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opportunity to join his project and provided important direction and focus for this

thesis.1 I could not have completed this work without going to his class -

Environmental Economics. My gratitude also goes to my thesis committee members

Professor John Braden and Professor Alex Winter-Nelson. Without their help, I

would not have had a chance to join this program. I also want to thank them for

their valuable and insightful comments on my thesis.

I would like to thank my colleagues, particularly those in my office: Eeshani Kandpal

and Yusuke Kuwayama gave me a hand with coding, Xiaolin Ren, Xiang Bi, Jebaraj

Asirvatham, and Taro Mieno shared so many of their research experiences with me.

Thanks to Amanda Palazzo’s careful records of her work, I could easily continue my

work on this project. I also want to thank Sean Wan and Xiaoli Liao for their

encouragement and support, Dr. Hongyun Jin, who advised my undergraduate study,

and all my friends at that time, without whom I would not have the idea to go to the

US for graduate study. Finally, I thank my parents for all they are and all they have

done for me.

1This work was supported in part by the National Science Foundation under award number EAR-0709735.

ii



To my parents – for their unconditional love

iii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Spatial Heterogeneity in Watershed Characteristics . . . . . . . . . . . . . . 4
Water Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Samplings Methods in the Study of Water Markets . . . . . . . . . . . . . . 7

Institutional Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Sampling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Systematic Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Random Sampling in NRDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
The Biases in One Draw Can Be Large . . . . . . . . . . . . . . . . . . . . . 26
Larger Biases after Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 27
Biases from Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Biases through Endogenous Permit Price Determination . . . . . . . . . . . 32
Sensitivity to Systems and Strata . . . . . . . . . . . . . . . . . . . . . . . . 34

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix A: Supplemental Tables and Figures . . . . . . . . . . . . . . . . . . . 54

Appendix B: Computer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv



List of Tables

1 Studies of Irrigation Water Use and Associated Survey Methods . . . . 40
2 Summary Statistics of Certified Acreage in Each NRD, Well-based . . . 41
3 Summary Statistics of Certified Acreage in Each NRD, Farm-based . . 41
4 Five Percent Well-based Sampling on Basin-wide Trading . . . . . . . . 42
5 Five Percent Farm-based Sampling on Basin-wide Trading . . . . . . . 42
6 Five Percent Well-based Sampling on NRD-wide Trading . . . . . . . . 43
7 Five Percent Farm-based Sampling on NRD-wide Trading . . . . . . . . 43
8 Bias in Sampled Area, Lift, and Yield for Well-based Sampling . . . . . 44
9 Bias in Sampled Area, Lift, and Yield for Farm-based Sampling . . . . 44
10 Buyers and Sellers in Population . . . . . . . . . . . . . . . . . . . . . . 45
11 Buyers and Sellers in Well-based Sampling . . . . . . . . . . . . . . . . 45
12 Buyers and Sellers in Farm-based Sampling . . . . . . . . . . . . . . . . 45
A-1 Certification and Trading in NRDs . . . . . . . . . . . . . . . . . . . . 54
A-2 Summary Statistics of Strata . . . . . . . . . . . . . . . . . . . . . . . . 54
A-3 Well-based Random Sampling on Basin-wide Trading . . . . . . . . . . 55
A-4 Farm-based Random Sampling on Basin-wide Trading . . . . . . . . . . 56
A-5 How Much the Farm-based Sampling Enlarges the Biases . . . . . . . . 56

v



List of Figures

1 Wells in the Republican River Basin (NE) with Certified Acreage . . . 46
2 Marginal Abatement Costs as A Function of Well Size and Farm Size . 47
3 Random Samples for Well-based Sampling . . . . . . . . . . . . . . . . 48
4 Systematic Samples for Well-based Sampling . . . . . . . . . . . . . . . 48
5 Stratified Samples for Well-based Sampling . . . . . . . . . . . . . . . . 49
6 Random Samples for Farm-based Sampling . . . . . . . . . . . . . . . . 49
7 Systematic Samples for Farm-based Sampling . . . . . . . . . . . . . . 50
8 Stratified Samples for Farm-based Sampling . . . . . . . . . . . . . . . 50
9 Cost Saving Per Well in Four NRDs Using Well-based Sampling . . . . 51
10 Cost Saving Per Acre in Four NRDs Using Well-based Sampling . . . . 52
11 Cost Saving Per Acre in Four NRDs Using Farm-based Sampling . . . . 53
A-1 Distribution of Estimated Cost Savings, Well-based and Farm-based . . 57
A-2 Cumulative Distribution of Certified Acreage . . . . . . . . . . . . . . . 58
A-3 The Trend in Estimates as the Sample Size Rises . . . . . . . . . . . . 59
A-4 Marginal Abatement Costs Ranked for Well-based Sampling . . . . . . 60
A-5 Marginal Abatement Costs Ranked for Farm-based Sampling . . . . . . 61
A-6 Well Sizes Against Farm Sizes . . . . . . . . . . . . . . . . . . . . . . . 62
A-7 Cost Saving Per Well in Four NRDs for Farm-based Sampling . . . . . 63

vi



Introduction and Motivation

Due to increasing water demands and, in particular, environmental concerns, more

restrictions on agricultural water use are being established or negotiated in many

parts of the world. The implementation of new restrictions on agricultural water use

affects both total and individual production, and the welfare costs of restrictions may

be distributed unevenly among heterogeneous producers. When there are many

affected parties, both Pigouvian taxes and bargaining solutions may be difficult to

implement. As a result, cap-and-trade systems are often suggested as politically

feasible solutions to environmental externalities. In a competitive permit market with

zero transaction costs, tradable permits are the least cost way to reach any target

amount of abatement (Hanley et al. 2002). The permit price equalizes marginal

abatement costs (MAC) of all resource users. Since users can decide whether or not to

participate the market, no users can be worse off from trading in the permit market.

Empirical studies from several active water markets in the United States,

Australia, and South Africa generally support the theoretical result that water is

reallocated from low-value uses to higher-value uses through trading (Chong and

Sunding 2006). Gains from trading in water markets are driven by heterogeneity of

traders. Thus, in order to estimate the potential cost savings from introducing a

tradable permit system and associated permit price, it is necessary to have data on

relevant characteristics of all potential market participants. However, research data

on characteristics of agricultural water uses are often very limited, particularly in the

case of groundwater users (groundwater is typically a private property right and its

use is unreported).
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It is generally impractical to carry out a census to collect information for every

potential policy, so sampling methods are a common approach to obtain data for

policy analysis. However, there are many issues with sample design. What kind of

sampling strategies are most accurate or most effective for ex ante studies of

environmental markets? At which level of disaggregation should data be collected?

Which characteristics should the sample try to maximize the representativeness of?

Few previous environmental economic studies consider these questions, and most

existing studies are based on samples with sparse data coverage, and state general

conclusions without validating the sampling strategies and sampling procedure they

used. Based on the information in a sample, some researchers explore the potential

economic impacts of alternative water management policies (Pujol et

al. 2006, Schaible 1997). But a sample can reveal only part of the characteristics of a

population. If the sample is not representative of the population, then welfare

analysis based on this sample may also be biased. As the heterogeneity of underlying

population increases, and particularly if a relatively small portion of outlying data

points have large effects on the market structure or outcomes, then the small sample

may lead to biases in welfare estimates and even larger biases when scaled back to

population estimates. In this case, policy implications from samples may be

implausible and cannot be generalized to other regions and situations.

This thesis attempts to address these questions by making use of a unique

population dataset of irrigation wells from the Republican River Basin of Nebraska.

These data allow me to use a Monte Carlo framework to evaluate the effectiveness of

alternative sampling strategies for estimating the welfare impact of a cap-and-trade

groundwater rights system. Simple random sampling, systematic sampling, and

stratified sampling, all of which are used in environmental economic studies, are

applied in the welfare analysis of basin-wide trading. Additionally, the original data

of a well level are aggregated to a farm ownership level, and compared to the

preceding sampling strategies to see if sampling units have a significant influence on

the sampling outcomes.
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I obtain several results. First, results suggest that sampling biases in the welfare

analysis based on one draw can be very large. The estimates for either area irrigated

by one well or the costs saved by trading permits have the potential to be biased

upwards by more than 10 percent. Second, wells are better sampling units than

farms. This result follows because information at a well level is more disaggregated

than that at a farm level, and large farms tend to own higher proportion of large

wells. Third, when data are strongly heterogeneous in the estimated values of

abatement costs per acre, scaling sample estimates back to population estimates by

acreage can lead to much larger biases than scaling by the number of wells or farms.

The last result is that the biased estimates of permit price can lead to substantial

changes in estimated market structure, and this results in the most significant bias

reported. For example, the samples on average imply a market with half buyers and

half sellers, while only 20 percent of the participants are actually estimated to be

sellers in the population data. The results in this thesis can be generalized to other

environmental markets involving choice of sampling methodology, and bring insights

into both ex ante sampling design and ex post diagnostics for sampling results based

on sparse data.

This thesis is laid out as follows. I start with a review of related literature in

Section 2, and describe the institutional background of water management in the

Republican River Basin in Nebraska in Section 3. Then I describe the unique

population dataset being studied in Section 4. In Section 5, I explain sampling

strategies and detailed sampling steps as well as scaling methods used. After

discussing the sampling results in different sampling strategies in Section 6, this

thesis ends with some conclusions and broader implications for sampling approaches

in evaluating environmental markets in Section 7.
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Background

There are three strands of literature related to the research on welfare analysis of

environmental markets presented in this thesis. The first strand considers the

importance of spatial targeting of environmental policies in heterogeneous

watersheds. The second strand either analyzes or simulates water markets to explore

potential reasons for their success or failure. The third strand focuses on the design

of sampling strategies, usually through surveys, to analyze watershed-scale

agricultural water use. I discuss each strand below.

Spatial Heterogeneity in Watershed Characteristics

There is a relatively large literature on how spatial heterogeneity in watershed

physical characteristics, and particularly those associated with environmental

externalities, influences policy outcomes. For example, Satti and Jacobs (2004)

showed the importance of including soil heterogeneity to capture the water

requirements of individual farms. Yang et al. (2003) suggested that conservation

costs can be reduced if abatement standards are set for heterogeneous regions rather

than uniformly assigned. Diao et al. (2005) analyzed a surface water irrigation

system in Morocco to evaluate the potential welfare gain from a spatially

heterogeneous water allocation in agriculture. Several studies have used simulated

economic data together with geo-referenced physical data, often in a Geographic

Information System (GIS), to capture the benefits of spatial targeting of policies in a

watershed (Braden et al. 1989, Khanna et al. 2003, Yang et al. 2003, Ancev et

al. 2006). To date, most studies that analyze heterogeneous watershed characteristics
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assume that the economic agents using watershed resources are homogeneous. In

contrast, this study explicitly incorporates both heterogeneous physical and economic

properties of agricultural water use.

Water Markets

Studies of water markets focus on existing or potential markets to understand

what drives transactions, what are practical problems in current markets, and what

issues may undermine cost-efficient market function in general. Trading of water is

driven by heterogeneous marginal benefits of irrigation, or equivalently by

heterogeneous marginal abatement costs for water use reductions. If all farms had the

same value of the marginal product of water at the current allocation, there would be

no reason for trade to occur. Markets move scarce water resources from less

productive users to more productive users to produce higher total benefits. The

difference in marginal benefits exists both between agricultural, industrial, and

residential sectors and within irrigation water use among heterogeneous farms. For

example, 20 percent of sales in California’s 1991 Drought Water Bank and 26 percent

of sales in the Colorado-Big Thompson project area traded within the agricultural

sector (Chong and Sunding 2006). Pujol et al. (2006) examined the potential benefits

of water trading between 60 farms from Spain and Italy, and confirmed that water

markets with no transaction costs could improve the economic efficiency of irrigation

water use in the studied area.

Tradable water permits are the least cost way to achieve a fixed amount of

abatement, potentially replicating the social optimal allocations (Hanley et al. 2002).

Suppose the regulator needs to reduce overall water use to E. In the absence of

regulation, user i will use an amount e0
i of water. Water use reduction lowers profits,

and for abatement αi, the cost is C(αi). Then the regulator’s problem is to minimize

the cost of attaining the aggregate water use E.
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Minαi

∑N
i=1C(αi) − λ

[
E −

∑N
i=1(e0

i − αi)
]

(1)

∂L

∂αi
=
∂C

∂αi
− λ = 0 (2)

If equation (2) has an interior solution and α∗i is the socially optimal abatement

for user i, the first order conditions are ∂C
∂αi

= ∂C
∂αj

= λ, for any i, j. Thus, equalizing

marginal abatement costs across users is the least-cost way to achieve any water use

reduction.

If trading of permits is allowed and frictionless, then the market will reach an

equilibrium price. Each user adjusts their abatement to minimize their total costs,

through both changes in production and permit trading. The market mechanism

provides an incentive for all users to abate pollution at the same marginal cost, and

therefore achieves social optimal allocation as in equation (1) and equation (2).

User i’s problem is

Minαi
C(αi) − pTαi (3)

∂L

∂αi
=
∂C

∂αi
− pT = 0 (4)

The first order conditions for (4) are ∂C
∂αi

= ∂C
∂αj

= pT , for any i, j.

Comparing equations (2) and (4), the only differences are the Lagrange multipliers

λ and pT . The former one is the shadow price of social pollution damage, i.e. the

social marginal abatement cost (MAC), and the latter one is the equilibrium permit

price. If pT = λ, the social optimum can be replicated in a competitive permit market
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with zero transaction costs.

Currently, the transfer of water rights encompasses a range of options, including

water-use options, water right priority exchanges, and water banks (Chong and

Sunding 2006). The optimal sizing of water markets has received some attention in

the literature. In an empirical study of water transactions in New Mexico, Colby et

al. (1993) showed that market prices are highly correlated with the size of transaction

and the geographic range within which trading is allowed. Jenkins et al. (2004)

examined the water system in California, and found that regional and statewide

water markets could significantly reduce water scarcity and improve the flexibility

and economic performance of water allocation.

The market-clearing price provides the correct incentive for farms to make

decisions about crop choices and technology adoption. Even if landowners with water

rights do not have much incentive to invest in a new technology under a water

regulation system, they may adopt the technology under a water market system if the

added revenue from the new technology can cover their fixed costs (Boggess et

al. 1993). Theoretically, water markets have the potential to improve social welfare

when compared with standards or regulations, but there may be practical or political

problems in implementation. Beside the mobile nature and difficulty in identifying a

specific part of the water, concerns also arise about wealth redistribution,

environmental externalities, effects on third-parties, transaction costs, and

uncertainty (Brozović et al. 2002, Pujol et al. 2006). Thus, water markets are often

limited in their geographical scope.

Sampling Methods in the Study of Water Markets

Analyzing the performance of a water market requires data about the available

water amount, agricultural production, marginal abatement costs, and so forth. The

coverage and reliability of these data are critical to the validity of research results.

For example, consider a sample that is used to estimate the welfare impacts of a
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potential water market. This sample is first used in equations (1) and (2) to calculate

λ, the permit price that yields the correct aggregate water use. Then the trading

behavior of each user and their total costs are estimated based on the permit price.

Because the price is endogenous to the particular distribution of marginal abatement

costs in the sample, each sample from a population will produce different permit

prices, market behavior, and cost estimates. Thus, if properties of the sample are

very different to the population of potential traders then there may be two important

biases. First, estimates of cost savings may be biased. Second, trading behavior

(buying or selling) and quantities traded estimated from a sample may be different

both on average and for individual traders than obtained using population data.

However, population data on agricultural water use are rarely seen in the

literature, and most studies are based on small samples without proving or testing

the validity or representativeness of those samples. In general, analyses depend either

on project-funded surveys within small regions or on one of two U.S. nationwide

surveys (Table 1).

One nationwide survey is the Agricultural Resource Management Survey (ARMS).

The ARMS survey is conducted annually by the Economic Research Service (ERS)

and the National Agricultural Statistics Service (NASS) of the USDA, and collects

information about farm structure, farm sector finance, and land use from the 48

contiguous states. ARMS is a probability-weighted and stratified survey.2 Between

8000 and 10,000 farms are selected each year from the existing NASS List Frame as

well as the Area Frame, exclusive of the List Frame (Goodwin et al. 2003). The List

Frame is stratified by commodity type and sales class, while the Area Frame is

stratified by land use categories (Katchova and Miranda 2004). Target states and

crops vary each year to satisfy the complex stratification laid out in the ARMS

methodology. Every surveyed farm has a specific probability as one factor in the

data, which reflects the number of farms with similar attributes in the entire

population of U.S. farms represented by this farm .

2More details about ARMS can be found at http://www.ers.usda.gov/Briefing/ARMS (accessed July 2009).
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The stratified nature of the ARMS data is utilized in a wide variety of research on

issues such as agricultural production, agricultural finance, and technology adoption.3

One limitation of ARMS data is that the target states and crops vary each year, so

that panel data are not directly amenable to time series analysis (Morrison-Paul et

al. 2004).

Another nationwide survey – the Farm and Ranch Irrigation Survey (FRIS) –

provides detailed information of on-farm irrigation activities, by targeting farms and

ranches in all 50 states of the U.S.4 It has been conducted by NASS every five years

since 1974, as a follow-on survey of the Census of Agriculture. FRIS targets farms

reporting irrigated land in the preceding Census of Agriculture. A sample of 20,000

to 25,000 irrigators is selected and mailed a report form in each survey, to cover 7

percent of the reported irrigated acreage. The sampling frames are constructed at the

state level, and then a stratified sample is selected independently from 50 state

frames. The stratification varies among the states, according to the distribution of

total irrigated acres in a specific state. FRIS is designed to sample heavily on larger

farms. It has a certainty stratum of the major irrigators in each state, whose farms

are selected with probability one. For example, the national sample size was 25,014

farms in the 2003 FRIS survey.5 Out of the national sample, 1823 farms were

assigned to the certainty strata, while the remaining 23,191 farms were systematically

selected from the noncertainty strata. FRIS provides consistent data for government

decision, policy and regulation analysis, as well as for economic research.

Studies that do not use ARMS or FRIS data highly depend on the accessibility

and voluntary participation of farm owners (Table 1). For example, Pujol et al.

(2006) used linear programming to simulate a potential water market between Spain

and Italy. In their data, 60 farms in Spain were chosen by quota sampling. They first

3Bibliography of published journal articles applying ARMS data can be found at http://www.ers.usda.gov/Briefing
/ARMS/morereadings.htm (accessed July 2009).

4FRIS data exclude some horticultural farms and institutional, research, and experimental farms. The farms in
the excluded categories in FRIS (2003), for example, accounted for 11 percent of the total number of irrigators and 2
percent of the irrigated land reported in the 2002 Census.

5FRIS data can be found in USDA Census of Agriculture. For instance, the 2003 FRIS data can be found in the
2002 Census Publication. The online version is at http://www.agcensus.usda.gov/Publications/2002/FRIS/index.asp
(accessed July 2009).
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classified all existing farms by farm size, and then sampled each class proportionately.

The data on the Italian side were secondary population data of all the farms in the

studied area, with a total of 131 farms. Quota sampling in Spain combined with the

population data in Italy are assumed (but not tested) to capture the major

characteristics of the potential water market across the border. Thus, the plausibility

of simulations and conclusions based on small samples is generally untested and

potential policy biases have not been evaluated.

Instead of survey approaches, some studies compile data from various sources to

increase sample coverage and reveal more information about the target population.

