CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 346

10 129A SRS 346 Vol. 2

Copo. 1

STRENGTH AND BEHAVIOR OF PRESTRESSED CONCRETE VESSELS FOR NUCLEAR REACTORS-VOLUME II

by

S. L. Paul, Alan Zimmer, H. L. Gotschall, R. H. Matson B. I. Karlsson, B. Mohraz, W. C. Schnobrich, M. A. Sozen

> Metz Reference Room Civil Engineering Bepartment BlO6 C. E. Building University of Illincie Urbana, Illincis 61801

Subcontract No. 2906 Contract No. W-7405-eng-26

A REPORT ON AN INVESTIGATION CARRIED OUT AS PART OF THE PRESTRESSED CONCRETE REACTOR VESSEL PROGRAM OF THE OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION FOR THE U. S. ATOMIC ENERGY COMMISSION

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS JULY, 1969

Metz Reference Room Civil Engineering Department Blog C. E. Building University of Illinois Urbana. Illinois 61801

CIVIL ENGINEERING STUDIES STRUCTURAL RESEARCH SERIES NO. 346

STRENGTH AND BEHAVIOR OF PRESTRESSED CONCRETE VESSELS FOR NUCLEAR REACTORS-VOLUME II

Ьy

S. L. Paul, A. Zimmer, H. L. Gotschall, R. H. Matson, B. I. Karlsson, B. Mohraz, M. A. Sozen, W. C. Schnobrich

July 1969

Subcontract No. 2906 Under Contract No. W-7405-eng-26

A Report on an Investigation carried out as part of the Prestressed Concrete Reactor Vessel Program of the Oak Ridge National Laboratory

Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission

> University of Illinois Urbana, Illinois

·•. ξ., .,

CONTENTS

STRENGTH AND BEHAVIOR OF PRESTRESSED CONCRETE VESSELS FOR NUCLEAR REACTORS VOLUME II

APPENDIX A MATERIAL PROPERTIES, SPECIMEN FABRICATION, TEST SETUP

APPENDIX B TEST DATA

APPENDIX C STRAIN DISTRIBUTION IN THE CIRCUMFERENTIAL REINFORCEMENT

APPENDIX D STIFFNESS MATRIX FOR THE LUMPED-PARAMETER ELEMENT

APPENDIX E COMPUTER PROGRAM LISTING

	,		
			, 1 -
			•
			٦.
		•	1
	a da sera da compositiva da compositiva da compositiva da compositiva da compositiva da compositiva da composit A data	an 1979 - Alexandra ann an Alexandra ann an Alexandra. Anns an Alexandra	
		· · · · · · · · · · · · · · · · · · ·	
	the group outering to be the		
			,e -
	Υ.		×
			r *
			×
			÷ 1
			· ·
			.e
.		ana a na mana ana ana ana ana ana ana an	197 ti kana ka amata k
			-
			ŝ.
			· · · ·
			·
		· · ·	4 [*] 1
)
			ч. Х
			:
			`
			, <u>.</u>
			(
			-

APPENDIX A

.

.

MATERIAL PROPERTIES, SPECIMEN FABRICATION, TEST SETUP

۰.

Appendix A

A1 MATERIALS

Al.1 Concrete

Test vessels PV1 and PV2 were cast from ready-mix concrete obtained from a local plant. The mix was specified to contain pea gravel aggregate and seven bags of type I cement per cubic yard of concrete.

Test vessels PV3 through PV14 were cast from concrete mixed in the laboratory. The proportions by weight of cement:sand:gravel were 1.00:3.51:3.40. Type III cement was used with a water cement ratio of 0.74. The aggregates were crushed limestone with a maximum particle size of one in. and Wabash River sand.

The concrete for vessel PV15 contained pea gravel aggregate and Wabash River sand with type III cement. The proportions by weight of cement:sand:gravel were 1.00:2.77:3.07 and the water cement ratio was 0.56. The end slab and top two inches of the skirt of vessel PV16 were cast from the same mix used for vessels PV3 through PV14. The remainder of the skirt was cast with the mix used for vessel PV15.

Table Al gives the properties of the concrete used in the end slabs of the vessels. Two batches of concrete were required to cast vessels PV3 through PV10. Vessels PV11 through PV16 required three batches of concrete. Compression tests were conducted on five 6x12-in. cylinders from each batch. Five 6x6-in. cylinders were cast from the batch used in the end slab for use in the split cylinder test. Figure Ala shows the range of the modulus of elasticity measurements. Figure Alb is a plot of the results of the individual splitting-strength tests versus the average compressive strength in each vessel.

Two creep racks were assembled as shown in Figure A2. The results of the creep and shrinkage determinations are presented in Fig. A3. Each curve represents the average of readings from three cylinders. The 6x12-in. cylinders used for creep and shrinkage measurements were cast from concrete with the same proportions as the concrete in the vessels. The concrete in Batch I was left in the cylinder forms for two days, cured under wet burlap for seven days, and loaded to 1000 psi on 9 February 1968 at the age of eleven days. The concrete in Batch II was left in the forms for two days, cured under wet burlap for six days, and loaded to 1000 psi on 16 February 1968 at the age of ten days. Three ten-in. gage lines were established on each cylinder for measurement of deformations. Companion cylinders for each creep rack were also equipped with gage lines and stored in the laboratory for shrinkage measurements. All measurements were taken with a 0.0001-in. Whittemore gage over a ten-in. gage length. The environmental control in the laboratory is set at 50 percent relative humidity and 72°F.

Al.2 Longitudinal Reinforcement

Vessels PVI and PVII through PVI6 were prestressed with 0.775-in. diameter Stressteel rods. Vessels PV2 through PVI0 were prestressed with 1/2-in. diameter seven-wire strand.

The results of a tensile test of a 30-in. Stressteel rod are plotted in Fig. A4. The strain was measured using an eight-in. extensometer. The ultimate stress in the rod, which had a measured cross-sectional area of 0.471 sq. in. was 140 ksi.

The apparatus used to determine the "spring factor" of the 1/2-in. strand is shown in Fig. A5. The length of strand between strandvises is approximately the same as the length between the vises in the test setup. The load on the strand was cycled six times between zero and thirty kips. The load deformation characteristics of the strand under these testing conditions are presented for the first three loadings in Fig. A6. By the third loading cycle the stiffness of the strand was constant. The stiffness of the strand depended on the torsional fixity of the strandvises and on the slippage of the outer wires relative to the central wire. The nominal area of the strand was 0.151 sq. in.

A1.3 Circumferential Reinforcement

The wire that was used to prestress the vessels circumferentially was obtained from INTERPACE. Tests conducted on samples cut from the unstressed coil before prestressing and cut from the wire on the vessels after pressure testing showed no significant difference in stress-strain response. Typical stress-strain curves for each size wire used are shown in Fig. A7.

The wire used on vessels PV1 through PV10 had a diameter of 0.192 in. and a computed area of 0.0290 sq. in. Deformations to about two percent were measured with a two-in. electrical extensometer. The strain at failure was obtained from measuring the change in length of a five-in. gage length etched into the wire before the test.

The wire used on vessels PVII through PVI6 had a diameter of 0.250-in. and a computed area of 0.0491 sq. in. The wire was tested on a

Baldwin testing machine. Tests were made using a two-in. electrical extensometer to measure deformations. Another set of tests was made using a portable strain indicator to read strain from two BLH HE121 strain gages. The two strain gages were mounted on opposite sides of the wire and wired in series in order to average the strain readings.

Al.4 Liner Materials

The neoprene used to seal the pressure vessels was purchased in 200-1b. rolls. The sheets were 72 in. wide and 1/16 in. thick. It was specified as "60 Durometer Shore A Black neoprene Sheeting, Type #260.

The O-ring material was obtained in 200-ft lengths. The diameters of the 3/16-in. and 3/4-in. O-ring stock were 0.210 ± 0.010 -in. and 0.750 ± 0.010 -in. respectively. The material was specified as "70 Durometer Shore A Extruded Buna N O-ring cord stock".

The caulking used to complete the seal at the end slab was General Electric Silicone Caulking.

Sheets of aluminum with a thickness of 0.017-in. were used on the sides and end slabs of some of the vessels. Sheets of 16-oz. soft copper were used on vessels PV12 through PV16 in addition to the aluminum sheets.

Metz Reference Rock Civil Engineering Department BlOS C. E. Building University of Illinois Urbena, Illinois 61601

A2 FABRICATION

A2.1 Casting and Curing

The pressure vessels were cast in the steel form shown in Fig. A8. The same outer form was used for all sixteen vessels. This form was rolled from 5/16-in. steel plate and reinforced with rolled 2x2x1/4 in. angles. The inner form, which was a closed cylinder, and the outer form are bolted to a 1/2-in. thick base plate. The inner form for vessels PV1 through PV10, thirty-in. inside diameter, was rolled from 3/16-in. plate. Both forms used the same five-piece construction. Holes were drilled into the base plate to receive 7/8-in. diameter rods which formed ducts for the longitudinal prestressing. For vessels PV15 and PV16 which had two rows of longitudinal prestressing., 1-in. round electrical conduit was used to form the ducts for the second row of prestressing. The tops of the rods and sections of conduit were secured by a template of 1/2-in. steel plate which was supported by sections of 4-in. wide channel attached to the sides of the form. The center of the template plate was cut out to permit access to the form for the concrete and to facilitate finishing the surface of the concrete.

Vessels PV1 and PV2 were cast continuously from ready-mix concrete. All other specimens were cast in either two or three batches as noted previously. The batches were proportioned so that the end slab and at least 2-in. of the skirt were cast from a single batch. The concrete was vibrated internally with an electric vibrator during casting. Five 6x12-in. cylinders were cast from each batch. Five 6x6-in. cylinders were also cast from the end slab batch for use in the splitting test. The side walls of vessels PV11 through PV16 were reinforced with No. 4 bars to have a reinforcement

ratio of one percent. The bars were placed longitudinally about 1/2-in. from the outside surface of the concrete.

When the concrete had begun to set, usually about three hours after casting, the greased rods and conduit sections were manually extracted and the top of the vessel was trowelled to a smooth finish. The vessels were then covered with polyethylene film until the form was struck on the second day after casting. The vessels were cured under wet burlap for one week in the laboratory which had environmental control set at 70°F and 50 percent relative humidity.

A2.2 Circumferential Prestressing

The INTERPACE plant at South Beloit, Illinois, made their facilities available for applying the circumferential prestressing wire. A mandrel and end fittings as shown in Fig. A9 were designed to adapt the vessels to the equipment at INTERPACE, which is normally used to wrap concrete pipe. The vessels were transported to and from South Beloit by truck.

Anchors for the prestressing wire were cast into the vessels. An anchor is shown bolted to the form in Fig. Al0a. Figure Al0b shows a closeup of the anchor. A steel block about $3/4 \times 3/4 \times 1$ -1/4 in. is grooved and stamped, forming a toothed channel to grasp the wire. The block is then welded to a 3/8-in. diameter rod that has been bent into a U-shape to provide anchorage. The block and rod are hardened as a unit. The anchors were provided by INTERPACE and performed very well throughout the test series.

