criterion corresponds to an elastic-perfectly plastic
stress-strain relationship (Fig. 8).

Maximum normal stress theory is assumed for tension cracking
of the concrete (Fig. 7). Cracked concrete is assumed to carry normal
stresses in the direction of the crack. Also,.due to the irregulér surface
of the cracks, some shear can be transferred across -a crack. This pheno-
mena is termed aggrégate inteflock.

Deformation is assumed to be uniform, that fs, concrete and -the
reinforcement have the same strains, which implies that full bond is main-

tained. This full bond is assumed to remain even in the crack regions.

2.3 Behavior of the Wall Elements

During the loading process the material can behave in various

ways.

2.3.1 Elastic Behavior up to Cracking

Referring to Fig. 9,_considér a concrete wall with unit dimen-
sions. Up to cracking or yielding the concrete is assumed to be iﬁotropic
and linearly elastic. Therefofe the material property matrix which relates

the stresses and the strains can be written from Hooke's Law for plane

stress:

c c vc ' . (2.1)

1Q
1]

no

|®



where :
o) €

X . X
C C
g = { %y }concrete £ ‘{ €y } concrete
Txy xy
and ! N 0 |
c EC
D" = > v 1 0 (2.1a)
1=y 0o 0 ];N

EC:_ modulqs of e]ésticity of concrete

v: Poisson's ratio of concrete

EC: uncracked méteriél property matrix of concrete.
This wall element contains reinforcement paral]ei to the X' axis, which
makes an angle aAwfth the X axis.

Defining the percentage of reinforcement as

area of reinforcement
concrete area

the stress-strain relation of the reinforcement in the X'Y! coordinate

system can be written as:

g!® = ptS ¢1© ' (2.2)

where s

|
0
11
—
o a
: X
——

0
and

&y

1C _ }

- { €y' concrete
'\(xyl

PE® 0 O
g&s = 0 0 0



and
E” . : modulus 6f elasticity of the reinforcement

] .
Tt steel stress referred to concrete area.

The following transformation rules [13] are valid to rotate the straSses
and the strains from the global ;bdrd?nate system to any other cartesian

system X'y' positioned at an angle o relative to the original global system:

1 _ ) ‘
° =1, ¢ | (2.3)
where
F s% aes
T o= % (2 -2Cs
=
: 2 .2
-Ccs cs ¢ -8
and
2 2
c s cs
T = s2 c2 -Cs
=&
-2¢cs 2cs c2-52
C = cos Q
s = sin o

Applying the above transformation rules to the material property matrix of

the reinforcement 2&5, the following global materfaf property matrix Qa is
obtained:

s _ =1 s

gj = Lc DY Ie ‘ (2.5)

‘It can.be shown by the principle of contragradience that

-1 T
-_Tc_e,

I—
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Composite material property matrix for the reinforced concrete
model is obtained as the sum of the material property matrices of concrete
and reinforcement:

s

C
8=0+10, | (2.6)

|f additional reinforcement is present at an angle oy from the X-axis then
the material property matrix takes the following form:

o

D=0+ 03+ D2 | (2.7)

S

With this pfocedure any numbér.of reinforcement directions can be accommo-
dated. Due to the presence 0f‘reinforcement; the reinforced concrete model
is no Iongervisotrobic. The dfrections Qf the principal stresses and the
principal strains may be different [24]. The magnitude of the deviation
depends on the reinforcement ratio and the applied,total’strésses. For

the range of stresses which are Tikely to occur in practice this deviation

is relatively small [25] [24] [17].

2.3.2 Elastic Behavior After Cracking

Concrete is assumed to crack when a principal stress oy oro,
reaches the tensile strength Ot qf concrete, Fig. 10. [t is assumed that
the cracked concrete can no longer carry any tensile forces perpendicular
to the crack but'mainfains some amount of shear stiffness because of the
irregular surface of the crack. Therefore for an open crack, the material

property matrix of the cracked concrete, Fig. 10, can be written in the

U, V=coordinate system as follows:

-
Iy 0 0 |
IC —
Dis =0 0o o0 (2.8)
0 0 d
33
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where

dog = ——E———~7 (for full shear transferability across the

33 2(1+ v crack)

The cracked material property matrix Qéﬁ can be transformed into the
global system through the use of Ie and lo matrices whi;h were defined
in Eqs. 2.3 and 2.4, respectively.. Hence the material property matrix-of the

cracked concrete takes the following form in the global coordinate system:

c T ,,c ’
Ber = Il L ' - (2.9)

the explicit form of which is:

— 4 2.2 , 22, ;22 3. 2 2 .
| e dllfhc s7d); c“s7d, Lefs d33 c’sdy, 2cs(c=s )d33
c 22 2.2, Lo, 22 3 2 2
= L + . -
ch s°c d}} Le®s d33 s d;; Les d33 cs d]]+2cs(c s )d33
3. 2 2 SR 22 22,2
i c sdH 2¢cs(c-s )d33 cs d]]+2cs(c s )d33 c“s d]]+(c s%) d33 ]
where
c =cos B
s = sin B

If the material contéins reinforcement in two orthogonal directions
parallel to the global coordinate system, then the cohposite material

property matrix takes the following form:

nP 0. 0
x .
D =0D° + g€ 0O nP O
= =cr , y
0 0 0
where
n = E/EC

Px: percentage of reinforcement in X direction

Py ¢ percentage of reinforcement in Y direction



Cracked concrete is highly anisotropic especial]y for moderate reinforce-

‘ment ratios [17].

2.3.3 Crack Modes
| Figure 11 summarizes the typés of crack modes that can possibly
~occur eriandiffgfent‘typeS'of Toading conditions, that is monotonically
increasing loads, Uﬁioading’or alternate loading. Closing of crécks and
openihg of‘a new setbof CEééks in an element which>COﬁtains closed cracks
‘and,also opening of tWo sets of cracks are especially impoftant when the

loads are reversed or unloading occurs.

2.3.4  Definition of a '"Crack Width"
Referring to Fig. 10, the strain normal to the cracks can be
written as:

€ onz + € sin2 - cosY sin
X V_ y Y ny Y

©
Il

where

2
1l
w
]
NIE

. . X . c .
as defined in the figure. The cracked concrete carries o, stresses which
are acting parallel to the cracks. These stresses cause strains in the

direction normal to the crack because of the Poisson's effect, that is:

33 = - c Uov
E
where
c . 2 2 : :
o, =o, Slnyy + oy cos y - ZTxy siny cosy

A '"closed crack'' can be assumed if:
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otherwi se the craék is open. The differénce between the.two strains,
namely the difference between e, and eu,is defined as ”érack width."
Note that this crack width is only relative since it is defined in terms
of strains.

It is possible to establish the varying value aésigned for the
shear term 633 défined in Eq. 2.8 as a function of the ;rack width defined
above. If closing of cracks occurs then the uncracked material property

matrix, Eq. 2.la, should Ee used.

‘2.3.5 Plastic Behavior ‘After Cracking

The elasfic behavior of a cracked e]eﬁent is terminated if com-
pressive yielding occurs in the cracked concrete and/or yielding occurs
in the reinforcement under tensionior compression. Uniaxial perfect plasfi-
city is assumed for both the cracked concrete ‘and the reinforcing steel.
Hence the mpdulu5‘of élasticity‘for a yielding component méterial is set

equal to zero in the computatfon of the material property matrices.

2.3.6 Plastic Behavior of Uncracked Concrete

The uncracked‘coﬁérete is in a biaxial state of stress.. Associ-
| ated with the initial stres; mg%hod (explained in Chapter 3) a special
elasto-plastic material property matrix is used. This matrix is developed
“in Ref. [26]. Fof ideal pWastic%ty the general form of the'elasto-pfastic

matrix is given as:

Dep =2 - DE' (o) E'(e) D [E'(e) D E' ()] (2.10)
where
D : elastic material property matrix
F'(o) - 3Flo) |

&



17

F(c): function of the yield surface.
If the Von Mises .yield condition and the associated flow rule is assumed
for the plasticity of the uncracked concrete under biaxial stresses, then

the yield surface F(o) is defined by:

c2 c C c2 c2 c2
= - : + b =
Flo). o _Gx g oy + 37 o 0 (2.11)

where cgis the uniaxial yield stress. Also the elasto-plastic matrix

specializes to:

pS, = 0% - 0wl 0%/ W O (2a2)
where - | e
| T i; ] f; .
v o= c;, [y - 55 (Gy - 55 3Txy],

Qc is defined by Eq. 2.1 and c; is defined by Fig. 8a. Note that

the term [yTgcby] is nothing more than a scaling factor.

2.3.7 - Términation of Plastjc Behavior of Concrete

Concrete can sustain compressive strains only up to a certain
strain. At that time it cruéhes. This crushing strain can be détermined
frdm uniaxial cbmpression tests of concrete. However, to use that value
in the bfaxial state of stress, an equivalent strain must be aefined.‘ I f
. the Von Mises yield criterion is used fhis equivalent strain is:
1/2

2. 42,32
€ = (sx exey + By 3 ny) (2.13)

Once concrete crushes it cannot sustain any further load and its stiffness

is disregarded.
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2.4 Behavior of the Frame Elements

Axial and benaing deformations are allowed for the frame elements.
Constant strain distribution is assumed along the length of a frame element.
Since tEe bending deformations involve variations through the depth of
the frame element, the method for introducing an adjustmeﬁt in material
properties bésed on the stress leQe] requires some approximation. One
possibility of handling this wdu]d be to cohsider the frame element made
up of a number of layers. By retaining the assumptiqn of normals remaining
normal it would be possible to allow progressive penetration of cracking
‘and/or plasticity. Such an approach was discarded, however, as being too
costly in computatfon time.

