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1.1 Object of study 

CHAPTER 1 

INTRODUCTION 

The advent of high-speed computers has provided the 

structural engineer with improved analytical capabilities to 

cope with the highly complex problerr. of structural synthesis. 

In seeking to exploit the full potential offered by the com

puter, structural theory has undergone an extensive reorienta

tion from classical formulations to matrix methods of 

analysis. Meanwhile, considerable effort has been invested 

in developing programs for the analysis of highly refined 

models of structures subjected to various service conditions. 

In spite of the valuable progress achieved, the 

ultimate goal of complete automation of optimum structural 

synthesis seems to be far from reality. In fact, such a 

possibility is often disputed on the grounds that the design 

factors involved are prohibitively high in number and quite 

diverse in nature. Consequently, the essential character of 

the present design process still remains iterative, in which 

each design is analyzed, evaluated, modified and reanalyzed 

repeatedly in order to obtain a satisfactory design. 

The goal of this study is to investigate the pos

sibility of integrating an automatic analyzer into an itera

tive design process more effectively by: 

1 
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a) incorporating partial reanalysis techniques 

into the methods of solution, so that the 

performance of the current trial design can 

be determined by utilizing the information 

gained in the previous cycle of analysis; and 

b) providing quantitative data pertaining to the 

rate of change of the response quantities of 

the structure due to modifications of various 

design parameters. 

1.2 Background 

There is a considerable body of literature on the 

matrix methods of analysis of skeletal structures. In this 

section it is intended to mention only a few of the works 

which are relevant to the present study. 

a) Matrix Methods of Analysis 

Initial contributions to the development of the 

matrix formulation of the flexibility method were made by 

Lang and Bisplinghoff(2) , Langefors(3) , and Wehl and 

Lansing(4) who added to the basic theoretical knowledge 

presented in an earlier paper by Levy(l). 

Somewhat later, Levy suggested the use of a stiff

ness approach to the analysis of high-speed air frarnes(5). 

Turner, Clough, Martin and TOPp(6) presented the first 

treatment of the stiffness method by deriving the stiff-

ness matrices for various types of structural components. 
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It was shown in the same paper that the jOint stiffness 

matrix of the structure can be obtained by superimposing 

the stiffness matrices of individual members. 

A unified discussion of the both methods of 

analysis was presented by Argyris in 1960(7}. 

A detailed exposition of the subject by A. S. Hall 

and R. W. Woodhead in 1961(8), initiated a period of 

continuous publication of similar textbooks presenting 

(9 lO) up-to-date developments ' • 

b) Solution Techniques 

Various algorithms for the solution of the basic 

equations of the stiffness and flexibility method of 

analysis have been developed using the available tech

niques of linear algebra(ll). A brief discussion of 

related work are given in a recent paper by SPillers(12). 

Kron(13} attempted to simplify the solution 

process for large, complex structures by tearing the 

interconnecting methods. The same approach has been 

explained by means of a straight-forward application of 

Housholder's modification formula(14}. Branin(15) 

formulated the basic ideas of Kron's approach by the 

orthogonal equations of a network. Later, Fenves and 

Branin(16} demonstrated the applicability of the network 

formulation to structural analysis. 
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c) Sensitivity Analysis 

There seems to be no study reported so far for a 

general formulation of sensitivity functions for struc-

tural analysis. The papers written on optimization 

techniques employ the basic idea indirectly by using 

partial derivatives of design quantities. A direct 

reference to sensitivity coefficient was made by K. F. 

Reinschmidt, C. Ae Cornell and J. F. Brotchie(17). 

Sensitivity analysis has received considerable 

attention in control theory of dynamic systems. In 

particular, references 18 and 19 present a comprehensive 

discussion of the subject. 

d) Computer Programs 

STRESS(20) is generally accepted as the program 

having had the most pronounced effect on structural engi-

neering. The development of the program took place on the 

basis provided by Fenves and Branin(16) in 1963. In this 

paper it was shown that the problem of elastic analysis 

of structures is just a particular case of the more 

general network theory of linear systems, and that the 

network topological formulation of structural analysis is 

well suited for programming on digital computers. Further 

additions and extensions were incorporated into the most 

recent version of STRESS(2l) to be used in an on-line 

environment. 

1 
I 

j 
~ 



utilizing the basic characteristics of STRESS 

language, a computer system for structural design, 

STRUDL(22) was developed in 1966. In addition to 

analysis, STRUDL has the capability of performing 

numerous design operations. 

1.3 Assumptions and Limitations 

5 

The scope of this study is limited to the analysis, 

partial analysis and sensitivity analysis of linear elastic 

skeletal structures under static loads. 

The term skeletal indicates a group of structures 

consisting of the following specific types: plane truss, 

plane frame, plane grid, space truss and space frame. This 

group of structures is composed of members that can be repre

sented by their centroidal axis and analyzed as line elements. 

It is assumed that the material of the frame is 

such that a linear relationship exists between the applied 

-actions and the resulting displacements. 

The overall deformation of the frame is assumed to 

be small enough so that the entire analysis can be based on 

the undisturbed configuration of the structure. 

The loading is restricted to static loads which may 

be in the form of jOint loads, member loads, member distor

tions, member end loads and support displacements. 
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1.4 Organization of Report 

In Chapter 2, a brief review of the basic definitions 

of structural analysis is presented, in order to set the stage 

for subsequent discussion. Following a comparison of methods 

of structural analysis, particular attention is given to the 

stiffness formulation and related algorithmic considerations. 

Chapter 3 starts with a brief discussion of the 

function of an automatic analyzer in an iterative design pro

cess. Then the algorithmic considerations inVOlved in the 

reanalysis phase are discussed and formulations suitable for 

partial reanalysis are presented on the basis provided by the 

stiffness and the flexibility methods of analysis. 

Chapter 4 starts with a discussion of the objective 

of sensitivity analysis and proceeds to argue that sensitivity 

coefficients can form a quantitative basis for helping the 

designer in his decision-making. Then the sensitivity func

tions are obtained as functional derivatives of the expressions 

derived for the stiffness formulation. Finally, design 

parameters of interest which can be included in sensitivity 

analysis are discussed. 

The subject of Chapter 5 is the computer program 

developed on the basis of the formulations and algorithms 

discussed in the previous chapters. Following the description 

of the scope, implementation, input and output of the program, 

its logical and functional organization is presented. 
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In Chapter 6, a number of sample problems are 

considered, and the results provided by the computer program 

are examined to emphasize the main pOints developed in this 

study. 

Chapter 7 presents a summary of the conclusions 

reached in the study and some suggestiong for further 

investigations. 



CHAPTER 2 

INITIAL ANALYSIS 

In this chapter a brief review of basic definitions 

of structural analysis is presented in order to set the stage 

for subsequent discussion. Following a comparison of methods 

of structural analysis, particular attention is given to the 

stiffness formulation. Finally, algorithmic considerations 

in formulating an automatic analyzer based on the stiffness 

method are examined. 

2.1 Structural Analysis 

An elastic structure is essentially a deformable 

body having a specific configuration and boundary conditions. 

The objective of analysis is to predict the manner in which 

such a body, presented by an idealized model, behaves as a 

response to disturbances (loads) imposed on it. structural 

analysis implies the complete description of this behavior 

by determining sufficient information from which stress and 

strain at any pOint of the structure can be calculated. 

2.1.1 Basic Concepts 

For purposes of analysis a skeletal structure may 

be conceptually decomposed into elements which are commonly 

8 
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referred to as members. The pOints where the elements 

terminate are the joints. There are two main advantages 

derived from this decomposition: 

a) the analysis which involves integral or 

differential equations is localized to 

members; and 

b) the analysis of the entire structure composed 

of an assemblage of members is reduced to a 

problem of finite mathematics. 

Due to the fact that the complete pattern of 

stress and strain for each member can be determined if its 

terminal quantities are known, the analysis may be centered 

on the stress and strain resultants at the ends of the 

members (member terminal actions and displacements), and 

on the corresponding quantities assigned to the joints 

(joint displacements and reactions). The process of analysis 

is based on relations between the above quantities imposed 

-by the geometry and topology of the structure. The mathe

matical basis for the formulation of these relations is pro

vided by the three fundamental concepts of structural 

analysis, namely: equilibrium of the member end actions 

with the applied loads on the members themselves or at the 

joints~ compatibility between member distortions and joint 

displacements; and the load-deformation characteristics of 

the members. 
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2.1.2 Methods of Analysis 

The methods of analysis are generally classified 

according to the order in which the conditions of equilibrium 

and compatibility are applied. Methods in which the com-

patibility conditions are satisfied first give rise to equa-

tions of equilibrium and are called stiffness (equilibrium 

or displacement) methods, whereas, those in which the equili

brium conditions are used first lead to equations of displace-

ment compatibility and are called flexibility (compatibility 

or force) methods(9). 

In the flexibility method, a hyperstatic structure 

is first made statically determinate by relaxing the condi-

tions of compatibility at a sufficient number of points. The 

modified structure is then analyzed, and the forces which must 

be applied at the pOints of discontinuity to produce compati-

bility of displacements are calculated. The analyzer (either 

the engineer or the computer program) is faced with the 

.problem of determining the number and location of releases 

before the basic variables, i.e., the self-balancing force 

pairs of redundants, can be defined. While it is relatively 

easy to determine the number of releases required to make a 

given structure deterrninate(23) , it is difficult to give 

general rules for choosing a good set of releases which will 

avoid an unstable primary structure, an excessive amount of 

work in the determinate analysis, or computational problems in 

restoring the compatibility of the releases. 
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In the stiffness method the basic unknowns are the 

jOint displacements. Therefore, the number of equations to 

be solved is equal to the number of degrees of freedom of the 

structure. The displacement variables can be systematically 

assigned to the jOints according to the type of the structure. 

In setting up the equations, a joint at a time is considered 

along with the members incident on it. Consequently, at each 

step one is concerned only with local topology and geometry, 

rather than with the complexity of the entire structure. 

On the basis of the amount of computational work 

involved in solving the simultaneous equations, one may argue 

that the flexibility method is justified for structures with 

a degree of indeterminacy relatively small in comparison to 

its degree of freedom. However, even for such a case, a 

comparison based on the amount of work which has to be done 

in setting up the equations and the ease with which this work 

can be systematized supports the stiffness method. In the 

.remainder of this study, the stiffness method will be used 

for the initial analysis, but modification techniques for 

reanalysis will be based on both methods. 

2.2 Stiffness Formulation 

2.2.1 Coordinate Systems and Transformation Matrices 

The specification of action and displacement vectors 

and the expression of basic relations between them requires 
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proper coordinate systems associated with member ends 

(member coordinate systems) and joints (joint coordinate 

systems). It is also necessary to define the linear 

operators for transformations from one system of coordinates 

to the other. 

The geometric layout of the structure is described 

with reference to a single global coordinate system by 

speci£ying the coordinates of the terminal jOints of each 

member. Joint coordinate systems are located at each jOint, 

and have the same orientation as that of the global coordi-

nate system. In the case of members, the orientation of the 

coordinate system is chosen such that the x-axis passes 

through the terminals of the member, and the y- and z-axes 

are generally taken as the principal axes of the member 

cross-section. 

