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ABSTRACT
Sithichaikasem, S. and W. L. Gamble, "Effects of Diaphragms in Bridges with

Prestressed Concrete I-Section Girders,' Civil Engineering Studies,

Structural Research Series No. 383, Department of Civil Engineering,

University of Illinois, Urbana, 1971,

Key Words: Highway bridges, Analysis, Influence lines, Beams, Moments,

Diaphragms, Truck loadings '

The results of a study of the effects of the number, stiffness, and
locations of diaphragms in multi-beam, simply supported, right highway
bridges is presented. The parameters studied also included the relative
girder stiffness, H, the ratio of girder spacing to span, b/a, the gfrder
torsional stiffness, the girder spacing, and the location of the loads relative'
to the edge girders of the structure. The behavior of the bridges is evaluated
for several types of loadings, including single loads and groups of loads.

The bridges studied were divided into three general categories accord-
ing to the unifbrmity of load distribution to the girders, and design recommen~
dations regarding diaphragm arrangements and stiffnesses made. In most struc=
tures in which the outer line of wheels can fall directly over the edée girders,
diaphragms should not be used, as they will increase the controlling moment
in the bridge. 1In other cases, diaphragms may be either helpful or harmful,
and criteria are developed for design purposes.

The influence of the number of diaphragms was studied, and the effects of
a single midspan diaphragm and two diaphragms located near midspan were about
the same, structurally, though the cost effectiveness of the single diaphragm
is better.

The current arbitrary practice of determining location and spacing of
diaphragms as a function of span length alone should be changed, as many short
span bridges which do not include diaphragms could benefit from them, and
many longer span structures which normally contain diaphragms either receive

no benefit or are harmed by them.
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Chapter 1
INTRODUCTION

1.T General

A slab and girder highway bridge is a very common type of struc-
ture. It consists of concrete roadway slab continuous over a number of
flexible girders spanning in the direction of the traffic. The support-
ing girders may be steel I-beams, precast prestressed concrete or reinforced
concrete cast monolithically with the slab. In the current desién of precast
prestressed concrete girder bridges, I-sections or box sections may be used.
Most of the highway bridges in this country have been built with the inter-
mediate diaphragms at different locations. The primary purpose of adding
the diaphragms is to improve the distribution of the loads to the supporting
girders.

Bridges are classified as noncomposite bridges and composite
bridges. In noncomposite bridges, the slab is simply placed on the support-
ing girders without any connection. There are no mechanical devices to
resist slip at the junction of the slab and the girders. On the other hand,
in composiﬁe bridges, shear connectors, shear stirrups or shear keys are
provided at the junction between the slab and the girders to prevent slip.

The design problem which is one of determining how a concentrated
load or system of concentrated loads equivalent to the truck loading is
distributed among the Tongitudinal girders of a bridge structure for various
bridge geometries, properties of the girders, slab and diaphragms, as well

as the locations of loads.



1.2 Previous Studies

The problem of wheel load distribution in slab and girder highway
bridges has been studied for decades. Many investigators have tried in
the past, with different approaches, to obtain satisfactory solutions to
the problem. Various analytical methods have been used both in this country
and abroad. Because of the complexity of the solutions, most of the previous
studies have simplified the problem by making different assumptions. The
advent of the electronic computer has reduced the number of simplifying
assumptions which must be made.

There are two schools of thought in dealing with this type of
structure. Those theories mentioned above may be classified into these two
schools of thought as follows:

1. The first school of thought consists of methods that ignore
the presence of the slab and consider the remaining struc-
ture to be of the grillage type. Pippard and Waelel have
used this method by assuming that the transverse members are
replaced by a continuous connecting system throughout the
span and can resist bending transversely to the bridge with-
out rotation of the longitudinal girders. According to this
assumption, the girders have to-be very stiff in torsion.
Leonhardt? has simplified the transverse members by replacing
one central beam of equivalent stiffness. The effects of
torsion are neglected in this method of analysis. Hendry and

Jaeger?® replaced the transverse members by a uniformly spread

medium, which may or may not cover the full length of the span.
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2. The second school of thought consists of methods by which
plate theory has been applied to the solution of this inter-
connected structure. Two distinct categories of plate theory
have been applied to the slab and girder bridge.

The first category is orthotropic plate theory. In this cate-
gory the actual system of discrete interconnected beams is replaced by an
elastically equivalent system in which the stiffness is uniformly distri-
buted in both directions. -That is, the system is replaced by a plate having
different flexural rigidities in two orthogonal directions. This theory
has been described by Timoshenko.“ Guyon® has applied this theory to the
study of slab and girder bridge structure. Torsional stiffness is not in-
cluded in Guyon's analysis. Massonet® has genera1ized.Guyon‘s analysis by
adding the torsional stiffness of the members. Morice and Little” have
presented the numerical results of Guyon and Massonet in the form of charts.

The second category treats the structure in a more realistic
manner by considering the slab to be simply supported on two opposite edges,
and continuous over any number and spacing of rigid or flexible simple beams
transverse to the simply supported edgés, Newmark® first developed this
method, using a moment distribution procedure. The torsional stiffness of
the girders may or may not be taken into account. To simplify the complexity
of the in-plane forces, the T-beam action has to be taken into account by
modifying the actual stiffness of the supporting beam. By this method,
Newmark and Siess® made an extensive study of the moments and deflections
in steel I-beam bridges. Because of the small torsional! stiffness of the
steel I-beams and since the electronic computer was not available, the tor-

sional restraint offered by the beams was not i1ncluded. Newmark, Siess and



Penmani? conducted laboratory tests on fifteen I-beam bridges. A1l struc-
tures tested were quarter-scale models of simple span right bridges. The
results of tests agfeed very well with the analysis. The effects of adding
the diaphragms, or transverse members, on the moments in the girders have
been studied by B. C. F. Weill and by Siess and Veletsos.!2 Their studies
have also neglected the torsion and used the distribution procedure deve-
loped by Newmark.

With the aid of the electronic computer to solve the complex
structures, the investigators in the past decade and currently have been
trying to analyze the slab and girder structure by including the in-plane
forces as well as the bending forces. Goldberg and Level3 have developed a
theory of prismatic fo]&ed plate structures. Their method of én&]ysis has
combined plate theory and two-dimensional theory of elasticity. It can be
applied to the problem of bridge structures. VanHorn and Daryoushl!* also
have considered plate theory and two-dimensional theory of elasticity in
analyzing the problem of load distribution in prestressed concrete box beam
bridges. But, the effects of warping and of adding the diaphragms were not
included in their ana1ys1’s°

If the in-plane forces are ignored in the Goldberg and VanHorn
methods, and the T-beam action is taken into account by modifying the actual
stiffnesses of the supporting girders as in the Newmark method, the Goldberg
and Leve, and VanHorn and Daryoush methods will yield the same results as
Newmark's method.

There are other techniques to analyze the p#ob]em of slab contin-
uous over a number of flexible girders, such as a finite element developed

by Gustafson,!® an energy method by Badaruddin,!® and others.
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1.3 Object and Scope of Investigation

It was mentioned in the preceding section that the analyses of
the slab and girder bridge, taking into account the effects of the inter-
mediate diaphragms as well as the torsional stiffness of the girder, are
very limited. Many analyses have been applied to particular problems and
were not general enough for design purposes. In some analyses, the bridge
structures have been simplified so much that the accuracy of the results
may be questionable.

Because of its simplicity and economy of construction, the slab
and girder bridge with precast prestressed concrete girders, either I-
section or box section, has found widespread application in most highways.
It has also been found that most of the bridges have been built with inter-
mediate diaphragms. Shear stirrups were provided as shear connectors at
the junctions between the slab and the girders for the purpose of insuring
composite action. In most cases, the diaphragms were cast monolitically
with the slab.

As mentioned previously, Wei's analysis of the effects of dia-
phragms in steel I-beam bridges has neglected the torsional stiffness of
the beam. Neglecting the torsional stiffness of steel I-beam 1s quite
reasonable since the torsionél stiffness is very low. The torsional stiff-
ness of a typical prestressed concrete I-beam 1s much greater than that of
a steel beam of the same moment capacity, and the increased stiffness may
have some influence on the load distribution in the beam. Increased
torsional stiffness should improve the load distribution, and should be
taken into account if further study shows a significant influence of the

torsional stiffness.



It might be questioned whether the warping stiffness of the current
standard precast prestressed concrete I-sections may also affect the Toad
distribution. The warping stiffness is more or less dependent upon the
width of the flange of the girder.

Because of the questions about the influence of the torsional
stiffness parameters, an investigation of the action of this type of bridge,
with the goal of the development of a better design method which is both
simple and convenient appeared desirable, Instead of solving any particular
problem, the main purpose of this study is to analyze a large number of
bridges with the aid of the electronic computer. A1l essential parameters
concerning the load distribution behavior are included. The span of the
bridges may be varied from 25 ft to about 150 ft which are the practical
range of span for this type of structure.

The behavior of the structure when the diaphragms are added is
also investigated to determine whether the distribution of the loads among
the supporting girders is improved. If the diaphragms do improve the load
distribution, the required properties, the best location of diaphragms, the
state of stress in the diaphragms must be determined. The results of
this study will provide either the basis for a rational design procedure
for diaphragms or for their omission.

According to the objectives mentioned above, the scope of the

studies may be drawn as follows:

For a concentrated load moving on the bridges:
1. To compare the results of the present analysis to that of

Newmark's moment distribution method;
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To compute the influence coefficients for moments and de-
flections of the girders at various locations along the
span;

To study the effects of varying the parameters introduced

in Chapter 2 on the moments produced in the girders;

To compare the load distributions of a five-girder bridge
and a six-girder bridge;

To compare the load distribution among a composite steel
I-beam bridge and composite prestressed concrete bridges for
both I-sections and box sections;

To study the effects of adding the diaphragms by varying

‘the number as well as their locations on the girder moments.

For 4-wheel loads moving on the bridges

1.

To compute the influence coefficients for maximum moments

at midspan and coefficients for moment envelopes 1n the
various girders for five-girder bridges with andnwithout
diaphragms. The spacings among the wheels are specified

by AASHO;'7

To compare the influence coefficients for maximum moments

at midspan and moment envelopes of the composite prestressed
concrete girders with I-section and box section;

To determine the effects of varying the parameteré intro-
duced in Chapter 2 on the influence coefficients for maximum

moments at midspan and moment envelopes.



This study considers only the simple span right bridges. Typical

cross-sections of the bridges are shown 1n Fig. 1.1.

1.4 Notation

The following notation is used throughout this study. The longi-

tudinal direction is always taken as the direction of the girders.

A, B, C, etc.

AB, BC, etc.

By 15

B]’], 81’2, etc.

81’2, etc.

cross-sectional area of the modified girder, the cross-
section of the girder plus the slab which has a width
equal to the width of the top flange

symbols to be used to indicate the girders or points
on the slab directly over the girders as shown in
Figs. 1.2 and 1.3

symbols to be used to indicate the longitudinal center-
line of a panel of the slab as shown in Figs. 1.2 and
1.3

submatrix in the flexibility matrix of diaphragms, FD

submatrices in the flexibility matrix of the bridge,
FB’ relative to line o0-o0, Fig. 4.3

submatrlces in the f]ex1b1]1ty matrix of the bridge,
FB’ relative to 1ine o -0 , Fig. 4.3

warping constant of the girder
flexibility matrix for girder due to moment

coefficient for bending moment in girder with a com-

posite slab

S

[
i
[
i

”"ﬂl
!

rRsm—

Bratan



C], CZ’ etc.

Frn’ Frf’ etc.

F]1, FIZ’ etc.

flexibility coefficients of the girder due to moments

E I
S = stiffness of an element of the slab

s
]—LZ
modulus of elasticity of the material in the diaphragm
modulus of elasticity of the material in the girder

modulus of elasticity of the material in the slab

flexibility matrices for bridge, diaphragm, girder, and
slab, respectively

number of joint forces

internal forces of the modified girders in the direc-
tions x, y, and z, respectively

vertical shear of girders with a composite slab
flexibility coefficients for a slab element
flexibility coefficients for a girder element
shear modulus of the material in the girder

E 1

—gﬁﬂ- = a dimensionless parameter which is a measure
of the stiffness of the girder with a composite slab

relative to that of the slab
moment of inertia of the cross section of the diaphragm

moment of inertia of the cross section of the girder
with a composite slab
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[ S
h3 P
I 77 = moment of inertia per unit of width of the cross ;

section of the slab

]

PrSso—

Iy’ Iz, Iyz moments of inertia and product of inertia of the modi-
. fied girder cross section about y, z, and y-z axes {j

modified moments of inertia and product of inertia of ?f?
the modified girder cross section about y, z, and '
—

y=-Z axes

J torsional constant of the modified cross section of

the girder

KD ZNDNG = order of matrices FB’ FB’ etc.

, _ . D
KG 2NG = order of submatrices B~, B]], B]Z’ etc.

flexibility matrices of bridge, girder, and slab,
respectively, due to external load

B* “G” °S

L1, L2, etc. flexibility coefficients for girder due to external
Toad '

¢
v

12 Mr transverse bending moment per unit of Tength at the

connection joints between slabs and girders, and at
the Teft and right edge of slab and girder, respec-
tively

M, M

. . mrx mix .
N, etc. coefficients of sin ; or of cos —%5 in the expres- { _____

sions for M, M;, N, etc., when M, M,, N, etc., vary o
as the ordinates to a sine or cosine curve

4’ M1g concentrated moment acting on the girder due to the
diaphragms

a1



Mx’ My’ MXy
M., My, MZ
Mcx’ Mcy
N, N], Nr
ND’ NG’ N
NE’ NU

N

p

Q

Rs R]’ pr
S, S], Sr
I

J? s
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bending and twisting moments of an element of slab,
positive directions shown in Fig. 1.4

twisting, bending, and lateral bending, moments of the
modified girder as shown in Fig. 3.8

twisting and bending moments of the girder with a com-
posite slab

in-plane forces per unit of length in the y-direction
acting in a manner similar to M, Mys and M

‘number of diaphragms, gi?ders, joints, and slabs
force matrices

normal of the boundary force, positive as shown in
Fig. 1.6

concentrated load applied vertically to the bridge
%€ C

5 = a dimensionless parameter which is a measure
a GJ
of the warping stiffness to the torsional stiffness

of the modified girder

vertical reactions per unit of length acting in a
manner similar to M, M], and Mr

in-plane shearing forces per unit of length in the x-
direction, acting in a manner similar to M, M], and Mr

Eg%_ = a dimensionless parameter which 1s a measure of

g4
the torsional stiffness to the flexural stiffness of

the modified girder
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reaction forces caused by diaphragms

displacement matrices of bridge, diaphragms, girder,

and slab, respectively

boundary force per unit area in the x-direction,
positive as shown in Fig. 1.6

boundary force per unit area in the y-direction,
positive as shown in Fig. 1.6

span length of bridge, center to center of supports

transverse spacing of girders; distance center to

center of girders
width of the top flange of the girder

width of the bottom flange of the girder

clear spacing of girders; distances between the edges

of the top flanges of girders

depth of the girder

distance between mid-depths of the top and the bottom

flanges of the cross section of the modified girder

thickness of the slab

distances from the mid-depth of the slab to the centroid
and shear center of the modified girder, respectively

left edge of the typical slab and girder, and the direc-

tion cosine of the normal N with respect to x-axis

f
1
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m an integer designating the Fourier series term and
the direction cosine of the normal N with respect to
y-axis

distributed moment equivalent to the moment Md

t
p equivalent Tine load per unit of length
s . . omrX mrX . :
P2 Yo Yo etc. coefficients of sin 5 or of cos el the expres

sions for p, u, Uy » etc., when p, u, Ugs etc., vary as
the ordinates to a sine or cosine curve

r right edge of the typical slab and the top flange of
the girder
tb, tt’ tw thicknesses of the bottom flange, top flange, and web

of the idealized corss section of the girder
U, U, U in-plane displacements in the x-direction which cor-
respond to forces S, S], and Sr’ respectively
Vs Vi, V in-plane displacements in the y-direction which cor-
respond to forces N, N], and Nr’ respectively

Wy Wys W, deflections which correspond to reactions R, R], and
Rr’ respectively

Xy Yy Z coordinate axes. The origin is always at a simply
supported edge of the slab and girder. The x-axis
is aiways parallel to the span length, and the y-axis
is paraliel to the pair of simply supported edges.
The positive direction of the z-axis is downward

coordinate along the x-axis of the diaphragm and also
the moment caused by the diaphragm
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coordinates x and y of the concentrated load, P

value of y for the left and right edges of the top
flange of girder, respectively

values of y and z for the shear center of the cross
section of the modified girder

deflections and rotations at the points of intersection
of diaphragms and girders, measured from line o-o shown
in Fig. 4.3

deflections and rotations at the points of intersection
1 1

of diaphragms and girders, measured from line o -o

shown in Fig. 4.3

rotations which correspond to the transverse moments,
M, M1, and Mr’ respectively

P . T T .
coefficients of sin mé—-)—(-or of cos mEé-m the expres-
sions for 8, o1 etc., when 6, 61s etc., vary as the
ordinates to a sine or cosine curve

angle of twist

Airy stress function

E,I
EQTQ' = a dimensionless parameter which is a measure

g g
of the stiffness of the diaphragm relative to that

of the girder

Poisson's ratio of lateral contraction for the material
in the slab and girder (for concrete u is taken equal
to 0.15)
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curvatures in the y and z directions, respectively

unit stresses in the x and y directions, and unit
shearing stress of an element of slab, respectively,
positive directions as shown in Fig. 1.5

unit strains and shearing strain which correspond to
unit stresses Oy cy and shearing stress Txy’ respec-
tively

mn

fol]
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Chapter 2
STUDY OF THE PARAMETERS AND IDEALIZATION OF THE BRIDGE
2.1 Idealization of the Bridge and Its Components

In the analysis, the actual structures with their cross sections

shown in Fig. 1.1 are replaced by an idealized section as shown in Fig. 1.2.

The spacing of the girders and the span length are not changed.

The series of standard cross sections for prestressed concrete
girders developed by the Bureau of Public Roads has been used for the anal-
ysis. This series is composed of eleven sections which are described in
"Concrete Information," Portland Cement Association.l® It would possibly
satisfy a wide range of load conditions for spans varying from 30 ft to

150 ft. For obtaining the torsional constants of the girders of the com-

posite prestressed concrete bridges, the actual cross section of the girders

are idealized as shown in Fig. 2.7. The width of top and bottom flange, the

thickness of web, the depth, the moment of inertia, and position of cen-

troid of the idealized cross sections are identical to the actual cross

sections.,
2.2 Study of Parameters

The parameters to be considered in the analysis are listed in
this section and typical ranges of their values are discussed in Sec. 2.3.
These parameters, which describe the bridge structure, may be classified

as dimensioned parameters and dimensionless parameters.
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Dimensioned parameters are:

1. Material property, modulus of elasticity, E; o

2. Thickness of the é]éb, h; and stiffness of the slab, D;

3. Spacing of girders, b;

4. Span length of the bridge, a.

Dimensionless parameters are:

1. Relative dimension of the bridge, ratio of the girder spacing
to span length, b/a;

2. Relative flexural stiffness of the girder to that of the
slab, H;

3. Relative torsional stiffness to flexural stiffness of the
girder, T;

4, Relative warping stiffness to torsional stiffness of the
girder, Q;

5. Relative flexural stiffness of the diaphragm to that of the
girder, «;

6. Number of diaphragms and their relative Tocations;

7. Poisson's ratio, p.
2.3 Dimensioned Parameters

Each of the dimension parameters is studied and discussed as

follows:
2.3.1 Material Property

In the slab and prestressed concrete girder bridges, the dimen-

sioned material property used in the analysis is the modulus of elasticity
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of concrete. The specified strength of the concrete in the slab given in
many specifications is less than that of the girder. Consequently, the
modulus of elasticity of the slab concrete, Es’ is taken from 0.6 to 0.8 of
that of the girder concrete, Eg.

The test bridge at Tuscola, I11inois,!® has been designed with
the strength of the slab concrete of 3500 psi and strength of the girder
concrete of 5000‘p511 The modulus of elasticity of slab concrete, Es, is
taken as 0.8 Eg. But the actual values of the modulus of elasticity from
test cylinders given in Table 2.1 show that the modulus of elasticity of
slab concrete, Es’ is higher than that for girder concrete. Because of
the uncertainty of the property of concrete and in order to simplify the
problem, the modulus of elasticity of slab concrete is assumed to be equal

to that of the girder and equal to 4,000,000 psi.
2.3.2 Thickness of the Slab, h, and Stiffness of the Slab, D

In the slab and girder bridge structure, the major factor in
determining the distribution of the Toads to the supporting girders is the
flexural stiffness of the slab, D, which will be discussed in Sec. 2.4.2
and may be stated as follows:

Eh’
D = —— (2.1)
12(1-u7)
In' order to obtain the stiffness, D, the thickness of the slab, h, has to
be determined. From practical and economical considerations in designing
the slab, the variations of the thickness of the slab from 5 in. to 8 in.

have been used by most highway engineers. But some degree of uncertainty

always exists regarding the reinforced concrete slab, such as cracks which
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may reduce its actual thickness or the flexural stiffness while the rein-
forcement in the slab may increase its stiffness, depending upon the percent-
age of the reinforcement. However, Newmark and Siessl® have carried out
extensive tests of scale-model bridges. The results of the tests show that
the gross section of the slab may be used for computing the stiffness of

the slab. It provides simplicity and convenience in computing the stiffness,

D.
2.3.3 Spacing of the Girders, b

The spacing of the girders affects the load distribution to the
supporting girders. Also, from the economical and practical standpoints,
the girder spacings in this type of bridge structure are varied from about
5 ft to 8 ft. However, in prestressed concrete girder bridges, the span
lengths may be quite large and the corresponding widths of the top flanges
of the girdérs may be as large as 3 ft to 4 ft. In this analysis, the
spacing of girders is taken from 5 ft to 9 ft. It is also suited to the

box section bridges.
2.3.4 Span Length of the Eridge, a

In any structures subjected to bending, the moment is a direct
function of the span length. The girders in the bridge structure are sub-
jected to not only the bending but also the combination of the torsion and
warping as well. The influence of warping is a function of the span length,
a. However, the results of the analysis which will be discussed in Chapter
5 show that the effect of warping for the standard prestressed concrete

I-section is negligible. In the analysis within the practical range of b/a,
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the span length may be varied from 25 ft to 180 ft which is the reasonable

range for this type of bridge having prismatic girders.
2.4 Dimensionless Parameters

It has been mentioned previously that Newmark and Siess,? Wei,!!
and others at the University of I11inois have carried on extensive studies
of the slab and girder bridges. The influence of the following dimension-
less parameters on the Toad distribution have also been investigated, but
their investigations are limited to the steel I-beam bridges and torsional
restraint has been neglected. In this analysis, these parameters are con-

sidered and cover the range of prestressed concrete girders.
2.4.1 The Relative Dimension of the Bridge, b/a

The relative dimension of the bridge, b/a, is the ratio of the
girder spacing to the span length of the bridge. From considerations of
economy and stresses in the slab, the spacing of the girders ranges from
5 ft to 9 ft. Consequently, the smaller value of this parameter corresponds
to the Tonger span of the bridge. The range of the ratio to be considered
in the analysis is varied from 0.20 to 0.05, as shown in Table 2.2, The
corresponding span of the bridge may vary from 25 ft to 180 ft whigh is
adequate for the purpose of this type of bridge. However, the most common
ratio being used in the interstate highway is equal to approximately 0.10.
For example, two precast prestressed concrete girder bridges in the state
of I1linois are under field investigations. The first bridge is in
Jefferson County?® which has the girder spacing 6.5 ft and span length 72 ft,

and the ratio, b/a = 0.09. The second bridge is in Douglas County,!® which

PRI
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has the girder spacing 7.2 ft and the span length 72.5 ft, and the ratio,
b/a = 0.10.

A detailed discussion of the effects of the b/a ratio will be
presented in Chapter 5. However, a basic understanding of the effects of
this parameter can be obtained from the following explanation. Assume a
slab and girder bridge in which except for the spacing of the girders, all
properties are kept constant. If a concentrated Toad is applied to this
brdige, one would expect that a better load distribution would correspond
to a smaller girder spacing or ratio , b/a, or reduction of the total width
of the bridge. The extreme case is reached when the slab is diminished to

zero width. In the case the whole bridge will act Tike a single beam.
2.4.2 The Relative Flexural Stiffness Parameter, H

The relative flexural stiffness parameter, H, is the ratio of the
flexural stiffness of the girder to the flexural stiffness of the slab having
a width equal to the span length of the bridge.

E T :
Ho o= 44 (2.2)

So, large value of H corresponds to a stiffer girder. On the other hand,
a smaller value of H corresponds to a stiffer slab.

For simplicity in computing the flexural stiffness of the girder,
a width of the slab equal to the spacing of the girders measured center
to center of the girders is considered to be effective in composite action,
and the composite section stiffness is used in computing H. The reasonable
range of H values has been studied using the series of eleven sections of

precast prestressed concrete I-section developed by the Bureau of Public



22

Roads. With the range of the parameter b/a varied from 0.20 to 0.05,

the corresponding values of H may be varied from 5 to 40 as shown in
Table 2.2. This range of H can cover the span length from 25 ft to about
150 ft. The smaller values of H correspond to the larger values of b/a or
shorter spans. The reverse is true for the larger values of H which cor-
respond to the longer spans or the smaller values of b/a.

The details of the discussion about the effects of this parameter
will be given in Chapter 5. However, a brief explanation concerning the
load distribution behavior is presented for the basic understanding. Sup-
pose two five-girder bridges have the same properties, except that the
slab of the first bridge is infinitely stiff, or H equal to 0, while the
second bridge has rigid girders, or H equal to ». If a concentrated load,
P, is applied at midspan of the center girder of these two bridges, the
former will undergo uniform displacement across the section of the bridge,
while the latter will not be subject to any displacement. Consequently,
the load, P, is uniformly distributed among the supporting girders for the
first bridge, but it is supported entirely by the center girder for the

second bridge. L
2.4.3 The Relative Torsional Stiffness Parameter, T

The relative torsional stiffness parameter, T, is the ratio of
the torsional stiffness of the girder with the modified cross section to

the flexural stiffness of the girder with a composite slab.

T = 8 (2.3)
E I
g9

In order to obtain the torsional stiffness of the girder of the composite
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prestressed concrete I-section bridge, the actual cross section of the girder
is jdealized as shown in Figs. 2.1 and 2.3. The torsional constant, J, is

computed from two rectangular flanges and a rectangular web, then summing

up:

h+t)3+kbt3+kdt3

Jo= kbl t Ppty * Kgd T

1

where Kk, k,, and ky are St. Venant torsional coefficients. 2!

The various values of T in Table 2.2 are actual values which cor-
respond to those bridges. The values of T in Table 2.3 were changed, while
keeping other properties constant, in order to study the effects of torsional
stoffness on the load distribution. It is observed that the values of the
torsional stiffness, T, in Table 2.2 vary from 0.029, which corresponds to
girder No. 1 of the standard I-sections developed by BPR,!8 to 0.008, which
corresponds to girder No. 11.

