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Abstract

Content-based publish/subscribe is a powerful data dissemination paradigm that offers both scalability and flexibility. However,
its nature of high expressiveness makes it difficult to analyze or predict the behavior of the system such as event delivery probability
and end-to-end delivery delay, especially when deployed over unreliable, best-effort public networks. This paper proposes the
analytical model that abstracts expressiveness nature of content-based publish/subscribe, along with uncertainty of underlying
networks, in order to predict quality of service in terms of delivery probability and timeliness based on partial, imprecise statistical
attributes of each component in the system. Furthermore, the paper leverages the proposed prediction algorithm to implements
heuristic-based subscriber admission control algorithmsto maximize system utility when the system cannot support all subscribers.
The evaluation results yields good prediction accuracy andadmission rates.

I. I NTRODUCTION

Over the past few years, publish/subscribe systems have recently become an emerging paradigm for large-scale information
dissemination. The nature of publish/subscribe where the producers of the information (i.e. publishers) and the consumers of
the information (i.e. subscribers) are interacted via intermediaries (i.e. brokers) allows both sides of the communication to be
decoupled in space, time, and synchronization [1]. Such flexibility and scalability makes publish/subscribe paradigmone of
few viable choices for designing and building large-scale data dissemination systems.

So far, there have been significant efforts from both academia and industry domains to design standards and build im-
plementations of scalable and efficient distributed publish/subscribe systems [2]–[7], [7]–[11]. Based on commonly accepted
taxonomy [1], [12]–[14], publish/subscribe systems can becategorized intotopic-basedpublish/subscribe systems [5]–[7] and
content-basedpublish/subscribe systems [2]–[4], [8]–[10]. In topic-based publish/subscribe systems, the event from publishers
are delivered to subscribers that share the same single interest value calledtopic. In content-based publish/subscribe systems,
each event can contain multiple attributes. Any subscriberthat is interested in a topic can further specify, at the attribute level,
which portion of the topic events it wants to receive. Content-based publish/subscribe systems give more flexibility tothe
subscribers at the cost of increasing processing complexity at brokers.

Besides the increasing complexity compared to topic-basedpublish/subscribe systems, another drawback of content-based
publish/subscribe systems is less predictability. Since each subscriber has flexibility in choosing information it wants in fine-
grained attribute level, it is also less trivial to determine event flow from each publisher to each subscriber. Hence, itis also less
trivial to analyze the performance and correctness of content-based publish/subscribe compared to its topic-based counterpart.
For example, it is less trivial to check how much resource is needed to service each subscriber properly, or to verify if the
system’s current state is stable. Moreover, deploying publish/subscribe systems over unreliable, best-effort networks (i.e. the
Internet) further decreases system determinism and predictability. Such uncertainty and complexity becomes a hindrance in
applying content-based publish/subscribe systems to Internet-scale, time-sensitive applications such as stock market report [15],
temperature/climate monitoring [16], and road traffic monitoring [17]. The need to solve such problem calls for a good analytical
model that could accurately capture 1) applications’ real-time requirements, 2) content-based publish/subscribe expressiveness,
3) uncertainty nature of underlying best-effort networks.

However, while it is infeasible to calculateexact resource consumption and quality of service each subscriber receives in
content-based publish/subscribe systems, it is still possible to do so in probabilistic manner when somepartial information
of each component in the system is given to some extent. The term partial information refers to trend or pattern of behavior
of each component, ranging from underlying networks (i.e. how likely that a message will be transmitted over a link within
5 seconds), hardware capabilities (i.e. the average brokerevent processing time), to the information pattern (i.e. how likely
a publisher will publish a value or how likely that a publisher will publish the next message within a specific time). Many
real-world event publishers exhibit temporal locality such that content pattern prediction can be done based on previously
published events (i.e. Figure 1 for examples). Such patterninformation can be either explicitly given by or implicitlyobserved
from each component, thus making it possible to model and predict behavior of the publish/subscribe system as a whole.
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In this paper, we explore the possibility to use such imperfect information to predict event delivery delay and reliability in
a distributed content-based publish/subscribe system by applying the techniques from probability theory and queuingtheory.
Specifically, our work has the following contributions. First, we propose a generic analytical model forexistingdistributed
content-based publish/subscribe systems for the purpose of performance assessment. Second, we present the subscriber reliability
prediction algorithm based on the proposed analytical model and the assumption of imperfect statistics information ofeach
pub/sub component. Third, with the proposed prediction algorithm, we present a heuristic-based subscriber admissioncontrol
protocol that provides QoS support to existing best-effortdistributed content-based publish/subscribe systems. Fourth and finally,
we present the simulation results of the proposed system under realistic parameters. The evaluation results yield goodaccuracy
for the prediction algorithm and good admission rate for admission control algorithm, even when the statistics information of
each component is inaccurate.
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Fig. 1. Example of real-world event streams and their temporal locality

This paper is organized as follows. Section II discusses themodel of distributed, content-based publish/subscribe system
used in this work. Section III propose the mathematical model of real-time content-based publish/subscribe system along with
the subscriber reliability prediction and admission control problem formulation. Section IV presents the analyticalmodel to
predict subscriber real-time reliability. Section V presents utility-based subscriber admission control algorithms for overloaded
publish/subscribe systems. Section VI presents the evaluation results of the proposed systems. Section VII discussesrelated
works in quality of service and modeling of real-time publish/subscribe systems. Finally, Section VIII suggests future directions
of the work and concludes the paper.

II. SYSTEM MODEL

In this section, we first describe the model of soft real-timedistributed content-based publish/subscribe model used in our
work. We then formulate the problem of subscriber reliability in the described model.