Although the member coordinate system located at 

one end of a member and the joint coordinate systems of the 

corresponding terminal jOint share a common origin, they will, 

in general, have different orientations. Therefore a rota-

tion matrix, R , is associated with each member for transm 

formations between the member and joint coordinate systems. 

R is defined by the member terminal coordinates and the m 
angle, S, between the member and global y_axes(8,20} • 

A translation matrix, Tm, must also be defined for 

each member in order to carry out the transformations between 
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the member coordinate systems located at two ends of the 

member (8) • 

2.2.2 Member Relations 

The load-deformation characteristics of a member, 

in the member coordinate system, can be condensed in the form 

* of a member stiffness matrix, k ,which relates the member m 

* distortion Vm * to member end action Pme 

* 

as 

(2-1) 

The matrix k is a function of the elastic con-m 

stants, shape, and the end release conditions of the 

member (8) • 

* The relation between P and the member start me 

* actions Pros is established by requirement of equilibrium 

as 

* * P + T P = 0 ms ro me (2-2) 

Using Eq. (2-2) and contragredience(9) the member distortion 

* Vrn can be expressed as 

* 

* = Ume 
* (2-3) 

* where Urns and U me are the displacements of the start- and 

* end-terminals of the member. Using Eq. (2-3) for Vm ' 

Eq. (2-1) and (2-2) can be rewritten as 
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* * * T t * Pme = k (Ume U ) (2-4a) m m rns 

and 

* * * Tt U * P = -Tk (Urne ) (2-4b) ms m m ms 

Combining the last two equations in a single expression 

yields: 

* * t * * P T k T -Tk Urns ms m m rn rn rn 
== (2-4) 

* * T t * * P -k k Ume me m rn m 

Eq. (2-4) relates the member terminal actions to the member 

terminal displacements, rather than the distortions. 

The above quantities, expressed with reference to 

the member coordinate system, can be transformed to the jOint 

coordinate system by means of the rotation matrix Rm as 

* Prns = RmPms 

* R~ Urns = m rns 

* 
(2-5) 

Prne :c R p' 
m me 

* Rrn~rne Ume == 

where quantities expressed in the jOint coordinate system are 

distinguished as. being not starred. 

Using Eq. (2-S), Eq. (2-4) can be transformed 

to 
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* t * t p R 0 T k T -Tk R m 0 U ms m m m m m m ms 

= 
* * t Rt P 0 R -k Tm k 0 Ume me m m m m 

(2-6) 

which expresses the relation given by Eq. (2-4) in the joint 

coordinate system. 

2.2.3 Global Relations 

As the individual members are assembled to make up 

the structure, continuity of the structure requires that: 

Ume 

= U. 
l. 

= U. 
J 

(2-7) 

where U. and U. are the displacements of the start jOint, i, 
~ J 

and end jOint, j, of the member in question. 

Using Eqs. (2-5) and (2-3), the member distortion 

* ·v can be expressed in terms of the displacements of the 
m 

terminal jOints as 

v * = R t U. -T tR t U. 
m m J rn m ~ 

(2-8a) 

Observing the relation given by Eq. (2-8a), a row vector A m 

may be introduced which is composed of submatrices defined as: 

A m, i 
IC -T tR t 

m rn 

A m,j = R t (2-8b) m 

A = 0 for £ ~ i ~ .j m,£ 
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* Thus, the member distortion vector V can be m 

related to the joint displacement vector U by 

* = A U m 
(2-8) 

The row vectors Am associated with all members may 

be combined to define a matrix A such that the total member 

* distortions of all members, V , can be expressed by 

* V = AU (2-9) 

Using Eq. (2-9) and contragredience, and noting that the 

* * subvectors Vm of V are expressed in member coordinate 

systems located at the end terminal of each member, the 

Joint equilibrium equations can be written as 

* where P includes all Joint loads and P e is composed of 

* individual subvectors Pme of all members. 

* From Eq. (2-1), the member distortions V is 

* * related to Pe by a diagonal matrix k , of individual member 

* stiffness matrices k m ' as 

* * * P
e 

ckV (2-11) 

Using Eqs. (2-9) and (2-11), Eq. (2-10) can be rewritten as 

(2-12) 

Eq. (2-12) represents a set of linear algebraic 

equations to be solved for the basic unknowns of the formu1a-

tion, namely, the Joint displacements U. Member distortions 



17 

and member end forces can be found by substituting the results 

into Eq. (2-9) and (2-11). The matrix product 

(2-13) 

is referred to as the jOint stiffness matrix of the structure, 

and is composed of contributions from the individual member 

* stiffness matrices k m through the matrix A which contains the 

geometric and topological description of the structure. 

2.3 Algorithmic Considerations 

It is clear from the discussion of the methods of 

analysis in section 2.1.1 that the stiffness formulation with 

its systematic nature is well suited for computer programming. 

The entire process of setting up Eq. (2-12) can be a repetition 

of a single procedure which sums the contribution of each 

member to the jOint stiffness matrix and the load vector. 

Such an approach automatically exploits the sparsity of 

t * A k A and avoids the unnecessary computations involved in 

the formal matrix multiplication A~*A. 

The solution of the set of linear algebraic equations 

KU = P (2-14) 

constitutes the major algorithmic problem in developing an 

automatic analyzer based on the stiffness formulation. While 

the other phases of the program outlined in the preceding 

section call for rather straight-forward procedures, there is 

considerable challenge available in developing methods of 
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solutions, with economic considerations such as minimum com-

putation time and storage requirements as objectives. Efforts 

invested in fulfilling such objectives can be justified by the 

fact that the cost of analysis, especially in the case of 

large structures, depends mainly on the efficiency of the 

algorithm used for the solution of the equations, since it 

constitutes the major portion of the task performed by the 

analyzer. 

The methods available for the solution of linear 

algebraic equations have been widely discussed and compared 

in the literature(ll). These methods either directly solve 

the equations, or indirectly obtain the results by first com

puting the inverse of the coefficient matrix K- l • The opera-

tions performed on the coefficient matrix K remain the same 

in both cases, and only those performed on P differ. There-

fore, the efficiency of one scheme over the other depends on 

the number of columns of the actual load vector P relative 

~o the unit matrix which is used if a full inversion is per-

formed. In structural analysis, in most cases the number of 

columns in P does not approach the size of K, and therefore 

direct methods of analysis are generally preferred to inver-

sion. However, it should be noted that there are certain 

-1 advantages in having the inverse matrix, F = K available, 

as will be apparent from the next chapters. 

Among the various algorithms available for the 

solution of Eq. (2-14) the Gauss elimination method seems to 
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be the most popular one, due to its efficiency and simplicity 

for programming. The method requires two passes through the 

coefficient matrix K. In the forward pass, elimination is 

performed within the lower triangular portion of the coeffi

cient matrix. In the second pass, back-substitution is per

formed with the upper triangular matrix obtained in the first 

pass. The basic idea of the algorithm can be expressed 

explicitly as factorizing K into a lower and upper triangular 

matrix as Land U, as: 

LU 1:1 K (2-15) 

The Gauss elimination method, when used in conjunc

tion with the stiffness formulatioD, is usually modified in 

order to exploit the symmetry and sparsity of the joint 

stiffness matrix K. Due to symmetry, the work in factorizing 

K is almost cut to half, since 

t 
L = U (2-16) 

In exploiting the sparsity, the objective is to 

work only with the non-zero terms of the coefficient matrix. 

The objective is partially achieved by working only within the 

band width which contains all the non-zero coefficients. It 

is possible to go one step further and exploit the sparsity 

within the band also. Whether such a refinement is justi

fied or not depends on the additional indexing required 

within the band as compared to the savings it provides. 
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An additional feature of the Joint stiffness matrix 

is that although its original degree of sparsity is unique for 

a given structure, the sparsity of the triangular matrices L 

and U is a function of the numbering of the jOints and the 

topology of the structure. Therefore there is an optimum 

numbering scheme for the joints of a given structure which 

can lead to the most efficient solution(12). A jOint renum-

bering algorithm was not included in the program developed 

for this study. 



CHAPTER 3 

REANALYSIS 

An automatic analyzer used in iterative design is 

required to perform multiple reanalyses as well as the initial 

analysis. In this chapter algorithmic considerations involved 

in the reanalysis phase are discussed, and formulations suit

able for partial reanalysis are presented. The principal 

objective is to integrate the analyzer into the design 

process as effectively as possible. 

3.1 Automatic Analyzer in Iterative Design 

The present approach to the design of statically 

indeterminate structures is largely one of trial and error, 

consisting of repeated cycles of analysis and redesign. In 

such an iterative design procedure, the designer's problem 

is to evaluate the behavior of his trial design and to attempt 

to produce an improved one on the next cycle. 

Automation in the design process can be achieved 

to some degree by means of a structural analysis program which 

determines the performance of a given structure under the 

effects imposed on it. Presently there are programs avail

able for this purpose. However, such programs are formulated 

in such a way that they save the designer only from the burden 

21 
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'of lengthy computations. This is mainly due to the fact that 

these programs have been conceived to be used in a single 

design cycle, rather than as an integral part of the entire 

design process. Consequently, such programs conform poorly 

to the basic requirements of the iterative design process, 

inasmuch as they do not store any information obtained in the 

previous cycle to be used for th~ next one. In each design 

cycle, the designer has to provide the complete description 

of the problem allover again, either by reentering the 

description or, at best, by using a file of the original 

description. Furthermore, the analyzer must internally 

reprocess the entire set of input data to set up again the 

equations to be solved. 

3.2 General Algorithmic Considerations 

Modifications can broadly be classified as those in 

intrinsic properties and those in extrinsic properties of the 

-structure. The variables which define the geometry (joint 

coordinates) member properties (elastic constants, member 

cross-section properties) and topology (the manner in which 

the jOints are connected to each other by members) fall into 

the first group, whereas the second group of modifications 

include the changes in loading on the structure. 

The change in joint coordinates requires modifica

tion of the length of the members incident on the joint being 

shifted. Therefore the transformation matrices Tm and Rm, as 
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* well as the member stiffness matrix k assume new values to 
m 

account for the change in the length of the member being 

effected. The changes in member properties and- releases only 

* cause the member stiffness matrix k to be modified. rn 

Deviations from the original topology of the 

structure are introduced either by the addition and deletion 

of members, or changes in Joint ,releases. Every new member 

has to be introduced with all the information necessary for 

its complete description, such as the designation of its 

terminal jOints, elastic constants, cross-section properties, 

the rotation angle S, and release conditions. The new data 

can be processed internally by the same procedures as those 

used for the initial analysis. In the case of a member being 

deleted such precomputations are not required and the member 

is simply inactivated in the modification phase. 

It should be noted that due to the discrete element 

idealization of the structure, it is possible to process the 

,modification of intrinsic properties by implementing the local 

effect of each modification within the matrices R ,T and m m 

* k ,which can then be used to update the overall response of m 

the structure with the partial analysis techniques discussed 

in the next section. 