To the best of my knowledge, only two studies have attempted to analyze the

population of water users in a large watershed. Hendricks (2007) used a unique

dataset including 5075 parcels from 25 counties in Western Kansas to estimate the

response of irrigation demand to water price and energy prices. He excluded some

parcels due to complications with water and soil data, and focused only on estimating

the demand elasticity of irrigation water. Palazzo (2009) assembled and analyzed a

population dataset of all the irrigation wells in the Nebraska portion of the

Republican River Basin to evaluate the cost savings of groundwater trading under

alternative schemes. This thesis builds on the same dataset used by Palazzo (2009),

but extends it to include farm-level analysis in addition to well-level analysis.

Moreover, Palazzo (2009) did not consider the potential of sampling frames to bias

policy analysis, or the broader implications of such biases to water resource

management. Such issues are the focus of this study.
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Institutional Context

Because groundwater is generally considered to be private property, there exist

litter well-level data on its use. Moreover, even in regions where groundwater use is

metered and allocated, trading of groundwater rights is usually highly restricted. The

Republican River Basin is shared by Nebraska, Colorado, and Kansas. In 1942, these

three states agreed to the Republican River Compact, which determined how to share

the Basin’s water resources and gave specific water allocations for “beneficial

consumptive use” to each state (Hinderlider et al. 1942). The introduction of center

pivot and sprinkler systems in the 1950s stimulated a sharp increase in well drilling in

the Republican River Basin. Farmers extended irrigation by groundwater to fields

not suited for furrow or ditch irrigation. As a result, water extraction for irrigation

by all states increased, and in 1998 Kansas sued Nebraska and Colorado, claiming the

upstream states were not leaving enough water instream to satisfy the Compact

requirements. After litigation and a Supreme Court decision in 2002, the three states

agreed on a final stipulation and determined reduced groundwater pumping

allocations (McKusick 2002).

In all, there are currently around 11,000 active irrigation wells spread across the

Nebraska portion of Republican River Basin, under the jurisdictions of the Nebraska

Legislature, the Nebraska Department of Natural Resources (DNR), and local

Natural Resource Districts (NRDs). The four NRDs in the Nebraska portion of the

watershed are the Upper Republican, Lower Republican, Middle Republican and

Tri-Basin NRDs, defined according to the characteristics of natural resource issues in

each area. In order to preserve instream flows, the Nebraska legislature passed L.B.
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962 in 2004, which required the NRDs to declare well drilling moratoria, meter wells

used for irrigation, and set groundwater pumping limitations as well as to certify

groundwater-irrigated acreage. The four NRDs accomplished well metering and the

certification of groundwater-irrigated acreage by 2004. The certified acreage was

issued based on the history of groundwater-irrigated production, and in some cases

required tax assessments as proof of historical use. The Upper Republican NRD,

located westernmost of the four NRDs, has the least rainfall, so it also has the

highest current water allocation, namely 13 inches per acre per year (Nebraska

Department of Natural Resources and Upper Republican Natural Resource

District 2008). Based on precipitation, the allocation in the Middle Republican NRD

is 12 inches per acre per year, and 9 inches per acre per year in the easternmost

Lower Republican NRD, which has the highest rainfall amount (Nebraska

Department of Natural Resources and Middle Republican Natural Resource

District 2008, Nebraska Department of Natural Resources and Lower Republican

Natural Resource District 2008). Irrigation allocations in the Tri-Basin NRD vary by

county from 9 to 11 inches per acre per year (Nebraska Department of Natural

Resources and Tri-Basin Natural Resource District 2007). Details of well location and

allocations in each NRD can be found in Figure 1 and Table A-1 in the Appendix.

Groundwater trading is only a transfer of pumping rights, not involving actual

conveyance of groundwater. However, due to legal issues, trade is highly regulated

and restricted. Currently, the Upper and Middle Republican and Tri-Basin NRDs

allow for trading of groundwater rights, approved by the relevant NRD Board of

Directors, within townships or distance zones. The Lower Republican NRD does not

currently allow any water trading.6

6Table A-1 also shows the current regulatory framework for groundwater trading in the four NRDs.
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Data Description

This thesis is based on the population dataset of irrigation wells in the Republican

River Basin (called “RRB data” in the following) assembled by Palazzo (2009). It

combines the Republican River Compact Administration (RRCA) dataset of certified

acreage, the Nebraska DNR well information database, the State Soils Geographic

database (STATSGO),7 Nebraska Cooperative Extension evapotranspiration (ET)

data as well as other agronomic and economic parameters from WaterOptimizer.

WaterOptimizer is a Microsoft Excel decision support tool developed by University of

Nebraska-Lincoln Extension (Martin et al. 2005). It can simultaneously choose

acreage, cropping patterns, and required water for a single field using a nonlinear

optimization algorithm (Palazzo 2009).

The RRB data contain the certified irrigation acreage, pumping information, and

geographic characteristics for all irrigation wells, and yields and prices for eight

alternative crops.8 Reductions from unconstrained water use to the current

allocations set by regulations result in losses in profits, i.e. abatement costs, for water

users. If using a market-based solution to achieve the same total reduction in water

use, the abatement costs should be no larger than those from the regulation-based

solution. The cost savings of interest in this thesis are the differences in abatement

costs of switching from the current regulation to a cap-and-trade system with the

same total water use. As described in Palazzo (2009), the single field nonlinear

optimization solved by WaterOptimizer has been rewritten in Matlab and can be

used to generate marginal abatement cost curves for water use reductions for every

7Soil type from the STATSGO dataset for Nebraska is categorized into coarse, medium, and fine types for this study.
8Alfalfa, corn (dryland and irrigated land), beans, sorghum, soybeans, beets, wheat.
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well. Using these curves, the cost-effective reallocation problem shown in equation (1)

and equation (2) can be solved. Similarly, equilibrium permit prices, trading activity,

and total abatement costs for each well are obtained, allowing the water market

structure and function to be analyzed.

I also aggregate all the fields irrigated by wells into farms based on the unique

owner identification numbers in the Nebraska DNR well database. Distributions of

estimated cost savings obtained from the population data analysis before and after

aggregation are compared in the Appendix (Figure A-1 and Figure A-29). The

certified acreage of a single irrigation well varies from 1 acre to 557.4 acres, but

reported acreages for owners with unique ID numbers (“farms”) vary from 1 acre up

to 14.7 thousand acres. The four largest farms account for 6 percent of the estimated

population cost savings from basin-wide trading, while the thirteen largest farms

account for almost 10 percent of the total cost savings. It indicates that the irrigation

area of a farm (called “farm size” in the following) is more heterogeneous than the

irrigated area by a well (called “well size” in the following).

There are four NRDs in the Republican River Basin (Figure 1); the NRDs are

responsible for implementation of state groundwater management policies. Summary

statistics for each NRD can be found in Table 2 and Table 3. Since one farm may

have fields and irrigation wells in more than one NRD, in the farm-based sampling, I

count the first NRD in which a farmer registered for certified acreage as the NRD he

or she belongs to. Hence, the total acreage of each NRD in farm-based sampling is

slightly different from that on well-based, but the differences are less than 1 percent.

The average well sizes decrease from the western most Upper Republican NRD to the

easternmost Lower Republican NRD. The Tri-basin NRD, located north of the Lower

9Figure A-1 shows the distributions of cost savings on well-based in the upper graph, and on farm-based in the
lower graph. Name the number of wells (farms) in population as NW

p (NF
p ). In order to make the NW

p wells and NF
p

farms comparable in terms of frequency, I lengthened the vertical axis in the lower graph by NW
p /NF

p . Horizontally, the

farm-based cost savings is divided by NW
p /NF

p , since one farm owns NW
p /NF

p wells on average. Then I took logarithm
of both horizontal axes to avoid squeezing most data to the left corner by several extremely large values. After these
adjustments, both distributions appear similar shapes on the parts left to the population mean of cost savings. However,
the right parts of well-based distribution shows a sharply downhill and a short tail, but the farm-based distribution has
more frequency cumulates around 9 as well as a long and thin tail. It is possible that one farm owns a large number
of small wells and reallocates a chunk from some left bins in the upper graph to an isolated dot at the right tail in the
lower graph. But the aggregation is not reversible, i.e. it is impossible for some frequency in the upper graph ends up
in a bin more left in the lower graph.
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Republican NRD, has the smallest number of wells, but relatively large average well

sizes. Note that the average acreage per farm in the RRB data are only about half of

that in the FRIS survey (Table 3). There are several possible reasons for this

discrepancy. First as shown by the total acreages, recent regulators have reduced the

irrigated acreage from what was surveyed in the latest FRIS (2003). Second, the

borders of NRDs are not consistent with the borders of counties. Except for the

Upper Republican NRD, the other three NRDs contain several partial counties, but

FRIS only provides county level data which I used to calculate the mean acreage in

FRIS. Finally, another possible problem is that aggregation from wells to farms in the

RRB data depend on unique owner IDs. Thus if members of the same family register

as separate wells for legal or estate purposes, they will be recorded as separate farms.
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Sampling Strategies

In any study employing sampling, a valid conclusion requires the sample to mirror

the key characteristics of the population. However, no single sampling strategy is

appropriate for all situations and the sampling design is also influenced by the budget

and time constraints of the project.

The reasons leading to unrepresentativeness of a sample can be classified as either

sampling error or non-sampling error. The former error is a fluctuation of sample

estimates among different samples targeting the same population. The latter one

results solely from the way an observation is made. The literature employs different

definitions for both groups of errors. In some cases, “sampling bias” is used for

problems resulting from poor sampling design, distinguished from sampling error

which is caused merely by randomness. Moreover, nonresponse to a survey is

sometimes considered to be sampling bias since researchers assume it to be a failure

in sampling design. However, nonresponse is sometimes treated as a typical

non-sampling error by other researchers because it happens during the process of

observation (A comparison of sampling errors and non-sampling errors can be found

in Assael and Keon (1982)). In this thesis, I use the Matlab software package to

generate repeated random samplings and compute relevant results (the Monte Carlo

method), so that observations are free of non-sampling errors. Furthermore,

alternative sampling strategies are examined through the same sampling procedure.

In the following discussion, I use “sampling bias” to refer to the difference between

sample estimates and population values.

Sampling strategies fall into two major groups: probabilistic sampling and

16



non-probabilistic sampling. Probabilistic sampling includes simple random sampling,

systematic sampling, and stratified sampling. The basic idea for probabilistic

sampling is the equal and independent chance for any element in the population to be

selected. Non-probabilistic sampling, on the other hand, does not choose elements

randomly. For example, the certainty stratum in FRIS has a probability of one to be

included into the sample, and the quota sampling in Pujol et al. (2006) involves

subjective judgment.

This thesis applies simple random sampling, systematic sampling, and stratified

sampling on wells and farms basin-wide, and also applies simple random sampling to

NRD-wide data.10 The contribution of this thesis is not solely in testing the accuracy

and efficiency of these sampling strategies, but also in providing some insights for

welfare analysis involving sampling methods when market price determination and

market structure depend on the sample. For example, consider the case where the

government intends to sample 5 percent of farms in the Republican River Basin to

measure the cost savings of allowing trading permits. Since different samples include

different wells, each sample constructs a different market structure and consequently

ends up at a different equilibrium permit price. The same farm benefiting from

selling permits can gain thousands of dollars in a sample full of buyers, but very little

in a sample with too many sellers relative to the population. The role of the same

farm may change from buyer to seller, or vice versa, in various samples.

Another critical issue in sampling approach is the unit of analysis, which should

be highly related to the area over which an individual decision-maker has control and

information (Nelson 2002). In this thesis, both the acres irrigated by one well and the

total irrigated area belonging to one farm owner can be counted as the basic sampling

unit. The former is referred to as well-based sampling while the latter is referred to

as farm-based sampling. Farm-based sampling is applied by FRIS and frequently

used in agricultural economics. The comparison between the results from well-based

sampling and farm-based sampling can help us to understand the effects of sampling

10As discussed previously, current regulations are implemented and data are collected at the NRD level.
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units and the appropriateness of conventional farm-based sampling. In farm-based

sampling on the RRB data, once a farm is included into a sample, all the irrigated

acres owned by this farm are counted into this sample. Hence the number of wells in

a sample is fixed in well-based sampling but fluctuates in farm-based sampling. For

both well-based and farm-based samples, the production and abatement decision is

made for every single well. Trade of permits is allowed both on-farm and off-farm.

From a statistical perspective, we should expect very similar outcomes from

samplings on the same dataset with either sampling methodology. However, as shown

in the next section, the differences are fairly large, since the aggregation from

well-based to farm-based changes the distribution of cost savings.11 The changes in

the distribution of cost savings and the size of sampling units lead to different

efficiency and accuracy in the estimates from three sampling strategies of interest:

random, systematic, and stratified samplings. The population benchmarks for all of

these samplings are $16.34 million of estimated annual cost savings from frictionless

basin-wide trading starting from current water allocations, associated with an

optimal permit price of $9.19 per inch per acre.

Simple Random Sampling

In simple random sampling, each well is assigned an equal probability of being

sampled, regardless of subgroups or characteristics. For well-based sampling, the

universal probability is 1/NW
p , where NW

p is the number of wells in the population.

The subscripts “p” and “s” in the following analysis mean population and sample

statistics, separately, whereas the superscripts “W” and “F” represent well-based

sampling and farm-based sampling, respectively.

Define NW
s as the number of wells contained in an r percent sample, where NW

s is

the nearest integer to NW
p × r%. Water permits can be traded between these NW

s

wells. Each well owner maximizes their total profit from both agricultural production

11Figure A-1 and Figure A-2 present the distributions of cost savings and cumulative density functions of acres for
both sampling units.
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and permit trading. In a competitive permit market, the market clearing price

equalizes the marginal abatement costs (MACs) among all the wells and saves costs

for each well (equation (2) and (4)). Sellers are compensated for increasing

abatement by more than their cost of additional abatements. Buyers can reach

abatement targets more cheaply by buying permits than by abating themselves.

Since both sellers and buyers can choose whether or not to enter the permit market,

cost savings are always non-negative. Then I apply a Monte Carlo approach by

repeating this random procedure 1000 times to get robust sampling results. Similarly,

I assign every farm with equal probability 1/NF
p in the farm-based random sampling.

To get an r percent sample, NF
s = NF

p × r% farms are randomly selected. All the

wells belonging to these NF
s farms comprise the water permit market. However, the

number of wells included in one sample can fluctuate in a wide range, depending on

the specific farms included. At the optimal permit price, the water market clears and

all NF
s farms obtain non-negative cost savings.

As the sample size is raised from 1 percent to 5 percent, with 1 percent

increments, the estimates of cost-savings from permit markets tend to be closer to

the population benchmarks with lower standard deviations. The trend in estimates

can be found in the Appendix (Figure A-3). Denote the irrigated acres as AWj for

well j, and AFk for farm k. The associated cost saving is then WW
j for well j and W F

k

for farm k. In order to scale the sample estimates of cost savings back to population

estimates, I multiply the total cost savings of a sample by scaling ratios. Two scaling

ratios are considered in this thesis: one is a simple numeric scaling ratio NW
p /NW

s ,

and the other is the conventional area scaling ratio
∑

j∈pA
W
j /

∑
j∈sA

W
j .12 On

farm-based sampling, the analogous ratios are NF
p /N

F
s and

∑
j∈pA

F
j /

∑
j∈sA

F
j . For

well-based sampling, the numeric scaling ratio is a fixed number, but the area scaling

ratio varies depending on the specific wells included in the sample.

Define w̃i as the estimated total cost savings for the ith draw after adjustment by

12Scaling the total cost savings in a sample by the area is equivalent to scaling the cost saving for each well or farm

in this sample by area:
∑

j∈S{
W W

j

AW
j

×
AW

j∑
j∈s AW

j

} ×
∑

j∈p A
W
j = {

∑
j∈S W

W
j } ×

∑
j∈p AW

j∑
j∈s AW

j

.
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either scaling ratio, and pi as the associated permit price, where i = 1, 2, . . . , 1000.

The average estimate in 1000 draws is Ŵ =
∑1000

i=1 w̃i/1000 for cost savings, and

P̂ =
∑1000

i=1 p̃i/1000 for permit price. Recall that the population cost savings are

$16.34 million at the price $9.19 per inch per acre, so the bias in 1000 draws is

(Ŵ − $16.34 × 106)/$16.34 × 106 in cost savings, and (P̂ − $9.19)/$9.19 in permit

prices.

Simple random sampling is the most basic sampling strategy, but the randomness

does not necessarily provide a representative sample for the population. If the target

population is highly heterogeneous and the sampling results of interest rely on a few

extreme observations, then simple random sampling may lead to large biases by

missing or oversampling these extreme values. Consider an extreme case of a

homogeneous dataset, which contains NW
p identical wells. Any sampling approaches

would produce the same sample estimate with no bias and zero standard deviation,

whereas the estimating biases for the RRB data can be greater than 40 percent as

shown in Section 5. Another concern is the difficulty to accomplish a really random

sample. The chance of selection for each element can be influenced by many practical

problems (Wockell and Asher 1994). For example, a complete list of all the elements

in a large population can be hard to obtain. Even with a complete list to sample on,

the sample designer may not be able to control the response rate.

Systematic Sampling

The significant heterogeneity in the RRB data implies possible efficiency gains in

other sampling strategies over simple random sampling. If data are sorted in terms of

characteristics of interest, systematic sampling may overcome the drawback of

unrepresentativeness in simple random sampling. In systematic sampling, selections

are evenly distributed along the ordered elements, and therefore avoid oversampling

or undersampling certain types of elements. After sorting the population according to

a certain criterion, a k percent systematic sampling selects every (100
k

)th element from
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a random starting point in the population. One advantage of systematic sampling is

that it guarantees certain draws from both the low and high ends of a distribution

proportionately. Departures between systematic sampling and simple random

sampling tell us which type of elements are undersampled by random sampling.

Systematic sampling is usually combined with cluster sampling or stratified sampling

approaches in economic surveys, such as the sampling in noncertainty strata in

FRIS.13

In this thesis, I sorted all wells in terms of their certified irrigated acreage, which

when multiplied by the water allocation assigned by NRDs is the upper boundary of

total available water for each well before trading. Because of the linkage between

certified irrigated acreage and potential cost savings as shown in Figure 2, the

application of a systematic sampling methodology should enhance sampling efficiency.

To get a 5 percent well-based sample, every 20th element is recruited into the

sample from a random start. For example, elements 22, 42, 62, . . . , 10902 are a

unique sample. Dividing NW
p , i.e. 10,908, by 20 leaves a remainder of 8, so there are

28 possible unique systematic samples in total. I randomly started at an integer

between 1 and 28, and then proceeded with every 20th well. In each draw, the

sampled wells could trade their permits at the equilibrium price.

The scaling of sample estimates is the same as that in simple random sampling.

Total cost savings in the ith draw, wi, are multiplied by numeric ratio or area ratio to

get w̃i. The overall bias in cost savings is compared with $16.34 × 106, and the bias

in permit prices is compared with $9.19.

For the farm-based sampling, I sorted all the NF
p farms in terms of their total

certified acres, and then started randomly to select every 20th farm to get a 5 percent

sample. There are 25 possible unique samples out of 4525 farms. Additionally, I

ordered farm owners by owner IDs, which were issued in order of the owner’s first

registration of an irrigation well.14 If the group of early well owners has significantly

13FRIS has certainty strata, where each farm is assigned probability one to be selected into the samples, and noncer-
tainty strata, where each farm is assigned an equal probability less than one.