The prestressing operation was started by securing the wire in the anchor at the closed end. This was done by driving the wire into the toothed channel with a hammer. The first wrap of prestress was applied at a slightly reduced load. Subsequent wraps of the 0.192-in. diameter wire were applied at a tension of 4800 lb. Tension in subsequent wraps of the 0.250-in. diameter wire were applied at a tension of 7,800 lb.

A schematic diagram of the machine at INTERPACE is shown in Fig. All. When the mandrel and vessels were in place, an axial load of about 20,000 lb was applied to create a friction force between the end fittings and the rubber bearing surfaces on the turning heads. The turning heads were rotated by a motor mounted at one end of the frame. The prestressing wire passed through a straight duct about 50 ft long from an uncoiling area to a friction wheel. The wire then passed through a load cell above the friction wheel and travelled overhead to the spacing apparatus which ran on a track above the mandrel and vessels. The spacing apparatus could advance automatically at a rate proportional to rotation of the turning heads or be adjusted by an operator. Tension was developed in the wire at the friction wheel by a D. C. motor which supplied a resisting torque. The load cell, which is located above the friction wheel, gave an account of the tension in the wire. Deviation from the desired load could be compensated by adjusting the torque transmitted by the D. C. motor. The load cell was calibrated to indicate the tension in the wire at the turning heads.

Approximately five minutes were required to prestress a vessel. Figure Al2 contains two plots showing the variation of the load in the wire

as wrapping proceeded from the end slab of the vessel toward the open end. The data for Fig. Al2 were obtained from recording equipment at INTERPACE which showed a plot of load versus time.

The force in the wire as it was being wrapped around the specimen was known. To obtain the effective prestress at the time of the test, the following procedure was used. All calculations referred to the prestress around the end slab. The initial prestress was assumed to be the force in the wire less the calculated effect of the reduction in diameter of the vessel due to elastic deformation of the concrete. The time-dependent losses were estimated using the creep and shrinkage data given in Fig. A3. Relaxation of the prestress wire, estimated to be less than four percent in most cases, was ignored because of lack of directly relevant data and because the scatter in the time-dependent properties of the concrete was expected to be much larger. The increase in circumferential prestress caused by longitudinal prestressing was calculated by assuming that the Poisson's ratio for concrete was 0.15.

A2.3 Longitudinal Prestressing

Vessel PVI was prestressed longitudinally with ten 0.775-in. diameter Stressteel bolts. Vessels PV2 through PVI0 were prestressed with seven-wire, 0.5-in. diameter strand. The use of strand was more economical and permitted the longitudinal restraining force of the prestressing tendons to be more evenly distributed about the periphery of the vessel. With the higher pressure required for vessels PVII through PVI6, it was necessary to use Stressteel bolts for prestressing in order to develop the necessary clamping force at the base.

Strain gages were placed on some of the Stressteel bolts, and these bolts were calibrated in the laboratory. Loading of the bolts was accomplished with a 30 ton Simplex jack with the scheme shown in Fig. Al3. The jack chair permitted a nut to be tightened against a 3x3x1-in. steel bearing plate so that the load in the jack could be transferred with a minimum loss. For vessels PV13 through PV16 where sixty bolts were used for the prestressing, a continuous steel plate 1 1/4-in. thick was used for the bearing plate rather than the individual plates. The load in the bolts after the jack was released varied from 40 to 45 kips. The average load in the bolts after prestressing was completed, was less than 40 kips since the loading of a bolt adjacent to an already loaded bolt tended to reduce the load carried by the loaded bolt. The effect was increased as the number of bolts used for the prestressing was increased.

Figure A14 shows the method of prestressing the strand. The applied load was monitored either by a load cell between the jack and the top strandvise or by measuring the oil pressure in the line to the Simplex jack. Those strands that were to be monitored during the test were equipped with a load cell between the four-in. plate at the open end of the vessel and the bottom strandvise. After a load of ²/₂4 kips was applied, the jaws of the strandvises were set either by driving slotted wedges between the bearing plate and the strandvise or by driving the jaws down the strand with an implement designed to fit around the strand and inside the body of the vise. Those strands equipped with load cells under the four-in. plate carried an average load of about 20 kips after the jack was released.

The force in the strand for vessels PV2 through PV10 and in the Stressteel bolts for PV1 was monitored immediately after prestressing. To obtain the effective prestress at the time of the test, the time-dependent losses were estimated using the creep and shrinkage data given in Fig. A3 and subtracted from the initial prestress. The force in the Stressteel bolts for vessels PV11 through PV16 was monitored immediately after prestressing and immediately before the test so that the vertical prestressing force was known at the time of the test.

A2.4 Liner

A detail of the liner in each vessel is provided in Appendix B. The scheme for sealing vessels PV1 through PV5 was as follows. After cleaning the inside and filling the voids with Hydrocal, successive layers of 1/16-in. neoprene, 18 gage sheet metal, and 1/16-in. neoprene were placed on the inside surface of the end slab, using contact cement to hold them in place. A six-in. wide strip of 20-gage sheet metal was cemented to the side wall just below the end slab (Fig. Bl.2).

The connection between the concrete and the steel sealing ring was achieved by welding an eight-in. wide strip of sheet metal to the ring. The neoprene sheet placed on the side wall butted the seal on the end slab and lapped over the sheet metal at the sealing ring. Contact cement was used to secure the neoprene to all surfaces except to the sheet metal at the sealing ring where rubber cement was used. Rubber cement was also used at the lapped joint in the neoprene. All surfaces to be cemented were carefully cleaned with benzene.

The seal at the junction of the end slab and side wall was made by embedding a 3/4-in. O-ring in General Electric Silicone Caulking. The seal between the steel base plate and the sealing ring was made by compressing a 3/16-in. O-ring into the groove in the base plate (Fig. A15).

Difficulties were encountered with this method of sealing at higher pressures. The details of the seal were changed for vessels PV6 through PV12. These changes are reported in Appendix B. The seal for vessel PV12 proved to be satisfactory for high pressures and was used without change for the remaining vessels.

The seal used for vessel PV12 through PV16 consisted of lining the wall and end slab with a sheet of 0.017-in. thick aluminum bonded to the concrete with rubber cement (Fig. Bl2.1). Next, a liner of 16-oz. soft copper was placed over the aluminum. The copper-aluminum interface was greased so that the copper would not develop large stress concentrations during deformation. The copper sheet used on the end slab had a one-in. lip which was soldered to the copper sheet on the wall. The lap in the copper wall sheet was also soldered as was the copper-steel joint at the one-in. steel base ring. The vessels were then lightly prestressed iongitudinally and pressurized to 50 psi gas pressure to deform the metal liners to the contours of the concrete and to check for any major leaks in the liner. A layer of 1/16-in, thick neoprene was placed over the copper and secured with rubber cement. A 3/4-in. neoprene 0-ring was also installed at the junction of the end slab and the side wall.

A3 TEST SETUP

The test shed was erected on the grounds of the Structural Dynamics Laboratory which is situated in farmland about three miles south of the university campus (Fig. Al6a). The shed is a wooden enclosure built on a twelve-ft square slab-on-grade floor. It features a 5 by 5 ft steel test chamber in its center which extends from the floor through a hole in the roof. The test chamber was constructed of four 4 x 4 x 3/8 in. angles which extend vertically from the corners of the opening to the floor with 0.5 in. steel plate on the four sides. Figure Al6b shows vessel PV8 inside the test chamber after the test. A hatch was provided to cover the hole in the roof when the shed was not in use. During tests the hole was covered with layers of wire mesh to impede concrete projectiles. For vessels PV11 through PV16, three layers of wire blast mats were used to cover the hole. The blast mats were anchored with 3/8-in. cable fastened to ground anchors at the sides of the shed.

After the liner and one-in. steel ring were in place (see Section A2.3 on the assembly of the liner) the vessel was placed on a four-in. thick circular steel plate shown in Fig. Al5. A 3/16-in. O-ring was compressed between the one-in. ring and the four-in. closure plate to complete the seal. In vessels PVI through PV8 a ten cubic-ft block-out was provided to fill part of the void inside the vessel and reduce the quantity of compressed gas that would be released when failure occurred. The block-out was a closed cylinder filled with vermiculite concrete for the first three tests. On the third test a leak in the block-out permitted it to become filled with gas,

causing the block-out to burst when the vessel failed. In subsequent vessels up to PV8 the block-out was filled with water. In vessels PV9 through PV16 the entire vessel was filled with water to within approximately 1/2-in. of the end slab.

Figure A17 shows the gas supply and pressure regulating scheme used to pressurize the vessels. Nitrogen gas was admitted to the vessels in the test shed through a 1/4-in. copper line from a series of gas supply bottles. The pressure within the vessel was monitored by a Bourdon test gage with 1/4 percent accuracy which was connected by a second 1/4-in. copper line to the vessel. This second line for pressure measurement eliminated error in the pressure reading due to gas flow in the line. The gas supply line and pressure monitoring line were connected through the steel base plate on the vessel.

Vessels PV9 and PV10 were exceptions to the general test setup in that they were tested using oil pressure and were tested inside the Structural Dynamics Laboratory. The remote monitoring of the tests was not necessary since compressed gas was not used in the test and the failure did not result in a violent release of energy.

A4 INSTRUMENTATION AND TEST PROCEDURE

In general the instrumentation consisted of deflection measurements across one diameter of the head and down the side on a line at one end of this diameter, strain measurements on the concrete on the inside face of the end slab on four diameters 45 degrees apart and on the outside face on two diameters, strain measurements on the circumferential prestressing steel, and change in force in the load cells on some of the longitudinal prestressing tendons. The diameter on the outside of the end slab on which deflections were measured was offset 3 degrees from one of the diameters on which strains were measured. The strain gages on the circumferential steel reinforcement were placed after the steel was wrapped so that only the change in strain during the test was measured. The load cells on the longitudinal prestressing were monitored during the prestressing operation and during the test so that the total load could be calculated. The Stressteel bolts were gaged with BLH A-19 strain gages and calibrated in a testing machine, thus eliminating the need for external load cells for the bolts. The actual number of measurements of each type and their locations are shown in Appendix B for each test.

The strain gages used on the concrete were BLH type A12 which have a one-in. gage length and are flat wound wire gages with paper backing. These gages were applied with Eastman 910 cement. There was some concern that the strain gages located on the inside of the head would be affected by the normal pressure on the gage grid. This problem has been the subject of several investigations one of which is reported in Ref. A1. These studies show that gages which are properly applied have a response resulting from

normal pressure sufficiently small that it could not be distinguished from the scatter in the strain measurements for these tests. On the inside of the head the gages were applied by first sanding the concrete to a smooth finish and then placing a layer of cement on the concrete and allowing it to set. The gages were then cemented to this prepared surface with Eastman 910 cement and a soft rubbery protective coating placed over the gage. After the protective coating had set, a 1/16 in. sheet of neoprene was glued over the gages to provide further protection and assure that the applied pressure was uniformly distributed over the gage. In vessels PV7 through PV16, the end slab was covered with a 1/4-in. thick layer of Hydrocal. Conductors from the inside strain gages were glued to the inside wall of the test vessel from the gages to the corner where the head and wall meet. At this point a hole was drilled through the wall and the leads run through this hole which was then resealed with epoxy. The entire inside surface of the end slab was then covered with a 1/4-in. thick layer of hydrocal. The neoprene gas seal was then placed over the hydrocal which covered the wires and the hole in the wall. On vessels PVII through PVI6, the gage wires were run down, the inside of the vessel and out between the concrete and the one-in. steel ring. Channels 1 in. wide by 1/4-in. deep were cast in the concrete to accommodate the gage wires. On the outer surface of the concrete the strain gages were applied in the same manner, but no protective coating was used on them. The strain gages used to measure change in strain of the circumferential reinforcement were BLH type A19 which is a flat grid wire gage with a gage length of 1/16 in. and temperature compensation for steel. These gages were applied with Eastman 910 cement following standard procedures.