A. Soft Real-time Distributed Publish/Subscribe

(a) SubscriberS1 subscribes (b) SubscriberS2 subscribes (c) PublisherP1 publishes an event

Fig. 2. Example of subscription propagation and event routing in a publish/subscribe system

In this work, we assume generic acyclic publish/subscribe tree model commonly adopted in existing works [2]–[4], [8] as
follows. A publish/subscribe system consists of a group ofsubscribers(information consumers) andpublishers(information
providers) connected via a network ofbrokers(information intermediaries). We assumeacyclic broker tree network (i.e. there
is only one path between each pair of broker). Each subscriber/publisher is connected to only one of the brokers in the system
called home broker. Each publisher publisheseventsor messagesto its home broker. Each published event has one or more
attributeswith the associatedvalue. Each event also has itslifetime value, which is the duration between the time the event
was published and the time the event is expired. An event is said to be delivered to a subscriberon time if the end-to-end
delivery delay islessthan its lifetime.

The subscriber/publisher joining process and event/subscription matching process in the publish/subscribe system are shown
in Figure 2 as follows. When a new subscriber joins the system, it sends its subscription to one of the brokers (Figure 2(a)).
A subscription containspredicate filter1 specifying event content that the subscriber wants to receive. Upon receiving the
subscription from the subscriber, the broker stores the subscription into its routing table and propagates the new subscription
to adjacent brokers, which in turn repeat the process until all brokers receive the subscription (Figure 2(a) and 2(b)).When
storing a new subscription into its routing table, each broker also stores link information to the broker which it receives the
subscription from. When a broker receives a newly-published event (Figure 2(c)), it checks the event with each subscription
stored in its routing table. For each matching subscription, the broker forwards the event to the link which it receives that
subscription from. Note that an event is forwardedonceper link even there are multiple matching subscriptions from that
link. The process then continues, and the event is propagated hop-by-hop in the reverse direction of the subscription until it
reaches the designated subscribers. The mentioned publish/subscribe model is simple yet generic enough to represent avariety
of existing publish/subscribe system works [2]–[4], [8].

Another assumption made in this paper is probabilistic information of each publish/subscribe component and underlying
networks. Specifically, the publisher content distribution (i.e. what content a publisher is more likely to publish), inter-broker
link delay and bandwidth distribution, broker event processing time are known as priori either via explicit advertisements from
publishers or implicit prediction based on statistical history.

B. Publish/Subscribe Quality of Service

With the presented content-based publish/subscribe model, one question that may arise is that, given a publish/subscribe
system setting along with all subscribers and their subscriptions, how much quality of service each subscriber can have?
Specifically,what fraction of events that match a given subscriber’s interests will be delivered to that subscriber on time?To
quantify such quality of service, we define a subscriber-level metric calledsubscriber real-time reliabilityas follows.

Subscriber Real-time Reliability: A subscribers is said to receive the service with real-time reliabilityRs, whereRs is defined
as the fraction of all events ofs’s interest that arrives ats before its deadline (i.e. delivery delay less than the message lifetime).

Since the proposed real-time subscriber reliability combines the concept of standard reliability with the concept of timeliness
property, it can be used as a good indicator how much quality of service each subscriber receives.

1In Figure 2(a), each predicate filter is in conjunctive form consisting of per-attribute min-max clauses. However, our analytical model supports all possible
forms of filter as long as the filter can be expressed a a subset of the content space.



C. Network Model

Each broker is linked via asynchronous, non real-time, wired communication link. Inter-broker links can fail with some
probability. The broker/publisher and broker/subscriberlinks can be either wired or wireless links.

As mentioned earlier, we assume tree, acyclic topology of broker networks, which means there is only one communication
path between each pair of broker. More complex topologies such as cyclic networks are considered as future direction, aswill
be discussed in Section VIII.

In the next section, we will present the formal definition of each component described in this section and the definition of
subscriber reliability estimation problem.

III. A NALYTICAL MODEL FRAMEWORK

In order to analytically estimate subscribers’ real-time reliability, we present the mathematical model of the content-based
publish/subscribe system as follows. All notations can also be found in Table I.

A. Publish/Subscribe Entity Model

1) Events:Let E be the set of all events published in the system. An evente ∈ E is defined as a 3-tuple

e = (ide, ae, de)

, which represent event’s identifier, content attributes, and lifetime duration respectively. The content of an evente, denoted
by ae, is defined as ak-tuple

ae = (v1e, v2e, .., vke)

, wherevie is the value of theith attribute of evente. For simplicity of the analysis, we assume that the event topic (τe) is
always the first attribute (v1e) and the restk− 1 attributes arethe union of all per-topic attributesin the system in an arbitrary
but globally consistent order. Hence, an event of any topic in the system can be expressed with suchk−1 attributes by setting
irrelevant attributes from other topics to null value.

Let Vi be the value space of theith attribute of any event (∀e ∈ E : vie ∈ Vi). Let T be the set of all topics in the system
(i.e. T = V1). Let D be the set of all possible lifetime duration values of eventsin the system. Note thatVi and D can be
either discrete or continuous. Without loss of generality in the analysis, we assumeVi and D to be discrete in this work.
However, the proof also applies to the continuous case. We define

V = T × V2 × .. × Vk

as the content space of the events in the system.
2) Subscribers:A subscribers is defined as a tuple

s = (ids, fs)

whereids is the subscriber’s identifier,fs ⊆ V is the predicate filter defining the content of interest fors. We define a filter
setFs(E) of event setE with respect to subscribers as

Fs(E) = {e ∈ E : ae ∈ fs}

3) Publishers:A publisherp is defined by a tuple

p = (idp, Cp(a, d), Ip(t))

whereCp : V × D → [0, 1] is the content-lifetime joint distribution function of events thatp publishes (i.e.Cp(a, d) is the
probability thatp will publish an event with contenta and lifetimed), Ip(t) is the inter-event publishing time distribution, and
idp is the publisher’s identifier. Thus

∑

(a,d)∈V ×D

Cp(a, d) = 1

and
∞
∑

t>0

Ip(t) = 1

4) Brokers: Each broker in the system has a single event queue that is usedto store and match event in first-come-first-serve
basis. A brokerb in the system is defined as a tuple

b = (idb, Mb(t))



whereidb is the broker’s identifier, andMb(t) is the distribution of broker’s event processing (matchingand routing) time. For
example,Mb(100ms) = 0.2 means with 20% probability, the delay the brokerb will take to retrieve an event from its queue
and route the event to the appropriate links is 100 milliseconds. Note that the event processing time distributionMb(t) can be
a function that depends on the number of subscriptions stored in brokerb’s routing table.