Physically, it would be expected that the effect of introducing
the torsional restraints to the girders is the same as the effect produced
by increasing the flexural stiffness of the slab. If a concentrated load is
applied on the bridge, the structure tends to rotate under the load. But
girders possessing torsional stiffness will try to resist rotation which
leads to increased load transfer to other girders. A large degree of tor-

sional restraint will give a better load distribution.
2.4.4 The Relative Warping Stiffness Parameter, Q

The parameter, Q, defined by the ratio of the warping rigidity of
the girder to the product of the square of the span of the bridge and the

torsional rigidity of the girder:



24

m E C
Q@ = - (2.5)
a Gd
where C is the warping constant of the girder and computed22 as follows:
(d)°1,1,
e (2.6)
t b
where
d = distance between mid-depths of top and bottom

- flanges (see Fig. 2.3)
It’ Ib = moment of inertia of top flange and bottom flange,
respectively, about axis z-z (see Fig. 2.3)

The warping stiffness parameters of the standard prestressed
concrete I-section are given in Table 1.2. The variation is in the range
of approximately 0.01 to 0.04. 1In order to stﬁdy the effect of the warping
stiffness of this type of girder on the load distribution, the serjes of

warping stiffnesses shown in Table 2.3 has been studied.
2.4.5 The Relative Flexural Stiffness of Diaphragm, «

A major objective of this study is to investigate the load dis-
tribution behavior of the slab and girder bridge with composite prestressed
concrete I-section girder when diaphragms are added at different Tocations
along the span. The degree of change in load distribution behavior also
depends on the flexural stiffness of diaphragms and this should be taken
into consideration.

The relative flexural stiffness of diaphragm, «, is the ratio of

flexural stiffness of diaphragm to that of the girder.
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< = _dd : ' (2.7)
g9

In the analyses, the effects of adding the diaphragms to the sevén struc-
tures shown in Table 2.4 are studied. Thése may be divided into‘two groups.
The first group consists of four bridges having the same ratio of b/a but
with the ratio H ranging from 5 to 40. The second group also consists of

four bridges with constant ratio, H, while varying the parameter b/a from

0.05 to 0.20. Except for the bridge with b/a = 0.10 and H = 20, all bridges
have been studied with four variations of the properties of diaphragms.

Most of the highway bridges have been built with the parameters b/a close

to 0.10 and the parameter H about 20. Thus, this particular bridge was

analyzed with seven variations of the diaphragm properties.
2.4.6 Number of Diaphragms and Their Relative Locations

It has been mentioned in Sec. 2.4.5 that four diaphragm stiffness
parameters have been studied for each bridge except the one with b/a = 0.10,
H = 20, which included seven diaphragm stiffness parameters. The number
of diaphragms and their locations may also affect the load distribution
of the bridge structure. The relative location of diaphragm is the ratio
of coordinate of diaphragms to the span length, xd/a. So, for each property
of diaphragm, there are five combinations of number and locations of dia-
phragms, as shown in Table 2.5. For example, the first case is one dia-
phragm at midspan, and the last is three diaphragms, two at quarter-points

plus one at midspan.
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2.4.7 Poisson's Ratio, u f?
Poisson's ratio, u = 0.15 has been used for both girder concrete —

and slab concrete throughout the analysis.
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Chapter 3

METHOD OF ANALYSIS

3.1 General

It has been mentioned in the previous studies that the second
category of the plate theory treated the structures in a more realistic
manner. In this category, the rectangular slab is assumed to be simply
supported on two opposite edges and continuous over a number of flexible
girders transverse to the simply supported edges. Several methods have
been used to obtain solutions of this type of bridge structure, such as
Fourier series, fihite-e]ement, finite-difference and energy methods. The
Fourier series type method was first applied to this type of structure by
Newmark® who developed the distribution procedure. Newmark and Siess,®
Wei,!! and others at the University of I11inois used the moment distribu-
tion procedure to analyze a large number of bridges so that the conventional
design method for truck load distribution was developed. Goldberg and Level3
also used the Fourier series solution to introduce the in-plane forces, from
plane stress theory of é1asticity to the plate theory as used in prismatic
folded plate structures. Recently, the idea of introducing the in-plane
forces to the plate theory has been used in the spaced box girder bridges by
VanHorn and Daryoushl™ so that the approximate modified girder stiffness,
used in Newmark's method, does not have to be made. However, the effects due
to warping and of adding the diaphragms were not taken into account in
VanHorn's analysis.

The present method of analysis is derived from the existing Fourier
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series méthods developed by previous investigators. The effects of warping

and of diaphragms have been added to the analysis method.
3.2 Basic Assumptions

The assumptions being made in this analysis are those for the

ordinary theory of flexure and theory of elasticity for slabs plus:

1. The end diaphragms are rigid so that no displacements are
permitted in their own planes, but the diaphragms are free
to rotate in the direction normal to these planes;

2. Adequate shear connectors are provided to insure the full
composite action between the slab and the girders;

3. The spacings of the girders are equal; and

4, Shear deformations of the girders and diaphragms are negli-

gible.
3.3 Basis of Method of Analysis

The Fourier series solution is based on a resolution of the load-
ing applied to the slab into components, each of which can be handled
separately in the flexibility method of analysis. Thé effects of the total
load are found by superposition of the effects of the component loadings,
which are computed from the equations derived by means of the ordinary
theory of flexure and theory of elasticity for slabs.

Consider the bridge structure shown in Fig. 3.1, with span "a" in
the x-direction and with the two simply supported edges parallel to the

y-axis. The direction of the z-axis is downward. The bridge structure con-

sists of slab and girder elements which are connected along the joint lines.
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When the bridge is loaded, joint forces are produced along the joint lines.
Each joint force can be resolved into four components as shown in Fig. 3.2,
namely, vertical reaction, R; transverse moment, M; force acting normal to
the plane of the edge, N; and force acting along the plane of the edge of

the elements, S.

Let
NG = number of girder elements
Ny = number of slab elements
NJ = number of connection joints of the bridge
FJ = number of joint forces
So
Ny = NG-l
NJ = 2(NG-1) (3.1)
FJ = 8(NG-1)

Since there are two free joints on the outer edges of the exterior
girders, the number of connection joints is 2(NG-1) instead of ZNG. Elements
and joints are numbered as shown in Fig. 3.1

The analysis of the slab and girder elements is described in the
next four sections. Sections 3.4, 3.5, and 3.6 describe the ordinary theory
of flexure and plane stress theory of elasticity of slabs. The analysis of
the girder is presented in Sec.” 3.7...The analysis of the bridge, by
connecting the slab and girder elements together so that the compatibility

exists along the joint lines, is described in Sec. 3.8.
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3.4 The Ordinary Theory of Flexure of the Slab

Two of the four components of the joint forces along the connectéd
edges of the slabs, the vertical reaction, R, and the edge moment, M, and the
transverse external load are treated in the ordinary theory of flexure of slab.

In the Fourier séries method, the load is resolved into an infinite
number of terms of the sine series. Each term of the series can be handled
separately. The effect of the total load is found by superposition of the
effects of the sine components of loading. The number of terms of the series
eQa]uated is limited to a finite number, depending on the accuracy required
for each particular case.

A typical slab element of the bridge shown in Fig. 3.3 has the
span "a" in the x-direction and the two edges parallel to the y-axis are simply
supported. The other two edges, which are connected to the girders, are sup-
ported or restrained in some manner depending on the properties of the slab

and the girders. The deflection of this slab may be given by the equation:

w o= Ymsin"‘a—"-’-‘- | (3.2)

in which Ym is a function of E%Z, and consequently is a function of y only.

With the notation G = mg3 Eq. 3.2 may be written as

woo= Yo sinax (3.3)

The moments, shears, reactions, and the loading found from the or-
dinary theory of flexure of the slab, which are in terms of the derivatives
of the deflection, w, are stated in Sec. A.1 of Appendix A. By applying

Eq. 3.3, these fundamental relationships may be stated in terms of Ym and
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the derjvatives of Ym’ which are functions of aYs multiplied by sin o X
or Cos a X, and are presented in Sec. A.2 of Appendix A.

It is noted that the slope in the y-direction, ey, the bending
moments per unit of length, MX and My, the shears and reactions per unit of
length acting on the edges perpendicular to the y-axis, Vy and Ry’ and the
load p, are all the same form as w and involve a function of y only, multi-
plied by a sine curve in .the x-direction; and the twisting moment, Mxy’ and
the shears and reactions, VX and Rx’ involve a function of y only, multiplied
by a cosine curve in the x-direction.

Thus, a transverse Toad on the slab may be replaced by the same

form as Eq. 3.3

o
]

P sin o X (3.4)

where P is a function of y only or a trigonometric function jtself. The

total load p may be expressed in the form of the trigonometric series
v . MTX
p = L p sinT=> (3.5)
ne1 M a

For the truck load problem, each wheel load may be considered a
concentrated load of magnitude P. The coordinates of P in the x-axis and
y=axis are xp and y_, respectively. The value of P for the concentrated

P
load is given by the equation

Py = 3 sin —E (3.6)

When the transverse load is applied on the bridge, reactions and
moments as well as deflections and rotations are developed along the two
edges 1 and r, which are connected to the girders. As mentioned above,

these reactions, moments, deflections and rotations can be given in the form
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of a function of y only multiplied by a sine curve with a half wavelength in

the x-direction as shown in Fig. 3.4,

mz] R sin o x (3.7)

X
1

Moo= ] M sinax (3.8)
m=1

3.4.1 Flexibility Constants for a Rectangular Slab

Consider the slab shown in Fig. 3.4(a) with two opposite edges
simply supported, The other two edges, 1 and r, are subjected to the edge
reactions, R, and edge moment, M. Their magnitudes are given by the rela-

tionships:

At edge r
Rr = er sin amx
(3.9)
Mr = Mrm sin amx
At edge 1
R] = R]m sin amx
(3.10)
M1 = M]m sin o X

The positive directions of the edge reactions, R, and the edge
moments, M, are shown in Fig. 3.4(b). The positive directions of the edge

deflections, w, and the edge rotations, 6, are shown in Fig. 3.4(c).

The edge deflections and the edge rotations caused by each component

of the edge forces are determined separately as follows:
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Let the edge r be subjected to a reaction whose magnitude is given
by Eq. 3.9. -The edge displacements of a cross section of the slab parallel
to the simply supported edges are shown in Fig. 3.5(a). The deflections of

the edges, r and 1, are distributed as sine curves and may be written as:

(3.11)
W= Fre Ry
where Frn and Frf are the shear flexibility coefficients for the slab at the

near edge and the far edge, respectively. The slopes of the edges r and 1

are also distributed as sine curves and may be written as:

(3.12)

6, = F

where FCn and FCf are flexure-shear flexibility coefficients for the slab
at the near edge and the far edge, respectively. The shear and flexure-shear
flexibility coefficients are given by Eq. A.25, Appendix A,

Now let the edge r be subjected to a moment whose magnitude is
given by Eq. 3.9. The edge displacements of a cross section of the slab
parallel to the simply supported edges are shown in Fig. 3.5(b). The rota-
tions of the edges r and 1 are distributed as sine curves and may be written

as:

(3.13)
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where an and me are the flexure flexibility coefficients for the stab at
the near edge and the far edge, respectively. The deflections of these two

edges are also distributed as sine curves as stated below:

We = Fop My

(3.14)

Wq Fcf Mr

where the terms FCn and Fcf are the same as in Eq. 3.12, as should be evident
from Maxwell's theorem of reciprocal deflection. The flexibility coefficients
are given by Eq. A.31, Appendix A.

It is obvious that the flexibility coefficients for the edge dis-
placements due to the reaction, R], acting at the edge 1 are the same quanti-

ties found from the'reaction, Rr’ acting at the edge r, taking into account

the sign conventions. The displacements may be written as follows:

Deflections:
Wi = -Frn R]
(3.15)
We = P Ry
Rotations:
61 - Fcn R]
(3.16)
er - Fcf R]

The terms Frn and Frf in Eq. 3.15 are the same as Eq. 3.11, and
the terms FCn and Fcf in Eq. 3.16 are the same as Eq. 3.12. The minus signs

are from the sign conventions.
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Similarly, the edge displacements due to the edge moment, M],
acting on the edge 1 can be written as follows:

Deflections:

W= R My
(3.17)
Wr = Fcf M]
Rotations:
|
(3.18)
er - me M1

3.4.2 Flexibility Constants for a Rectangular Slab Subjected to a Concen-
trated Load

The edge displacements of the slab, shown in Fig. 3.3, due to a
wheel load which is considered as a concentrated load, can be obtained
directly from the fundamental differential equation of the slab. A discus-
sion is presented in Sec. A.2 of Appendix A. However, the indirect method
of obtaining these displacements by using the reciprocal relations, or
Betti's Law, is very simple.

Since the loadings, reactions, moments, deflections, and rotations
are distributed as a series of sine curves, the deflection along the edge
y = c, produced by a sine wave loading along the line y = yp, is a sine wave,
and the deflection along the line y = yp, due to a sine wave reaction along
the edge y = ¢, is also a sine wave.

For a sine wave loading given by Eq. 3.4 with the quantity Py

given in Eq. 3.6, the deflections at the edges are:
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At y

]
(@]

(3.19)

Aty

[
o

wy = Fgp P

where Fdr and Fd] are flexibility coefficients which are presented in Egs.
A.35 and A.37 of Appendix A.

In a similar manner, the rotation at the edges may be stated as

follows:
Aty = ¢
Op = 'Frr P
(3.20)
Aty =o0
81 = F P

when Frr and Fr] are flexibility coefficients which are presented in Egs.

A.40 and A.42 of Appendix A.
3.5 Plane Stress Theory of Elasticity of the Slab

It has been pointed out in Sec. 3.3 that there are four components
of the joint forces. Two of these four components, namely the reaction, R,
and the moment, M, were treated by the ordinary theory of flexure of slabs
in Sec. 3.4, The other two components are the in-plane normal force, N,
and the in-plane shearing force, S, which are treated in this section by
using the plane stress theory of elasticity.

Consider the slab shown in Fig. 3.6"inwhich the two edges parallel
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to the y-axis are simply supported. The two edges parallel to the x-axis
are subjected to forces N and S. The stress function which was introduced

by G. B. Airy2l may be given by the relation

= S
¢ = ¢ sin— (3.21)

when ® is the Airy stress function and e is a function of y only. With the

notation — mgg Eq. 3.21 may be written as

¢ = o sin o X (3.22)

The relationships between stresses and strains, strains and dis-
placements, the equations of equilibrium, the compatibility equation in terms
of strains, and the boundary conditions, which are derived from plane stress
theory of elasticity, are stated in Sec. B.1 of Appendix B. The stresses,
strains, displacements, and compatibility equation, in the terms of the de-
rivatives of the Airy stress function are also stated in Sec. B.1 of Appendix
B. By introducing the stress function, ¢, Eq. 3.22, into these fundamental
relationships, the stresses, strains, and displacements, may be stated in
terms of @m and its derivatives, multiplied by sin @ X Or cOs o X, as are
presented in Sec. B.2 of Appendix B.

It is noted that the stresses, per unit of area, in the directions
of x and y axes, o, and cy, the strains in the directions of x and y, €y and
sy, and the displacement in the direction of y, v, are all the same form as
¢ and involve a function of y only, multiplied by a sine curve in the x-

direction; and the shearing stress, Txy’ the shearing strain, v, , and dis-

Xy
placement in the x-direction, u, involve a function of y only, multiplied by

a cosine curve in the x-direction.
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The in-plane forces per unit of length are equal to the in-plane
stresses multiplied by the thickness of the slab. Thus, the in-plane normal
force per unit of Tength, N, and in-plane shearing force for a unit of length,

S, can be written as follows:

NX = h . oy
Ny = h - cy
S = h - Txy

where h is the thickness of the slab, which is assumed constant in this
analysis.
The in-plane stresses, given in Sec. B.2 of Appendix B, can be

written as:

o = o sin ax
X Xm m
o = o _sin a x
y ym m
T = T C0S o X
Xy ‘om m

o o d i .
where xm® “ym? and 7 ., are functions of y only

Consequently, the in-plane forces may be stated as:

NX = Nxm sin amx
Ny = Nym sin o X (3.23)
S = Sm cos amx

where Nxm’ Nym’ and Sm’ are independent of x.
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3.5.1 1In-Plane Flexibility Constants for a Rectangular Slab

Consider the slab shown in Fig. 3.6(a) with two opposite edges
simply supported. The other two edges, 1 anr r, are subjected to in-plane
normal forces, N, and in-plane shearing forces, S. Their magnitudes may be

stated by the following relations:

=
1

N in
sin o x

r rm
(3.24)
Sr = Srm cos amx
N1 = N]m sin o X
(3.25)
S] = S]m cos amx

The positive directions of the in-plane edge forces are shown in
Fig. 3.6(b). The positive directions of the in-plane displacements are
shown in Fig. 3.6(c).

The in-plane displacements, Uy and Vi at the edge 1, and u, and
Vi at the edge r, produced by each component of edge forces, are determined
separately as follows:

Let the edge, r, subjected to an in-plane normal force of magnitude
given by Eq. 3.24. The edge displacements of the slab in the x-y plane
are shown in Fig. 3.7(a). The displacements at the edges 1 and r in the y-
direction, Vi and v, are distributed as sine curves and may be written as

v, = F__N

r nn r
(3.26)

il
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where the functions an and an are the axial flexibility coefficients for
the slab at the near edge and the far edge, respectively and are presented
in Eq. B.22 of Appendix B. The edge displacements in the x-direction, Uy
and U., are distributed as cosine curves and may be written as:

u, = -Fkn Nrm cos o X

(3.27)

u1 = ka Nrm cos amx

where Fkn and ka are the axial shear flexibility coefficients for the slab
at the near edge and the far edge, respectively, and are presented in Eq.
B.22 of Appendix B.

Now apply the in-plane shearing force of magnitude given by Eq.
3.24. The edge displacements of the slab in the x-y plane are shown in
Fig. 3.7(b). The displacements in the x-direction of the edges 1 and r,
Uy and u., are distributed as cosine curves and may be written as:

Up = an Sr

(3.28)

Fee S

sf “r

Uq

where the functions an and st are in-plane shear flexibility coefficients
of the slab at the near edge and the far edge, respectively and are presented
in Eq. B.28 of Appendix B. The edge displacements in the y-direction vy and

vV, are distributed as sine curves and may be written as:

= =F S sina
v kn “ym S0 %X

(3.29)

<
—
i



41

The functions Fkn and ka are the same as in Eq. 3.27, as should be evident
from the reciprocal theorem. The minus signs are used because of the sign

conventions.

It is evident that the flexibility coefficients for the edge dis-
placements with the edge 1 subject to the in-plane normal force, N], of
magnitude given by Eq. 3.25, are the same quantities found by applying Nr
at the edge r. By taking into account the sign conventions, the displacements

may be written as follows:

Displacements in the y-direction

1% P
(3.30)
Ve T Fue N
Displacements in the x-direction
up = —Fkn N]m cos o X
(3.31)
u. = ka Ny €os “ﬁx

where the functions an and an are the same as in Eq. 3.26, and the func-
tions Fkn aﬁd ka are the same as in Eq. 3.27. The minus signs are taken
into consideration for the sign conventions.

Similarly, the edge displacements due to the edge in-plane shearing
force, 51, of magnitude given in Eq. 3.25, acting on edge 1, can be written

as follows:
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Displacements in the x-direction

Up = -Fgp 5
(3.32)
Yo = Fer S
Displacements in the y-direction
vy = —Fkn S]m sin o X
(3.33)
Ve = -ka S]m sin o X

where the functions an and st are the same as in Eq. 3.28, and the func-

tions Fkn and ka are the same as in Eq. 3.27.
3.6 Formulation of Matrices for a Slab Element

A typical rectangular slab, with two opposite edges simply sup-
ported, has been analyzed in Secs. 3.4 and 3.5, and Appendixes A and B,
The four components of displacement for the other two edges parallel to the
axis of the span iength, the left edge 1 and the right edge r, due to each
cycle of each of the edge forces and the applied loading were determined in
terms of the flexibility constants multiplied by those forces and Toadings.
The total displacement for each component is equal to the summation of the
effects of all cases, namely, eight edge forces plus the applied 1load.

The total edge displacement functions are stated in a column
matrix, WS. The edge force functions are stated in a column matrix, NE’ and
FS is the flexibility matriX. Those matrices are presented in Eqs. B.3l]

and B.32 of Appendix B. The flexibility constants due to the transverse
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load are stated in the matrix LS and presented in Eq. B.34 of Appendix B,
and pm is the applied load. Thus, the total edge displacement functions

may be stated in the form of matrices as follows:

Wg = FoNo +p Ls (3.34)

3.7 Biaxial Bending, Axial Force, and Torsion in a Girder

It has been mentioned previously that the structure of a bridge
consists of the siab elements and the girder elements connected along the
joint Tines as shown in Fig. 3.1. There are four components of the unknown
joint forces acting along each joint line. These components of joint forces,
as shown in Fig. 3.2, were treated as the edge forces acting at the edge
y =0 and y = c of a panel of slab in Secs. 3.4 and 3.5. The girder element
is also subjected to these forces along the edges of the top flange of the
girder at the level of the mid-depth of the slab as shown in Fig. 3.2,

In this section, a girder subjected to the reaction R] and the
moment M], with magnitudes given by Eq. 3.10, the in-plane normal force'N]
and the in-plane shearing force S], with magnitudes given by Eq. 3.25,
acting on the left edge 1 of the cross section, the reaction Rr and the mo-
ment Mr’ with magnitudes given by Eq. 3.9, the in-plane normal force Nr
and the in-plane shearing force Sr’ with magnitudes given by Eq. 3.24, act-
ing on the right edge r, the transverse load p given by Eq. 3.6, and a tor-

sional moment my is analyzed. The moment me is given by

me = My, sin e x (3.35)
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in which
ZMd _
Mam = — sina x4 (3.36)
where
Md = concentrated moment about the axis passing through the

shear center and parallel to the x-axis (only for the
purpose of the analysis of the effects of diaphragms)

Xq = the x-coordinate of the moment Md’ or of the diaphragm.

In the prestressed concrete I-section bridge, the cross section
of the interior girders is symmetrical about the z-axis. However, if the
sidewalk is taken into account, the exterior girders are not symmetrical.
For the general case, the unsymmetrical cross section is considered in this
analysis.

Consider a small element of the girder as shown in Fig. 3.8. This
element is in equilibrium under the external edge forces, the Toadings, and

internal forces. The internal forces are three forces, Fx’ Fy, and FZ in

the directions of the axes, and three moments, M_, M, and MZ about the axes.

X’y
The x-axis passes through the centroid 0 of the cross section and

is parallel to the span. The y-axis is parallel to the supports of the
girder, and the z-axis is pointing downward. The right-hand rule is used in
this analysis, for relating directions of moments and moment vectors.

In the girder analysis, each component of the edge force, and the
loading, may be treated one at a time as in the case of the slab. But, it
is more convenient to analyze all forces and the loading at the same time.
the combination of biaxial bending, axial force, and the twisting moment is

considered in the analysis. For the internal forces, the axial force, FX,
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and the bending moments, My and Mz’ are considered to be acting at the cen-
troid, 0, of the cross section, and the shearing forces, Fy and FZ, the
twisting moment, Mx’ are considered to be acting at the shear center, S,

of the cross section. The distances from the mid-depth of the slab to the
centroid and shear center are ho and hs’ respectively; Yq and z_ are the
coordinates of the shear center, and Y1 and Y, are the coordinates'of the

left edge and the right edge of the top flange of the girder.
3.7.1 Internal and External Force Relationships

Six fundamental differential equations were derived from consider-
ation of the equilibrium of a small element of the girder as shown in Fig.
3.8, and are stated in Egs. C.3 and C.4 of Appendix C. The three internal
forces, FX, Fy, and Fz’ caused by the external forces and loadings were de-
rived by the integration of Eq. C.3, and are presented by Egs. C.15 and C.17.

The three resisting moments, Mx’ M , and Mz’ caused by the external forces

y
and loadings were derived by integration of Eq. C.4, and are presented in
Eqs. C.16 and C.18.

For the girder with a composite slab, the resisting force and

the resisting moments of the composite girder are as follows:

o 1
Fcz = a;-(-R]m + er + pm) cos o X
M. = —l-(-R +R_ +p)sin ax
cy oLZ Tm rm " Pm m
m (3.37)
= ro(v.. - ;
Mcx - o [ (y] yS)R1m * M]m (yr ys)er rm
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3.7.2 Flexibility Constants for a Girder

At any point in a corss section of the girder, there are four com-
ponents of displacements, namely, w, ¢, v and u, produced by the edge forces
and the loadings. The general formulas for the displacements were derived
and presented in Egs. C.27, C.29 and C.30, of Appendix C. With these equa-
tions for the displacements and the functions M; from Eq. C.6, Fum Tor Eq.
C.17, and Mym and MZm from Eq. C.18, the displacements at the edges 1 and r
can be obtained by the appropriate substitutions of the coordinates y and z.

Consequently, the flexibility constants for each edge due to each
of the edge forces and the loadings are obtained and stated in the matrix

forms in Sec. C.4 of Appendix C.
3.7.3 Formulation of Matrices for a Girder Element

The discussion and analysis of a simply supported girder subjected
to the combination of biaxial bending, axial force and torsion, were pre-
sented in Secs. 3.7, 3.71, 3.72, and Appendix C. The results were stated
in terms of matrices. The column matrix, W., for the total displacement
functions at edges 1 and r, and the column matrix, NE’ for the edge force
functions are presented in Eq. C.33 of Appendix C. The flexibility matrix
for the edge forces, FG’ and the flexibility matrices for the loadings, LG
and CG’ are presented in Egqs. C.34 and C.35 of Appendix C.

Thus, the total edge displacement functions of the girder may be

stated in the form of matrices as follows:

WG = FGNE + meG + MdmCG (3.38)
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3.8 Solution for Displacements and Internal Forces in a Bridge Structure

It was mentioned in Sec. 3.3 that a bridge structure consists of
the slab elements and girder elements connected along the joint lines as
shown in Fig. 3.1. When the bridge is subjected to transverse Toads, each
joint Tine will undergo deformations and be subjected to internal forces.
The deformation along each joint 1ine may be resolved into four components:
the displacement, w, in the direction of z-axis; the rotation, &, about the
x-axis; the displacement, v, in the direction y; and the displacement, u, in
the direction x. The accompanying forces along each joint line may be re-
solved into four components corresponding to the displacements: the reac-
tion, R, in the direction of z-axis; the moment, M, about the x-axis; the
in-plane force, N, in the direction y; and the in-plane force, S, in the
direction x. The displacements are distributed in a series of sine curves

and cosine curves as follows:

o

W = ) Ww_sina X
m=1 " m
(==}
§ = ] 8 sinox
m=1
[e<)
v = § v_sinax
Gepom m
e e]
u = )} Uu_ CoS & X
nEpom m

The forces are also distributed in a series of sine curves and cosine curves

as follows:
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(=2

R = mz1 R, sin e x
M = z] Mm sin o X
N = m§1 Nm sin o X
S = § Sm cos a X

m=1
The solution of the bridge problem requires solution for either the
four displacement functions, Wes 80 Voo and U at each joint for each cycle
of the loading by the stiffness method, or for the four force functions, Rm’
M, N, and Sm’ at each joint for each cycle of the loading by the flexi-

m’ 'm
bility method. The flexibility method has been chosen for this analysis.

In the flexibility method, the adjacent slab and girder elements
have to be connected so that the deformations along the joint lines are com-
patible. The force functions at each joint can be obtained by equating the
displacement functions of the slab and girder elements at the connected
joints to form a number of simultaneous equations in terms of, and equal to,
the unknown force functions.