The modification in extrinsic properties of the 

structure may either be explicit or implicit changes in 

loading. Explicit changes are those which are directly 

specified, whereas the implicit changes in loading are caused 
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by the modifications in intrinsic properties. As an example 

of the latter case, the deletion of a member automatically 

eliminates any loads acting on that member. 

3.3 Techniques of Reanalysis 

Techniques for updating the response of a structure 

to reflect modifications in member properties, topology or 

geometry can be developed on the basis provided by both 

methods of analysis. 

If the stiffness method is used for reanalysis, two 

approaches are possible. In one approach the basic formula-

tion, Eq. (2-14), is transformed so as to yield more suitable 

algorithms. In the second approach, the original algorithm 

for solving the equations is modified so that the solution 

process is repeated only within a predefined region of 

interest to account for the modifications. 

In the flexibility approach, the response of the 

-structure can be modified by introducing releases in the 

region of modifications and then, on the basis of the given 

modifications, restoring the compatibility conditions. It 

should be noted that the application of the flexibility method 

at this stage of analysis does not involve the problems faced 

in the initial analysis, such .as calculating the degree of 

indeterminacy and generating a primary structure, due to the 

fact that the structure to be modified acts as the "primary" 

structure and only the modified quantities are the redundants. 
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In the next sections, the formulations for partial 

reanalysis are first derived in their simplest form. The 

formulations derived are then investigated as to their 

limitations and possible extensions prior to further 

algorithmic considerations. 

3.4 Modified Stiffness Formulation 

3.4.1 Derivation 

Due to any modification in the intrinsic properties 

of a structure, the jOint stiffness matrix K is incremented 

by K, so that: 

K = K + ~K (3-1) 

where K is the jOint stiffness matrix associated with the 

modified 

The same notation "_" will be used in the remainder 

to distinguish the quantities of the modified structure from 

the corresponding quantities for the original structure. 

Eq. (2-14) can be written for the modified struc-

ture as: 

K U = P (3-2) 

or, using equation (3-1): 

(K + ~K) U == P (3-3) 

Premultiplying both sides of Eq. (3-3) by the jOint 
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flexibility matrix of the original structure, F = (K)-l, 

yields: 

(I + F 6K) U = F P (3-4) 

The expressions on both sides of Eq. (3-4) repre-

sent the jOint displacements of the original structure sub-

jected to the loading on the modified structure. 

If the modifications represented by 6K do not 

render the modified structure unstable, (I + F ~K) is a product 

- -1 of two non-singular matrices, F and K. Therefore (I + F ~K) 

exists and Eq. (3-4) can be transformed to 

U = (I + F 6K)-1 F P (3-Sa) 

Noting that U is related to P by: 

(3-Sb) 

the modified jOint flexibility matrix is obtained in terms of 

the previous jOint flexibility matrix, F, and the jOint 

stiffness change matrix, 6K, as: 

F = (I + F-6K)-1 F (3-6) 

3.4.2 Algorithm 

The above formulation has no limitation on the type 

of modification it can process. This can be seen more 

clearly if 6K is expressed in terms of transformation and 

member stiffness matrices as 

(3-7) 
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* Eq. (3-7) indicates that by updating A and k for changes in 

* geometry and topology, or k only for modification in member 

properties, it is possible to obtain a matrix ~K which repre-

sents all possible modifications. 

Since only the terms associated with the terminal 

jOints of the modified members in ~K are nonzero, only the 

* corresponding portion of A and k participate in the computa-

tion of ~K. As in the case of creating the entire stiffness 

matrix, the formal matrix multiplication indicated need not 

be carried out, and only the contributions from each modified 

member needs to be computed and "plugged" into the appropriate 

positions corresponding to the terminal joints of the modified 

member. 

The efficiency of an algorithm based on Eq. (3-6) 

can be improved by exploiting the sparsity of ~K. For this 

purpose, ~K and F are partitioned to distinguish the region 

of modifications and the rest of the structure, represented 

symbolically as: 

~K :z: 

(3-8) 

F = 
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where the subscript I refers to the unchanged region of the 

structure and subscript 2 is associated with the region of 

modification. With such a rearrangement the computation of 

I + F bK and its inverse can be expressed explicitly as: 

I + F bK - (3-9) 

(I + F bK)-l (3-10) 

o 

where III and I22 are identity matrices of the appropriate 

size. 

The total amount of computational work required by 

Eq. (3-6) depends on the size of bK22 and F. If F represents 

a structure of r joints and bK22 involves s joints, then F is 

an array-matrix of order (r x r), K22 and F22 are array-

·matrices of order (s x s), and F12 is an array-matrix of 

order {(r-s) x s}. The computation of F by Eq. (3-6) requires 

rs(~ + 2s) submatrix multiplications. For one member being 

modified; s a 2, and the amount of computational work is 

r(r + 8) submatrix multiplications. If M members are processed 

one at a time the total number of submatrix multiplications 

is Mr(r + 8). If all M members, having no terminal joints 

in common are processed Simultaneously, s = 2M, and the total 

amount of computational work is Mr{r + 8M) submatrix 
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multiplications. The members entering into the modification 

may have several jOints in common, so that s~2M, and the 

computational work is correspondingly reduced. However, in 

general, processing one member at a time by Eq. (3-G) requires 

less computational work. 

3.4.3 Modified Gauss Algorithm 

As described in Section 3.3, an alternate approach 

to the reanalysis based on the stiffness method is to modify 

the original solution process. Following the idea of parti-

tioning employed in the previous section, the modifications 

may be restricted in advance to a certain region of interest. 

t * In such a case K = A k A itself is partitioned as: 

K = (3-ll) 

where K22 is the part of the jOint stiffness matrix associated 

with the region of interest. 

Introducing Eq. (3-11) into Eq. (2-14) yields 

r 
K12 UI PI i Kl1 

I 

l K21 

= (3-12) 

K22 U2 P2 

Since all modifications induce changes only in K22 , the for-

ward elimination can be performed outside the region of 

interest, so that Eq. (3-12) is transformed to 
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[: ::: 1 {::} = {::} 
(3-13) 

where 

- -1 
K12 = Kll K12 

- -1 
K22 = K22 - K2l Kll K12 

- -1 (3-l3a) 
PI = Kll PI 

- -1 
P 2 = P - K2l Kll PI 2 

Symbolically, the original analysis can be completed as 

(3-14a) 

Each time a modified structure is to be investigated, 

the rest of the forward elimination and the back-substitution 

can proceed from Eq. (3-13). When a modification represented 

by 6K22 is introduced, the solution for the modified structure 

can be obtained as: 

- (3-l4b) 
= PI - K12 U2 

The smaller the region of modification, the more efficient 

the algorithm becomes, since the size of the condensed jOint 

stiffness matrices K22 and K12 determines the additional com

putations in each cycle of analysis. 
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The major drawback of this approach is that the 

region of interest containing all possible modifications must 

be defined prior to the original analysis. 

3.5 Modified Flexibility Formulation 

3.5.1 Derivation 

The method can be derived by considering a single 

* imaginary member, having a stiffness matrix ~k ,introduced m 

to represent the modifications between any two jOints. This 

"member lt is treated as a part of the modified structure, 

released from it by cuts at its terminals. The objective is 

to restore the continuity of the structure by satisfying the 

conditions of compatibility of displacements between the 

structure and the imaginary member. For this purpose, first 

a set of unit actions are applied at the end of the imaginary 

member in its coordinate system, and the corresponding start 

actions determined by equilibrium. These member terminal 

actions are then transferred to the corresponding joints to 

account for the interaction between the original structure and 

the imaginary member. Under such a set of unit actions, the 

gap in the cuts, expressed with reference to the coordinate 

system associated with the member-end, is: 

= A FAt + (~k *)-1 
m m m (3-15) 

which may be termed as the flexibility of the cut and its 

inverse, k c* = (fc*)-l, as the stiffness of the cut. 
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As the structure is acted upon by the given loads 

P of the modified structure, a discontinuity 

:z A F P 
m 

(3-16) 

is created between the imaginary member and the structure. 

In order to restore continuity, a set of forces 

(3-17) 

is introduced at the cuts. The corresponding forces which 

have to be applied on the structure at the terminal joints 

of the imaginary member, expressed with reference to the 

jOint coordinate system, are: 

(3-18) 

These additional jOint loads, when combined with P, produce 

the same jOint displacements on the original structures as P 

itself would produce on the modified structure. Therefore, 

the jOint displacements of the modified structure, V, are: 

V == F [p - A t{A FAt + (.6 k *) -l} -1 A F P ] 
m m m m m 

(3-19) 

Since U is also related to P by the jOint flexibility matrix, 

F, of the modified structure as: 

- --U = F P (3-5b) 

elimination of P from Equations (3-19) and (3-5b) yields 

(3-20) 

for the modified jOint flexibility matrix. 
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Eq. (3-20) was derived for a single imaginary member 

accounting for a local modification. In order to obtain a 

formulation to process a set of modifications involving more 

than one member Simultaneously, Eq. (3-20) can be transformed 

to 

F = F - FA t {A FA t + (~k *)-l}-l A F 
s s s s s (3-20a) 

where As includes the transformation vectors associated with 

the entire set of modified members, and the diagonal matrix 

is similarly composed of contributions from individual 

* submatrices ~k of the modified members. 
m 

3.5.2 Algorithm 

In the formulation given by Eq. (3-20), the matrix 

* * * ~k ~ k - k m m m (3-21) 

represents the change in the stiffness matrix of the member to 

* be modified. It is conceivable that ~km becomes Singular, 

so that its inversion can not be carried out formally. Such 

- * a case may arise, for example, if either one of the k m or 

* k m matrices accounts for the shearing deformations but not 

the other. Since the term corresponding to axial deformation, 

* ~k (1,1), is not affected the corresponding pivot term in m 
* ~k becomes zero. One way of bypassing this limitation is to m 

compute directly the flexibility of the imaginary member on 

the basis of the change in member cross-section properties, 

rather than by inverting ~km*. 
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In Eq. (3-20), the jOint flexibility matrix F and 

the transformation vector A are expressed with reference to m 

the coordinate systems just prior to the current modification. 

Therefore any modification in geometry which implies a change 

in reference coordinate systems cannot be handled by Eq. 

(3-20) directly. Consequently, modifications in geometry are 

best processed by means of the stiffness approach discussed 

in the previous sections. 

The matrix within the bracket in Eq. (3-20), which 

is to be inverted, is the flexibility of the cut as given by 

Eq. (3-15). It can be expressed explicitly in terms of joint 

flexibility matrices of the terminal jOints and the trans-

formation matrices Rm and Tm of the imaginary member if the 

matrix multiplication A FAt is carried out formally. Thus m m 

for a member directed from jOint j to joint i: 

t = R F .. R m ~~ m 
R t F .. R T - T tR t F .. R 

m ~J m m m m J ~ m 

+ T tR t F .. R T + (L k *)-1 
m m JJ m m m (3-22) 

is the flexibility of the cut with reference to the member 

* coordinate system. The matrix fc is a single submatrix and 

* * -1 t its inverse is kc = (fc) • Premultiplying by Am and post-

* multiplying by Am transforms kc to Joint coordinate system as 

(3-23) 
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The non-zero matrices of K can be expressed c 

explicitly as: 

* R t K (i,i) = R k c m c m 

* Tm t l\n t Kc (i, j ) = -I\nkc 

* R t Kc (j ,i) = -R T k m m c m 

* T t R t Kc(j,j) = R T k m m c m .m 

(3-24) 

Only those columns and rows of F which are associated with 

jOints i and j participate in the matrix multiplication 

F = - F Kc F. 