The load cells used to measure load in the longitudinal strand consisted of 6-in.-long aluminum cylinders 1 3/8 in. in diameter with a 5/8 in. longitudinal hole drilled through it. The aluminum in these cylinders was a soft bar stock of 2014 alloy and was heat treated in our laboratory to meet specifications for 2014-T6 temper. Four strain gages were cemented to the outside of these cylinders and wired into a full bridge. The strand was threaded into these cylinders at the lower end of the test specimen, and the change in strain monitored as the load changed in the strand. Before they were used, the load cells were calibrated in a testing machine by applying a direct compression to them. Different numbers of load cells were used in the various tests as indicated in Appendix B.

All the tests except PV9 and PV10, were performed in the test shed which was about 100 ft from the Structural Dynamics Laboratory. Approximately 135 ft of cable was required to reach the area where readings were taken in the main laboratory. A 4-conductor cable with heavy rubber coating passing through an overhead metal cable tray was used between the two buildings. This cable is Belden 8424 and contains 20 gage conductors. Several of the tests were performed during the winter so a heater was placed in the test shed to keep it warm enough for men to work. It was not possible to maintain room temperature at all times with this heater but temperature compensating strain gages were placed in the test chamber with the test specimen. The specimen was then left in the test shed for sufficient time to allow the temperature to stabilize.

Strains on the first 5 specimens were read with two BLH portable strain indicators model number 120 C in the main laboratory at the end of

the 135 ft lead wires. This strain indicator is designed to excite the bridge with an alternating square wave in order to reduce the effects of capacitance in the leads to the strain gages. However, since the leads were rather long in this case special precautions were taken. For each type of bridge used on the test vessel the effect of a given shunt was read with the indicator at the bridge. Then, with the strain indicator connected to the bridge through the long leads, the gage factor was adjusted so that the same shunt had the same effect on the bridge. This slightly adjusted gage factor was then used when the strains were read during the test. During tests PV6, PV7, and PV8 strains were read with an automatic device assembled from components in our own laboratory. An automatic stepping switch was used to switch gages, the voltage difference across two corners of the bridge was read with a digital volt meter, and the resulting voltage was printed on a paper tape with a line printer. The device was calibrated by applying shunts of known value to the bridges and the compensation for long leads was made in a manner similar to that used for the portable strain indicator. Strains read with the portable strain indicator have an accuracy of the order of + 5 μ in./in. while those read with the automatic reading device were somewhat more erratic and have and accuracy of approximately \pm 20 μ in./in. The portable strain indicators used for tests PVI through PV5 were used for tests PV9 through PV16.

Deflections across the head of the specimen and down the outside wall were measured with 0.001 in. Ames dial gages located within the test shed but outside the test specimen enclosure. The dial gages were connected

to piano wires which were strung over ball bearing pulleys and attached to metal tabs glued to the specimen. Tension springs connected to the back end of the dial gage plunger kept the piano wire taut. The pulleys over the top of the specimen were attached to an arm which was broken off by the flying debris each time a specimen failed. The dial gages were read with a closed circuit television hookup with the receiver in the main laboratory. The television camera was located inside the test shed but outside the test specimen enclosure, had a telephoto lens so that the dial gage face almost filled the television receiver screen, and was mounted on a system of two television antenna rotors so that it could be adjusted in direction for each gage. This arrangement proved quite satisfactory for this purpose, though some of the gages were damaged by the sudden tension on the piano wire at failure of the specimen. A second television camera was set up outside the test specimen enclosure and aimed through a hole in the enclosure at a mirror to observe crack development on the end slab of the vessels.

Pressure was applied to the inside of the specimen with bottled nitrogen through a regulator. With this regulator in the line, a pressure could be set and maintained in the specimen though there was a small leak, because more gas would be supplied through the regulator as soon as the pressure dropped below the set value. Pressure within the specimen was monitored with a Bourdon pressure gage. During a test the gas pressure was increased in increments and once the pressure was set and became stable all measurements were taken. Approximately 10 to 15 minutes were usually

required to take all the readings. The size of pressure increments varied between tests depending on the anticipated maximum pressure. In general the size of the increments was reduced as failure approached.

TABLE A1

Mark	Age at Test days	Slump in.	Modulus of Elasticity psi x10	Splitting Strength 6x6-in. cylinder psi	Compressive Strength 6x12-in. cylinder psi
PV1	71	3 1/2	4.2	432	5680
PV2	105	5	3.5	398	4955
PV3	36		4.2	450	6250
PV4	38	1 3/4	4.2	380	5680
PV5	32	3/4	4.1	439	6250
pv6	42	1	4.1	398	5805
PV7	54	T	4.6	506	6720
pv8	78	1 1/4	4.8	443	7230
PV9	71	1 1/2	4.3	446	7140
PV10	54	1 1/2	4.0	394	7005
PV11	64	1	4.5	514	6830
PV12	89	3	4.4	456	5860
PV13	84	1 1/4	4.2	490	6750
PV14	107	2 1/4	4.3	465	6880
PV15	39	1 1/2	4.2	531	7340
PV16	79	2	4.0	518	7450

CONCRETE PROPERTIES

FIG. Alb SLITTING STRENGTH vs AVERAGE COMPRESSIVE STRENGTH

FIG. A2 CREEF RACK

FIG. A3 SHRINKAGE STRAIN AND TOTAL STRAIN FOR 6x12-in. CYLINDER UNDER 1000 psi COMPRESSION

FIG. A4 STRESS-STRAIN CURVE FOR STRESSTEEL RODS

FIG. A8a PICTURE OF STEEL FORMS SHOWING TEMPLATE

FIG. A85 DETAIL OF THE STEEL FORMS USED TO CAST PRESSURE VESSELS

FIG. AlOa ANCHOR BOLTED TO FORM

FIG. ATOB CLOSEUP OF A TYPICAL ANCHOR

FIG. All SCHEMATIC DIAGRAM OF THE EQUIPMENT AT INTERPACE USED TO PRESTRESS THE PRESSURE VESSELS

FIG. A13 APPARATUS USED TO PRESTRESS STRESSTEEL RODS

A32

FIG. A14 APPARATUS USED TO PRESTRESS THE STRAND

Base Plate

Detail of Groove

FIG. A15a BASE PLATE

Base Plate

Detail of Groove

FIG. A15b Base Plate

FIG. A16a THE TESTING SHED

FIG. A165 PV8 IN THE TEST CHAMBER

·

GAGE -

(4)

 \sim

5

(1)

2

3

TEST GAGE

A 37

APPENDIX B TEST DATA

ł

APPENDIX B

TEST DATA

INTRODUCTION

This appendix contains test descriptions and data for each of the 16 vessel tests. The dates of casting, prestressing, and testing of each specimen is recorded in Table B1. Vessel dimensions, prestress data, concrete strength, type of failure, and failure pressure are summarized in Tables 2.1 and 2.2 of the first volume of this report. For convenient reference these tables are repeated as Tables B2 and B3 in this appendix.

The numerical designation of each section corresponds to the designation of the vessel which it describes. Each section consists of a description of the test and descriptive information concerning the vessel and instrumentation, followed by the data resulting from the test in graphic form. The nominal thickness and wire spacing, designated t and s respectively, are given in the captions for each section. Those data which were obviously in error were discarded in order to reduce the volume of material. Some editing of data was performed where it was apparent that the zero for strain shifted, or that an error was made in a reading. The data consists first of deflection information and then concrete strains, circumferential reinforcement strains, and changes in longitudinal reinforcement force. The strain and force measurements presented were started after prestress was completed, and therefore are the result of application of internal pressure.

Development of leaks prevented completion of tests PV6, PV8, and PV11 on the first try. These vessels were resealed and retested; a third attempt was required for PV6 and a fourth for PV11 before failure was attained. For these three vessels complete data for only the first tests are presented. The sealing details, center deflection of the end slab, and change in load in the longitudinal reinforcement are presented for the final test as well.

The same general arrangement of instrumentation was used for tests PV1 through PV5. A different but consistent arrangement of strain gage locations was used for tests PV6 through PV16 except for PV14 which was different from the other two arrangements. The locations of the gages for each test vessel are shown in the appendix and minor changes in instrumentation may be detected in the descriptive material.

TABLE B1

CHRONOLOGY

	ana gana tana ta	Cincumforontial		1993
Mark	Casting	Prestressing	Prestressing	Testing
PV1	8-17-67	9-23-67	10-16-67	10-27-67
PV2	8-23-67	9-23-67	12-1-67	12-6-67
PV3	11-16-67	12-15-67	12-19-67	12-22-67
PV4	11-29-67	12-15-67	1-2-68	1-5-68
PV5	12-18-67	1-9-68	1-16-68	1-19-68
PV6	12-22-67	1-9-68	1-29-68	2-2-68
PV6.1	100 mas	9001 AND	2-6-68	2-8-68
PV6 .2	4600 BD19		2-8-68	2-8-68
PV7	1-4-68	1-22-68	2-22-68	2-27-68
PV8	1-10-68	1-22-68	3=20-68	3-26-68
PV8.1	5000 X000		3=27-68	3-28-68
PV9	4-17-68	5-2-68	6-26-68	6-27-68
PV10	4-24-68	5-2-68	6-17-68	6-18-68
PV11	7-15-68	7-31-68	9-11-68	9-17-68
PV11.1	east that		9-23-68	9-25-68
PV11.2	n an			
PV11.3		### (###		
PV12	7-19-68	7-31-68	10-10-68	10-16-68
PV13	8-14-68	9-4-68	11-1-68	11-6-68
PV14	8-19-68	9-4-68	11–21–68 12–2–68	12-4-68
PV15	11-7-68	11-26-68	12-13-68	12-16-68
PV16	11-12-68	11-26-68	1 -3 -69 1 -24 -69	1 - 28 - 69

в4

TABLE B2

	Slab	Wall	Circum. Prestress			Long, Prestress			Concrete		
Mark	Thickness	Thickness	Wire Dia.	Wire Spacing	Force per Wire	Tendon Type ^a	Number	Total Force	Comp. Strength	Tens. Strength	Young's Mod.
	in.	in,	in.	in.	kips	· ·		kips	psi	psi	10 ⁶ psi
PV1	6	5	0.192	1.0	4.55	Rod	10	388	5680	432	4.2
PV2	6	5	0.192	1.0	4 .45	Strand	24	388	4955	398	3.5
PV3	7.5	5	0.192	1.0	4.68	Strand	24	392	6250	450	4.2
PV4	6	5	0.102	0.67	4.49	Strand	24	583	5680	380	4.2
PV5	7.5	5 ·	0.192	0.67	4.59	Strand	24	524	6250	439	4.1
PV6	9	5	0.192	0.67	4.51	Strand	30	606	5805	398	4.1
6.1					4.48			639			
6.2			1. A		4,47		22	469			
PV7		5	0.192	0.33	4.23	Strand	30	693	6720	5 06	4.6
PV8	7.5	5	0,192	0.33	4.09	Strand	30	625	7230	443	4.8
8.1								700			
PV9	9	5	0.192	0.33	4.10	Strand	30	750	7140	446	4.3
PV10	7.5	5	0.192	0,33	4.12	Strand	30	750	7005	394	4.0
PV11	7.5	7.5	0.250	0.25	6.06	Rod	30 ^b	694	6830	504	4 . 5 '
11.	1				5.72	1		1030			
PV12	10	7.5	0.250	0.25	5.73	Rod	30	727	5860	456	4.4
PV13	12.5	7.5	0.250	0,25	5,82	Rod	60	1356	6750	490	4.2
PV14	15	7.5	0.250	0.25	5.56	Rod .	60	1370	6880	465	4.3
PV 15	7.5	7.5	0.250	0.25	6.47	Rod	60	1200	7340	531	4.2
PV16	10	7.5	0,250	0.25	5.94	Rod	60	1995	7450	518	4.0

PROPERTIES OF THE TEST VESSELS

^a0.75-in. round Stressteel rods or 0.5-in. round seven-wire strand

^bThis vessel was prestressed longitudinally with 28 rods and two lengths of strand.

