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IMPROVING APPROXIMATEIZIOE

By Arthur R. Robinson,® M. ASCE and John F. Harris,? A. M. ASCE

Anestimate of the solution to an eigenvalue problem is often available either
as the final answer in some approximate method or as an intermediate result
in an iterative process. This situation may arise whenusing either a discrete
or a continuous model. Two examples are considered herein,

1. It is common practice when computing the dynamic response of rigid
frames to modify or condense the structural stiffness matrix by algebraic
elimination of the joint rotations and member extensions (see, e.g., Ref. 8).
The reduced stiffness matrix refers explicitly only to lateral motion of the
floor levels. This makes the so-called consistent mass matrix (1) more dif-
ficult to derive sothat a lumped mass approach is generally used as in Ref. 8.
The process outlinedreduces the size of the eigenvalue problem considerably;
the number of unknowns may be reduced by as much a factor of five as com-
pared to the problem where joint rotations and member extensions are given
- explicit consideration. Certain of the solutions of this reduced problem may
L be of sufficient interest that an improved solution is sought in which the dis-
tributed nature of the mass of the members is taken into consideration, re-
sulting in generalized- mass moments of inertia and generalized masses
corresponding to member end rotations and extensions. The solution of the
reduced problem isthen consideredonly a first approximationto the expanded
problem.
"3 2. Frequently the Holzer method (2) is used to bracket eigenvalues in both
© vibration and buckling problems. A determinant is formed which vanishes if
..: the (homogeneous) boundary conditions are satisfied. It is then tested for
change of sign as the trial approximation to the eigenvalue is incremented. A
Note.—Discussion open until September 1,1971. To extend the closing date one month,
+ a written request must be filed with the Executive Director, ASCE. This paper is part
. of the copyrighted Journal of the Engineering Mechanics Division, Proceedings of the
© American Society of Civil Engineers, Vol. 97, No. EM2, April, 1971, Manuscript was
» submitted for review for possible publication on March 3, 1970.
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change of sign of this determinant between two successive values of the trial
eigenvalue indicates an eigenvalue falling between the two approximate values.

In the two types of problems just described, it would be useful to have a
procedure for improving an eigenvalue andthe corresponding eigenvector when
either the model is refined by the inclusion of more degrees of freedom (in
the stiffness,and mags, matrix, of example 1) or where only an approximate
~ eigenvalue h%g?;%% f%l%%fg %)f‘% é‘i?r?fy c%%%liécated model. A procedure, actually
& f?%%ﬁ;ﬁ@ﬁﬁn *‘@féfé“ Niewton-Raphgon; méthod (5), is presented herein which

accomplishes thiss objective of improving-eigenvalues and eigenvectors in an

extremely effective fashion” = ~ % 77 ' '
The¥proceduté has' beeh -testédisidcésstully on discrete and continuous
systemB I Has alsarbeed applied: to;a -problem where multiple (nonsimple)
eigenvalues are known to exist. The procedure is illustrated by three sample
problems which show the generality of the method. It will be demonstrated in
some detail on linear eigenvalue problems by the three problems. A description
is also given of the extension requiredto solve certain other important eigen-

value problems associated with nonlinear structural response.

LINEAR EIGENVALUE PROBLEMS

The problems to be solved herein may be described by
AX = ABX = 0 i it e e e e e e e e e e e (1)

and appropriate boundary conditions where necessary. In Eq. 1 A and B are
operators which may be matrices, differential or other linear operators. Op-
erators A and B are assumed to be self adjoint and B positive definite (3).
Quantity A is an eigenvalue and X is the corresponding eigenvector or eigen-
function. If A(9) and X (9 are approximate solutions of Eq. 1 then

AxX@ - @O Bx@ = RGO (2)

in which R is a residualandsuperscript (7) refersto either the initial estimate
of some known reference configuration. :

The object is to remove the residual in Eq. 2; the Newton-Raphson tech-
nique is introduced for this purpose. Eq. 1 is interpreted as a nonlinear equa-
tion in X and A where the nonlinearity arises from the term ABX. Eq. 1 is
linearized about the configuration corresponding to superscript (7), giving

R IR I

A6X@ - 2O Box® - @O Bx® = - RO 8 g

in which 86X (%) and 6x(®) are thelinear parts of the incremental change in those g

quantities about the reference state specified by X () and A()), The residual, pg
R (i), is available from Eq. 2. The unknowns in Eq. 3 are only 0X () and 6k(i), ®
because the approximate eigenvalue A(?) and eigenvector X *) are known. Be- ©
cause 6A () is an extra unknown, a side condition must be introduced which, &
together with Eq. 3, determines 6X () and 61(?), The nature of this side con- 2
dition may be best explained in the context of an actual problem. In each of @
the succeeding sections a convenient choice for the side condition is given,
There is a formal relation between the present work and that presented by g
Rall (14) for the discrete case. However, Rall’s method does not treat the B "

- tusta
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eigenvalue explicitly as an extra unknown, and an unfortunate choice of co-
ordinates can lead to failure of the procedure.