14As shown in Figure A-4 and Figure A-5 in the Appendix, there exists an inverse U shape in the trend of marginal
abatement costs along the registry order of wells.
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different cost savings in trading permits, because of their demographics or geographic

locations, this systematic sampling by owner ID should spread the sample equally

among all well owners, and therefore reduce the biases from oversampling any

subgroup of well owners. Then, the farm-based sample estimates are scaled as before

and compared with the population benchmarks.

Stratified Sampling

Stratified sampling categorizes the population data into strata based on one or

more criteria, and then samples each stratum independently. Because of the

independence, different sampling strategies can be applied to each stratum. An

efficient stratification requires that most variability lies between strata, minimizing

the variability within one stratum. In ARMS, strata were decided based on multiple

criteria including crop types, agricultural sales size, and land use categories. FRIS

chose irrigated acreage as the criterion for stratification (FRIS (1988)).

In order to satisfy the variability requirement and also be comparable to the

stratification in FRIS, I stratified the RRB data into three strata in terms of the total

certified acreage at a farm level. The boundaries of these three strata are [1 acre, 160

acres], (160 acres, 320 acres] and (320 acres, 14700 acres]. This stratification is

referred to as “ST1” in the following discussion. Because the basic unit of land

division in Nebraska is a quarter section, or 160 acres, the cutting points are set at

160 acres and 160×2 acres.15 Notice that in the preceding systematic sampling I

ordered wells in well-based sampling by certified acreage. But in stratified sampling, I

classify wells according to the farm they belong to in well-based sampling. Thus, if a

farm has 160 certified acres or less, all the wells in this farm belong to the “small”

stratum. In this way, well-based sampling and farm-based sampling have the same

stratification and are comparable. I also stratified the data by acreage per farm into

four strata by [minimum, 25th percentile], (25th percentile, 50th percentile], (50th

15Summary statistics for each stratum are presented in Table A-2 in the Appendix.
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percentile, 75th percentile] and (75th percentile, maximum], referred to as “ST2”.

Finally, I applied a third stratification [min, 30th percentile], (30th percentile, 60th

percentile], (60th percentile, 1000 acres]16, and (1000 acres, maximum], referred to as

“ST3”, to examine the sensitivity of the RRB data to different stratifications.

Using the first stratification, a 5 percent stratified well-based sample contains 5

percent of wells in each stratum, i.e. NWs
p × 5% wells in the small stratum, NWm

p × 5%

wells in the medium stratum, and NWl
p × 5% wells in the large stratum. The total

number of wells in the sample is NW
s = NWs

p × 5% +NWm
p × 5% +NWl

p × 5%. Then

these NW
s wells are used to construct a permit market, and consequently reach an

equilibrium permit price. This sample is repeated 1000 times, and the total cost

savings and the permit price in the ith draw are denoted as wi and pi, respectively.

Stratified farm-based sampling uses the same strata. Five percent of farms are

selected from each stratum, and all the wells owned by these 5 percent of farms are

included in the sample. The scaling of sample estimates and the calculation of biases

is the same as for the preceding sampling strategies.

Random Sampling in NRDs

Basin-wide sampling may miss valuable information about subgroups. In

multi-stage sampling, simple random samplings are usually applied in subgroups to

provide the information or characteristics of specific subgroups of interest. Both

ARMS and FRIS use states as subgroups in the first stage. Some other surveys

further divide the first-level subgroup into smaller subgroups. In this thesis, I use the

four NRDs (Upper Republican, Middle Republican, Lower Republican and Tri-basin)

in the RRB data as subgroups, since currently regulations are implemented at the

NRD level (see Table A-1 in the Appendix). Based on the variability of precipitation

and current water allocations between NRDs, we expect different cost savings on

average in each NRD. Each NRD is sampled independently and scaled back to the

161000 acres are an important stratum boundary in FRIS. In RRB data, the farm with 1000 acres stands for 83th
percentile in the population ranked by farm size.

23



NRD level. For example, to take a 5 percent well-based sample from Upper NRD, I

define wui as the total cost savings of NW
s wells sampled in the ith draw. Notice that

the population space is now the Upper Republican NRD instead of the entire

Republican River Basin. Define w̃ui as the total cost savings for the ith draw after

adjustment by either number scaling ratio or area scaling ratio, and pui as the optimal

permit price, where i=1, 2,. . . , 1000. The average estimates among 1000 draws are Ŵ

and P̂ . Since the benchmarks for the Upper Republican NRD are $5.88 million of

cost savings at the permit price $12.16 per inch per acre, the overall bias in the

estimated cost savings is (Ŵ − $5.88 × 106)/$5.88 × 106, and (P̂ − $12.16)/$12.16 is

the bias in estimated permit price.

Similarly, wmi , wli, and wti represent the cost savings in the ith draw from the

Middle Republican, Lower Republican, and Tri-basin NRDs respectively. Their

sample estimates are comparable to the cost savings of NRD-wide trading. Notice

that in NRD-wide simple random sampling, the population space is reduced to less

than one third of that basin-wide, so larger biases on average are predicted than in

the preceding simple random sampling.
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Results and Discussion

The Monte Carlo procedure described in the preceding section generates 1000

draws for three sampling strategies for the basin-wide data as well as for simple

random sampling for the NRD-wide data. All these samplings are equal probability

samplings. The system or stratification added to simple random sampling may

improve the efficiency, but the biases cannot be totally removed for the 5 percent

samples considered. Four major results are observed from the Monte Carlo analysis.

First, biases in estimated cost savings through implementation of the water market

can be fairly large in any single draw. Second, biases in farm-based sampling are

much larger than those in well-based sampling. Thus, aggregation from wells to farms

actually enlarges the sampling biases. Third, scaling from sample estimates to

population estimates can also introduce large biases when the selection of scaling

ratio does not take into account heterogeneity in the data. Last, but importantly, the

largest biases are found in estimation of the equilibrium market price. In this section,

I will discuss these results and the intuition underlying them in detail.

The means, medians, and standard deviations of biases in 5 percent samples are

presented in Table 4 for well-based sampling and Table 5 for farm-based sampling.

Table 6 and Table 7 are results for NRD-wide simple random sampling on wells and

farms, respectively. The sampling statistics for 1 percent to 4 percent simple random

sampling are presented in the Appendix.17 The biases in the median of 1000

estimates follow the biases in the means in each table. Since using the median does

not necessarily produce a lower bias, and the biases in median are close to those in

17Table A-3 and Table A-4 show the means, median and standard deviations of the biases in numeric scaled and area
scaled cost savings, as well as permit prices. Figure A-3 presents trends in means, medians, 25th percentiles, and 75th
percentiles.
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means, I only analyze the latter bias in the following discussion.

The Biases in One Draw Can Be Large

The estimated cost savings in population trading are known for every single well

or farm, so I first sampled on these fixed cost savings ex post. The average bias in

1000 draws is 0.08 percent for well-based sampling and -0.76 percent for farm-based

sampling, both scaled by the number of wells. If scaled by area, the average bias is

0.1 percent for well-based sampling, and still -0.76 percent for farm-based sampling.

However, the price in each draw is endogenous to the permit market built upon wells

sampled in that draw. The estimation of permit price generates much larger biases.

For example, simple random sampling results in -0.21 percent biases for well-based

sampling as in Table 4, and 2.78 percent for farm-based sampling as in Table 5. Both

exceed the biases in ex post sampling more than two times.

All the draws in each sampling are graphed in Figures 3 through 8. Each dot

represents one draw of a 5 percent sample. The diamond is the average cost saving

per acre at average well size or farm size. The four contours from inside to outside

are the 20th, 40th, 60th, and 80th percentiles of probability density for the

observations respectively, based on a two dimensional kernel density.18 In Figures 3,

5, 6, and 8, the locally weighted scatterplot smoothing (Lowess)19 indicates the trend

among all the draws.

As can be seen in Figures 3 through 8, both positive and negative biases for

estimated cost savings are found, and for any draw, the bias can be greater than 10

percent. Systematic sampling and stratified sampling can reduce the biases in well

sizes or farm sizes, but neither sampling methodology has a good control on

estimated cost savings, which are of particular interest in welfare analysis. Even if a

sample exactly resembles the population in terms of area (well size or farm size), the

18Kernel density, or Parzen window, is used as a nonparametric way to estimate the probability density function of
a random variable. Using a sample, the kernel density estimation can extrapolate the data to the entire population (Li
and Racine 2007).

19All the Lowess smoothers shown in this thesis use a bandwidth of 0.9.
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estimated cost savings can be biased up to 10 percent. A major reason for these

biases is the endogenous permit price which determines the participation in the

market and how much each market participant can save; this will be discussed again

in more detail at the end of this section.

In practice, 1000 draws made by a Monte Carlo process may not be feasible. If

there is only one chance for a survey to collect data, how much bias will exist in this

sample? For example, the stratified well-based sampling provides the lowest biases

among all sampling methodologies, but the estimated cost saving per acre varies from

$11 to $15 (Figure 5). As the kernel density shows, a relatively large proportion of

draws have cost saving estimates with biases of more than 10 percent compared to

the population data.

Larger Biases after Aggregation

Although the same sampling approaches are applied to the same dataset, but with

different sampling units, the biases are significantly enlarged in farm-based sampling.

One percent of farms, namely 45 farms, produces a 32.56 percent bias on average in

1000 draws (Table A-4 in the Appendix). Even when sample size is doubled to

include 90 farms – a larger sample size than several studies (3, 6, 7, and 8 in Table 1)

– the average bias is still as high as 8.26 percent. Therefore more than 90 farms are

needed to estimate the RRB data, if we want to control the bias to less than 8

percent on average.20

From the first section in Table 8 and Table 9, we know that in simple random,

systematic, and stratified samplings on basin-wide data, the sampled area contained

by 5 percent of farms on average is very close to the area contained by 5 percent of

wells. So what leads to the overall larger biases in farm-based sampling? The average

biases include both positive and negative values in well-based sampling (depending

on sampling methodology), but all biases are positive in farm-based sampling (Table

20The sampling results for 1 percent to 5 percent farm-based samplings are in Table A-4 in Appendix, and the
comparison with well-based sampling is in Table A-5
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5). In addition, the mode in the distribution of the 1000 samples moves to higher cost

saving per acre than the population average value (Figures 6 and 8). Recall that the

bias in the ex post sampling of cost savings on farm-based generates 0.76 percent

negative biases on average. The average estimates among 1000 draws should be

robust enough to mitigate biases driven by extremely small or large farms, but what

causes the positive biases in all the farm-based samplings?

After aggregation, the distribution of farm sizes is more heterogeneous than that

of well sizes, but within farms, the well sizes are relatively homogeneous. So most

wells contained in large farms are also large wells, while small farms generally contain

only one or two small wells. The relationship between well sizes and farm sizes can be

found in the Appendix (Figure A-6). If one large farm is included in a sample, this

sample actually recruits a number of large wells. A hypothetical example serves to

illustrate the implications of the relationship between farm size and well size.

Consider a dataset that contains 100 small wells belonging to 100 small farms, 100

medium wells belonging to 50 medium farms (2 wells per farm), and 100 large wells

belonging to a single large farm. So there are 300 wells owned by 151 farms in total.

In a 5 percent well-based sampling, i.e. selecting 15 wells, it is impossible to include

all of the 100 large wells, so the sample contains only 15 out of these 100 large wells

at most. However, in farm-based sampling, the inclusion of all 100 large wells, i.e. the

single large farm, is possible. If selecting a 40 percent sample to compare between

two possible cases, 120 wells are chosen in a well-based sampling. The probability of

obtaining all 100 large wells in one well-based sample is
(200

20 )(100
100)

(300
120)

= 200!120!
300!

1
20!

< 1
20!

.

The numerator is the possible ways of choosing 20 wells out of the 200 small or

medium wells and choosing all the other 100 large wells. The denominator is all the

possible ways of choosing 120 wells out of all the 300 wells. But in farm-based

sampling which selects 60 farms, the probability of sampling all 100 large wells is the

probability of including the only large farm as well as 59 other farms into the sample,

which is
(150

59 )(1
1)

(151
60 )

= 60
151

, much larger than 1
20!

. In this case, the numerator is the

possible ways of choosing 59 farms out of the 150 small or medium farms and also
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choosing the only large farm. The denominator is all the possible ways of choosing 60

farms out of all the 151 farms. Therefore, if the large wells are mainly owned by large

farms, a farm-based sampling has a higher probability of recruiting large wells. Recall

that every 5 percent well-based sampling selects 545 wells out of 10,908 wells in the

population. After aggregating these 10,908 wells into 4525 farms, a 5 percent

farm-based sampling selects 226 farms in each draw. Although the number of farms is

fixed at 226, the number of wells included can vary from 400 to 700 in different

draws. So each farm has equal probability of entering the sample, but the sample

actually contains more large wells due to the clustering of large wells in large farms.

Once it is clear that farm-based sampling includes more large wells than well-based

sampling, Figure 2 can be used to explain why this can bias the estimated cost

savings upwards. The upper panel in Figure 2 shows the MAC per acre for all the

wells. The horizontal line is the market-clearing permit price in population trading,

and the diamond shows the average MAC per acre at the average well size computed

from population data. Hence, all the dots above the horizontal line represent wells

estimated to purchase permits in the population trading analysis, whereas dots below

this line are wells estimated to sell out permits. Buyers can reduce their MAC to the

equilibrium permit price, and this reduction represents the cost savings. Sellers make

a profit by selling permits at the equilibrium price, because they can abate water use

relatively cheaply. There are some owners of small wells selling all their permits and

switching to dryland farming, because irrigation produces almost no increased profit

on their land (dots along the horizontal axis in Figure 2 ). Conversely, large wells are

generally associated with higher MACs per acre because they gain relatively more

than small wells from irrigation, due to their higher land quality and lower fixed costs

per acre of pumping water. The curve through the data is a nonparametric Lowess

smoother, which shows the average value of MAC per acre. Note that total cost

savings after trading per acre are a function of the distance from the dots to the

horizontal line representing the permit price, so the Lowess smoother tells us that the

cost savings per acre generally decrease as well size increases and then increase slowly
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as the well size goes beyond 90 acres, which indicates that small wells and large wells

gain the most on a per acre basis. Comparing the upper panel and lower panel of

Figure 2, we can see that the heterogeneity in MACs is lower for very small and very

large wells. Since the total cost savings of a well is given by cost saving per acre

times area, the small wells still gain little in total, but the cost saving per acre in

large farms is amplified by hundreds, or even thousands of times when total cost

savings are calculated. Hence, oversampling of large wells will result in a positive bias

on average in sample estimates for these data.

The lower graph in Figure 2 shows the average MAC weighted by area for each

farm. The diamond is the average MAC per acre weighted by area at the average

farm size in the population data. For instance, consider a farm with two wells: one of

20 acres with MAC c1, and the other of 30 acres with MAC c2. Then the average

MAC weighted by area is 20
50
c1 + 30

50
c2. As before, the Lowess smoother shows that

average MACs are increasing in farm size. In this case, this pattern is a reflection of

the increased average profitability of large farms in irrigated agriculture relative to

small farms. Several of the largest farms are left out of the lower graph to avoid

compressing most observations close to the vertical axis. All these large farms are net

buyers of water permits.

Biases from Scaling

Although we cannot reduce the bias to zero, if the bias is small enough, such as

2.78 percent in a 5 percent simple random farm-based sampling, the estimates should

be acceptable for policy analysis or other economic research. However, biases larger

than 20 percent appear in two groups of estimates: one is the cost saving estimates

scaled by area in NRD-wide well-based sampling, and the other is the cost saving

estimates in NRD-wide farm-based sampling, scaled by either ratio. What drives

these large biases? I will discuss the first group of biases below and address the

second group in the following subsection.
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Recall the scaling ratios I used to adjust sample estimates back to population

estimates. One is NW
p /NW

s , which infers population estimates by cost saving per well

and the number of wells in the samples. The other is
∑

j∈pA
W
j /

∑
j∈sA

W
j , which

infers population estimates by cost saving per acre and the sampled acreage. Unless

cost saving per well or per acre is homogeneous, neither scaling ratio necessarily

produces more accurate estimates.

Figure 9 (Figure 10) shows the cost saving per well (acre) in four NRDs. The

horizontal lines are equilibrium permit prices in NRD-wide trading, and the

diamonds are the average cost saving per well (acre) at the average well size. Of the

wells, 94 percent irrigate between 1 acre and 200 acres. In Figure 9, the cost saving

per well in this range is very close to the average, so the estimates adjusted by the

number of wells in the first column of Table 6 have biases from -0.8 percent to 1.9

percent, much smaller than the biases (from -4 percent to 27 percent) in the

area-adjusted estimates listed in the second column.

The statistics from the last four columns in Table 8 can provide us some insights

about the causes of these large biases. Although I used the same series of random

numbers for all sampling strategies, the simple random sampling happened to

oversample small wells in the Upper Republican and Tri-basin NRDs, but oversample

large wells in the Middle Republican and Lower Republican NRDs. For example, the

irrigated acreage contained in the 5 percent samples from the Upper Republican

NRD is on average 20.84 percent less than 5 percent of the total irrigated acreage in

the Upper Republican NRD, which is 22620 acres. Then the question is why the

area-adjusted estimates have 27.3 percent positive bias, when the sampled area is

biased by -20.84 percent?

To understand this question, we need to refer to Figure 10, where the estimated

cost saving per acre for each well is plotted against well size. The northwest panel,

for the Upper Republican NRD, shows the source of the negative bias. The Lowess

smoother shows that on average, cost savings per acre are highest for the smallest

wells and decline steeply up to around 120 acres. Therefore oversampling small wells
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results in the large positive bias in area-adjusted estimates. A similar reasoning

applies to the Tri-basin NRD. On the other hand, the samples for the Lower

Republican NRD include too many large wells, which produces a 19.59 percent

positive bias in the sampled acreage. As shown in the southwest panel of Figure 10,

most large wells in the Lower Republican NRD irrigate between 100 acres and 200

acres, where the average cost saving per acre is smaller than the average (shown by a

diamond), so oversampling on large wells leads to a -14.6 percent bias in

area-adjusted estimates. In the Middle Republican NRD, the biases in both sampled

area and area adjusted cost savings are modest.

In sum, the conventional scaling method based on area can lead to large biases

when the target values per unit of area are strongly heterogeneous.

Biases through Endogenous Permit Price Determination

So far I have explained the reason for the first group of large biases. Does this

reasoning also work on the second group? The area contained in farm-based samples

for each NRD is biased from -3 percent to 3 percent as presented in Table 9, which

means that the samples on average represent the population in terms of area. Thus,

large biases should result from reasons other than scaling method. One hint we can

get is the large bias (up to 50 percent) in estimated permit prices, which did not occur

in any of the other 5 percent samplings. So what drives up estimated permit prices?

Tables 10 through 12 list the estimated percentage of buyers and sellers in the

population, and in well-based samples and farm-based samples of NRD-wide markets.

From Table 11, we know that 5 percent random well-based sampling provides a

representative sample for the population data of each NRD. The percentage of buyers

or sellers in the samples matches that in population on average. However, in

farm-based sampling NRD-wide, there are important changes in these ratios.21 The

percentage of sellers is doubled in the Upper Republican, Middle Republican and

21The percentage of buyers or sellers represents “off-farm” trading, net of “on-farm” trading, where a farmer reallocates
water between his/her parcels of land irrigated by different wells.
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Tri-basin NRDs, and increased by 7 percent in the Lower Republican NRD, which

implies the market structures in the samples are considerably different from the

population market.