It was decided that a more approximate treatment of the frame
elements is adequate for this study. Based on the stress levels at key
locations, the behavior of each frame element is defined. The Variousk
combinations of strains possible in the frame element are shown in Fig. 12.
If both the top and bottom strafns are positive as shown in Fig. 12a,
then the average of the top and bottom fiber stresses is used to defermine
cracking. In that case the whole section is assumed to crack. if both
the top and bottom strains are negative as shown in Fig. 12b, then the
average of the top and bottom stresses is checked against the yield stress.
For this type of strain distribﬁtion, the cracking check fs not made.

Yield of the whole section is assumed if the center line vafue‘reachés
yie!d. Yielding can continue until the concrete crushes. For the other

two remaining strain distributions of Fig. 12, concrete is assumed to

craék down to the mid-depth of the section if the tensile stress either at
the top (Fig. 12.c) or at the bottom (Fig. 12.d) reaches the cracking
'stress; Assumed crack modes and the associated transformed areas are shown

in Fig. 13.
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1f an underreinforced section is assumed, the plasticity and
crushing of concrete in the compression zone is preceded by yielding of
reinforcement in the tension zone. Uniaxial failure limits are assumed

for both concrete and reinforcement.

2.5 Behavior of the Link Elements
The contact area between the wall and the frame represented by one
link is called the tributary area of that link. Strength of a link

element in tension and shear can be computed as:

Strength in tension F_ = A o .
t tension
. ' c
= )
Strength in shear_Fs A shear
where
A : the tributary area
oS . . tensile strength of concrete
tension
C ; C
: shear strength of concrete (assumed to be. - . .
Oshear 9 . ( m 2 ctensxon)

Initially very stiff values are assigned for the spring constants k,  and kv

h
which represent the stiffnéss of the link'element in the directions tangent
and normal to the contact area respectively (Fig. 6). A crack between the
wall and the frame may be caused either due tobshear or to tension. The
occurrence of a crack is determined by'comparing the strengths Ft and Fs
with the forces acting between the wall and the frame. It is assumed that
a crack can maintain some shear stiffness [27].

Once a crack forms kh ana kv values should be aitéred»depending
"upon‘the condition of the crack. |If aAcrack forms due to shear and the

normal force is tension then kV is set equal to zero and kh is set equal

 to the friction stiffness; if, however, the normal force is compression,
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kv is kept at its initial large value. |If a crack forms due to tension A

first, then again kv is set equal to zero and kh is set equal to the friction

value.
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CHAPTER 3

METHOD OF SOLUTION

3.1 Elastic Analysis
Finite element method used in this investigation is of the dis-
placement 6r stiffness approach. General features of the finite element
method are now well known. The concepts and steps in the development are
explained in detail elsewhere [13] [14] and will not be repeéted here.
Basically the method begins Qith dividing the‘continuous structure
into a number of regions or Subdomainé known aS'”eléments.” On the basis of
an assumed displacement field; stiffnesé properties of eachvelement are
determined in terms of values of the displacements and ;heir derivatives
at selected points called the '‘nodes.'' The stiffness charactéristics of
the whole structure iS'theﬁ constructed‘from the assembly'of the stiffnesses
of the individual elements. Finally, the following force-displacement re-

lation is obtained:

Poku - BRNCIRE
where
P: vector of nodal forces (known)
U: vector of nodal displacements (unknown)
K: stiffness matrix of the structure (known) .

Equation 3.1 is a system of linear simultaneous algebraic equations which
express the equilibrium of the structure. The displacement boundary con-
ditions can.easiiy be incorporated by either including or deleting the
appropriate degrees of freédom from Eq. 3.1." ‘

If a direct stiffness approach is followed in the assembly of Ks



22

a compact-array of eduations is obtained. This array of equations can be
efficiently solved becéﬁse of the banded and symmetric nature of K-

In this research Gauss Elimination method is used for the solution
of the equilibfium equations.

After solving U, the strains ¢ and stresses 0 within each element

can be computed by:

£ =Bu (3.2)
and
o=De (3.3)
‘where
u nodal,dispﬂacement vector §f the element.
3.2 Incremental Aﬁalysis
3.2.1 General

Initially tHe structure is uncracked and elastic. This elastic
state continues until first cracking or plasticity océﬁrs. By loading the
structure in increments and through the use of an iterative procedu}e it
is possible to extend the elastic solution into.the study of the>propaga-
tion of cracks and plasticity of concrete or reinforcement.

When an element crackg or plasticity of any component material
occurs, the released ''pseudo stresses'' or the “initiél stresses'' (see
Section 3.3) should be distributed to the surrounding elements. Within
one load increment the distribution of the initial stresses can be achieved
in several ways. The following two alternatives‘can'be mentioned:

Method 1: uses the updated, or current elastic stiffness. This
procedure can be called ''the initial stress method using a variable stiff-

ness.'!
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Method 2: wuses the initial stiffness throughout each iterative
cycle. This adaptation can be called ''the initial stress method using
constant stiffness."

Both methods can be used to study crack propagation and plasticity.

3.2.2 Cracking‘i

Figures 14 and 15 are schematic illustrations of the methods
mentioned in Section 3.2.1vin relation to crack propagation.

Referring to Fig. 14, assume that when the load is incremented
from PO to Pl some elements crack and the stiffness of the structure changes
from Kl to KZ' lniffg] loadsypii) are re]eased; At the saﬁe deflected
configuration U] the structure can only support a load which corresponds to

point D]. In order to reach the same external load level Pj, the structure

must reabsorb the initial load —Xl) causing further displacement of the
structure by an amount oflﬁﬁﬁl). This additional displacement is calculated
as:
=) _ -1 (1)
AU, =Ky Py | C(3.1)

The inverse sign on K, is symbolic only. If now this additional deformation

2

causes cracking of new elements and the stiffness changes to K3 then new

3

pseudo loads, ﬁgz), are released and the structure deforms further to U

by an amount

5(2) _ =1 5(2) ‘
AU = Ks Py (3.5)

Assuming that cracking stops at point A3, then the next load
increment is applied. Note that in the distribution of 5;1) and ﬁgz) the
current cracked stiffnesses K, and K3 are used respectively.

Figure 15 i1lustrates the same cracking process by Method 2. Again
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assume that at the load level Pi some elements crack and the pseudo loads

5&1) are released. Thé following iterative scheme is used to distribute

the pseudo loads:

s =R 68
p 52 - &l B2 | (3.7)
R G
pi® ag W ) (3.9)

etc.
- lteration continues until>a1] the pseudo loadSvaimfnish to within a speci-
fied 1imit.

Final displacement AUA caused by the pseudo IOads is obtained as
the sum of the displacements AUé]), Aﬂéz),’aﬁﬁ3), etc. Assuming again that
cracking stops at point A3, then the next load increment is applied. If
in the next increment further cracking occurs, the iterative scheme de-
scribed by Eqs. 3.6, 3.7, etc., is repeated but using K3 as the stjffnes§
properties this.fime. Note that in Method 2 the stiffness of the structure
at the beginning of an increment is used for the distribution of the initial
strésses.

The effect of cracking on the Toad-displacement diagram is non-
linear but the cracking process itself is elastic, that ié'the structure
remains elastic before and after é?acking [i7] [28].

In the real behavior of'fhe structure»cra;king process continues
.gradually and the stiffness of the structure changes slowly. The path of

deformation of the mathematical model has a stepped configuration as shown

in Fig. 16. The approximated path of deformation of the mathematical model
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using finite size load increments is also shown on the same figure. OnTy
the points I, A3 and B are common  to both of the paths. The detailed real
path is‘approximated by a less detailed path which includes points I, A],

A B], 83, etc.

Referring to Fig. 16, if a single large load increment isvapp]ied

3)

between points | and BB, thg analysis may indicate cracking pf_a number of
elements at the same time. In reality these shdu]d not occur at the same
time but should occur more or less sequentially. The cracked stage achievea
by the small load increment process may differ from that found wfth the
‘large load step. |In order to keép the solution to within reasonable limits

of accuracy of the mathematical model, care must be experienced in selection

of the size of load increment.

3.2.3  Plasticity

The distrfbution of the pseudo-loads due to plasticity again
requires an iterafive scheme. In this research within é typical load
increment Method 1 is used for the plasticity of reinforcement and‘fhe
cracked concrete, and Method 2 is used for biaxial plasticity. ‘Computatfon
of pseudo stresses and determination of yielding for the cracked concrete
and the reinforcement are given in Section 3.3.2. |In the case of a biaxial
state of stress the determination of the yielding stage is more complex
than the uniaxial case, since various combinations of stress are poss{ble
causes for yielding to start. All such combinations are expressed by a
yield surface (e.g., Eq.2ll defines the Von Mises yield surface). Within a
typfcal Ioéd increment the following steps should be taken to compute and
» distribute the initia[ stresses due to plasticity developing in an uncracked

‘concrete element [26] (see Fig. 17):
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Apply the load increment and determine the elastic stress

and strain increments (A g, Ag).

2)

Add the increments to the existing values of stress and

strain at the beginning of the increment. Thus current total

values are obtained (c],~e]).

3)

Step.