Consider a bridge structure (Fig. 3.1) consisting of a series of
girders and slabs alternately connected so that the left edges, 1, of the
slabs connect to the right edges, r, of the girders, and the right edges
of the slabs connect to the left edges of the girders. By equating Eq. 3.34
to Eq. 3.38, a series of simultaneous equations of number equal to 8(NG-1)

will be formed. The unknown force functions at the joints, of number also

equal to 8(NG-1), can be obtained by solving the simultaneous equations.
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The vertical shear, Foy» the bending moment, Mcy’ and the twisting
moment , Mcx’ along the span of each girder taking into account the composite
action of fhe slab can be obtained by substituting the computed edge forces
(unknown joint forces) into Eq. 3.37, multiplied by sin @ X for Mcy’ and
cos a X for FCZ and Mcx'

The displacements along the edges of the top flanges of girders
can be obtained by substituting the computed edge forces into Eq. 3.38,

multiplied by sin o X for w, 6, and v, and by cos o X for u.
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Chapter 4
METHOD OF ANALYSIS OF DIAPHRAGMS
4,1 General

The slab in the slab and girder bridge serves two major functions,
first as the roadway, and second as the transverse framing device. As has
been discussed in Sec. 2.4.2 of Chapter 2, a major factor in the transverse
load distribution in this type of structure is the stiffness of the slab,
which is spread uniformly throughout the length of the bridge. When the
load is applied over a girder, the slab tends to spread the Toad to the
adjacent girders, thus reducing the burden of the loaded girder. The better
load distribution is accompanied by a stiffer, or thicker, slab. However,

a relatively thick slab causes a heavier dead load on the structure and,
furthermore, involves excessive cost of concrete.

The diaphragms, discussed in Sec. 2.4.5 of Chapter 2, are trans-
verse framing devices introduced into the structure to assist in the distri-
bution of load. To understand the action of the diaphragms, one may con-
sider a structure consisting of the girders and the diaphragms, without the

slab. The diaphragms unite with the girders to form a space structure,

enabling the structure to act more efficiently as an integral unit under load,

particularly when the capacity is approached.

The major difference between these two devices as a means of dis-
tributing the Toad Ties in the nature of the loading transferred to the
girders. For the slab, the loads transferred take the form approximately of
a sine curve of distributed load. On the other hand, the loads from dia-

phragms are transferred in the form of concentrated loads and moments applied
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at the points where the diaphragms intersect the girders. These concentrated
loads and moments, instead of the approximate sine curve of distributed
loads from the slab, reduce the burden on the loaded girder.

The torsional stiffness parameter, discussed in Sec. 2.4.3 of
Chapter 2, is not a framing device, but its function also tends to reduce the
burden of the loaded girder. For a prismatic girder, the tarsional stiff-
ness is uniformly distributed throughout the span. The load transferred thus
also takes the form approximately of a sine curve of distributed load similar
to the slab.

In this study, all the bridges treated have both a roadway slab
and girders with torsional stiffness. The addition of diaphragms to these
structures will cause a combination of the action of the approximate sine
curves of distributed loads and the concentrated loads and moments. Whether
the diaphragms actually help (reduce maximum moments in loaded beams) or not
when they are added to a bridge with adequate slab thickness and substantial
torsional stiffnesses of the girders for each particular structure and
loading. For example, it would be conceivable that if all other conditions
remain the same, the diaphragms will prove to be more effective in a struc-
ture with a high H and Tow T, having a relatively flexible slab and small
torsional restraints from the girders, than in one with a Tow H and high T,
having a relatively stiff slab and large torsional restraints from the

girders.
4.2 Idealization of Diaphragm

The diaphragms in most prestressed and reinforced concrete bridges

are cast monolithically with the slab as shown in Fig. 4.1(a). However, to
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simplify the problem, the diaphragm is assumed to be separated from the slab
as shown in Fig. 4.1(b). Thus, the stiffress of the diaphragm has to be
modified to include the composite action of the slab as a T-beam. The
width of the slab taken for the T-beam action may be taken from the AASHO
Bridge Specifications or the ACI Building Code. If the diaphragm is not

cast monolithically to the slab, its actual stiffness should be used.
4.3 General Description of Principle of Analysis

The basic principle of the solution of the problem is developed
from the concept that the nature of the loading transferred to the girders
by means of the diaphragms is in the form of concentrated loads and moments
at the points where the diaphragms intersect the girders. Thus, the dia-
phragms in the structure as shown in Fig. 4.2(a) may be replaced by a set of
equivalent forces and concentrated moments, with positive directions as
shown in Fig. 4.2(b), acting at the points of intersection of the diaphragms
and the girders. The forces act through the shear center, S, and the moments
about it. The problem of finding the effects of adding diaphragms is then
reduced to one of finding moments in the girders of a bridge without dia-
phragms, but subjected to additional forces and concentrated moments.

The displacements of a cross section of the bridge, subjected to
the combination of loads and forces shown in Fig. 4.2(b), are shown in Fig.
4.3. Downward deflections and clockwise rotations are positive.

Consider a bridge consisting of a slab supported by NG identical
girders. The diaphragms may be framed transversely to the girders at various
locations along the span of the bridge as given in Table 2.5. It is assumed

that the connections between the individual diaphragms and the girders are

S

)

™

)

]
i

=

|
i
i

w

gu&a‘x:{.] M



53

fully effective so that all separate pieces of diaphragm can be replaced by

one continuous cross beam, as shown in Fig. 4.4, with transverse forces and

concentrated moments applied on it.

The solution of the problem is tremendously simplified by consider-

ing the diaphragm as a single continuous beam, and may be summarized as

follows:

Remove the diaphragms and replace them by unknown reactions
and concentrated moments at the points of intersection of the
diaphragms and the girders as shown in Fig. 4.2(b).

Compute the total deflections and rotations at the points of
intersection of the diaphragms and the girders due to the
unknown reactions, concentrated moments, and the external

load on the bridge, by the method developed in Chapter 3 and
Appendixes A, B and C. For the symmetrical cross sections,
the deflection at each point of intersection of the'diaphragm
and the girder is the average of the deflections at both

edges of the top flange of the girder. Find the net deflec-
tion at the interior points and the net rotation at all points;
the net deflection and the net rotation are measured from a
1ine passing through the points of intersection of the dija-
phragms and the deflected edge girders.

Consider the diaphragm as a simply supported cross beam sub-
jected to the reaction forces at the points of intersection

of the diaphragms and the girders as shown in Fig. 4.4(a), and
the couples at the same points as shown in Fig. 4.4(b). Com-

pute the total deflection at the interior points and the
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rotation at all points, due to the reaction forces and the
couples, relative to the ends of the diaphragms.
There should be no separation between the girders and the
diaphragm. The summation of deflections and rotations com-
puted in 2 and 3 at each point of intersection of the dia-
phragm and the girders must be zero. In a bridge having NG
girders, the 2NG unknowns have to be found for each diaphragm.
But, the number of equations formed by equating the displace-
ments in Step 3 is equal to 2(NG-1)Q Thus, for each diaphragm,
two more equations are needed to solve the problem. These
two equations can be obtained from statics as follows:
a. The summation of alil forces acting on the diaphragm
is equal to zero;
b. The summation of moments caused by forces and couples
about either support is equal to zero.
Thus, each of the diaphragms of the bridge will cause 2NG
unknowns, reactions and couples, that have to be solved from
2NG simultaneous equations. If the bridge has ND diaphragms
(cross beams), the number of unknowns and simultaneous equa-
tions have to be multiplied by ND’
The reactions and couples found in Step 4 represent the equi-
valent forces and concentrated moments applied to the struc-
ture by the diaphragms. Moments in the girders of the bridge
with diaphragms can be obtained by summing up the moments

caused by the diaphragm reactions and couples, and the ex-

ternal loads.,

L.

[;-«.r« -

(t‘nnﬁ‘ﬂ
G



55

The arrangement of the diaphragms in the bridges may be classified
into three cases as follows:

Case 1. Bridge with one diaphragm at midspan only, as shown in
Fig. 4.5(a);

Case 2. Bridge with two diaphragms at symmetrical positions with
respect to midspan, as shown in Fig. 4.5(b); and

Case 3. Bridge with three diaphragms, one at midspan and two at
symmetrical positions with respect to midspan, as shown

in Fig. 4.5(c).
4.4 Matrix Formulations and Solution of Bridge Problem with Diaphragms

The general formulas for cdmputing deflections and slopes of a
simply supported diaphragm due to reaction forces and couples were derived
from the conjugate beam method, and presented in Sec. D.1 of Appendix D.

The static equilibrium equations of the diaphragm are also presented in Sec.
D.1.

The general formulas for computing deflections and rotations of
the girders of the bridge at the points of intersection with the diaphragms,
relative to the line o-o of Fig. 4.3, are developed and presented in Sec.
D.2 of Appendix D. These deflections and rotations are produced by the un-
known forces due to the diaphragms and the loadings.

The displacements of diaphragms and girders of the bridge are
given in the forms of matrices WD and WB’ respectively, and stated in Eq.
D.20 of Appendix D. The force-displacement relationships are derived and

presented in Eq. D.22 of Appendix D and may be stated as follows:
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W = FpN (4.1)

=
1

FpN, + PL

B Ny (4.2)

B

where Nu is the column matrix of the unknown forces and is stated in Eq. D.10

of Appendix D. FD and FB are flexibility matrices of diaphragms and girders

of the bridge, respectively, and are stated in Eqs. D.23 and D.24 of Appen-
dix D. The column matrix, LB’ is the flexibility matrix due to external
load, and is presented in Eq. D.25 of Appendix D. P is the concentrated
load on the bridge.

The solution of the problem of the bridge with diaphragms Ties
on the determination of the unknown reaction forces and moments at the
points of intersection of diaphragms and girders. These unknown forces can
be obtained by equating the displacements of diaphragms WD in Eq. 4.1 to
the displacements of the girders of the bridge WB in Eq. 4.2 to form a
group of simultaneous equations, in number equal to the number of unknowns,
KD. The internal forces and the displacements of the girders can be deter-
mined from the summation of all effects, reaction forces, moments, and
Toadings.

However, for three cases of diaphragm arrangements mentioned in
Sec. 4.3, the matrix FB is simplified because of symmetry and is presented

in Egs. D.29, D.30, and D.31 of Appendix D.
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Chapter 5
DISCUSSION OF RESULTS

5.1 General Discussion

The method of analysis for the slab and girder bridge structure
without intermediate diaphragms was described in Chapter 3. The analysis
of the effects of adding diaphragms to the structure was described in
Chapter 4. The results of the analyses were summarized in the forms of
matrices, and a computer program for an IBM 360/75 was written to develop
and solve the matrices. The program can be used for structures with and
without diaphragms.

For the bridge without diaphragms, the program consists of one
main program and fifteen subroutines. By adding seven more subroutines
to it, the program can be used to solve problems of structures with various
prOperties, number and locations of diaphragms.

With the aid of the computer program mentioned above, a large
number of bridges, with different properties of the various parameters
described in Chapter 2 and presented in Tables 2.2, 2.3, 2.4 and 2.5, were
analyzed. A1l bridges studied have five girders. Tha particular bridge
with b/a = 0.10 and H = 20 has also been studied for the case of a six-
girder structure, and the results compared to those for a five-girder
bridge with the same properties. The output from the computer prograﬁ gave
the internal forces and displacements of the girders of the bridges. The
results will be presented and discussed in Secs. 5.2 to.5.7..

It was mentioned previously that the purpose of this study was

to obtain a better understanding of the behavior of this type of structure
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so that a more rational design procedure could be developed. In order to
develop this design procedure, the influence coefficients for moments in
girders due to Toads at various locations have to be determined. Thus,
each bridge has to be solved for the effects of a unit concentrated load
placed at different locations transversely and longitudinally in the span.
In this study, the influence coefficients were obtained for a concentrated
load, P, located at each of the points of intersection of the girders
with seven transverse lines at different locations along the span, as shown
in Fig. 1.3, and at the center of each slab. However, the number of
loading locations can be greatly reduced by taking into account the sym-
metry of the structure about its midspan and about girder C. Consequently,
the number of load Tocations to be considered for each bridge is fourteen.
Twelve Tocations of the load are at the points of intersection of the
girders A, B and C, with the lines 3a/12, 4a/12, 5a/12, and 6a/12, or
midspan. Two locations are at the centers of slabs AB and BC. For the
bridges in which the diaphragms are to be added, the effects of a concen-
trated or a unit moment acting at each of the twelve locations on the
girders also have to be determined.

The internal forces and the displacements of each girder at the
supports and the other sevel locations along the span, as shown in Fig. 1.3,
were computed. The results were obtained from the summation of twenty-one
terms of the series. All computations were made usihg double-precision

arithmetic, although only eight significant figures were printed out.
5.1.1 Standard Truck Loadings

The standard truck Toadings for computing the maximum moments in
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the girder are those specified in the AASHO Standard Specification for
Highway Bridges.!” The Specification provides two systems of loadings,
namely, the H Toadings and HS loadings. The H loadings represent a two-axle
truck as shown in Fig. 5.1(a). The HS loadings represent a two-axle trac-
tor plus a single-axle semitrailer as shown in Fig. 5.1(b).

The total weight of the truck in tons is designated by a numeral
following H, as H20-44. The designation HS20-44 indicates a 20 ton truck with
a 16 ton trailer, with the distance to the trailer axle adjusted to produce
the maximum forces in the structure. The relative wheel Toads are as shown in
Fig. 5.1, where the wheel load P is equal to 0.4W, where W is the weight of
the truck portion of the design vehicle.

Each truck is considered to occupy the central part of a 10-ft traf-
fic lane; thus, the distance between the center of a wheel and the face of a
curb is taken at 2 ft, and the minimum distance between the centers of wheels
of trucks in adjacent lanes is taken as 4 ft.

The transverse position of the loads is of considerable importance,
and two limiting cases are considered, as shown in Fig. 5.2. In some struc-
tures, the outer wheels can be directly over the outer girder as shown in Fig.
5.2(a), and in other structures the curb is constructed directly over the gir-
der and the load cannot be closer than 2 ft from the axis of the outer girder,
as. shown in Fig. 5.2(b).

5.2 Load Distribution Behavior for a Concentrated Load on Bridges Without
Diaphragms
The load distribution behavior of steel I-beam bridges without

intermediate diaphragms was studied by Newmark and Siess.® In their study,
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the parameters b/a and H were limited to the ranges encountered in steel
I-beam bridges, and the torsional parameters, T and Q, were not taken into
account. For the present study, the parameters b/a and H are extended to
cover the range possible with prestressed concrete I-section girders, and
the torsional stiffness, T, and the warping stiffness, Q, of the girders
are also taken into consideration. The in-plane forces are considered in
this study so that assumptions abqut the modified bending stiffnesses of
the girders to take into account the T-beam behavior do not have to be
made, Influence coefficients for moments along the span of the girders
due to various locations of a concentrated load were obtained and plotted.
The comparison of the results with the previous study and the discussion

of the effects of each parameter will be made below.
5.2.1 Comparison with Previous Study

The results of the presentAanalysis of the load distribution in
five-girder bridges are compared with the previous study carried out by
Newmark and Siess.? The influence coefficients for moments in the girders

of the bridge found by both methods are in good agreement. Since the dis-

tribution procedﬁre developed by Newmark® and the present method of analysis

are derived from the same principle in which the equivalent Fourier series
distribution of loads, forces and displacements have been used, the good
agreement would be expected. Typical influence curves for moments at

mijdspan of girders A, B, and C due to a concentrated load, P, moving trans-

versely across the midspan of the bridge are shown in Fig. 5.3. The bridges,

for which the influence curves are shown in Fig. 5.3, have the parameters

b/a = 0.10 and H = 20, and b/a = 0.20 and H = 5.
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In the present analysis, the bridge with b/a = 0.10 and H = 20 was
analyzed for T =0 (T = 0.00001) and T = 0.011, which is the actual value
of the torsional stiffness of the prestressed concrete I-section. The
bridge with b/a = 0.20 and H = 5 was analyzed only for T = 0.028, which is
its actual value. The influence curves for moment at midspan of the girders
are represented by the solid Tines for T equal to the actual values, the
broken Tines for T = 0, and the dotted lines for T = 0, from the analysis
by Newmark and Siess. It is evident, from the influence curves for T = 0
in Fig. 5.3, that the present method of analysis and the distribution
method developed by Newmark are in good agreement, since the ordinates of
the curves are nearly identical. The effect of the torsional restraint,
as represented by the solid lines, is tq cause appreciable reductions of

the moments in the loaded girders.
5.2.2 Effects of Varying the Parameter, b/a

It was mentioned in Sec. 2.4.1 that the dimensionless parameter
concerning the geometry of the bridge, b/a, is one of the essential para-
meters controlling the load distribution and was studied by Newmark and
Siess. Small values of the parameter b/a correspond to the Tong-span
bridges. On the other hand, large values of the parameter b/a correspond
to short-span bridges.

A basic understanding of the effects of this parameter on the
load distribution has also been described. A long-span bridge, accompanied
by the small value of b/a, will behave more like a single beam than like a
slab. Consequently, one would expect a better load d%stribution for the

bridge with the small value of the ratio b/a than the one with the large
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value of b/a. This phenomenon may be shown by the influence lines for moment
at midspan of the girders, as are presented in Figs. 5.4 and 5.5. The curves
shown in Fig. 5.4 are the influence Tines for moment at midspan of girders

A, B, and C due to a concentrated Toad, P, moving transversely across the
bridge at midspan and at the quarter-point, for the ratios b/a = 0.05 and

H = 10, 20 and 40. The curves shown in Fig. 5.5 are the influence Tines

for moment at midspan of the girders of the bridges, the ratios b/a = 0.20
and H = 5, 10 and 20, and are similar to the curves shown in Fig. 5.4. By
comparing the curves in Fig. 5.4 to those in Fig. 5.5, it is evident that

the bridges with b/a = 0.05 have better load transfer from the loaded gir-
der to other girders than the ones with b/a = 0.20. For example, the in-
fluence 1ines for moment at midspan of girder C in Fig. 5.4, show that the
moments at midspan of all girders due to the Toad, P, applied at the quarter-
point of girder C are only slightly different. But the similar curves

given in Fig. 5.5 show that the moment at midspan of girder C is much larger
than the moments in the other girders.

The relationships between the moment at midspan of the loaded
girders A, B, and C, and the relative bridge geometry b/a, for the various
values of H, are given in Fig. 5.6. For each value of H as shown in the
figures, the moments in the Toaded girders increase as the ratio b/a in-

creases.
5.2.3 Effects of Varying the Parameter H

The relative girder stiffness, H, which is the ratio of the stiff-
ness of the girder to that of the slab, is another essential parameter con-

trolling the load distribution, and was also studied by Newmark and Siess.?
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As mentioned in Sec. 2.4.2, a large value of the ratio H corresponds to a
bridge with stiff girders. On the other hand, the bridge having a small
value of the ratio H will have a stiffer slab. It was also shown that
the load distribution in the bridge with a stiffer slab is more uniform
than in one with stiffer girders. This behavior may be shown by the in-
fluence lines for moment in the girders shown in Figs. 5.4 and 5.5. For
a certain value of the ratio b/a, a more uniform load distribution among
the girders of the bridge always corresponds to the smaller value of the
ratio H.

Consider the bridges, with b/a ratios of 0.05 and 0.20, for which
the influence Tines are shown in.Figs. 5.4 and 5.5, respectively. It can
be seen that the effect of the parameter H on the load distribution in
the bridges with the large value of b/a is considerably greater than in
the bridge with the smaller value of b/a. The load distributions are much
more uniform for all values of H in the bridges with b/a = 0.05 than in
ones with b/a = 0.20, and one result is that the effects of the parameter
H are much smaller in long-span than in short-span bridges.

The relationships between the moments at midspan in girders A, B,
and C and the relative girder stiffness, H, for various values of the
ratio b/a, are given in Fig. 5.7. For any value of the ratio b/a, the

moment increases as the value of H increases.
5.2.4 Effects of Varying Parameters T and Q

The relative torsional stiffness parameter, T, and the relative
warping stiffness, Q, were not studied by Newmark and Siess. Since the

prestressed concrete I-section girder possesses appreciable torsional and
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warping stiffnesses, these two parameters are introduced in this study. A
brief discussion of the ranges and the effects of these two parameters is
given in Secs. 2.4.3 and 2.4.4.

First, the effect due to the warping stiffness is discussed. As
presented in Table 2.2, the values of the warping stiffness parameter, Q, of
the standard prestressed concrete I-sections vary from 0.008 to 0.037.

A series of four variations of the warping stiffnesses for each of four
values of T, as shown in Table 2.3, were studied. The bridge studied has

'0.10 and H = 20 and has been adopted as the "Standard

the parameters b/a
"‘Bridge" in this report. The results of the study shéw that the effects of
varying the warping stiffness of the currently used standard prestressed
concrete I-section girders are negligible. Typical curves showing the re-
“lationships between moments at midspan of the loaded girders and the relative
warping stiffness, Q, for T = 0.010 and 0.040, are presented in Fig. 5.8.

The curves show that the moments in the Toaded girders are almost constant
“as the parameter Q varies from 0 to 0.040.

The relative torsional stiffness, T, is a very important para-

‘meter to be considered in this study. Since the torsional stiffness of the
prestressed concrete I-section girder is considerably larger than that of a
steel I-beam, use of concrete girders may improve the Toad distribution among
"the girders of the bridge. In order to study the effect due to this para-
‘meter, the standard bridge with the ratios b/a = 0.10 and H = 20 has been
‘studied. The torsional parameter, T, was varied from 0.0001 to 1.00, as
shown in Table 2.3. In general, the relative torsional stiffness, T, of

the steel I-beam bridge is negligible; the. prestressed concrete I-section
~girder varies. from 0.009 to 0.030, and the prestressed concrete box section

girder varies from about 0.50 to 1.00. Thus, the range -of the torsional
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~parameter.given in Table 2.3 should cover these three types of. girders of
"bridges.

The results of the study are presented in the curves shown in
Fig. 5.9. The curves show the relationships between the moments at midspan
of the girders and the relative torsional stiffness, T, for cases of loads
on the girders and slabs.

It is noted from the curves shown in Fig. 5.9 that the moments of
~the loaded girder and girders adjacent to the Toaded slab decrease as the
torsional stiffness increases. The rate of decrease in this moment is large
when the parameter T.is in the range between 0 to about 0.20. It may be
~concluded that the better load distribution in this type of bridge corre-
"sponds . to the larger torsional stiffness of. the girders.

The reduction of the moment in the Tloaded girder of the bridge
with prestressed concrete I-sections, taking into account the torsional
"stiffness, is considerable. However, this reduction is not as large as some
investigators. may have expected. Since the I-section is an open. section,
~the torsional stiffness is small in comparison to that of a box section,
which is a closed section. " In order to compare.the load distribution of the
steel I-beam, prestressed concrete I-section, and prestressed concrete box
section bridges,. the standard bridge with: parameters b/a = 0.10 and H = 20
has been analyzed for T = 0.0001, 0.017 and 1.0, which correspond to three
types of bridges mentioned above. Other properties are kept the same. The
influence lines for moments at midspan. of Girders A, B, and C of these bridges
are.plotted as shown in Fig. 5.10.

The curves presented in Fig. 10 are the influence lines for moment

at midspan of the girders due to a concentrated load, P, moving transversely
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across the bridge at midspan and at the quarter-point. It is obvious that
the Toad distribution of the prestressed concrete I-section is slightly
"better than in the steel I-beam bridge. On' the other hand, the load distri-
bution of the box section is greatly improved. Especially, the curves show
that the Toad distribution at the midspan of.the prestressed concrete box
section bridge, due to a load P moving transversely across the bridge at

a distance a/4.from the support, is almost uniform.
'5.2.5 Comparison of. Five-Girder and Six-Girder Bridges

Since.many bridges have more than. five girders, an important ques-
tion is that of whether: the load distribution is changed if the number of
.girders is increased. In order to obtain a better understanding in the pro-
"blem, the standard bridge, b/a = 0.10, H = 20, and T = 0.011, also has been
solved for six girders. The influence Tines for moment at midspan of. Girders
"A, B, and C,.for both. five-girder and six-girder bridges, due. to a load, P,
moving transversely across the bridges at: various locations along the span
are shown in Fig. 5.11. From the curves of the influence Tines of Girder A
shown, the Tload transfer of.Girder A is very slightly better for the five-
girder than for the six-girder bridge. The curves show that the load trans-
fer for Girders B and C is slightly better for the six-girder than for the
five-girder bridge. However, the differences in the load distribution be-
tween these two bridges are very small and can be neglected.
5.2.6 Behavior of Bridge Due to a Concentrated Load, P, Moving Along the

" Bridge '
A bridge structure is a complicated structure, since it is three-

“dimensional and is highly indeterminate. "To obtain a better understanding
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“about this type of problem, the behavior of the bridge under a concentrated
" Toad, P, moving in both directions, along and transverse to the span, has
"to be determined. Influence lines. for moments in the girders due to a load,
P, moving in both directions (or an influence surface), and moment envelopes
. for. the girders have to be obtained.

The curves shown in Fig. 5.12 are the influence Tines for moment

“at midspan and moment envelopes of the girders of two bridges, b/a.= 0.10
and H = 5 and 20, due to a load,.P, moving along the span of the bridge over
“Girder A, along the centerline of: STab AB, and so on. Since both the influ-
“ence lines for moment at midspah'and‘moment‘enve1opes are symmetrical about
- the midspan, all curves presented in Fig. 5.12 are half-curves from the
‘midspan. A1l the curves on the left-hand side of the center of the: figure
are'inf]uenéei11nes.for‘moment‘at‘midspan of the girders. Those curves on
the right-hand side are moment envelopes for the same girders.

It is noted that the curves of the influence Tines for moment at
midspan of Toaded girders and interior.girders adjacent to loaded slabs are

"concave upward. On the other hand,: the curves of the unloaded girders are
“always. convex.

The curves in Fig. 5.13 are the influence line for moment at
midspan and the moment envelope. for a simply supported bridge or a simple
isolated beam. The influence 1line for moment at midspan of the bridge is
a straight Tine with the maximum ordinate at the midspan equal to 0.25 Pa.
If there is no error due to the evaluation of a Timited number of terms of
the series and if no moment is taken by the slab, the curve which represents

“the summation of the coefficients for moment at midspan of all girderS'ig

“identical to the influence Tine for moment at midspan of the bridge shown
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in Fig. 5.13, and the curve which represents the summation of the coefficients
for the moment envelopes of all.girders is identical to the moment envelope
of the bridge on the right-hand side of Fig. 5.13.
It is also noted in Fig. 5.12 that the influence Tines for moment
at midspan of the Toaded interior girders are more concave. than those for the
exterior. girders.
5.3 Load Distribution Behavior:. for a Concentrated Load on Bridge with
Diaphragms :
Seven bridges with various values of the dimensionless. parameters

-b/a and' H as shown in Table 2.4 were studied to determine the effects of
diaphragms on Toad distribution. The stiffnesses of diaphragms to be studied
are also given in the same table. Five combinations of locations of dia-
~phragms are considered and given in Table 2.5. The diaphragms and their
locations in the bridges were discussed in Secs.. 2.4.5 and 2.4.6. The inter-
nal forces, deflections, and rotations of the girders at various locations
“along the span for each combination of stiffness and location of diaphragms
were obtained. The influence Tines. for moments in the girders due to a
concentrated load, P, moving transversely across the bridge at different
“Tocations of the span were plotted. The results are compared with the pre-

vious study and will be discussed in the. following sections.
5.3.1 Comparison with Previous Study

The effects of diaphragms on load distribution were studied exten-
sively by Wei.ll The torsional restraint of the girders was neglected in

his analysis. To compare the results with Wei's study, the standard bridge,
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‘b/a. = 0.10 and H = 20, has been analyzed. for T = 0.0001, which is approxi-
-mately equivalent to the bridge without torsional restraint of the girders.
"The results are in good agreement with Wei's analysis. - Typical influence
“lines for moment at midspan of the girders of two bridges, one with a dia-
-phragm at midspan and another with two diaphragms at: the. third-points, due
~to a load, P, moving transversely across midspan are shown in Fig. 5.14.
The relative diaphragm stiffness is 0.40. The curves: for the bridge taking
“into account the actual torsional stiffnesses of the prestressed concrete
"I-section girders are also presented.