Figure 11 shows the average MACs weighted by area for farms less than 4000 acres

plotted against farm size for four NRDs (the equivalent figure including all farms is

Figure A-7 in the Appendix). The horizontal line in each graph is the permit price

calculated from population NRD data, so farms lying above (below) these lines are

net buyers (sellers) in the NRD-wide markets, and their cost savings are a function of

the distance between their MACs and the permit price. In the northwest graph for

the Upper Republican NRD, most farms larger than 500 acres are buyers, while the

large sellers are sparse. In a 5 percent sample, only a few or even none of these large

sellers are included in the sample to satisfy the demand from buyers. If a sample

happens to miss all of these large sellers, those buyers lying relatively far away from

the horizontal line will pull up the permit price and some previous buyers whose

MACs are now lower than the new price will switch to sell their permits. This is why

there are 41 percent sellers in farm-based samples trading at a price 20.6 percent

higher, compared with 18 percent sellers in the population of the Upper Republican

NRD. Similar changes also occur in the Middle Republican and Tri-basin NRDs. In

the Lower Republican NRD, the asymmetry between buyers and seller is not as large

as in the other three NRDs, but large buyers still outnumber large sellers. On

average, 10 buyers in each sample switch to sellers due to a 12.2 percent increase in

estimated permit price.

The average MAC of a farm implies the role of a farm in the market. Although

permits are traded among wells, a farm with heterogeneous irrigated parcels trades

within itself as well as trading with other farms. For instance, if the average MAC is

lower than the permit price, the net effect is that a farm would sell its permits

off-farm. Since many farms have average MACs close to the permit price, they are

very sensitive to small changes in permit price. A slight bias in sampling can thus

lead to some farms switching from being net buyers to net sellers (or vice versa) and
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further pushes up (pulls down) the price. The permit prices are endogenous to the

market, through which they have a leveraging effect on sampling biases.

Sensitivity to Systems and Strata

Systematic sampling does not necessarily produce better estimates than simple

random sampling. In Table 4, the average bias in systematic sampling is larger than

that in simple random sampling and stratified sampling. But, in Table 5, the

systematic sampling employs a conventional area scaling system, farm sizes, and

reduces the bias to the lowest level of all three estimates. I also sorted farms by their

owner ID numbers, i.e. the registry orders of their first wells. This sampling system

generates 0.48 percent bias in average cost savings scaled by well number, 0.21

percent bias in cost savings scaled by area, and 5.52 percent bias in permit price. The

magnitude of all of these biases is smaller than the magnitude of biases while

ordering data by area. Therefore, farm vintage is also a factor to be considered in

sampling strategies, although the conventional area scaling system can control the

biases to some extent.

In farm-based stratified sampling, three stratifications are applied on the RRB

data. The sampling outcomes in Table 5 employ “ST1”:[1 acre, 160 acres], (160 acres,

320 acres], (320 acres, 14700 acres]. The average bias in cost savings is 7.13 percent if

scaled by the number of wells, and 3.98 percent if scaled by area. In terms of

magnitude, biases are less than -10.81 percent and -6.56 percent in the stratification

into four quartiles (“ST2”), and -9.39 percent and -6.31 percent in “ST3”: [1 acre,

30th percentile ], (30th percentile, 60th percentile], (60th percentile, 1000 acres], and

(1000 acres, 14700 acres]. The average bias in permit prices is -2.95 percent in “ST2”

and -0.54 percent in “ST3”, both of which are smaller in magnitude than that in

“ST1”. Thus, more strata do not necessarily imply better estimates. Although “ST1”

has only three strata, it shows the lowest biases in estimated cost savings. Note that

FRIS applies a stratification similar to “ST3” in this thesis, and scales estimates by

34



area. Estimates using this methodology on average have 6.31 percent biases in the

RRB data, which is equivalent to $1.03 million in annual estimated cost savings. So,

stratified sampling can potentially improve sampling accuracy and efficiency as it

does in well-based sampling, but its performance also depends on the specific

stratification as well as variation in the data.
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Conclusion

Because of increasing conflicts over water use, agricultural water use is expected to

see more restrictions in the near future. To understand the welfare impacts of

alternative policies with sparse available data, sampling is commonly used to provide

information for government decisions and economic studies. Therefore, it is critical to

know whether the sample reproduces related characteristics of the population for

welfare analysis. This thesis evaluates a potential environmental market using

alternative sampling approaches to compare the effectiveness of each approach.

Population data on 10,908 wells in the Republican River Basin of Nebraska (RRB)

are used to estimate marginal abatement cost curves and hence how much money can

be saved for each well through trading water permits instead of the current water

allocation scheme. Simple random sampling, systematic sampling, and stratified

sampling are examined using both well-level data and farm-level data. With Monte

Carlo methods, I use 1000 draws of each sampling strategy for robust results.

First, sampling outcomes show that the biases in welfare analysis can be fairly

large in a single draw. Second, aggregation from wells to farms increases the biases

on average. Furthermore, scaling methods can significantly enlarge the sampling

biases in the NRD-wide random sampling. Last, biases in estimated permit price can

lead to large changes in estimated water market structures. This set of results

provides general implications for the evaluation of environmental markets.

The target of any sampling strategy is to understand the population through only

a part of the potentially available information. Thus if the results are biased, their

application either locally or more generally may be invalid. Usually, the sample size
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does not exceed 5 percent in agricultural water use samples of the kind considered in

this thesis. When researchers have a single 5 percent sample, rather than 1000 draws

as in this thesis, how much bias can be expected ex ante? The answer depends on the

sampling strategies, sample sizes, and scaling methods used. In this thesis, a single

draw has the potential to contain large biases (up to 20 percent) in all estimates of

interest. In practice, this implies a high probability for a survey to collect biased

information and lead to incorrect analyses. Moreover, neither the conventional

sampling unit (farms) or the conventional scaling method (scaling by acres irrigated

by a well) applied on the population dataset in this thesis provides more accurate

estimates, compared with alternatives. Instead, disaggregating the data from the

farm level to the well level can improve the accuracy and the efficiency of estimates.

Conventional scaling by area is only appropriate when the target values per acre are

homogeneous. In the data considered in this thesis, the cost savings per acre change

significantly at different well sizes or farm sizes. Scaling the sample estimates by the

number of wells instead of the acres irrigated by a well can avoid biases of up to 27

percent in the NRD-wide sampling. The most important concern raised by this thesis

is the extent to which a single sample can reproduce a market structure mirroring the

market structure estimated for the population. Unfortunately, the bias in estimated

permit price can result in substantial changes in estimated market structures.

In order to understand the data and correct biases in sampling, it is critical to

figure out the underlying features that affect the estimated values to be analyzed. In

the RRB data, the cost savings and permit prices of interest are a function of the

area irrigated by a well or a farm, so the heterogeneity in cost savings per acre has a

large impact on the selection of sampling strategies and scaling methods. If no

information about the target basin is available, which means that there is no

information on relevant heterogeneity of the underlying population, my research

suggests that randomly sampling on wells (if possible) rather than farms will provide

more accurate and more efficient estimates. This is important because several

existing surveys of agricultural water use, such as the Farm and Ranch Irrigation
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Survey, are based on a stratification at farm-level (for example, all papers except 3

and 4 in Table 1). If several sampling units are available, choosing the relatively

homogeneous one would decrease the burden on sample size and ex post diagnostics.

When available data are restricted, ex post analysis may be used to diagnose bias

to some extent. For instance, graphing estimated values along the most influential

underlying characteristics in the data may highlight trends in the population data.

Plotting estimated values and influential characteristics may show how sensitive the

welfare estimates and market structures are to the sample chosen. For example, if

most observations are clustered far away from the estimated permit price, the

researcher does not need to worry about a switch in market behavior due to the bias

in estimated permit price.

This thesis analyzes alternative sampling approaches for an irrigation water

market. However, its consideration of the heterogeneity in data and leveraging effects

of market prices on estimated market structure and welfare impacts can be further

applied to other welfare analysis. I only focused on the amount of water use in

irrigation, with one production technology in the same watershed, but producer

heterogeneity was still found to be large. Other potential cap-and-trade markets,

such as a carbon cap-and-trade market or a water quality market, are expected to

show an even higher degree of heterogeneity in the underlying population, and thus

even larger potential biases in welfare estimates from sampling. Moreover, an analysis

of transaction costs may also further enlarge the biases in estimation. Another

potential future approach is to apply Bayesian methods to offer detailed ex post

diagnostic schemes for studies with small samples.
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Table 2: Summary Statistics of Certified Acreage in Each NRD, Well-based

Number of Wells Mean Acreage Per Well Total Acreage % of Total Acreage

Upper NRD 3183 142 452395 36.21%
Middle NRD 2876 107 307505 24.61%
Lower NRD 3320 94 313514 25.09%

Tri-basin NRD 1529 115 175907 14.08%

Total 10908 115 1249322 100.00%

Table 3: Summary Statistics of Certified Acreage in Each NRD, Farm-based

Number Mean Acreage Mean Acreage Total Total % of Total
of Farms Per Farm Per Farm Acreage Acreage

in FRIS in FRIS
Upper NRD 1194 385 775 459703 379505 36.80%
Middle NRD 1234 243 411 299551 396775 23.98%
Lower NRD 1358 226 392 306490 339952 24.53%

Tri-basin NRD 739 248 649 183579 549817 14.69%

Total 4525 276 525 1249322 1666049 100.00%

It is possible for one farm to own wells in more than one NRD. When aggregating wells into farms by owner IDs, farm
owners are categorized by the first NRD in which they registered their wells. Therefore, the area in each NRD changes
within 1 percent.
The mean acreage in FRIS is an area weighted mean.
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Table 4: Five Percent Well-based Sampling on Basin-wide Trading

Cost Saving (107) Cost Saving (107) Permit
Scaled by the Number of Wells Scaled by Area Price

Population Value 1.63 1.63 9.19

Random Mean -0.21% -0.19% 0.03%
Median -0.07% -0.03% -0.06%

std. 5.37% 5.06% 3.49%

Systematic Mean -0.36% -0.24% -0.41%
Median 0.42% 0.58% -0.06%

std. 5.08% 5.09% 3.16%

Stratified Mean 0.03% 0.03% 0.15%
Median 0.19% 0.26% 0.02%

std. 5.09% 5.04% 3.39%

The first row shows the population values in basin-wide trading. The following rows present the percentage of biases
or standard deviations in 1000 draws.

Table 5: Five Percent Farm-based Sampling on Basin-wide Trading

Cost Saving (107) Cost Saving (107) Permit
Scaled by the Number of Wells Scaled by Area Price

Population Value 1.63 1.63 9.19

Random Mean 2.78% 3.00% 12.19%
Median 1.88% 2.62% 12.61%

std. 8.59% 7.41% 4.03%

Systematic Mean 1.30% 0.66% 9.62%
Median 0.29% 0.26% 9.74%

std. 9.06% 7.03% 4.52%

Stratified Mean 7.13% 3.98% 13.09%
Median 3.66% 4.03% 13.12%

std. 8.54% 7.53% 4.23%
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Table 6: Five Percent Well-based Sampling on NRD-wide Trading

Cost Saving (106) Cost Saving (106) Permit
Scaled by the Number of Wells Scaled by Area Price

Upper NRD Population 5.88 5.88 12.16
Mean 0.74% 27.35% -0.20%

Median 0.32% 27.07% -0.25%
std. 9.60% 10.32% 3.88%

Middle NRD Population 4.52 4.52 7.17
Mean 0.80% -4.20% 0.09%

Median 0.29% -4.60% 0.00%
std. 11.26% 12.08% 9.54%

Lower NRD Population 2.77 2.77 7.66
Mean 1.91% -14.63% -1.01%

Median 1.93% -14.73% -0.59%
std. 102.16% 11.12% 7.53%

Tri-basin NRD Population 1.00 1.00 9.18
Mean -0.84% 14.34% -0.37%

Median -1.05% 14.43% 0.53%
std. 19.38% 20.05% 8.24%

Population values are derived from NRD-wide trading. The three rows following each population value are percentage
of biases or standard deviations in 1000 draws.

Table 7: Five Percent Farm-based Sampling on NRD-wide Trading

Cost Saving (106) Cost Saving (106) Permit
Scaled by the Number of Wells Scaled by Area Price

Upper NRD Population 5.88 5.88 12.16
Mean 43.56% 44.20% 20.63%

Median 32.40% 32.49% 19.66%
std. 29.91% 30.74% 7.96%

Middle NRD Population 4.52 4.52 7.17
Mean 34.08% 34.25% 49.50%

Median 32.36% 30.10% 49.64%
std. 21.01% 19.66% 11.37%

Lower NRD Population 2.77 2.77 7.66
Mean 6.69% 6.97% 12.15%

Median 5.88% 6.48% 12.84%
std. 13.13% 12.88% 8.02%

Tri-basin NRD Population 1.00 1.00 9.18
Mean 8.13% 8.33% 11.94%

Median 6.13% 5.63% 14.15%
std. 24.08% 24.62% 8.70%
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Table 8: Bias in Sampled Area, Lift, and Yield for Well-based Sampling

Random Systematic Stratified Upper Middle Lower Tri-basin

Area in Population 62397 62397 62397 22620 15375 15676 8795
sample Mean -0.69% -0.08% 0.38% -20.84% 5.57% 19.59% -13.51%

Std. 10.99% 0.34% 1.47% 4.07% 4.18% 3.83% 6.23%

Lift Population 147 147 147 135 162 131 180
Mean 0.19% -0.09% 0.08% -0.08% -0.07% -0.14% 0.04%
Std. 4.68% 1.49% 2.45% 4.09% 5.56% 4.57% 3.36%

Yield Population 1045 1045 1045 1510 869 758 1028
Mean -0.12% 0.17% 0.06% -0.06% 0.22% -0.04% -0.10%
Std. 4.58% 1.75% 2.40% 3.66% 4.65% 3.67% 3.58%

In each section, the first row is the population value, the second row is the bias in the mean of estimates, and the
third row is the standard deviations in the estimates.
Lift is well pumping water level (feet), and yield is well yield (gallons per minute).

Table 9: Bias in Sampled Area, Lift, and Yield for Farm-based Sampling

Random Systematic Stratified Upper Middle Lower Tri-basin

Area in Population 62397 62397 62397 22960 14961 15308 9169
sample Mean -0.51% -1.48% 0.07% -1.48% 3.07% 2.62% -2.83%

Std. 10.97% 11.22% 9.29% 22.94% 217.69% 12.01% 14.57%

Lift Population 147 147 147 135 162 131 180
Mean 0.19% 0.48% 0.31% 0.82% 0.13% 0.31% 0.02%
Std. 4.68% 4.63% 4.59% 8.27% 9.75% 8.40% 5.32%

Yield Population 1045 1045 1045 1510 869 758 1028
Mean -0.12% 0.10% -0.19% 0.05% 0.17% -0.11% 0.10%
Std. 4.58% 5.75% 4.72% 5.67% 7.67% 6.12% 4.68%
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Table 10: Buyers and Sellers in Population

Sellers % Buyers % Outsiders % Sell All(%) Permit Total Trading
Price Acre-inches

Basin 2452 23% 7337 67% 1119 10% 21% 9.19 2054166

Upper 571 18% 2555 80% 57 2% 17% 12.16 896824
Middle 643 22% 1742 61% 491 17% 19% 7.17 495033
Lower 705 21% 2070 62% 545 17% 20% 7.66 453315

Tri-basin 190 12% 1313 86% 26 2% 12% 9.19 173223

The first row shows the numbers and percentage of sellers, buyers, outsiders, and people selling out all permits, as well
as permit prices and total traded amount in basin-wide trading. The following four rows shows analogous values in
NRD-wide trading. “Outsiders” are nonparticipants to the permit market, since their marginal abatement cost is the
same as permit price.

Table 11: Buyers and Sellers in Well-based Sampling

Sellers % Buyers % Outsiders % Sell All(%) Permit Total Trading
Price Acre-inches

Upper 29 18% 127 80% 3 2% 16% 12.14 45281
Middle 32 22% 87 60% 25 17% 19% 7.18 25166
Lower 35 21% 104 62% 27 16% 20% 7.59 23133

Tri-basin 10 13% 65 85% 1 2% 12% 9.15 8759

Table 12: Buyers and Sellers in Farm-based Sampling
Sellers % Buyers % Outsiders % Sell All(%) Permit Total Acre-inches

Price Trade

Upper 62 41% 94 57% 3 2% 40% 14.67 82198
Middle 60 43% 59 40% 24 17% 38% 10.73 38545
Lower 45 28% 94 56% 28 17% 26% 8.60 26000

Tri-basin 17 22% 59 76% 1 2% 20% 10.28 11661

“Outsiders” are farms with no off-farm trading of water permits, since their average marginal abatement cost is the
same as permit price. These outsiders may have on-farm trading, all of which are counted into the permit market in
analysis.

45



F
ig

ur
e

1:
W

el
ls

in
th

e
R

ep
ub

lic
an

R
iv

er
B

as
in

(N
E

)
w

it
h

C
er

ti
fie

d
A

cr
ea

ge

T
h

is
fi

g
u

re
is

re
p

ro
d

u
ce

d
fr

o
m

P
a
la

zz
o

(2
0
0
9
).

E
a
ch

d
o
t

re
p

re
se

n
ts

a
w

el
l

w
it

h
ce

rt
ifi

ed
ir

ri
g
a
ti

o
n

a
cr

ea
g
e.

It
sh

o
w

s
th

e
m

a
rg

in
a
l

a
b

a
te

m
en

t
co

st
s

in
d

o
ll

a
rs

p
er

in
ch

p
er

a
cr

e
o
f

re
d

u
ci

n
g

w
a
te

r
u

se
a
t

cu
rr

en
t

w
a
te

r
a
ll
o
ca

ti
o
n

s,
u

si
n

g
W

a
te

rO
p
ti
m

iz
er

(M
a
rt

in
et

a
l.

2
0
0
5
).

T
h

e
cu

rr
en

t
a
ll
o
ca

ti
o
n

s
a
re

a
s

fo
ll
o
w

s:
1
3

in
ch

es
p

er
a
cr

e
in

U
p

p
er

R
ep

u
b

li
ca

n
N

R
D

;
1
2

in
ch

es
p

er
a
cr

e
in

M
id

d
le

R
ep

u
b

li
ca

n
N

R
D

;
9

in
ch

es
p

er
a
cr

e
in

L
o
w

er
R

ep
u

b
li
ca

n
N

R
D

;
9
-1

1
in

ch
es

p
er

a
cr

e
in

T
ri

-B
a
si

n
N

R
D

.

46



Figure 2: Marginal Abatement Costs as A Function of Well Size and Farm Size

In the upper panel, the marginal abatement cost per acre for each well are plotted against well sizes. The curve is
Lowess smoother, while the horizontal line is the equilibrium permit price of population(basin-wide) trading. The
diamond in the mean of marginal abatement costs at the average well size.

In the lower panel, the average marginal abatement cost per acre weighted by area for each farm are plotted against
farm sizes. The Lowess smoother, horizontal line and the diamond are defined in the same way as in upper panel.
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Figure 3: Random Samples for Well-based Sampling

Each dot in this figure represents one draw of a 5 percent random sampling on well-base. The curve parallel to the
x-axis is locally weighted scatterplot smoothing (Lowess) with bandwidth 0.9. The contours represent 20th, 40th, 60th,
and 80th percentiles of a two dimensional kernel density. For example, the 20th percentile contour contains 200 draws
out of 1000, and the range between 20th and 40th percentile also contains 200 draws, and so forth. The diamond shows
the population mean of cost saving per acre and population mean of the well size.