Evaluate F(o) from the total value of stresses computed in
2:

a) If F(o) < 0, the element is elastic, no pseudo stresses
are released. Stop the process. |

b) If F(c) ~ 0 and also at the béginhing of the increment
F(G)A= 0 (which'means.element wag at yield at_the_begiﬁning
of the increment) set bo, = Mg, De, = Ae. Compute bo, using

he, and the elasto-plastic matrix er (see Eq. 2.12):

boy = er e, ' (3.10)

where 0. is based on the total strésses obtained in Step 2.
Therefore, the pseudo stresses (the‘stresses which cannot
be supported by the elasto-plastic concrete) are computed
as:
0 =tg, - o | (3.11)
c) If F(c) < 0, but at the beginning of the increment
F(c) > 0 (which means the element was elastic), find the
intermediaté value of stress and strain at which yield starts
(96’ 50) by interpolation and compute the incremental stresses
and strains which have taken place above the yield point as:
boy =gy - g, (3.12)

Me (3.13)

£ T

!
|
1
)
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Again compute the'psehdo stresses Ai usfhg,Eqs. 3.10 andv3.1l.

L)  Compute the pseudo loads P (see Section 3.3.4) corresponding

’

to Ao and analyze the structure using the initial stiffness at
the beginning of the increment which will give a new sét of incre-
ments,_&zi and Agi. |
5) Repeat steps 2 through L4 until the pseudo stresses reach
sufficiently small values.
Figure 17 is a schematic illustration of the process described
‘above in a two-diﬁensiona] space. Note that the yield surface is aftifically
shifted away from fts initial position. In ordef.tb prevent this shift
the state of stress represented.by point 2 should be projected on the yiefd
surface (point 3) during the iterations.

When plasticity occurs the state of stress does not uniquely define

the state of strain, it is path dependent. The same state of stress cannot

be reached if different paths are followed. Also tEe process is irreversible,
which means there i; an energy loss during>plastic action.

If within an increment only biaxial plasticity takes p]ace, the
initial stiffness of the structure is not altered and the pseudo loads a}e
iterated'by the’usg of the initial stiffness at the beginning of the incre-
ment. If, however, within an increment cracking_oc;urs'in some elements
and concfete plasticity occurs in some other e]ement, then 6nly the element
stiffness matrices of the cracked elements are'changedj the element stiff-
ness matrices of the uncracked yielding elements are not changed. Hence
thejstructural stiffness matrix reffects only the changes occurring due

to cracking.
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3.2.4 'Mathemafical Correspondence of Method 1 and Method 2
Mathematically Method 1 correspands to the solution of nonlinear
equations of equilibrium (nonlinear since the computed initial loads are
the functions of the state of stress reached) by employing Newton's [13]
approach where tangential slope is used. Method 2, howevér, corresponds
to the Modified Newton-Raphson [13] approach with constant slope being used
during the iteratioﬁs.
The convergence of the initial stress method has been illustrated
‘by various practical applications (261 [13] [17] [29]. It has been success-
‘fully used to study cracking as well as plasticity prbblems.
3.3 ‘Computation of Pseudo Stresses and Pseudo Loads
| Pseudo (or initial) stresses may be released due to cracking or
p]as;icity. In the following paragraphs the definition of the pseudo |

stresses and the nodal forces (pseudo loads) corresponding to them are given.

3.3.1 .Fseudo Stresses Due to Cracking,

When an element crécks a sharp change in the material-property
matrix occurs at the iﬁstént‘thelelement goes from an uncracked state to
the cracked state. Assuming thét the element keeps fhe same deformed con-
figuration at that instant of cracking (see Fig. 18), the cracked element

can only support a value of stress which is computed from:

=D € ) . (3-”‘4‘)

g"C'I" T =Cr =
The difference between the previously attained stress g and the new value

of stress O, s called the "pseudo’ or "'initial'' stress, that is

g=g-g

=cr =cr

-(-D )e : (3.15)
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3.3.2 Pseudo Streéses Due to Uniaxial Plastiéity

When a»componént matériél (either concrete or reinforcement)
reachesiéucﬁ a state of stréss that yielding begins, the element cannot
sustain any additional stress, that is stress in excess of the yield stress.
Here again the excess stresses released, that is‘the elastic computed
stress less the yiéld stress? are the pseudo or initial_stresses. Yielding
may begin at any point within an increment (see Section 3.2.3 for the
incremental procedure). Change from an elastic to a plastic state of
stress (]oéding)vor from a plastic to an elastic state of stress-(unloading)
can be determined from the sign of the plastic work increment:

if AWP z.O loading 6cqurs, material i; plastic,

if AWP <0 un]oadiﬁg occurs, material is eléstic.
Figdre,19 schematically .illustrates the amount of pseudo stresses released
due to uniaxial plasticity.of the cracked concrete or plasticify of the

steel reinforcement.

3.3.3° Pseudo Stresses Due to Plasticity of Uncracked Concrete
The computation of the stresses released due to biaxial pléstiéity
of the uncracked concrete is given in Section 3.2.3 in relation to the

plastic analysis where Method 2 is employed.

3.3.4 Computation of the Pseudo Loads

Forces corresponding to the pseudo stresses can be computed from

the equation [26]:

= { B

a7

dA - . (3.16)

ot

where B is the matrix which relates the nodal displacements to the element
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strains (see Appendix A):

It is also poésible to compute the pseudo loads directly from the

difference of the element stiffness matrices:

P=(k-k )u (3.17)
where
k: wuncracked element stiffness matrix
5cr; cracked element stiffness matrix

u : nodal displacement vector of the element.
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CHAPTER 4
NUMER ICAL RESULTS

4.1 General

To demonstrate the applicability of the analysis presented in
tHe previous chapters and also to investigate the‘adequacy of the finite
elanents-suggésted a reinforced concrete deep beam, a reinforced concrete
panel and alrejnforced concrete shear wall=-frame system are numeriﬁally
'énalyzed. Experimental results are already avai]éb]e.

A1l the computation;Aére carried on the IBM 360/75fsystem

operated by the Department of Computer Science of the University of Illinois.

L.2 Deep Beam

bution in reinforced concrete deep beams, both theoretically and experimen-
tally.' On e of the deep beamsvtested at the University of Illinois [éO]
~was selected and analyzed by the increméntal finite element methoa out]inéd
in the previous chapters.

The geometry and the cross=sectional properties of the seleéted
specimen, designated G24S-11 in Ref. [20], are shown in Fig. 20. The average
| compressive strength of the concrete used in the model beam was 560C psi.

The modulus of rupture of the concrete is estimated as 580 psi. The specimen
had no web reinforcement and contained a single # L intermediate grade de-
formga bar (yield stress = 45.7 ksi, yield strain = 0.170%) as the tensioén
reinforcement. Also a single # 3 intermediate grade deformed bar (yield

stress = 48.9 ksi, yield strain = 0.178%) Was used as compression reinforcemenf.'

'Vaﬁlousainvestigators_havewstudled“thedbehavionﬁandmsiressgdisiLL:mwmm"mma
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The tension reinforcement had a speciél anchorage as shown in Fig. 20.

4.2.1 A Experimental Behavior

Tﬁe‘experimental data provided the following information:

1) the details of the geometry and material sfress-straih laws,

2)  cracking pattern,

3) . variation of concrete and steel strains versus 1oéd.
The Specimen:was tested both statically and dynamica1ly but only the static
results are used here‘as a basis for comparisqn, |

The beam behaved as a tied arch in which thé tension steel acted
as a tie and the céncrete above and outside the cracks served as thékarch "
vrib. Both vertical and inclined cracks formed and ét.advancéd stages of
loading they became well developed. The in;]ined cracks advanced approxi?
mately 45 degrees toward mid-span and then rose almost vertically to fhe
compression zone. Final failure of the beam occurredrby the yield of

tension reinforcement (yield load Py = 27.8 kips).

L.2.2 Behavior Predicted from the Anaiysié

The layout of the finite element array used to model the beam
is shown in Fig. 21. Due to symmetry only one half 5f the beam is analyzed.
Discretization required hﬁ quadrilateral elementsAand 56 nodes. The load
is applied uniformly over the nodes 29, 36 and 43 and a single support is
used- at node 14. (shown on Fig. 21) which provides a’cogplevarm,of 8.inche$.
Elastic material properties used in the anafysis are: |

EC

3,540,000.0-psi- for concrete

ES

27,300,000.0 psi for the reinforcement

v = 0.10 for concrete
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Realizing.that the surfacé of the crack in the concrete is not
smooth it is assumed that cracked Cohcreté maintains 25% of its full shear
capacity.. This phenomenon is termed aggregate interlock.

| First cracking stérted almost in a.yertical direction in element
7 at the load of 15 kips and propagated through the structure as illustrated
by the sequential plots of cracks at each load Ieve{ as shown in Figs. 22
and 23. The experimental craék pattern. is reproduced in-Fig. 24. There is
a good agreement between the experimental and analyticél crack patterns,
both in location and direction (Figs. 23, 24).
. The loéd is applied in increments of 5-kipsfup to failure. Load
versus disp]acement'diagrams'thainéa from fhe ahalysis and the experiment
are compared in Fig. 25. The'pofnts corresponding to a singie lToad level
show tHe increase of displacehent due to propééation of the cracks. Good
agreement between the experfmental and analyticg] bahavior is found. From
the test it was observed that the flattening of the lbad displacement diagram
was initiatea by yielding_of the tension reinforcement. This type of be-
havior was very well predicted by the analysis. Figure 26 shows the“cém—
Vbarison of the load versus steel strains. The initial slopes of both the’
experimental and the analytical curves are steep. This stage corresponds
to theveiastic behavior Eefore cracking. After formation of cracks in the
tension zone, stresses carried by the concrete are transferred to the rein-
- forcement which causes the steel strains to increase and produces a change
in the slop of the curves. Inelastic behavior starts by yielding of the
reinforcement where the strains increase more rapidly with load. It is ob-
setved‘that the load versus steel strain curves have similar shapes as the

stress=strain curve for the tension reinforcement.
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L.2.3 Variation of Stresses