		17 all 0 line and the second second second second					•	
Mark	Slab	Span Thickness	Wall Thickness	Concrete Strength f ^I c	Circum. Prestress Index ^b	Long. Prestress Index ^C	Pressure at Failure	Mode of Failure ^d
		ratio	in,	psi	KS 1	K5 I	psi	an gan gan ayan aya aya a a a a a a a a a a a a
PVI		5	5	5680	0.30	0.55	295	F
PV 2		5	· 5 [·]	4955	0.30	0.55	240	FL
PV3		4	5	6250	0.31	0.55	370	F
PV4		5	5	5650	0.45	0.82	390	F
PV5		4	5	6250	0.46	0.74	465	F
PV6		3.3	5	5805	0.45	0.86	570	L
PV6.1						0.90	585	L
PV6.2						0.66	555	F
PV7		3.3	5	6720	0.84	0.98	870	F
PV8		4	5	7230	0.82	0.84	625	L
8.1						0.99	640	F
PV9		3.3	5	7140	0.82	1.06	887	F
PV10		4	5	7005	0.87	1.06	740	F
PV11		3.3	7.5	6830	1.94	1.41	1600	L.
PV11.1					1.83	2.10	2040	S
PV12		2.5	7.5	5860	1.83	1.48	2650	CL
PV13		2	7.5	6750	1.86	2.76	3450	VL
PV 14		1.67	7.5	6880	1.78	2.79	3690	VL
PV15		3.3	7.5	7340	2.07	2,44	2300	S
PV16		2.5	7.5	7450	1,90	4.06	3200	S

TABLE B3 MEASURED INTERNAL PRESSURES AT FAILURE

^aRatio of internal diameter to slab thickness

^bRatio of circumferential prestressing force per unit length to the internal diameter

cRatio of total longitudinal prestressing force to area of cavity at a transverse section

F: Flexural failure of end slab

S: Shear failure of end slab

L: Liner leakage

FL: Test stopped by liner leakage at incipient failure in flexure

CL: Leakage caused by circumferential cracking in the side wall

VL: Leakage caused by longitudinal cracking in the side wall

B1. Test Vessel PV1 (t = 6.0 in., s = 1.0 in.)PV1

Test vessel PV1 was cast from ready-mix concrete and was nearly two months old at the time of the test. When the form was struck. a circumferential crack in the side wall immediately below the end slab was observed inside the specimen. The cause of this crack was evidently the settlement of the concrete after casting while it was still plastic.

The testing of PVI was completed without any problems. The test chamber had been lined with 3/4-in. plywood, and the hatch was covered with a single layer of steel netting. Both of these measures proved to be insufficient to restrain the force of the explosion when the vessel failed at 295 psi. A photograph showing the damage is given in Fig. Bl.21a.

The entire test lasted about three hours. The pressure was increased in increments of 25 psi up to 100 psi, when the increment of loading was decreased to 20 psi. The final cracking mode is illustrated by a photograph of the pieces of the end slab which were reassembled after the test (Fig. B1.21b).

Vessel PVI was prestressed longitudinally with 3/4-in. Stressteel rods. Nine of the ten rods in the vessel had been instrumented with strain gages and calibrated. These were monitored during the test.

в6

Inside Diameter, in.								
51+4 51+4	A	Ą	88					
N-S	30	4 32	29	<u>31</u> 32				
NE-SW	30	0 32	29	<u>31</u> 32				
E-W	30	0 32	30	$\frac{1}{32}$				
SE-NW	30	$\frac{1}{32}$	29	<u>31</u> 32				

FIG. B1.1 DIMENSIONS OF PV1

Wrap No.	® _N	Dε	Ds	₽₩
1	5 3/8	5	5	5 2/8
2	4 7/8	3 7/8	4 6/8	4 4/8
3	3 5/8	2 7/8	3 1/8	3 3/8
4	2 4/8	1 7/8	2 1/8	2 3/8
5	1 4/8	7/8	1	1 1/4
6	4/8	-1/8	0	1/4

FIG. B1.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV1

FIG. B1.4 LOCATION OF DEFLECTION GAGES ON PV1

FIG. 81.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PVI

FIG. B1.6 APPLIED PRESSURE vs DEFLECTION ALONG THE N-HALF OF THE N-S DIAMETER OF PVI

Deflection, in.

FIG. B1.8 APPLIED PRESSURE vs DEFLECTION OF THE SIDE WALL ON PV1

Steel Gages on Prestressing Wire

FIG. B1.13 CONCRETE STRAINS, VESSEL PV1

. .

OF THE N-S DIAMETER OF PV1

Internal pressure, psi

FIG. B1.18 LOCATION OF LONGITUDINAL REINFORCEMENT

1

FIG. 81.20 APPLIED PRESSURE VS THE INCREASE IN LOAD IN STRESSTEEL ROD 21 IN PV1

FIG. B1.21# DAMAGE TO NETTING AND PLYWOOD LINER

FIG. B1.2 b REASSEMBLED PIECES OF THE END SLAB OF PV1

B2 Test Vessel PV2 (t = 6 in., s = 1.0 in.)

Test vessel PV2 was cast from ready-mix concrete. As in PV1 a circumferential crack at the junction of the slab and skirt was observed inside the specimen when the form was struck.

After the testing of PV1, the test chamber was lined with 0.5-in. thick steel plate rather than plywood. A television camera was installed so that the head of PV2 could be observed during the test. The first crack on the outside of the slab was visible at 170 psi. A second crack became visible at about 220 psi.

This test also required about 3 hours for completion. The first load increment was 20 psi followed by increments of 10 psi up to the maximum pressure reached which was 240 psi. The vessel had a small leak throughout the test and loading could not be continued to failure. The maximum deflection at the center of the head was 0.8-in. when the test had to be stopped.

Vessel PV2 was longitudinally reinforced with twenty-four 0.5-in. diameter seven-wire strands. None of the strands were equipped with load cells. The vessel was sealed the same way as PV1 except for an extra layer of neoprene on the inside of the end slab which was cut to fit between the gage wires on the end slab in order to make the inside neoprene layer more smooth.

The crack pattern in the end slab is illustrated in Fig. B2.19.

B 20

Head Thickness						
Point No.	Inches					
1	$6 \frac{0}{32}$					
2	$5 \frac{31}{32}$					
3	$5 \frac{30}{32}$					
4	$6 \frac{1}{32}$					
5	$6 \frac{0}{32}$					

Wall Thickness, in.							
P-ane	AA	BB					
N	4.99	5.17					
NE	5.13	5.17					
E	4.90	4.87					
SE	5.00	5.00					
S	4.89	5.01					
SW	4.93	5.01					
W	4.88	4.86					
NW	4.99	5.02					

ſ							
Inside Diameter, in.							
THE AA BB							
N-S	$30\frac{3}{32}$	29 <u>29</u> 32					
NE-SW	30 <u>1</u>	29 <u>31</u> 32					
E-W	29 <u>31</u>	30 <u>0</u> 32					
SE-NW	30 <u>0</u> 32	29 <u>30</u> 32					

FIG. B2.1 DIMENSIONS OF PV2

Wrap No.	N	W	S	E	
. 1	5 3/8	5 1/4	5	5	
2	4 7/8	4 1/2	4 3/4	3 15/16	
3	3 5/8	3 3/8	3 1/8	2 7/8	
4	2 1/2	2 5/16	2 1/16	1 13/16	
5	1 1/2	1 1/4	1	3/4	
6	1/2	1/4	0	-1/8	

FIG. B2.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV2

.

FIG. B2.4. LOCATION OF DEFLECTION GAGES ON PV2

FIG. B2.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV2

FIG. B2.8 APPLIED PRESSURE vs DEFLECTION OF THE SIDE WALL OF PV2

Steel Gages On Prestress Wire

	. N		NW	S₩			5		SE		NE	N
		⇒C 1	C4		C ₇		C10		^D 3		1 ⁰ 6	Tei-
		t2	5		c ₈				DL		7-07	
		°3	-C 64	-	с ₉		-D ₂		⁰ 5		6	
40''												
				Ì								
I	_ _					annactionad						
	C ,	N	n 37 10/16	Gage C ₇	S₩	л 38	6/16	D ₂	SE	н 38	0/16	
	c,	Ν.	32 10/16	c ₈	SW ·	33	5/16	DL	SE	33	0/16	
	۲ <u>,</u>	N	27 10/16	C _q	SW	28	5/16	D ₅	SE	28	0/16	
	C ₄	NW	38 10/16	c_10	S	38	4/16	D6 .	NE	37	13/16	
	C	NW	33 7/16	Ď	S	33	2/16	D7	NE	32	12/16	
	¢6	NW	28 7/16	D 2	S	28	2/16	D ₈	NE	27	12/16	

FIG. 82.11 CONCRETE STRAINS, VESSEL PV2

.

OF THE N-S DIAMETER OF PV2

FIG. B2.18 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. 82.19 END SLAB OF PV2 AFTER TESTING

B3 Test Vessel PV3 (t = 7 1/2 in., s = 1.0 in.)

Test vessel PV3 was the first vessel cast from concrete mixed in the laboratory. It was free of cracks at the time of the test.

About three hours were required for the test. Loading was increased in increments of 20 psi until the vessel failed at 370 psi. No problems were encountered with the liner, which was sealed in the same manner as PV2. The block-out inside the vessel also failed when the vessel failed. The blockout, which was a closed steel cylinder filled with vermiculite concrete, developed a leak during the course of the test. When the pressure surrounding the vessel was reduced by failure of the vessel, the gas trapped inside the block-out caused it to burst.