Figure 4: Systematic Samples for Well-based Sampling

In 5 percent well-base systematic samplings, there are only 28 possible samples, since there are 10908 wells in total and
the starting point lies between 1 and 28.
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Figure 5: Stratified Samples for Well-based Sampling

Refer to the footnote in Figure 3

Figure 6: Random Samples for Farm-based Sampling

Each dot in this figure represents one draw of a 5 percent random sampling on farm-base. The definitions of Lowess
smoother, contours and diamond refer to the footnote in Figure 3
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Figure 7: Systematic Samples for Farm-based Sampling

In 5 percent farm-base systematic samplings, there are only 25 possible samples, since there are 4525 wells in total and
the starting point lies between 1 and 25.

Figure 8: Stratified Samples for Farm-based Sampling

Refer to the footnote in Figure 6

50



Figure 9: Cost Saving Per Well in Four NRDs Using Well-based Sampling

In each panel, the dots are population data for cost saving per well against well sizes in NRD-wide trading.
The horizontal line is the equilibrium permit price in NRD-wide trading. The diamond represents the population means
of cost savings per well and well sizes
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Figure 10: Cost Saving Per Acre in Four NRDs Using Well-based Sampling

In each panel, the dots are population data for cost saving per acre of a well against its well size.
The horizontal line is the equilibrium permit price in NRD-wide trading. The diamond represents the population means
of cost savings per acre and well sizes
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Figure 11: Cost Saving Per Acre in Four NRDs Using Farm-based Sampling

In each panel, the dots are population data for average marginal abatement costs weighted by area of a farm against
its farm size.
This figure only shows the farms smaller than 4000 acres. Figure A-6 shows all the farms.
The horizontal lines are equilibrium permit prices in NRD-wide trading. The diamond represents the population means
of average marginal abatement costs weighted by area and farm sizes
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Appendix A: Supplemental Tables
and Figures

Table A-1: Certification and Trading in NRDs

NRD Certification of Metering Current Transfer Requirements
Irrigated Acreage of Well Allocation

Upper Republican 1977 1982 13 Within township
Middle Republican 2003 2004 12 Within “sub-area”
Lower Republican 2004 2004 9 No transfers allowed

Tri-Basin 2004 2003 9-11 Permit application for >1 mile

Reproduced from Palazzo (2009).
The first and second columns are the starting time for certification and well metering.
The third column is current allocation measured by inches per acre. In Tri-basin NRD, the allocation is 9 in Kearney
County, 10 in Phelps County, and 11 in Gosper County.(Nebraska Department of Natural Resources and Tri-basin
Natural Resource District 2007)
The last column shows the transfer types in January 2008- November 2008. MRNRD Integrated Management Plan:
Within “Quick response” sub-area, within “Upland” sub-area, or from “Quick response” sub-area to “Upland
sub-area” (Nebraska Department of Natural Resources and Middle Republican Natural Resource District 2008).
URNRD Integrated Management Plan: “Floating township” described as a set of 36 quarter sections lying in a
contiguous block; 6 blocks east to west and 6 blocks north to south (Nebraska Department of Natural Resources and
Upper Republican Natural Resource District 2008).

Table A-2: Summary Statistics of Strata

Number Mean Acreage Number Mean Acreage Total % of Total
of Well Per Well of Farm Per Farm Acreage Acreage

Small [1, 160] 2742 90 2321 107 247533 19.81%
Medium (160,320] 2459 112 1148 239 274293 21.96%

Large (320, 14700] 5707 127 1056 689 727497 58.23%

Total 10908 115 4525 276 1249322 100.00%
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Table A-3: Well-based Random Sampling on Basin-wide Trading

Cost Saving (107) Cost Saving (107) Permit
Scaled by the Number of Wells Scaled by Area Price

Population Value 1.63 1.63 9.19

1% Sample Mean -1.21% -1.25% 0.26%
Median -1.88% -2.15% 0.25%

std. 12.27% 11.49% 7.24%

2% Sample Mean -0.72% -0.67% 0.19%
Median -1.22% -0.64% 0.01%

std. 8.42% 7.91% 5.26%

3% Sample Mean -0.56% -0.44% 0.10%
Median -0.67% -0.80% 0.21%

std. 7.19% 6.76% 4.46%

4% Sample Mean -0.29% -0.24% 0.06%
Median -0.42% -0.32% 0.04%

std. 5.99% 5.66% 3.84%

5% Sample Mean -0.21% -0.19% 0.03%
Median -0.07% -0.03% -0.06%

std. 5.37% 5.06% 3.49%

The first row shows the population values in basin-wide trading. The following rows present the percentage of biases
or standard deviations in 1000 draws.
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Table A-4: Farm-based Random Sampling on Basin-wide Trading

Cost Saving (107) Cost Saving (107) Permit
Scaled by the Number of Wells Scaled by Area Price

Population Value 1.63 1.63 9.19

1% Sample Mean 32.62% 35.22% 32.33%
Median 28.20% 29.22% 31.32%

std. 25.33% 26.29% 10.12%

2% Sample Mean 8.26% 9.01% 18.74%
Median 7.33% 8.09% 18.56%

std. 13.39% 12.43% 6.38%

3% Sample Mean 3.54% 3.91% 13.76%
Median 2.82% 3.59% 13.90%

std. 10.99% 9.80% 5.50%

4% Sample Mean 3.57% 3.86% 13.53%
Median 3.08% 3.42% 13.92%

std. 9.43% 8.37% 4.56%

5% Sample Mean 2.78% 3.00% 12.19%
Median 1.88% 2.62% 12.61%

std. 8.59% 7.41% 4.03%

Table A-5: How Much the Farm-based Sampling Enlarges the Biases

Random Systematic Stratified

Bias in Cost Savings

Well-base -0.21% -0.36% 0.03%
Farm-base 2.78% 1.30% 7.13%

Farm-base Bias/Well-base Bias -13 -4 238

Bias in Permit Prices

Well-base 0.03% -0.41% 0.15%
Farm-base 12.19% 9.62% 13.09%

Farm-base Bias/Well-base Bias 448 -23 87
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Figure A-1: Distribution of Estimated Cost Savings, Well-based and Farm-based

The upper panel shows the distribution of estimated cost savings on well-base, using the population data. The x-axis
is logarithm of cost savings for each well, while the y-axis shows the frequency of wells at each value. The dotted line
is population mean of cost saving per well.

The lower panel shows the distribution of estimated cost savings on farm-base, using the population data. The x-axis is
logarithm of cost savings for each farm, while the y-axis shows the frequency of farms at each value. To make the well-
base cost savings comparable to those on farm-base in terms of frequency, I lengthened the y-axis in the lower panel by
(number of wells)/(number of farms). Horizontally, the farm-base cost savings is divided by (number of wells)/(number
of farms) before logarithmized, since one farm owns (number of wells)/(number of farms) wells on average. The dotted
line is population mean of cost saving per farm.
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Figure A-2: Cumulative Distribution of Certified Acreage

The upper panel shows the cumulative distribution of the certified acreage on well-based data. The lower panel shows
the cumulative distribution of the certified acreage on farm-based data. The curves in both panels depart from the
diagonal lines, which implies the existence of some extremely large values. In the lower panel, the sharp increase at the
right end means that the 10 percent largest farms account for almost 40 percent of the total certified acreage.
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Figure A-3: The Trend in Estimates as the Sample Size Rises

As the sample sizes in simple random sampling increase from 1 percent to 5 percent in Table A-3 and Table A-4 in the
Appendix, we can see a significant reduction in the means and standard deviations of biases.
In the upper panel, the biases in well-base samplings are below the population value, but very close to it.
In the lower panel, the biases in farm-base samplings start about 1/3 higher than the population value, and then move
closely to the population value after 3 percent. The distances between 25th quantile and 75th quantile are larger than
those in the upper panel.
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Figure A-4: Marginal Abatement Costs Ranked for Well-based Sampling

In the upper panel, the marginal abatement costs for all wells in population are randomly ranked. There does not
exist an obvious trend.

In the lower panel, the marginal abatement costs for all wells in population are ranked by owner IDs, which are issued
depending on the order of well registration.The best fields are registered earlier, so the trend of marginal abatement costs
goes up at the beginning. At around the middle point, average marginal abatement cost starts to drop down, because
most of registered wells since then are used to irrigate low quality land, where the marginal benefit from irrigation is
very small.
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Figure A-5: Marginal Abatement Costs Ranked for Farm-based Sampling

Sampling on farm-base.
Refer to footnotes in Figure A-4.
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Figure A-6: Well Sizes Against Farm Sizes

This figure shows the logarithm of the well sizes against the logarithm of the farm sizes. The diagonal line represent
those farms which have only one well. The pattern in this figure implies most wells in large farms are also large wells.
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Figure A-7: Cost Saving Per Well in Four NRDs for Farm-based Sampling

In each panel, the dots are population data for average marginal abatement costs weighted by area of a farm against
its farm size.
The horizontal lines are equilibrium permit prices in NRD-wide trading.
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Appendix B: Computer Code

Well-base Random Sampling

In each draw, generate the sample by random number first.Then, use this code to

generate the optimal permit prices, irrigation water allocation, and calculate the cost

saving in abatement. Record these information for each single draw and save these

data for further analysis. This is an example for 5 percent well-base random

sampling. I also replaced the ratio in the 11th line in this code with 0.01 to 0.04 to

get 1 percent to 4 percent samples.

1 % First set for Mac/R2008a

2 %options = optimset('LargeScale','off','GradObj','on','TolFun',1e−8,'Display','off',...

3 %'Algorithm','active−set');

4 options = optimset('LargeScale','off','GradObj','on','TolFun',1e−8,'Display','off');

5

6 %read in data

7 load MAC 3 24 09

8

9 % columns in wells

10 % 1 well id

11 % 2 cert acres

12 % 3 volume acre feet

13 % 4 irr type

14 % 5 nrd

15 % 6 latdd

16 % 7 longdd

17 % 8 section

18 % 9 township

19 % 10 rangenum
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20 % 11 soil type

21 % 12 regnum

22 % 13 replacemen

23 % 14 status

24 % 15 useid

25 % 16 nrdname

26 % 17 nrddwrnum

27 % 18 countyname

28 % 19 countynum

29 % 20 acres

30 % 21 gpm

31 % 22 ownernumbe

32 % 23 compname

33 % 24 city

34 % 25 st

35 % 26 zip

36 % 27 distance to nearest stream

37 % 28 distance to nearest well

38 % 29 well id nearest well

39 % 30 cmpldyear

40 % 31 et alfalfa

41 % 32 et corn

42 % 33 et beans

43 % 34 et sorghum

44 % 35 et soybeans

45 % 36 et beets

46 % 37 et wheat

47 % 38 yd ym alfalfa

48 % 39 yd ym corn

49 % 40 yd ym beans

50 % 41 yd ym sorghum

51 % 42 yd ym soybeans

52 % 43 yd ym beets

53 % 44 yd ym wheat

54 % 45 yd default corn

55 % 46 yd default sorghum

56 % 47 yd default soybeans

57 % 48 yd default wheat

58 % 49 ym default corn

59 % 50 ym default sorghum

60 % 51 ym default soybeans

61 % 52 ym default wheat
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62 % 53 pumping water level

63 % 54 current NRD allocation

64 % 55 total acreage of the farm this well belongs to

65 % 56 how many wells owned by the farm this well belongs to

66 % 57 1:10908

67 % 58 is this well the first well of the farm it belongs to?

68

69

70 tic

71 % To get 5 percent samples

72 ratio=0.05;

73

74 % Take 1000 draws.

75 draws=1000;

76 num sample=round(num wells*ratio);

77

78 %set seed at 1

79 rand('seed',1);

80

81 for i=1:draws

82 clear sample

83

84 r=[round(num wells.*rand(num wells,1)) linspace(1,num wells,num wells)'];

85 ordered sample=sortrows(r);

86

87 % The sample for the ith draw

88 sample=sort(ordered sample(1:num sample,2));

89

90 five value=value(sample,:);

91 five inches=inches(sample,:);

92 five acres irrg=acres(sample,:);

93 five acres=acres(sample,:) + dryland(sample,:);

94 five well id=well id(sample,:);

95 five dist stream=dist stream(sample,:);

96 five dist wells=dist well(sample,:);

97 five yield=yield(sample,:);

98 five lift=lift(sample,:);

99 five soil=soil(sample,:);

100 five cert acres= cert acres(sample);

101 five wells= wells{1}(sample);

102 five pump yield=pump yield(sample);

103 five soil types=soil types(sample);
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104

105 % To trace out the MAC curve

106

107 for j=1:size(five wells,1)

108

109 p2.five(j,:)=p2.basin(sample(j),:);

110 q2.five(j,:)=q2.basin(sample(j),:);

111

112 % Abatement (acre−inches) under current allocation (before trading)

113 initial abate.five(j)= max(five inches(j,39)−current allocation(sample(j)),0)*five acres(j,39);

114

115 % Abatement (inches per acre) under current allocation (before trading)

116 initial abate inches.five(j)= max(five inches(j,39)−current allocation(sample(j)),0);

117

118 temp wells.five = size(five wells,1);

119

120 current use.five(j)=min(current allocation(sample(j)),five inches(j,39));

121

122 % The amount can be sold.

123 free ride.five(j)=current allocation(sample(j))−current use.five(j);

124 free ride.five(find(five inches(j,39)==0))=0;

125 five acres i(j)=five acres(j,39);

126

127 end

128

129 % Deal with the corner solution

130

131 for j=1:size(five wells,1)

132

133 if p2.five(j,40)>0

134

135 loc.start=find(p2.five(j,:)>0.0001,1,'first')−1;

136 %last zero value

137

138 loc.end=(find(p2.five(j,:)>0.0001 & gradient(p2.five(j,:))<0.1,1,'first')−1);

139 %first zero gradient

140

141 q0=q2.five(j,loc.start);%find baseline for normalization

142

143 q temp=q2.five(j,loc.start:loc.end);%pull out relevant points

144

145 q temp=[q temp−ones(size(q temp)).*q0 five inches(j,39) five inches(j,39)+.00001];
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146 %normalize to origin

147 q temp=q temp+ones(size(q temp)).*free ride.five(j);

148

149 %adjust for slack constraints and initial water use

150

151 p temp=[p2.five(j,loc.start:loc.end) p2.five(j,loc.end) 100];

152

153 q junk.five(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

154

155 p i.five(j,:)=[pchip(q temp,p temp,q junk.five(j,:)) p2.five(j,loc.end) 100];

156

157 q i.five(j,:)=[q junk.five(j,:) max(five inches(j,39),current allocation(sample(j))) max(five inches

158 (j,39),current allocation(sample(j)))+0.0001];

159

160 p i.five(j,:) = p i.five(j,:) + linspace(0,1e−6,size(p i.five(j,:),2));

161

162 elseif p2.five(j,40)≤0

163

164 p i.five(j,:)= zeros(1,50);

165 p i.five(j,1)= 1e10;

166

167 % need to give q i a number to avoid breaking of the loop.

168 q i.five(j,:)= zeros(1,50);

169

170 end

171

172 end

173

174

175 %find the mac (tax) where inches abated equals abatement under NRD allocations

176 tax.five(i) = fzero(@(u) sum(pigou(u,temp wells.five,p i.five,q i.five,five acres i))

177 −sum(initial abate.five),10);

178

179 %vector of macs

180 mac.tax.five = tax.five(i)*ones(size(five wells,1),1);

181

182

183 for j=1:size(five wells,1)

184

185 if p i.five(j,50)>0

186

187 reduced allocation.five(j) = pchip(p i.five(j,:),q i.five(j,:),mac.tax.five(j))*five acres(j,39);
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188 %find acre inches reduced under equalized mac

189

190 reduced allocation inches.five(j)=pchip(p i.five(j,:),q i.five(j,:),mac.tax.five(j));

191

192 %find inches per acre reduced under equalized mac

193

194 elseif p i.five(j,50)≤0

195

196 reduced allocation.five(j) =0; %for dryland wells

197

198 reduced allocation inches.five(j)= 0; %for dryland wells

199

200 end

201

202 acreinches traded.five(j)=reduced allocation.five(j)−initial abate.five(j);

203 temp free.five(j)=free ride.five(j)*five acres(j,39);

204 inches traded.five(j)=reduced allocation inches.five(j)−initial abate inches.five(j);

205

206 end

207

208 for j=1:size(five wells,1)

209

210 if q i.five(j,50)>0

211 q tc interp.five(j,:)=linspace(min(q i.five(j,:)),max(q i.five(j,:)),101);

212

213 tc interp.five(j,:) = pchip(q i.five(j,:),p i.five(j,:),q tc interp.five(j,:))

214 *triu(ones(101))/100*(max(q i.five

215

216 (j,:))−min(q i.five(j,:)));

217

218 if q tc interp.five(j,1)>0

219

220 tc.abate.five(j)=0;

221 mac.abate.five(j)=0;

222

223 else

224 tc.abate.five(j)=pchip(q tc interp.five(j,:),...

225 [tc interp.five(j,1:find(q tc interp.five(j,:)<max(q tc interp.five(j,:)),1,'last'))...

226 tc interp.five(j,find(q tc interp.five(j,:)<max(q tc interp.five(j,:)),1,'last'))

227

228 +.00001],initial abate inches.five(j));

229
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230 mac.abate.five(j)=pchip(q i.five(j,:),p i.five(j,:),initial abate inches.five(j));

231

232 end

233

234

235 tc.trade.five(j)=pchip(q tc interp.five(j,:),...

236 [tc interp.five(j,1:find(q tc interp.five(j,:)<max(q tc interp.five(j,:)),1,'last'))...

237 tc interp.five(j,find(q tc interp.five(j,:)<max(q tc interp.five(j,:)),1,'last'))...

238 +.00001],reduced allocation inches.five(j));

239

240 else

241 tc.abate.five(j)=0;

242 tc.trade.five(j)=0;

243

244 end

245

246 % Get the cost saving from trading

247 market cost trade.five(j)= inches traded.five(j)*mac.tax.five(j);

248

249 % cost saving for each well in this sample in the ith draw.

250 welfare gain.five(j) = (tc.abate.five(j)− tc.trade.five(j)

251 + market cost trade.five(j))*five acres(j,39);

252

253 if welfare gain.five(j)<0

254 welfare gain.five(j)=0;

255 end

256

257 end

258

259 % Scale the sample estimates back to population estimates

260 sum gain.five(i)=sum(welfare gain.five)*num wells/num sample;

261 tot area.five(i)=sum(wells{2}(sample));

262 sum gain area.five(i)=sum(welfare gain.five)*sum(wells{2})/tot area.five(i);

263

264 % Get other characteristics of the samples

265 tot lift.well five(i)=mean(lift(sample));

266 tot yield.well five(i)=mean(yield(sample));

267

268 % The number of buyers, sellers and outsiders.

269 wbuy.erfive(i)=sum(market cost trade.five<0);

270 wout.erfive(i)=sum(market cost trade.five==0);

271 wsell.erfive(i)=sum(market cost trade.five>0);
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272

273 % The percentage of buyers, sellers and outsiders.