Ffom the outpuf of the analysis it is possible to trace the
variatioﬁ of stresses at any'section of the beam at any load level. |In
Figs. Bl thfough BA such a sequential plot is given for section A=A which
is designated in Fig. 21. The diagrams exhibit stepped cohfiguration.be—
cause the stresses are assumed to be constant within an element. The solid
lines show. the distribution of stresses at the beginning of the indicated
load level and the dotted lines show. the distribution at the end. From
the variation of o, stresses it js possible tovqbserve shifting of the
neutral axis towards the compression zone when cracking occurs in the tension
zone. With thg incfease of thé‘]oadsvcompressivé T blocks grow ]afger and
larger to balance the stresses developed in the tensioﬁ reinforcement.
g stresses don't show considerable change except for the cracked élemeﬁts.
A decrease in dy stres;es is noticed due to cracking. Section A=A lies
"in a constant moment region where zero shear stresées should exist according
to the beam theory.  Small magnitude and slight vékiatiOn of the shear

stresses is in agreement with the above consideration.

L.3 . | Shear Panel

One of the shear panels tested at the University of Co]orédo [17]
was analyzed. Two panels were combined to form a»beam-like specimen which
was tested as a simply supported beam with mid-point load as shown in
Fig. 27a. The selected specimen was desiénated as W2 in Ref. [17]. The
three vertical ribs shown in Fig. 27a transmit tHe concentrated forces
at tﬁe support points and at the load point to the panels. They also pro-
vide lateral stability to the panels. The geometry and the cross=-sectional

properties of the selected specimen are given in Fig. 27a through Fig. 27c.
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The following détaAwaé listed for the haterials uéed in spécimen W2:

Average compreésive strength of concrete 3387 psi

" Modulus of e]astiéity of concrete 2900 ksi

Tensile strength of concrete 483 psi

Yield strength of the reinforcement 51.2 ksi

Modulus of elasticity of the reinforcement 27300 ksi

Because of symmetry only one half of the specimen had tb be
analyzed; Poisson's ratio for cbncrete is assumed to be 0.10.

The failure mechanism reported from the tests was a flexural
failure where yielding of the tension reinforcement occurred first and
plasticity of concréte in the éompression zone followed. The ana]ys}s
also predicted the samé type of failure. The analytical and the éxperi—
mental load-displacement diagfams are compared in Fig. 28. The agreement
between the computed and the experimental results is conSiderea good.

Two types of finite element meshes are used. They are shown in
Figs. 29 and 30. Meshvl required 35 quadrilateral elements énd L8 nodes.
Mesh 2 required 63 quadrilateral elements and 80 nodes. In both meghes the
' Faifure of the spécimen started by the yielding of the tension réinforce-
ment. ‘When the finer mesh was used (Fig. 28, curve b) yielding occurred at
"a lower load than with the coarse mesh (Fig. 28, curve a). The analysis

fndicated plasticity developed fnthe concrete in the compression zone when
- the finer mesh was used, while no plasticity was detected in the concrete
when the coarse mésh was used. This difference can be explained by the
ability éf the fiﬁer mesh to better reproduce stress concentrations than the
coarée mesh. |

Threé types of load intervals were tried in the three different

solutions ( BP; = 2 kips, AP, = L kips, APy = 8 kips). Load-displacement
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diagrams obtained from'AP, and APZ are shown in‘Fig. 28 (curves a and c).
The numerical values of the displacements at points A, B, C, D (designated

in Fig. 28) are as follows:

Lo§d P DisplaFement for AP, for Ale for}AP3
(kips) at Point
10 A ©0.01073 in. 0.01073 in. ~0.01073 in.
B 0.02326 in.  0.02335 in.
18 c 0.03815 in. 0.03829 in. 0.03769 in.
22 b 0.05678 in. 0:05710 in.

No cracking took place at point A. At point C the number and
location of elements cracked during the application ofvload by AP] or AP2
increments.is exactly the same (elemeﬁts 29, 30, 32, 33, 34 and 35 cracked).
However, an additional element (element no. 28) was cracked when the incre-
menf used was AP_. It.is concluded thaf the effect of the size of load

3

increment on the values of displacements and on the sequence of cracking s
slight.

CurvesAa aﬁd d shown on Fig. 28’compare the IOadfdisblacement
rbehavior when two different shear stress transfef values are used to transfer
stregs across a crack (12.5% shear and no shear, respectively). THe two
diagrams compare well except in the value of the failure load. In the no
shear case, fTailure requires a higher load than the 12.5% shear case.

Figure 31 compares the cracked regions at P = 24 kips. Thé number of cracked
elements in the no shear case is less than the 12.5% shear case, thence
the'transfer of stresses from concrete to the tension reinforcement occurs
at' a higher load.

Exper%mental and analytical crack patterns are compared in Fig. 32.

Good agreement exists between the two patterns.
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L. 4 Reinforéed Concrete Shear Wall-Frame System
L.h. 1 General

The shear Wall-fréme system used in this analysis (designated
as Specimen A-1 in Ref. [21]) is adapted from a series of pfototype models
which were éxberimenta]]y tested at the University of Tokyo‘in 1964 [21].
Two oOne-story sheaf wa]l-frame systems were cast togethgr to form a beam—l{ke
specimen as shown in Fig. 33 and tested as a simple beam which is loaded
at mid-point with a 2000 ton capacity Universal-type testing machine.

The geometry and the éross—sectional details of the sefected
‘spec}men are shown in Fig. 33. Physical properties of the materials used
are given in Fig. 3&. The experimental data dia not contain informafion
about the tensile strength of concrete hence it is cohputed from the com-

pressive strength:

%rupture (1.25 ~1.75) 0split

where

Tprir = (6~ T7) VT

fé: compressive strength of concrete in psi. Substituting
the numerical values in the above formulas the modulus of rupture is ob-

L o~ 2 :
tained as Grupture = L0 kg/em” (570 psi).

Two systems of finite elements are used for the discfetization:

Solution 1: Quadrilateral elements for the wall and the Frame;
1ink elements for the connection of the wall to thevframep

Solution 2: Quadrilateral elements for thé Wa]!, flexural elements .
for the frame, 1ink elements for the connections of the wall,to the frame.

The beam-to-column connections of the test sbecimen are quite

stiff due to the presence of crowded reinforcement. Analytical model
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‘simulates this by using stiffened quadrilateral elements at those locations

(elements 1, 8, 21, 28);1

L.L.2 Behavior of the Specimen During the Test

Thé load-displacement diagrams ostained from the test are repro-
duced in Figs. 35, 36 and 37.. Figure 35 shows the complete 1oéd-d35p]éce—
ment behavior>where‘the relative displacement between the mid-spéhvand‘the
right or left support is used. Figure 36 is a plot of load versus horizonta]
aisplacemeht of the right and left supports. Figure 37 shows the initial
portion of the load versus mid-span displacement. |

During the test, thé’specimen was firgt loaded up to llovtdhs,,
unloaded and reloaded thfs time to failure. Final craék appearanﬁe affer
the failure of the specimen is reproduced in Fig. 38. After opening of
large diagonal cracks at 127 tons of load, the resistance of the test épeci-
“men increased until 19? tons of load. At that time a shear-compression
failure‘occu}red at the upper compreséion‘co]umns;' No separation between

the wall and the-frame is réported.

L.h.3 Solution 1

The general layout of‘the.analytical,model is given in>Fig.»39,
Figure 40 shows the ]ocatfon and numbering of the link elements. There are
64 quadrilateral and 28 link elements used pr the idealization. Each link
element shown on Fig. 40 represent a certain contact area dependihg upoﬁ

its location. In this léyoUt four magnitudes of contact areas are identified;

whicﬁ are:
1) Horiionta1 sides, non-corner.. Link Elements'9, 10, 1%, 12,

13, 23, 24, 25, 26, 27.
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2)  Horizontal sides, at corner. Link elements 8, 14, 22, 28.
3) Verticalysides, noﬁ-cornér. Link elements 2, 3, 4, 5, 6,
16, 17, 18, 19, 20.

4)  Vertical sides, at corner. Link elements 1, 7, 15, 21.

Anéjysis identified first cracking of element 15 at a load of
100 tons. From thefe on the loads are incremented by 10 tons. A cracked
element is assumed to transfer some amount of shear stress acrqsé the cracks;
two extreme Cases being zero shear transfer and full sheaf transfer. De-
:pénding upon theAwidth of the crack the value of the shear stiffnéss assigned
bto a cracked element will vary between thoée two extreme cases. Four
solutions are run Qith differéht.values of sheaF stiffness:

Case 1: in this solution a cracked element }s assumed to
transfer no shear stress across a crack.

Case 2: 12.5% of the full shear stress is assumed té be trans-
ferred across a crack;

Case 3: 25% of the full shear stress is assumed té be transferred.