The longitudinal tendons were 0.5-in. strand in PV3. Load cells were placed on nine of the twenty-four strands and were monitored during the test. The crack pattern in the end slab is illustrated by a photograph of the reassembled end slab in Fig. B3.22.

Hea Thic	ad <ness< th=""></ness<>
Point No.	Inches
1	7.8
2	7.8
3	7.75
4	7.3
5	7.7
6	7.75

Thic	Wall Thickness, in.					
p-ione	AA	BB				
N		5.00				
NE		4.76				
Е		4.855				
SE		5.03				
S		5.11				
sw		5.12				
W -		4.95				
NW		5.05				

Inside Diameter, in.					
17+1°	AA	BB			
N-S	30 <u>5</u> 32	29 <u>31</u> 32			
NE -SW	$30\frac{1}{32}$	$2\frac{31}{22}$			
E-W	3 0	30 <u>1</u> 32			
SE-NW	$30\frac{1}{32}$	29 <u>31</u> 29 <u>32</u>			

FIG. B3.1 DIMENSIONS OF PV3

1

Wrap No.	DN	DE	DS	0 _W
1	6 14/16	6 15/16	6 13/16	6 14/16
2	6 5/16	6 4/16	6 5/16	6 7/16
3	5 14/16	5 11/16	6 2/16	6 1/16
4	5 1/16	4 13/16	5 9/16	5 5/16
5	4 1/16	3 14/16	4 10/16	4 7/16.
6	3	2 12/16	3 10/16	3 6/16
7	1 15/16	1 12/16	2 9/16	2 6/16
8	15/16	11/16	1 9/16	1 5/16
.9	-1/16	-5/16	9/16	5/16

FIG. B3.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV3

FIG. B3.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV3

Steel Gages On Prestressing Wire

	N	NW		SW	S		SΕ	NE	M
1	P ^C 1		4	1 7	. C	10	03	^D 6	7.
	C2	ħc							-1-
401	C3	L C	6	² 9	. – o	2	D ₅		
		1		İ					
							1	1	
		· · ·					l		
4			1			ana di manga wa nga nga	j		
Gage	Axis	H 28 12/16	Gage	Axis	H	Gage	Axis	Н	
¹	N	30 13/16	7	SW	38 14/16	⁰ 3	SE	38 12/16	
с ₂	N	32 7/16	с ₈	SW	32 7/16	^D 4	SE	32 10/16	
C 3	N	27 8/16	. C ₉	SW	27 8/16	D	SE	27 4/16	
C ₄	NW	38 14/16	cío	s	38 13/16	Dé	NE	38 13/16	
د <u>-</u>	NW	32 10/16	D	S	32 1/16	D,	NE	32 5/16	
C _c	NW	27 10/16	D	s	27 3/16	D	NE	27 6/16	

Concrete Gages on Outside of Vessel

Concrete gages were placed as close to corresponding steel gages as possible

Gage	Axis	Н	Gage	Axis	H
Bc	N	38 10/16	Bg	S	38 5/16
B ₆ .	N	31 15/16	B	S	32 9/16
8 ₇	N	27 0/16	B10	s	26 12/16

FIG. B3.9 STRAIN GAGE LOCATIONS ON PV3

FIG. B3.17 APPLIED PRESSURE VS STRAIN IN THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE N-END OF THE N-S DIAMETER OF PV3

FIG. B3.19 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. B3.21 APPLIED PRESSURE VS INCREASE IN LOAD IN DYNAMOMETER NO. 3 IN PV3

FIG. B3.22 REASSEMBLED END SLAB OF PV3

B4 Test Vessel PV4 (t = 4 in., s = 2/3 in.)

Test vessel PV4 was tested in the manner described for PV1 through PV3 with no unusual occurrences. It was cast of concrete mixed in the laboratory and had no visible cracks at the time of the test.

Nearly four and one-half hours were required to test PV4 as loading proceeded in 20 psi increments to a pressure of 310 psi, when the increment of loading was decreased to 10 psi until the vessel failed at 390 psi. No problems were encountered with the gas seal. The block-out used in PV4 was a steel cylinder filled with water.

Twelve of the twenty-four strands were equipped with load cells and were monitored during the test. The crack pattern in the end slab is illustrated in Fig. B4.21.

844

1	Head					
	Thick	ness				
		r				
	Point	Inches	ŀ			
	NO.					
	1	6.0				
		ļ				
	° 2 -	0.1				
	·					
	3	6.2				
	· .					
	4	6. <u>0</u>				
	5	6.2				
		`				

Thick	Wall Thickness, in.					
P-ane	JAA ⁻	BB				
N .		5.07				
NE		5.10				
E		4.98				
SE		5.01				
S		5.02				
SW		5.04				
W		4.97				
· NW		5.02				

1919

I Diam	Inside Diameter, in.				
pre-s	V+ She AA				
N-S		29 <u>30</u> 32			
NE-SW		29 <u>30</u> 32			
E-W		80 <u>1</u> 32			
SE-NW		29 <u>30</u> 32			

FIG. B4.1 DIMENSIONS OF PV4

Wrap No.	D _N .	DE	D _S	DW
1	5 5/16	5 9/16	5 10/16	5 8/16
2	4 14/16	5 1/16	5 2/16	5
3	4 10/16	4 8/16	4 10/16	4 9/16
4	4 3/16	3 15/16	4 2/16	4 1/16
5	3 9/16	3 4/16	3 7/16	3 7/16
6	2 15/16	2 10/16	2 13/16	2 12/16
7 .	2 4/16	1 15/16	2 2/16	2 2/16
8	1 10/16	1 4/16	1 7/16	1 7/16
.9	14/16	10/16	12/16	12/16
10	4/16	-1/16	2/16	1/16

FIG. 84.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV4

FIG. 84.5 DEFLECTION PROFILES OF THE SLAB ALONG THE N-S DIAMETER

B.47

2. 5

1

FIG. 84.8 APPLIED PRESSURE vs DEFLECTION OF THE SIDE WALL OF PV4

Steel Gages on Prestressing Wire

	N	i	NW	SW	S	SE		NE.	N
+0''	¹ ² ² ³		Base To Gage	C 7 C 8 C 9			© 3 © 4 □ 5 ·		7
	Gage C1 C2 C3 C4 C5 C6	Line N N NW NW NW	H 38 13/16 36 13/16 34 4/16 38 15/16 36 12/16 34 2/16	Gage C7 C8 C9 C10 D1 D2	Line SW SW SW S S S	H 39 1/16 36 13/16 34 2/16 39 3/16 36 13/16 34 2/16	Gage D3 D4 D5 D6 D7 D8	Line SE SE SE NE NE NE	H 39 2/16 36 11/16 34 1/16 39 0/16 36 8/16 33 14/16

Concrete Gages on The Outside of The Vessel

•

FIG. 84.11 CONCRETE STRAINS, VESSEL PV4

8 52

FIG. 84.15 APPLIED PRESSURE VS CIRCUMFERENTIAL STRAIN IN THE WALL OF THE VESSEL AT THE S-END OF THE N-S DIAMETER OF PV4

500 400 <u>C</u>2 300 200 100 0 0.0 1.0 2.0 3.0 4.0 5.0 6,0 7.0 5.0 5.0 Stroin x 10³ FIG. B4.16 APPLIED PRESSURE vs STRAIN IN THE CIRCUMPERENTIAL PRESTRESS WIRE AT THE N-END OF THE N-S DIAMETER OF PV4

Internal pressure, psi

C 1

FIG. B4.17 APPLIED PRESSURE vs STRAIN IN THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE S-END OF THE N-S DIAMETER OF PV4

FIG. 84.19 APPLIED PRESSURE vs INCREASE IN LOAD IN DYNAMOMETER NO. 5 IN PV4

FIG. 84.20 APPLIED PRESSURE vs INCREASE IN LOAD IN DYNAMOMETER NO. 9 IN PV4

FIG. 84.21 REASSEMBLED END SLAB OF PV4

B5 <u>Test Vessel PV5 (t = 7 1/2 in., s = 2/3 in.)</u>

Test vessel PV5 was also tested with no unusual difficulties. It had no visible cracks before the test.

About three hours were required to test PV5. Internal pressure was increased in increments of 50 psi up to a pressure of 200 psi. Loading then proceeded in 25 psi increments until the vessel failed at 465 psi. The crack pattern in the end slab is illustrated in Fig. B5.22.

The longitudinal tendons and the method of sealing were the same as for PV5.

In Diam	Inside Diameter, in.					
2) ane	AA	BB				
N-S		29 <u>12</u> 29 <u>16</u>				
NE-SW		29 <u>14</u> 16				
E-W		29 <u>15</u> 16				
SE-N₩		29 <u>14</u> 16				

FIG. B5.1 DIMENSIONS OF PV5

Wrap No.	D _N	DE	Ds	DW
1 .	6 13/16	6 14/16	6 14/16	7 0/16
2	6 6/16	6 3/16	6 1/16	6 1/16
3	6 2/16	5 15/16	5 12/16	5 12/16
4	5 10/16	5 7/16	5 5/16	5 5/16
5	5 4/16	5 0/16	4 13/16	4 12/16
6	4 11/16	4 6/16	4 2/16	4 1/16
7	4 0/16	3 12/16	3 8/16	3 7/16
8	3 6/16	3 1/16	2 14/16	2 13/16
9	2 11/16	2 7/16	2 3/16	2 2/16
10	2 0/16	1 12/16	1 8/16	1 7/16
11	1 6/16	1 1/16	14/16	12/16
12	11/16	7/16	-8/16	2/16

FIG. B5.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV5

FIG. 85.4 LOCATION OF DEFLECTION GAGES ON PV5

FIG. 85.7 APPLIED PRESSURE VS DEFLECTION ALONG THE S-HALF OF THE N-S DIAMETER OF PV5

FIG. 85.8 APPLIED PRESSURE vs DEFLECTION OF THE SIDE WALL OF PV5

B 6|

Steel Gages On Prestressing Wire

Concrete Gages On The Outside of The Vessel

N			S		
B5	1		8		
B ₆			^B 9		
[™] 7			B10		
	1				
	<u> </u>			<u> </u>	
Gage	Axis	H	Gage	Axis	Н
B ₅	N.	38 5/16	^B 8	s	39 11/16
Bé	N	36 2/16	B	S	35 10/16
⁸ 7	N	32 14/16	^B 10	S	31 12/16
•	FIG. 85.9	STRAIN GAGE	LOCATIONS	ON PV5	

500 Calculated B3 Calculated в4 81 \$/2" 7 1/2" 7 • 400 B1 B2 B3 B4 Internal Pressure, ps1 Outside Radial 300 82 200 100 0 0.0 0.2 0.4 -0.4 -0.2 -0.0 0.2 Strain $\times 10^3$ FIG. 85.10 CONCRETE STRAINS, VESSEL PV5 500 Calculated 7 1/2" Α7 Calculated Calculated Α8 1/2 400 Α9 Α6 AI O Ą₿ A10 Outside Circumferential Internal ^pressure, psi 300 A9 200 ę 100 0 0.0 0.2 0.0 0.2 0.0 0.2 0.4 . . Strain x 10^3

FIG. 85.11 CONCRETE STRAINS, VESSEL PV5

500 r Al Calculated . A5 400 300 Internal Pressure, psi 200 14 1/2 100 Inside Circumferential 0 -0.4 0.0 -0.2 -0.6. -0.8 -1.0 -2.0 -3.0 -4.0 Strain x 10^3 FIG. 85.12 CONCRETE STRAINS, VESSEL PV5 500 A4 **A**2 Calculated 400 Internal Pressure, psi 300 200 A 2 7 1/2 A4 100 Inside Circumferential 0 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -2.0 -3.0 -4.0 Strain $\times 10^3$

FIG. 85.13 CONCRETE STRAINS, VESSEL PV5

500 Α3 Calculated 400 Internal Pressure, psi 300 200 100 , Inside Circumferential 0 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -2.0 -3.0 -4.0 Strain x 10³ FIG. 85.14 CONCRETE STRAINS, VESSEL PV5 500 Internal pressure, psi Β7 400 86 85 300 200 100 0.4 0.0 0.2 0.0 0.2 0.0 0.2 $^{\circ}$ Strain x 10³

OF THE N-S DIAMETER OF PV5

O 0.5-in. Dia. Strand D Dynamomater Locations CD ·

ŋ

FIG. 85.19 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. 85.18 APPLIED PRESSURE vs STRAIN IN THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE S-END OF THE N-S DIAMETER OF PV5

FIG. 85.22 REASSEMBLED END SLAB OF PV5

B6 Test Vessel PV6 (t = 9 in. s = 2/3 in.)