It ié noted that. the bridge taking into account the torsional
"stiffness of the girders has a slightly better load distribution than the

one without considering the torsional restraint.
5.3.2 Relative Stiffness, Number and Locations of Diaphragms

Seven bridges with various: stiffnesses and locations of diaphragms
~as.given in Sec. 5.3 have been analyzed. In order to study the effects. of
varying the stiffness, number and Tocations of diaphragms, influence lines
for moment in girders at various locations along the span due: to a concen-
trated load moving transversely across the bridge were. plotted. The curves,
shown in Figs. 5.15 to 5.18, are.the influence lines. for moment in Girders

"A, B, and C of three bridges with. the. following.properties:

1. b/a =0.05,H=20, T.= 0.010
2. b/a=0.10, H=5, T.=0.012
3. b/a.=0.10, H =20, T =0.011

The relationship between the moment at midspan of the loaded girder

and. the relative girder stiffness. for the bridges which the ratio b/a =0.10
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and one diaphragm at midspan are shown in Fig. 5.19. The relationship be-
tween the moment at midspan of the loaded girder and the relative bridge
-geometry for the bridges with the ratio H = 20 and one diaphragm at midspan
are given in Fig. 5.20.

In general, the influence lines for moment in the girders, given
in Figs. 5.15 to 5.18, show that the moment in the loaded girder decreases
as the relative diaphragm stiffness increases. Consequently, it may be
stated that, under a concentrated load on the bridge, a better load distri-
“bution is always produced by a stiffer diaphragm. Thus, the diaphragms do
improve the load distribution in the case of a single load.

Consider the influence lines for moment at midspan of the girders
of the first bridge, b/a = 0.05, H =20 and T.= 0.010, due to.P moving trans-
“versely across the midspan of the bridge, as shown in Fig. 5.15. It is ob-
vious that the largest reduction of moment of the loaded girder, or the best
load distribution, occurs when the diaphragm is at midspan. ' This moment re-
duction decreases as the diaphragm is moved away. from midspan. The curves
shown in Fig. 5.15, which represent the influence lines. for moment in
Girders A, B, and C for « = 0, on the bridge without diaphragms, and the
curves for moments in the same girders in bridges with two diaphragms at
the quarter-point, are almost identical. Similarly, the influence lines for
the bridge with one diaphragm at midspan, as shown in Fig. 5.15, and the
corresponding curves. for the bridge with three diaphragms, one at each
quarter-point and one at midspan, are almost identical. Thus, the effects
of the diaphragms located at the quarter points of the bridge on the moment

at midspan of the girders is insignificant for this bridge and loading

condition.
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The curves. given in Fig. 5.16,. for the bridge with b/a = 0.10,
‘H =5 and T.= 0.012, also show that the diaphragms at: the. quarter-points do
‘not improve the moment distributions at midspan of. the girders.

-1t was pointed out in Secs. 5.2.2 and 5.2.3 that the bridges cor-
responding. to a small ratio of b/a and H, i.e., bridges with relatively
long spans and stiff slabs, will have a favorable transfer of load from the
. loaded. girder to the others even though the bridges do not have the dia-
phragms. Thus, the effect of diaphragms: is small, unless. the diaphragms are
"Tocated close to the section where the moment is. to be determined.

.On’ the. other hand, the curves for the bridge with intermediate
"span and slab stiffness, b/a = 0.10, H = 20 and: T.= 0.011, which are. pre-
~sented in Fig.. 5.17, show. that diaphragms at each:quarter-point do improve
the load distribution somewhat. ' However, the curves. given: in the same
figure show that the diaphragms  at the. quarter-points,: for: the bridge having
“three diaphragms, do not significantly improve the load distribution: from
that in bridges having only one: diaphragm at midspan.

The curves shown in Fig. 5.18 are the influence lines for moment
at midspan of the.girders of the same bridge due to P moving transversely
across the bridge at a/3. from the support. This set of curves also shows
that the most effective location of the diaphragm, for moment at midspan of
the girders, is the midspan. The reason 1ies in the nature of the loading
transferred to the girders, since. the: loads. from diaphragms are. transferred
in the. form of concentrated loads and moments applied at the point of inter-
"section of. the diaphragms. and the. girders.

- For the particular bridges having b/a = 0.10, the relationships

“between the moment at midspan of the loaded. girders, A, B, and C, and the
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relative girder stiffness are given in. Fig. 5.19. There is a curve cor-

“responding. to «x.= 0. for each. girder. These curves represent the: 1oaded

-girders. for the bridges without diaphragms, and will reach the. peak ordinate

of 0.25 when H reaches infinity. It represents the case of a rigid girder,.

in. which the Toad P is entirely taken by the loaded girder without distri-

"bution to other. girders. ' In the curves. for Girder C, the straight Tine

-with constant ordinates equal to.0.05, represents the bridges having a rigid

-diaphragm, «.= » In this case, the load P is equally taken by all five
girders.

It is notedkthaf if the relative diaphragm stiffness increases
“to 0.10 or larger,: the curves: for Girders B and C are almost horizontal
"Tines; i.e., the moments in Girders. B and C will remain the same, when H
increases. from 5 to 40, if « 5 0.10. For: the exterior girder, the moment
will increase as H increases. It should also be noted. that for a constant
~value of «, the actual diaphragm stiffness will increase as H: increases.
For example, if two bridges have the same. girder spacing and b/a. ratio,
~the actual diaphragm stiffness of the bridge with H = 40 is eight times as
large as the bridge with H =5,

Since. the bridges: have the same b/a, the better load distribu-
“tion will correspond to the small value of H. The relative differential
deflections among the. girders are small. for bridges with small values of H.
On the other hand, bridges with large values of H will have Tlarger relative
differential deflections among the girders. Thus, the stiffness of the
diaphragm required to improve the load distribution has to be increased as
the relative girder stiffness increases. As H reaches zero, the diaphragms

“do not have any. effect on the load distribution.
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The relationships between the moment at midspan of the loaded
girder and the relative bridge geometry, for various relative diaphragm
stiffness, are shown in Fig. 5.20. A1l bridges have the same relative
girder stiffness, H = 20. As has been discussed previously, the bridge cor-
responding to the small value of b/a has a more favorable load distribution
than in a bridge with a large value of b/a, if H remains the same. The
reason for this is that the relative differential deflections between the
girders are larger for the bridge having a large value of b/a than the one
having a small value of b/a. Consequently, the stiffness of diaphragm to
improve the load has to be increased as b/a increases. Since

EI
H = 39
aD

where a is the span length, the actual girder stiffness of a bridge with a
small value of b/a is larger than in one with a large value of b/a, pro-
vided that both bridges have the same H and girder spacing. Thus, for a
constant relative diaphragm stiffness, the actual stiffness of the diaphragm
is larger in a bridge with a small b/a ratio than in one with a large value
of b/a. This is the reason that the moment in the Toaded girder, shown in
Fig. 5.20, is much larger for the bridge with a large value of b/a than in
one with a small b/a ratio, even though « is the same. For example, the
curves for Girder C, as given in Fig. 5.20, show that the moment in the gir-
der in a bridge with b/a = 0.05 and « = 0.40 is very close to the moment
corresponding to « = ». On the other hand, the moment in the same girder for
a bridge with b/a = 0.20 and « = 0.40 is much higher than the moment cor-

responding to the Tine « = =,
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5.4 Load Distribution Behavior for 4-Wheel Loads Moving on Bridge without
Diaphragms

The behavior of the structures discussed so far have been concerned
with only a single load on the bridge, which is not realistic loading condi-
tion. The actual loads which are of interest to bridge engineers are truck
loadings. The standard truck loadings to be considered for computing the
maximum moments in the girders are specified by AASHO Standard Specification
for Highway Bridges:” as shown in Figs. 5.1 and 5.2. Each truck consists of
two or three axle loads, spaced as shown, and the front axle is loaded to
one-quarter of the Toad on the other axles. Most arterial highways are
currently being designed for either H20 or HS20 loadings, in which the
heavy axles are loaded to 32 kips.

The effects of entire three-axle trucks are discussed in Sec. 5.7.
In this section, the effects of four isolated wheel loads, each designated
as P and spaced as shown in Fig. 5.2, are discussed. This loading is repre-
sentative of the effects of two heavy axles located side by side at the same
position in the span of a bridge. Influence lines and moment envelopes due
to this loading condition have been developed and are presented below. Each
of the front wheels carries one-fourth of the rear wheel weight. Thus, the
moments due to the front wheels may be determined from the resuits of the
rear wheels by simply substituting P/4 for P.

Since the wheel spacings are specified as a certain number of feet,
the girder spacing must aiso be specific rather than a general dimension as

was the case in the previous sections of this chapter. The spacings of the

girders to be considered in this study are 5, 6, 7, 8 and 9 ft, and the bridges

are considered as having two traffic lanes.

Infiuence lines and moment envelopes for the maximum moments in
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each girder were determined as describéd below. In each case, the lateral
position of loads to give the maximum midspan moment was determined by trial
and error, and all other moments in the same girder were determined with the
wheel loads the same distance from the curb,

The maximum value of moment in each girder was obtained by placing
the 4-wheel loads at the highest ordinates of the respective influence lines
for moment due to a single load, P, moving transversely across the bridge.
The loads are placed at various locations along the span, namely, midspan,
5a/12, 4a/12, and 3a/12 from the support. At each Tocation of the loads,
the maximum moments at midspan and at the locations of the loads are obtained.
Thus, the influence Tines for moment at midspan and moment envelopes for the
girder, due to the 4-wheel loading moving along the span of the bridge, can
be plotted. In the prestressed concrete girder bridge, the prestressing
strands may be curved, and the maximum moment at various Tocations along the
span due to the truck Toads moving on the bridge are of special importance.

To serve as practical purposes for designing slab and prestressed
concrete grider bridges, the influence Tlines for maximum moment at midspan
and moment envelopes of the fourteen bridges listed in Table 2.2 were obtained
and are presented in Figs. 5.21 to 5.26. Since these curves are symmetrical
about the midspan of the bridge, only half of the curves are plotted. The
curves plotted on the left-hand side of the midspan are the influence lines
for moments at midspan of the girders. The curves plotted on the right side
of the midspan are the moment envelopes of the same girder. The girder
spacings vary from- 5 to 9 ft.

The curves, shown in Figs. 5.21 to 5.24, were obtained for the
loading condition where the outer wheel is located at least 2 ft from the

edge girder. The curves, shown in Figs. 5.25 to 5.26, were obtained for
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the condition where the outer wheel can be over the edge girder. The first
condition is applied to bridges in which the cross sections are as shown in

Fig. 5.2(b). The second condition is applied to the bridge in which the

curbs are located two ft away from the edge girders, as shown in Fig. 5.2(a),

and the moments are larger than those obtained from the first case.
Five-girder bridges with the girder spacings equal to 8 or 9 ft
may be considered as three-lane bridges. Thus, the maximum moments due to
6-wheel loads were determined for several cases. In all cases, the moments
due to the 6-wheel loading are larger than caused by the 4-wheel loading.
However, the AASHO Standard Specification for Highway Bridgesl? states thaf
the following percentages of the resultant live-load stresses shall be used,

in view of improbable coincident” maximum Toadings:

Numer of Lanes Percent
Tor?2 100
3 90
4 or more 75

MuTtiplying the moments caused by 6-wheel loading by the factor 0.9 always
results in moments which are less than those caused by 4-wheel Toadings.
Then, it is reasonable to obtain the maximum moments for two-lane loadings
for the type of structure considered in this study.

It should be pointed out that the tangents of the curves corre-
sponding to the moment envelopes have to be horizontal at midspan. As
mentioned previously, the influence lines for moments in the girders due to

a load, P, moving across the bridge at various locations, except the midspan,
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do not have the points on the slabs. Thus, these curves are not quite as
accurate as the ones due to the load applied at the midspan. Because of
the accumulation of small systematic plotting errors, the moment envelopes
for the interior girders due to the 4-wheel loading obtained from those.
curves are usually slightly too low for points away from midspan. Conse-
quently, the tangents at midspan of the moment envelopes are not quite
horizontal. However, these errors are small and may be neglected. This
problem does not exist for the influence lines.

With this set of curves, the maximum moments in the girders due
to the truck loads can be obtained by simply summing up the coefficients
for moment at midspan due to a 4-wheel loading at each location corresponding

to the axles of the trucks.
5.4,1 Outer Wheel at Least 2 Ft from Edge Girder

This loading condition may happen in the case of either of the
bridge cross sections shown in Fig. 5.2. The curves shown in Figs. 5.21 to
5.24 are the influence lines for moment at midspan and moment envelopes of
the girder carrying the maximum load, for values of b/a = 0.20, 0.15, 0.10,
and 0.05, respectively. The outer wheel is at least 2 ft from the edge
girder.

For any combination of b/a and H, the maximum moment coefficients
increase as the girder spacing increases. Thus, the Towest curves in each
figure are the influence 1ine for moment at midspan and the moment envelope
for b =5 ft. On the other hand, the highest curves in each figure are the
influence Tine for moment at midspan and the moment envelope for b = 9 ft.

The curves representing the moment envelopes for any girder are

always convex. The curves representing the influence Tines for moment at



78

Fegerey
LR o

midspan of the interior girders are either nearly straight or slightly con- ;‘
cave, while the influence lines for moment at midspan of the exterior gir- {

ders are always convex curves. This phenomenon is evident in the set of ; *
curves of the influence lines for moment at midspan and moment envelopes .
of the girders due to a single load, P, moving along the span of the bridge i

as shown in Fig. 5.12, and as discussed in Sec. 5.2.6.

“““M ""

Which girder is subjected to the maximum moment in a particular

e

bridge depends on the values of H, b/a, b, and the position of the Toad

relative to the edge of the structure. Table 5.1 contains a tabulation

=

listing the controlling gifder in each of the bridges studied. Fourteen

combinations of H and b/a, with five beam spacings and two load positions for

each combination, are included in the table, for a total of 140 bridges.

For any value of H between 5 and 40, and with b/a =.0.20 and 0.15,

Girder C, or the center girder, always carries the maximum Toad. For the

bridges with b/a = 0.10 and H = 5 and 10, either Girder B or C may carry

the maximum load, depending on the girder spacings. Girder B controlling g'
always corresponds to the larger spacings, and Girder C to the smaller spac- .
ings. Howe?er, for H = 20 and 40, Girder C always carries the maximum load. g;
For the bridges with b/a = 0.05 and H = 10 and 20, the maximum moment may (i
occur in any girder., ‘
It may be concluded that in short-span bridges, b/a = 0.20 and :
0.15, and in medium span bridges with stiff girders, b/a = 0.70 and H = 20 .
and 40, the controlling girder for maximum moment is always the center gir- gi

der, C, since the load distributions of these bridges are not as uniform as
the ones with b/a = 0.05 or 0.10 and H = 5 and 10, as shown in Figs. 5.4

and 5.5. It is evident from Fig. 5.5 that placing the 4-wheel loading
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symmetrically about Girder C, the position that gives the maximum moment in
Girder C, all four wheels have a large effect on the moment in that girder,
and especially the two loads close to the girder. On the other hand, placing
this set of Toads on the influence 1ines for Girder A, shows that only two
loads close to the girder have a strong effect on the moment in that girder.
The other two loads that are farther away from Girder A have much smaller
contributions to the moment in that girder. For Girder B, the moments due

to 4-wheel Toading are between the values for Girders A and C, but closer to
that Tatter.

Consider the influence Tines for moment in the girders for bridges
with b/a = 0.05, as shown in Fig. 5.4.‘ One may recognize that the moment in
each girder due to 4-wheel loading should not be greatly different. Thus,
it is possible that either Girders B or C may have the maximum moment; and,
for small values of H, the edge girder may have the maximum moment.

It should be noted that for the 4-wheel loading located at midspan,
the moments at midspan of the interior girders are always greater than the
edge girder. If the loads are located away from the midspan, the moment in
the edge girder may be greater than the interior girders. It may be seen
from the influence Tines for moments at midspan of Girder A, as shown in
Fig. 5.24, that the curves are convex, while the curves of the interior
girders are concave. Thus, when 4-wheel loads are considered, the maximum
moment is always in the interior Girders B or C; but, when three-axle truck

loads are considered, the maximum moment may be in the edge girder.
5.4,2 OQuter Wheel on Edge Girder

This condition of Toadings may happen in the bridges in which the
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cross section is shown in Fig. 5.2(a). The curbs of the bridges are located E f?
at least 2 ft from the edge girder, so that the outer wheel of the truck

may come over the girder. From the influence Tines for moment in the girders i
shown in Figs. 5.4 and 5.5, it is obvious that the outer wheel is the most .
effective load producing moment in the edge girder. Since the ordinates i;
of the moment coefficients for Girder A are very high when the Toad is placed {“
directly on it, the maximum moments in the edge girders due to 4-wheel load=
ings have to be obtained by placing one wheel load directly on the edge

girder and keeping the spacing between adjacent pairs of loads as small as

possible.,

The case in which the outer wheel can move outside of the edge {
girder has not been considered.

The set of curves of the influence lines for moment at midspan l;
and moment envelopes, shown in Figs. 5.25 and 5.26, are similar to the ‘
first set as presented in Figs. 5.21 to 5.24. However, the curves in the !f
second set were obtained by placing the outer load, P, on the edge girder. ia
When this loading controls, Girder A always carries the maximum moment. =
The results for the bridges with b/a = 0.20 and 0.15, and b/a = 0;10 and Iﬁ
H = 40 have not been presented, since the moments in the edge girders "
for these cases are still less than the moments in the interior girders of

the first case. But the moments in the edge girders of the bridges with

i i
b/a = 0.10 and H = 5, 10 and 20, and b/a = 0.05 and H = 10, 20 and 40, are o
always greater than the moments in the interior girders of the first load- {f
3

ing condition, and have to be used for design of the girders for bridges
having the cross sections as shown in Fig. 5.2(a). y

Ay
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It is noted that, since the maximum moments of the second loading
condition are in the edge girder, the influence lines for moment at midspan
are convex curves and are almost identical to the moment envelopes.

5.4.3 Relationships Between Maximum Moment Due to 4-Wheel Loading and
Relative Girder Stiffness

The relationships between the maximum moments in the girders due
to 4-wheel loadings and the relative girder stiffness, for various values
of b/a, are given in Fig. 5.27. The girder spacings are 5, 6, 7, 8, and
9 ft. Since the influence 1ines for moment at midspan and moment envelopes,
given in Figs. 5.21 to 5.26 and discussed in Secs. 5.4.1 and 5.4.2, corres-
pond specifically to values of H = 5, 10, 20, and 40, the moments for other
values of H cannot obtain directly from those curves. However, they can be
obtained from the curves shown in Fig. 5.27. The solid lines represent the
moments corresponding to the first loading condition, or the outer load, P,
at least 2 ft from the edge girder. The dotted lines represent the moments
corresponding to the second loading condition, or the outer load, P, on
the edge girder.

It may be concluded, in general, that the maximum moment in the
girders of bridges with b/a = 0.20 and 0.15 will correspond to the first
loading condition. For the bridges with b/a = 0.10 and b = 6 ft, the maximum
moment will be produced by the first loading condition if H = 10, and by the
second loading condition, if H z 10. If b > 6 ft, the Timit of H will change
from 10 to 15. For the bridges with b/a = 0.05, the maximum moment is 1in
the edge girder and produced by the loads corresponding to the second load-

ing condition for any values of H between 10 to 40, and b between 5 to 9 ft.
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It should be remembered that the curves represented by the dotted
lines, or the second loading condition, apply to bridges with the cross sec-
tions shown in Fig. 5.2(a), where the outer wheel can be directly over the
outer girder.

5.4.4 Relationship between Maximum Moment Due to 4-Wheel Loading and
Relative Bridge Dimension

]

The relationships between the maximum moment of the girder due to
4-wheel loading and the relative bridge dimension, for various values of H
“and b, are presented in Fig. 5.28. From this set of curves, the maximum
moments in girders for bridges with values of b/a other than those given in
Figs. 5.21 to 5.26 may be obtained. The solid lines represent the moments
corresponding to the 4-wheel Toading with the outer wheel located at Teast
2 ft from the edge girder. The broken lines represent the moments corres-
ponding to the 4-wheel loading with the outer wheel located on the edge
girder.

It may be observed that the transition points of the maximum

‘moments from the second loading condition to the first loading condition are

as follows:
1. For H = 5, the transition point is between b/a = 0.14 and 0.16,
2. For H = 10, the transition point is between bs/a = 0.10 and
0.14,
3. For H = 20, the transition point is between b/a = 0.07 and

0.09, and
4., For H = 40, the transition point is bsa = 0.06.

The ranges in the ratio b/a depend on the spacings of the girders.
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As noted previously, the second loading condition applies to bridges

with the cross section shown in Fig. 5.2(a).
5.5 Box Section Girder Bridge Subjected to 4-Wheel Loading

It was noted in Sec. 5.2.4 that the single Toad distribution of the
standard bridge, with the torsional stiffnesses of the girders increased to
the range of the box section, is greatly improved. In this section, the Toad
distribution of this bridge subjected to 4-wheel loading is studied.

The influence lines for moment at midspan and moment envelopes of
Girders A, B, and C dﬁe to 4-wheel Toading were obtained and are presented
in Fig. 5.29. The curves for both Girders A and B were obtained from the
loading condition where the outer wheel is on the edge girder. The maximum
moments for this loading condition are in Girder B instead of Girder A for
the I-section girder bridges. It is evident from the influence lines for
moments in the girders, as shown in Fig. 5.10, that the effect of the outer
wheel on the moment in Girder A of the box section is less than 1n the I-
section girders. The summation of the effects of 4-wheel loads for Girder B
is greater than for Girder A. If the outer wheel is at least 2 ft from the
edge girder, the maximum moments are in Girder C. However, the maximum
moments in both cases, Girders B and C, are only very slightly different, and
either case may be used for design.

Consider the curves shown in Fig 5.29 and the corresponding curves
for a bridge with the same values of H and bs/a, as shown 1n Figs. 5.23 and
5.25. It is obvious that the load distribution for the standard bridge with
box section girders 1s much better than for the l-sections  The effects of

increasing moment 1n any girder due to increasing the girder spacings in the
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box-section are less than the I-section. For example, increasing the girder
spacings from 5 to 9 ft increases the moment in Girder A of the box section
girder bridge from 0.212 Pa to 0.257 Pa, and Girder C increases from 0.227 Pa
to 0.267 Pa. But the moment in Girder A of the I-section bridge increases
from 0.233 Pa to 0.347 Pa, and Girder C increases from 0.257 Pa to 0.362 Pa.
5.6 Effects of Diaphragms on Load Distribution Behavior of Bridge Due to
4-Wheel Loadings
It was shown in Sec. 5.3.2 that the diaphragms do reduce the mo-

ments in the loaded girders of bridges subjected to single loads. The re-

ductions of moments in the Toaded girders are related to the relative diaphragm

stiffness. The loaded girders may be either edge or interior girders.

Adding diaphragms to bridges that carry 4-wheel loadings does not
always reduce the moments in the girders. It depends on which girder is the
significant girder, or which girder controls the moment. For instance, adding
a diaphragm to a bridge increases the moment in the edge girder, but decreases
those in the interior girders. If the edge girder is the girder which con-
trols the moment, the addition of diaphragms would increase the maximum mo-
ment and thus be harmful. On the other hand, if the interior girder is the
significant girder, the addition of diaphragms would reduce the maximum
moment and thus cause desirabie effects.

In order to obtain & better understanding of the effects of dia-
phragms on the load distribution in the bridges, the series of bridges listed
in Table 2.4 have been studied. Several kinds of curves are obtained for
this study. The first set consists of the influence lines for moment at

midspan and moment envelopes for the standard bridge with five locations of

pstoney
RT3
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diaphragms, as shown in Figs. 5.30 to 5.34. For each location of diaphragms,
the curves are plotted for the girder spacings equal to 5, 7 and 9 ft, and
the outer wheel may come over the edge girder or be at least 2 ft from it.

The second set of curves consists of the relationships between the
maximum moments in each girder due to 4-wheel Toading and the relative dia-
phragm stiffness for various bridges, as shown in Figs. 5.35 to 5.37. These
curves are also plotted for the case where the outer wheel can come directly
over the edge girder and where the outer wheel is at Teast 2 ft from it.

The third set of curves are the relationships between the maximum
moment in the controlling girder and the relative diaphragm stiffness, and
are presented in Fig. 5.38 and 5.39. The curves for bridges which have the
ratios b/a = 0.10 and H = 5, 10, 20, and 40 are shown in Fig. 5.38. The
curves for bridges which have values of H = 20 and b/a = 0.05, 0.10, 0.15,
and 0.20 are shown in Fig. 5.39. The curves for both the second and third

sets are plotted for b = 5, 7, and 9 ft.
5.6.1 Etfects of Varying Relative Diaphragm Stiffness

The effects of varying the relative diaphragm stiffness on the load
distribut:on of the bridges may be studied from these three sets of curves.
The curves 1n the first set show the influence lines for moment at midspan
and moment envelopes for the values of « = 0, 0.05, 0.20 and 1000. The curves
corresponding to <« = 0 and 1000 represent the bridges without diaphragms and
with rigid diaphragms. For each girder spacing, there are two curves cor-
responding to < = 0. One represents the case where the outer wheel may come
over the edge girder. The other curve represents the case where the outer

wheel is located at least 2 ft from the edge girder. When 4-wheel loadings are



86

concerned, the significant girder of this particular bridge without dia-
phragms is always Girder C.

When adding diaphragms with various stiffnesses to the bridge, the
moment in Girder A always increases as the relative diaphragm stiffness in-.
creases, whereas the moments in Girders B and C decrease. These variations
may be seen from the curves shown in Figs. 5.35 to 5.37. The curves shown
in Fig. 5.35 are the relationships between maximum moments in the girders
and the relative diaphragm stiffness for the standard bridge with various
locations of diaphragms.

If the outer whée1 can come over the edge girder, the curves, for
this particular bridge, show that except when there are two diaphragms at
the quarter-points, Girder A always become the controlling girder for any
location of diaphragms for « iless than 0.05, and for any girder spacing be-
tween 5 and 9 ft. For two diaphragms at the quarter-points, Girder A becomes
the significant girder at the values of < = 0.05 to 0.08. However, if three-
axle truck Toadings are considered, the addition of the diaphragms to this
particular bridge will cause harmful effects if the outer wheel can come over
the edge girder. A discussion of the load distribution in structures sub-
jected to three-axle truck ioadings is presented in Sec. 5.7.