Case 4: full shear stress is assumed to be transferred aéross a
crack. A

The load versus displacement diagrams obtained from.the‘above men=
tioned cases are given in Fig. 41. All of the four diagrams exhibit similar
behavior. However, there is a difference in the size of the cracked regions
as illustrated in Fig. 42. As the value of the shear stiffness assumed
for a cracked element increases, the number of the cracked elements increase.
The cracked region corresponding to no shear case (Case 1) is confined to
a‘sméller area; hovever, inlthe caSé of full shear transfer (Case 4) the
cracked region is wide spread. This is mainly'caused,by the ability of the

cracked element used in the latter case (Case 4) to transfer shear stresses
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through the cracks and thereby cause cracking of the neighboring elements.

Figﬁres L3, L and L5 iilustrate the appearance of the analytical
cracks at three different load levels. Assumed shear factor for these
plots is 0.125. There is a close agreement between the crack pattern ob--
tained from the test (Fig. 38) and the one obtained from the analysis (Fig. 45),
both in location and in direction of the cracks.

A cémparison between the anaiytical and the experimentéT load~-
disp]acement:diagrams for a shear factor of 0.125 is given in Fig. 41.
(curves b and f)f Vertical d?splacement of node 9 is used for this plot.
F(Fig. 37 shows a similar comparison for the initia].portibns of the load-
d}splacement diagréms) Anaiytical and experimeﬁtal load versus horizontal
dsplacement (horizontal displacement -of node 105) diaérams are compared in
Fig. L6. The agreement between the analytical and the experimental load-
displacement behavior is very good up to a load of 140 tons. From there
on the analytical diaérams run with a steeper slopé, indicating a stiffer
analytical model than the test specimen. The same stiff behavior is ob-
served in all the four cases corresponding to different values of shear
stiffness assumed for a cracked element (Fig. 41). Thus it can be con-
cluded that the cause of fhis stiff behavior is not due to the transfef
of shear stresses across the crécks. A possible explanation is éiven in
the following paragraphs. |

As the cracks spread in the structure and propagate towards the
compression zone, a cumulation of compressive andAshear stresses occur in the
compression zone. The elements of this zoﬁe are‘subject to high local
ben&iﬁé moments caused by the frame action. Now the solution becomes |
sensitive to the behavior of this region.

Consider a.flekural element as shown in Fig. 47a. Under the
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action of a bending moment M, it would'deform to fhe curved shape A'B'C'D!
as shown in'Fig. L7b. waever, If‘the same bending moment is applied to a
quadrilateral element it would deform to the trapezoidal shape as shown in
Fig. §7c. Thus a quadrilateral element while trying to respbhd to.a flexural
action, will sbend much of its energy .in shear-type deformétion'as imb]ied
by. the trapezoidal éhape. Therefore, a stiff behavior i; expeéted from the
quadrilateral element under the-action of the flexural stresses. Furthermore,
the flexural stresses are suppressed and initiation of plasticity postponed.

From the above discussion it follows that the stiff behavior of
fhe‘analytica] model (after the load of 140 tons)lcan‘be attributed to
the poor behavibr of the quadrflateral elements‘in the critical compression
zone (designated in Fig. 48). ‘This poor behavior of the quadrilateral
elements can be avoided if the nuﬁber of the elements corresponding to the
critical zone is increased.. This can be achieved with a gradea mesh which
may look like the one ;hown in Fig. 48.

Except for a few closed shear cracks (1ink e]ementé 2, 3, 11,
12, 21), no separation took,placé between the wall and the. frame dufing the
course of loading. The forceé acting on the link elements are gfven in
Fig. B.12.

Sequential plots of the variation of global stresses (Gx; 0?, Txy)
at a vertical section A-A (designated in Fig. 39) as a function of the

applied forces are given in Figs. B.5 through B.9.

L.y L Solution 2

General layout of the analytical model is given.in Fig. 33. The
location and the numbering of the link elements is given in Fig. 34. In

this solution, instead of the quadrilateral elements, flexural elements are
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used for the frame. Discretization required 24 flexural elements, 40
quadrilateral elements ahd 28 link elements. Again four magnitudes of con-
tact areas are identified fof the link elements (see Section L.L4.3).

Analysis identified first éracking of element 15 at a load of 100
tons. From there on the loads are applied in increments of 10 tons Qp to
failure.

A cracked quadrilateral element is again assumed to transfer
12.5% of the shear streés across the cracks. The crack pattern obtained
from the analysis at a load of 140 tons: is sHown in Fig. 49. There is a
close agreement between the analytical and experimenta1 (Fig. 38) crack -
patterns.

Load-versus‘disblacement responses obtained from this analysis
and the expefiment are compafed in Figs. k0 and 5T. Agreement between the
experimental and the analytical behavior is very good up to 140 tons of
load at which time the‘analysis indicated failure Ey yielding of reinforce-
ment and plastic behavior of the concrete in the elements adjacent to the
single support (elements 20, 58, 64, 63). This local failure is caused
mainly by the concentration Qf stresses due to the excessive rotétion of
the rigid corner element (element 28). Final failure of the specimen
occurred first by yielding of thé-feinforcement in elements 15, 16, ]7,-
18, 19, 20, which is followed by yielding of the concrete in the compression
zone and YieIding of the elements aligned with the main diagonal.

The early failure of the analytical model caﬁ be attributed to
the abrupt wéakening of the flexural e]eménts in the critical compression
'zonebdue to excessive yielding. If a slicing or layering procedure [18] is
followed for these flexural elements a gfadual change of stiffness occurs and

this provides the additiohal strength to the analytical model which is
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necessary to prevent the occurrence of the early faf]ure;k Figure 52 illus-
trates such a layered fléXural element.

A Thé moments acting at the reference axis of the flexural elements
are plotted in Figs. E3 and 54. [t shoUld be observed that hfgh flexural
action takes élace directly under the applied loads (eleménts 9, io) and
also near the ﬁupporting point (elements 26, 27). Numerical values of the
normal forces,. shear forces amd the bending moments aqﬁ ng at the member
‘reference axis are given in Table B.2.

» Varia#ipn of the g]obal stresses (cx, Gy, Txy) at the séction
A-A (designated in Fig. 39) are given in Figs. B.TO~ahd'B.]].

Similar'tﬁ the expefimentai'bghavior Ao link element failufes
occurred except a few shear cracks (link elements 11, iz, 13, 2, 3)_which
had a very insignificant effect on the general behavior.

It can be concluded that if flexural elements are uséd to repre-
sent the frame in a shear wall-frame system:

a) a layering .procedure fs suggested for the eléménts whicﬁ
are subjected to high flexural action,

b) a better support should be used to prevent a local failure.
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CHAPTER 5- | - -
SUMMARY AND CONCLUS IONS

A discrete element method for the elastic and iné]astic ana1ysis
of a reinforced concrete shear wall-frame system hés been developed. This
méthod utilizes finite element technique as a tool of compdtation; An
incremental ﬁrocedure is used to study the nonlinear behavior due to
cracking and plasticity. Within an increment of load the pseudo (or initial) )
"*"—“**—*——ﬁtrésszﬂrﬂﬂchh‘aTEFT?ﬂTQEﬁﬂfThns“fU*crgck?ng‘and‘pﬁésTﬁﬁﬁ1$r?ﬂ?f7ft§trfbutéd””‘_‘——*“——fj‘—

to the surrounding élements bf'fhe structure by'either using the initial

unchanged stiffness at the beginning of the.increment.(Method 2), or tHe
current updated stiffness (Method 1). The analysis also incorporates trans-
fer of some amount of shear across the cracks. Only monotonic loadingrﬁp

to failure is consideréd.

A computer program has been developed to permit high speed compu-

tation of fhe resulting equations. .

Three types of strugtures.(a deep beam, a‘shear panel énd a

shear wall-frame system) are nﬁmerical]y analyzed and the results obtained

are compared with the availab]e\experimental results; The analysis pro-

vided a means to follow the comp]éte structural behavior under monotonically
increasing loads.

Aggregate interlock or the ability of a cracked element to transfer
sheér fs included in the analysis. A constant value of shear stiffness is

‘assumed for all the craéked elements. It is anticipated that a better physi=

cal insight’can be given to the problem of shear transfer if the value of

the assigned shear stiffness is adjusted as a function of the crack width or = -
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some other such similar function. In é]lvthe exahples solved good agreement
is obtained'between the éna]ytical;and the experimental crack patferns both
for coarse and for fine mesHes used. The analytical nonlinear load-displace-
ment behavior caused by cracking compared well with the available test
results. The analysis can predict with éggeptable reliabiiity a failﬁre
mechanism which occurs due to bending aétion (for an undgr-reinforced.section)
where yielding.of the reinforcement occurs first énd chpréssion b]asticity
of concrete fb?lows {see the deep beam and shear panel examples).

If built-up quadrilateral elements are used for both the frame

£ 11
LI

and the wall 1hm a shear waii—f}ame system (see So?utiun +of—the shear—wa
frame example) init%ation of pjasticity is poétponed in the critical com-
pression zone due to the stiff behavior of the‘quadrilateral’elements in the
rectaﬁguiar mesh used. |In advanced stages of Ioadfng the solution becomes
sensitive to the behavior of the Timited number of elements located in the
criticai compression zone (Fig. 48)'where stress cbncentrations occur due

to the propagated cracks. To improve the analytical results the following
are suggested: ‘

1) use of a new grid with non-rectanéulaf elements ta provide a
finer mesh fn the critical compression zone (é.g., mesh suggested in Fig. 48).
~ This type of a mesh provides improved stress values in the region whefe high
stress gradients occur.