Test vessel PV6 was cast using concrete mixed in the laboratory. It was free of visible cracks at the time of the test. The longitudinal prestress was provided by thirty strands. On the first attempt to test PV6, the pressure was increased in 50 psi increments to a pressure of 250 psi. Twenty-five psi increments were added until the pressure reached 450 psi. Pressure was increased in 10 psi increments until a leak in the seal prevented a further increase in pressure at 570 psi. Data for only the first attempt at testing PV6 is presented with the exception of the pressuredeflection curve for the center of the end slab and the change in load in one longitudinal strand on the final test of the vessel. Figure B6.2 shows the sealing detail used for the first attempt. The adhesive used on this vessel was a linoleum cement. Figure B6.19a shows the crack pattern that had developed in the end slab when the test was halted.

Vessel PV6 was removed from the test chamber and taken off the four-in. steel plate so that the liner could be modified as shown in Fig. B6.3. The modifications included an additional layer of neoprene on the end slab and the replacement of the neoprene on the side wall. Rubber cement was used as the adhesive in this case. The vessel was again secured to the four-in. plate with thirty strands.

The second attempt to reach the ultimate capacity of the vessel was frustrated when severe leaking prevented an increase in pressure beyond 585 psi. Visual examination of the vessel under 300 psi internal pressure disclosed a longitudinal crack about mid-height of the vessel near the SW meridian. The crack was less than 0.005 in. wide.

₿70

In order to proceed with the test, eight of the thirty longitudinal strands were removed before it was pressurized for the third time. The layout of longitudinal reinforcement is shown in Fig. B6.18. Pressure was increased in 100 psi increments to failure at a pressure of 400 psi. Fifty psi increments were added from 400 psi until the vessel failed at 555 psi. The reassembled end slab is shown in Fig. B6.19b.

Head Thickness						
Point	int Inches					
1	9 10					
2	9 16'					
3	9 <u>1</u> 11					
4	d <u>8</u> .,					
5	$9\frac{1}{16}$ "					

5.06

Inside Diameter, in,					
sitta sielo	AA	BB			
N-S	30 <u>4</u> 32				
NE-SW	30 <u>0</u> 32	$30\frac{2}{32}$			
E-W	$29\frac{31}{32}$				
SE-NW	30 <u>1</u> 32	30 <u>1</u> 32			

FIG. B6.1 DIMENSIONS OF PV6

Section

Wrap No.	D N	DE	^D s	D _W
1	7 14/16	8 2/16	8 6/16	7 14/16
2	7 11/16	7 14/16	7 15/16	7 11/16
3	7 8/16	7 10/16	7 12/16	7 6/16
4	6 14/16	7 1/16	7 4/16	6 12/16
5	6 4/16	6 7/16	6 10/16	6 1/16
6	5 9/16	5 12/16	5 15/16	5 6/16
7	4 14/16	5 1/16	5 4/16	4 12/16
8	4 4/16	4 7/16	4 10/16	4 1/16
9	3 10/16	3 13/16	4 0/16	3 7/16
10	3 0/16	3 2/16	3 5/16	2 13/16
11	2 2/16	2 8/16	2 11/16	2 2/16
12	1 11/16	1 13/16	2 0/16	1 7/16
13	1 0/16	1 3/16	1 5/16	13/16
14	5/16	8/16	10/16	2/16
15	-6/16	-3/16	0	-9/16

FIG. B6.4 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV6

FIG. B6.5 LOCATION OF DEFLECTION GAGES ON PV6

APPLIED PRESSURE VS DEFLECTION ALONG THE S-HALF OF THE N-S DIAMETER OF PV6

.

Concrete Gages on the Outside of the End Slab

Steel Gages on Circumferential Prestress Wire

FIG. B6.10 (cont'd) STRAIN GAGE LOCATIONS ON PV6

FIG. B6.10 (cont.) STRAIN GAGE LOCATIONS ON PV6

1

N

FIG. B6.15 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. 86.16 APPLIED PRESSURE vs INCREASE IN LOAD IN DYNAMOMETER NO. 9 ON FIRST TEST OF PV6

88

5

FIG. B6.19a CRACK PATTERN AFTER FIRST TEST ON PV6

FIG. 86.196 REASSEMBLED END SLAB OF PV6

B7 Test Vessel PV7 (t = 9.0 in., s = 1/3 in.)

Test vessel PV7 was cast in the laboratory and was uncracked prior to prestressing. The circumferential prestressing applied to the vessel caused a band of circumferential cracks to develop on the outside of the vessel between seven and nine in. from the top. A corresponding band of cracks developed from twelve to nineteen in. below the top on the inside of the vessel. Four longitudinal cables stressed nominally to 24 kips were placed on the vessel to arrest further crack development during the interim between the prestressing operation and assembly of the test setup.

The liner for PV7 was modified considerably from the one that had been used previously. Figure B7.2 is a detail of the liner that was used for PV7. A one-half-in. thick layer of hydrocal was placed on the inside of the end slab to provide a smooth surface over strain gages. A 0.017-in. sheet of aluminum was attached to the side wall in the hope of bridging small pores or cracks more effectively. The round 0-ring was replaced by one with a triangular cross section, and the neoprene sheets were lapped about one in. at the junction of the end slab and side wall in an effort to improve the performance of the seal in that vicinity. Rubber cement was used as the adhesive to hold both the aluminum and neoprene in place. Thirty 0.5-in. strands were used for longitudinal reinforcement in the test.

The testing of PV7 was carried out with no difficulty. About two hours were required for the entire test as loading proceeded in 50 psi increments to an internal pressure of 750 psi. Twenty-five psi increments were added up to a pressure of 800 psi. At 800 psi the deflection at midspan was creeping steadily. Therefore, the pressure was increased continuously until the vessel failed at 870 psi. The reassembled end slab is shown in Fig. B7.17.

FIG. 87.1 DIMENSIONS OF PV7

FIG. B7.2 SEALING DETAIL FOR PV7

FIG. B7.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV7

FIG. 87.4 LOCATION OF DEFLECTION GAGES ON PV7

FIG. B7.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV7

Internal pressure, psl

FIG. 87.7 APPLIED PRESSURE VS DEFLECTION ALONG THE S-HALF OF THE N-S DIAMETER OF PV7

Concrete Gages on the Inside of the End Slab

.

FIG. 87.9 STRAIN GAGE LOCATIONS ON PV7

Concrete Gages on the Outside of the End Slab

Steel Gages on Circumferential Prestress Wire

FIG. B7.9 (cont.) STRAIN GAGE LOCATIONS ON PV7

B 9I

the second s

FIG. 87.15 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. 87.17 PIECES OF THE END SLAB OF PV7

B8 Test Vessel PV8 ($t = 7 \frac{1}{2}$ in., $s = \frac{1}{3}$ in.)

The same crack pattern observed in PV7 after circumferential prestressing was evident in PV8. In PV8 the band of circumferential hairline cracks on the outside of the vessel was from six to seven in. below the top of the vessel. The band of hairline cracks on the inside of the vessel was from ten to sixteen in. below the top of the end slab. Four longitudinal tendons with a load of 24 kips in each were placed on the vessel to arrest further cracks development.

A detail of the liner used on the first attempt to test PV8 is shown in Fig. B8.2. No sheet metal was placed on the end slab. The liner was fabricated by fitting the sheets of neoprene over a form of the same dimensions as the inside of the vessel. The joints at the end slab and the side wall was made by lapping the sheets of neoprene and applying rubber cement to contact surfaces. The neoprene liner was placed in the vessel as a unit and attached to the aluminum and hydrocal with rubber cement. A one-half-in. wide strip of rubber tape was placed around the periphery of the vessel at the joint between the one-in. ring and the neoprene liner. The longitudinal prestressing force was provided by thirty strands. A load cell was placed on each strand.

The first attempt at testing PV8 was not successful. Pressure was increased in 100 psi increments to a pressure of 200 psi and in 50 psi increments until a leak prevented further increase in pressure at 625 psi. Deflection and strain readings suggest that the vessel was close to failure when the test was stopped. The deflection at the center of the end slab

reached 0.79 in., and the strains in the prestressing wire were of a magnitude that the top three layers were loose when the vessel was depressurized.

The method of sealing PV8 for the second attempt is shown in Fig. B8.3. The neoprene on the walls was omitted and the O-ring method of sealing the joint at the end slab was employed. Thirty strands were used for longitudinal prestressing.

One hundred psi load increments were applied until the internal pressure reached 400 psi. The pressure was then increased to 450 psi in 25 psi increments. Readings were taken again at 500 psi. Loading was increased continuously until the vessel failed at 640 psi. A photograph of the pieces of the end slab is shown in Fig. B8.20.

FIG. 88.2 SEALING DETAIL FOR PV8

FIG. B8.1 DIMENSIONS OF PV8

√rap No.	D _N	DE	Ds	DW
1 -	6 12/16	6 5/16	6 8/16	6 8/16
2	6 3/16	5 15/16	5 15/16	6 0/16
3	5 14/16	5 8/16	5 8/16	5 9/16
4	5 2/16	5 3/16	5 3/16	5 5/16
5	5 4/16	4 15/16	4 15/16	5 1/16
6	4 15/16	4 10/16	4 10/16	4 12/16
7	4 10/16	4 5/16	4 5/16	4 7/16
8	4 5/16	3 15/16	3 15/16	4 1/16
9	3 14/16	3 8/16	3 9/16	3 10/16
10	3 8/16	3 3/16	3 4/16	3 5/16
11	3 3/16	2 15/16	2 14/16	3 0/16
12	2 12/16	2 8/16	2 8/16	2 9/16
13	2 7/16	2 2/16	2 2/16	2 4/16
14	2 2/16	1 13/16	1 14/16	1 15/16
15	1 13/16	1 8/16	1 8/16	1 9/16
16	1 7/16	1 2/16	1 3/16	1 4/16
17	1 2/16	14/16	14/16	15/16
18	14/16	2/16	9/16	10/16
19	8/16	3/16	2/16	4/16
20	3/16	-3/16	-2/16	-1/16

FIG. 88.4 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV8

١.,

FIG. 88.6 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV8

FIG. B8.8 APPLIED PRESSURE vs DEFLECTION ALONG THE S-HALF OF THE N-S DIAMETER OF PV8

Concrete Gages on the Outside of the End Slab

FIG. 88.10 (cont'd) STRAIN GAGE LOCATIONS ON PV8

FIG. B8.12 (cont'd) CONCRETE STRAINS, VESSEL PV8

FIG. B8.12 (cont'd) CONCRETE STRAINS, VESSEL PV8

1

.9

FIG. B8.13 (cont'd) CONCRETE STRAINS, VESSEL PV8

FIG. 88.20 REASSEMBLED END SLAB OF PV8

B9 Test Vessel PV9 (t = 9 in., s = 1/3 in.)