B. Network-level Entity Model

We model the publish/subscribe network as a directed acyclic graphG(B ∪ P ∪ S, L), whereB ∪ P ∪ S is the set of
brokers, publishers, and subscribers in the system, andL ⊆ (P ∪ B) × (B ∪ S) is the set of directed communication links.
Each communication linkl ∈ L is a directed edge that dictates the direction of event flows among nodes in the system. Each
link can be categorized into eitherpublisher-brokerlink (direct link from a publisher to a broker),broker-brokerlink (direct
link from a broker to another broker), orbroker-subscriberlink (direct link from a broker to a subscriber). Each linkl has
reliability rl and link delay distributionDl(t). We defineout(l) and in(l) as the source and the sink of linkl respectively.

C. Quality of Service Model

1) Subscriber Reliability:Let Es be the set of all events that are published during the period that a subscribers is in the
system. Hence,Fs(Es) is the set of all events ofs’s interest during its stay in the system. For each evente ∈ Fs(Es), let ds

e

be thedelivery delayof evente to subscribers (the time period betweene’s publishing time and time thate is delivered to
s). Thus, the real-time reliability at a subscribers, denoted byRs, can be expressed as

Rs =
|{e ∈ Fs(Es) : ds

e ≤ de}|

|Fs(Es)|

In the other word,Rs is the fraction of all messages matchings’s interest that are delivered tos on time. We believe the
defined reliability metric is good enough to represent quality of service, as it combines both reliability and delay, which are two
important metrics in soft real-time publish/subscribe applications. However, we would like to estimateRs for each subscriber
s without actually running the system, which leads to the subscriber real-time reliability estimation problem defined inSection
III-D1.

2) Publish/Subscribe Utility Model:Let each subscribers has its own real-time reliability requirementR∗
s , a subscribers is

said to have its requirement satisfied ifRs ≤ R∗
s. We define the set ofsatisfied subscriberswith respect to the publish/subscribe

networkG, denoted byS′(G), as the set of subscribers inG that have their reliability requirements satisfied (i.e.S′(B ∪P ∪
S, L) = {s ∈ S : Rs ≤ R∗

s}). We define the utility of the publish/subscribe networkG = (B ∪ P ∪ S, L), denoted byU(G)
as the number of satisfied subscribers. That isU(G = (B ∪ P ∪ S, L)) = |S′(G)|.

With nature of proposed utility functionU(G), it is more beneficial not to admit the whole subscriber setS into the system
if we know in advance that some subscribers will not meet their requirements, since those unsatisfied subscribers will only
waste system resources without adding any benefit to the system. Instead, a subscribers should be admitted to the system
only when it is likely to have its requirement satisfied.

D. Problem Definition

Based on the previously defined model, this section formulates the two problems to be solved by this work, the subscriber
reliability estimation problem and subscriber admission control problem.

1) Subscriber Reliability Estimation:In Section III-C1, we formally define subscriber reliability and utility as quality of
service indicator for each subscriber in the system. However, we would like to predict reliabilityRs for each subscribers in
advance before actually running the system. This leads to the subscriber real-time reliability estimation problem.

Definition Subscriber Real-time Reliability Estimation Problem:Given a publish/subscribe networkG = (B ∪P ∪S, L), find
the estimated value ofRs, denoted byR′

s, for each subscribers ∈ S.

Based on the proposed analytical model, this work presents asubscriber reliability estimation algorithm in Section IV.
2) Subscriber Admission Control:As mentioned in Section III-C2, admitting all subscribers in the systems may result in

bad system utility. Thus, the system should pick only a subset of subscribers that will maximize the system utility. Hence, we
define subscriber admission control problem as follows.

Definition Subscriber Admission Control Problem:Given a publish/subscribe networkG = (B ∪ P ∪ S, L), find the largest
subscriber subsetS∗ ⊆ S that maximize the utility of the system (i.e.S∗ = arg maxS′⊆S U(B∪P ∪S′, L− (B× (S−S′)))).

It is trivial that the subscriber admission control problemis NP-Hard problem, as the problem can be specialized to other
NP-hard optimization problems such as multicast admissioncontrol or multi-commodity flow problems. However, this work
discusses a set of greedy, heuristic-based algorithms to solve the subscriber admission control problem in Section V.



Symbol Definition
e ∈ E an event in the set of all system events

de evente’s lifetime
D set of all events’ lifetime values
ae evente’s attributes
k number of all attribute types in the system
τe evente’s topic (v1e)
Vi value space ofith attribute
V content space of all events

s ∈ S a subscriber in the set all subscribers
fs ∈ V subscribers’s content of interest
Fs(E) a set of events inE that matchess’s interest

ds
e end-to-end delivery delay of evente to subscribers

Rs subscribers’s real-time reliability
R′

s subscribers’s estimated real-time reliability
R∗

s subscribers’s requested real-time reliability
U(Rs) subscribers’s utility
U(G) publish/subscribe networkG’s utility
S∗ subscriber subset that maximize system utility

p ∈ P a publisher in the set of all publishers
Cp(a, d) content-lifetime distribution of events published byp

Ip(t) publisherp’s event publishing interval distribution
b ∈ B a broker in the set of all brokers
Mb(t) brokerb’s event processing time distribution
l ∈ L a directed communication link

rl link l’s transmission reliability
Dl(t) link l’s successful transmission delay distribution
in(l) link l’s sink node
out(l) link l’s source node