2) use of a four node (séme as rectangular element) isopara-
metric element. The evaluation of the element stiffness matrix of such an
isoparametric element requires the integration of a triple matrix product
of tHe following form |

[ 8 DB
A
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which is approximated by a summation

T ij
where each 0 is the integration weighing factor and x; and yj are the
integration points selected for the numerical integration. Each term of

the above summation represents in effect the contribution of the stiffness
of a subregion to the overall element stiffness. |If a procedure is fol-
lowed such that cracking or yielding criterion is evaluated at the integra~
tion points‘and each time a crack or yielding occurs the material property
matrix 2 is updated to include the effect of the Changé, then it is possible
to obtain a gradualfy crackinngr‘yielding e]emeﬁt. Here it should be

noted that only the subregion’which corresponds to that integration point

is considered cracked or yielded. Peak stresses occurring within such an
element results with the partial failure of the element at the same load
level where the quadrilateral element still would not have failed. This
partial failure results in a more flexible element, thus a more flexible
overall behavior.

If flexural elements are used for the frame, however, eér!y
failure of the structure occurred (see Solution 2 of the shear wall-frame
example). This is attributed toithe early weakening of the flexural elements.
A layering procedure is suggested for the flexural elements positioned at
the critical compression zone.

From the study of the behavior of the link elements it was con-
cluded that the analyzed reinforced concrete shear wall-frame system can
be considered as a single‘integral unit rather than a wall and a frame.

Another version of the program used in this research may include

alternating or cyclic loading. This type of loading is of interest in
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order to establish the stiffness proéerties of the analyzed shear wall-frame
system under seismic Joads. Under.cyclic loading a degradation of stiffness
occurs, that'is, the stiffness of the structure decreases as a function

of the maximum deformation imposed in previous cycles. Therefore, analy-
tical prediction of the complete load-displacement behavior js necesséry to
determine the nonlinear response of the structure under repeated loads

such as resulting from earthquakes.

In the idealization of the stress=strain diagram of the concrete,
éqmpressfve'strength provided from the tests of cylinders was used as the
maximum stress (68, see Fig. 8a). The area covered by the idealized diagram
is larger than the éxperimental diagram, indicat}ng that more energy is
required for the idealized material for its failure. Use of an idealized
diagram which has a balanced area with the experimental diagram is suggested
in order to avoid the additional imposed energy requirements. fhis can be
achieved by lowering tHe maximum value of the stress and decreasing the
initial modulus of elasticity. However, difficulty arises iﬁ interpreting
the counterpart of the abov¢ adjustment'in'the case of biaxial state of
stress.

The assignment of shear stiffness to a cracked elgment was made
arbitrarily in the absence of the test data in this area. Experimental
information is necessary about -the amount of shear transferred across a
crack as a function of the crack width or-whatever othervvariables are
being used. Also experimental information about how‘well an open crack
closes may be helpful if the type of the problem to be solved is such that
c]osihg of cracks is expected (such as cyclic loading).

The éna]ysis included the nonlinearities caused by cracking and

plasticity only. However, it is realized that nonlinear behavior may occur
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‘due to bond failuré also. In all thé examples solved such a nonlinearity did
not occur either due to the provisfons taken (e.g., the anchor.plates in

the deep beam example) or'thévtypes éf the structures analyzed where bond
failure was not critical. |[f cracking of an already cracked element occurs
(e.g., under cyclic loading) bond failure mayloccur due fo'the destruction

of the element. Hence the analysis should incorporate suitab]e-bond

elements in case bond failure is expected.



Figure 1, Constant Strain Triangle

Figure 2, Quadrilateral Element Composed of Four
Constant Strain Triangles
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Figure 3, Comparison of Mesh Details
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vy ' ‘ v3
Luh LU3 ’
a) Rectangular Element
Trace of the Stiffness Matrix
b .
(8.652) 10° 1b/in
f—ib-u] a 4-ih— U2
v ' \P)

b) Built-up Quadrilateral
Element

Trace of the Stiffness Matrix

(7.920) 108 Ib/in

Properties Common to Both Elements:

a 5.0 in

b 3.0 in 6
Modulus of Elasticity = (2.4) 10" psi
Poisson's Ratioi = 0.0

Thickness = 2.0 in

Figure 4, Stiffness Comparison of the Bullt-up Quadrilateral
and Rectangular Elements
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B Y : B X

b) Spring Constants for the Link
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c) Displacements in UV ' d) Displacements in XY = Global
Coordinates Coordinates

Figure 6, Link Elements
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Figure 7, Biaxial Strength of Concrete
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Figure 8, Stress=Straln Diagrams
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a : angle to the
reinforcement

Figure 9, Distribution of the Reinforcement

B: Angle to the Crack

Figure 10, Principal Stresses and Cracking
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Mode Description of the Mode -
0 Uncracked Concrete
' 1 Cracks in One Direction
Nraraw;
///
/ / / / v2 First Set of Cracks Closed
[ s/
¢ N
3 . First Set of Cracks Closed, Second
Set of Cracks Opened

VSO | .
< % )< L R } »Both Sets of Cracks Closed

Same Time

Q%Oé 5 Two Sets of Cracks Open at the

Figure 11, Crack Modes for Wall Elements
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Figure 13, Assumed Crack Modes for the Flekura!
Elements ‘
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Figqure 14, Schematic Diagram to |llustrate Crack Propagation
(Method 1: Initial Stress Method Using Variable
Stiffness Within an Increment)
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Figure 15, Schematic Diagram to Illustrate Crack Propagation

(Method 2: Initial Stress Method Using Constant
Stiffness Within an Increment)
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:§<\<,;»—— Shifted Yield Surface

Initial Yield Surface

Figure 17, Schematic lllustration of the Distribution
of Pseudo Stresses Due to Biaxial Plasticity
of Concrete
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Stress

&5 (Pseudo or Initial Stress)

Duncracked

=== Strain

Note: The lettering of stress and strain quantities are
symbolic only.

Figure 18, Pseudo Stresses Released Due to Cracking
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, //, I G: Pseudo or Inltial Stress
| | , I//,; a ‘
—_—— e e e . s
Yield Stress
€ -~ Strain

Figure 19, Schematic Illustration of the Pseudo Stresses

Released Due to Unlaxial Plasticity of a Com-
ponent Materifal (Cracked Concrete or Reinforcement)
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Figure 21, Discretized Model (Specimen G24S-11)
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Figure 25, Comparison of Analytical and Experimental Load-Displacement
Diagrams (Specimen G24S-11)
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Figure 29, Layout of Mesh 1 (Specimen W2)
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Figure 30, Layout of Mesh

2 (Specimen W2)

| 9 17 25 33 I L9 57 65173

1 15 22 29 36 43 50 57 |8

2 o T8 13 34 L7 50 5866 |7h

2 16 23 30 37 Ll 51 58 |9

3 11 19 27 35 L3 51 59 67 {75

3 17 24 31 38 - s 52 59 o

L 12 20 D8 B6 L 52 60 68| 746

Sl y 18 25 32 39 L6 53 60 |
o~ .
M R E 21 P9 BT 45153 l61 69 f7
0 5 19 26 33 Lo Ly 541 61 |12
6 ;m 22 R0 38 L6 5l 62 70 |78

: 6 20 27 3L I 48 55 | 62 13
7 15 23 Bl 39 L7 55 63 71 |79

© 7 21 | 28 35 ) L9 56 63 |14
0 16 2L 32 1,0 48 56 64 72 |80
L.ov 7 @ L.287" ¥l

P/2 P/2

2.0

9L



-Shear Factor = 0.125

: /;;/;/»— Shear Factor = 0.0

1o 16 21| ,2§ " 3
"' f ‘ , | ‘?”"‘ﬂ'z'i“‘ibm e
i I ,/'1/304'9
{ | e
Vo ey
I T ///29/f4/9w
| - B
Lw"+ 30" | LZ“
] | o ’
P/2 P/2 lLoad Increment AP = 2 kips

l.oad Level P = 24 kips

Figure 31, Region of Cracking for Two Different Values of Sheér Factor
(Specimen W2, Mesh 1)

LL



’ /‘ -

N

Jumm

Analytical Crack Pattern
(Shear Factor = 0.125)



A-TYPE (R.C. wall)

225, 178 175125
A T Hoop 6 $360 0. C 288y
% 2 ¥_! ’ R U
COLLHM!i s sag, s !!i!ﬂ.ﬁ:: SR &
1 . _ 4 R ]
1 H po
i i N
i ; 1
I 5 ! - gl
'{— b 3 a = i il 4] g £
B | < 3 <« ! 0. B o N e
8 3 ! ' i 0 °k\ g g”
| ' of M|l -
o | Y , P
! ! g .
+ Y e . o
1 1] 2 » ! !
! ! o i
1 1 I’\hk‘ o
| el S\
. coLumn | - aj i \ >
. 4 ' B! i £ A » r ) zi
‘ R
i L,‘A : | ‘ L 2se-l
- 8, 250mm 1 ‘ ;
={:;:::;; . 642000.C 3%3 s A—A SECTION
el
fffk~,‘~r~-“/?~ S e S W ol s A
Pz, =hi]

230 1,280

T

-8, $00mm———
B—-B SECTION

9009001 —— 1, m————m——oosnﬁ\‘ ~018

Stirrup 6¢ 2..0 C

Figufe 33, Details of Specimen A-1 [21]

6L



— (kg/cmz)

—— (t/cmz)

80

SOOIT- T T T T
2008 N
c . 5 2
E]/u = Modulus of Elasticity = 2.98 x 10 kg/cm
og = Average Compressive Sfrength'of 5 Concrete
Cylinders = 237 kg/cm
100f c - . -
Note: E]/4»~ Secant Modulus at 1/4 S
0 1 ] | |

0.05

a) Concrete

0.10 0.15 . 0.20 0.25

7 T 4 t T T T ¥ T T
———
0 Yield Strength = 4,77 tons/cm2 )
Ultimate Strength = 6.40 tons/cm
eg = Maximum Elongation = 21.L4%
0 | 1 l ] | ] 1 | |
g 4,0 8.0 12.0 16.0 20.0

b) Reinforcement

Figure 34, Physical Properties of the Materials Used in

Specimen A=1 [21]



LOAD-DEFLECTION CURVES

00— : A — -
Al | //—”"‘r”'\\
| Pmax=t91¢ ! iy
dmax =5 .52mm / 1
:; /2 1
: 7
e
g
1 -
’
-
E |
§
a r—HScm—l. rl45cm—1
3
Q
o
[~
o8
|
|
o ’ . N “J
P o el
\‘ :
) X 5.0 ! 70 - 9.0

— 4 ()

Figure 35, Load Versus Rellative Vertical Displacement of the Supports [21].