274 wbuy.erfive r(i)=wbuy.erfive(i)/size(sample,1);

275 wout.erfive r(i)=wout.erfive(i)/size(sample,1);

276 wsell.erfive r(i)=wsell.erfive(i)/size(sample,1);

277

278 % People who sell all their permits and move to dryland

279 wsell.all five(i)=sum(inches traded.five'≥current allocation(sample))/size(sample,1);

280

281 % Amount of permits traded

282 wsell.traded five(i)=sum(abs(inches traded.five)*five acres(:,39))/2;

283

284 end

285 toc

286 % save it
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Well-base Systematic Sampling

1

2 tic

3 % To get 5 percent samples

4 ratio=0.05;

5

6 % Take 1000 draws.

7 draws=1000;

8 num sample=round(num wells*ratio);

9 r= sortrows([linspace(1,num wells,num wells)' wells{2}],2);

10

11 %set seed at 1

12 rand('seed',1);

13

14 % Random starting point

15 r start=ceil(rand(draws,1)*(num wells−1/ratio*(num sample−1)));

16

17 for i=1:draws

18 clear sample

19

20 % From a random start, select every 20th well.

21 sample r=linspace(r start(i),r start(i)+1/ratio*(num sample−1),num sample)';

22

23 % The sample for the ith draw

24 sample=r(sample r);

25

26 sys5 value=value(sample,:);

27 sys5 inches=inches(sample,:);

28 sys5 acres irrg=acres(sample,:);

29 sys5 acres=acres(sample,:) + dryland(sample,:);

30 sys5 well id=well id(sample,:);

31 sys5 dist stream=dist stream(sample,:);

32 sys5 dist wells=dist well(sample,:);

33 sys5 yield=yield(sample,:);

34 sys5 lift=lift(sample,:);

35 sys5 soil=soil(sample,:);

36 sys5 cert acres= cert acres(sample);

37 sys5 wells= wells{1}(sample);

38 sys5 pump yield=pump yield(sample);
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39 sys5 soil types=soil types(sample);

40

41 for j=1:size(sys5 wells,1)

42

43 p2.sys5(j,:)=p2.basin(sample(j),:);

44 q2.sys5(j,:)=q2.basin(sample(j),:);

45

46 initial abate.sys5(j)= max(sys5 inches(j,39)−current allocation(sample(j)),0)*sys5 acres(j,39);

47

48 initial abate inches.sys5(j)= max(sys5 inches(j,39)−current allocation(sample(j)),0);

49

50

51 temp wells.sys5 = size(sys5 wells,1);

52

53 current use.sys5(j)=min(current allocation(sample(j)),sys5 inches(j,39));

54 free ride.sys5(j)=current allocation(sample(j))−current use.sys5(j);

55 free ride.sys5(find(sys5 inches(j,39)==0))=0;

56 sys5 acres i(j)=sys5 acres(j,39);

57

58 end

59

60 for j=1:size(sys5 wells,1)

61

62 if p2.sys5(j,40)>0

63

64 loc.start=find(p2.sys5(j,:)>0.0001,1,'first')−1;%last zero value

65 %first zero gradient

66 loc.end=(find(p2.sys5(j,:)>0.0001 & gradient(p2.sys5(j,:))<0.1,1,'first')−1);

67

68 q0=q2.sys5(j,loc.start);%find baseline for normalization

69

70 q temp=q2.sys5(j,loc.start:loc.end);%pull out relevant points

71 %normalize to origin

72 q temp=[q temp−ones(size(q temp)).*q0 sys5 inches(j,39) sys5 inches(j,39)+.00001];

73 %adjust for slack constraints and initial water use

74 q temp=q temp+ones(size(q temp)).*free ride.sys5(j);

75

76 p temp=[p2.sys5(j,loc.start:loc.end) p2.sys5(j,loc.end) 100];

77

78 %the problem is below

79 q junk.sys5(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

80
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81 p i.sys5(j,:)=[pchip(q temp,p temp,q junk.sys5(j,:)) p2.sys5(j,loc.end) 100];

82

83 q i.sys5(j,:)=[q junk.sys5(j,:) max(sys5 inches(j,39),current allocation(sample(j)))

84 max(sys5 inches(j,39),current allocation(sample(j)))+0.0001];

85

86 p i.sys5(j,:) = p i.sys5(j,:) + linspace(0,1e−6,size(p i.sys5(j,:),2));

87

88 elseif p2.sys5(j,40)≤0

89

90 p i.sys5(j,:)= zeros(1,50);

91 p i.sys5(j,1)= 1e10;

92 q i.sys5(j,:)= zeros(1,50);

93

94 end

95

96 end

97

98

99 %find the mac (tax) where inches abated equals abatement under NRD allocations

100 tax.sys5(i) = fzero(@(u) sum(pigou(u,temp wells.sys5,p i.sys5,q i.sys5,sys5 acres i))

101 −sum(initial abate.sys5),10);

102

103 mac.tax.sys5 = tax.sys5(i)*ones(size(sys5 wells,1),1); %vector of macs

104

105 for j=1:size(sys5 wells,1)

106

107 if p i.sys5(j,50)>0

108 %find acre inches reduced under equalized mac

109 reduced allocation.sys5(j) = pchip(p i.sys5(j,:),q i.sys5(j,:),mac.tax.sys5(j))*sys5 acres(j,39);

110 %find inches per acre reduced under equalized mac

111 reduced allocation inches.sys5(j)=pchip(p i.sys5(j,:),q i.sys5(j,:),mac.tax.sys5(j));

112

113 elseif p i.sys5(j,50)≤0

114

115 reduced allocation.sys5(j) =0; %for dryland wells

116

117 reduced allocation inches.sys5(j)= 0; %for dryland wells

118

119 end

120

121 acreinches traded.sys5(j)=reduced allocation.sys5(j)−initial abate.sys5(j);

122
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123 temp free.sys5(j)=free ride.sys5(j)*sys5 acres(j,39);

124

125 inches traded.sys5(j)=reduced allocation inches.sys5(j)−initial abate inches.sys5(j);

126

127 end

128

129

130 for j=1:size(sys5 wells,1)

131

132 if q i.sys5(j,50)>0

133 q tc interp.sys5(j,:)=linspace(min(q i.sys5(j,:)),max(q i.sys5(j,:)),101);

134

135 tc interp.sys5(j,:) = pchip(q i.sys5(j,:),p i.sys5(j,:),q tc interp.sys5(j,:))

136 *triu(ones(101))/100*(max(q i.sys5(j,:))−min(q i.sys5(j,:)));

137

138

139 if q tc interp.sys5(j,1)>0

140

141 tc.abate.sys5(j)=0;

142 mac.abate.sys5(j)=0;

143

144 else

145 tc.abate.sys5(j)=pchip(q tc interp.sys5(j,:),...

146 [tc interp.sys5(j,1:find(q tc interp.sys5(j,:)<max(q tc interp.sys5(j,:)),1,'last'))...

147 tc interp.sys5(j,find(q tc interp.sys5(j,:)<max(q tc interp.sys5(j,:)),1,'last'))

148 +.00001],initial abate inches.sys5(j));

149

150 mac.abate.sys5(j)=pchip(q i.sys5(j,:),p i.sys5(j,:),initial abate inches.sys5(j));

151

152 end

153

154 tc.trade.sys5(j)=pchip(q tc interp.sys5(j,:),...

155 [tc interp.sys5(j,1:find(q tc interp.sys5(j,:)<max(q tc interp.sys5(j,:)),1,'last'))...

156 tc interp.sys5(j,find(q tc interp.sys5(j,:)<max(q tc interp.sys5(j,:)),1,'last'))+.00001],

157 reduced allocation inches.sys5(j));

158

159 else

160 tc.abate.sys5(j)=0;

161 tc.trade.sys5(j)=0;

162

163 end

164
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165 market cost trade.sys5(j)= inches traded.sys5(j)*mac.tax.sys5(j);

166

167 welfare gain.sys5(j) = (tc.abate.sys5(j)− tc.trade.sys5(j)

168 + market cost trade.sys5(j))*sys5 acres(j,39);

169

170 if welfare gain.sys5(j)<0

171 welfare gain.sys5(j)=0;

172 end

173

174 end

175

176 % Scale the sample estimates back to population estimates

177 sum gain.sys5(i)=sum(welfare gain.sys5)*num wells/num sample;

178 tot area.sys5(i)=sum(wells{2}(sample));

179 sum gain area.sys5(i)=sum(welfare gain.sys5)*sum(wells{2})/tot area.sys5(i);

180

181 % Get other characteristics of the samples

182 tot lift.well sys5(i)=mean(lift(sample));

183 tot yield.well sys5(i)=mean(yield(sample));

184

185 % The number of buyers, sellers and outsiders.

186 wbuy.ersys5(i)=sum(market cost trade.sys5<0);

187 wout.ersys5(i)=sum(market cost trade.sys5==0);

188 wsell.ersys5(i)=sum(market cost trade.sys5>0);

189

190 % The percentage of buyers, sellers and outsiders.

191 wbuy.ersys5 r(i)=wbuy.ersys5(i)/size(sample,1);

192 wout.ersys5 r(i)=wout.ersys5(i)/size(sample,1);

193 wsell.ersys5 r(i)=wsell.ersys5(i)/size(sample,1);

194

195 % People who sell all their permits and move to dryland

196 wsell.all sys5(i)=sum(inches traded.sys5'≥current allocation(sample))/size(sample,1);

197

198 % Amount of permits traded

199 wsell.traded sys5(i)=sum(abs(inches traded.sys5)*sys5 acres(:,39))/2;

200

201 end

202 toc

203

204 % save it
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Well-base Stratified Sampling

The strata used for this code are in Table A-2.

1

2 % Define small, medium and large wells.

3 small=(wells{2}≤160);

4 medium=(wells{2}>160 & wells{2}≤320);

5 large=(wells{2}>320);

6

7 % The number of wells in each stratum

8 num.small=sum(small);

9 num.medium=sum(medium);

10 num.large=sum(large);

11

12 tic

13 % To get 5 percent samples

14 ratio=0.05;

15

16 % Take 1000 draws.

17 draws=1000;

18

19 num sample=round(num wells*ratio);

20 num sample small=round(num.small*ratio);

21 num sample medium=round(num.medium*ratio);

22 num sample large=round(num.large*ratio);

23

24 %set seed at 1

25 rand('seed',1);

26

27

28 for i=1:draws

29 clear sample f

30 r=rand(num wells,1);

31

32 % Get random wells from each stratum.

33 r s=[round(num wells.*r) linspace(1,num wells,num wells)'.*small wells{1}];

34 ordered sample s=sortrows(r s,−2);

35 ordered sample ss=sortrows(ordered sample s(1:sum(small),:));

36 sample s=sort(ordered sample ss(1:num sample small,2));
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37 tot area.well s(i)=sum(wells{2}(sample s));

38

39 r m=[round(num wells.*r) linspace(1,num wells,num wells)'.*medium wells{1}];

40 ordered sample m=sortrows(r m,−2);

41 ordered sample mm=sortrows(ordered sample m(1:sum(medium),:));

42 sample m=sort(ordered sample mm(1:num sample medium,2));

43 tot area.well m(i)=sum(wells{2}(sample m));

44

45

46 r l=[round(num wells.*r) linspace(1,num wells,num wells)'.*large wells{1}];

47 ordered sample l=sortrows(r l,−2);

48 ordered sample ll=sortrows(ordered sample l(1:sum(large),:));

49 sample l=sort(ordered sample ll(1:num sample large,2));

50 tot area.well l(i)=sum(wells{2}(sample l));

51

52 % Combine wells from each stratum into a sample for ith draw.

53 sample f=[sample s; sample m; sample l];

54

55 five STRAwell value=value(sample f,:);

56 five STRAwell inches=inches(sample f,:);

57 five STRAwell acres irrg=acres(sample f,:);

58 five STRAwell acres=acres(sample f,:) + dryland(sample f,:);

59 five STRAwell well id=well id(sample f,:);

60 five STRAwell dist stream=dist stream(sample f,:);

61 five STRAwell dist wells=dist well(sample f,:);

62 five STRAwell yield=yield(sample f,:);

63 five STRAwell lift=lift(sample f,:);

64 five STRAwell cert acres= cert acres(sample f,:);

65 five STRAwell wells= wells{1}(sample f,:);

66 tot area.five STRAwell(i)=sum(wells{2}(sample f));

67

68 for j=1:size(sample f,1)

69 p2.five STRAwell(j,:)=wrev(a.p.basin(sample f(j),:));

70

71 q2.five STRAwell(j,:)=wrev(a.q.basin(sample f(j),:));

72

73 initial abate.five STRAwell(j)= max(five STRAwell inches(j,39)−current allocation(sample f(j)),0)

74 *five STRAwell acres(j,39);

75

76 initial abate inches.five STRAwell(j)= max(five STRAwell inches(j,39)

77 −current allocation(sample f(j)),0);

78
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79 temp wells.five STRAwell = size(five STRAwell wells,1);

80

81 current use.five STRAwell(j)=min(current allocation(sample f(j)),five STRAwell inches(j,39));

82 free ride.five STRAwell(j)=current allocation(sample f(j))−current use.five STRAwell(j);

83 free ride.five STRAwell(find(five STRAwell inches(j,39)==0))=0;

84 five STRAwell acres i(j)=five STRAwell acres(j,39);

85

86 end

87

88 for j=1:size(sample f,1)

89

90 if p2.five STRAwell(j,40)>0

91

92 loc.start=find(p2.five STRAwell(j,:)>0.0001,1,'first')−1;%last zero value

93

94 loc.end=(find(p2.five STRAwell(j,:)>0.0001 & gradient(p2.five STRAwell(j,:))<0.1,

95 1,'first')−1);%first zero gradient

96

97 q0=q2.five STRAwell(j,loc.start);%find baseline for normalization

98

99 q temp=q2.five STRAwell(j,loc.start:loc.end);%pull out relevant points

100

101 q temp=[q temp−ones(size(q temp)).*q0 five STRAwell inches(j,39)

102 five STRAwell inches(j,39)+.00001];%normalize to origin

103 %adjust for slack constraints and initial water use

104 q temp=q temp+ones(size(q temp)).*free ride.five STRAwell(j);

105

106 p temp=[p2.five STRAwell(j,loc.start:loc.end) p2.five STRAwell(j,loc.end) 100];

107

108 %the problem is below

109 q junk.five STRAwell(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

110

111 p i.five STRAwell(j,:)=[pchip(q temp,p temp,q junk.five STRAwell(j,:))

112 p2.five STRAwell(j,loc.end) 100];

113

114 q i.five STRAwell(j,:)=[q junk.five STRAwell(j,:) max(five STRAwell inches(j,39),

115 current allocation(sample f(j))) max(five STRAwell inches(j,39),

116 current allocation(sample f(j)))+0.0001];

117

118

119 p i.five STRAwell(j,:) = p i.five STRAwell(j,:) + linspace(0,1e−6,size(p i.five STRAwell(j,:),2));

120
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121 elseif p2.five STRAwell(j,40)≤0

122

123 p i.five STRAwell(j,:)= zeros(1,50);

124 p i.five STRAwell(j,1)= 1e10;

125 q i.five STRAwell(j,:)= zeros(1,50);

126

127 end

128

129 end

130

131

132 %find the mac (tax) where inches abated equals abatement under NRD allocations

133 tax.five STRAwell(i) = fzero(@(u) sum(pigou(u,temp wells.five STRAwell,p i.five STRAwell,

134 q i.five STRAwell,five STRAwell acres i))−sum(initial abate.five STRAwell),10);

135

136 %vector of macs

137 mac.tax.five STRAwell = tax.five STRAwell(i)*ones(size(five STRAwell wells,1),1);

138

139 for j=1:size(five STRAwell wells,1)

140

141

142 if p i.five STRAwell(j,50)>0

143

144 %find acre inches reduced under equalized mac

145 reduced allocation.five STRAwell(j) = pchip(p i.five STRAwell(j,:),q i.five STRAwell(j,:),

146 mac.tax.five STRAwell(j))*five STRAwell acres(j,39);

147 %find inches per acre reduced under equalized mac

148 reduced allocation inches.five STRAwell(j)=pchip(p i.five STRAwell(j,:),q i.five STRAwell(j,:),

149 mac.tax.five STRAwell(j));

150

151 elseif p i.five STRAwell(j,50)≤0

152

153 reduced allocation.five STRAwell(j) =0; %for dryland wells

154

155 reduced allocation inches.five STRAwell(j)= 0; %for dryland wells

156

157 end

158

159 acreinches traded.five STRAwell(j)=reduced allocation.five STRAwell(j)

160 −initial abate.five STRAwell(j);

161

162 temp free.five STRAwell(j)=free ride.five STRAwell(j)*five STRAwell acres(j,39);
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163

164 inches traded.five STRAwell(j)=reduced allocation inches.five STRAwell(j)

165 −initial abate inches.five STRAwell(j);

166

167 end

168

169

170 for j=1:size(five STRAwell wells,1)

171

172 if q i.five STRAwell(j,50)>0

173 q tc interp.five STRAwell(j,:)=linspace(min(q i.five STRAwell(j,:)),max(q i.five STRAwell(j,:)),101);

174

175 tc interp.five STRAwell(j,:) = pchip(q i.five STRAwell(j,:),p i.five STRAwell(j,:),

176 q tc interp.five STRAwell(j,:))

177 *triu(ones(101))/100*(max(q i.five STRAwell(j,:))−min(q i.five STRAwell(j,:)));

178

179

180 if q tc interp.five STRAwell(j,1)>0

181

182 tc.abate.five STRAwell(j)=0;

183 mac.abate.five STRAwell(j)=0;

184

185 else

186 tc.abate.five STRAwell(j)=pchip(q tc interp.five STRAwell(j,:),...

187 [tc interp.five STRAwell(j,1:find(q tc interp.five STRAwell(j,:)<

188 max(q tc interp.five STRAwell(j,:)),1,'last'))...

189 tc interp.five STRAwell(j,find(q tc interp.five STRAwell(j,:)<

190 max(q tc interp.five STRAwell(j,:)),1,'last'))

191 +.00001],initial abate inches.five STRAwell(j));

192

193 mac.abate.five STRAwell(j)=pchip(q i.five STRAwell(j,:),p i.five STRAwell(j,:),

194 initial abate inches.five STRAwell(j));

195

196 end

197

198 tc.trade.five STRAwell(j)=pchip(q tc interp.five STRAwell(j,:),...

199 [tc interp.five STRAwell(j,1:find(q tc interp.five STRAwell(j,:)<

200 max(q tc interp.five STRAwell(j,:)),1,'last'))...

201 tc interp.five STRAwell(j,find(q tc interp.five STRAwell(j,:)<

202 max(q tc interp.five STRAwell(j,:)),1,'last'))+.00001],

203 reduced allocation inches.five STRAwell(j));

204
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205 else

206 tc.abate.five STRAwell(j)=0;

207 tc.trade.five STRAwell(j)=0;

208

209 end

210

211

212 market cost trade.five STRAwell(j)= inches traded.five STRAwell(j)*mac.tax.five STRAwell(j);

213

214 welfare gain.five STRAwell(j) = (tc.abate.five STRAwell(j)− tc.trade.five STRAwell(j)

215 + market cost trade.five STRAwell(j))*five STRAwell acres(j,39);

216

217 if welfare gain.five STRAwell(j)<0

218 welfare gain.five STRAwell(j)=0;

219 end

220

221 end

222

223 % Scale the sample estimates back to population estimates by well numbers

224 sum gain.five STRAwell(i)=sum(welfare gain.five STRAwell)*num wells/size(five STRAwell wells,1);

225

226 % Scale the sample estimates back to population estimates by area

227 sum gain area.five STRAwell(i)=sum(welfare gain.five STRAwell)

228 *sum(wells{2})/tot area.five STRAwell(i);

229

230 sum gain area.five STRAwell adj(i)=sum(welfare gain.five STRAwell(1:size(sample s,1)))

231 *sum(wells{2}(small))/tot area.well s(i)...