It should be noted that only half of ~F needs to be 

computed because of symmetry. 

If the size of the joint flexibility matrix, F, is 

(r x r), and M modified members contribute non-zero terms to 

s joints in K , the amount of computational work involved in c 

the inversion of the inner bracket and the matrix product 

FKsF is ~ (sr2 + s2r) + M3 matrix multiplications. In 

processing M members with no common terminal jOints simul-

taneously, s = 2M, and the total number of matrix multiplica

tions is M (r + M)2. Using Eq. (3-20) for a single member 

requires (r + 1)2 multiplications, and for processing M 

members one at a time M(r + 1)2 multiplications. Therefore 

Eq. (3-20) is more efficient in processing a group of members 

one at a time. 



CHAPTER 4 

SENSITIVITY ANALYSIS 

The primary objective of the iterative design 

process is to converge to a satisfactory solution within the 

design space defined by specified constraints. The activity 

on the part of the designer in fulfilling such an objective 

can broadly be divided in two phases. In the first phase, 

the performance of the current design is determined and 

checked against the design constraints. In the second phase, 

the choices of modifications to improve the current design 

is made. Analyses performed with the aid of the formulations 

presented in the previous chapters provide the necessary 

information for the first phase. Sensitivity analysis, which 

is formulated and presented in this chapter, yields results 

which can form a quantitative basis for the decision-making 

process of the second phase. 

4.1 Objective of Sensitivity Analysis 

The basic approach to the problem of sensitivity 

can be stated briefly as follows: starting from a reference 

solution of the equations describing the system under analysis, 

determine the trend of the solutions in some specified func

tion space, i.e., imbed the reference solution in an appro

priate parametric family to obtain a quantitative measure of 

36 
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the variation of the reference solution with respect to 

selected parameters. The results of this imbedding process 

are sensitivity functions which reveal the additional motion 

of the system in the vicinity of the reference solution caused 

by parameter variati9,ns. Mathematically, the sensitivity 

functions may be obtained by calculating functional derivatives 

of the original solution with respect to the parameters of 

interest. 

There are two basic reasons to justify the interest 

in sensitivity analysis. First, in the physical realization 

of systems, uncontrolled parameter changes which are the con

sequence of uncertainties in component properties, component 

aging, environmental influences, etc., are constantly 

encountered. This means that no engineering device or system 

can be built so that its parameters will absolutely coincide 

with the parameters of its mathematical model. Should the 

system characteristics change significantly due to small 

parametric variations, it would be very difficult to produce 

or maintain the system physically. Sensitivity analysis, 

thus, represents a further connection between the mathematical 

model and the physical system. It enables the designer to 

apply the results from the mathematical model to the actual 

physical systems with far greater dependability. 

Second, system design is generally guided by some 

method of successive parameter adjustments to achieve a pre

established criterion of performance. In such a design process, 
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sensitivity analysis gives the designer information as to 

which parameter increments and in what order will best 

improve the system performance. Thus, the trial and error 

design procedure gets a clearer orientation, and the designer 

realizes the character of the influence of certain system 

design parameters. 

Up to now there has not been any serious effort to 

formulate and employ sensitivity analysis as a design tool or 

as an augmentation of iterative design procedures in structural 

design. Such a delay is mainly due to the fact that the 

number of parameters which define the solution of a structure 

is prohibitively high. Therefore, the imbedding process which 

is the key to sensitivity analysis requires considerable com

putational work. However, such a restriction should no longer 

be decisive due to the analytical capability provided by 

digital computers. Since the additional information con

cerning the nature of a design will complement the deSigner's 

.intuition and experience and thus refine his decision-making, 

the additional cost of an automated sensitivity analysis seems 

to be justified. 

4.2 Sensitivity Functions 

Sensitivity coefficients of the design variables 

can be obtained as functional derivatives of the expressions 

obtained for the stiffness formulation. Differentiating 

Eq. (2-14) yields: 
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dKU + KdU = dP (4-1) 

Rearranging Eq. (4-1), the differential of the jOint dis-

placements, dO, can be expressed as: 

dU = FdP - FdK U (4-2) 

The joint displacement vector, U, is given in terms of the 

joint flexibility matrix, F, and the load vector Pas: 

U = FP (4-3) 

substituting Eq. (4-3) into Eq. (4-2) yields: 

dU = FdP - FdKFP (4-4) 

Eq. (4-4) indicates that the infinitesimal changes in U may 

be caused by similar changes in extrinsic or intrinsic proper

ties of the structure, as represented by the load vector P 

and the joint flexibility matrix F, respectively. 

The sensitivity to changes in extrinsic properties, 

i.e., the loading, is given by the first term of Eq. (4-4), 

. i.e.: 

dU = FdP (4-4a) 

For a particular component, £, of a load associated with 

jOint j, P j £, the differential of the load vector is given by 

(4-5) 

where Ej£ is an elementary vector with a 1 in the position 

corresponding to Pj £, all other components being zero. 

Therefore: 
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dU 
dP. 

J~ 

= FE. 
J~ 

(4-6) 

represents the sensitivity of jOint displacements with respect 

to P .• It can be seen from Eq. (4-6) that the sensitivity 
J~ 

coefficients are simply the elements of the column of F 

associated with component ~ of the jOint j. Consequently 

the determination of sensitivities due to extrinsic properties 

is trivial once the jOint flexibility matrix F is known, and 

will not be considered further in this study. 

The sensitivity of U to intrinsic design parameters 

is given by the second portion of Eq. (4-4) as: 

dU = -FdKFP (4-4b) 

For a constant loading, i.e., dP = 0, differentiating Eq. 

(4-3) yields: 

dU = dFP (4-7) 

The sensitivity of the overall intrinsic response character-

istics of the structure with respect to intrinsic parameters 

can be expressed by eliminating dO from Eq. (4-4b) and (4-7), 

to obtain 

dF = -FdKF (4-8) 

In Eq. (4-8) the infinitesimal disturbances in the intrinsic 

properties are introduced through the matrix dKi the propaga-

tion of the effect of these disturbances throughout,the 

structure is then given by the matrix product FdKF. 
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In order to obtain the sensitivity functions for 

* * member quantities V and P e ' Eq. (2-9) and (2-10) are dif-

ferentiated, resulting in: 

* ~ = (~)U+A (~) 

and 

* ~e * * = (dk ) V 

4.3 Algorithmic Considerations 

* + k 

(4-9) 

* (dV ) (4-10) 

The nature of sensitivity functions as revealed by 

the expressions of the last section is such that it is not 

possible to separate sensitivity analysis from direct analysis. 

This is actually to be expected, due to the fact that the 

source of these functions is the stiffness formulation. 

consequently, preceding a sensitivity analysis one has to 

determine the overall response characteristics of the struc-

ture. In particular, in initial analysis, the method of 

solution of equations has to be chosen such that the jOint 

flexibility matrix, F, is available for subsequent sensitivity 

analysis. 

Having the results of initial analysis available, 

the sensitivity analysis can proceed first by determining 

the differential of the jOint stiffness matrix, dK, which 

represents the infinitesimal disturbances in the intrinsic 

properties of the structure. The matrix dK can be expressed 

* explicitly in terms of the member stiffness matrix, k , and 
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the transformation matrix, A, by differentiating Eq. (2-13) 

to obtain: 

(4-11) 

However, due to the high sparsity of matrices involved, it is 

not efficient to use Eq. (4-11) and perform the implied 

matrix multiplications in order to determine the matrix dK. 

Instead, the effect of infinitesimal disturbances can be 

decomposed and formulated separately for each member being 

influenced by the design parameter of interest. Thus the 

matrix dK can be obtained by superimposing the local sensi-

tivity functions of the individual members. 

The load-deformation characteristics of a single 

member, given by Eq. (2-6), can be rewritten as: 

l * t * R t R 0 T k T - T k 0 m 

RmJ 

m m m m m m 
(A tk *A ) = m m m 

* t * R t 0 -k T k 0 m rn m m 

(4-12) 

For the formulation of the local sensitivity functions, 

Eq. (4-12) needs to be differentiated with respect to the 

* parameters defining the matrices R ,T and k • The nature 
m m m 

of these parameters is discussed in the next section. 

Having the matrix dK and the results of the initial 

analysis, sensitivity coefficients of various response quanti-

ties can be obtained by evaluating the sensitivity functions 

derived in the last section. There are two major factors to 
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be considered in improving the efficiency of this computation 

process. First, the sparsity of the matrix dK should be 

exploited in carrying out the mat~'ix multiplications implied 

in the sensitivity functions. Second, the infinitesimal 

disturbances can be limited to a predefined region of interest. 

In such a case, only the joint flexibility matrix of the region 

of interest is required. This can be shown symbolically by 

differentiating the Eq. (3-l4a) to obtain: 

~2 = dF 22 P2 
(4-13) 

~l = -K12 ~2 

where 

dF 22 = -F22dK22F22 (4-14) 

4.4 Sensitivity Parameters 

Intrinsic parameters of the structure for which 

sensitivity analysis can be carried out can be classified 

into two groups. The first group includes the elastic con

stants and member cross-section properties, whereas the 

coordinates of the jOints constitute the second group of 

variables. The reason why the third group of intrinsic 

properties, namely topology, is left out is that it is not 

possible to introduce an infinitesimal change in topology. 
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4.4.1 Sensitivity to Member properties 

For the sensitivity of joint stiffness matrix to 

member properties, the first and third terms of the Eq. (4-11) 

drop out. Therefore, sensitivity with respect to a cross-

section property s , 
m 

of a member m is given 

= A t 
m 

* dk 
_m_ 

ds m 
(4-15) 

The available choice of the scalar variable sand 
m 

the computation of ::rn depend on the type of the structure 

m * 
being analyzed. First, for linear structures, k m is a 

linear function of the elastic constant, E. Assuming that 

Poisson's ratio remains constant, the sensitivity to E, with 

s = E , is m m 

* dk 
--EL 
ds 

m 
= L 

E 
m 

k 
m 
* (4-16) 

Second, for trusses the member cross-sectional 

area, Axm , can be chosen as the scalar sm' thus obtaining: 

elk m 
dSm 

* 
= ....L 

Axm 
k 

m 
* (4-17) 

Finally, in the case of moment resisting skeletal 

structures, the cross-section properties are not independent 

of each other. For a plane-frame member, for example, the 

moment of inertia, I z ' is related to the area, Ax' by 
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(4-18) 

It may be assumed that the radius of gyration r z 

remains the same while proportionate changes in A and I are x z 

introduced. Such an assumption is quite reasonable for WF 

sections where the deviations in r from one section to another z 

occur within very narrow limits. Therefore it is possible to 

identify each WF section by its area A , and seek sensitivity x 

of response to a change from one WF section to another, using: 