If the outer wheel is located at least 2 ft from the edge girder,
the curves reveal that as the girder spacing and the reiative diaphragm
stiffness vary, different girders become significant. For the small girder
spacing, b = 5 ft, the curves show that Girder C 1s always the controlling
girder. For the larger girder spacings, b = 7 and 9 ft, the girder that
controls the maximum moment can be any girder, A, B, or C, depending on the

relative diaphragm stiffness, and the location of diaphragms. The curves

+
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for the bridge with one diaphragm at midspan show that the maXimum moment
is resisted by Girder C for the bridge without diaphragm or with a very
flexible diaphragm, « iess than 0.04, and Girder B for the bridge with a
flexible or medium stiff diaphragm, « = 0.04 to 0.15. If the relative
diaphragm stiffness is greater than 0.15, Girder A becomes most sicgnificant.

However, these transition points of the various significant gir-
ders may be varied by changing the location of diaphragms. The curves in
the same figure, but for the bridge with two diaphragms at the quarter-
points, show that if b = 7 ft, the maximum moment is in Girder C, B, and A
for « from O to 0.05, 0.05 to 0.21 and greater than 0.21, respectively. If
b =9 ft, the moment is taken by Girder B for any value of <« between 0.01
to 0.40. The effects of the different locations of diaphragms will be dis-
cussed in Sec. 5.6.2.

It shouid be noted that, in general, either Girder A or B may be
the controlling girder in the standard bridge, depending on the relative
stiffness and location of fiaphragms, and the girder spacing., It may be

observed, from the curves for this bridge and those shown in Figs. 5.36 and

1]

5.37 for the bridges with b/a = 0.10 and H = 5 and 40, and H = 20 and b/a
0.05 and 0.20, respectively, that for a certain girder spacing, the transi-
tion points of transferring the maximum moment from Girder B to Girder A
move away from the vertical axis if the diaphragms are moved from the midspan
to the supports. 0On the other hand, the transition points move closer to

the axis 17 the girder spacing 1s increased with the diaphragms held sin the
same locations. It means that, for a certain girder spacing, the value of

<« at which Girder A becomes significant is small if the diaphragms are located
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at the midspan or close to it, and 1ncreases as they move from the midspan.
If the bridges have the same location of diaphragms, the value of « at which
Girder A becomes significant, is smalier for a bridge with a lérge girder
spacing than for one with small girder spacing.

The effects of vakying the relative diaphragm stiffness in bridges
having the same reiative geometry but different relative girder stiffness
may be seen in the curves shown in Fig. 5.36. The bridges have the same
b/a = 0.10, but H = 5 for one bridge and 40 for the other. The bridge with
H =5 has a relatively stiff slab, whereas the one with H = 40 has relatively
stiff girders. The curves show that the variations of moments in the gir-
ders due to the diaphragms are small for the former, but large for the
latter, since the bridge with a stiff slab has a better load distribution,
even without diaphragms, than the one with stiff girders.

If the outer wheel can come over the edge girder, the curves
show that the diaphragms should not be added to the bridge with H = 5, since
the maximum moment 1s controlled by the edge girders regardless of the lo-
cation of diaphragms and girder spacing. However, the maximum moment in
the girders for the bridge with H = 40 may be reduced considerably by
adding relatively flexible diaphragms at the most effective location.

If the outer wheel 1s located at least 2 ft from the edge girder,
the maximum moment 1n the girders of both bridges is in Girder C for b =
5 ft. Ifb=7o0r 9 ft, either Girder A or B for the bridge with H = 5,
or any girder for the bridge with H = 40, mey be the significant girder,
depending on the relative stiffness and location of diaphragms and the
girder spacing. The girder moments are very Insensitive to changes in

relative diaphragm stiffness if H = 5. However, the max:imum moments in the
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girders of the bridge with H = 40, are greatly reduced by adding the dia-
phragms having the same relative stiffness as in the bridge with H = 5, For
example, adding the diaphragms with « = 0.15, at 5/12 points of the spans of
these two bridges with b = 9 ft, reduces the maximum moment in the stiff
sTab bridge from 0.317 Pa to 0.300 Pa, whereas that in the stiff girder
bridge is reduced from 0.395 Pa to 0.313 Pa. The reduction of moment for .
the former is 5.4 percent, whereas the latter is 20.4 percent. If the dia-
phragms with « = 0.40 are added at the third-points of the bridges with

b =7 ft, the maximum moment in the stiff slab bridge is reduced from

0.276 Pa to 0.266 Pa, whereas that in the stiff girder bridge is reduced
from 0.344 Pa to 0.275 Pa. In this case, the reduction of moment for the
former is 3.6 percent, whereas the latter is 20.1 percent.

Thus, it may be concluded that the addition of diaphragms to a
bridge with bja = 0.10 and H = 5, may not improve the load distribution,
and may cause harmful effects. The diaphragms do improve the ioad distri-
bution 1n a bridge with b/a = 0.10 and H = 40, whether the outer wheel can
come over the edge girder or remain at least 2 ft from it.

The effects of varying the reliative diaphragm stiffness in bridges
having the same relative girder stiffness, but differing in relative bridge
geometry, may be studied from the curves shown 1n Fig. 5.37. The one with
b/a = 0.05 1s a relatively long span bridge, but the other with b/a = 0.20
is a relatively short span bridge. The curves show that the variations of
moments in the girders of the bridge with bsa = 0.05 due to the effects
of diaphragms are smail and similar to those for the bridge with bja = 0.10
and H = 5, since both bridges have good load distributions. But the curves

for the bridge with b/a = 0.20 show that the moments 1n the girders are
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greatly changed 1f the diaphragms are added. The variations of moments of
this bridge are similar to the one with b/a = 0.10 and H = 40,

As was the case for the bridge with b/a = 0.10 and H = 5, if the
outer wheel may come over the edge girder, diaphragms should not be added
to the bridge with b/a = 0.05. But, adding the relatively flexible to
medium stiff diaphragms to the bridge with bs/a = 0.20, reduces the maximum
moment in the girders substantially. For b = 9 ft, the maximum moment can
be reduced from 0.431 Pa to 0.350 Pa by adding diaphragms, with « = 0.11
at the 5/12 points, or « = 0.19 at the third-points. For b = 7 ft, the
maximum moment can be reduced from 0.362 Pa to 0.300 Pé by adding the dia-
phragms with « = 0.17 at the 5/12 points, or < = 0.29 at the third-points.
The reductions of moments are i8.8 percent and 17.3 percent for b = 9 and
7 ft, respectively.

If the outer wheel 15 Jocated at ifeast 2 ft from the edge girder,
the maximum moment in the girders of the bridge with b/a = 0.05 may be re-
duced slightly by adding relatively flexible diaphragms at the most effec-
tive location, midspan or cliose to it. But the curves of the bridge with
b/a = 0,20 show that the maximum moments in the girders are greatly reduced
by adding the diaphragms. For b = 5 and 7 ft, Girder C 1s significant.
Either Girder B or C becomes sigmifrcant for b = 9 ft. With « ranges from
0 to 0.40, the curves of the edge girder: and interior girders never inter-
sect. Thus, the maximum moments are controlied by the interior girders for

any girder spacing between 5 to 9 ft, and « = 0 te 0 40-
5.6.2 Effects of Varying Locations of Diaphragms

The diaphragms, as discussed in Sec. 5.3.2 for a single load on
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the bridge, have the most effect on the moments in the girders at the points
of intersection of diaphragms and girders, and are less effective for other
points. It 1s also true for the 4-wheel loadings. The effects of varying
the location of diaphragms may be studied from the three sets of curves
mentioned below.

Consider the influence lines for moment at midspan and moment en-
velopes for the bridges with one diaphragm at midspan and two diaphragms at
the quarter-points, as shown in Figs. 5.30 and 5.33, respectively. It may
be observed that the -variations of the moments, with changes in diaphragm
stiffness, at midspan in both the edge and interior girders for the bridge
with one diaphragm at midspan are greater than those for the bridge with two
diaphragms of the same stiffness at quarter-points.- On the other hand, the
curves in the same figures show that the variations of the moments at
quarter-points i1n both the edge and interior girders for the bridge with
two diaphragms at quarter-points are greater than in the bridge with one
diaphragm at midspan. Another example 1s 1n the bridges with one diaphragm
and three diaphragms, as shown in Figs. 5.30 and 5.34, respectively. The
influence 1i1nes for moment at midspan of the edge and interior girders
of both bridges show that the difterences of the variations of moments at
midspan due to 4-whee! !oading moving &long the span of the bridge w:th
one diaphragm and the corresponding values of the bridge with three dia-
phragms are smaii. But, the moment envelopes of the girders 1n both bridges
show that the variations of the moments at other locations along the span
for the bridge with three diaphragms are greater than in the bridge with

one diaphragm.
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It may be concluded that the contribution of the diaphragms located
at the gquarter-points to the moments of the midspan is small, and the effect
of the diaphragm located at midspan upon the moments at the quarter-points
is also small, However, the combined effects of the diaphragms located both
at midspan and quarter-points are greater than either one diaphragm at
midspan or two diaphragms at quarter-points. Consequently, 1f several dia-
phragms are closely spaced along the span of the bridge as the load transfer-
ring device, one may expect that the load distribution of this bridge is
similar to the bridge without diaphragms, but with increased slab stiffness
or torsional stiffness of the girders.

The effects of varying the iocations of diaphragms on the maximum
moment in the girder of the bridge can be studied from the second set of
curves, as shown in Figs. 5.35 to 5.37. For examplie, adding diaphragms with
« = 0.20 at the 5/12 points, third-points and quarter-points of the bridge
shown in Fig. 5.35, the maximum momert in Girder A, for b = 9 ft, changes
from 00345‘Pa to 0.375 Pa, 0.365 Pa and 0.355 Pa, respectively; that in
Girder B changes from 0.354 Pa to 0.310 Pa, 0.329 Pa and 0.345 Pa; and that
of Girder C from 0.361 Pa to 0.259 Pa,; 0.287 Pa and 0.302 Pa, respectively.
For a constant relative diaphragm stiffness, the increase of the maximum
moment in Girder A, and the decreases of the maximum moments in Girders B
and C, are largest when the diaphragms are focated near the midspan, and
become smaller as the diaphragms move away from the midspan. This is also
true for other girder spacings.

Consider a bridge with a diaphragm at midspan and one with two
diaphragms at the 5/12 points with ail diaphragms having the same stiffness.

The curves show that the varigtions of moments in the girders, both interior
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and edge girders, are slightly different. This means that the effects of
adding one diaphragm at midspan or two diaphragms at the 5/12 points to the
bridge are almost the same.

For the bridges with b/a = 0.10 with H = 5 and 40, and H = 20
with bsa = 0.05 and 0.20, the curves show that the effects of varying the
locations of diaphragms are similar to those in the standard bridge. That
is, for constant stiffnesses of diaphragms, the changes in the maximum
moments in the girders are larger for the diaphragms located at the 5/1i2
points than for those located at the third-points.

With the relative diaphragm stiffness in the practical range,

« = 0 to 0.40, the effects of varying the locations of diaphragms may be
summarized as follows:

1. The diaphragms are effective in reducing the moments 1n the
girders at the points of intersection of girders and dia-
phragms;

2. For a certain value of «, the variations of the maximum mo-
ments at midspan are large if the diaphragms are located at
midspan or close to 1t, and become smaii if the diaphragms
move from midspan toward the supports. One may say that for
a certain increase of the moment at midspan of the edge
girder, 0r a certain reduction of the moment at midspan of
the interior girder, which is produced by reiatively flexible
diaphragms 1f they are located at or ciose to midspan, but
by st:ffer diaphragms if they are ‘ocated away from the

midspari;
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3. With a certain vaiue of «, the variations of the maximum mo-
ments in both the edge and interior girders are almost the
same for bridges with a diaphragm at midspan, two diaphragms
at the 5/12 points, and three diaphragms at the quarter-
points and midspan; and

4. For a certain b, the transition points at which the maximum
moments change from the interior girders to the edge girder
correspond to more flexible diaphragms if they are located at
or close to midspan, and to stiffer diaphragms if they are

located close to the supports.
5.6.3 Effective Stiffness and Location of Diaphragms for Various Bridges

In the slab and girder bridge structures, the maximum moments in
the girders due td wheel loads are always at the midspan. The purpose of
this study is to find the reductions in the maximum moments caused by
adding the most effective diaphragms to each particular bridge., A series
of bridges has been studied with various stiffnesses and locations of dia-
phragms. The effects of varying the relative diaphragm stiffness and their
locations were studied in Sec. 5.6.7 and 5.6.2.

The studies of the effects of varying the stiffness and location
of diaphragms show that ioad distribution are not always improved by adding
the diaphragms. Diaphragms du reduce the maximum moments in some girders
of some bridges, but they may increase the maximum moments in others. One
should keep in mind that the diagphragms always reduce the moments in the

interior girders, but increase the moments in the edge girders.
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It may be stated, in general, that diaphragms should not be added
to those bridges in which the load distribution without diaphragms is quite
uniform, or fairly uniform when the outer wheel can be located on the edge
girder. Diaphragms may be added to those bridges in which the load dis-
tribution is nonuniform and needs to be improved, since in the bridges with
nonuniform load distribution, the maximum moment is always controlled by
the interior girder, C.
One should recall the discussion in Sec. 5.4 concerning the Tload
distribution in the fourteen bridges due to 4-wheel Toadings. The influ-
ence lines for moment at midspan and moment envelopes of those bridges are
given in Figs. 5.21 to 5.26. 1t has been mentioned that the bridges with
small values of b/a and H have better ioad distributions than the other
bridges. The classifications of the load distribution of the fourteen
bridges may be summarized as tTollows:
1. The bridges with uniform load distribution include those with
bsa = 0,05 and H = 10, 20 and 40, and b/a = 0.10 and H = 5
and 10;

2. The bridges with fairly uniform load distribution inciude
those with b/a = 0.10 and H = 20, bsa = 0.15 and H = 5, and
b/a = 0.20 and H = 5; and

3. The bridges with nonun:form icad distribution inciude those
with by/a = 0.10 and H = 40, b/a = 0.15 and H = 10, 20 and
40, with b/a = 0.20 and H = 10 and 20,

The studies of the relative stiffness and location of diaphragms
show that for a constant value of <, the ioad distribution of the bridge

with a diaphragm at the midspan, two draphragms at the 5/12 points, and
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diaphragms at the quarter-points and midspan are almost the same. If the
economic cost and time savings in construction are concerned, only a dia-
phragm at midspan need be considered. Thus, the five locations of diaphragms
are reduced to three, namely, a diaphragm at midspan, two diaphragms at
the third-points, and two diaphragms at the gquarter-points.

The most effective combination of stiffness and location of dia-
phragms for the various bridges may be studied from the curves given in
Figs. 5.38 and 5.39. The curves in Fig. 5.38 are the relationships between
the maximum moment in the significant girder and the relative diaphragm

stiffness for the bridges with b/a = 0.10 and H = 5, 10, 20, and 40. Similar

curves, for the bridges with H = 20 and b/a = 0.05, 0.10, 0.15, and 0.20,
are given in Fig. 5.39. Two locations of diaphragms are presented, namely,
a diaphragm at the midspan and two diaphragms at the third-points. The
curves in Fig. 5.38 represent the bridges with medium length span. The
bridges with H = 5 and 10 are classifted as having uniform load distribution.
The bridges with H = 20 and 40 are classified as having fairly uniform or
nonuniform load distribution.

It the outer wheel may come over the edge girder, the curves for
the bridges with b/a = 0.10 and with H = 5, 10, and 20 show that the dia-
phragms shouid not be added for any girder spacing between 5 to 9 ft, since
they increase the maximum moment in the girder. It should be noted that
the moment in the bridge with H = 20 and b = 7 ft can be reduced slightiy
by adding a flexible diaphragm, « = 0.05, at the midspan. However, it may
be harmful for the truck Toads. The curves for the bridge with H = 40 and
b =5 ft show that by adding a diaphragm with « = 0.05 at midspan, or two

diaphragms each having « = 0.05 &t the third-points, the maximum moment can
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be reduced from 0.265 Pa to 0.242 Pa. For b =7 ft, the méximum moment can
be reduced from 0.344 Pa to 0.302 Pa by adding a diaphragm with « = 0.06 at
midspan, or to 0.309 Pa with diaphragms with « = 0.06 at the third-points.
If b = 9 ft, the maximum moment can be reduced from 0.396 Pa to 0.353 Pa

or 0.358 Pa, by adding a diaphragm with « = 0.02 at the midspan, or two
diaphragms with « = 0.05 at the third-points, respectively,

It may be concluded that if the outer wheel may come over the
edge girder, bridges with H = 5, 10 and 20 should not have the diaphragms.
With a flexible diaphragm, « = 0.02 to 0.06 depending on the girder spacing
at midspan of the bridge with H = 40, the maximum moment can be reduced
significantiy. A diaphragm at the midspan is most effective.

If the outer wheel! 1s located at least 2 ft from the edge girder,
the maximum moment in all bridges can be reduced by adding the diaphragms.
The reductions of moments are greater for the bridges with a diaphragm at
the midspan than those with two diaphragms at the third-points. For b <
5 ft, the maximum moments 1n all bridges are controiled by the interior
girders for « = 0 to 0.40, since the moments decrease as the values of «
increase. However, the rates of decreasing become small if « is greater
than 0 20 Wirth a medium stiff diaphragm, « = 0.20, at the midspan, the
maximum moment for the bridge with H = 5 1s reduced from 0.225 Pa to 0.210
Pa, and the cre with H = 40 is reduced from 0.266 P& tc 0.224 Pa. The
reduction of moment 1s 6.5 percent for the former and 15.8 percent for the
latter. For b = 7 ft, the maximum moments for ail bridges are controiled
by the interior girders 1f a diaphragm for which < 15 not greater than 0.20
to 0.25, depending on the value of H, 1s located at midspan. With a stiffer

diaphragm, Girder A becomes significant. With this value of «, the maximum
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moment of the bridge with H = 5 15 reduced from 0.275 Pa to 0.258 Pa, and
the one with H = 40 is reduced from 0,344 Pa to 0.268 Pa, the reductions of
moments are 6.2 percent for the former and 22.1 percent for the latter.

It is noted that the maximum moments of the bridges with a dia-
phragm, « = 0.10, at the midspan and two diaphragms, each having « = 0.40,
are almost identical. A flexible diaphragm at the midspan is as effective
as two stiff diaphragms at the third-points.

For b = 9 ft, the values of <« where the transition points occur,
are 0.06, 0.08, 0.13 and»OA]7 for the bridges with H = 5, 10, 20 and 40,
respectively. With these values of «, the moment is reduced from 0.317 Pa
to 0.300 Pa for the bridge with H = 5, and from 0.396 Pa to 0.320 Pa for
the bridge with H = 40. The percentages of the reductions of moments are
5.4 percent for the former, and 19.2 percent for the latter.

It may be concluded that, 1f the outer wheel is located at least
2 ft from the edge girder, the diaphragms need not be added to the bridges
with H = 5 and 10, since the reductions of moments are small. With a fairly
flexible or medium stiff diaphragm, < = 0.05 to 0.25, at the midspan of the
bridges with H = 20 to 40, the maximum moments can be reduced substantially.
A diaphragm at the midspan is the most effective.

If the outer wheel can come over the edge girder of the bridges
with H = 20 and bya = 0.05, 0.10, 0.15 and 0.20, the curves in Fig. 5.39

show that the diaphragms should not be added to the bridges with b/a =

0.05 and 0.10, since Girder A controls, and the maximum moments, consequently,

are increased for all values of b. But the curves for the bridges with b/a =
0.15 and 0.20 show that the maximum moments are reduced by adding the dia-

phragms with various stiffnesses at the midspan or the third-points. 1t was
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mentioned earlier that the bridges with b/a = 0.05 and 0.10 are classified
as having the uniform, and fairly uniform load distributions, respectively.

But the bridges with b/a = 0.15 and 0.20 have nonuniform load distributions.

u

For b = 5 ft, the maximum moment of the bridge with b/a 0.15 can

0.05 at

ii

be reduced from 0.275 Pa to 0.250 Pa by adding a diaphragm with «
the midspan, or two diaphragms, « = 0.10 for each, at the third-points.

The reduction of moment 1s 9.1 percent. For the same girder spacing, the
maximum moment for the bridge with b/a = 0.20 is controlled by the interior
girder for « ranging from 0 to 0.40, even though the outer wheel may come

over the edge girder. By adding the diaphragm with « = 0.20 at the midspan,
or the third-points, the moment is reduced from 0.280 Pa to 0.250 Pa, or by
10.7 percent. However, the rate of decreasing of the moment with increases

of the diaphragm stiffness is small for both bridges.

For b = 7 ft, the curves for the bridge with b/a = 0.15 show that
with a medium stiff diaphragm, « = 0.15 at the midspan, or two diaphragms,
« = 0.20 or greater, at the third-points, the moment can be reduced from
0.351 Pa to 0.308 Pa, or by 12.3 percent. An increase in the stiffness of
the midspan diaphragm causes Girder A to become significant, thus increasing
the moment. The maximum moment of the bridge with b/a = 0.20 is still
controlied by the 1interior girder for « = 0 to 0.40. With a midspan dia-
phragm, or third-points diaphragms, the maximum moment may be reduced from
0.361 Pa to 0.312 Pa and 0.307 Pa for < = 0.20 and 0.40, respectively. The
reductions of moments are 13.6 percent for the former and 15 percent for the
Tatter. 1t is noted that the maximum moments with a diaphragm at the midspan,
or with two diaphragms having the same stiffnesses as the midspan diaphragm,

are almost identical.
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For b = 9 ft, the most effective relative diaphragm stiffnesses, for
the bridge with b/a = 0.15, are 0.05 if there is one diaphragm at midspan,
or 0.10 if there are two located at the third-points. With these values of «,
the maximum moment is reduced from 0.41 Pa to 0.355 Pa for both locations
of diaphragms, a reduction of 13.6 percent. For the stiffer diaphragms,
Girder A becomes significant, thus the moment will increase. The most effec-
- tive values of « for»the bridge with b/a = 0.20 are 0.16 for a diaphragm at
the midspan, or 0.25 for two diaphragms at the third-points. The maximum
moments for both cases are reduced from 0.430 Pa to 0.357 Pa, which is a
17 percent reduction.

1f the outer wheel is located at least 2 ft from the edge girder,
the interior girder controls the maximum moment for all bridges with b =
5 ft. A diaphragm at the midspan is the most effective. With the values of
k between 0 to 0.40, the moments decrease as « increases. However, the
rate of decrease is slow, especiaiiy if « is greater than 0.20. The reduc-

tion of moment is small for the bridge with b/a = 0.05.

1t

For b = 7 ft, the diaphragms do not improve the moment of the

u

bridge with bsa = 0.05. A diaphragm at the midspan is more effective than
two diaphragms at the third-points for the bridge with b/a = 0.10. The most
effective draphragm stiffness for thrs bridge 1s « =« (.20, with which the
maximum moment can be reduced from 0.320 Pa to 0.278 Pa, a reduction of

13.1 percent. If < is greater than 0.20, Girder A control. For bridges
with b/a = 0.15 and 0.20, the effects of a diaphragm Tocated at the midspan
is slightiy better than two diaphragms located &t the tnird-points. The

interior girders control the maximum moments for these two bridges. The

curves for the bridge with b/a = 0.15 show that if « is greater than 0.35,
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the reduction of moment is smail. With this value of «, the moment can be
reduced from 0.350 Pa to 0,275 Pa which is 21.4 percent reduction. But the
curve of the bridge with b/a = 0.20, show that the reduction of moment may
still be considerable if « is greater than 0.40. However, with <« = 0.40,
the moment is reduced from 0.360 Pa to 0.290 Pa. The reduction 1s 19.5 per-
cent, and may reach 25 percent for the stiffer diaphragm.

For b = 9 ft, diaphragms should not be added to bridges with b/a =
0.05. A diaphragm with <« = 0,13 at the midspan of the bridge with bsa = 0.10
is very effective, but a stiffer diaphragm is harmful. For b/a = 0.15 and
0.20, a diaphragm at the midspan is slightly better than two diaphragms at
the third-points. Lf < 1s greater than 0.40, the rate of decrease of moment
becomes small. With « = 0.13 and 0.40, the moments are reduced from 0.360 Pa
to 0.312 Pa, 0.41% Pa to 0.325 Pa, and 0.430 Pa to 0.34%1 Pa, for the bridges
with b/a = 0.10, 0.15 and 0.20, respectively. The corresponding percentages
of reduction are 13.3 percent, 20.9 percent and 20.7 percent.

It is noted that, for b = 7 ft, there are two curves for the bridge
with b/a = 0.10, and where the outer wheel is iocated at least 2 ft from the
edge girder. The solid line represents the bridge with T = 0.011, which is
the actual value of the prestressed concrete I-section. The broken Iine
represents the bridge with T = 0. As discussed in Sec. 5.2.4 for a single
load moving across the bridge, the ioad distribution of the bridge with T =
0.011 1s siightly better than the one with T = 0. for the 4-wheei loadings,
the former alsc has a stightly better load distribution than the latter.
However , the percentages of reduction of moment: due to adding diaphragms 1s

slightly greater for the bridge with T = 0 than the one with T = CG.0il.



It is also noted that the curves for moments in bridges with large
values of H, for example, H = 40, in Fig. 5.38, descend very fast with in-
creasing values of « between 0 to 0.10. But the curves for the large values
of b/a, for example, b/a = 0.15 and 0.20 in Fig. 5.39, descend much more
slowly for that range of «, in comparison to those for large values of H.

A11 of these bridges are classified as having nonuniform load distributions.
The reasons for the differences in behavior lie in the fact that even for the
same value of «x, the actual diaphragms in the bridges vary with b, b/a,

and H. For example, the diaphragm in the bridge with b/a = 0.10 and H = 40
0.20 and H = 20,

1]

is four times as stiff as the one in the bridge with b/a
provided that « and b remain the same.

From the study of the variations of moments for various stiffness
and locations of diaphragms of several bridges, i1t may be concluded, in
general, that:

1. The most effective and economical location of the diaphragm

is at the midspan;

2. The diaphragms should not be added to those bridges which
are classified as having uniform load distribution, for any
lToading conditions;

3. For those bridges ciassified as having fairly uniform load
distributions, diaphragms shouid not be added if the outer
wheel can come over the edge girder. I[f the outer wheel is
located at least 2 ft from the edge girder, the maximum mo-
ment may be reduced by 10 percent to 15 percent by adding
a diaphragm ranging from fairiy flexibie to medium stiff,

« = 0.10 to 0.20, at midspan. The stiffer diaphragms
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correspond to smaller girder spacing. The maximum reduction
of moment for the bridge with b/a = 0.10 and H = 20 is 13
percent;

4. For those bridges classified as having nonuniform load dis-
tribution, the diaphragms do reduce the maximum moments. If
the outer wheel can come over the edge girder, the moment
may be reduced by 8 gercent to 12 percent for the bridges

with b/a = 0.10 and 0.15, and 12 percent to 17 percent for

the bridges with b/a = 0.20. The most effective « is from
0 to 0.05 for the bridges with b/a = 0.10, 0.05 to 0.10 for

those with b/a < 0.15,and 0.15 to 0.40 for the bridges with

A

b/a = 0.20. The larger percentages of reduction of moments
correspond to the larger girder spacings.