232 +sum(welfare gain.five STRAwell(1+size(sample s,1):size(sample s,1)+size(sample m,1)))

233 *sum(wells{2}(medium))/tot area.well m(i)...

234 +sum(welfare gain.five STRAwell(size(sample s,1)+size(sample m,1):size(sample f,1)))

235 *sum(wells{2}(large))/tot area.well l(i);

236

237 % Get other characteristics of the samples

238 tot area.five STRAwell(i)=sum(wells{2}(sample f));

239 tot lift.well five STRAwell(i)=mean(lift(sample f));

240 tot yield.well five STRAwell(i)=mean(yield(sample f));

241

242 % The number of buyers, sellers and outsiders.

243 wbuy.erfive STRAwell(i)=sum(market cost trade.five STRAwell<0);

244 wout.erfive STRAwell(i)=sum(market cost trade.five STRAwell==0);

245 wsell.erfive STRAwell(i)=sum(market cost trade.five STRAwell>0);

246
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247 % The percentage of buyers, sellers and outsiders.

248 wbuy.erfive STRAwell r(i)=wbuy.erfive STRAwell(i)/size(sample f,1);

249 wout.erfive STRAwell r(i)=wout.erfive STRAwell(i)/size(sample f,1);

250 wsell.erfive STRAwell r(i)=wsell.erfive STRAwell(i)/size(sample f,1);

251

252 % People who sell all their permits and move to dryland

253 wsell.all five STRAwell(i)=sum(inches traded.five STRAwell'

254 ≥current allocation(sample f))/size(sample f,1);

255

256 % Amount of permits traded

257 wsell.traded five STRAwell(i)=sum(abs(inches traded.five STRAwell)

258 *five STRAwell acres(:,39))/2;

259

260 end

261 toc

262

263 % save it
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Farm-base Random Sampling

In a draw of 5 percent farms, select the sampled farms by random number

first.Then, include all the wells belonged to these farms. Use this code to generate

the optimal permit prices, irrigation water allocation, and calculate the cost saving in

abatement. Record these information for each single draw and save these data for

further analysis. This is an example for 5 percent farm-base random sampling. I also

replaced the ratio in the 10th line in this code with 0.01 to 0.04 to get 1 percent to 4

percent samples.

1 % There are 4525 farms in total.

2 num farms=4525;

3

4 % Get the id for farms which is the first one registered by a single owner ID.

5 [ans1, ans2, ans3]=unique(wells{22},'first');

6 firstwell=sort(ans2);

7

8 tic

9 % To get 5 percent samples

10 ratio=0.05;

11

12 % Take 1000 draws.

13 draws=1000;

14 num sample=round(num farms*ratio);

15

16 %set seed at 1

17 rand('seed',1);

18

19 for i=1:draws

20 clear sample f

21

22 r=zeros(num farms,1);

23 raw sample=zeros(num sample,1);

24 sample=zeros(num wells,1);

25 selected=zeros(num wells,1);

26 r=sortrows([round(num farms.*rand(num farms,1)) unique(wells{22})]);

27

28 % Get the farms to be sampled in this draw.
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29 raw sample=sort(r(1:num sample,2));

30

31 % Get the wells belonging to these farms

32 for j=1:num sample

33 sample=sample+(wells{22}==raw sample(j));

34 selected=sortrows(linspace(1,num wells,num wells)'.*sample,−1);

35 sample f=sort(selected(1:find(selected>0,1,'last')));

36 end

37

38 % sample f is the ID for the wells included into this draw.

39 ran5 value=value(sample f,:);

40 ran5 inches=inches(sample f,:);

41 ran5 acres irrg=acres(sample f,:);

42 ran5 acres=acres(sample f,:) + dryland(sample f,:);

43 ran5 well id=well id(sample f,:);

44 ran5 dist stream=dist stream(sample f,:);

45 ran5 dist wells=dist well(sample f,:);

46 ran5 yield=yield(sample f,:);

47 ran5 lift=lift(sample f,:);

48 ran5 soil=soil(sample f,:);

49 ran5 cert acres= cert acres(sample f);

50 ran5 wells= wells{1}(sample f);

51 ran5 pump yield=pump yield(sample f);

52 ran5 soil types=soil types(sample f);

53

54

55 for j=1:size(ran5 wells,1)

56

57 p2.ran5(j,:)=p2.basin(sample f(j),:);

58 q2.ran5(j,:)=q2.basin(sample f(j),:);

59

60 initial abate.ran5(j)= max(ran5 inches(j,39)−current allocation(sample f(j)),0)*ran5 acres(j,39);

61

62 initial abate inches.ran5(j)= max(ran5 inches(j,39)−current allocation(sample f(j)),0);

63

64 temp wells.ran5 = size(ran5 wells,1);

65

66 current use.ran5(j)=min(current allocation(sample f(j)),ran5 inches(j,39));

67 free ride.ran5(j)=current allocation(sample f(j))−current use.ran5(j);

68 free ride.ran5(find(ran5 inches(j,39)==0))=0;

69 ran5 acres i(j)=ran5 acres(j,39);

70
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71 end

72

73 for j=1:size(ran5 wells,1)

74

75 if p2.ran5(j,39)>0

76

77 loc.start=find(p2.ran5(j,:)>0.0001,1,'first')−1;%last zero value

78 %first zero gradient

79 loc.end=(find(p2.ran5(j,:)>0.0001 & gradient(p2.ran5(j,:))<0.1,1,'first')−1);

80

81 q0=q2.ran5(j,loc.start);%find baseline for normalization

82

83 q temp=q2.ran5(j,loc.start:loc.end);%pull out relevant points

84 %normalize to origin

85 q temp=[q temp−ones(size(q temp)).*q0 ran5 inches(j,39) ran5 inches(j,39)+.00001];

86 %adjust for slack constraints and initial water use

87 q temp=q temp+ones(size(q temp)).*free ride.ran5(j);

88

89 p temp=[p2.ran5(j,loc.start:loc.end) p2.ran5(j,loc.end) 100];

90

91 %the problem is below

92 q junk.ran5(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

93

94 p i.ran5(j,:)=[pchip(q temp,p temp,q junk.ran5(j,:)) p2.ran5(j,loc.end) 100];

95

96 q i.ran5(j,:)=[q junk.ran5(j,:) max(ran5 inches(j,39),current allocation(sample f(j)))

97 max(ran5 inches(j,39),current allocation(sample f(j)))+0.0001];

98

99

100 p i.ran5(j,:) = p i.ran5(j,:) + linspace(0,1e−6,size(p i.ran5(j,:),2));

101

102

103 elseif p2.ran5(j,39)≤0

104

105 p i.ran5(j,:)= zeros(1,50);

106 p i.ran5(j,1)= 1e10;

107 q i.ran5(j,:)= zeros(1,50);

108

109 end

110

111

112 end

86



113

114

115 %find the mac (tax) where inches abated equals abatement under NRD allocations

116 tax.ran5(i) = fzero(@(u) sum(pigou(u,temp wells.ran5,p i.ran5,q i.ran5,ran5 acres i))

117 −sum(initial abate.ran5),10);

118

119 mac.tax.ran5 = tax.ran5(i)*ones(size(ran5 wells,1),1); %vector of macs

120

121 for j=1:size(ran5 wells,1)

122

123

124 if p i.ran5(j,50)>0

125 %find acre inches reduced under equalized mac

126 reduced allocation.ran5(j) = pchip(p i.ran5(j,:),q i.ran5(j,:),

127 mac.tax.ran5(j))*ran5 acres(j,39);

128 %find inches per acre reduced under equalized mac

129 reduced allocation inches.ran5(j)=pchip(p i.ran5(j,:),q i.ran5(j,:),mac.tax.ran5(j));

130

131 elseif p i.ran5(j,50)≤0

132

133 reduced allocation.ran5(j) =0; %for dryland wells

134

135 reduced allocation inches.ran5(j)= 0; %for dryland wells

136

137 end

138

139 acreinches traded.ran5(j)=reduced allocation.ran5(j)−initial abate.ran5(j);

140

141 temp free.ran5(j)=free ride.ran5(j)*ran5 acres(j,39);

142

143 inches traded.ran5(j)=reduced allocation inches.ran5(j)−initial abate inches.ran5(j);

144

145 end

146

147

148 for j=1:size(ran5 wells,1)

149

150

151 if q i.ran5(j,50)>0

152 q tc interp.ran5(j,:)=linspace(min(q i.ran5(j,:)),max(q i.ran5(j,:)),101);

153

154 tc interp.ran5(j,:) = pchip(q i.ran5(j,:),p i.ran5(j,:),q tc interp.ran5(j,:))
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155 *triu(ones(101))/100*(max(q i.ran5(j,:))−min(q i.ran5(j,:)));

156

157

158 if q tc interp.ran5(j,1)>0

159

160 tc.abate.ran5(j)=0;

161 mac.abate.ran5(j)=0;

162

163 else

164 tc.abate.ran5(j)=pchip(q tc interp.ran5(j,:),...

165 [tc interp.ran5(j,1:find(q tc interp.ran5(j,:)<max(q tc interp.ran5(j,:)),1,'last'))...

166 tc interp.ran5(j,find(q tc interp.ran5(j,:)<max(q tc interp.ran5(j,:)),1,'last'))

167 +.00001],initial abate inches.ran5(j));

168

169 mac.abate.ran5(j)=pchip(q i.ran5(j,:),p i.ran5(j,:),initial abate inches.ran5(j));

170

171 end

172

173

174 tc.trade.ran5(j)=pchip(q tc interp.ran5(j,:),...

175 [tc interp.ran5(j,1:find(q tc interp.ran5(j,:)<max(q tc interp.ran5(j,:)),1,'last'))...

176 tc interp.ran5(j,find(q tc interp.ran5(j,:)<max(q tc interp.ran5(j,:)),1,'last'))+.00001],

177 reduced allocation inches.ran5(j));

178

179 else

180 tc.abate.ran5(j)=0;

181 tc.trade.ran5(j)=0;

182

183 end

184

185

186 market cost trade.ran5(j)= inches traded.ran5(j)*mac.tax.ran5(j);

187

188 welfare gain.ran5(j) = (tc.abate.ran5(j)− tc.trade.ran5(j) + market cost trade.ran5(j))

189 *ran5 acres(j,39);

190

191 if welfare gain.ran5(j)<0

192

193 welfare gain.ran5(j)=0;

194 end

195

196
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197 end

198

199 % Scale the sample estimates back to population estimates

200 sum gain.ran5(i)=sum(welfare gain.ran5(1:size(ran5 wells,1)))*num wells/size(ran5 wells,1);

201 uni wellid=unique((wells{58}(sample f).*sample f));

202 tot area.ran5(i)=sum(wells{55}(uni wellid(2:sum(wells{58}(sample f)))));

203 sum gain area.ran5(i)=sum(welfare gain.ran5(1:size(ran5 wells,1)))

204 *sum(wells{55}(firstwell))/tot area.ran5(i);

205

206 % Get other characteristics of the samples

207 tot area.ran5(i)=sum(wells{2}(sample f));

208 tot lift.ran5(i)=mean(ran5 lift(1:size(sample f,1)));

209 tot yield.ran5(i)=mean(ran5 yield(1:size(sample f,1)));

210

211 % The number of buyers, sellers and outsiders.

212 buy.er ran5(i)=sum(market cost trade.ran5(1:size(sample f,1))<0);

213 out.er ran5(i)=sum(market cost trade.ran5(1:size(sample f,1))==0);

214 sell.er ran5(i)=sum(market cost trade.ran5(1:size(sample f,1))>0);

215

216 % The percentage of buyers, sellers and outsiders.

217 buy.er ran5 r(i)=buy.er ran5(i)/size(sample f,1);

218 out.er ran5 r(i)=out.er ran5(i)/size(sample f,1);

219 sell.er ran5 r(i)=sell.er ran5(i)/size(sample f,1);

220

221 % People who sell all their permits and move to dryland

222 sell.all ran5(i)=sum(inches traded.ran5(1:size(sample f,1))'

223 ≥current allocation(sample f))/size(sample f,1);

224

225 % Amount of permits traded

226 sell.traded ran5(i)=sum(abs(inches traded.ran5(1:size(sample f,1)))

227 *ran5 acres(:,39))/2;

228

229 end

230

231 toc

232

233 % save it
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Farm-base Systematic Sampling

I used the following code to systematically sample farms by area.

1 % Systematically sampling based on total acreage per farm

2

3 % Get the id for farms which is the first one registered by a single owner ID.

4 [ans1, ans2, ans3]=unique(wells{22},'first');

5 firstwell=sort(ans2);

6

7 % To get 5 percent samples

8 ratio=0.05;

9

10 % Take 1000 draws.

11 draws=1000;

12

13 tic

14 num sample=round(num.farms*ratio);

15

16 %set seed at 1

17 rand('seed',1);

18

19 for i=1:draws

20 clear sample f

21 sample=zeros(num wells,1);

22 selected=zeros(num wells,1);

23 r2=rand(1+num.farms,1);

24

25 % Starting point

26 r start=ceil(r2(1)*(num.farms−1/ratio*(num sample−1)));

27 sample r=linspace(r start,r start+1/ratio*(num sample−1),num sample)';

28 r=sortrows([wells{55}(firstwell) unique(wells{22})]);

29

30 % Farms included into this draw

31 raw sample=sort(r(sample r,2));

32

33 % Get all the wells belonging to these farms

34 for j=1:num sample

35 sample=sample+(wells{22}==raw sample(j));

36 selected=sortrows(linspace(1,num wells,num wells)'.*sample,−1);
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37 sample f=sort(selected(1:find(selected>0,1,'last')));

38 end

39

40 farmsys area value=value(sample f,:);

41 farmsys area inches=inches(sample f,:);

42 farmsys area acres irrg=acres(sample f,:);

43 farmsys area acres=acres(sample f,:) + dryland(sample f,:);

44 farmsys area well id=well id(sample f,:);

45 farmsys area dist stream=dist stream(sample f,:);

46 farmsys area dist wells=dist well(sample f,:);

47 farmsys area yield=yield(sample f,:);

48 farmsys area lift=lift(sample f,:);

49 farmsys area soil=soil(sample f,:);

50 farmsys area cert acres= cert acres(sample f);

51 farmsys area wells= wells{1}(sample f);

52 farmsys area pump yield=pump yield(sample f);

53 farmsys area soil types=soil types(sample f);

54

55

56 for j=1:size(farmsys area wells,1)

57

58 p2.farmsys area(j,:)=p2.basin(sample f(j),:);

59 q2.farmsys area(j,:)=q2.basin(sample f(j),:);

60

61 initial abate.farmsys area(j)= max(farmsys area inches(j,39)

62 −current allocation(sample f(j)),0)*farmsys area acres(j,39);

63

64 initial abate inches.farmsys area(j)= max(farmsys area inches(j,39)

65 −current allocation(sample f(j)),0);

66

67

68 temp wells.farmsys area = size(farmsys area wells,1);

69

70 current use.farmsys area(j)=min(current allocation(sample f(j)),

71 farmsys area inches(j,39));

72 free ride.farmsys area(j)=current allocation(sample f(j))−current use.farmsys area(j);

73 free ride.farmsys area(find(farmsys area inches(j,39)==0))=0;

74 farmsys area acres i(j)=farmsys area acres(j,39);

75

76 end

77

78
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79

80 for j=1:size(farmsys area wells,1)

81

82 if p2.farmsys area(j,40)>0

83

84 loc.start=find(p2.farmsys area(j,:)>0.0001,1,'first')−1;%last zero value

85

86 loc.end=(find(p2.farmsys area(j,:)>0.0001 & gradient(p2.farmsys area(j,:))<0.1,

87 1,'first')−1);%first zero gradient

88

89 q0=q2.farmsys area(j,loc.start);%find baseline for normalization

90

91 q temp=q2.farmsys area(j,loc.start:loc.end);%pull out relevant points

92

93 q temp=[q temp−ones(size(q temp)).*q0 farmsys area inches(j,39)

94 farmsys area inches(j,39)+.00001];%normalize to origin

95 %adjust for slack constraints and initial water use

96 q temp=q temp+ones(size(q temp)).*free ride.farmsys area(j);

97

98 p temp=[p2.farmsys area(j,loc.start:loc.end) p2.farmsys area(j,loc.end) 100];

99

100 %the problem is below

101 q junk.farmsys area(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

102

103 p i.farmsys area(j,:)=[pchip(q temp,p temp,q junk.farmsys area(j,:))

104 p2.farmsys area(j,loc.end) 100];

105

106 q i.farmsys area(j,:)=[q junk.farmsys area(j,:) max(farmsys area inches(j,39),

107 current allocation(sample f(j))) max(farmsys area inches(j,39),

108 current allocation(sample f(j)))+0.0001];

109

110

111 p i.farmsys area(j,:) = p i.farmsys area(j,:) + linspace(0,1e−6,size(p i.farmsys area(j,:),2));

112

113

114 elseif p2.farmsys area(j,40)≤0

115

116 p i.farmsys area(j,:)= zeros(1,50);

117 p i.farmsys area(j,1)= 1e10;

118 q i.farmsys area(j,:)= zeros(1,50);

119

120 end
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121

122

123 end

124

125

126 %find the mac (tax) where inches abated equals abatement under NRD allocations

127 tax.farmsys area(i) = fzero(@(u) sum(pigou(u,temp wells.farmsys area,

128 p i.farmsys area,q i.farmsys area,

129 farmsys area acres i))−sum(initial abate.farmsys area),10);

130

131 mac.tax.farmsys area = tax.farmsys area(i)*ones(size(farmsys area wells,1),1); %vector of macs

132

133 for j=1:size(farmsys area wells,1)

134

135

136 if p i.farmsys area(j,50)>0

137

138 reduced allocation.farmsys area(j) = pchip(p i.farmsys area(j,:),q i.farmsys area(j,:),

139 mac.tax.farmsys area(j))*farmsys area acres(j,39); %find acre inches reduced under equalized mac

140 reduced allocation inches.farmsys area(j)=pchip(p i.farmsys area(j,:),q i.farmsys area(j,:),

141 mac.tax.farmsys area(j)); %find inches per acre reduced under equalized mac

142

143 elseif p i.farmsys area(j,50)≤0

144

145 reduced allocation.farmsys area(j) =0; %for dryland wells

146

147 reduced allocation inches.farmsys area(j)= 0; %for dryland wells

148

149 end

150

151 acreinches traded.farmsys area(j)=reduced allocation.farmsys area(j)−initial abate.farmsys area(j);

152

153 temp free.farmsys area(j)=free ride.farmsys area(j)*farmsys area acres(j,39);

154

155 inches traded.farmsys area(j)=reduced allocation inches.farmsys area(j)

156 −initial abate inches.farmsys area(j);

157

158 end

159

160

161 for j=1:size(farmsys area wells,1)

162
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163

164 if q i.farmsys area(j,50)>0

165 q tc interp.farmsys area(j,:)=linspace(min(q i.farmsys area(j,:)),max(q i.farmsys area(j,:)),101);

166

167 tc interp.farmsys area(j,:) = pchip(q i.farmsys area(j,:),p i.farmsys area(j,:),

168 q tc interp.farmsys area(j,:))

169 *triu(ones(101))/100*(max(q i.farmsys area(j,:))−min(q i.farmsys area(j,:)));

170

171

172 if q tc interp.farmsys area(j,1)>0

173

174 tc.abate.farmsys area(j)=0;

175 mac.abate.farmsys area(j)=0;

176

177 else

178 tc.abate.farmsys area(j)=pchip(q tc interp.farmsys area(j,:),...