TABLE I
MODEL VARIABLES’ NOTATION

Symbol Definition
fl union of all subscription filters propagated via linkl

λl estimated event flow rate through linkl
λp estimated event flow rate from publisherp

Cl(a) estimated content distribution of events through linkl

up(l) upstream links of linkl (Equation (2))
λb estimated incoming event flow rate to brokerb

µb estimated event processing rate at brokerb
qb estimated queuing delay at brokerb

Db(t) estimated total delay distribution at brokerb

Cl(a, d) estimated content-remaintime distribution of events through link l

TABLE II
ANALYSIS VARIABLES ’ NOTATION

IV. SUBSCRIBERREAL-TIME RELIABILITY ESTIMATION

A. Estimation Algorithm

In this section, we present how to calculate the estimated real-time reliabilityR′
s at each subscribers. To do so, it is necessary

to estimate the end-to-end delivery delay and path reliability distributions of alls’s matching events when they arrive ats.
Hence, we introduce another set of variables in Table II for the purpose of the analysis. These variables are not parts of the
problem definition, but are defined as intermediate variables in order to solve the estimation problem. The overall estimation
process, depicted in Figure 3, consists of four steps : propagating subscriptions, calculating per-link event flow rate, calculating
broker queuing/processing delay, and calculating per-link content-lifetime distribution.

1) Subscription Propagation:In this step, the subscription filters are propagated from subscribers to each broker in the
system in the same manner as subscription propagation process discussed in Section II-A. As shown in Figure 3(a), each
subscription is propagated in the reverse direction of the event flow direction (i.e. reversed to the direction of the arrows).
When a subscription filterf is propagated to a brokerb via b’s outgoing linkl, the subscription will be propagated to all other
incoming links ofb. At the same time, the subscription filterf will be included intol’s filter set, denoted byfl. That is, for
each filterf that propagates via linkl, fl = fl ∪ f . The process continues until all subscriptions are propagated to all brokers
the system.

The filter setfl can be viewed as the union of all subscriptions that are propagated through linkl and hence represents the
content space of the events that should be forwarded to linkl. At the beginning of this step, each linkl has its filter set empty
(i.e. fl = ∅). At the end of this step, if any linkl’s filter set still remains empty, then it means that there will be no event sent
over l.



(a) Propagating subscription (reversed
direction of arrows)

(b) Calculating link event rate (c) Calculating broker total delay dis-
tribution

(d) Calculating per-link content-
remaintime distribution

Fig. 3. The steps for subscriber reliability estimation

2) Per-link Event Flow Rate Calculation:After each link’s filter set is identified, the next step is to calculate each linkl’s
average event flow rateλl. This step starts by calculating the average event generation rate at each publisherp, denoted by
λp, as the inverse of average inter-event generation timeIp(t) as follows.

λp =
1

E[Ip(t)]
=

1
∑

t:Ip(t)>0(t.Ip(t))

The average event flow rate of a publisher-broker linkl is then equal to the event flow rate ofl’s source publisher, multiplied
by the link’s reliability rl as follows.

λl = rl.λp (1)

, wherep = out(l)
The process continues until the event flow rates of all publisher-broker links are determined. Then, the event flow rates of

the other links (i.e. broker-broker links and broker-subscriber links) are calculated. To do so, thecontent distributionof each
publisher-broker link is needed. The content distributionof a link l, denoted byC′

l(a), is the probability distribution of the
event content that passes through linkl. For each publisher-broker linkl that connects a publisherp, the content distribution
is equal to the content-only projection of thep’s content-lifetime distribution as follows.

C′
l(a) =

∑

d>0

Cp(a, d)

, wherep = out(l)
A link is consideredresolvedif its average flow rate and content distribution are identified. Hence, after all publisher-broker

links are resolved, the other links’ average flow rates and content distributions are then calculated as follows. We defined the
upstream links of a linkl, denoted byup(l), as the set of incoming links tol’s source broker exceptl’s reversed link. In the
other words,

up(l) = {l′ ∈ L : in(l′) = out(l) ∧ out(l′) 6= in(l)} (2)

That is,up(l) refers to alll’s adjacent links from which events potentially flow tol. Any broker-broker or broker-subscriber
link l is defined asresolvableif and only if all l’s upstream links are resolved. For each resolvable linkl, its average flow rate
λl and content distributionC′

l(a) can be calculated by the following equation.

λl = rl.λ.
∑

a∈fl

C′(a) (3)

and

C′
l(a) =

rl.λ.C′(a)

λl

, ∀a ∈ fl

whereλ andC′
(a) are the total rate and total content distribution of alll’s upstream links. Specifically,

λ =
∑

l′∈up(l)

λl′ (4)



and

C′(a) =

∑

l′∈up(l) λl′ .C
′
l′(a)

λ

That is, l’s average flow rateλl is calculated from the total rate of alll’s incoming event flows that match the filter setfl.
The content distributionC′

l(a) is then calculated in the same manner.
Once a resolvable link’s flow rate and content distribution is identified, that link then becomes a resolved link. The process

then continues to resolve the remaining links until all links are resolved. Since we assume the broker network to be acyclic,
it is guaranteed that the process always find a new resolvablelink until all links are resolved.