SAMPLE PROBLEM 1

For purposes of illustration, the lowest mode of vibration of a one-story
frame will be determined by use of a discrete model (see Fig. 1). The equa-~
tions of motion corresponding to free vibrations of the frame are derived
using Lagrange’s equations. In order to reduce the system to one having a
finite number of degrees-of-freedom, the displacements of the individual
members are restricted to a cubic function in the transverse direction and a
linear function along the axis of an individual member. The distributednature
of the mass of the individual members is considered, so that the formulation
leads to the so-called consistent mass method.
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FIG. 1.—RIGID FRAME—SAMPLE PROBLEMS 1 AND 2

The motion of the frame is assumed to be specified by the generalized co-
ordinates x,, x,, . . . x; as functions of time f (Fig. 1). The generalized co-
ordinates are written in matrix form as {X}. The matrix form of the equations
of motion for free vibration is (7)

ml1{x} + [K]{x} ={0} ... ... . (4)
in which [M ] is the generalized mass matrix; [K ] is the stiffness matrix and
a dot indicates differentiation with respect to time. For free vibrations, vec-
tor {X} is assumed to vary sinusoidally with time, {X} = {X} sin wf in
which w is the circular frequency, in radians per second. From Eq. 4

SAMI{XY (KXY = {0} o .. (5)

in which A = «? is an eigenvalue for the free vibration problem and {X} is
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the corresponding eigenvector. Matrices [M ]and[K ] are given in Appendix III.
If an approximate eigenvalue and eigenvector are known for this problem,
Egs. 2 and 3 become

-AD M{XxO} + [K]{X®D} ={rR®O} . ... L (6)
- o (] {X O} - 20 (1] {sX O} + [K] {60} = - {RO} (1)

Egs. 6 and 7,if supplemented by a scalar side condition, should be solvable
for the 6x (®) and &1 (@,

In this particular case, the side condition is taken to be
{IXOIT [M]{6x@} =0................ e (8)

This is equivalent to saying that the allowable changes in the eigenvector are
orthogonal to the latest eigenvector with respect tothe mass matrix., This pre-

vents unlimited drift in the eigenvector which is, after all, not determined in
magnitude.

42
TABLE 1.—EIGENVALUES, 1, AND RESIDUALS, R(Y), FOR SUCCESSIVE ITERATIONS— g
SAMPLE PROBLEM 1 =

43
)
Approximation Number g‘s
0 1 2 3 - g
, e
A, in radians squared per second squared o %)
=
9,138.3 9,354.4 9,385.2 9,335.2 © 'g_j
0 O
-0.90642 x 102 -0.108 x 10° 0.203 x 1077 0.0 & o
-0,10641 x 10° ~0,243 x 102 0.481 x 1073 -0,182 x 107 @ o
-0.43659 x 105 -0.101 x 102 0.206 x 1075 -0.131 x 107™° fy o
0.86416 x 102 -0.982 x 107! 0.177 x 1077 0.291 x 107¢® @ ?;_%
-0.66446 x 102 © -0.144 x 10° 0.290 x 1077 '~0.369 x 1071 CE.; 5|
0.12215 x 108 0.381 x 103 -0.920 x 1074 -0,175 x 107° o
i
B erd
P B
The resulting set of simultaneous linear algebraic equation maybe written % e:
in partitioned form as
] 1 — —_— .
(] - 20 [m], - [MI{X@O}] (6X @ R )
ST oEmmem Tl = - ‘ - ST NT T T/ s eo e e (9)
- {X“)}T[M]: 0 . law) 0 5 -

Note that the coefficient matrix of the incremental quantities is symmetric.
This is a significant advantage of the particular side condition expressed by
Eq. 8. The explanation just given makes it reasonable to expect that the coef-
ficient matrix in Eq. 9 is nonsingular. A formal proof of this fact is given in
Appendix I. Eqs. 9 may then be solved by Gauss elimination, or by any other

suitable technique, to yield 6X 9 and &%), The (¢ + 1)th approximation
becomes

{EW%={WW+{ﬁW%

A(EH) = (@) L 5 )
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The {X (@41} and A(*1) may be substituted into Eq. 6 again to yield a new
residual vector {R (”1)} which may be checked against some acceptable tol-
erance. If {R (i+1) } is not satisfactory, the process is repeated until the resid-
ual vector is within the allowable tolerance.

The initial estimate for the eigenvalue and eigenvector may be obtained by
considering the frame tobe a single degree-of-freedom system corresponding
to horizontal motion of the girder. Mass M of this simplified system may be
estimated as the mass of the girder plus one-third the mass of the columns.
The stiffness, K, is found by computing the force necessary to give the girder
a unit horizontal displacement, and the eigenvector is estimated by computing
the joint displacements correspondmg to the unit displacement. The initial
eigenvalue is then taken as 2 (9 = K/M.