* dk 
--lD..
ds 

rn 

where sm = A • rnx 

= 
12 

o 

6 
o 

0 

E r 2 
z 

L 3 
m 

E r z 
L 2 

m 

0 

6 E r 2 
z (4-l9a) 

L 2 
m 

2 4 E r 2 
z 

L m 

Substituting the relation given by Eq. (4-18) into 

the last expression yields 

EA 
~ 0 0 

::* 1 

Lm 

[ ix J 

12 E I 6 E I 
0 

z z (4-l9b) = 
L 3 L 2 

m m 

6 E I 4 E I 
0 

z z 
L 2 L 

m m 
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Eq. (4-l9b) indicates that [ :m * 1 can be obtained from km * m .I 

directly as 

::* I = 1 
A x 

The above derivation suggests that the matrix 

(4-l9c) 

dk* __ m_ 

ds m 
can generally be computed as if it were the stiffness matrix, 

* k ,of a "sensitivity member" having a cross-sectional area ms 

and a moment of inertia 

dA 
A =--..2£ 

xs ds 
m 

dI = __ z 
ds 

m 

(4-20) 

(4-21) 

For a WF section, the cross-section properties of the "sensi-

tivity member" are 

A = 1 xs and I = r 2 
zs z (4-22) 

In the case of a rectangular cross-section, Ax and I z can be 

expressed in terms of two dimensions, band h, of the section, 

as: 

A = bh x 
(4-23) 

I z = bh3 

12 
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The question of sensitivity to one of the dimensions as the 

other remains constant can then be investigated. If, for 

example, sm = h, then 

AXS = b 

(4-24) 

I zs = bh2 

4 

It is also possible to determine sensitivity of 

response with respect to cross-section properties of a group 

of members rather than a single one. For this purpose Eq .• 

(4-15) has to be generalized as: 

* 

elK 
ds 

::z A (4-25) 

where dk is a diagonal matrix composed of non-zero sub-
ds dk * 

matrices as:-. The only requirement in using Eq. (4-25) 
m 

is that the cross-section property, s, has to be identical for 

each member of the group. 

4.4.2 sensitivity to Joint Coordinates 

An infinitesimal movement in an arbitrary direction 

* introduces infinitesimal variations in matrices Rm' Tm and km 

of all members incident on the jOint. Therefore, the compu-

tation of dK involves the evaluation of the full expression 

given by Eq. (4-11) for each incident member. The contribu-

tioD to dK from each member incident on the jOint of interest 

can be formulated by differentiating Eq. (4-12). Since the 
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* matrices R , T , and k are functions of the coordinates of m m m 

the member terminal jOints, it is necessary first to resolve 

the movement of the jOint into components along the respective 

axes. If joint j is moved in a direction n. defined by a set 
J 

of direction cosines, cos e ., cos e . and cos 8 " the 
xJ YJ xJ 

sensitivity of the joint stiffness matrix is obtained as: 

dk 
dn. 

J 
= cos 8 r;j (4-26) 

r;. = x., y., z. 
J J J J 

Eq. (4-26) requires that the differentiation of Eq. (4-12) be 

carried out for each r;. so that the sensitivity to a movement 
J 

in the specified direction can be determined. 

In order to present the formulation in a compact 

form, Eq. (4-12) will be rewritten as: 

(4-27) 

where 

[ 
R :] ~ = 
0 

and 

* t * T k T -Tk m m m m m 

~ = 
* T t * -k k m m In 



Differentiating Eq. (4-27) yields: 

d(A ~ *A ) 
rn m m 

de;. = 
J 

~ 
d l; . 

J 

~t 
de; . 

J 

~ 
de; . ~t 

J 

The matrix is composed of two submatrices 

matrix 
dR 

m err:J 

dR 
---ill 
de;. 

J 

is derived in Appendix A as: 

= (n ,).R C + {n ,).C R 
a~ J m a r~ J r In 

dR 
--ill 
de;· • J 
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(4-28) 

The 

(4-29) 

where the scalars nae;' nre; are functions of the terminal jOint 

coordinates of member In, and C and C are elementary trans-
a r 

formation matrices. 

As shown in Appendix A, differentiating Mk yields: 

= 
( .6 e;) . 

J 

L 2 
m 

[ Z ] (4-30) 

where L is the length of the member and (.6e;). is defined as 
m J 

= 

i being the other terminal joint of the member. 

* is explicitly expressed in terms of T
m

, km and 
dk* rn 

Appendix A, as is the matrix ----de; . 
J 

The matrix Z 
dk* m 
de; j 

in 
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Having obtained the components along the x, y, and 

z axes, the local sensitivity of a member m to an infini-

tesirnal movement dn. in the direction of n. of its incident 
J J 

jOint j can be expressed as: 

d(A ~ *A ) 
m m m 

= {(~na~ cos e~)jRmCa dn. 
J 

The 

+ (~nr~ cos e~)jCrRm}~~t 

+ f (:~~j cos e~j } ~z~ t 

+ ~~ i (~na~ cos e ).C t R t 
S Jam 

+ (In cos e ).R tc t } 
S IS S J m Y 

(4-31) 

matrix ~d is built up by the topological 
nj 

summation of the local sensitivities as expressed by Eq. 

(4-31) for all members incident on the joint of interest. 

A direct generalization of the above is to seek the 

sensitivity to the movement of a group of jOints in the same 

direction, n. All the members incident on one of these jOints 

have to be processed to determine dK. For a member incident 

on two joints of the group, an equal infinitesimal movement 

of its two terminal joints in the same direction does not 

produce any infinitesimal variation in its matrices T ,R and m m 
* k m Therefore, there is no contribution to dK from such a 

member. 



CHAPTER 5 

COMPUTER PROGRAM 

The subject of this chapter is the computer program 

developed on the basis of the formulations and algorithms 

discussed in the previous chapters. 

5.1 Purpose and Scope 

The program includes capabilities for initial 

analysis, reanalysis and sensitivity analysis for linear 

elastic skeletal structures. Initial analysis and reanalysis 

may be performed either to determine the intrinsic structural 

properties such as member lengths, member and jOint stiffness 

and flexibility matrices, or, in addition, to compute 

responses such as jOint displacements, member distortions, 

member end forces and reactions for given static loads. 

Sensitivity analysis furnishes information pertaining to the 

rate of change of the quantities determined in the initial 

or reanalysis phases to changes in specified design parameters. 

The term "skeletal" indicates that only framed 

structures composed of members that can be represented by 

their centroidal axis and analyzed as line elements fall 

within the scope of the program. This group of structures 
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includes the following specific types: plane truss, plane 

frame, plane grid, space truss and space frame. 

5.2 Implementation 

The programming system is conceived for use either 

in an on-line environment or to be run as a batch job. The 

present version is implemented in the latter mode on an IBM 

System 360 computer. 

The entire program is stored on the disk storage 

unit and brought into the main computer memory for execution. 

In addition to the capability of performing con

secutive cycles of analysis for the same problem or different 

ones in a single run, a provision is implemented to store the 

quantities pertaining to the response of the current structure 

permanently on the disk to be retrieved and used in a later 

run. 

The main body of the program is written in POST(24) 

which is a FORTRAN-like language with implied matrix operation, 

dynamic storage allocation and dynamic array dimensioning. In 

the case of large problems with storage requirements exceeding 

the primary memory capacity of the computer, the POST executive 

system has the capability of automatically performing temporary 

data storage and retrieval using secondary storage devices. 

The important specific features of the POST language 

are noted below. 
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The variables are global to the entire program, and 

their name, type, mode and size have to be specified at the 

beginning of the program by DECLARE statements. The naming 

convention is such that either the abbreviated form or the 

full name may be used. Thus, NAME.OF.THE.VARIABLE, N.O.T.V., 

NA.O.T.VAR, NOTV represent the same variable. There are five 

types of variables; Elements, vectors, Matrices, sets of Sub

vectors and Arrays of submatrices. The mode of each variable 

can be either floating or integer. 

In the present version of the program, input is 

accepted in free-format by the POST READ command. Similarly, 

the output is accomplished by using the WRITE command. In 

both input and output, the name of a variable precedes its 

value(s). The POST READ command continues reading names and 

values of variables until a RETURN statement is encountered 

in the data stream. 

5.3 Input to the Program 

The capacity of the program with respect to problem 

size depends on the size limitations of the POST executive 

system. The maximum size of a vector or matrix is limited by 

the page Size, which is presently 4095 locations. The total 

amount of space available is dictated by the number of pages, 

which is set at 100 presently. 

The description of a problem to the program consists 

of three blocks of data. The process descriptors are given in 
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the first data block. The size descriptors are specified in 

the second data block. The structural data and loading data 

descriptors constitute the third data block. The third RETURN 

statement, specifying the end of the data pertaining to that 

problem, initiates the internal solution process. After the 

desired results of analysis are displayed, the program auto

matically returns to its initial state, i.e., ready to accept 

the subsequent set of data either for a completely different 

problem or for the next cycle of analysis of the same problem. 

5.3.1 Process Descriptors 

This group of variables provide information about 

the type of analysis, the assignment of permanent secondary 

storage and the desired selective output. 

OPTION is an·integer element which specifies the type 

of analysis, i.e., whether it is initial analysis, reanalysis 

or sensitivity analysis. 

DISK.INPUT.OUTPUT is a two-element vector, the 

elements specifying whether input data are to be retrieved 

from or output data stored on the disk. 

TABULATE.OUTPUT is a vector, each element of which 

requests a specific selective output. 

All the process descriptors have to be specified in 

the first data block for each analysis. 
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5.3.2 Size Descriptors 

For initial analysis the variables needed to define 

the size of the problem are: 

NUMBER.MEMBERS 
NUMBER. JOINTS 
NUMBER. SUPPORTS 
NUMBER. LOADS 
NUMBER.MEMBER.LOADS 
NUMBER.JOINTS.OF.INTEREST 
NUMBER.STRUCTURE.TYPE 

The first two variables imply that the jOints and members are 

referred to by sequential identification numbers from one to 

N.M. or N.J. 

N.J.O.I. specifies the size of the region of interest 

and is the number of free jOints and released support jOints 

present in the region of interest. NUMBER.STRUCTURE.TYPE is 

the code number for the appropriate structure type. 

In case of reanalysis, only the increase in the 

number of members, loads or member loads need to be specified 

by giving updated values for the descriptors N.M., N.L. and 

N.M.L. No changes in the remaining size descriptors are 

accepted, as they would create an analysis problem of an 

entirely different nature. If these variables need to be 

changed, it is best to request a new initial analysis for the 

modified problem. 

For sensitivity analysis, two size descriptors must 

be given. NUMBER.OF.SENSITIVrrY.MEMBERS specifies how many 

members are to be included in the sensitivity analysis to 

determine the rate of change of response to the changes in 
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the cross-section properties of these members. The number of 

jOints which are given the same infinitesimal movement in an 

arbitrary direction for sensitivity analysis is specified by 

NUMBER.OF.SENSITIVITY.JOINTS. 

5.3.3 structural Data Descriptors 

Geometry is specified ,in terms of jOint coordinates 

given by the set JOINT.COORDINATES. Identification number of 

support jOints are given in the vector SUPPORT.JOINTS and 

their release condition in the vector SUPPORT.RELEASES. 