3) Broker Queuing/Processing Delay Calculation:After all the links are resolved, we then determine the average queuing
delay at each broker. Since we model each broker as an event matching server with a single queue, we can apply queuing
theory techniques to determine broker queuing delay as follows. A brokerb’s average queuing delay, denoted byqb can be
calculated based on M/M/1 queuing model as follows.

qb =
λb

µb(µb − λb)
(5)

where

λb =
∑

l∈L:in(l)=b

λl (6)

and

µb =
1

E[Mb(t)]
=

1
∑

t:Mb(t)>0(t.Mb(t))
(7)

In the other words,λb is the total event flow rates from all ofb’s incoming links, andµb is b’s average matching rate.
Note that if the event flow rateλb is more than the average matching rateµb, then the brokerb is overloaded. In such case,

the queuing delay at brokerb will be equal to infinity, as the broker will never reach the stable state.
Onceb’s average queuing delay is determined, we then estimateb’s total broker delay distribution, denoted byDb(t) as

Db(t + qb) = Mb(t)

That is, the total broker delay distribution is estimated asthe event processing delay distribution plus the average queuing
delay. Although the proposed approach is a simple delay distribution estimation based on the assumption of M/M/1 queue
model, the evaluation result presented in Section VI yieldsreasonably accurate results for other queue model as well. To further
improve the delay estimation accuracy, more sophisticatedtechniques in queuing theory can be used [18]. One approach is to
model a broker as a G/G/1 queue, which is presented in SectionIV-B.

4) Per-link Content-remaintime Distribution Calculation: After the queuing and matching delay distributions at all brokers
are identified, the last step is to calculate the content and lifetime distribution at each link. To do so, we define content-
remaintime joint distribution at each linkl, denoted byCl(a, d), as the joint probability of the content and remaining lifetime
of each event that passes through linkl. Note that it is possible thatCl(a, d) > 0 whend is negative, which means that such
fraction of events is already expired after they pass through link l.

As shown in Figure 3(d), the process at this step is similar toper-link event flow rate calculation described in Section IV-A2,
except that both content and lifetime are now considered in the calculation. Specifically, for each publisher-broker link l, the
content-remaintime distributionCl(a, d) is calculated as

Cl(a, d) =
∑

t:Dl(t)>0

(Dl(t).Cp(a, d + t)) (8)

, wherep = out(l) andDl(t) is l’s link delay distribution. The reason behind Equation (8) is that once an event is transmitted
via link l, its remaining lifetime is shortened by linkl’s transmission delay.

Here we once again use the concept of resolved link and resolvable link from Section IV-A2, except that in this section, a
link l is resolved when its content-delay distribution is identified. Hence, we apply Equation (8) to all publisher-broker links,
making all of them resolved. We then repetitively find a resolvable link l and calculate its content-remaintime distribution as
follows.

Cl(a, d) =
rl.λ

λl

.
∑

t:Dl(t)>0

(Dl(t).C(a, d + t)), ∀a ∈ fl (9)



, where

C(a, d) =
∑

t:Db(t)>0

Db(t).
∑

l′∈up(l) λl.Cl(a, d + t)

λ
(10)

, whereλ is calculated from Equation (4).
Hence, the estimated reliabilityR′

s can then be calculated as

R′
s =

rate of unexpired matching events delivered tos

total rate of all events that matchs’s interest

=
λl.

∑

(a∈fs,d>0) Cl(a, d)
∑

a∈fs
(
∑

p∈P (Cp(a).λp))
(11)

wherel is the link tos (i.e., s = in(l))
With Equation (11), we can calculate the estimated real-time reliability R′

s at each subscribers from publish/subscribe
networkG = (B ∪ P ∪ S, L).

B. Improved Reliability Estimation with G/G/1 Queue Model

So far, the load estimation at each broker presented in Section IV-A uses M/M/1 queue model, which assumes event inter-
arrival time distribution and broker processing time distribution to be exponential random variables. Such assumption may not
result in accurate subscriber reliability estimation as each event inter-arrival time and broker processing time may be drawn
from other distributions than exponential distribution. For example, the event intern-arrival time may be deterministic (i.e.
publishers with periodic sensors) or the broker event processing time may be uniform (i.e. brokers matching a random event
with an array of subscriptions). To address complex time distribution for more accurate reliability estimation, this section
presents a modification to the estimation algorithm based onG/G/1 queue model.

To model the system using G/G/1 model, we introduce additional analytical variables as follows. Apart from event flow rate
λp at each publisherp, another variable called eventflow burstiness, denoted byz2

p, is calculated fromp’s event inter-arrival
time distributionIp(t) as

z2
p =

Var[Ip(t)]

E[Ip(t)]2
=

∑

t:Ip(t)>0 Ip(t).(t −
1

λp
)2

( 1
λp

)2
(12)

The burstiness variablez2
p hence represents the uniformity level of event generation interval atp. For example,z2

p = 0 when
Ip(t) is a uniform distribution andz2

p = 1 whenIp(t) is an exponential distribution.
Also, at each pub/sub brokerb, the burstiness variablez2

b is calculated from its event matching time distributionMb(t) in
the same wayz2

p is calculated at each publisherp. That is,

z2
b =

Var[Mb(t)]

E[Mb(t)]2
=

∑

t:Mb(t)>0 Mb(t).(t −
1
µb

)2

( 1
µb

)2
(13)

With the event generation burstiness variablez2
p at each publisherp and the event matching burstiness variablez2

b at each
brokerb, a more accurate subscriber reliability estimation algorithm can be done by the approaches presented in SectionIV-A
but with one additional step between the step in Section IV-A2 and the step in Section IV-A3 in order to calculate link and
broker flow burstiness. Hence, the subscriber reliability estimation process with G/G/1 broker model consists of five steps
: propagating subscriptions, calculating per-link event flow rate, calculate per-link event flow burstiness, calculating broker
queuing/processing delay, and calculating per-link content-lifetime distribution. The details of all steps are the same as the
ones described in Section IV-A1 through Section IV-A4 except the new step to calculate per-link event flow burstiness andthe
modified step to calculate broker queuing delay, which are described as follows.