In this case, the initial approximation to the eigenvalue is 9,138.3 rad?/
sec?, After two cycles of iteration, the eigenvalue stabilizes at 9,335.2 rad?/
sec? (see Table 1). Note also (Table 1) that the residuals decrease rapidly.
This extremely rapid convergence is consistent with the theoretical character
of the process in the neighborhood of an eigenvalue, which is developed in
Appendix II,

SAMPLE PROBLEM 2
The procedure used to find eigenvalues and eigenvectors of continuous
systems is illustrated by determining the lowest mode of vibration of the
frame in Fig. 1. This also permits a comparison between the discrete and
continuous methods. The differential equations of motion are taken as (7)
84 o2 )
EI % +m < =0 |
- e (11)
9%y g
EAaszumatz—O/ ,

in which EI is the flexural rigidity; m is the mass per unit length; EA is the

extensional rigidity; w is the transverse displacement;« is the axial displace-

ment; and s is the distance along the center line of the frame measured as

Dposmve from point 1 on the frame clockwise to pomt 4, With v = U sin wi
and w = W sin wt, Egs. 11 become

wiv -A—E—IW-02

197 —_— —
U AEAU 0 S

in which A = «? and a prime denotes differentiation with respect to s.
If an approximate eigenvalue and eigenvector are substituted into Eqgs. 11,
the residuals are

IV W L
w@ - A(Z)-E—}- w) = R%} ()

@' a0 2 gl = Rl) S
U‘ + A EAU Ry
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As inthe discrete method, the residuals are removed by use of the Newton-
Raphson method. The nonlinearityin Egs. 12 arises from the terms X (m/EI) W,
X(m/EA) U. Egs. 12 are linearized about the reference configuration resulting
in

~ing Departmenti

LIV - m ' o
- M srr(@) - a6 T (d) — _ pld) z]

sw %) A (8 %7 W B z W R} 2 »” g

s+ 2O L spl) 1+ 0@ L pt) = - R \ -

nece

in which the 6w &0 and 6x() are unknown. _ = i
This system of linear differential equations may be solved for 6x(?) and the ¢, -4
incremental changes inthe eigenfunction. The side condition is taken analogous @ &0

to that for the discrete problem, i.e. paghc
34 o 4

[ omw® ow® + v® su@las =0 ... ... L (15) &

Sl @ o

=)

Eqgs. 14 are uncoupled within an individual member of the frame but coupling
takes place because of the compatibility and equilibrium requirements at the
intersection of the girder and columns. These requirements are:

(BAU", = - (EIW''")_
(EIW'), = (EIW')_
(EIW'"), = (EAU")-
(U)+ = (W)=

(W) = (W)=

(W)y = - (U)-

TABLE 2,—INITIAL VALUES OF DIFFERENTIAL EQUATIONS SAMPLE PROBLEM 2

Homogeneous Solutions
Quantity Particular Solution
i=1 i=2 i=3 i=4 =25
5W; (0) 0 0 0 0 0
W} (0) 0 0 0 0 0
6wy (0) 1 0 0 0 0
ow3 (0) 0 1 0 0 0
8U; (0) 0 0 0 0 0
6T} (0) 0 0 1 0 0
oA 0 0 0 1 0
Right-hand side
Eq. 14 0 0 0 0 ~ Ry
Right-hand side
Eq. 14 0 0 0 _ 0 -Rypr
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(The direction from - to +is in the direction s, to s,.)

The modified boundary value problem defined by Egs. 14 and 15 and ap-
—.ppropriate boundary conditions is converted to an initial value problem (see
e.g., Ref. 12) which is then solved by numerical integration using a general-
2jzed trapezoidal method (3). (In the present case rapidly growing solutions

i zgare absent and the process is straightforward.) The integral in Eq. 15 is

.~evaluated by Simpson’s rule. Several initial value problems are propagated

. .from point 1 around the frame to point 4 (see Fig. 1). A linear combination of

Othese initial value problems is constructed to satisfy the boundary conditions
.at point 4 in addition to the side condition defined by Eq. 15.
The initial value problems are combined to satisfy the following boundary
onditions at point 4: '

4

SWy(sy) + ), aj 6Wj(s) (W =0ats,)
j=1
4

6Wi(s,) + ) a; 6Wi(s,) (W' =0ats)
j=t

Urbana, Lillin

[w]
1l

4
0 = 6U,(s,) + ), o 6U;(s) (U =0ats,)
j=1

in which subject 7 refers tothe initial value solution number and the o j = the
amplitudes of the initial value solutions.
In addition, the side condition, Eq. 15, is expressed as

54 ' . 4 84 .
0 = fs m[UD sU, + w® 6w, lds + ), a; fs m [T 6U;
1 j=1 1
+ WO 6Wilds .. (17)

Eqs. 16 and 17 may then be solved for o ;. The initial values for each so-
lution are given in Table 2. Once the values of o ; are computedfrom Eqs. 16a
and 1656 the correct incremental solution may be determined, i.e.