The interconnection of the members is described by 

the set MEMBER. INCIDENCE giving the starting and ending jOint 

of each member. The vector MEMBER.BETA specifies the s-angle 

for all members. The presence of hinges in the members is 

indicated in the vector MEMBER. RELEASE. 

The load-deflection characteristics of the members 

are specified in the set MEMBER.PROPERTIES.PRISMATIC for 

prismatic members. The array matrices FLEXIBILITY.GIVEN and 

STIFFNESS.GIVEN are used if member flexibility or stiffness 

matrices are input directly. For members with variable cross

sections, the corresponding data is given in MEMBER.PROPERTIES. 

VARIABLE and NUMBER.OF.VARIABLE.PANELS. Elastic constants 

associated with members are specified in the vectors E and G. 

Identification numbers of the jOints in the region 

of interest are given in vector JOINTS.OF.INTEREST. 
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For reanalysis, the structural data specified in 

terms of the above variables for initial analysis can be 

modified by giving the corresponding modified data under the 

variable names: 

JOINT.COORDINATES.MODIFIED 
MEMBER.INCIDENCE.MODIFIED 
MEMBER.PROPERTIES.PRISMATIC.MODIFIED 
FLEXIBILITY. GIVEN. MODIFIED 
STIFFNESS.GIVEN.MODIFIED 
MEMBER.PROPERTIES.VARIABLE.MODIFIED 
NUMBER.OF.VARIABLE.PANELS.MODIFIED 
E.MODIFIED 
G.MODIFIED 
MEMBER.RELEASE.MODIFIED 
MEMBER.BETA.MODIFIED 

For sensitivity to member cross-section properties, 

the identification numbers of the members entering the 

sensitivity analysis are specified in the vector SENSITIVITY. 

TO.MEMBERS. The cross-sectional properties of the "sensiti-

vity member" defined in Section 4.3.1, is given in 

SENSITIVITY.MEMBER.PROPERTIES. For sensitivity to geometry, 

the jOints which are given an infinitesimal movement are 

identified in the vector SENSITIVITY.TO.JOINTS. The direction 

of the movement is specified in DIRECTION.COSINES. 

5.3.4 Loading Data Descriptors 

The loading applied to the structure is described 

for initial analysis by: 

JOINT.LOADS 
SUPPORT.DISPLACEMENTS 
MEMBER.LOAD.DISTORTIONS 
MEMBER.LOAD.TYPES 
MEMBER.LOAD.VARIABLES 
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In the reanalysis phase, the loading data defined 

by the above variables can be modified by giving the modified 

loading data in: 

analysis. 

JOINT.LOADS.MODIFIED 
SUPPORT .DIS·PLACEMENTS • MODIFIED 
MEMBER.LOAD.TYPE.MODIFIED 
MEMBER.LOAD.VALUE.MODIFIED 

There is no loading data description for sensitivity 

5.4 output 

The results of analysis are displayed in the form 

of printed output. 

In the case of initial analysis and reanalysis, the 

available output quantities are: 

MEMBER. LENGTH 
MEMBER. STIFFNESS 
MEMBER.ROTATION 
MEMBER.END.FORCES 
MEMBER.START.FORCES 
MEMBER.DISTORTIONS 
JOINT. STIFFNESS 
JOINT.FLEXIBILITY 
JOINT.DISPLACEMENTS 
JOINT.REACTIONS 

The results of sensitivity analysis are displayed 

in terms of: 

SENSITIVITY.JOINT.FLEXIBILITY 
SENSITIVITY.JOINT.DISPLACEMENTS 
SENSITIVITY.JOINT.REACTIONS 
SENSITIVrrY.MEMBER.DISTORTIONS 
SENSITIVITY.MEMBER.END.FORCES 
SENSITIVITY.MEMBER.START.FORCES 
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5.5 Organization of the Program 

5.5.1 Logical Organization 

Logically, the program consists of three major 

phases: input, execution and output, as shown on the block 

diagram of Fig. 5.1. 

Each cycle of analysis starts with the input of 

appropriate data, as described in the previous section. The 

process descriptors are always read from cards. The descrip

tion of the remainder of the problem may be entirely in the 

form of punched cards or may be partially supplied from the 

disk. 

In the execution phase, depending on the value of 

OPTION specified in the input phase, the program branches 

into initial analysis, reanalysis or sensitivity analysis. 

In the last phase, the results are either displayed 

in the form of printed output or stored on the disk. 

5.5.2 Functional Organization 

Functionally, the program is organized into a 

number of major POST subroutines and several POST utility 

subroutines and FORTRAN subroutines linked to the main 

program. 

The functional organization of the program is shown 

in Fig. 5.2(a). SUBROUTINE. INITIALIZE , which performs 

initializing and output of data, and SUBROUTINE.OUTPUT, which 
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displays desired selective output, are common to all types of 

analyses. 

Depending on the value of OPTION specified, the 

program branches to one of three main paths. 

For initial analysis (Fig. 5.2(b», the process 

consists of the following major steps: 

1. Generation of an internal topological repre-

sentation suitable for the subsequent algorithms 
D, 

(SUBROUTINE.INTERNAL.TOPOLOGY): 

2. Computation of member lengths, stiffness and 

transformation matrices (SUBROUTINE.MEMBER. 

QUANt' IT IES) : 

3. Processing member loads to compute member 

fixed-end forces (SUBROUTINE.MEMBER.LOADS): 

4. Modification of member stiffness matrices and 

member fixed-end forces due to member releases 

(SUBROUTINE.MEMBER.RELEASE): 

5. Determination of effective jOint loads from 

given jOint loads and computed member fixed-

end forces (SUBROUTINE.JOINT.LOADS): 

6. Generation and solution of equations (SUB-

ROUTINE.GENERATE.EQUATION and SUBROUTINE. 

SOLVE) i 

7. Determination of member actions and distortions 

and jOints reactions from the joint displace-

ments (SUBROUTINE.BACK.SUBSTITUTION) • 
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For reanalysis, the following major steps are 

executed (see Fig. 5.2(c»: 

1. Processing the specified modifications in 

structural data and updating the original data 

(SUBROUTINE.PROCESS.STRUCTURAL.MODIFICATION)i 

2. Processing the specified modifications in loading 

data and updating the original data (SUBROUTINE. 

PROCESS.LOADING.MODIFICATION); 

3. Reanalysis performed by one of the following: 

a) Using Eq. (3-20) (SUBROUTINE.REANALYSIS. 

BY. FLEXIBILITY) 

b) Using Eq. (3-6) (SUBROUTINE.REANALYSIS. 

BY.STIFFNESS) 

c) Using Eq. (3-l4b) (SUBROUTINE.SOLVE); 

4. Determination of member actions, distortions and 

jOint reactions (SUBROUTINE.BACK.SUBSTrTUTION)i 

For sensitivity analysis the major functional steps 

are (see Fig. 5.2(d»: 

1. Computation of local sensitivities to be 

assembled into dK (SUBROUTINE.SENSITIVITY.TO. 

GEOMETRY and SUBROUTINE.SENSITIVITY.TO.MEMBERS}i 

2. Computation of dF and determination of sensi

tivity of member quantities (SUBROUTINE.BACK. 

SUBSTITUTE.SENSITIVITY). 



CHAPTER 6 

ILLUSTRATIVE EXAMPLES 

In this chapter, several examples are presented in 

order to emphasize the main points developed in this study. 

The numerical results reported were obtained by the use of 

the computer program discussed in Chapter 5. 

In all of the examples, loads and forces are 

expressed in kips, moments in inch-kips, linear dimensions 

in inches, displacements in inches and rotations in radians. 

6.1 Comparison of Reanalysis Methods 

The efficiency of reanalysis techniques and the 

factors affecting the efficiency is to be investigated in 

this example. 

The structure considered is a transmission tower 

analyzed as a space truss having 22 jOints and 66 members, 

and subjected to two loading conditions. The configuration 

of the tower is shown in Fig. 6.1. 

The structure was analyzed in the following manners: 

1) No region of interest was defined. Only one 

cycle of analysis was performed to determine the member dis

tortions, member forces, jOint displacements and support 

reactions. The execution time was 40 seconds. If the tower 
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were analyzed in this manner after each set of modifications 

is introduced, the same execution time would be consumed for 

the solution of the problem. 

2) The entire structure was defined as the region 

of interest. The initial analysis, which in this case deter

mines the jOint stiffness and flexibility matrices in addition 

to the member and joint response. quantities, consumed 59 

seconds. The 19 second increase as compared to the previous 

analysis is mainly due to the inversion of the joint stiff

ness matrix to obtain the jOint flexibility matrix of the 

structure. 

The four members indicated on Fig. 6.1, connecting 

the support joints to the adjacent free jOints, were assigned 

different member properties. The modified tower was then 

reanalyzed by each of the three reanalysis techniques dis

cussed in Chapter 3. The execution times were recorded as: 

a) 23 seconds for the algorithm based on the 

modified flexibility formulation, Eq. (3-20) 

b) 37 seconds for the algorithm based on the 

modified stiffness formulation, Eq. (3-6) 

c) 32 seconds for the modified Gauss 

algorithm, Eq. (3-14). 

3) Only the four free terminal joints of the four 

members to be modified were specified as the jOints of 

interest. Due to the decrease in the size of the region of 

interest, the execution time for initial analysis dropped to 
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51 seconds. For the reanalysis of the modified structure the 

following execution times were recorded: 

a) 10 seconds for the algorithm based on the 

modified flexibility formulation, Eq. (3-20) 

b) 9 seconds for the algorithm based on the 

modified stiffness formulation, Eq. (3-6) 

c) 11 seconds for the modified Gauss 

algorithm, Eq. (3-14). 

It is seen from the recorded execution times that 

with full structure as the region of interest there is no 

saving to speak of, even when repeated reanalyses are made. 

With a reduced region of interest substantial savings in 

execution time can be achieved even for one cycle of 

reanalysis. It should be noted that the efficiency of each 

reanalysis technique relative to the others changes with a 

change in the size of the region of interest. 

The general conclusion which can be drawn from. this 

example is that the partial reanalysis techniques may lead 

to savings in analysis time if the region of interest is 

relatively small. 

6.2 Uncertainties in Design Parameters 

A two story, one bay concrete frame will be used 

to demonstrate the use of sensitivity analysis in getting 

"confidence limits" for the uncertainties in the actual 

rigidity of the structure due to cracking. The structure is 
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subjected to two concentrated loads as shown in Fig. 6.2. 

All the members were assigned a cross-sectional area of 20 

sq. inches, and moment of inertia of 100 inches
4

• 

The axial force, shear, and moment at both ends of 

each member are given in the first, second and third columns 

of Table 6.1. Inspection of these forces indicates that 

members 4 and 6, having the largest moment and shear, are 

more liable to crack than the other members. It was desired 

to check the effect of the cracking of members 4 and 6 on 

the member terminal forces. For this purpose a sensitivity 

analysis was performed with respect to the moment of inertia 
dP 

m of members 4 and 6. The sensitivity coefficients, 
dI4 6 , 

are given in Table 6.1. 