Test vessel PV9 was cast in the laboratory and was uncracked prior to prestressing. After circumferential prestressing a crack was observed on the inside of the vessel from five to six in. below the end slab and seven to nine in. below the top on the outside.

A detail of the liner is shown in Fig. B9.2 and is similar to the sealing detail successfully employed in vessel PV10, which was tested before PV9. The longitudinal prestressing force was provided by thirty strands.

This vessel was filled completely with water. The water pressure was increased by pumping oil into a buffer tank which was connected to the cavity of the vessel.

Pressure was increased in 50-psi increments to 850 psi and then in smaller increments until failure at 887 psi. Failure occurred when the circumferential wire broke. Advanced necking was observed in several wraps on opposite sides of the vessel. After failure the end slab was observed to be heavily cracked with vertical cracks on the side. The cracks at the center of the end slab were about one-half in. wide at the time of failure. The deflection at the center of the end slab reached 0.61 in. A photograph showing the crack pattern of the end slab after failure is shown in Fig. B9.14.

ω

=

FIG. B9.1 DIMENSIONS OF PV9

Section

1

5

Wrap No.	DN	DE	DS	DW	
1	8 5/6	8 2/16	8 2/16	8 5/16	
2	7 13/16	7 14/16	7 14/16	7 15/16	
3	7 10/16	7 9/16	7 10/16	7 11/16	
4	7 6/16	7 4/16	7 4/16	7 5/16	
5	7 2/16	7 15/16	7 6/16	7 6/16	
6	6 13/16	6 11/16	6 12/16	6 12/16	
7	6 9/16	6 6/16	6 6/16	6 7/16	
8	6 4/16	6 0/16	6 1/16	6 2/16	
9	5 15/16	5 11/16	5 12/16	5 13/16	
10	5/11/16	5 5/16	5 6/16	5 7/16	
11 .	5 3/16	4 15/16	5 0/16	5 1/16	
12	4 13/16	4 10/16	4 11/16	4 11/16	
13	4 8/16	4 4/16	4 5/16	4 6/16	
14	4 3/16	3 15/16	4 0/16	4 0/16	
15	3 13/16	3 9/16	3 10/16	3 11/16	
16	3 8/16	3 4/16	3 5/16	3 6/16	
17	3 3/16	2 15/16	3 0/16	3 0/16	
18	2 13/16	2 9/16	2 10/16	2 11/16	
19	2 8/16	2 3/16	2 5/16	2 5/16	
20	2 3/16	1 14/16	1 15/16	2 0/16	
21	1 13/16	1 9/16	1 9/16	1 10/16	
22	1 7/16	1 3/16	4 1/10	1 5/16	
23	1 2/16	14/16	14/16	1 0/16	
24	12/16	9/16	9/16	10/16	
25	7/16	3/16	4/16	5/16	
26	2/16	-	-	0/16	•

FIG. B9.3 MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S AND E-W DIAMETERS ON PV9

í .

FIG. 89.4 LOCATION OF DEFLECTION GAGES ON PV9

ţ

8 || 8

FIG. 89.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF VESSEL PV9

FIG. 9.6 APPLIED PRESSURE VS DEFLECTION AT MIDSPAN OF PV9

٠.

Concrete Gages on the Inside of the End Slab

Concrete Gages on the Outside of the End Slab

FIG. 89.7 STRAIN GAGE LOCATIONS ON PV9

 $\label{eq:strain} Strain \ \times \ 10^3$ FIG. B9.8 (cont'd) CONCRETE STRAINS, VESSEL PV9 $\dot{}$

FIG. B9.9 (cont'd) CONCRETE STRAINS, VESSEL PV9

FIG. B9.10 (cont'd) CONCRETE STRAINS, VESSEL PV9

. . . .

Strain x 10^3

FIG. B9.12 LOCATION OF LONGITUDINAL REINFORCEMENT FOR PV9

1 0

FIG. 89.14 END SLAB AFTER FAILURE

FIG. B9.13 APPLIED PRESSURE vs INCREASE IN LOAD IN DYNAMOMETER NO. 10

BIO Test Vessel PVIO (t = 7.5 in., s = 1/3 in.)

Test vessel PV10 was cast without any visible flaws. After circumferential prestressing, it developed two cricumferential cracks. One was on the outside approximately seven in. from the top. The other was on the inside approximately ten in. from the top.

Vessel PVIO was the first specimen tested hydraulically. The vessel was pressurized with a hydraulic pump connected to the vessel through a buffer tank. The vessel cavity was filled with water before the test.

The liner detail was changed significantly from PV8 and is shown in Fig. Bl0.2. The aluminum liner was assembled outside the vessel and then dropped in place. A mechanical interlock was made at the end slab joint and at the lap in the wall. Both joints were tinned flat. A neoprene liner and a 0.75-in. neoprene 0-ring was added as in previous vessels. The neoprene wall and end slab pieces butted at the end slab joint but did not lap. Thirty strands were used for longitudinal reinforcement.

Pressure was increased in 50-psi increments to 600 psi. The vessel began to leak slightly at 600 psi but it was still possible to pressurize the vessel using the vertical deflection of the end slab as a loading criterion. The load decreased during the reading of the gages but the deflections did not change significantly. Failure occurred at 737 psi when the prestressing wire failed. A photograph showing the crack pattern of the end slab after failure is given in Fig. Bl0.14.

Wrap No.	DN	DE	DS	D₩
1	6 13/16	7 0/16	7 0/16	6 14/16
2	6 8/16	6 11/16	6 11/16	6 8/16
3	6 5/16	6 7/16	6 7/16	6 4/16
4	5 13/16	6 3/16	6 2/16	5 15/16
5	5 9/16	5 14/16	5 14/16	5 11/16
6	5 3/16	5 9/16	5 9/16	5 4/16
7	4 13/16	5 3/16	5 2/16	4 14/16
8	4 9/16	4 14/16	4 14/16	4 11/16
9	4 6/16	4 10/16	4 10/16	4 7/16
10	4 0/16	4 6/16	4 5/16	4 2/16
11	3 10/16	4 1/16	4 0/16	3 13/16
12	3 5/16	3 11/16 '	3 5/16	3 7/16
13	3 0/16	3 6/16	3 1/16	3 3/16
14	2 11/16	3 1/16	2 11/16	2 14/16
15	2 6/16	2 11/16	2 6/16	2 8/16
16	2 1/16	2 6/16	2 1/16	2 3/16
× 17	1 11/16	2 1/16	1 12/16	1 13/16
18	1 6/16	1 12/16	1 6/16	1 2/16
19	1 1/16	1 7/16	1 1/16	1 2/16
20	12/16	1 1/16	12/16	13/16
21	7/16	12/16	6/16	9/16
22	1/16	7/16	1/16	4/16 .

FIG. B10.3. MEASURED LOCATION OF THE CIRCUMFERENTIAL PRESTRESS WIRE AT THE ENDS OF THE N-S and E-W DIAMETERS ON PV10

1

C

FIG. 810.4 LOCATION OF DEFLECTION GAGES ON PV10

B |30

FIG. 810.5 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV10

FIG. B10.6 APPLIED PRESSURE vs DEFLECTION AT MIDSPAN OF PV10

B | 3 |

Concrete Gages on the Inside of the End Slab

Concrete Gages on the Outside of the End Slab

FIG. B10.7 STRAIN GAGE LOCATION ON PV10

Strain x 10³ FIG. B10.8 (cont'd) CONCRETE STRAINS, VESSEL PV10

.

FIG. BIO.10 CONCRETE STRAINS, VESSEL PV10

.

FIG. B10.14 END SLAB AFTER FAILURE

Bll Test Vessel PV11 (t = 7.5 in., s = 1/4 in.)

Test vessel PVII was cast in the laboratory and was uncracked prior to prestressing. After circumferential prestressing a crack was observed on the inside of the vessel at 13.5 in. from the top. The 1/4-in. circumferential prestressing wire was wrapped continuously so that cracking on the outside could not be observed.

The liner detail was similar to the one used for PV9 and PV10. The aluminum liner was temporarily sealed and pressed into place with 70 psi air pressure before the neoprene was put on. A combination of 28 stressteel rods and two strands were used for the longitudinal prestressing.

Pressure was increased in 100-psi increments up to 1600 psi, when a seal blew in the gas regulator causing a leak. The pressure decreased to 250 psi while a higher capacity regulator was being installed. When repressurizing was attempted, it was found that the sealing in the vessel had failed. The vessel had a well developed system of radial cracks. A new 3/4-in. 0-ring was installed after the old 0-ring and caulking were removed. A second test was attempted and a pressure of 1830 psi was reached over a period of about 2 hours. At that pressure a leak in the liner became so severe that further increase in pressure was impossible. Center deflection was about 0.15 in.

The vessel was resealed which involved removing the O-ring and neoprene from the end slab surface and pouring a one-in. thick layer of hydrocal over the exposed aluminum. This hydrocal was covered with aluminum and neoprene and a new 3/4-in. O-ring was installed. It was hoped that the additional hydrocal would move the corner seal away from the actual corner

of the vessel and minimize deformations in the seal. This time 30 stressteel rods were used for prestressing.

The vessel was again tested and reached 1980 psi in 45 minutes withonly deflection readings being taken. The vessel leaked again. The leak was determined to be in the end slab since no water was being expelled. It was a small leak. The regulator was bypassed and the gas supply flowed directly from a 2600 psi nitrogen bottle into the specimen. The vessel failed at 2040 psi in about five minutes while reading the center deflection. A photograph showing the type of failure is shown in Fig. Bll.13. Data from only the first test is presented with the exception of the load deflection curve for the center of the end slab for the final test.