4
oWk = 6w + )y oWE L (18)
' i=1
with a similar relationship for 6U(*) and all higher derivatives.
The incremental solution is added to the total solution to yield

wk+) = k) 4 5w(k)2
g+ = g® 4 osp® Lo e (19)
AB+1) = 5 (R) L gy (k)

The (& + 1)th approximation becomes the new reference position which is
then substituted into Eq. 13 to compute new residuals that are examined for
~accuracy. If the residuals are small enough, the process is terminated. If not,
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the entire procedure is repeated for the new reference position given by Eq. 19,
until the residuals are acceptable.

In this particular case, the starting eigenvalue for the continuous process
is the one obtained from the discrete process. The initial eigenvector may be
derived by the following technique. A series of three initial value solutions
corresponding to 6W}'(0) = B, W' (0) = 1, 6U; = 1, in which B is set at
some convenient magnitude (in this case 0.01), are propagated to point 4. The
amplitudes of solutions 2 and 3 are determined so that two of the three bound-
ary conditions at point 4 are satisfied. All subsequent corrections to this ap-
proximate eigenvector are determinedin such a way that the final eigenvector
does satisfy all boundary conditions. The choice of the boundary condition
which is notsatisfiedin the initial approximation to the eigenvector can some-
times be important. Experience indicates that the softest constraint should be
relaxed.

The eigenvalue for the first mode as determined by this process is 9,118.4
rad?/sec? which as expectedis lower than the 9,335.2 rad?/sec? determinedby
the discrete process.

Table 3 shows the starting eigenvalue and the eigenvalue for the next few
iterations. It stabilizes rapidly.

SAMPLE PROBLEM 3
As anexample of a problem havinga multiple eigenvalue, a simply supported

strut with a spring at its midpoint is considered (see Fig. 2).
When K = 16 72EI/L®%, there are two independent eigenfunctions corre-

TABLE 3.—EIGENVALUES AND MAXIMUM RESIDUALS FOR SUCCESSIVE ITERATES—
SAMPLE PROBLEM 2

Approximation Number
Quantity
0 1 2 3
A, in radians squared per :
second squared 9,335.20 9,118.44 9,118.44 9,118.44

aR%‘)maX, in inches™3 0 0.110 x 1079 (0,186 x 1075 |0.132 x 10722

i in -1 - - -1
2R . in inches 0 0.113 x 1078 |0.515 x 1074 | 0,256 x 1071¢

&Maximum value of residual over entire range of S, the arc length.

L/72 !~ L/2

TN e b o1 aIEE Sh 6
- o
Y

FIG. 2.—SPRING-SUPPORTED STRUT—SAMPLE PROBLEM 3
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sponding to A = P/EI = 4 72?/L? (11). The differential equation of equilibrium
is (11)

WIV L AW =0 (20)

The solution process is similar to that used in sample problem 2. There
is,however, one significant difference. If a single side condition isintroduced,

e.g.

L |
LW oWNds =0 ..o (21)
0

and the problem is solved by the initial value approach, the equations which
determine the initial values are singular. This is expected because there are
two independent eigenvectors possible for the same eigenvalue, which means
that a single side condition is not sufficient to determine the initial values
uniquely. Because of numerical round-off, the equations for the initial values
are not exactly singular. For this reason, the method still isolates the eigen-
value fairly well, but the resulting eigenvectors never stabilize, i.e., as
further iterations are performed, changes in the eigenvectors do not become
small.

In order to avoid this problem, two eigenvectors are generated simulta-
‘neously(called U and V). Another side condition is introducedfor eachof these
‘eigenvectors, resulting in two side conditions for each eigenvector. In com-
puting 6V, the side conditions are

L
[ vevrds =0
0

................................ (22)
L
[ vevrds =0
~and in computing 8T/
L
[ wvevrds =0
O (23)
rL
J vierras =0 )
(0]

in which U and V are two independent eigenvectors and 86U and &V their

increments. ‘
“n 3 It willbe recalledthat the function of the side condition(see sample problem
<4 © 1)is to insure that changes in the eigenvector are orthogonal to the latest ap-
X % — Proximation. The side condition guarantees that large changes parallel to the

«+4 O eigenvector are eliminated from 6X®). In the case of a multiple eigenvalue,

"‘fg gpunlimited drift would be possible in the entire subspace spanned by the inde-
. — -ripendent eigenvectors. In the present example, the changes in 6U®) and 5V (%)
L gwm be small provided that each of them is orthogonal to the latest U(®) and
O o4 VO, (It is advisable to take the initial U and V(®) as orthogonal.)
. ;;f:g The extra side condition for each eigenvector would seem to over-determine
* .af{_” -4 the amplitudes of the initial value solutions, i.e., there are more equations to
L oerd e satisfied than unknowns. However, this is only an apparent over-
cddetermination because if 6U and 6V are to be small, they should be restricted
%to have no components in the two dimensional subspace spanned by U and V.