If the outer wheel 1s located at least 2 ft from the
edge girder, the maximum moment can be reduced by 19 percent
to 2¢Z percent by adding a diaphragm ranging from medium to
very stiff, « = 0.15 to G.40, at midsgan. The most effec~
tive vaiues of < agre from 0.15 to 0.20 for the bridge with
b/a = 0.10, and 0.20 to 0-40 for those with b/a = 0.15 and

0.20.
5.7 Bridges Subjected to Truck Loads

The dyscussions presented in Secs. 5.4, 5.5 and 5.6, are concerned
with the 4-wheel loadings moving on the bridges. This type of loading re-
presents two rear axles of two adjacent trucks. The maximum momernts in the

girders of most bridges occur at the midspan due to 4-whee! loadings located
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at the midspan, except that in bridges with a stiff diaphragm at the midspan
the maximum moments occur at a section between the midspan and the third-
points. However, most of the diaphragms used in practice have relative
stiffnesses less than 0,40, and the differences between the maximum moment
and the moment at the midspan are small.

In the following discussion, in order to simplify the problem, the
moment at the midspan is taken as the maximum moment. Thus, the curves re-
presenting the influence Tines for moment at midspan and the moment enve-
lopes, given fn Figs. 5.21 to 5.26 and 5.29 to 5.34, can be used to obtain
the maximum moments in the girders at midspan due to multi-axie truck load-
ings on various bridges. Since the maximum moments in the girders are con-
sidered to be midspan, the trucks have to be arranged so that the center axle
of each three-axle truck is located at midspan. This loading condition 1s
possible when one truck passes another in the adjacent lane, as shown in
Fig. 5.1.

It has been mentioned previousiy that the infiuence lines for mo-
ment at midspan of the edge girder are convex curves, but those for the
interior girders are slightly concave. Thus, the moment at midspan in an
edge girder due to the truck loads may be greater than that in the 1nterior
girder even though the moment due to 4-wheel loading at midspan was less.

With the influence iines for moment at midspan, the maximum mo-
ments in the significant girder of the standard bridge subjected to two
trucks were obtained for various girder spacings. Two trucks with HS20
loadings as shown in Fig. 5.i{b} were considered. The relationships between
the maximum moment in the significant girder and the girder spacing for the

bridges without diaphragms, with varicus locations of diaphragms, and with
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the torsional stiffnesses of the girders equivalent to the box section, are
given in Fig. 5.40., Loading condition with the outer line of wheels over the
edge girder or 2 ft from the girder were considered. The relative diaphragm
stiffnesses were 0.05, 0.20, and 1000.

The curves show that the maximum moments in the girders are greatly
reduced for the bridge with box section girders, for both loading conditions.
But the curves of the bridges with diaphragms show that the maximum moments
may either increase or decrease depending on the loading condition, the
stiffness of diaphragm, and the girder spacing.

If the outef wheel can come over the edge girder, the maximum mo-
ments in the girder of the bridges with I-section are 0.390 Pa and 0.665 Pa
for b = 5 and 9 ft, respectively. But, the maximum moments for the corres-
ponding b of the bridges with box sections, are 0.330 Pa and 0.490 Pa, which
are 84.7 percent and 73.7 percent of moment in the I-section bridges. It
is noted that the coefficients for the box section girders and for the I-
section for small girder spacings are taken from the curves in which the
outer wheel is Tocated at jeast 2 ft from the edge girder, since this gives
the maximum values.

In adding the diaphragms at various iocations, the curves show that
the maximum moments are increased for any girder spacing and relative dia-
phragm stiffness, except that the moment for b = 5 ft and « = 0.05, is
slightly reduced. The increase of moment corresponds to the increase of the
diaphragm stiffness. Thus, diaphragms shouid not be added to this stendard
bridge if the outer wheei may come over the edge girder.

It is noted that, for < = 0.05 and 0.20, the curves for & diaphragm
at midspan, two diaphragms at 5/12 points, and three diaphragms, are almost

identical.
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If the outer wheel i1s located at least 2 ft from the edge girder,
the maximum moments 1n the girder of the bridges with I-section girders are
0.390 Pa and 0.660 Pa and b = 5 and 9 ft, respectively. For the same gir-
der spacings, the maximum moments in the girder of the bridges with box
section girders, are 0.330 Pa and 0.461 Pa, which are 84.7 percent and 70
percent of the I-section bridges.

The maximum moments are also reduced by adding diaphragms at var-
jous Tocations, except a stiff diaphragm should not be placed at or close
to midspan for the larger values of b, For these three values of «, the
curves show that the mostveffective diaphragm stiffness are 0.05 for b =
7, 8, and 9 ft, and 0-20 for b = 5 and 6 ft. The three most effective
Tocations of diaphragms are midspan, 5/12 points, and midspan and quarter-
points. However, the differences of moments among these three locations of
diaphragms are small. Thus, a diaphragm at midspan 1s oreferable, since
it is more economical-

For « = 0,05, the maximum moments are controlled by the interior
girder for any girder spacing and location of diaphragms. 1f « = 0.20 or
greater, the edge girder becomes significant for the three effective loca-
tions of diaphragms and b = 7, & and 9 ft, thus the maximum moments are
increased, However, for b = 5 and 6 ft, the maximum moments are still con-
trolled by the interior girder, so the values are smaller than those with
k = 0.05. If « = 1000, the maximum moments are controlled by the edge gir-
der, except the bridge with two diaphragms at quarter-points, and b = 5 ft
for other Tocations of diaphragms.

It has been discussed in Sec. 5.6.3 that the transition points

where the maximum moments change from the interior girder to the edge girder
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of this standard bridge subjected to 4-wheel loadings are at the values of
« = 0,15 and 0.20 for b = 9 and 7 ft, respectively. However, since the
influence lines for moment at midspan of the edge girders are convex curves
and for the interior girders are concave curves, the moment in the edge -
girder due to the truck loads is greater than that in the interior girder,
with the same diaphragm stiffnesses.

Thus; the most effective values of « determined from the 4-wheel
loadings as discussed in Sec. 5.6.3 have to be reduced for turck loadings.
The values of « for this standard bridge shdu]d be less than 0.20 for a
diaphragm located at midspan 1f b is equal to or greater than 7 ft. It has
been found that the maximum moment due to the truck loads is still taken by
the edge girder for < = 0.10 and b = 9 ft, while an interior girder controls
if <= 0. |

It may be concluded that a diaphragm, with < varying from 0.05 to
0.20 depending on the value of b, located at midspan is effective for this
standard bridge, if the outer wheel 1s located at least 2 ft from the edge
girder. The value of « = 0.05 corresponds to b = 9 ft, and « = 0,20 cor-
responds to b = 5 ft. For b =« 5 ft, the maximum moment can be reduced from
0.390 Pa to 0.330 Pa by adding a diaphragm with < = 0.20 at the midspan
9 ft,

i

of the bridge. The latter moment :3s 85 percent of the former. For b

[+ 13

the maximum moment can be reduced from 0.660 Pa to 0.570 Pa by adding
diaphragm with ~ = 0.05 at the midspan. The percentage for this case is
86 percent.

If the outer wheel can come over the edge girder, the diaphragms

should not be added tc the bridge.



Chapter 6
RECOMMENDATION FOR DESIGN

The slab and girder bridge is a very complicated structure. A very
large amount of computation is needed to obtain, accurately, the forces in
the girders, and this 1s usually not possible in practice. Consequently, 1n
present design practice, assumptions have been made which neglect the ef-
fects of some important parameters controlling the Toad distribution in this
type of structure.

In the present analysis of the slab and girder bridges with pre-
stressed concrete I-section girders, the most important parameters affecting
the load distribution, as discussed in Chapter 2 , have been taken into ac-
count., With the aid of an electronic computer, a large number of bridgés
have been analyzed, taking into account the ranges of the various parameters.

The results obtained from this study and discussed in Chapter 5
have provided information for the bridge engineers to design this compli-
cated structure with a more realistic and accurate method. A set of curves
of the influence lines for moment at midspan and moment enveigpes due to
4-wheel loadings moving along the span of the bridges with prestressed
concrete I-section girders is presented in F;gs, 5.21 to 5.26.

This set of curves can be used to determine design moments for any
bridges with the ratio of the relative bridge geometry, b/a = 0.20 to 0.05,
the ratio of the relative girder stiffness, H = 5 to 40, and the girder
spacing, b = 5 to 9 ft. With this range of b/a and the present standard
prestressed concrete I-section girders, the curves may be used for the bridges

with spans varying from 30 to 150 ft. The curves presented in Figs. 5.27 and
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5.28 give a general method of obtaining the moment coeftficients if the values
of b/a and H are not exactly the same as those given in Figs. 5.21 to 5.26.

The curves are provided for two loading conditions, namely, when
the outer load, P, can come over the edge girder, and when 1t is located at
least 2 ft from the edge girder. However, in the bridges with any values
of H from 5 to 40 and for b/a = 0.15 and 0.20, and for H = 40 and b/a = 0.10,
the maximum moments are always in Girder C, and the controlling loading is
always with the outer P located at feast 2 ft from the edge girder.

For the bridges with b/a = 0.05 and H = 10 and 20 and with the
outer load, P, located at least 2 ft from the edge girder, the moment at
midspan of the interior girder is greater than the edge girder if the 4-wheel
loads are located at midspan, but it may be iess than that of the edge girder
if the loads are located away from the midspan. Thus, the curves of both
the interior and edge girders are given, since the moments due to the truck
loads may be greater for the edge girder.

The maximum moment in the girders due to the truck Toads can be
obtained by placing the trucks as shown tn Fig. 5.1. The axles of these
two adjacent trucks form & number of 4-wheel loadings, and the design mo-
ment coefficients are obtained by adding the appropriate ordinates of the
influence lines for moment at midspan, using the curves for the proper vaiues
of b/a, H, and b, If these values do not correspond exactly to those of the
bridge being designed; interpoiations should be made. The total moment 15
determined by summing up the moment coeftficients and multiplying by the
load, P, and span, a.

The study of the effects of diaphragms on the load distribution

of this type of structure shows that the addition of diaphragms in the
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prestressed concrete I-section girder bridge does not always reduce the
maximum moments. In certain cases, they increase the maximum moments and
thus cause harmful effects. It was found that a flexible diaphragm pro-
perly located may have more advantageous effects than two stiffer diaphragms
at some cher locations. At the same location in the bridge, a flexible
diaphragm may reduce the maximum moment, but a stiffer diaphragm may in-
crease it. Thus, a stiff diaphragm is not necessarily better than a flexible
one in accomplishing its purpose of lowering the controlling moment in a
certain girder.
From the exteﬁsive study of the effects of diaphragms on various
bridges, it was found that the addition of diaphragms to a bridge already
having a uniform load distribution may either reduce or increase the maxi-
mum moment, depeﬁding on the loading conditions and girder spacing. For
bridges having a less uniform load distribution, the addition of diaphragms
may reduce the maximum moments significantly.
For the purpose of helping determine whether a diaphragm may be
effective for particular cases, the bridges, with the restriction that the
value of H should not be less than 5, may be classified into three groups
as follows:
1. Bridges with uniform load distribution: Values of b/a not
greater than 0.10, with the upper 1imits of H = 40 for b/a =
0.05 and 10 for b/a = 0.10. For b/a between 0.05 to 0.10,
the upper fimit of H may be obtained from the interpolation
between H = 10 and 40.

2. Bridges with fairly uniform load distribution: Vaiues of
b/a not greater than 0.15 with the lower limits of H = 40

for b/a = 0.05 and 10 for bj/a = 0.10, and the upper limits
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of H = 60 for b/a = 0.05 and 10 for b/a = 0.15. For b/a
between 0.05 and 0.15, the upper 1imit of H may be obtained
by interpolation between H = 10 and 60.

3. Bridges with nonuniform load distribution: Values of b/a
not less than 0.05, and the lower 1imits of H are 60 and
10 for b/a = 0.05 and 0.15, respectively. For b/a between
0,05 and 0.15, the lower limit of H may be obtained from the
interpolation between 10 and 60.

These relationships are shown graphically in Fig. 6.1,

Since the pufpose of a good design 1s to utilize the material to
its best advantage, it is wmmportant in the design of the diaphragms for this
type of bridge to choose the appropriate stiffness of diaphragm to be
placed at the most effective location for a certain bridge. A study of the
results of the analysis, however, leads to certain conciusions of the be-
havior of bridges with diaphragms. These conciusions may serve as useful
rules in actual practice in obtaining the most benefit from diaphragms in
the slab and girder bridges with prestressed concrete [-section girders.
The rules that follow are derived entirely from this analytical study and
apply directly to simpie-span right bridges consisting of a continuous slab
supported by at least five 1dentical girders with the girder spacing between
the Timits of 5 to 9 ft:

1. For bridges classified as having uniform load distribution,
diaphragms should not be added if the oute: P may come over
the edge grrder. if the outer P is located at least 2 ft
from the edge girder, unless b/a is less than 0.10 and b =

9 ft, a fiexible or tairly flexible diaphragm, « = 0.05 for
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b=71to9 ft and « = 0.10 for b = 5 and 6 ft, may be added
to the bridge at the midspan. The maximum moment in the
bridge may be taken as 95 percent of that in the same bridge
without the diaphragnm.

For bridges classified as having fairly uniform load distri-
bution, diaphragms should not be added if the outer P may
come over the edge girder:. If the outer P is located at
least 2 ft from the edge girder, a fairly flexible or medium
.stiff diaphragm, « = 0.10 for b = 7 to 9 ft and 0.20 for b =
5and 6 ft; may be added to the bridge at the midspan. The
maximum moment in the bridge may be taken as 85 to 90 per-

cent of the moment in the same bridge without the diaphragm.

For bridges classified as having nonuniform load distribution,

a midspan diaphragm may be added to certain bridges as follows:

If the outer P may come over the edge girder:
a. « = (0,05, for bridge with b/a + 0.10 and b = 5 to 7 ft,
and b/a = 0.10 to 0.15 with b = 8 or 9 ft;

b. « = 0.05 to 0,10 for bridge with b/a = 0.10 to 0.15 and
b=15 to 7 ft, the larger « corresponding to the larger
b/a;

c. x = 0,10 to 0.15 for bridge with b/a = 0.15 to 0.20 and
b=8or 9 ft, the larger « corresponding to the larger
b/a;

d. « = 0.15 to G.40 for bridge with b/a = 0.15 to 0.20
and b = 5 to 7 ft, the larger « corresponding to the

larger b/a.
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The maximum moment in the bridge may be taken as 90 percent of
the moment in the same bridge without diaphragms for cases a,
b, and d, and 85 percent for case C.

If the outer P i1s at least 2 ft from the edge girder:

a. « = 0,15 for a bridge with b/a not greater than 0.10;

0.15 to 0.40 for a bridge with b/a = 0.10 to 0.15;

o
oY
1
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0.40 for a bridge with b/a = 0,15 to 0.20.
The maximum moment in the bridge may be taken as 85 percent
of that in the same bridge without diaphragms, for b = 5
and 6 ft; and 80 percent for b = 7 to 9 ft.

In the study of the standard bridge with the torsional stiffnesses
of the girders equivaient to those of the prestressed concrete box section,
the results show that the maximum moment of the bridge is reduced substan-
tially. For example, the maximum moment in the bridge with box section
girders is 85 percent of that of the I-section girders if b = 5 ft, and 70
percent if b = 9 ft.

The results of this study lead to a suggestion that a thorough
study of bridges with prestressed concrete box section girders should be
made. The influence lines for moment at midspan and moment envelopes should
be obtained for practical use. The study of bridges with prestressed
concrete box section girders may show that it 1s possible to use limit

design concepts for this type of bridge.
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Chapter 7

SUMMARY

The method of analysis for solving the problems of slab and girder.

bridges is presented in Chapter 3 and in Appendixes A, B, and C. The flexi-
bility method using Fourier series type solution was used. The in-plane
forces and the torsional and warping stiffnesses of the girders are taken
into consideration. The method of analysis of the effects of diaphragms

is also developed, and is presented in Chapter 4 and Appendix D. A computer
program has been written for the IBM-360/75.

With the aid of the electronic computer, a large number of bridges
has been analyzed. The structures considered in the analyses are simple-
span right bridges, consisting of a continuous slab supported by five uni-
formly spaced parallel girders of equal stiffness, with the girders running
in the direction of traffic.

A bridge with six girders was analyzed, and the results compared
with those for five girder bridges. In order to study the effects of the
torsional and warping stiffnesses of the girders, a standard bridge has
also been analyzed, varying these parameters. The torsional stiffness is
increased up to that of the box section girder,

The diaphragms, which are usually cast monolithically with the
slab, were modified for purposes of analysis as discussed in Chapter 4. In
this study, a number of these structures with different proportions with
diaphragms of various stiffnesses and at different locations in the bridge
are considered.

Several variable parameters were studied, including:
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1. Relative dmmensions of the bridge,

2. Relative stiffness of girders to that of the slab,

3. Relative torsional to flexural stiffness of girder,

4. Relative warping to torsional stiffness of girder,

5. Relative stiffness of diaphragm to that of girder,

6. Number and location of diaphragms in the structure,

7. Type and location of loadings.

Studies of the practical ranges bf these parameters are presented 1n
Chapter 2.

The results of the analyses were discussed in Chapter 5. Several
kinds of curves are presented in Figs. 5.3 to 5.40. The influence lines
for maximum moment in the girder at midspan and moment envelopes due to
4-wheel Toadings moving along the span for a series of bridges suitable for
spans ranging from 25 to 150 ft and with relative girder stiffnesses cor-
responding to standard prestressed concrete I-sections are presented 1n
Figs. 5.21 to 5.26. The purpose of providing these curves is to enable the
designer to obtain the maximum moments due to the truck loadings, and to
aid in location of the profile of the prestressing strands.

In the study of the effects of diaphragms on this type of struc-
ture, comparisons were made to obtain the most effective stiffnesses and
locations of diaphragms for various bridges. The criterion of comparison
is, in general, the maximum moment 1n the g{rders produced by a concentrated
load, the 4-wheel loading, and the truck loading. These studies are pre-
sented in Cahpter 5 and certain rules that should lead to favorable use
of diaphragms 1n slab and girder bridges with prestressed concrete I-sections

are formulated in Chapter 6
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The'output from the computer has aiso provided information, for
future study, on the forces in the diaphragms, and the shearing forces be-
tween the slab and the top flange of the girders of the bridges. This infor-
mation is necessary if the diaphragms and shear connectors are to be properly
designed.

A number of important conclusions concerning the effects of diaphragms
on the distribution of moments within the bridge structure may be drawn, as
was shown in Chapter 6.

First, the addition of diaphragms to a structure may not reduce the
maximum moments and may in .some cases cause moderate increases. The addition
of diaphragms to a bridge with a span in excess of 60 or 70 ft produces either
no reduction or an increase in maximum girder moments. Properly designed dia—

phragms may be capable of reducing the maximum moments in some structures,

usually in the cases of short span structures with relatively wide beam spacings.

In no case can diaphragms result in major reductions in controlling moments.

Second, only diaphragms at or very near the section of maximum moment
can cause measurable changes in the controlling girder moments. A single dia-
phragm at midspan or two diaphragms iocated one sixth of the span each side of
midspan were found to have the same effects, though not the same costs. Dia-
phragms located at the third or quarter points of the span were not effective
in reducing the maximum moments in the girders.

Third, the diaphragm must be of the correct flexural stiffness to be
effective. Increasing the stiffness of a diaphragm beyond some particular
value may lead to maximum moment values in excess of those existing before the

diaphragm was added, even if the structure being considered is one which dia-

phragms can help.
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Table 2.1

*
Strength of Concrete

Stored in the Lab

Stored in the Field

Tg?e Age fé E** Age fé E**
Concrete days psi in 10° psi days psi |in 106 psi
16 5512 3.37 16 4930 3.45

28 6128 3.63 28 5142 3.37

Girder 90 7053 3.62 90 5906 3.24
219 6840 4.19 219 7856 4.73

420 5630 3.87 420 6920 4,57

29 6200 4.83 29 6560 5.50

Slab 202 5400 4.55 202 5820 4,66
367 6310 4,53 364 7050 4.90

Values based on the average of three cylinders.

**

Values measured from stress-strain curves.
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Parameters for Studies of Bridges Without Diaphragms

Table 2,2

rp.mu

Dimensionless Parameters Dimension Parameters Range
Bridge Girder Stab Beam | Depth of Span
span,: spacing,| thickness,

b/a H T Q a, ft b, ft h, in, No. in. ft
0.20 5 0.028 0.014 42.50 8.50 8.00 1 28
10 0.026 0.015 42 .50 8.50 6.00 1 28 25 -~ 45
20 0.018 0.037 35.00 7.00 6.00 3 36
0.15 5 0.029 0.012 46,75 7.00 7.50 1 28
10 0.013 0.020 56 .50 8.50 8.00 5 44 35 - 60
20 0.0i2 0.023 56.50 8.50 7.00 7 48
40 0.070 0.037 55.00 8.25 6.00 8 54
0.10 5 0.028 0.008 55.00 5.50 7.75 2 32
10 0.012 0.012 80.00 8,00 8.00 7 48 50 - 90
20 0.011 0.015 80.00 8.00 6.75 8 54
40 0.009 0.028 80,00 8.00 6.50 10 68
0.05 10 0.012 | 0.008 120.00 6.00 8.00 9 60
20 0.010 0.012 120.00 6.00 7.00 10 68 90 -180
40 0,009 0.014 130.00 6.50 6.00 11 78
SR A A e I o 2. s B s e B

0cl



Table 2.3

Parameters for Studies of the
Effects of Torsion and Warping

Dimensioniess Parameters

b/a Heoo| T Q

0.10 20 0.0001 0, 0.01, 0.02, 0.04
0,01 0, 0.01, 0.02, 0.04
0.02 0, 0.01, 0.02, 0.04
0.04 0, 0.01, 0.02, 0.04
0.06 0
0.10 0
0.20 0
0.40 0
0.60 0
1,00 0