1) Per-link Event Flow Burstiness Calculation:The process of per-link event flow burstiness calculation starts after the
process of per-link event flow rate calculation (Section IV-A2) is done. After the flow rate calculation process, the per-link
event flow rateλl and content distributionC′

l(a) is known for each linkl. Also, the per-publisher event flow burstinessz2
p

for each publisherp and per-broker event matching burstinessz2
b for each publisherb are known via equation (12) and (13)

respectively. The per-link event flow burstiness calculation process aims to calculate per-link event flow burstinessz2
l for each

link l. The techniques used in the calculation are adopted from traditional queuing network theory [18].
The process starts by calculatingz2

l for eachpublisher-brokerlink l using the asymptotic method [18] as follows.

∀l ∈ L : out(l) ∈ P, z2
l = rl.z

2
p + 1 − rl (14)



, wherep = out(l)
To calculate per-link event flow burstiness forbroker-brokerandbroker-subscriberlinks, a set of linear equations must be

solved according to the following set of rules.

Incoming Flow Superposition:we defineper-broker incoming flow burstiness, denoted byz2
bi for each brokerb, as the burstiness

of the total event flow coming from allb’s incoming links. Using the superposition rule and the asymptotic method, the per-
broker incoming flow burstiness is the convex combination ofeach per-link flow burstiness as follows.

∀b ∈ B, z2
bi =

∑

l∈L:in(l)=b

(

λl

λb

.z2
l

)

(15)

, whereλb is the total incoming event flow rate at brokerb calculated from Equation (6).
Equation (15) takes place at each brokerb ∈ B in the system. Hence, there are|B| incoming flow equations.

Broker Incoming-Outgoing Flow Transformation:we defineper-broker outgoing flow burstiness, denoted byz2
bo for each broker

b, as the burstiness of the total event flow going out from broker b to all b’s outgoing links. Using Marshall’s formula [18],
the per-broker outgoing flow burstinessz2

bo is a function of total incoming flow burstinessz2
bi, total incoming flow rateλb

(Equation (6), broker average event matching rateµb (Equation (7)), broker event matching burstinessz2
b (Equation (13)) as

follows.

∀b ∈ B, z2
bo = (ρ2

b .z
2
b + (1 − ρ2

b).z
2
bi (16)

, whereρb = λb

µb

Since Equation 16 takes place at each brokerb ∈ B, there are|B| incoming-outgoing flow equations.

Broker Outgoing Flow Splitting:after a broker fetches the incoming event from the head of thequeue, it routes the event to
each outgoing link with the subscription that matches the event. Hence, the per-link event flow burstiness of each outgoing link
z2

l is a function of its source broker’s incoming traffic rateλb (From Equation (6)) and its own traffic rateλl (From Equation
(3)) as follows.

∀l ∈ L : out(l) ∈ B, z2
l =

λl

λb

.z2
bo + 1 −

λl

λb

(17)

, whereb = out(l)
From the three equations (Equation (15), (16), and (17)), there are three forms of unknown variables (z2

bi,z
2
bo, andz2

l ). All
other variables are known from previous calculations. Since each unknown variablez2

l can be written in a linear form of some
variablez2

bo using Equation (17) and each unknown variablez2
bo can be written in a linear form of some variablez2

bi using
Equation (16), there are|B| unknown variables left, which are in the form ofz2

bi. Also, there are|B| equations left (Equation
(15)). Since there are|B| unknown variables left with|B| linear equations, each variablez2

bi for each brokerb ∈ B can be
solved by using standard matrix operations. Once variablesin the form ofz2

bi are solved, other unknown variables in the forms
of z2

bo andz2
l are also solved using Equation (16) and (17). However, only variables in the form ofz2

bi are needed in the next
step to calculate the queuing delay at each broker.

2) Improved Broker Queuing/Processing Delay Calculation:After the total incoming event flow burstinessz2
bi is calculated

at each brokerb ∈ B, a more accurate estimation of the average queuing delayqb for each brokerb ∈ B is then a function of
total incoming flow burstinessz2

bi, total incoming flow rateλb (Equation (6), broker average event matching rateµb (Equation
(7)), broker event matching burstinessz2

b (Equation (13)) as follows.

qb =
ρb.(z

2
bi + z2

b ).g(ρb, z
2
bi, z

2
b )

2.µb.(1 − ρb)
(18)

whereρb = λb

µb
and

g(ρb, z
2
bi, z

2
b ) =

{

exp(− 2(1−ρb).(1−z2

bi)
2

3ρb.(z2

bi
+z2

b
)

) if z2
bi < 1

1 if z2
bi ≥ 1

Thus, we replace Equation (5) with new Equation (18) to calculate the average broker queuing delay, which is then used
to calculate content-remain time distribution and finally the subscriber reliability estimation as stated in Section IV-A4. Note
that when the incoming event flow rate and the event matching rate of a broker are exponentially distributed (i.e.z2

bi = 1 and
z2

b = 1), then Equation (18) is reduced to Equation (5).



The proposed G/G/1 model reliability estimation yields better estimation accuracy when compared to the M/M/1 model
presented in Section IV-A. However, the G/G/1 estimation requires solving|B| linear equations and thus makes it hard to do
in decentralized manner. On the other hand, all calculations in M/M/1 estimation can be done locally at each broker with few
messages exchanged among neighbors, making it possible to calculate in decentralized manner. The estimation result from
either M/M/1 estimation or G/G/1 estimation can then be usedfor subscriber admission control to maximize system utility. In
the next Section, we will present a heuristic-based admission control based on the presented subscriber reliability estimation
to maximize publish/subscribe system utility.

V. UTILITY -BASED SUBSCRIBERADMISSION CONTROL

In this Section, we propose the heuristic-based algorithm to solve the subscriber admission problem. That is, given a
publish/subscribe networkG = (B ∪P ∪S, L), find the subset of subscriber setS, denoted byS∗, that will maximize system
utility. In the other words,S∗ = arg maxS′⊆S U(G′) whereG′ = (B∪P ∪S′, L− (B× (S−S′))). This algorithm is run in a
centralized fashion at a control center node, which periodically collects monitoring status from each publisher/broker entities
in the network and uses such collected status to run the subscriber reliability estimation and admission control every time a
new subscriber joins the system.