L)



TABLE 4.—INCREMENTS OF MIDSPAN DEFLECTION AND EIGENVALUES FOR SUCCESSIVE ITERATIONS—SAMPLE PROBLEM 3

99¥%

7 Numerical Values Obtained by Numerical Values Obtained by
Tter- Numerical Values Obtained by Procedure for Multiple Eigen- Procedure for Single Eigen- Procedure for Single Eigen-
ation values (Double Precision Arithmetic = 15 Figures) values (Double Precision values (Single Precision
N Arithmetic) Arithmetic)
um-~
ber
ou(g) v (3) AgL? o0 (3) o (3) v (3) v (3)
(1) (2)2 (3)2 (4) (5) (6)2 (e (8)2 (9)?
0 0.500 x 103 0.13236 x 108 36.0000 36.0000 0.500 x 108 0.132 x 108 0.500 x 108 0.132 x 108
1 0.279 x 107 -0.324 x 108 39.5433 39.6719 0.268 x 102 -0.20 x 108 0.268 x 102 -0.201 x 108
-2 0.129 x 10° 0.161 x 105 39.4817 39.4817 0.280 x 10° 0.312 x 10° 0.283 x 10° 0.313 x 105
3 -0.146 x 1073 | -0.520 x 10? 39.4817 39.4817 -0.586 x 102 -0.148 x 107 -0.587 x 10? 0.309 x 105
4 0.312 x 107 | -0.305 x 107+ 39.4817 39.4817 -0.526 x 102 -0.224 x 107 -0.525 x 102 -0.125 x 108
5 -0.417 x 1071 | -0.809 x 10™® 39.4817 39.4817 -0.628 x 102 -0.221 x 107 -0.628 x 102 0.171 x 105

2 The reason U and 8V are of different orders of magnitude is that the initial estimates for U and V were of different orders of

magnitude.

Metz Reference Room
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This system of # + 1 equations in » unknowns may be conveniently solved

by a least squares technique (6). If the equations specifying satisfaction of

. the boundary conditions and the two side conditions are written as [C] {y} =

{D},in which [C] has one more rowthan column, the least squares approxima-
tion is computed from

[CIT[Cl{y} =[CIT{D} . ... . (24)

A demonstration of the nonsingular character of the square matrix [C]7 [C]
is given in Appendix I for a discrete system,

. S
JM . NeEEe -

% In this way, two independent eigenvectors are insured which do stabilize

§ rapidly. Table 4 shows the results for a few cycles of the process both with

and without the introduction of the extra side condition.

3

EIGENVALUE PROBLEMS ASSOCIATED WITH
NONLINEAR RESPONSE
The form of Eq. 1 is also applicable to a nonlinear problem if A and B are

'p 4 takentobe functions of the eigenvalue A. This dependence on A is oftenindirect;

.= O e.g.,inbuckling problems A and B may depend on the prebuckling configuration
) § % (PBC), which in turn depends on the applied load A. With this interpretfation of
"o @ Eq. 1, the linearization results in '
s |
§ ;% ﬂ A s5x(d) - () gd) s5x() = 540 x(@) L )G 50 x (@)
8 F 0@ BO XO J RO (25)
)2 =5 Examination of Eq. 25 reveals two types of incremental quantities, i.e., an
> }:;? ﬁ increment of eigenvector X() and incremental quantities corresponding to
I — changes of the fundamental state (in the case of buckling problems, the PBC).
8 "5@9 ., In the context of an arch buckling problem the 5A@ and 6B correspond to
» 3 &1 changes in the stiffness of the PBC (symmetrical in this case). The 5X(%) and
) = @ o) (9) are interpreted as the incremental changes inthe eigenvector and eigen-
z e ﬁ value, respectively (in this case corresponding to sidesway in the plane of the
] £ 3 arch). :

I A®, B and 1) correspond to the PBC just at the onset of buckling,
then, of course, oA () = 0 and the problem is simply one of determining X, the
eigenvector. In general, however, A(®) B(®) and A%) do not correspond to the
PBC at the onset of buckling, so that 61(®) % 0. Given the A (?) computed by
the use of Eq. 25, it is a routine matter using the Newton-Raphson method
(12) to modify A® B® and A i.e., to find A and B. However, the general
procedure fails exactly at the configuration of interest, i.e., the PBC just at
the onset of buckling where the operator A - AB in the equations for the PBC
becomes singular (10).

A technique analogous to that used in the linear problem with a double
eigenvalue (sample problem 3) is presented herein which disposes of the dif-
ficulty associated with the singularity of the operator. All that is required is
that the change in the PBC be orthogonal to the latest estimate of the eigen-
vector of the system. This may be expressed as

T _
XO O 6Xx@) = 0 ... e (26)

in which 6X as used herein refers to the increAmental changes in the PBC and




&
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C (@) is a suitable self-adjoint positive-definite operator. It should be emphasized
that this device is employed only for the determination of accurate changes in
the PBC near the onset of buckling.