18



82

[12] sjtoddns 2y3 jo HCOEMUm_am_c,_muCON_LoI

mrmuu> peoq. ‘gf ainbi4

[ 1 R e —

|||||| ——— e 89 X og LN
Qe H ,’,IIE 3 _ _. _ w
= .7 _ + SN . ..m.I- _
Bl M ' i Lo
d_| ! ! i ~_
) | i | )
il i 1oy T
a i i N\ % /
\ ) ! i <
\ A xAuﬂNJWW/k
| T 7 i
! | v _ Ry _
e (@ eIYII.J.Q , T _ \\\
i ! 4
| ; ’
J o T RL Y] Y w\\ﬂ -
| L ve 1 !

. ANINIAIVICEIO TVLNOZRSON-GVOT 1V

- ——



Load, P (metric tons)

140 ¥

120

100

80

60

Lo

20

Shear Factor = 0.125
5: Vertical Displacement of Node 9 '
Analysis (8) |
="
- , Y
O,’” Experiment (8) |
X
= 145 cm l I 145 cm
205 cm
. ’ |
E\ A — ' : b
6L j__— \-‘______h%____._a— E i 6R
1 1 J‘ 1 1 -
1.0 1.2 1.4 1.6 1.8 2.0 2.2

Displacement, § (mm)

Figure 37, Comparison of the Load-Displacement Curves
(Specimen A-1, Solution 1)

€g



8L

Figure 38, Experimental Crack Pattern (Specimen A-1) [21]



_ P
9 8 7 6 5 L 3 2 I {
’ N
. . "l
8 7 6 5 L 3 2 1 8
, A
18 [, I 16 5] i 13 12 11 0]
25 24 23 22 21 20 19 [ f
15 34 33 - 32 31 30 ‘ 29 9
36 3gi3h 33 32 31 30 129 281P7 26 |
16 40 39 , 38 37 36 35 10 o
47 Lellus L L3 L2 | L0 39|38 37 €
, —t— : ~
17 L6 L5 Ly L3 h L2 a1 1 1
58 57156 155 54 {153 52 51 50{9 L8 — @
(9]
. . 3
18 52 . 51 50 : L9 43 L7 12
69 68167 66 65 6L 63 62 611160 59
P x
19 58 57 56 55 5k 53 13
80 791 78 77 76 75 74 73 724171 70 x
‘ =
’ S
20 6L 63 62 61 60 59 14 N
96 ilsz 86 85 8l 83 82 81 { o
BE] 9Y 93 92 ST 30 BY <11 I
N
p i
28 27 26 25 24 23 22 21 o
3
&‘ 105 104 103 102 0l 100 99 98 97 Y
25 cm | 6 @30 cm = 180 cm 25 cm

Figure 39, Discretized Model (Specimen A-1)

A

(1B21343A)



21 20 19 17 1§ 15
22 14
23 13.
oL 12
25| 11
26 10
- 27 9
28] ] 3 ] ! ! )18

Note: Each nUmber of this figure represents a link element. Examples: Link element 2 shown on
Also link element 1 and 28 connect

this figure connects nodes 94 and 86 shown on Fig. 39.

nQdes 95 and 87.

Figure 40, Link Elements (Specimen A-1)

98



Load, P (mefric tons)

210
200
190
180

170
160

150

140
130

120
110]

100

90

80.

70

60’,

50

20

30

103

Vertical Displacement of Node 9

p »
2°° 4
o

NeYoXclo

.l

©
e°”
°
.

o
L e
-®

.

°
<
e
-®
.....
o
°®
oo

----
ot

Shear Factor

e 4 0.00 (no shear)
D———-f—ﬂ 0.125

Ly = =ely (3,250

Y=======V  1.000 (full shear)

Experimental Curve

| | I ] |

1.0 1.5

2.0 2.5 3.0 3.5 5.0
Displacement, & (mm)

Figure 41, Comparison of Load-Displacement Curves (Specimen A-1, Solution 1)

L8



d ¢

“suol Ofl -

88

8 7 6 5 L 3 2 |
m
15 34 33 32 31 30 29 9
(TR CRFERIRENSHED SRR
16 ) 39 38 37 36 35 10
) E
] s g
17 'S L5 Ll oW L2 L 11
1 2
| “ N P
o wn o
] X <
18 52 51 50 5 49 R o b7 12
o o
H N o 2
. (g_ ha ~
& ,
19 58 - I 757 56 55 5k 53 13
fl
20 64 l 63 62 61 . 60 59 4
1
A
28 27 26 25 242 23 22 21 o
. 3
25 em | 180 cm | 25 em

Figure 42 Effect of Shear Transfer on Cracking (Specimen A-1, Solution 1)




Figure 43, Crack Pattern at 100 tons of Load (Specimen A-1, Solution 1)
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APPENDIX A

DEVELOPMENT OF THE ELEMENT STIFFNESS MATRICES AND COMPUTATION OF STRESSES
AND STRAINS :

A.l Quadrilateral Element [30] [31]

Consider‘the quadrilateral shown in Fig. 1. It is subdivided
into four trfangles, taking. the cbmmon or fifth node at tEe centroid of the
- quadrilateral.  Each triangle is a constaht strain triangle, that is; a
linear displacement fieldvis assumed éver each triangle.. The dfsp]acements
are ﬁontinuous across the intgrior boundarie$,~butvthe strains are disconf
tinuous.

The equilibrium equations for the element system can be expressed
as:

iox]  10x10 10xI

F =k u | (A.1)

Let us partition Eq. A.1 as follows:

E Kok u
8x1 | I8x8 | 8x2 8x1
i
< P o= | =meme R ———
! )
| .
B kv 1 ky o
2x1 |- | 2x8 | 2x2 | .} 2x1

where EO and u, are the load and displacement vectors for the centroidal

node of the quadrflateral element. Then:

Eoskpu * kb (82)
8x1 8x8 8x1 8x2 2x1

and
B =k u vy, Y (A.3)

2x1 2x8 8xI 8x2 2xl
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Solving go'from Eq. A.3:

Y = knl “.5;; kyp ¥ | (A1)
and substituting in Eq. A.2:
E=kyut 512“(5;; B - 5;; ko1 Yo) (A-5)
so that o '
-k, 55;‘50)8xi =y - kg G2 2V 56 Y1
or ‘
ey - e
where '5* is fhe “condense& stiffness matrixﬁlofjthe-quadrilateré]
.e]emenf. | | ’
IF.EO =0 (i.e.; no ]oéd applied at the cenfroidai nodé)’then

e
LAY

E-F
Once the gtructure }s solved for given loads, the displacements of the'Four
corners of each.quadrilateralfelement are fecovered from the dfﬁp?acément
vector of the structure. In order to find the strain within each triangle
the displ'acement'gO of the.centroidal node 5hou]d~be computed firsti(Eq. A.hj.

Next step is to compute the strain of each subtriangle using the strain

displaceﬁent relationship:

¢ =8 u® - (A.7)
3x1 . 3x6 6xl '
‘where
Y53 0 Y31 O Yig O
| : |
B=7 0 X35 O X130 X1
| %32 Y23 %13 Vi *ar iz |
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e . e ' ' . . .
'u: nodal displacement vector for a subtriangle and A is the

area of the triangle (ng. 2), also

X,. =X, = X,
1] I ]
,\/U-= Yi —, y_j _ (i = 1) 2, 3):(J =1, 2: 3)-

Average strain of the centroidal node is then:

e = (¢ + gl! + 5'!' + ') o (A.8)

3x1 : o 3x]

Fi=

-where
' I N I B B L o I b .

&£, & > & , g are the strains existing within each subtriangle.
‘Thi's average strain is used‘to compute the aveﬁage stress of concrete:

gc L= Ec' € ' v ' : (A;9)
3x1 x3 3x]
where Ec is the material property matrix of concrete.
"The séme strain is assumed fof the reinforcement too, thus the
stress in the reinforcement is:
g’ =D ¢ . ' : (A.10)
3x1 3x3 3xI- . '

s . : , . .
where D™ is the material property matfix of the reinforcement.