It may be assumed that, as a result of cracking, 

the moment of inertia of members 4 and 6 would be reduced by 

50 per cent. Extrapolating from the sensitivity coefficients, 

the resulting percentage change in the member forces would be 

predicted as 

% I1 P = m 
(6.2-1) 

The results obtained using Eq. (6.2-1) are given in 

the last three columns of Table 6.1, and indicate that the 

internal force distribution is rather insensitive to changes 

in the rigidity of members 4 and 6. The largest percentage 

~ . 
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change was observed to be 1.44 per cent for the axial force 

of member 5. 

This example is typical of the type of sensitivity 

analysis which may be performed whenever there are uncer

tainties about the parameters. 

6.3 Sensitivity Analysis for Changes in Member Properties 

It is essential for the designer to be able to 

choose modifications which would improve his design. It 

will be shown that the sensitivity coefficients provide the 

quantitative basis for such a decision. 

The structure of this example is the plane truss 

shown in Fig. 6.3. All members were assigned a cross

sectional area of 8 sq. inches. Since the right support is 

released in the x-direction the structure is externally 

determinate. However, due to the additional diagonal member 

in the center panel, the truss is internally indeterminate 

to one degree. Modifications in the areas of the members 

incident on the support joints do not change the value of 

the member forces. Therefore, the discussion will be focused 

on the remaining members. 

The member forces induced by the jOint loads shown 

in Fig. 6.3 were determined by an initial analysis. Then a 

sensitivity analysis was performed to determine the sensi

tivities of the member forces to changes in the areas of the 

bars 1, 2, 3 and 4. The results obtained are presented in 
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Table 6.2. Member 1 will be used to interpret these sensi-

tivity coefficients. 

The member force associated with member 1 is given 

by the initial analysis as P = -21.87 kips. The largest 1. 
dP

l sensitivity coefficient for PI' dA
4 

= -0.249, indicates that 

PI is most sensitive to a change in the area of member 4. The 

negative sign of the coefficient indicates than an increase 

in A4 will cause a change in PI by a negative increment. 

This means that a decrease in A4 reduces PI in absolute 

value. 

On the basis of similar interpretations of the 

sensitivity coefficients, it was decided to decrease PI by 

increasing A3 and decreasing A4 and AlO by 50 per cent, i.e., 

~ A3 = 4.0 sq. in. 

~ A4 = ~ AlO = -4.0 sq. in. 

The axial force associated with member I of the 

modified structure, PI' was predicted by linear extrapolation 

from the sensitivity coefficients as: 

substituting the numerical values of the variables in the 

last expression yields 

-19.27 kips. 
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The reanalysis carried out for the modified structure 

yielded 

= -19.48 kips. 

The comparison of the predicted values of PI with its cal

culated value indicates t~ linear approximations using 

sensitivity coefficients may lead to reasonable predictions 

for the response quantities of the modified structure. 

The predicted and calculated values of the other 

member forces are also given in Table 6.2. 

It may be concluded that the trial and error pro

cedure of iterative design gets a clearer orientation with 

the information provided by the sensitivity analysis. 

6.4 Sensitivity Analysis for Changes in Geometry 

In this example, the structure shown in Fig. 6.4 is 

used to demonstrate the use of sensitivity analysis with 

respect to joint coordinates in design. The structure is a 

symmetric plane frame subjected to symmetric loading. All 

members were assigned a cross-sectional area of 20 sq. in. 

and a moment of inertia of 100 inches4 • The member end 

moments determined by initial analysis are given in Table 6.3. 

The sensitivity of these member forces to the y-coordinate 

of the jOints 2 and 4 were computed by sensitivity analysis 

and the results are given in Table 6.3. 
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The start moment, MIs' and end moment, Mle , of 

member 1 are selected to interpret the information provided 

by the sensitivity coefficients. The values of the moments 

MIS and Mle were given by the initial analysis as 

MIS = -289.2 inch-kip 

M = -319.7 inch-kip Ie 

Sensitivity analysis yielded 

dMls 1.170 
dY2 ,4 

= 

dMle 0.348 
dY2 4 = 

, 

inch-kip 
inch 

inch-kip 
inch 

This means that if the jOint 2 and 4 are given an infinitesimal 

movement in the positive y-direction, MIs will change by a 

negative increment, and Mle by a positive increment. Conse

quently, MIS will increase whereas Mle decreases. Therefore, 

assuming that the most efficient design is sought and the 

position of joint 2 is a design variable, it may be possible 

to induce a change ~y in Y2 and Y4 such that 

= (6.4-1) 

A reasonable guess for such a ~y can be made first predicting 

MIS and Mle associated with the modified structure as 
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( fly) 

(6.4-2) 

substituting Eq. (6.4-2) into Eq. (6.4-1) and rearranging, 

yields 

= (6.4-3) 

substituting the numerical values of the variables in Eq. 

(6.4-3), flY was obtained as 

30.52 
1.52 = 20.0 inch 

The y-coordinates of the joints 2 and 4 were then 

changed by flY = 20.0 inch, and a reanalysis was performed to 

determine the response quantities. 

The end and start moments of member 1 of the modified 

structure were observed to be 

= -307.2 inch-kip 

= -310.1 inch-kip 

It was also noted that the change in the terminal moments of 

all members were such that the difference between the smallest 

and the largest moment became 313.8 - 307.2 = 6.6 inch-kips, 
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compared to 362.7 - 289.0 = 73.7 inch-kip associated with 

the initial structure. 

It may be concluded that reasonably close predic-

tions can be made in terms of sensitivity coefficients for 

changes in the geometry of the structure. 

6.5 Accuracy of Predictions by Sensitivity Analysis 

It is intended here to investigate the accuracy of 

the predictions made for the modified response quantities by 

linear extrapolation using sensitivity coefficients. 

The structure of this example is a tied arch 

consisting of a girder and an arch connected to each other 

by vertical hangers. The hangers are truss-members having 

resistance only for axial force. The dimensions and the 

support conditions are given in Fig. 6.5. A cross-sectional 

area of 10 sq. in. for all members, and a moment of inertia 

of 100 in4 for the arch and the girder were used. 

The structure was analyzed to determine the 

response quantities induced by a single concentrated vertical 

load acting at the midspan of the girder. The joint dis-

placements were selected as the quantities of interest, and 

their numerical values are given in Table 6.4. It was 

observed that the critical components were the vertical 

displacements, u .• 
JY 

A sensitivity analysis was performed 

to predict the change in the vertical displacements of the 
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jOints, u. , due to a change in the area of the hangers, Ah , 
JY 

the moment of inertia of the arch, I , and of the girder, I , a g 
du. du. du. 
---1.Y. ---1.Y. d ---1.Y. d b The results dA dI ,an dr are presente in Ta Ie 
hag 

6.4. The moment of inertia of the arch was then increased 

50 per cent to decrease the joint displacements as predicted 

by the sensitivity coefficients. The reanalysis of the 

structure yielded the results given in the last column of 

Table 6.4. If these values were predicted by 

-u. 
JY 

u. 
JY 

(6 I ) 
a 

the expected values of the vertical jOint displacements would 

be those given in the seventh column of Table 6.4. Comparison 

of the predicted and the exact values indicates that there is 

some discrepancy between the two. This is due to the curva-

tures of the curves representing the relation between the 

joint displacements and I. The greater the curvature at the a 

point corresponding to the initial analysis the more is the 

discrepancy. 



CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

7.1 Conclusions 

In this study an automatic analyzer with the 

capability of performing initial analysis, reanalysis and 

sensitivity analysis for linear elastic skeletal structures 

was formulated. The principal objective was to integrate 

the analyzer in the iterative design process as effectively 

as possible. 

The stiffness method of analysis was used for 

initial analysis. It was noted that: 

1) The method with its systematic nature is well 

suited for computer programming; 

2) The major portion of the total analysis time 

is consumed by obtaining and solving the jOint 

equilibrium equations: 

3) The entire process of setting up the equations 

is simply a repetition of a single procedure 

which sums the contribution of each member to 

the jOint stiffness matrix; 

4) Exploitation of the sparsity of the jOint 

stiffness matrix provides considerable savings 

in the execution time. 
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The reanalysis capability of the analyzer was con-

ceived to operate on a structure previously analyzed. Having 

the information pertaining to the response characteristics of 

the previous structure, a partial reanalysis can be performed 

for the modified structure. In the formulation of the 

reanalysis phase of the analyzer the following were noted: 

1) Input data for reanalysis need to include 

only specified modifications in the intrinsic 

and extrinsic properties of the structure; 

2) The modifications in the intrinsic properties 

can be processed by first updating the internal 

topological representation of the structure, 

and then implementing the local effect of each 

* modification within the matrices R ,T and k 
m m m 

3) The modifications in extrinsic properties of 

the structure may either be explicit or 

implicit changes in loading. In either case 

the portion of the member fixed-end forces and 

the effective jOint load vector which is 

effected by the modifications need to be 

updated; 

4) The modifications can be processed by the same 

subroutines as used for initial analysis. Thus, 

the additional programming can be kept to a 

minimum; 
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5) Several solution techniques for reanalysis can 

be developed on the basis provided by the 

stiffness and the flexibility methods of 

analysis. Efficiency of these algorithms 

increases by restricting the modifications to 

a predefined region of interest; 

6) In general, partial reanalysis is justified 

for a reasonable amount of modifications. 

The sensitivity analysis provides information per

taining to the rate of change of the response quantities due 

to changes in design parameters. Such information forms a 

quantitative basis for the decision-making process of the 

deSigner, and the trial and error design procedure assumes a 

clearer orientation. Furthermore, linear approximations 

utilizing the sensitivity coefficients can predict the changes 

in response quantities due to specified modifications rather 

closely. 

7.2 suggestions for Further study 

The following can be suggested in order to initiate 

further study: 

1) In spite of the anticipated problems, the pos

sibility of incorporating the flexibility 

method into the initial analysis should be 

investigated. A study conducted for this 

purpose will undoubtedly provide detailed 
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insight into the basic characteristics of the 

flexibility method. 

2) In the case of the stiffness method of analysis, 

an optimum numbering of the jOints in order 

to exploit the sparsity of the jOint stiffness 

matrix to the highest possible degree should 

be included in the program. 

3) The possibility of incorporating synthesis 

procedures using the sensitivity coefficients 

into the automatic analyzer should be given 

consideration. Such a study is needed in order 

to achieve further automation in design. 

4) The capabilities of the automatic analyzer 

should be extended 

a) To provide more detailed selective output, 

such as the response quantities at specified 

cross-sections subject to the combination 

of multiple loading conditions: 

b) To include elastic structures having 

finite elements; 

c) To determine dynamiC response character

istics of a structure. 