- The introduction of Eq. 26 results in an apparentover-determination of the
system, but at the onset of buckling, Eq. 26 is necessarily satisfied(9). There-
fore, the correct 6x () may be determined as the best one by a least squares
technlque as was done in sample problem 3.

Ifitis desiredtotracethe post-buckling behavior ofthe arch, some multiple
of the eigenvector is added to the PBC, and the Newton- Raphson method used g
until a new equilibrium state is found (Wlth sidesway in the case of an arch).

The technique just described has been applied (13) to one of the arch prob-
lems solved by Huddleston (4) and the results obtained are in close agreementrﬂé@

with those of Fig. 2A of Ref. 4. ﬁ

o
FAEPT WS e am S e me BN e o

LS
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SUMMARY AND CONCLUSIONS

A numerical method has been presented for improving eigenvalues and
eigenvectors for certain classes of operators. It has been illustrated by three
detailed sample problems and a presentation of certain aspects of a fourth
problem. The sample problems indicate various facets of the method as ap-
plied to discrete and continuous systems. A case of a double eigenvalue is
considered in sample problem 3 and the special treatment of this problem is
outlined. The extension of the procedure to an eigenvalue multiplicity of any
order is apparent.

The application of the method to problem involving nonlinear structural
response results in a more straightforward computational process than a
previously proposed technique (10).

The proposed procedure converges rapidly as indicated empirically in -~
Tables 1, 3, and 4 and verified analytically in Appendix II, :

Although the method has been illustrated by finding the lowest modes for
the sample problems, it may be used to find any eigenvalue (and its corre-
sponding eigenvector) for which an approximate eigenvalue is known. In fact,
one of the promising applications of the method may well be in determmmg

the higher eigenvalues and eigenvectors.
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i "‘ APPENDIX I.—SOLVABILITY OF BASIC EQUATIONS OF METHOD

ﬂ Consider the proposed method as applied to the determmatlon of the Jth
= eigenvalue and eigenvector of the system [A] {X} = x [B] {X}, in which [4]
 &md [B] are self-adjoint and [B] is positive definite,
: » The method willfail if the basic coefficient matrix used in the computation
@§§ the increments of an approximate eigenvalue and eigenvector is singular.
: His to be expected that if this occurs, it will be exactly at the eigenvalue in
] questlon Thus, in the followmgpresentatmn the exact eigenvalue is substituted
< frfto the coefficient matrix used in the solution for the unknown incremental

;quantities.
From Eq. 9 the symmetric coefficient matrix may be written as
4] - y[B] ' - (B]{x}
[c] =|------- B (27)
-{xTBl. 0

The eigenvectors are normalized with respect to [B]. If the order of the orig-
inal problem is n X #, the coefficient matrix in Eq. 27 is (n + 1) X (n .+ 1).

Matrix [C] in Eq. 27 will be shown to be nonsingular by a consideration of
the eigenvalues of the system

cl{y} =x[@I{y} ... I (28)
B'O
in which [D] = |- 1 -
o1
It may be verified by direct substitution that the eigenvectors {y},,, (m =
| ’ X5 (XN (Xe
1,...,n + 1) are {— -}, - - ,{— - (k=1,...n,k = J), inwhichX; and Xp
1) L1 to

are eigenvectors of the eigenvalue problem [A] {X} - A[B] {X}. The corre-
sponding eigenvalues of Eq. 28, A are - 1, + 1, and (Ap - AJ)
It is not difficult to show that the determmant of [C] is equal to the product

of the A’s multiplied by the determinant of [D]. Because the latter is equal
to the determinant of [ B], which is positive, the determinant of [ C] is nonzero,
provided that none of the A’s are zero. Only in the case of a multiple root
Ag can a X be zero. Thus, if the eigenvalue under study is simple, the basic
method proposed encounters no numerical difficulties associated with a singu-
larity of [C].

The case of a double root, say A; = A, is treated in sample problem 3 by

a modification of the basic method. It willnow be formally shown that the ma-
trix equation in this modified method is also nonsingular. Take X; and Xk
orthogonal with respect to [B]. Now Eq. 28 becomes

[Cl{vrr = {0} oo i (29)

Xk
in which {yg} =<~ -
| 0
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Following the procedure used in sample problem 3, another side condition
is appended, resulting in

_ C C
[C]=—-—-'-—=-—— ......................... (30)
xEB, 0 yE D
B'O0
in which [D] = |- -=:== -|. The least squares approach used in sample problem
: 01

3 yields a new coefficient matrix [C]7 [C], which, by virtue of the form of
Eq. 30, becomes :

[C)T (2] = [c)T[c] + [D) {vxt v T D] oot o C(31)

L4 L4 [ A

The object is to show that the matrix given in Eq. 31 is nonsingular. From
Eq. 29, {yx} is an eigenvector of [C](and thus of [C]T) corresponding to a
zero eigenvalue. The remaining eigenvalues of [C] are nonzero as was shown
earlier in this Appendix.