A.2 Frame(Elements

- The structural frame is divided into segments as shown in.Fig. Sa.
Two Tayers of réinforcement are assﬁmed at a distance of d' from the top
~and bottom; Let's éonsider the axial forces, shear forces.and'momeﬁts
actfng at the feference axis as showh in Fig. 5b. fhe corresponding dis=
placemeﬁts are numbered ‘from 1 to 6. Thié e]emeﬁtvhas the uéual 6x6

stiffness matrix:



=

" where

p—
N
m

|

o
m W

-
N

o

N
m

|

o
m w

]

1ok

“SYMMETRIC
CLEL
L =
‘ AE
0 L
6E£ 0 12E1
L L3
2E] 6EI
&= 0 _2El
L 2

3]
L

‘A: transformed area -of the uncracked sectioh,

(A.11)

I: moment of inertia of the uncracked section with respect to

the reference axis,

E: Young's modulus for concrete;

L: Iength'of the element.

Assuming the displacements of the reférence axis are related to

the displacements of the corners of the element by the following relation:

where

‘ 6x1

3rq

[ T w J Y

o

o

" 2rq =q
6x8 8xl
0 0 0
0.5 0 0
0 0 0
0 0.5 0
0 0 0.5
]
50

0 0
o 0
0o o0
0.5 0
0 0.5
1
..D 0

(A.12)
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‘D: the depth of the element
Qq: displacement yectof of the corners of the frame eiement;(two
at each corner as shown in Fig. 5c).
By the application of principal of virtual work one can arrive at the

stiffness matrix of the new frame element which has 8 degfees of freedom:

T

rq (A.13)

|
=
[

Eq rq
fhe above development of the stiffhe§s>matrix waé used in Ref. [18]. There,
however; 10 glices of concrete were assumed through the depth of the cross-
section whéreas in this investigation no such slicing is inclﬁded and to
‘simplify the calculations the properties of tHeléection as a whole are con-
sidered. .

In the computation of the 8x8 stiffness of fhe frame element it is
implicitly assumed that the displacements 2, 4, 6 and 8 are indepéndent,
which implies the possjsility of expansion or contraction of the element
across its depth. In fact, this type of behavior has been aSSUmeB to be
negligible in the behavior of the real element. |If displacements in the
directions 2 and 8, and similarly 4 and 6 can be made equal to each other,

-then the cross-section will remain unchanged across the depth.

The equifibrium equation of the frame element may then be written in the

following form:
s (A.1L)

k u
- =4 —q

8x1  8x8 8xl

where S is the nodal force vector. Without changing the 8x8 form of. the
stiffness matrix and also preserving the symmetry (necessary for the equation
solver used) it is possible to equate the &isplacements 2 and 8 by simply
adding the second row of the stiffness matrix to the eighfh row and then

adding the second column to the eighth column and setting all the terms on
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the second row and column to zero ahd adding a (+l)on_fh§ positions kzé
 and k88'ahd a‘el)on the po;itfong k,g and kg,. Also the Toad térm corre-
spondiﬁg to the second row should be set equal to zero. By doing so the
- second row of the stiffness matrix is’replaced by an equationbwﬁich reads
92 = v8.‘ The same procgdufe can be repeated for the fburth‘énd sixfh airec-
tions. This‘procedure is exact but it has the disadvantage of not being
.ableito apply any-extefnal load in the directiph where the‘eéuflibrium’
equétion islreplaced. There is, however, another method in Whichllarée
| gtiffness'tefmsAafe added into the positions k22, k28’ k82 and k88. Physi;
' cél]y»this canfbe_visualized‘as if a fictitiousQ very figid baf exists
between nodes i aﬁd 4 (simfléffy for j and k). This second proqedure is
approximate but it is easy to aﬁply and does not have the Ifmitation‘of
“the first method. = In this reseaFch the “"séc"bnd: approx i'mate"metho'a" is used.

From the di;piacement solution of the whole structure thé displace--
ments of the corners of each element are recovergd. Assuming a linear strain
distribution, thé strains, thence the stresses at fhe,top.and bottom fibers
and also,at_the*reinfo}cément laYers, are bomputéd. These strainsﬂand

stresses are assumed to be constant along the length of the segment.

Referring to Fig. 5c:

Concrete strain at the top fiber: ¢ = L

Concrete strain at the bottom fiber: e = L
i . t c t
Concrete stress at the top fiber: o = Ee
' ' . b cb

Concrete stress at the bottom fiber: o = E ¢

Strains at the top and bottom reinforcement layers are interpolated from
) : ) t b :

the concrete strains et and ¢ , then these are used to compute the steel

stresses at the top and bottom reinforcements:
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ds = Es es 5 US o = s es
top - “top’ T bottom bottom
The moment, shear and axial forces acting at the reference axis can be

computed by using the following relation:

M=b S | Cwas
where
M: _Vectof of forces acting at the reference éxis (momént,'sheér,»
axial férce)‘ . | |
S: vector of nodal forces acting at the corners of.thé element
Erq: vfnverse Of'irq which is: |
-l 0 D/Z 0 0 0 A
o 1 0 0o o o
o o o 1 o o2
0 0 0 0 1 0
-bi—rq =
0 0 o 1 0 =-D/2
| 0 0 >VO 0 1 0
1 0 -D/2 0 0 O
0 1 0 0 0 0
_ .
A.3 Link Elements

| Referring to Fig. 6, the stiffness of the link element in the

global coordinates can be written as:

: -k R w9

XY system UV system

where R is the coordinate transformation matrix and

Aasbbsrn EastiadlonmEae@as T F T gw
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k = |-k (A.17)

X¥ systém

o ‘ 2 .. 2
where k]] = kh.cos,e + kV 5|n‘e N
ki = (ky, - ky) cos 6 sin 6
.2 2,
*k22 = kh sin"g + kv cos e

-0 angle between XY and Uv.ééqrdinate sYstéms.

Forces acting between the frame and the Wall.depeﬁa‘upon thé relatjvé dis- -

placements of the two ends of a link element‘connecting a node 6f‘th¢ frame
_fo a node of the wall. Those interactive‘forces can be computed from the

fq!lowing equation: |

s, ) - [k, k

] 112 | ] 3 -
(A.18)

il

S | Kz Kop Up = Uy

where S and u are asvdéfined in Fig. 6.
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APPENDIX B

Table B.1, Behavior of the Deep Beam (G24S-11)

Satoala ol

LOAD .DISPLACEMENT*» CRACKED | STEEL ~ ‘ STEEL °~
(kips) | (inches) 'ELEMENTS | PLASTICITY | STRAINS %
15 | -0.00499 5,6,7 . - 10.0206

©-0.00607 12,13,14 | == - 0.0357
~0.00740 20,21 | -- 0.0557
-0.00852 -- - | , 0.0742

20 -0.01143 -4,27,28 - R ~0.1000
-0.01273 - | 11 . 1 oitiso
-0.01318 3 S - 0.1140
~0.01355 10 | -- | ©0.1130
~0.01392 18 - 0.1130
-0.01439 2,19,25 - ' 0.1120
-0.01589 32,9 _— | 0.1100
-0.01665 | -- S 0.1100

25 -o.ozlbs |17 - 0. 1400
-0.02182 33 -- : 0;1400'
-0.02232 - R 0.1420

30 -0.02703 26 - | 0.1710
~0.02908 R 67 © 0.2510
007150 | 35 5 | 13,0000

Failure - Steel Yields |

" Vertical .displacement of node 56

w Steel straihs of eiement 7

“"™ Yielding of the reéinforcement in the elements indicated

wla
A
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Table B.2, Moment, Shear and Axial Forces Actfng at the
Reference Axis (P = 100 tons, Solution 2)

LEFT SECTION _RIGHT SECTI1ION

Element ‘N v M N v M
N 1 A ] N M
(kg) (kg) (kg=cm) (kg) (kg)  (kg-cm)
2 123277 1859 26577  -23277  -1859 29197
3 18472 021 30840  -18472°  -2021 29787
L 13868 1818 27786 -13868 -1818 - 2678V
5 9767 1587 2h4l67  -9767  -1587. 23139
6 6418 1144 18713 -6LI8 114k - 15628
7 3885 1187 16009 -3885  -1187 19627
9 28843 9146 -259469  -28843  -9146 77177
10 21951 10625  -163299  -21951 -10625  -49209
1 14818 5434 -39953  -14818 - -5L3L  -68732
12 9309 3212 -125°  -9309  -3212  -69i2k
13 5141 2369 12045 -5141 2369 -59hki
14 - 2178 1629 22405 -~ -2178  -1629 . -5L986
15 -30349 3120 -108359  .30349  -3120 - L5942
16 -28032 2278 -7h922 28032  -2278 29347
17 -25541 1551 -60480 25541 -155] 29444
18 -23039 1061 -60723 23039  -1061 39492
19 2046 683  -71610 20469 -683 - 57948
20 ~17488 832 -95216 17488 -832 78571
22 2471 - 2198 59199  -2471 -2198 . - . 67Lh
23 ka7 27hl 55202 -7h27  -2741 27034
24 - 13951 3205 54517 -13951 -3205 Liesh
25 21886 3971 5754k -21886  -3971 61589
26 31936 6409 64033 -31936  -6409 128240
27 L4151 13876 2hll6  -bh15T -13876 391846
K K - J Right
I_L - Section
L‘, '
2
Left L b L H Lefr
Section : 1 Section
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Figure B.1, Stress Distribution at Section A-A (Specimen G24S-11)
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Figure B.2, Stress Distribution at Section A-A (Specimen G24S-11)
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200 psi
Q

@ P = 25 kips
Figure B.3, Stress Distribution at Section A-A (Specimen G245-11)
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Figure B.6, Stress Distribution at Section A-A (Specimen A-1, Solution 1)
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Figure B.12, Link Forces at P = 100 ‘tons (Béfofe Cracking)

" Note:

A1l Forces in (kg).
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