S) The present version of the computer program can 

be improved by: 
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a) Converting the input data to a completely 

problem-oriented format to provide a higher 

level of communication; 

b) Implementing the system in an on-line 

environment to insure continuous inter

action between the designer and the 

analyzer. 
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Fig. 5.1 - Logical Organization of the Program 
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COMPUTE L,R and k* 
m m m 
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SUB .MEMBER. LOADS 

PROCESS MEMBER LOADS 
COMPUTE FIXED-END FORCES 
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Fig. 5.2c 
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Member Terminal 

1 Start 

1 End 

2 Start 

2 End 

3 Start 

3 End 

4 Start 

4 End 

5 start 

5 End 

6 Start 

6 End 

7 start 

7 End 

8 start 

8 End 

Member Forces, P Sensitivity % Change in Member 
m Coefficients, Forces Due to 50% 

dP 
x 10-2 

Change in 14 6 
m , 

dI4 6 , 
Axial Shear Moment Axial Shear Moment Axial Shear Moment Force Force Force 

6.95 0.00 317.8 -0.076 0.000 -3.161 -.54 .00 -.50 

-6.95 0.00 -317.8 0.076 0.000 3.161 -.54 .00 -.50 

0.00 -6.95 -317.8 0.000 0.069 3.161 .00 -.50 -.50 

0.00 6.95 -1350.0 -0.000 -0.069 13.436 .00 -.50 -.50 

0.00 6.95 317.8 -0.000 -0.069 -3.161 .00 -.50 -.50 

0.00 -6.95 1350.0 0.000 0.069 -13.434 .00 -.50 -.50 

2.98 100.00 2940.0 -0.015 0.000 -29.230 -.25 .00 -.50 

-2.98 -100.00 3059.0 0.015 -0.000 29.260 -.25 .00 .48 

2.98 0.00 -3059.0 -0.086 0.000 -29.240 -1.44 .00 .50 

-2.98 0.00 3059.0 0.086 -0.000 29.260 -1.44 .00 .50 

2.98 -100.00 -3059.0 0.026 0.000 -29.260 -.44 .00 .48 

-2.98 100.00 -2940.0 0.026 0.000 29.230 -.44 .00 -.50 

100.00 -9.93 -1589.0 0.000 0.099 15.800 .00 -.50 -.50 

-100.00 9.93 -794.6 -0.000 -0.099 7.901 .00 -.50 -.50 

100.00 9.93 1583.0 0.000 -0.099 -15.800 .00 -.50 -.50 

-100.00 -9.93 794.6 -0.000 0.099 -7.902 .00 -.50 -.50 
----- --------------_ .. _-- - - - - - -

TABLE 6.1 Results of Analysis for Concrete Frame 

00 
(X) 



Initial 
Structure 

Member 
Member m Forces P m 

1 -21.87 

3 20.83 

4 11.46 

5 10.83 

8 11.87 

10 5.20 

SENSITIVITY COEFFICIENTS Modified Structure 

dP dP dP dP dP dP Predicted Calculated m m m m m m -dA
1 dA3 dA

4 
dA

S 
dA8 dA10 P P 

m m 

-.171 .289 -.249 .150 .093 -.113 -19.27 -19.47 

-.228 .386 -.332 .201 .124 -.150 24.31 24.03 

.285 -.482 .414 -.251 -.155 .188 7.14 7.46 

-.228 .386 -.332 .201 .124 -.150 14.31 14.03 

-.171 .289 -.249 .150 .093 -.113 14.47 15.00 

.285 -.482 .414 -.251 -.155 .188 .88 1.21 

TABLE 6.2 Results of Analysis for Plane Truss 

00 
\D 



Member Terminal 

1 start 

1 End 

2 Start 

2 End 

3 start 

3 End 

4 start 

4 End 

5 start 

5 End 

6 start 

6 End 

7 start 

7 End 

TABLE 6.3 

sensitivity 
Initial of Moment, 
Analysis elM Moment, Mm m 

dY2,4 

-289.2 -1.170 

-319.7 .348 

319.7 -.348 

355.6 -2.210 

-355.6 2.210 

-362.6 2.580 

-0.0 .000 

-0.1 .000 

362.7 -2.580 

355.6 -2.210 

-355.6 2.210 

-319.5 .348 

319.5 -.348 

289.0 1.170 

Results of Analysis of the 
Gable Frame 

90 

Reanalysis 
Moment, 

M 
m 

-307.2 

-310.1 

310.1 

313.3 

-313.3 

-313.8 

0.0 

0.0 

313.7 

313.3 

-313.3 

-310.2 

310.2 

307.3 



Initial structure 
Joint Displacement 

Joint 
U jx 

U, U jz 
j JY 

1 -3.67 5.35 -.003 

2 -.94 -1.65 -.066 

3 .18 -10.54 .000 

4 1.30 -1.65 .066 

5 4.03 5.35 .003 

6 .06 5.35 -.002 

7 .12 -1.66 -.066 

8 .18 -10.59 .000 

9 .24 -1.66 .066 

10 .30 5.35 .002 

11 .36 .00 -.046 

12 .00 .00 .046 

TABLE 6.4 

Sensitivity Modified structure 
Coefficients Joint Displacement 

dU
jy 

dU , ~ Predicted Calculated 
--ll 

dAh dI dIg Ujy UJy a 

.020 -2.765 -3.011 3.97 4.23 

.040 .415 .506 -1.45 -1.48 

-.129 4.713 5.010 -8.18 -8.64 

.045 .414 .505 -1.45 -1.48 

.020 -2.766 -3.013 3.97 4.24 

.076 -2.762 -3.014 3.97 4.23 

.127 .420 .502 -1.46 -1.49 

.323 4.700 5.021 -8.24 -8.69 

.127 .418 5.002 -1.46 -1.48 

.076 -2.763 -3.015 3.97 4.23 

.000 .000 .000 .00 .00 

.000 .000 .000 • 00 .00 
-.----.-------- -

Results of Analysis for Tied Arch 
\D ....., 



APPENDIX 

DERIVATION OF DIFFERENTIAL MATRICES 

A.I Derivation of Eg. (4-29) 

The position of the member coordinate system (x, y, 

z) relative to the jOint coordinate system (X, Y, Z) can be 

specified by means of the two angles a and ~, as indicated in 

Figure A.I. The third angle, S, specifying the rotation of 

the member about its own x-axis is assumed to be unchanged. 

The transformation from the member coordinate system to the 

jOint coordinate system can be performed by rotating the member 

coordinate system (x, y, z) first around its z-axis by an 

angle a and then around its y-axis by an angle~. Representing 

the first rotation by a matrix Ra and the second one by a 

matrix R~, the rotation matrix, Rm, can be expressed as: 

R = Rq,Ra m (A.I-l) 

where 

I c~s a -sin a 0 

Ra a cos a 0 = sJ.n (A.1-2) 

l 0 0 I 

and 

cos q, 0 -sin ~ 

Rq, = 0 1 0 (A.I-3) 

sin cp 0 cos ~ 
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Differentiating Eq. (A. 1-1 ) yields 

~ = dRcpRCl + RcpdRo: (A.1-4) 

Differentiating Eq. (A.1-2) yields 

dR = R C do: Cl 0: 0: 
(A.1-5 ) 

where, 

0 -1 0 

Co: = 1 0 0 

0 0 0 

Differentiating Eq. (A.1-3 ) yields 

dRcp = CcpRcpdcp (A. I-G) 

where, 

0 0 -1 

Ccp = 0 0 0 

1 0 0 

substituting Eq. (A.1-5) and {A. I-G) into Eq. (A.1-4) results 

in: 

dR = rn C",R dcp + R C dCl 
"t" m m Cl (A.1-7) 

The angles a and cp can be related to the end joint, e, and 

the start jOint, s, coordinates by 

sin a = (A.1-8) 
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and, 

sin <1> = flZ (A.I-9 ) 

where 

flX = Xe - X s 

flY = Ye -Y s (A.I-IO) 

flZ = Ze - Z s 

The differential of the angles a and <1> can be 

obtained from Eqs. (A.I-8) and (A.I-9) as: 

dac; = nac;dC; (A. I-II) 

and 

d<1>c; = n<1>c;dl; (A.I-12) 

where 

S = X, Y, Z 

and 

naX = (_l)t -~flXl ~flYl 
L 2 [ (flX)2 + (fly)2 JI/2 

m 

naY = (_l)t [,flX}2 + {flZ1 2 JI/2 
L 2 

m 

naZ = {_l)t -{flY} {flZ} (A.I-13) 
L 2 [(flX)2 + (flZ)2 JI/2 

m 



9S 

n4>X = (_l)t -~~zl 

(L\X)2 + (L\Z)2 

ncpY = o. 

= (_l)t L\X 
n4>Z (~X) 2 + (~y)2 

In Eq. (A.I-13), if the infinitesimal disturbance is associated 

with the end joint: 

t = 2 

otherwise: 

t = I 

The differential of the angles a and S with respect 

to a coordinate axis s of joint j can be expressed as: 

and, 

da. = sJ 

dcp. = ( n A. ). d s . sJ "r s J J 

(A.I-14) 

(A. I-IS) 

substituting Eq. (A.I-14) and (A. I-IS) into Eq. (A.1-7) yields 

(4-29) 

A.2 Derivation of Equation (4-30) 

In the member coordinate system, the member terminal 

displacements are related to the member terminal forces by 
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* T t * T k -Tk 
m m m mm 

~ = (A.2-l) 

* T t * -k k 
m m m 

where, for a prismatic member having six force and displace-

ment components, 

EA 0 0 0 0 0 
L 

l2Elz 
-GEl 

0 0 0 
z 

L2 L2 

* 
l2EI GEl 

k m = :;i 0 --.::L 0 
L3 L2 

Symmetric 
GJ 0 0 L 

4El 
--.::L 0 

L 

4El 
~ 

L 

and 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

Tm = 
0 0 0 1 0 0 

0 0 -L 0 1 0 

0 L 0 0 0 1 
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For a member, m, connecting the jOints i and j the 

derivative of the length L with respect to ~. is given by 
m J 

where 

and 

dL 
--!!!. = 
d~ . 

J 

~ . = 
J 

t:.~. 
~ 
L 

m 

t:.~. = ~. - ~. 
J J ~ 

(A. 2-2) 

* Using Eq. (A.2-2), the derivatives of the matrices km and Tm 

can be expressed as: 

EA 0 0 0 0 0 
L 

36EI 12EI 
0 z 0 0 0 z 

L3 L2 

* -[2t1 dk 36Ely 12EI 
m 0 y 0 = d~ . L3 L2 J 

GJ 0 0 
L 

Symmetric 
4Ely 

0 
L 

4EI 
~ 

L 

(A. 2-3) 



and 

dT 
m 

d~. = 
J 

where Im is a unit matrix of appropriate order. 

Using Eq. (A.2-2), (A.2-3) and (A.2-4) , the 

derivative of the Eq. (A.2-1) can be obtained as: 

~= 
dZ;: . 

J 

where 

Im I m 

Ml = 
0 0 

and 

* * dk t dk 
T _m_T -T --!!L 

L 2] 
m dz;:. m m dz;:. 

J J 

M2 = lI~j * * dk dk 

l 
m t _m_ --T 

dz;:. m dz;: . 
J J 

Letting 

Z = Ml + M t + M2 1 

Eq. (4-30) is obtained as 

~ /j z;: . 
= --=..l z 

d~. L 2 J m 
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(A.2-4) 

(A.2-5) 

(4.30) 
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