Now consider matrix [F] = [D] {ygH{yx}T [D] in Eq. 31. It may be shown
by direct substitution that

[Fl{yvg} = 1[D1{vk} v (32)

so that eigenvector {yg} is also an eigenvector of [F] and the corresponding
eigenvalue is unity. By the nature of [F], the remaining eigenvalues are zero
because [F] is a symmetric matrix of rank one. The remaining eigenvectors
of [F] may therefore be takenthe same asthose of [C]. The statement that the
remaining eigenvectors have zero eigenvalues is precisely the condition of
orthogonality the {y,} with respect to [D], {yp} T [D] {yp} = 0, 2 # K.

Itis easyto show thatfor two matrices havingthe same setof eigenvectors,
the eigenvalues of the sum of the two matrices are simply the sums of the cor-
responding eigenvalues of the individual matrices.

Coefficient matrix [C]T [C] has the same eigenvectors as [C), thus the eigen-
values are the squares of those of [C] except for the zero eigenvalue which
becomes + 1. Since all the eigenvalues of [C]? [C]arenonzero, itis nonsingular
and the method proceeds without difficulty.

When nonlinear structural response is considered, the equations which de-
termine the behavior of the prebuckling configuration are progressively more
ill-conditioned as bifurcation points are approached, becoming singular ata
bifurcation point itself. The ill-conditioning may be removed by specifying an
additional side condition(see presentation in the main text). A new coefficient
matrix is then generatedusing the least squares approach. Thenew coefficient

matrix may be shown to be nonsingular by a procedure similar to, and some- .

e ont

what simpler than, that used in the multiple eigenvalue problem described&h ¢ ;

the last paragraphs.

APPENDIX II.—STUDY OF CONVERGENCE OF ITERATIVE PROCESS
IN THE NEIGHBORHOOD OF AN EIGENVECTOR

Reference Roo

An eigenvalue problem defined by the matrix equation

o
2

<

a

il R VTR I

-

B9

1

Al
ERARRE:

et
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[A1{x} =a[BlI{X} ... (33)

is considered, in which[A] and[B] are self-adjoint and[B] is positive definite,
Eigenvectors {Xm} (m =1,2,...n)are normalized with respect to [B]; the
corresponding eigenvalues are )\m, #n is the order of the system.

Substitution of an approximate eigenvalue A (%) and eigenvector {X(®} into

Eq. 33 yields

(Al {x@®} - XO [B]{x®} = {RO} .. ... .. . (34)
in which {R} is a residual and superscript (i) denotes the 4th approximation.
Eq. 33 is now linearized which results in

(4] {6x®} - 2@ [B] {6x®} = an® [B] {x®} - {RO} ... ... (35)

The approximate eigenvector {X()} may be expanded in a series of the true
eigenvectors yielding

n

{(xOF = ) o {Xm} (36)

m=1

in which the a,(};) are scalar coefficients. Eq. 36, together with Eq. 35, implies

[
a

[A] ) oo {X,} - 20 [B] ) 0a® {X,,}

“;; m=1 m=1
=@ [B] ), o) {X,} - {RDY . .. (37)
1 m=1
“ Premultiplication of Eq. 37 by the eigenvector {X}}7 and substitution of {R(®}
from Eq. 37 results in
. =A@ - @ -
Ga}j) = - Ck o - A af) (38)

Now consider that X(?) and A(®) are in the vicinity of X; and X, A side condi-
tion is introduced analogous to the one used in sample problem 1, i.e.

[XOMT[BI{XO} = 0 o\t (39)
Eq. 35 is then substituted into Eq. 39 to give

--------------------------------

v et b §of
=
Q
=3
(@)
Q
<.
=
1i
o

CERYITEE
by el s e

Eq. 38 may be substituted into Eq. 40 resulting in

e B

i

. 5 (7)
n [a](Z)]z {1 - ____}\WJ Z a(Z) ] - WJ =0 .... (41)

s e

-
-

m;—*]

_if As the process is supposed to be isolating the Jth mode
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(2) .
max -;—Lf% = ell) 1
T (42)
5 (9)

and—————(T«l m *F J

If Eq. 41 is divided by [a](i)]z, the last term becomes K [ (K a positive
number < ). Eq. 41 becomes
@ =y - AO1{1 + K[eOFF oo (43)

Substitution of Eq. 43 into Eq. 38 yields

; LY AO1{1 + K[e®P} | g
saff) = WY o) (44)
&
It now follows that ) o
rg =A@ . . b
a(“'l) = OZ(Z) + Oa(” —j‘—ﬁ)—{l + K €(z)]2} Clq(fl) ........ (45) '2,
The error in the eigenvalue at the ith iteration is denoted by 5
AD =, - @ e R
Yy
Eqs. 42, 45, and 46 yield . :
afit1) AlD) . . 5 f
e(”l) = max 94_1) 510 {1 + K[e®DP} D ... (47) 7 ¢

2 .
R WL

a minimum. Eq. 47

in which m, is selected to make the quantity [Am - @)
1

gives (neglecting terms of order [e(i) J? as compared with 1)
AlD)
Xy = AP
P

Also, from Egs. 43 and 46

(i+1) .
oy A1)

in which K, is bounded.