Table 2.4

Parameters for Studies of Effects of Diaphragm

Dimensionless Parameters

Dimension Parameters

Bridge | Girder STab
b/a H T Q K Span, |Spacing, | Thickness,
a, ft b, ft h, in.
0.20 20 0.012 | 0.055 | 0.05, O0.10, 0.20, 0.40 35.00 7.00 6.00
0.15 20 0.012 | 0.023 | 0.05, 0.10, 0.20, 0.40 56 .50 8.50 7.00
0.10 5 0.012(0.018 | 0.05, 0.10, 0.20, 0.40 55.00 5.50 7.75
10 0.012 {0.012 | 0.05, 0.10, 0.20, 0.40 80.00 8.00 8.00
20 0,011 }0.015 | 0,05, 0,70, 0.20, 0.40 80.00 8.00 6.75
0.60, 1.00, 71000
40 0.009 | 0.028 | 0.05, 0.10, 0.20, 0.40 80.00 8.00 6.50
0.05 20 0.010 | 0.012 | 0.05, o0.10, 0.20, 0.40 120.00 6.00 7.00
~~~~~~ A T e T TN o I s B et A Bt B

acl
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Table 2.5

Locations of Diaphragms

Number of Ratio of Diaphragm Coordinate to Span Length
Diaphragms
xd]/a xdz/a xd3/a

1 6/12

2 5/12 7/12

2 4712 8/12

2 3/12 9/12

3 6/12 3/12 9/12
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Table 5.1

Listing of Girders Subjected to the

Maximum Moment in Bridges

Girder Outer P on Quter P at least 2 ft
Ratio, Spacing, Girder A from Girder A
b/a H b
ft Girder Girder

0,20 5 5 o C
6 C C
7 C C
8 - C C
9 A&C o
10 5 o C
6 C C
7 C C
8 C C
9 C C
20 5 C C
6 o C
7 C C
8 C C
9 C C
0.15 5 5 C C
6 B C
7 A o
8 A B
9 A B
10 5 C C
6 C C
7 C o
8 C o
9 C o
20 5 o C
6 C C
7 C C
8 C C
9 C C
40 5 C C
6 C C
7 C C
8 C C
9 C C

.y

Popern

uuuq

2
1

3
.

LB

Aty



125

Table 5.1 (Cont.)

Ratio,
b/a

Girder
Spacing,
b

ft

Quter P on
Girder A

Girder

Quter P at least 2 ft
from Girder A

Girder

10

20

40
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ao
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(a) Five-Girder Bridge
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(b) Six-Girder Bridge

FIG. 1.1  CROSS SECTION OF BRIDGES
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APPENDIX A

SUMMARY OF FUNDAMENTAL RELATIONS OF ORDINARY THEORY OF
FLEXURE FOR SLABS AND DERIVATION OF FORMULAS

A.1 Fundamental Relations and Basic Assumptions

The basic assumptions for the ordinary theory of flexure of slabs
are:
1. The material in the slab is homogeneous, elastic, and isotropic,
2. The slab is of uniform thickness, |
3. The loads applied on the-slab are normal to its plane. On
any cross section, there is no resultant force in the direc-
tion of the plane of the slab, and

4., The flexural strains vary ]1near1y through the depth of the

slab.

Aerronatd W L]

L aat BN . AL, ]

The derivations of the fundamental equations are available in any

books of plate theory. The necessary relations are summarized here.

The fundamental equation for the flexure of slabs is the governing

differential equation:

v (vow) = 342 + 2 24W2 + 842 = £ (A.1)
3X ax"ay. 3y
where
W slab deflection,
o applied load, and
D slab stiffness as given by the expression
; B £ h” o)

where h

slab thickness.



226

The forces acting on cross-sections of the slab are shown in Fig.

1.4.

The relationships between the bending and twisting moments -and
the deflections, shears and deflections, and reactions on the edges and de-

flections, are:

For Moments

"‘ -\
2 2
My = -D é—g' Tow @_%%
| 3X 3y~ |
ﬂazw azwq
Y _ay2 X" |
2
- N1 W
Mxy = -D(1-u) XY
For Shears
V = _D __3_[-3_2_".4_ + aZW_]
X 9X Laxz ayL
(A.4)
V = _D _a_ a_zw. + ﬁ
Yy 3y ax2 ayz
For Reactions
Reaction on an edge normal to the x-axis
3 3
R, = -D| 2% + (2-) T
BX 3X3Yy
and on an edge normal to the y-axis (A.5)

3 3
R, = D[4 + (2-u) 23
Y oy aX "3y
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A.2 General Solution of the Fundamental Equation for Slabs

Under certain conditions mentioned in Section A.1, the fundamental
equation of the ordinary theory of flexure for slabs-is:

3% + 2 a4w + 52 - D
Z 2.2 4 ~ D
X ax"ay 3y

The analysis of the slab problems involves the solution of the
differential equation A.1 and satisfying the boundary conditions at the same
time. |

For a slab simply supported on two opposite edges, the solution
may -be in-the form of a series:

W= m; Y sinl“—;’-’i (A.6)

For a rectangular slab shown in Fig. 3.3, with the sides x = 0 and x = a

- simply -supported and the sides y = 0 and y = c-restrained in some arbitrary

manner, Eq. A.6 automatically-satisfies the -boundary condition of the first

two sides.

With the notation

o = o (A.7)

the slopes, moments, shears, and reactions given in Section A.1 may be

written in terms of the deflection of Eq. A.6 and-with the notation in A.7

as follows:
- Slopes
COW o
Ey‘ = o Ym sin amx
(A.8)
W _
e Ym cos amX
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Moments
M, = Doz2 Ly -uY”] sin a_X
X mtm*©"m m
_ 2 1 ‘ .
My = Dam [—Ym +qu] sin o X (A.9)
M =—-Da2 (1-1) Yl cos a_X
Xy m Mo m
Shears
V., = Da3 [y —Y'l] cos o X
X m-mm m
(A.10)
_ 3 1 [ ] .
Vy = Dam [Ym-Ym ] sin o X
Reactions
R, = Da3 [y -(2- )Y)IJ cos o X
X mbtim VTR Iy m
(A.17)
_ 3 ] i .
R.y = Dam [(Z—u)Ym-Ym ] sin o X
Load
b= Dot [Y -2Y 4Y 7 sin ax
mEmSm m m

Since the equations for slopes; moments,  shears, and reactions all
consist of sine curves or cosine curves in the x-direction and_Ym, which is
in functions of y only, the solution of the problem-lies in the determina-
tion of_Ym.

For further simplification of the solution; the deflection w in

‘Eq. A.6 may be stated in two parts:

% = Wp + W (A.]3)
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where'wpris the solution-for the Tloading for-the particular value-of m-which
satisfies -Eq. A.T1, -but may-not satisfy the boundaryftonditions. On the other
hand, the function Wes which is the complementary solution, does satisfy

the boundary conditions without Tateral load, i.e., W satisfies the dif-

ferential equation

34WC 94WC 84WC
7 + 2 55 + T = 0 (A.14)
X ax“dy dy

Therefore, the summation of these two functions satisfies all of
the boundary conditions for the particular value-of m.
The -solution of Eq. A.14 is the same form-as Eq. A.6 and may be

written as:

we = Yo sinax o (A.15)

where Ym is a function of y only. For a rectangular slab, shown in Fig.

3.3, with two edges parallel to the y-axis simply supported; and the other

- two restrained in any manner; -Eq. A.15 automatically satisfies the boundary

- conditions of the first two edges. It is necessary to-determine Ym in such

a form as to satisfy the -boundary -conditions of the other two edges.
By substituting the deflection, Eq. A.15, in the differential

equation A.14

[ai Y- 2 i Ym £ Tsinax = 0 (A.16)

the general form of Ym can be - found to be
Ym = Am sinh oy + Bm cosh @y + Cmamy sinh oy : )
A.17

+- Dmamy»COSh amy
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The four constants in Eq. A.17 are -determined from the boundary

conditions at the edges of the slab y = 0 andy = c. -Its derivatives are:

_Ym = (Bm +va)-Sinh oy +-(Am + Dm)-cosh oy +

Dmozmy-sinh a Y +VCmamy-cosh a Yy

Y = (Am + 2Dm) sinh oy +»(Bm + 2Cm)-c05h ay + ( |
- (A.18

Cmamy-sinh Y +VDmamyrcosh Y
Y = (Bm +-3€m) sinh oY +v(Am + 3Dm) -cosh oy +

: Dmozmy sinh a Yy +_Cmcxmyf cosh oy

A.3 Formulas for Flexibility Constants for a Panel of-Slab

.- Consider the case of a sine wave of edge reaction acting-at the
edge y = ¢ of the slab shown in Fig. 3.4, the edge y = 0 remaining free. The
- cross-section of the slab parallel to the y-axis-is shown in Fig. 3.5(a). -The

boundary condi ti on\s for this case may -be stated as follows:

Aty =0
.3 3
R= =D 2%+ () 5| = 0
Lay aX oy o
- (A.19)
2 2
Moo= |2y udy =0
| 3y ax
Aty = ¢
3 3
W w :
R = -D|=%+ (2-u) = R__sin a_x
Ly3 axéay} rm m
(A.20)
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Since there is no load on the slab, the complementary solution only

is required; i.e., wp =0 and w = We-
With these four boundary conditions, the four constants Am’ Bm’
Cm, and Dm of Eq. A.17 can be found as follows:

po- (dH) o oo (e By sinhs .
" ) 3| (3r0)5sinh® g -(1-w)%L | ™
. (A.27)
B = -2 (¢ -_2 (3+u) sinh g +(1-u)e_ cosh 8 .
" e (1'U)Da; (3+1)° sinn® Bm-(]-u)2 gg rm
where
= = It
n “n a (A.22)

Since the deflections, and fhe slopes in the y-direction, are the
function of the sine wave; the genéfa1 expressions can be obtained by sub-
stituting the four constants in Eq. A.21 into Eq. A.17 and the first of Egs.
A.18, and multiplied by sin o X Consequently, the deflections and the rota-
tions at the edges can be determined by substituting the corresponding values

of y for each edge. The results are:

Aty =0
Wy = Frf er sin amx
(A.23)
e] = FCf er sin amx
At y = c
Wr = Frn er sin amx
' (A.24)
8. = F R sin a_x

r cn rm m
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where

- _ 5 (3+n) sinh sm+(1-u)sm cosh B

rf (1-u)Da£ (3+u)251nh28m - (]-u)2 Bé

- _ 2 Bm sinh Bm

ol | (3nw)Ssinn®e - (1-w)%°

(A.25)

- i 0 (3+u)S'inthCOSth + (]—u)Bm

e | (3 Bsinn®s - (1-0)%E

i : (1+u) (3u)sinn%s, - (1-u)%8]
M (1-wed | (an)Psinhe - (1-)%;
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Now consider the case of a-sine wave -of edge moment acting at the
same edge y = ¢ of the slab shown in Fig. 3.4, the -edge y = 0 remaining free.
- The cross section of the slab parallel to the simply supported edges is

shown in Fig. 3.5(b). The boundary conditions for this case may be -stated

as follows:
Aty =0
! 3
R = -D 3—‘53’-1»(2-“)32””}: 0
Y ox oy (A.26)
C 2 2
M o= -D[&F+uig =0
oy oX
Aty = ¢
3 : 3
R = -D §—W§+(2-u) 32W =0
oy aX 3y
- (A.27)
2 2
9 W O W .
M = -D|l—5+ uv=—x 1= M_ sin a_X
{ayz aX2 } rm m

Since there-is no 1oad'pn the slab, wp =0andw=w_.
The four constants of Eq. A.17 can be found as follows:

A = (]'*'Ll) D = (]+U) [(3-'-11) sinh Bm_(]-“)sm cosh BITIJM
) ' rm

mo U el | (3407 sinn® g -(1-0)7 62

(A.28)

los)
1)

2 ¢ =2 By STNN By, M
" T el | (360)? sinh? s - (1) %60 | T

The deflections and the rotations at the edges can be found from
Eqs. A.17, A.18 and the four constants in Eq. A.28 as follows:
At y =0

Wy o= Fcf Mrm sin amx
(A.29)

M sin o x

® “mf rm m
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Aty = ¢
W, = 'Fcn Mrm sin o, X
er = -an Mrm sin umX

where
Fcf and Fcn are given in Eq. A.25
- 2 [ (3+u) sinh 8 -(1-p)g_ cosh 6
M (1-wDa | (3+0) s1nh28 -(1-w)% ¢
Eo. o [ (3+u)sinh B cosh B -(1 u) B
mn 2 2 2

(T-u)Do | (3 1) sinh By (1-1)" 8

A.4 - Formulas for Flexibility Constants Due to A Concentrated Load

It is necessary to determine the displacements at the edge y =

and y =

distributed in sine curves in x-direction

P

on the line y

(]

P

Since

i X
pm S1n am

=y , and

p:

2P .
=5 sin amxp

-

¢ for the slab shown in Fig. 3.3 due to a concentrated load P

(A.30)

(A.31)

0

(A.32)

a sine wave of loading produces a sine wave of -edge deflec-

- tion, and also since a sine wave of edge reaction produces a deflection with

ordinates varying as a sine wave; Maxwell's theorem of reciprocal deflec-

tions can be applied to obtain the edge deflections.

With all quantities given as sine waves-in-the x-direction, the

deflection in the sTab on the line y =

of the edge y =
- the edge y

c when edge y =

= ¢ due to a unit load applied-at the -center -of the line y =

yp due to a unit reaction-at the center

0 is free, is equal to the deflection along

yp-

i
—————

o e

v 14
1
A
—a bensrant
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These-reciprocé]-re]ations may -be written as follows:

X
n

T er sina X = p Py SIN o X

(A.33)

=
1]

W sin a x = 'w

m Wrm sin osz

r

The deflection of the slab subjected to the reaction at the edge
y = C, the edge y = 0 remaining free, is treated in Section A.3 of this

Appendix. The deflection of the slab due to the reaction

e
]

Rm sin amX

at the edge y =-c, can be written in terms of the four constants in Egs.
A.21. With the reciprocal relations given in Eqs. A.33, the deflection at
the edge y = ¢ due to this sinusoidal Toading on the line y = yp,vcan be

formulated, with the -quantity Yy = aﬁyp, as follows:

Wem = Far Py (A.34)
where
1 . .
- F = [g_ sinh 8_{(1+u) sinh y_+(1-u)y_. coshy_}
I 0al ((3+)%sinh? B -(1-u)%B0) " m m m m
+ {(3+y) sinh 6m+(1-u)8m cosh Bm}
2 .
{(T:LT) cosh Ym-ym sinh Ym}] (A.35)
The deflection at the edge y = 0 due to this Toad can be stated
as follows:
Wim = Far Py (A.36)
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where F,; can be obtained from substituting Yo = am(c—yp)~for o in Eq. A.35.
'I . . ] } 1
F = [ sinh 8 _{(1+n) sinh y _+(1-u)y. cosh vy }
T ) (3% sinh? g (1%l M me T

-~ + {(3+u) sinh Bm"‘(]-u)Bm-COSh Bm}
’{(T%E) cosh y -y sinhy 31 (A.37)

In a manner -similar to that used to determine the edge deflections,
the rotation-at the edge y = ¢ of the slab shown-in Fig. 3.3 due -to a sinusoidal
load

P = P sinox

acting on the Tine y =.yp is -obtained from the case-of -the slab -subjected to
a sinusoidal edge moment-at the-edge y =-c, the -edge y = 0 remaining free, as
- treated in -Section A.3 of this Appendix. - The reciprocal relations of this

- case ‘may -be formulated -as follows:

Mr = Mrm sina X = -p = -p_Sin a X
(A.38)
w o= W sinax = 8 = 8, sinax
from which the rotation at the edge y = ¢ can -be written as
8 = “Trr P (A.39)

The minus sign is required by the sign convention.
The flexibility coefficient Frp can be -obtained from Eq. A.17 and

four constants in Eqs. A.28, and may be formulated as follows:
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5 1 [8m sinh Bm{Z cosh ym-(T-u)y

F = sinh vy _}
re Da%{(3+u) sinh? sm-(1-u)23$} m

m

-~ = {(3+n) sinh Bm-(1-u)sm cosh sm}

—

+u
-y

{(s=1) sinh Yo oY cosh Ym}] (A.40)

——

m

The rotation at the edge y = 0 due to this load is

oy = F

m r1 P (A.47)

In a manner similar to that used to determine the edge deflection,
the flexibility coefficient Fr1 can be formulated with the quantity ym =
am(c—yp)»as follows:

m

1

= sinh yi}
T pali(3r0)? sinh? g -(1-) m

7.7, [, sinh g {2 cosh ym-(1-u)y
R

- {(3+u)-s1'nh_8m-(1-u)6m cosh g}

m

1+

{(m) sinh Yy~ Y cosh Y ] (A.42)
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APPENDIX B

SUMMARY OF FUNDAMENTAL RELATIONS OF PLANE STRESS THEORY
OF ELASTICITY FOR SLABS AND DERIVATION OF FORMULAS

B.1 Fundamental Relations and Basic Assumptions

The basic assumptions for plane stress theory of elasticity are:

1. The slab is made of isotropic Hookian material,

2. The deformations of the structures are assumed small, and

3. End diaphragms prevent only vertical deflections at edges

at x = 0 and x = a (Fig. 3.7).

The derivations -of the fundamental equations can be found from any
book about the theory of elasticity. The necessary relations, with the ab-
sence of body forces and temperature chgnge,-are summarized here.

The stresses acting on cross-sections of a slab are shown in

Fig. 1.5.

Stress-Strain Relationships

1
e, = ¢ log- uoy]
ey = ¢ loy -] (8.1)
. 20+
Yxy E Txy
Strain-Displacement Relationships
= U
€x 3X
= 3V
&:y = } _ (B.2)
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Fquilibrium Equations

In the x-direction

30 5T '
X 4 XY - o

3X 3y (B.3)

In the y-direction

3 3
TX N g _ O
3X QY

Compatability Equation

In terms of strain

3y
Yy - Xy
+ (B.4)
3y axz X3y

Boundary Conditions

X

o, + mt

X Xy
(B.5)
Y = mcy+ ]Txy

The solution of the plane stress problem for an elastic slab reduces
to the integration of the differential equations (Eq. B.3) and the compati-
bility equation (Eq. B.4)-and satisfying the boundary conditions (Eq. B.5).
The usual -method of solving these -equations is by -using the stress function,
®, which-is introduced by G. B. Airy. Consequently; the following relations

have been-derived in terms -of ¢, which is the function of x and y.

Stress-¢ Relationships
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2
39 :
o, = 22 (B.6)
Y %G |
.= 225
Xy aX3y

Strain-Displacement-¢ Relationships

=AU 1[2% _u 2% |
TX 3X E _ay2 3%

Coooav _1[d% _ a% ] (5.7)

y oy E|2 F 2y2 | | '

2
TV L A -2(1+u) 3%0

yo = A KA

Xy oy 9X E X3y

Compatibility Equation

4 4 4
32 4 32® s+ ] j = 0 (B.8)
59X ax“ay 3y g

B.2 General Solution of the Plane Stress for the Elastic Slab

-Since the stress function, ¢, has the-relations stated in-Eq. B.6,
it automatically satisfies the differential equations of equilibrium: (Eq.
B.3). Thus, the problem of the plane stress of the elastic-slab is reduced
to the solution of the differential equation of combatibi]ity7(Eq; B.8),
which satisfies the boundary conditions (Eq. B.5).

It is noted that the differential equation of compatibility (Eq.
- B.8) is jdentical to the fundamental differential equation (Eq. A.14) of
~ the ordinary theory of flexure of the slab with no lead on it. Consequently,

the solution of Eq. B.8 can be written in a form similar to Eq. A.15

¢ = o sin o X (B.9)

mm

where o is a function of y only, and o = 7

]
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In the case of the rectangular slab with the coordinate axes taken
parallel-to the edges of the slab, the boundary conditions in Eq. B.5 can
be simplified. For this particular problem; the span of the slab is in

the direction of x-axis so that the normal Nin Fig. 1.6 is parallel to

1]

- the y-axis, hence the direction cosines, 1 = 0 and m = £1. Equation B.5

then becomes

7' = i1
(B.10)

7- = *0

The positive signs of Eq. B.10 are taken when»the'normai N is in the positive
direction of the y-axis and the negative signs for the opposite direction
of N.

The stresses, strains, and displacements in Section B.1 can be

written in the following forms:

- Stresses
) 2 114
ox = am @m S1hn amX
- 2 : \
oy, T “op o, Sin o x (B.11)
2 1
rxy = -am @m COS o _X
Strains
2
Olm (]
L e + 3 .
EX E [@m u@m] sin amX
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Displacements
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Otrzn 11 .
= - [e +ue Isinax (B.12)
-2(T1+y) 2 !
= E am @m C0S o X
Olm [N
= - [@m + u @m] CoS o X + ‘F](.Y)
. (B.13)

- __m R
= 3 [Jfém dy + u @m] sin o x +_f2(x)

It is noted that, in a rectangular slab with two opposite edges

parallel to the y-axis simply supported; the functions f](y) and fz(x) are

zero.
- The

be reduced to

The

Ym in Section

= inh
@m am sin

The

from the four

equations for the displacements for this particular slab can

a
- T;E Lo,

+ nd oS
n m] cos o X

(B.14)

rnl SQ

1
+ 5 ,
[Jfém dy + v @m] sin o X
function ®m can be obtained in the same manner as the function

A. 2 of Appendix A. It may be stated as follows:

oy + b ocosh ay + coay-sinh ay+day coshay (B.15)

four constants am’ bm, C

boundary conditions at the edges y = 0, and y = c.- The

» and dm’ in Eq. B.15 are determined

derivatives of @m are:
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o = (byte,) sinh oy + (a +d ) cosh oy + d oy sinh ay + cay cosh ay

o = (am+2dm).sinh oy + (bm+2cm) cosh ay + Cooy sinh oy

. (B.16)
+ dmamy cosh amy

o~ = (b+3c_) sinh oy + (am+3dm) cosh oy + d ay sinh ay

+ cmamy-cosh amy

B.3 Formulas for Flexibility Constants for a Panel of Slab Due to In-Plane
- Forces
Consider the case of a sine wave of the in-plane edge force, Nr’
- applied at the edge y = ¢ of the slab shown in Fig. 3.6, the edge y = 0
-remaining free. A portion of the slab in the x-y plane-is shown in Fig.

3.7(a). The boundary conditions for this case may be stated as follows:

Aty =0
t,, = 0 3 -uz ¢' cos o x =0 ; @l =0
"Xy > m m m ’ m
(B.17)
-n - 2 ; - -
cy =0 -o @ SINn o X = 0 2 0
Aty =c¢
.. =0 3 -0L24>'C05ux=0’<1>|=0
Xy ? mom m ? m
N (B.18)
o, =N_/h; —a2 6 sin ax = =N sin o x
y r'? o mm m h m

With these four boundary -conditions, the four constants, 2 bm

c_, and dm’ of Eq. B.15 can be found as follows:
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i e o4 - 1 [s1nh sm+gm cosh emJ \
m m 2 . 2 2 rm
amh sinh em—em |

bm = { (B.19)
. - 1 [ B sinh B } .

m 2 . 2 2 rm

amh sinh em-sm
where

Bm = ocmC

The general expressions for the in-plane displacements u and v can
be obtained by substituting the four constants in Eq. B.19 into Egs. B.T5 and
B.16, then the results into Eq. B.14. Consequently, the displacements at
the edges are determined by the substitution of the corresponding values of

y for each edge. The results are:

Aty =c¢
ur = —Fkn Nrm cos amx
(B.20)
Vr = an Nrm sin amx
Aty =0
Uy = ka Nrm cos amx
(B.21)
vy = an Nrm sin o X
where ,
[ (1-4) sinh® g+ (1+p) 82 i
Fo= 1 m m
kn Eamh sinhz Bm _ B; .
- (B.22) i
_— 5 sinh Bm cosh Bm + Bm
o Eogf sinh? B - B% o
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r o
. 5 B sinh By
KE Beph | gimn? B - 8;
F (B.22)
. 2 sinh g+ 8 cosh g }
nf Ea _h . 2 2
m ] sinh Bm - Bm

Now consider the case of a cosine wave of in-plane edge shear, Sr’
applied at the edge r, y = ¢, of the slab shown in Fig. 3.6, with the edge 1,
y = 0, remaining free. A portion of the slab in the x-y plane is shown in

Fig. 3.7(b). The boundary conditions for this case are:

Aty =0
_ . ) 2 1 _ ! _
Txy = 0 ; - @m cos umx =0 @m 0
(B.23)
- - 2 N . = L=
oy = 0 o Qm Sin-.o X 0 ; @m 0
Aty = ¢
=S /h; ol @l COS o X = Erm-cos a X
T»xy r? “m “m % h
(B.24)
= . - 2 i = =

The four-constants-in-Eq. B.15 can be fqund from the four boundary
conditions in Eqs. B.23 and B.24, and may be stated as follows:

g o By sinh B
m m 2 2 2

amh sinh Bm~-8m

b =0 (B.25)

Co. 1 sinh Bm - Bm cosh Bm.
m .2 2 2

amh sinh Bm - Bm




And the in-plane displacements, u, v, at the edges are:

Aty =¢
u,. =
Vi
Aty =0
up =
V1
where
Fon =
For =

The expressions for Fkn apd ka are-the same

sign is taken into account the sign conventions.
B.4 Flexibility-Matrix Formulations for a Slab Panel

The flexibility -constants of the deflections:
1 and the edge r of the slab shown in Fig. 3.3, due to
the edge moments and the loading, were obtained by the
flexure for slab, as presented in Sections A.3 and A.4

flexibility constants of the in-plane displacements, u

sn

="'Fkn S

Foe S
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c X
rm €05 °p

rm Sin amX

Cos a X

st “rm m

-F

s ,
kf Spm 51N X

5 [ sinh B cosh B - 8
Eagh | sinh? B Bé | |

5 [ sinh B = B cosﬁ»ém_
Eayn i sinh? By ~ sé |

(B.26)

(B.27)

(B.28)

as Eq. B.22. The minus

and-slopes at the edge
the edge reactions,
ordinary theory of
of Appendix A. The

and v, at the edges

of the slab due to the in-plane-edge forces, as shown in Fig. 3.6, were
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ﬁ“mq
i

At -Teft edge,
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obtained by the plane stress theory of elasticity, as presented in Section
B.3 of this appendix. The total results for each displacement-due to the
edge forces -and loading can be determined by summing the displacement pro-
duced by each force. The flexibility constants may be presented -in the

matrix forms. The general-equations for the edge displacements may be

stated as follows:

e}

WLS = WL]TI sin Oth

BLS = eLm sin a X

m
(B.29)
Vi = Vi SN o.X
Us = YUp ©OS opX
At right edge, r
Wpg = Wpo STn o X
eRS = SRm sin ocmx
(B.30)
Vps = Vpp STn o X
Upg = Upy, COS o X

These displacements at the edges and the edge forces may be stated in column

matrices WS and NE’ respectively. -Thus,
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Tm
Tm
Tm
= ¢ m
rm

rm

= X X

rm

8 x 1

(B.31)

- The flexibility constants due to the unknown edge forces may-be

formulated in the matrix Fs, and the flexibility constants due-to loading

: may<bevformu1ated‘in the -column matrix; LS' Thus,
, “Fen Fen O 0 : Feg Fee O 0]
Fen om0 0 { Fee “Fue O 0
0 T E 0 O For s
0 0 -Frn  ~Fsp : 0 0 PR Fsr
Fo = F—— ———— — — — |- —— — — — = = (B.32)
—Frf Fcf 0 0 1 F,rn -FCn 0 0
Foe Foo O 0 : Fop -Foo 0 0
0 0 -Foe -Fee || 0 0 Fn Fip
0 0 ka -st % 0 0 -Fkn an

8 x 38

POy
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Where the elements in the matrix were presented in the appendix-as follows:

Frn’ F f

Appendix A; an, an, Fknvand ka in Eq. B.22 of Appendix B; an and st

F._and F
C

2 Ten in Eq. A.25 of Appendix A; an, me in Eq. A.31 of

in Eq. B.28 of Appendix B.
- The flexibility matrix, FS’ may ‘be partitioned into submatrices

as follows:

[
|
F T : ______ (B.33)
|
|
|

The submatrix, F1], is the flexibility matrix of the Teft edge, 1,
of the slab due to forces acting on the left edge, and the submatrix, F]r’

is the flexibility matrix of the left-edge due to forces acting on the right

- edge, r. On the other hand, the submatrix, Fr]’ contains the flexibility

-constants of the right edge -of the slab due to forces acting on the left

edge, and the submatrix, Frr’ contains the flexibility constants of the

right edge due to forces acting on the right edge of the slab.

(P

F

dl

ri
0

L. = ¢ O f (B.34)

Fdr

FY‘Y‘

0

0

-8 x 1
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The elements, Fd1’ F Fdr and Frr were given by Eqs. A.37, A.42, A.35 and

rl?
A.40 of Appendix A.
The relationship between the-displacements, edge forces, and applied

lToads may be written in the matrix forms as follows:

Mg = FoNe + ple (B.35)
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APPENDIX C

- SUMMARY OF FUNDAMENTAL THEORIES OF AXIAL, BIAXIAL AND
TORSIONAL BENDING OF BEAMS AND DERIVATION OF FORMULAS

C.1 Basic Assumptions

1. The material-is-homogeneous, elastic, -and-isotropic;

2. Stress-varies-linearly as strain;

3. The shear deformations and distertion of the cross-section
are -negligible; and |

4. The girder is of uniform stiffness.
C.2 Internal and External Force Relationships

The -girder is subjected to:the-transverse loading as well as the
edge-force; ;t'the mid-depth - of the~§1§b and a moment about an axis péraﬁ1e1
to the x-axis-and-passing through the shear- center of the cross-section, S.
A small element:of the-girder-is shown-in Fig. 3.8, with the x-axis parallel
- to the span length-and through the centroid, 0, of the cross-section. The
y-axis-is parallel to the simple supports and-the z-axis is pointed down-
ward.  The positive directions of coordinates are shown in Fig. 3.8. The
right-hand rules are used-in this analysis.

-~ The edge forces are R1, M], N1'and S1, with éhe magnitudes given
by Egs. 3.10 and 3.25, acting at the edge-1; and Rr’ Mr’ Nr and Sr’ with
the magnitudes given by Eqs. 3.9 and 3.24, acting at the edge r. The magni-
tude of the load is given by Eq. 3.4, and the concentrated moment due to the

diaphragm is given by

me = My, sin e X (C.1)

m



252

where

Mg = T sin — (c.2)

in which Md'is the moment due to the diaphragm, with its coordinate in the
direction of x-axis-designated as Xg4-

The positive directions of the Toad and external forces are shown
in Fig. 3.8. The distances from the mid-depth of the slab to the centroid