179 [tc interp.farmsys area(j,1:find(q tc interp.farmsys area(j,:)<

180 max(q tc interp.farmsys area(j,:)),1,'last'))...

181 tc interp.farmsys area(j,find(q tc interp.farmsys area(j,:)<

182 max(q tc interp.farmsys area(j,:)),1,'last'))+.00001],

183 initial abate inches.farmsys area(j));

184

185 mac.abate.farmsys area(j)=pchip(q i.farmsys area(j,:),p i.farmsys area(j,:),

186 initial abate inches.farmsys area(j));

187

188 end

189

190

191 tc.trade.farmsys area(j)=pchip(q tc interp.farmsys area(j,:),...

192 [tc interp.farmsys area(j,1:find(q tc interp.farmsys area(j,:)<

193 max(q tc interp.farmsys area(j,:)),1,'last'))...

194 tc interp.farmsys area(j,find(q tc interp.farmsys area(j,:)<

195 max(q tc interp.farmsys area(j,:)),1,'last'))+.00001],

196 reduced allocation inches.farmsys area(j));

197

198 else

199 tc.abate.farmsys area(j)=0;

200 tc.trade.farmsys area(j)=0;

201

202 end

203

204
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205 market cost trade.farmsys area(j)= inches traded.farmsys area(j)*mac.tax.farmsys area(j);

206

207 welfare gain.farmsys area(j) = (tc.abate.farmsys area(j)− tc.trade.farmsys area(j)

208 + market cost trade.farmsys area(j))*farmsys area acres(j,39);

209

210 if welfare gain.farmsys area(j)<0

211

212 welfare gain.farmsys area(j)=0;

213 end

214

215

216 end

217

218 % Scale the sample estimates back to population estimates by well numbers.

219 sum gain.farmsys area(i)=sum(welfare gain.farmsys area(1:size(farmsys area wells,1)))

220 *num wells/size(farmsys area wells,1);

221

222 % Get other characteristics of the samples

223 tot area.farmsys area(i)=sum(wells{2}(sample f));

224 tot lift.farmsys area(i)=mean(farmsys area lift(1:size(sample f,1)));

225 tot yield.farmsys area(i)=mean(farmsys area yield(1:size(sample f,1)));

226

227 % Scale the sample estimates back to population estimates by acres.

228 sum gain area.farmsys area(i)=sum(welfare gain.farmsys area(1:size(farmsys area wells,1)))

229 *sum(wells{55}(firstwell))/tot area.farmsys area(i);

230

231 % The number of buyers, sellers and outsiders.

232 buy.er farmsys area(i)=sum(market cost trade.farmsys area(1:size(sample f,1))<0);

233 out.er farmsys area(i)=sum(market cost trade.farmsys area(1:size(sample f,1))==0);

234 sell.er farmsys area(i)=sum(market cost trade.farmsys area(1:size(sample f,1))>0);

235

236 % The percentage of buyers, sellers and outsiders.

237 buy.er farmsys area r(i)=buy.er farmsys area(i)/size(sample f,1);

238 out.er farmsys area r(i)=out.er farmsys area(i)/size(sample f,1);

239 sell.er farmsys area r(i)=sell.er farmsys area(i)/size(sample f,1);

240

241 % People who sell all their permits and move to dryland

242 sell.all farmsys area(i)=sum(inches traded.farmsys area(1:size(sample f,1))'

243 ≥current allocation(sample f))/size(sample f,1);

244

245 % Amount of permits traded

246 sell.traded farmsys area(i)=sum(abs(inches traded.farmsys area(1:size(sample f,1)))
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247 *farmsys area acres(:,39))/2;

248

249 end

250

251 toc

252

253 % save it

If I replace line 16 to line 38 by the following code, I can systematically select farms

by their owner ID. However, the result is very close to systematic sampling by area.

1 %set seed at 1

2 rand('seed',1);

3

4 for i=1:draws

5 sample=zeros(num wells,1);

6 selected=zeros(num wells,1);

7 r2=rand(1+num.farms,1);

8 r start=ceil(r2(1)*(num.farms−1/ratio*(num sample−1)));

9

10 sample r=linspace(r start,r start+1/ratio*(num sample−1),num sample)';

11

12 r=sortrows([round(num.farms.*r2(2:1+num.farms))

13 linspace(1,num.farms,num.farms)' unique(wells{22})]);

14 raw sample=sort(r(sample r,3));

15

16 for j=1:num sample

17 sample=sample+(wells{22}==raw sample(j));

18 selected=sortrows(linspace(1,num wells,num wells)'.*sample,−1);

19 sample f=sort(selected(1:find(selected>0,1,'last')));

20 end
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Farm-base Stratified Sampling

The strata used for this code are in Table A-2.

1 % Get the id for farms which is the first one registered by a single owner ID.

2 [ans1, ans2, ans3]=unique(wells{22},'first');

3 firstwell=sort(ans2);

4

5 % Define small, medium and large wells.

6 small=(wells{55}≤160);

7 medium=(wells{55}>160 & wells{55}≤320);

8 large=(wells{55}>320);

9

10 % Define small, medium and large farm.

11 smallfarm=unique(wells{22}(wells{55}≤160));

12 mediumfarm=unique(wells{22}(wells{55}>160 & wells{55}≤320));

13 largefarm=unique(wells{22}(wells{55}>320));

14

15 % The number of farms in each stratum

16 num.smallfarm=size(smallfarm,1);

17 num.mediumfarm=size(mediumfarm,1);

18 num.largefarm=size(largefarm,1);

19 gbg=wells{55}.*wells{58};

20 tic

21

22 % To get 5 percent samples

23 ratio=0.05;

24

25 % Take 1000 draws.

26 draws=1000;

27

28 num sample=round(num.farms*ratio);

29 num sample smallfarm=round(num.smallfarm*ratio);

30 num sample mediumfarm=round(num.mediumfarm*ratio);

31 num sample largefarm=round(num.largefarm*ratio);

32

33 %set seed at 1

34 rand('seed',1);

35

36 for i=1:draws
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37 clear sample f

38 sample s=zeros(num wells,1);

39 selected s=zeros(num wells,1);

40 sample m=zeros(num wells,1);

41 selected m=zeros(num wells,1);

42 sample l=zeros(num wells,1);

43 selected l=zeros(num wells,1);

44

45 % Get random farms from each stratum.

46 r3=rand(num.smallfarm+num.mediumfarm+num.largefarm,1);

47 r s=sortrows([round(num.smallfarm.*r3(1:num.smallfarm)) smallfarm]);

48 raw sample s(:,i)=sort(r s(1:num sample smallfarm,2));

49 r m=sortrows([round(num.mediumfarm.*r3(num.smallfarm+1: num.smallfarm

50 +num.mediumfarm)) mediumfarm]);

51 raw sample m(:,i)=sort(r m(1:num sample mediumfarm,2));

52 r l=sortrows([round(num.largefarm.*r3(num.smallfarm+num.mediumfarm+1: num.smallfarm

53 +num.mediumfarm+num.largefarm)) largefarm]);

54 raw sample l(:,i)=sort(r l(1:num sample largefarm,2));

55

56 % Wells belonged to these farms

57 for j=1:num sample smallfarm

58 included s=(wells{22}==raw sample s(j,i));

59 sample s=sample s+included s;

60 selected s=sortrows(linspace(1,num wells,num wells)'.*sample s,−1);

61 sample fs=sort(selected s(1:find(selected s>0,1,'last')));

62 end

63 for j=1:num sample mediumfarm

64 included m=(wells{22}==raw sample m(j,i));

65 sample m=sample m+included m;

66 selected m=sortrows(linspace(1,num wells,num wells)'.*sample m,−1);

67 sample fm=sort(selected m(1:find(selected m>0,1,'last')));

68 end

69 for j=1:num sample largefarm

70 included l=(wells{22}==raw sample l(j,i));

71 sample l=sample l+included l;

72 selected l=sortrows(linspace(1,num wells,num wells)'.*sample l,−1);

73 sample fl=sort(selected l(1:find(selected l>0,1,'last')));

74 end

75

76 % Combine wells from each stratum into a sample for ith draw.

77 sample f=[sample fs; sample fm; sample fl];

78
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79 five STRAfarm value=value(sample f,:);

80 five STRAfarm inches=inches(sample f,:);

81 five STRAfarm acres irrg=acres(sample f,:);

82 five STRAfarm acres=acres(sample f,:); + dryland(sample f,:);

83 five STRAfarm well id=well id(sample f,:);

84 five STRAfarm dist stream=dist stream(sample f,:);

85 five STRAfarm dist wells=dist well(sample f,:);

86 five STRAfarm yield=yield(sample f,:);

87 five STRAfarm lift=lift(sample f,:);

88 %five STRAfarm soil=STRAfarm soil(sample(:,i),:);

89 five STRAfarm cert acres= cert acres(sample f);

90 five STRAfarm wells= wells{1}(sample f);

91

92 for j=1:size(sample f,1)

93 p2.five STRAfarm(j,:)=wrev(a.p.basin(sample f(j),:));

94

95 q2.five STRAfarm(j,:)=wrev(a.q.basin(sample f(j),:));

96

97 initial abate.five STRAfarm(j)= max(five STRAfarm inches(j,39)

98 −current allocation(sample f(j)),0)*five STRAfarm acres(j,39);

99

100 initial abate inches.five STRAfarm(j)= max(five STRAfarm inches(j,39)

101 −current allocation(sample f(j)),0);

102

103 temp wells.five STRAfarm = size(five STRAfarm wells,1);

104

105 current use.five STRAfarm(j)=min(current allocation(sample f(j)),

106 five STRAfarm inches(j,39));

107 free ride.five STRAfarm(j)=current allocation(sample f(j))

108 −current use.five STRAfarm(j);

109 free ride.five STRAfarm(find(five STRAfarm inches(j,39)==0))=0;

110 five STRAfarm acres i(j)=five STRAfarm acres(j,39);

111

112 end

113

114 for j=1:size(sample f,1)

115

116 if p2.five STRAfarm(j,40)>0

117 %last zero value

118 loc.start=find(p2.five STRAfarm(j,:)>0.0001,1,'first')−1;

119 %first zero gradient

120 loc.end=(find(p2.five STRAfarm(j,:)>0.0001 & gradient(p2.five STRAfarm(j,:))<0.1,
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121 1,'first')−1);

122 %find baseline for normalization

123 q0=q2.five STRAfarm(j,loc.start);

124

125 q temp=q2.five STRAfarm(j,loc.start:loc.end);%pull out relevant points

126

127 q temp=[q temp−ones(size(q temp)).*q0 five STRAfarm inches(j,39)

128 five STRAfarm inches(j,39)+.00001];%normalize to origin

129

130 %adjust for slack constraints and initial water use

131 q temp=q temp+ones(size(q temp)).*free ride.five STRAfarm(j);

132

133 p temp=[p2.five STRAfarm(j,loc.start:loc.end) p2.five STRAfarm(j,loc.end) 100];

134

135 %the problem is below

136 q junk.five STRAfarm(j,:)=linspace(min(q temp),max(q temp)− 0.01001,48);

137

138 p i.five STRAfarm(j,:)=[pchip(q temp,p temp,q junk.five STRAfarm(j,:))

139 p2.five STRAfarm(j,loc.end) 100];

140

141 q i.five STRAfarm(j,:)=[q junk.five STRAfarm(j,:) max(five STRAfarm inches(j,39),

142 current allocation(sample f(j))) max(five STRAfarm inches(j,39),

143 current allocation(sample f(j)))+0.0001];

144

145 p i.five STRAfarm(j,:)=p i.five STRAfarm(j,:)+linspace(0,1e−6,size(p i.five STRAfarm(j,:),2));

146

147 elseif p2.five STRAfarm(j,40)≤0

148 p i.five STRAfarm(j,:)= zeros(1,50);

149 p i.five STRAfarm(j,1)= 1e10;

150 q i.five STRAfarm(j,:)= zeros(1,50);

151 end

152

153 end

154

155

156 %find the mac (tax) where inches abated equals abatement under NRD allocations

157 tax.five STRAfarm(i) = fzero(@(u) sum(pigou(u,temp wells.five STRAfarm,

158 p i.five STRAfarm,q i.five STRAfarm,

159 five STRAfarm acres i))−sum(initial abate.five STRAfarm),10);

160

161 %vector of macs

162 mac.tax.five STRAfarm = tax.five STRAfarm(i)*ones(size(five STRAfarm wells,1),1);
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163

164 for j=1:size(sample f,1)

165

166 if p i.five STRAfarm(j,50)>0

167 %find acre inches reduced under equalized mac

168 reduced allocation.five STRAfarm(j) = pchip(p i.five STRAfarm(j,:),q i.five STRAfarm(j,:),

169 mac.tax.five STRAfarm(j))*five STRAfarm acres(j,39);

170 reduced allocation inches.five STRAfarm(j)=pchip(p i.five STRAfarm(j,:),q i.five STRAfarm(j,:),

171 mac.tax.five STRAfarm(j)); %find inches per acre reduced under equalized mac

172

173 elseif p i.five STRAfarm(j,50)≤0

174

175 reduced allocation.five STRAfarm(j) =0; %for dryland wells

176

177 reduced allocation inches.five STRAfarm(j)= 0; %for dryland wells

178

179 end

180

181 acreinches traded.five STRAfarm(j)=reduced allocation.five STRAfarm(j)

182 −initial abate.five STRAfarm(j);

183

184 temp free.five STRAfarm(j)=free ride.five STRAfarm(j)*five STRAfarm acres(j,39);

185

186 inches traded.five STRAfarm(j)=reduced allocation inches.five STRAfarm(j)

187 −initial abate inches.five STRAfarm(j);

188

189 end

190

191 for j=1:size(sample f,1)

192

193 if q i.five STRAfarm(j,50)>0

194 q tc interp.five STRAfarm(j,:)=linspace(min(q i.five STRAfarm(j,:)),

195 max(q i.five STRAfarm(j,:)),101);

196

197 tc interp.five STRAfarm(j,:) = pchip(q i.five STRAfarm(j,:),p i.five STRAfarm(j,:),

198 q tc interp.five STRAfarm(j,:))

199 *triu(ones(101))/100*(max(q i.five STRAfarm(j,:))−min(q i.five STRAfarm(j,:)));

200

201 if q tc interp.five STRAfarm(j,1)>0

202

203 tc.abate.five STRAfarm(j)=0;

204 mac.abate.five STRAfarm(j)=0;
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205

206 else

207 tc.abate.five STRAfarm(j)=pchip(q tc interp.five STRAfarm(j,:),...

208 [tc interp.five STRAfarm(j,1:find(q tc interp.five STRAfarm(j,:)<

209 max(q tc interp.five STRAfarm(j,:)),1,'last'))...

210 tc interp.five STRAfarm(j,find(q tc interp.five STRAfarm(j,:)<

211 max(q tc interp.five STRAfarm(j,:)),1,'last'))+.00001],

212 initial abate inches.five STRAfarm(j));

213

214 mac.abate.five STRAfarm(j)=pchip(q i.five STRAfarm(j,:),p i.five STRAfarm(j,:),

215 initial abate inches.five STRAfarm(j));

216

217 end

218

219 tc.trade.five STRAfarm(j)=pchip(q tc interp.five STRAfarm(j,:),...

220 [tc interp.five STRAfarm(j,1:find(q tc interp.five STRAfarm(j,:)<

221 max(q tc interp.five STRAfarm(j,:)),1,'last'))...

222 tc interp.five STRAfarm(j,find(q tc interp.five STRAfarm(j,:)<

223 max(q tc interp.five STRAfarm(j,:)),1,'last'))

224 +.00001],reduced allocation inches.five STRAfarm(j));

225

226 else

227 tc.abate.five STRAfarm(j)=0;

228 tc.trade.five STRAfarm(j)=0;

229

230 end

231

232 market cost trade.five STRAfarm(j)= inches traded.five STRAfarm(j)

233 *mac.tax.five STRAfarm(j);

234

235 welfare gain.five STRAfarm(j) = (tc.abate.five STRAfarm(j)− tc.trade.five STRAfarm(j)

236 + market cost trade.five STRAfarm(j))*five STRAfarm acres(j,39);

237

238 if welfare gain.five STRAfarm(j)<0

239 welfare gain.five STRAfarm(j)=0;

240 end

241

242 end

243

244 % Scale the sample estimates back to population estimates by well numbers

245 sum gain.five STRAfarm(i)=sum(welfare gain.five STRAfarm(1:size(sample f,1)))

246 *num wells/size(sample f,1);
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247

248 tot area.five STRAfarm(i)=sum(wells{2}(sample f));

249

250 % Scale the sample estimates back to population estimates by acres

251 sum gain area.five STRAfarm(i)=sum(welfare gain.five STRAfarm(1:size(sample f,1)))

252 *sum(wells{55}(firstwell))/tot area.five STRAfarm(i);

253 sum gain area.five STRAfarm adj(i)=sum(welfare gain.five STRAfarm(1:size(sample fs,1)))

254 *sum(gbg(small))/sum(wells{2}(sample fs))...

255 +sum(welfare gain.five STRAfarm(size(sample fs,1)

256 +1:(size(sample fs,1)+size(sample fm,1))))

257 *sum(gbg(medium))/sum(wells{2}(sample fm))...

258 +sum(welfare gain.five STRAfarm((size(sample fs,1)

259 +size(sample fm,1)+1):size(five STRAfarm wells,1)))

260 *sum(gbg(large))/sum(wells{2}(sample fl));

261

262 % Get other characteristics of the samples

263 tot lift.five STRAfarm(i)=mean(five STRAfarm lift(1:size(sample f,1)));

264 tot yield.five STRAfarm(i)=mean(five STRAfarm yield(1:size(sample f,1)));

265

266 % The number of buyers, sellers and outsiders.

267 buy.er five STRAfarm(i)=sum(market cost trade.five STRAfarm(1:size(sample f,1))<0);

268 out.er five STRAfarm(i)=sum(market cost trade.five STRAfarm(1:size(sample f,1))==0);

269 sell.er five STRAfarm(i)=sum(market cost trade.five STRAfarm(1:size(sample f,1))>0);

270

271 % The percentage of buyers, sellers and outsiders.

272 buy.er five STRAfarm r(i)=buy.er five STRAfarm(i)/size(sample f,1);

273 out.er five STRAfarm r(i)=out.er five STRAfarm(i)/size(sample f,1);

274 sell.er five STRAfarm r(i)=sell.er five STRAfarm(i)/size(sample f,1);

275

276 % People who sell all their permits and move to dryland

277 sell.all five STRAfarm(i)=sum(inches traded.five STRAfarm(1:size(sample f,1))'

278 ≥current allocation(sample f))/size(sample f,1);

279

280 % Amount of permits traded

281 sell.traded five STRAfarm(i)=sum(abs(inches traded.five STRAfarm(1:size(sample f,1)))

282 *five STRAfarm acres(:,39))/2;

283

284 end

285 toc

286

287 % save it
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