Eqgs. 48 and 49 determine the character of the convergence of the process.
To examine this character more conveniently, the A% A(*) gre eliminated
from Eqgs. 48 and 49 as follows:

eli+1)
et) =

------------------------------

. Ali+1) A(9) .
eli+2) = max K([eDR .. ..... 50
T R e | T | el (50
in which K, is a bounded constant. Eq. 48 is then substitutedinto Eq. 50 to yield
(i+2) ((7) .
€ €
) Ty S K[e®p . ... ..... IR T T (51)
A process will be said to be of order y if
€)= ey | (52)
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Thus, a first order method merely multiplies the error by a constant (less
than unity for convergence), and a second order method squares the error.
The order y andthe constant ¢ are obtained by substituting Eq. 52 into Eq. 51.
It is foundthat v = 1 + v2 =~2.41 andc = (K')‘/z_’z. Thus the process removes
the unwanted components of the modes other than the Jth more rapidly than a

second order process. .
In the same way, elimination of the €() terms from Eqs. 48 and 49 leads to

“ Fi P e s s

AE+2) A(D) .
INGSWNG K ADF

Therefore, the convergence of the eigenvalues is also a process of order =

2.41. _
The extremely rapid convergence indicated in Tables 1, 3, and 4 is thus to

be expected.

Y = APPENDIX III.—STIFFNESS AND MASS MATRICES
% FOR SAMPLE PROBLEM 1
I
do’
w . . . .
x=§ The stiffness and mass matrices for sample problem 1 are given in Table
o]
"‘3 TABLE 5.—STIFFNESS AND MASS MATRICES FOR SAMPLE PROBLEM 1
) a Xx; X, X, X, X, X,
| g@?
: :g (a) Stiffness Matrix
: ClS’ 0.374 x 107 0.000 x 10° 0.463 x 107 -0.368 x 107 0.000 x 10° 0.000 x 10°
©e. 0.000 x 100 0.405 x 107 0.125 x 108 0.000 x 10° -0.695 x 10° 0.125 x 10°
5% 0.463 x 107 0.125 x 108 0.344 x 10%° 0.000 x 10° -0.125 x 108 0.150 x 10%
= -0.368 x 107 0.000 x 10° 0.000 x 10° 0.374 x 107 0.000 x 10° 0.463 x 107
0.000 x 10° -0.695 x 10° -0.125 x 108 0.000 x 10° 0.405 x 10 -0.125 x 108
0.000 x 10° 0.125 x 10° 0.150 x 10%° 0.463 x 107 -0.125 x 108 0.344 x 10%
(b) Mass Matrix
0.463 x 10 0.000 x 10° 0,152 x 10? 0.194 x 10 0.000 x 10° 0.000 x 10°
0,000 x 10° 0.499 x 10 0.219 x 10 0.000 x 10° 0.149 x 10t -0.467 x 10
0.152 x 10 0.219 x 103 0.147 x 108 0.000 x 10° 0.129 x 10° -0.107 x 10
0.194 x 10 0.000 x 10° 0.000 x 10° 0.463 x 10! 0.000 x 10° 0.152 x 10
0.000 x 10° 0.149 x 10t 0.129 x 10° 0.000 x 10° 0.499 x 10* -0.219 x 10°
0.000 x 10° -0.467 x 10° -0.107 x 105 0.152 x 107 -0.219 x 10° 0.147 x 108
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APPENDIX V.—NOTATION

The following symbols are used in this paper:

A, B, C = generalized linear operators, may be matrices, differen-
tial or integral operators;

= augmented matrices (Appendix I);

EA = extensional stiffness;

EI = flexural stiffness;
F = matrix in Eq. 32;
¢ = superscript indicating ith approximation;

[K] = stiffness matrix;

o

Al
g
[

K = frame stiffness;
K, K,, K', K'' = positive constants (Appendix II);
[M] = mass matrix;

M = equivalent mass;
m = mass per unit length;

R(®) = ith residual (vector or function);
s = arc length;
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¢ = time;
U(s) = modal displacement;
U(s) = eigenfunction (in problem 3);
u(s, t) = axial displacement;
V(s) = eigenfunction (problem 3);
W(s) = modal transverse displacement;
w(s, t) = transverse displacement;
X = eigenvector or eigenfunction;
%; = jth generalized coordinate;
¥y, = 7th eigenvector (Appendix A);
@; = contribution of jth initial value solution;

ag) = contribution of mth true eigenvector to X) (Appendix II);
y = order of convergent process (Appendix II);
0 = variational symbol (used to denote incremental quantity);
A®) = error in ith approximation to eigenvalue (Appendix II);
€? = measure of error in ith ,appr’ox%manon to elgenvector

(Appendmm)r . s b

A = eigenvalue; and : : : B
w = natural circular frequency.: = L
sathgnd
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