As mentioned, the subscriber admission problem is an NP-hard problem with respect to the number of subscribers (|S|).
However, since we can estimate the system utilityU(G) for any publish/subscribe networkG based on the approach presented
in Section IV, we now then propose the heuristic-based, greedy algorithm framework, denoted byA∗(G) to for the subscriber
admission control problem (i.e.A∗(G) approximatesS∗ for G = (B ∪ P ∪ S, L)).

Algorithm 1 FunctionA∗(G = (B ∪ P ∪ S, L))

S′′ ⇐ S

S∗ ⇐ ∅
U∗ ⇐ 0
while S′′ 6= ∅ do

s ⇐ arg maxs′∈S′′ φ(s′)
G′ = (B ∪ P ∪ S∗ ∪ {s}, L − (B × (S − S∗ − {s})))
if U(G′) > U∗ then

S∗ ⇐ S∗ ∪ {s}
U∗ ⇐ U(G′)

end if
S′′ ⇐ S′′ − {s}

end while
return S∗

A. Admission Control Algorithms

Algorithm (1) presents the detail of the greedy, heuristic-based subscriber admission control algorithmA∗ to approximate
the maximum-utility subscriber setS∗. The basic concept of the algorithmA∗ is to initially set the admitted subscriber setS∗

to empty set, and then grows the setS∗ progressively by including each subscribers ∈ S only when the addition ofs can
increase the system utility. The system utility can be approximated based on the analytical framework described in Section IV.
The order of subscribers in the addition process is obtainedon the priority functionφ(s), which gives a priority value to each
subscribers. Since each subscriber is considered only once in the addition process, the priority functionφ(s) must be chosen
carefully to achieve near-optimum maximum-utility subscriber set.

In this work, we pick a set of heuristic subscriber priority functionsφ(s) to be used with the maximum-utility subscriber
admission algorithm frameworkA∗ as follows.

Random Priority (random): The priority value of each subscriber is determined randomly based on its identification number
(i.e. φ(s) = ids).
Requirement Priority (hi-req-first): The priority value of each subscriber is equal to the reliability requirement of itself (i.e.
φ(s) = R∗

s). Hence, the subscriber with higher reliability requirement will be considered before the one with lower reliability
requirement in this priority function.
Inversed Requirement Priority (low-req-first): The priority value of each subscriber is equal to the inverse of the reliability
requirement of itself (i.e.φ(s) = 1 − R∗

s). This scheme is the opposite of the requirement priority scheme, as the subscriber
with lower reliability will be considered first in this scheme.



Parameters Value
#event attributes (k) 21

event lifetime 1 second
event content distribution Zipf-like

#brokers 20
#topics 4

#publishers 8
#subscribers 100

#avg publishing rate 1 message / sec
Message size 64 bytes

Simulation Time 10000 seconds
#Runs 5

TABLE III
SIMULATION PARAMETERS

Additional Content Priority (overlap-first): In this scheme, the first log2|S| subscribers will have random priority (i.e.φ(s) =
ids). However, after log2|S| subscribers, the subscriber prioritys will be calculated as the inverse of the size of additional
filter space incurred by adding such subscriber (i.e.φ(s) = 1

|fs−fs∗ |
wherefs∗ =

⋃

s∈s∗ fs).

In Section VI-D, we will evaluate and compare the effectiveness of each subscriber priority function to approximate the
maximum-utility subscriber set in the publish/subscribe system.

VI. EVALUATION RESULTS

In this section, we present the evaluation results of our proposed analytical framework. The evaluation is done via simulation
with realistic component parameters. Section VI-A will describe the detail of simulation settings. Section VI-B then presents
the results regarding the accuracy of the M/M/1 reliabilityprediction algorithm and the improved G/G/1 reliability prediction
algorithm proposed in Section IV-A and Section IV-B respectively. Section VI-D then discusses the efficiency of the subscriber
admission control algorithm presented in Section V.

A. Simulation Parameters

We validate our approach via simulation using ns-2 network simulator [19]. Unless explicitly specified, each simulation is
run with the parameters presented in Table III The link delaybetween broker nodes are derived from Planetlab delay and
bandwidth traces that were collected by Ripeanu et al [20], [21]. The event processing delay distribution is approximated and
simplified from recent related works in event matching algorithms [22], [23]. Specifically, the average event matching time at
each broker is linearly proportional to the number of subscriptions stored in that broker’s routing table, with the increase rate
roughly equal to 1 millisecond per 1 additional stored subscription. The processing time for each event at a broker is then
drawn from either uniform distribution or exponential distribution with the computed average value.

B. Reliability Prediction

In subscriber reliability prediction experiment, we vary publishers’ publishing interval distribution between exponential,
deterministic (i.e. periodic), and uniform publishing distributions. Also, we vary brokers’ event processing distribution between
exponential and uniform matching distributions.

1) Prediction with M/M/1 Broker Model:Figure 4 presents the accuracy of the subscriber reliability estimation algorithm
using M/M/1 broker model presented in Section IV-A under different distributions of each publisher’s publishing interval and
each broker’s event processing interval. The y-axis of eachgraph represents the values of actual subscriber real-timereliability
while the x-axis of the graph represents the values of predicted real-time reliability. Each single point in each graph represents
one subscriber in one run of simulation. As shown in the result, our algorithm can predict subscriber reliability valuesaccurately
in all scenarios. The prediction is most accurate in when publishing interval and event processing delay are both exponentially
distributed (Figure 4(a)). While the results in other settings are less accurate, almost all predicted values are less than or equal
to the actual reliability values. Hence, the prediction canstill be used as reasonably tight upper bound of actual reliability.