and the shear:center:are-designated as hO and hs’ respectively. The y- and
z-coordinates of the shear center is ys~and‘zs, and Y1 and,yr are the y-
coordinates of edge 1 and r, respectively.

The internal forces of the element may be resolved into six com-
ponents.  Three of- them are forces, namely, F_, F

of x-, y- and z-axes, respectively. The other three components are moments,

and Fz,vin the directions

namely, Mx, Myﬁﬁ”d Mz’ about x-, y- and‘z%axes, respectively.: The~posit1vi
directions of these internal forces are shown in Fig. 3.8.

The analysis-is derived for the general case in which the cross-
section of the girder may not be symmetrical. For example, the exterior
- girders, with the sidewalk taken into consideration, are not symmetrical
about either axis. “Since the girder is subjected to twisting moment about
the axis through the-shear: center,  the problem may be-simplified by consid-
ering the axia]vforce,'Fx, and the bending moments, Myvand Mz’ to be acting at
the centroid, 0, and the shearing forces Ey and FZ, and the twisting moment,

M_, to be acting at the shear center, S.

x’
Consider the equilibrium of the element shown in Fig. 3.8. Six
equilibrium differential equations are obtained in relating the internal

forces to the external forces and loading. The first three equations are



253

obtained from-the summation of- forces in the directions of-each axis equal

--to zero. -The results are-as. follows:

SFX

X

oF
A
ax

T

9 X

The
moments about

aM,

X

3M
Y
X
aMZ

aX

By integrating

1t

‘(S]m - Srm) cos o X
(N1m - Nrm) sin o X
(le - R - pm) sin o X

other three equations are obtained from the summation of the

each axis equal to-zero.:

[(y3=y$ )Ry
hNom = Vpyslep - Mgmd SN o X

-3

h (Srm

X +
0 ) cos o F,

Tm

(y.S

Popm " y]S]m) cos o X - F

Y

1 .
E; (Slm _-Srm) sin a X + ¢
1 :
E; (Nrm - N]m) cos a X + ¢,
1 (R - Ry +p ) cosax+c
% rm m m’ m 3
1
E_'MT cos amx + c4
m
1
:7 ('le = oph S F R oo
m

i + +
sin o X + CoX + Cp

- Mgt hlem - (Yr'ys)er

The - results -are as follows:

+ -
Mrm

Egs. C.3 and C.4, the results are as-follows:

(C.5)

tpy)
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= 1 - i
M, = 2 (Nlm %Y 151m ~ Ny o‘myrsrm)
m
sin amx + c2x + Co
where
Mp = ['(yl_ys)R1m * M1m - hlem * (yr'ys)er -

Mo + NN + (v =y e + My ] (C.6)

rm s rm p m

A1T1 constants in Eq. 3.5, except c,, can be- found from the - bound-

ary conditions as follows:

At x = 0 and x = a

Thus,

1

The constant Cy in the fourth of Eq. C.5 has to be determined from
the boundary condition that the angles of twist at the supports are zero.
The relation between the angle of twist and the torsional moment is stated

by Timoshenko?3 in the form of a differential equation as follows:

3

a8 3 B
My = Gdgg-- EC ;;@ (C.7)
where
B = angle of twist
E = modulus of elasticity
G = shearing modulus of elastiticy
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[«
1

torsion constant

(]
I

warping constant

Substitute the expression-for MX from Eq. C.5 into Eq. C.7 and
differentiate with respect to x. The equation may be written-as follows:

4 2 M

I
T -EcT% = fCsin e (C.8)

The angle of twist, 8, in Eq. C.8, may be stated in two parts

8= Byt B (C.9)

where Bp is the particular solution taking into account the Toading, and
B is the complementary solution taking into account the boundary condi-
tions. The function, Bp, satisfies Eq. C.8, but may not satisfy the boundary
conditions. The function, B satisfies the differential equation:
4
o B a3 B
c. 8 _ ¢ .9 (c.10)

8x4 EC axZ

The summation of B and Bp satisfies all the boundary conditions for a par-

ticular Toading.

The solution of Eq. C.10 with the quantity k = g%3 may be stated

as follows:

B. = A] sinh kx + A2 cosh kx + A3x + A4 (c.11)

The constants, Ai, A2, A3 and A4, can be obtained from the boundary condi-

tions.

The particular solution, Bp’ of Eq. C.8 may be stated as follows:

M
g = 7 5 sin o X (C.12)

p m
(amEC + amGJ)




M
B = 7 TZ sin amx + A] sinh kx + A2 cosh kx +
(umEC + amGJ)

Ax + A

3 4 (C.13)

Consider the case of a girder in which cross-sections at the sup-
ports are prevented from twisting and in which the two flanges at the sup-
ports are free to rotate in their own planes. The boundary conditions of

this girder may be stated as follows:

At x =0 and x = a

g = 0 and=?R = 0

With .these four boundary conditions, the four constants in Eq. C.13

are obtained. Al1l constants are equal to zero.

Thus, the final solution is

- T :
B = 7 5 sin o X (Cc.14)

(amEC + amGJ)

The twisting moment, Mx’ can be obtained by substituting the
functions, 8, from Eq. C.14 into Eq. C.7.
The expressions for the internal forces and moments of the girder,

with the cross-section shown in Fig. 3.8, can be summarized as follows:

o e o o



Forces

Moments

in which
Xm

Fym
zm

Xm

ym

zm
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Xm

C X
Fym 0S o

F
Zm Ccos amx

CoS o
MXm 0S mx

ym m

M sin o X
zm m

('R1m - 0LthS]m * er * amhosrm * pm)

(C.15)

(C.16)

(C.17)

[‘(y1'ys)R1m My (yr'ys)er " Mo ¥ (yp—ys)pm * Mdm:l

(C.18)
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C.3 Forces and Displacements Relationships

Consider the girder with the axial force Fx and bending moments

Y

M and M, acting at the centroid 0. The general expression for the axial

stress at any point of the cross-section, with coordinates y and z, may be

stated as follows:

where

p

=
L<Z

Imy

Imz

F + M1 +
_%_+ (M, M? y2/15)2 ] (M, + M 1 /1)y (c.19)

my Lz

axial stress in the x-axis at any point y, z
cross-sectional area

bending moment about y-axis

bending moment about z;axis

modified moment of inertia about y-axis

modi fied moment of inertia about z-axis

In biaxial bending, the relations between moments and curvatures

may be written as follows:

El EI
Y __Yz

Pz Py (C.20)
FI. EI
Zz__ Yz

py Pz

And the modified moments of inertia are

my

I2
Y s
I2
1. - Y2 (c.21)
z I i
Y
I1I
S Z_1
I yz
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where
i curvature in the z-direction
z
El- = curvature in the y-sirection
y
Iy = moment of inertia about y-axis
IZ = moment of inertia about z-axis
Iyz = product of inertia about y- and z-axes.
Equation C.20 may be written with the sign conventions in Fig. 3.8
- as follows:
2 2
3w 3"V
M = -E —-—%-E _ —
M Y axz yz ax2
(C.22)
2 2
3V oW
M El_ ==+ EI _ =—
z z ax2 yz ax2
32w azv
From Eq. C.22, the curvatures-—7§ and-——z may be obtained as fol-
X oX
Tows:
TR I S
axz E Imy Imo
(C.23)
.2 M M
sy o 1| Yy, 2z
ax2 : Imo Imz

Since the girder is also subjected to the twisting moment Mx about

the shear center S, the displacement at any point on the cross section, except
the shear center S, are affected by Mx‘ However, Eq. C.23 gives the displace-

ment of the shear center even though the girder is subjected to the twisting

moment.
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Let W and Vg be the displacements w and v of the shear center.
With the Eq. C.16 for My and Mz’ the curvatures for the shear center can

be given as follows:

2

3w M M

9X my mo

5 (C.24)
Y] M M

X mo mz

The displacements w and v due to biaxial bending can be obtained
from the results of the integration of Eq. C.24 by satisfying the following
boundary conditions:

at x =0 and x = a

w =0 and v = 0 (c.25)
The results are:
M
wS = ; Iym + sin o X
a"E my mo
m (C.26)
M
v, = l INLLLR Izm sin o X
umE mo mz

The girder is also subjected to a twisting moment MX about an axis
through the shear center S and parallel to the x-axis. The cross-section of
the girder undergoes an angle of twist, B, about the shear center. Conse-
quently, the displacements w and v of any point on the cross-section of the
girder, except at the shear center, are affected by this rotation. The

general expressions for the displacements w and v may be stated as follows:



T
wes o177 El El
(67
m m

L
(C.27)
[(z-2 M M M
o amEC + GJ mo mz :

The displacement of the centroid in the x-direction is obtained

from the first of Egs. C.15.

= 1 F._ cos a_x (c.28)

when Uo is the displacement at the centroid. The general displacement u is

as follows:
oV W
- .A...._S__ __._.s_-
U = Uy - Yoy Z 5%
(C.29)
-F M M _ M M
m my mo mo mz

The rotation of the cross-section of the girder about x-axis is

equal to the angle of twist 8, thus

My
o = —Tlp— sinax (c.30)
atEC + o260 :

C.4 Formulas for Flexibility Constants of a Prismatic Girder

The final equations of the four components of displacements w, o,
v, and u at any points of the cross-section of the girder were obtained and
were presented in Section C.3, Egqs. C.27, C.29, and C.30. Since the functions

M., M, M

72 My My ané Fxm are related to the unknown edge forces and the loading,
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these displacements may also be expressed in terms of the edge forces and
loading. Consequently, the displacements along the edges 1 and r of the
girder can be determined by the substitution of the appropriate coordinates
y and z for each edge.

It is more convenient to state the flexibility constants in the
matrix form. The general expressions of the total results of each displace-
ment due to the edge forces and loading may be written as follows:

At Teft edge, 1

WLG = WLM sin amx
eLG = eLM sin amx
(C.31)
vLG = vLM sin amx
uLG = ULM cos amx
At right edge, r
eRG = eRM sin ocmx
(C.32)
VRG = VRM sin am
Upg = Uy COS o.X

Since all the forces along the edges 1 and r, joint forces, are un-
knowns and have to be determined, the F1exibf1fty constants should be
divided into two matrices. The first matrix contains the flexibility
constants due to the unknown edge forces. The second matrix contains the

flexibility constants due to loading.
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Let WG (Eq. 3.38) be the displacement function matrix of the girder,
and NE be the edge force function matrix. Both matrices are column matrices

and may be stated as follows:

(Vi Rim
® M M
Vim N
U 5

o= ¢ Ne o= ™ (c.33)

WRM‘ er
eRM Mrm
VRM Nem

NV, L Srm J

8 x 1 8 x 1

The forms of the flexibility matrices, FG’ LG or CG’ are given as

follows:
Fli Fiz Fis o Figl Fig -Fpp -Fy3 Fpg
“Fip Fpp Fpg 0 { Fos =Fop -Fp3 O
Fis Fag F33 Fygl Fyg -Fo3 -Fas Fyg
|
Fla 0 F3g Fyql -Fyqg O -Fyp  Fyg
fe = ———— — — - - — — (C.34)
“F1s Fos “F3s Fygp Fsg -Fog Fgg Fyg
Fia Fop Fa3 0 | Fyp -Fpy -Foy 0
P13 Foz P33 Fagp Fz5 Faz -F33 Fgg
|
| -Fig 0 -Fsg F84{ Flg 0 F3g Fgg |
N , 8 x 8
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12

13

14
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¢ \
L ¢
Lo Co
Ly Cy
L c
4 and CG = 4 (C.35)
L C
5 5
Le Co
Ly Cy
\ L8 N C8 /
8 x 1 8 x 1
2
(y]'ys) 1

! 2 !
umEC + amGJ umEImy
Y1 Yg

4 2
amEC + amGJ

hs(yy-¥5) + 1
g 2 4
umEC + amGJ amEImO
o1 __h_0_+ a
OL; EIm_y EIITIO
(y]'ys)(yr‘ys) . 1 :
4 2 4
amEC + amGJ amEImy ‘
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23

25

33

34

35

38

44

48

55
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o
N

2 4
amEC + amGJ

o)

4 2 4
amEC + amGJ amEImy

“ntmz
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B h h y
1 Y1 0 0 1 1
F = - =Y + + h + + =
84 aﬁ r(EI EImO) O(EI EIO> E}
i h h y
B 1 Yy 0 0 r 1
Fgg = ;'Z_yr(EI O )+ho(EI I )*E‘K}
m L mo
L. (yp=y¢) (¥7-¥¢) . ]
1 g 2 4
amEC + amGJ amEImy
] ] (¥p-¥s)
2 T ¢ T % 2
ocmEC+ocmGJ
h (y.-y.)
- _ S S 1
byt b7 T oFEC + 026)  oEI
m m m mo
by = Py
L. (¥,=y) ¥y ) .
5 i 2 g ‘
otmEC + oamGJ OLmEImy
Lg = Fyg
and
Cp = Fpp
Cob = G = Fp
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The flexibility matrix FG may be partitioned to form submatrices as

follows:

F Fip

F

ri Frr

—

l

_ {
e = |m— — o ———— (c.36)

I

!

The submatrix F]] contains the flexibility constants of the left
edge, 1, due to forces acting on the Ieft edge, and the submatrix F1r contains
the flexibility constants of the 1eftrédge due to forces acting on the right
edge, r. The submatrix Fr1 contains the flexibility constants of the right
edge due to forces acting on the Teft edge, and submatrix Frr contains the
flexibility constants of the right edge due to forces acting on the right
edge.

It is noted that, for the interior girders of the prestressed con-
crete I-section girder bridge, the following quantities vanish because of

symmetry:

=
n

_yr = bt/z
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Thus,

I
my Y
Imz z

Iﬂ’lO

Consequently, the following terms in the expressions for the flexibility

constants also vanish:

y y h
1 _ 1 roo_ ° . 9

4 EI EI EI
amEImo mo mo mo

and the flexibility constants can be simplified as follows:

Fis = g
Fas = ~Fro
Fas = Fis

Faig = Fag

Fos = -Fp
Fea = -Fyg
Feg = 'F44
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APPENDIX D

SUMMARY - OF FORMULAS AND MATRIX FORMULATIONS FOR THE
DETERMINATION OF THE EFFECTS OF DIAPHRAGMS

D.1 General Formulas for Deflections .and Slopes of Diaphragms Due
to Reaction Forces and Couples
Since the length of the individual pieces of the diaphragm is equal
to the spacing of the gorders, b, the total span of the diaphragm, treated
as a cross beam, is equal to Nsb as shown in Fig. 4.4, where Ns is the
number of spacings or slabs. For a bridge having NG identical girders, the
number of reaction forces is equal to:NG, the number of couples is also

equal to NG’ and Ng = NG - 1.

Let

g = girder number, 1, 2, . . . NG

s = g -1, slab number

Id =  moment of inertia of Ehe diaphragm

Ed = modulus of elasticity of material in diaphragms

Vig = reaction at the point of intersection of the digphragm
and the girder g, and

Mig = couple of the point of intersection of the diaphragm

and the girder g

Deflections and slopes along the span of the diaphragm, relative
to Tine o-o0 shown in Fig. 4.3, produced by reaction forces and couples,
may be obtained by using the Moment-Area or the Conjugate Beam method. The
general formulas for computing the deflections and slopes produced by the

reactions were obtained and stated as follows:
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Deflections due to a load at a distance sb from the left support

i 1T, 1 (II1.3
W, = vig(fg y-3f7y ) (0 <y < sb)
_ oy el 2 1TV, o2 ) )
My = Vig[fg y - fg(y -3 sb) - 3 fg (y - sb) {2(NS s)b + (Nsb y) 1]

(sb <y < Nb) (D.1)

Slopes due to a load at a distance sb from the left support

i 1T 112
ey Vig(fg fg yo) (0 <y < sh)
o = v. [FH o e - #V(y Csb)t(N - 8)b + (N b - y)}]
N 19- ¢ g g S S
(sb <y < Nsb) (D.2)
where f
52(N -s) b2
foo= = =

9 Mg By 4 ; | |

I s(NS = s)2 b2
'f: =
g ZNS Ed Id |
II 1 I
fg §Ng'[fg{3(Ns - s) + s} + 2f (NS - s)] é
g N os
g N Ey 1,
-
IV S
f e —
¢ T W ES T, |

The general formulas for computing the deflections and slopes

produced by thé couples were also obtained and stated as follows:
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Deflections due to a couple at a distance sb from the left support

where

M.
19" g

II

(ell, - 1 QI

3
g v )

2
Mig[eg y-egly -3

(0 <y < sb)

2

Teg (v - sb)%ea(lg - s)b + (NG - v}

(sb <y < N.b) (D.3)

due to a couple at a distance sb from the Teft support

(el

ig' g

ITT _

e
g

_ Il

2
g ¥ )

111
- e +
gt ey |

1
s

1

2NS EqIg b

(0 <y < sb)

y = sb)IN, - s)b + (N.b - y)}}

(sb sy < Nb) (0.4)

gN—[eg{s(NS Ss) + s} -2 eé(Ns - 5) ]

With the appropriate values of y, the deflections and slopes at

the points of intersection of the diaphragm and the girders can be obtained .

from Egs. D.1 and D.2, produced by the reactions, Eqs. D.3 and D.4, pro-

duced by the couples.

The total deflections and slopes caused by all
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reactions and couples are determined by summing up the results produced by

each individual reaction and couple.

It is noted that the deflections, at the points y = 0 and y = Nsb

(exterior girders), due to each reaction and couple are zero.

Thus, two

equations formed by the deflection compatibility at these two points can-

not be obtained. In order to solve the problem, two more equations are

needed. Since the diaphragm is in equilibrium, the summations of the

reaction forces and the moments about the right support (Fig. 4.4) are zero.

Thus

vV,

1,]+V' + ...tV +"'+V1°,N = 0

1,2 1,9

(Nsb)V11 + (NS - 1)bvi2 P (b)vi,NG _p My M

Equations D.5 may be written as follows:

G
= 0
921 g
Ng Ng
N - s)bV, +7 M. = 0
gz'l ( S S) 1S gz] 19

D.2 Deflections and Slopes of a Bridge with Diaphragm

+ .

(D.6)

Consider a bridge with diaphragms, with the cross-section shown

in Fig. 4.2(a). The diaphragms are replaced by reaction forces and con-

centrated moments as shown in Fig. 4.2(b). The displacements at the points

of intersection of one of the diaphragms and the girders, such as midspan

diaphragm, caused by all unknown reactions and moments, and external load,

are shown in Fig. 4.3. The displacements are:
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As = deflections caused by all forces
and loadings, measured from the
originéi Tine o' - ol
ei,], 61’2,..., 9. ,%.., 0. = rotations caused by all forces and
loadings, measured from the original
line o' - ol
Ay s A1,2""’ RN Ai,N = deflections caused by all forces and
loadings, measured from a 1ine 0 - o
passing through the points of inter-
section of the diaphragm and the

deflected edge girders, and

s Br seves B = rotations caused by all forces and

i,1° Y1200 i,N

Toadings, measured from a line o - o
passing through the points of inter-
section of the diaphragm and the de-
flected edge girders

The first subscript refers to the location of diaphragm, i.e.,

i=1,2, ...s N The second subscript refers to the points of intersec-

D
tion of the diaphragm and the girders, i.e., g=1, 2, ..., NG’

e]’o, 92’0, ei,o""’veND . = slopes of the 1ine o - o at the locations

of the diaphragms 1, 2, ..., ND’
respectively, measured from the original
Tine oI - o|, and

ND = number of diaphragms; i.e., ND =]

for one diaphragm at midspan, and so on.
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The slope of the reference 1ine o - o may be given by the equation

A'I,NG -85
% .0 IR (D.7)

The deflections Ai,], Ai,Z""’ Ai’N ,» the rotations ei 10 61,2,..., ei,N R

G 1 t 1 ? ’ i G
may be stated in terms of the deflections By s By g5 By osenns By and
, . . H -] L] 3 G
the rotations 61’], ei,2""’ ei,NG’ as follows:
B 1 _ ] S_ 1 _ 1
A1,g B A1,g Ai,] N (Ai,1 A1,N ) (D.8)
S G
and
e1’g = 807 ei,g (D.9)

D.3 Flexibility Matrices of Bridge and Diaphragm

The unknown forces and displacements of the bridge at the point of
intersection of diaphragms and girders, relative to the 1ine o - o , may

be stated in column matrices NU and NB’ respectively. Thus

. \ ( ) }
N Wg 1
Ny Wg .2

Ny = 9 N Wy = Vg 5 (D.10)

N M

Ny BNy

J

K., K. .1

D? D?
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where KD is the order of the matrix and equal to the number of displacements
at the points of intersection of diaphragms and girders. Thus

Ky = ZNDNG (D.11)

Each term in the column matrices, given by Eq. D.10, is a sub-
matrix defining the forces and displacements at the points of intersection
of the bridge girders with a diaphragm. Thus, the submatrices, Ni and

WB i which represent the forces and the displacements of the intersection

points between girders and the diaphragm i, may be stated as follows:

’ '

Ve 85 1
Vi 2 by o
V. A:
1,NG. . ],NG .

No = Mi,] WB,i =< 8 4 > (D.12)

M2 85 .2
M. ef

L 1,NG, 1’NGJ

Ka, 1 Ke,1

where KG is the order of the submatrix WB j and equal to the number of dis-
placements at the points of intersection of the diaphragm i and the girders.

Thus
KG = ZNG (D.13)

The force-displacement relationship of the points of intersection

of the diaphragm i and the girders can be written as follows:



B.i g2 0 Byg e Bi,ND)NU + Pa, (D.14)

in which Bi,]’ Bi,Z’ cees Bi,i’ s BiaND are flexibility submatrices of
the displacement submatrix wB ; with respect to the unknown forces acting

at the points of intersection of the girders and diaphragms 1, 2, ..., 1,

cees ND’ respectively. Thus the submatrix Bi ; can be stated as follows:

bl

1,1 i, 1,1 i, 1 | i,i 1,1 i, ]
§ S 1) 8 8 § §
1,1 1,2 1, ]’NG ! 1,NG+1 1,NG+2 | 1,2NG
. .. . .. . .. .
i, i, 1,1 1,7 7,1 i, 1,1
S § o § I 1) §
2,1 2,2 2,9 2,NG : Z,NG+1 2,NG+2 2,2NG
[
|
i, d,1 i,i i, i 1 i,i i,i i,i
8y 8> 8y’ Sy’ Sy’ 8§y T
NG,1 NG’2 NG,g NG’NGI NG,NG+1 NG,NG+2 NG,ZNG
S Y
Bi,i | D.15)
w1,i o 1 mi,1 w1,1 [ wi,] w1,1 wi,i
1,1 1,2 1,9 1,NG : 1,NG+] 1,NG+2 1,2NG
wi,1 "y wi,1 w1,i [ wi,i wi,1 wi,w
2,1 2,2 259 2,NG | 2,NG+1 2,NG+2 2,2NG
|
I .
wi,i wi,i wi,i wi,i [ wi,i wi,i o wi,i
NG,1 NG,Z NG,g NG’NGI NG,NG+1 NG,NG+2 NG,ZNG
- KG’KG

where § and w are the deflection and the rotation, respectively, due to a
unit reaction or moment. The first superscript defines the deflections or
rotations at the points corresponding to the particular location of diaphragm.

The second superscript defines the unit reactions or moments at the points

————r

i

B



277

corresponding to a particular location of diaphragm. The first subscript
defines the deflections or rotations at the points corresponding to the
girder. The second subscript defines the unit reaction or moment action
at the points corresponding to the girder. The submatrix B;,i may be
partitioned into four submatrices as shown in Eq. D.15.

The submatrix z; is the column flexibility matrix defining the

displacements of the girders caused by the external concentrated load on

the bridge. It may be written as follows:

’

Gq,P |

i (D.16)

Knsl

GS

where s, R 61 s eees 6i are the deflections of the girders at the points
1,p* "2,P NG’P

of intersection with the diaphragm i, cuased by a unit load on the bridge.

The displacements which are represented by the column matrix WB may be

stated as follows:
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8 ]

Wy Fg Ny + Plg | (D.17)

U

where FB is the flexibility matrix of the bridge, relative to lineo - o ,

and can be presented as follows:

— 1 i 1 1 j
By By ,2 By, P18y
B By,2 B2, P2,N,
1] 1 1 I i »
Fg = | By Bi .2 B3 B0, (D.18)
[} B i i 1
B B . B
| ND,1 ND,Z ND,1 NpsNp
’ -KD X KD
and LB is the flexibility matrix of the bridge subjected to the external

load P, and refer to line o' = 0 . Thus

,

Lo =¢ 2. (D.19)




279

The displacements of diaphragms, the displacements of the girders
of the bridge, at their intersection points which refer to the lines o - o,

may be stated in column matrices W, and W,, respectively. Thus
D B

r . T 7
Wp, 1 W
Wp,2 Wg 2
Wy = p Wy =9 W 4 (D.20)
W W
| Delp | DsNp |
Ky Ky

where each term in the column matrices in Egs. D.20 is a submatrix defining
the displacements of a certain diaphragm and the girders of the bridge at
their intersection points. However, it has been mentioned in- Sections D.1
and D.2 that the deflections at the points of intersection of the diaphragms
and the deflected exterior girders are zero. Thus, the submatriceS‘wD ;

bl

and WB i which represent the displacements of the diaphragm i and the

9

girders of the bridge, raspectively, at the points of their intersection,

may be written as follows:
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0 "0 .
D B
By .2 Ay 2
D B
853 8i .3
_ D PN
"oy T RNl "Bi T ANy (D:21)
0 0
D B
%51 %4,
D B
85,2 9: .2
B
0% 8.
1,NG | I 1,NG |
8 Kg>T KgoT

The force-displacement relationships of the diaphragms and the
bridge may be stated as follows:
WD = FD NU
(D.22)

=
1}

Fg NU + PLB

in which FD and FB are flexibility matrices of all diaphragms and the

bridge, respectively. The LB is the flexibility matrix for the bridge

without diaphragms, subjected to external unit loads, relative to line
0 - 0. These matrices may be written as follows, assuming all diaphragms

have the same properties:

'Asel



and

it

1,1

2,1

i,

| Nps

28T

BD

5D
By .2 By
By .2 Bs
By, e By
B B, .
ND,Z ND,1

- D*'D

i,N

D>'D

D>'D

(D.23)

(D.24)



282

L, = 'y (D.25)

£
N
3 D K

D,1

The submatrix BD is the flexibility matrix for each individual diaphragm

and may be written as follows:



. f

. f

»9

9,9

. (N

e fialg

Ng

NG-1,g ©
-s)b ...

f
Ng+1oNg-1

+2,9 -

1T | o 0
o | ¢ f
[ 2NGH 2,N+2
l
. :
| g’NGH g’NG'*'.z
I
0 | ¢ T
[ NG-1,NG+1 NG-1,NG+2
o |1 1
A L
0 i fy. fror A
I NstT NG H NG+1,qG+2
0 f i i
[ Ngt2,Ng#HT  TN+2,N+2
|
I
0 |
l

f o f
goNeHl  T2Ng g2

L

.f

. NG+]’NG+9

f

ce NG+2’NG+9

. f

ZNG,NG+g

€8¢
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The elements in the submatrix BD are deflections and rotations due
to unit reactions or moments. The deflections are in rows 2 to NG - 1 and

can be obtained from Eqs. D.1 and D.3. The rotations are in rows NG + 1 to

2NG and can be obtained from Eqs. D.2 and D.4. The elements in columns 1
to NG are deflections and rotations due to unit reactions and can be found
from Eqs. D.1 and D.2, the elements in columns NG + 1 to 2NG are deflections

and rotations due to unit moments and can be found from Eqs. D.3 and D.4.
Those elements in rows 1 and NG are the coefficients of the equilibrium
Egs. D.5.

The flexibility matrix of the bridge FB with respect to line
0 - 0 is related to the flexibility matrix of the bridge Fé which -relates
to line ol - ol° Each submatrix in the matrix FB can be obtained from the
corresponding submatrix in the matrix Fé. For example, by using Egs. D.7,
D.8, and D.9, the submatrix Bi,i can be found from the submatrix B; ; and

2

is presented as follows:



N.-1,1

i1
by’ 411

bisi
ZNG,

i,i
b 3
ZNG,Z

0 0 0

b171 bi,1 . bi,i
2,NG+] 2,NG+2 2,NG+g

b L1 b] 51

0 0

bi i

G8¢
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The elements in rows 1 to NG of Eq. D.27 are obtained by applying
Eq. D.8 to the elements in rows 1 to NG of the submatrix Bi i The elements

in rows NG +1 to ZNG of Eq. D.27 are obtained by applying Eq. D.7 to the

elements in rows 1 amiNG, and Eq. D.9.

In the same manner the column matrix LB due to the external . load
can be obtained from the column matrix LB‘ A typical submatrix &5 may be

stated as follows:

b = b;\le_] p (D.28)

;
N.+1,P

2N
L G
Kgs1

For the particular cases of the arrangements of diaphragms as

shown in Fig. 4.5, the matrix Fg in Eq. D.24 may be simplified as follows:

Case 1: Bridge with one diaphragm of midspan

: (0.29)

B = Bqy

i

.....
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Case 2: Bridge with two diaphragms at symmetrical positions with respect

to midspan

Fy = (D.30)

Case 3: Bridge with three diaphragms, one at midspan and two at

symmetrical positions with respect to midspan

Biy  Bjp  Bip)
Fe = | Bip By By (D.31)
(B2 B3 B