2) Prediction with G/G/1 Broker Model:This section presents the accuracy of the subscriber reliability estimation using
G/G/1 broker model. The experimental setting is the same as the setting in Section VI-B1 except the estimation algorithm,
which includes the flow burstiness calculation described inSection IV-B. Figure 5 shows the result of G/G/1 prediction.As
seen from the result, the prediction accuracy with G/G/1 model is better than the one with M/M/1 model when the publication
interval and matching interval are not exponentially distributed. When both publication interval and matching interval are
exponentially distributed, both M/M/1 model and G/G/1 model produce the same result as explained in Section IV-B.
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Fig. 4. M/M/1 model predicted subscriber reliability compared to actual reliability under different event traffic patterns

C. The Effect of Imprecise Publisher Information

The reliability prediction results shown in Section VI-B are based on the experiments with perfectly accurate publisher
content-lifetime distributions. However, such assumption may not be true in practice as the approximation of publisher’s
characteristic may not be accurate. This section presents the accuracy of the subscriber reliability prediction algorithm with
such imprecise publisher information. Specifically, we define distribution skewness, denoted byα, as the level of inaccuracy
in the observed publisher content-lifetime distribution.Let C̃p(a, d) be the actual, hidden content-lifetime distribution of a
publisherp, then the observed content-lifetimeCp(a, d) of publisherp with skewnessα is

Cp(a, d) =
C̃p(a, d)α

∑

a∈V,d≥0 C̃p(a, d)α

That is, the observed probability that a publisherp will publish an event with contenta and lifetimed will be equal to the
actual probability of such event to the power ofα, normalized by the total transformed weight. Hence,α = 1 represents the
scenario of perfectly precise publisher information.

Figure 6 presents the result of subscriber reliability prediction algorithm with the same parameter configuration as Section
VI-B, but with different values of skewness (α). The results shown in Figure 6 are based on exponentially distributed publishers’
publication interval and brokers’ event processing delay,so both M/M/1 model and G/G/1 model produce the same results.
It can be seen that the accuracy of the prediction algorithm slightly decreases whenα > 1, but significantly decreases when
α < 1. The conclusion is thatα < 1 reduces the difference of content popularity in Zipf-like distribution, and thus affects
flow estimation accuracy more than whenα > 1. However, the overall prediction accuracy is acceptable.

D. Subscriber Admission Control

We evaluate the heuristic-based admission control algorithms discussed in Section V in a smaller-scale setting due to time
constraint in exhaustively exploring all possible subscriber sets to find the optimal solution. The publish/subscribesystem in
the setting consists of 4 brokers, 8 publishers, and 10 requested subscribers. The event publishing interval and event processing
time are exponentially distributed, resulting in no difference between results from M/M/1 model and G/G/1 model.

Figure 7 shows the fraction of subscribers that have their requirements satisfied. As shown from the figure, the pub-
lish/subscribe system without admission control performsthe worst, since all subscribers are admitted to the system and
contend for resources. On the other hand, the proposed heuristic–based algorithms give satisfaction rates that are closed to the
optimal subscriber selection, yielding the effectivenessof the algorithm. Each algorithms perform closed to each other without
clear extinction, although the low-req-first heuristic perform slightly better than others as the load increases.
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Fig. 5. G/G/1 model predicted subscriber reliability compared to actual reliability under different event traffic patterns
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Fig. 6. Predicted reliability compared to actual reliability with inaccurate content distribution information

VII. R ELATED WORKS

There have been significant efforts to model and analyze publish/subscribe systems along with their correctness properties
and performance aspects. In his dissertation, Muhl [24] proposed a generic content-based publish/subscribe frameworks and a
class of subscription/publication routing and matching algorithms with proof of correctness and performance analysis. Baldoni
et al [25] also proposed correctness proof of publish/subscribe systems when subscription propagation delay is not negligible.
However, both works assume reliable underlying networks and does not address event delivery timeliness aspect. He et al
[26] proposed a publish/subscribe model checker based on probabilistic timed automata. However, the computational overhead
associated with the automata due to state explosion may limit the usage of such approach to only small-sized problems.

Liu and Jacobsen [22] addressed the uncertainty in terms of imprecise knowledge in subscriptions and events in content-
based publish/subscribe systems. By expressing subscriptions and events in the form of fuzzy sets, the work proposes the
publish/subscribe systems that allow approximate matching between subscriptions and events with vague attributes. The concept
of publication uncertainty in their work can be considered equivalent to the concept of publisher content-lifetime probability
distribution in our work. However, their work focus on the aspect of subscription uncertainty and correctness in event matching
while our work focus on uncertainty in underlying networks,event delivery probability and timeliness.

Another work that resembles our work in modeling publish/subscribe system integration and timeliness is the work done by
Kounev et al [27]. The work analyzes mean delivery delay of distributed event-based system with the use of rate calculation
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and queuing theory. While our work also uses the queuing theory to calculate delivery delay, our work presents the model that
abstracts content-based events and subscriptions and allows fine-grained prediction of reliability and delay. We alsopropose a
heuristic-based admission control on top of such model.

VIII. C ONCLUSIONS

In this paper, we discussed the feasibility of performance assessment of distributed, content-based publish subscribe systems in
terms of event delivery probability and end-to-end delivery delay. We proposed an analytical model that abstracts expressiveness
nature of content-based publish/subscribe paradigm and uncertainty in underlying overlay networks. We then proposedthe use of
subscriber real-time reliability as a quality of service metric that combines delivery success rate and timeliness metrics. With the
proposed model, we then presented the real-time reliability prediction algorithm for the given system configuration. Moreover,
a set of subscriber admission control algorithms based on the prediction algorithm were also proposed. Finally, the experimental
results validated the algorithms’ accuracy and effectiveness. Our future directions of this work include decentralized subscriber
reliability estimation/admission control, mobile subscriber admission control, and admission control on cyclic-overlay content-
based publish/subscribe systems.
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