FIG. B11.1 SEALING DETAIL FOR PV11

8 4 1

FIG. BI1.3 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PVII

FIG. B11.4 APPLIED PRESSURE vs DEFLECTION AT MIDSPAN OF PV11

Concrete Gages on the Inside of the End Slab

CĨ 2 1/8" Typical C2 3 1/8" C3 🛛 3 1/8" C4 ' צי8/ו צ Gages to Measure C5 Radial Strain तम ति तर ती ति तो ति ति 65 8 C7 🛛 c8 🕅 C9 🗓 012 Typical 5 6 1-0, C2 10 C28 1-8, 20 Gages to Maasure Circumferential ¢ 29 Strains c30 Č22 C31 C33 £34 826

8 | 43

FIG. B11.5 (cont'd) STRAIN GAGE LOCATIONS ON PVIL

FIG. B11.5 STRAIN GAGE LOCATIONS ON PV11

B |44

Internal Pressure, ps1

FIG. Bil.7 (cont'd) CONCRETE STRAINS, VESSELS PVII

÷.,

FIG. B11.8 (Cont'd) CONCRETE STRAINS, VESSEL PV11

FIG. BII.10 LOCATION OF LONGITUDINAL REINFORCEMENT

FIG. B11.13 END SLAB AFTER FAILURE

B12 Test Vessel PV12 (t = 10 in., s = 1/4 in.)

Test vessel PV12 was cast in the laboratory and was uncracked prior to prestressing. After circumferential prestressing a crack was observed on the inside of the vessel at 19 in. below the top.

The liner detail was changed significantly for this vessel and the resulting sealing detail was used on all the following tests. The sealing detail is shown in Fig. Bl2.1 The longitudinal prestressing was provided by 30 stressteel rods.

Nitrogen gas was used to pressurize the vessel in 250-psi increments up to 2250 psi. Since the nitrogen gas bottles used had a maximum pressure of 2600 psi, they had a limited capacity above 2000 psi. Therefore, oil pressure was used above 2250 psi with the help of a fully charged gas bottle. The pressure was increased to 2650 psi at which time the seal in the base was broken. It was found that a one-in. long piece of the small 0-ring in the base had been extruded and the remainder had been partially extruded as shown in Fig. Bl2.l2a. Figure Bl2.l2b shows the crack pattern of the end slab after the test.

B |53

Concrete Gages on the Inside of the End Slab

FIG. B12.5 STRAIN GAGE LOCATIONS ON PV12

Concrete gages on the Outside of the End Slab

Steel Gages on Circumferential Prestress Wire

FIG. B12.5 (cont'd) STRAIN GAGE LOCATIONS ON PV12

B|55

FIG. B12.7 CONCRETE STRAINS, VESSEL PV12

FIG. B12.8 CONCRETE STRAINS, VESSEL PV12

FIG. B12.8 (cont'd) CONCRETE STRAINS, VESSEL PV12

.

B |6|

FIG. B12.12a EXTRUDED O-RING AFTER TEST

FIG. B12.12b END SLAB AFTER TEST OF PV12

BI3 Test Vessel PV13 (t = 12.5 in., s = 1/4 in.)

This vessel was provided with an additional row of longitudinal reinforcement (Fig. 1.2). To accommodate the second row of reinforcement, two donut shaped plates of 1 1/4-in. thick steel were cut and drilled for two circles of rods. Centerlines of the rod circles were at diameters of 29 in. and 43-3/8 in. The inner diameter of the plate was 26 in. and the outer diameter was 45 in. One plate was placed on top of the specimen and one below the four-in. steel closure plate. The plate on the top was bedded in Hydrocal to provide a smooth bearing surface. Longitudinal prestressing was provided with 60 stressteel rods. Figure Bl3.10 shows PV13 in the test shed before the test.

A detail of the liner is shown in Fig. Bl3.1 and is basically the same as for PV12 except that two expansion ridges were formed into the copper liner near the joint with the end slab piece.

The vessel was tested with nitrogen gas and reached a pressure of 3450 psi before the seal between the base plate and one-in. seal ring was lost. (After testing PV12, 6000-psi gas bottles were used.) After the vessel was taken apart, the 0-ring in the closure plate was found to be feathered as in PV12. Radial cracks were visible in the end of the side wall. Twentythree of the rod holes had cracks running through them. These cracks were visible for about 10 to 15 in. up the side wall. There were 3 rings of circumferential cracks at about 12 in., 18 in., and 23 in. from the base of the side wall on the inside. The dial gages on the top of the vessel did not record any significant deflections. Gage 12, located 17.5 in. from the base, indicated a deflection of 0.158 in. at failure. Deflection-pressure curves and deflection profiles are therefore not shown for this test.

Concrete Gages on the Inside of the End Slab

Concrete gages on the Outside of the End Slab

Steel Gages on Circumferential Prestress Wire

FIG. B13.3 (cont'd) STRAIN GAGE LOCATIONS ON PV13

FIG. B13.3 STRAIN GAGE LOCATIONS ON PV13

69I B

FIG. B13.10 VESSEL PV13 READY TO BE TESTED

 $\mathcal{L}^{(n)} = \mathcal{L}^{(n)} = \mathcal{L}^{(n)}$

B14 Test Vessel PV14 (t = 15 in., s = 1/4 in.)

Since PV13 had not developed an end slab failure, PV14 was used to test the circumferential prestress wire and the side wall capacity.

Two vertical grooves (3/4 in. x 3/8 in.) were cut in the inside of the side wall at 180° apart and were intended to be crack initiators. Small grooves were made across the main grooves at 2 in., 9 in., 17 in., and 24 in. from the base of the side wall. A-12 concrete gages were located in these grooves perpendicular to the main crack. The locations of gages on the circumferential reinforcement are shown in Fig. B14.3 and Fig. B14.4. The gages on the west half of the vessel were at the same level as the concrete gages. Deflection measurements were taken on the side of the vessel at nine locations as shown in Fig. B14.2 None were taken on the top. The longitudinal prestressing was similar to that of vessel PV13.

The vessel was pressurized in increments of 250 psi up to 2000 psi, increased to 500-psi increments up to 3000 psi, and reduced increments up to failure. A small leak occurred at the beginning of the test up to 3000 psi but then suddently stopped and there was no more leakage until failure occurred at 3690 psi.

After the test, the vessel was observed to be heavily cracked and five of the rod holes had collapsed onto the rods. Small radial cracks were visible through all of the rod holes after the vessel was broken up, but many of these were not visible on the side of the vessel. A circumferential crack with a diameter of 35 in. was visible in the end of the side wall. No cracks were visible in the top of the end slab.

PRESTRESS WIRE AT LEVEL A

PRESTRESS WIRE AT LEVEL B

B |77

FIG. 814.12 LOCATION OF LONGITUDINAL REINFORCEMENT

.

FIG. B14.14 VESSEL PV14 READY TO BE TESTED

B15 Test Vessel PV15 (t = 7.5 in., s = 1/4 in.)

Test vessel PV15 was cast with two rows of rod holes with diameters of 29 in. and 34 in. Due to the congestion of vertical prestressing on the end slab, it was impossible to use the three in. by three in. bearing plates. Instead, the 1-1/4 in. thick steel plates used for PV13 and PV14 was used. It was necessary to drill another set of holes for the outside set of rods. The top plate was slotted between the rod holes to reduce the radial restraint from the steel ring when the end slab segments rotated.

Sixty stressteel rods were used for the longitudinal prestressing. Dial gages 1 and 7 were omitted. PV15 was sealed in the same manner as the previous three vessels.

The vessel was loaded in 200-psi increments up to a pressure of 1600 psi and then the increments were reduced to 100 psi until failure occurred at 2300 psi. The vessel failed about five minutes after loading had stopped at this pressure. Cracks were clearly visible in the end slab at 1800 psi as seen via the closed circuit TV. The center of the end slab punched out in a shear failure with all three liners in the end slab sheared along the circumference of the hole as shown in Fig. B15.12.

FIG. 815.3 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV15

Concrete Gages on the Inside of the End Slab

Concrete gages on the Outside of the End Slab

Steel Gagas on Circumferantial Prestress Wire

E8183

1. 1°CP

FIG. B15.5 (cont'd) STRAIN GAGE LOCATIONS ON PV15

FIG. 815.5 STRAIN GAGE LOCATIONS ON PV15

[°]C 39 Typical 2 5/8" c4d 3 1/8" C41 3 1/8" C42 C43 3 1/8" **B B B B** हिंदे ही हि C 555 c49 C45 C46 C47 'c48h

FIG. B15.6 (cont'd) CONCRETE STRAINS, VESSEL PV15

FIG. B15.7 (cont'd) CONCRETE STRAINS, VESSEL PV15

FIG. B15.9 APPLIED PRESSURE vs STRAIN IN CIRCUMFERENTIAL PRESTRESS WIRE AT THE S-END OF THE N-S DIAMETER OF PV15

FIG. 815.12 END SLAB AND LINER AFTER FAILURE FOR PV15

B16 Test Vessel PV16 (t = 10 in., s = 1/4 in.)

Test vessel PV16 was cast in the same manner as PV15. The sealing details and longitudinal prestressing were also the same. Due to unforeseeable delays the vessel was prestressed 25 days before the test was conducted. During that period the vessel was represtressed twice.

The vessel was loaded with gas and failed about five minutes after a load of 3200 psi had been obtained. The creep in the vertical deflection gage at 3200 psi was quite large and increasing in speed. After the test it was noticed that two of the outer circle prestress rods stripped their threads during the latter stages of the test. Figure B16.12 shows the end slab after failure.

FIG. B16.3 DEFLECTION PROFILES OF THE END SLAB ALONG THE N-S DIAMETER OF PV16

Concrete Gages on the Inside of the End Slab

Concrete gages on the Outside of the End Slab

FIG. B16.6 (cont'd) CONCRETE STRAINS, VESSEL PV16

FIG. B16.9 APPLIED PRESSURE vs STRAIN IN CIRCUMFERENTIAL PRESTRESS WIRE AT THE N-END OF THE N-S DIAMETER OF PV16

FIG. B16.10 LOCATION OF LONGITUDINAL REINFORCEMENT

5000

FIG. B16.12 END SLAB AFTER FAILURE

•

APPENDIX C

STRAIN DISTRIBUTION IN THE CIRCUMFERENTIAL REINFORCEMENT

Cl Description of the Tests

Analysis of the data from pressure tests of the vessels indicated that failure occurred in the circumferential prestress wire at an average strain much less than that which resulted in failure of wire specimens tested in direct tension. This premature wire fracture appeared to be caused by a concentration of strain at cracks in the concrete vessel walls. Tests were performed to check this observation.

A reinforced concrete disk was cast with a joint on a diameter to simulate a crack in the end slab of a test vessel. The concrete disk is shown in Fig. Cl. Prestressing wire with a 0.192-in. diameter was wrapped around the disk, and the two halves of the disk were forced apart with a hydraulic jack, forcing the crack to open and at the same time imposing additional strain in the prestressing wire. During the tests the concrete disk lay on three-inch diameter pipe rollers to reduce friction between the disk and floor, and was held parallel to the floor with a steel channel section over the disk and loosely attached to the floor.

Opening of the crack was measured at both ends of the diameter with dial gages and the wire in the vicinity of the crack at one end of the diameter was instrumented with electrical resistance type strain gages. Also the force required to push the halves of the concrete disk apart was measured.

C 1

Three tests were performed with this arrangement. There was only one wrap of wire around the disk. A prestressing force was applied to the wire before the halves of the concrete disk were forced apart. This prestress force was applied with the arrangement shown in Fig. C2 and a load cell was used under the prestress jack to measure the force applied and the change of force at the ends of the wire during the test. The strain gages were placed on the wire after the prestressing force was applied. The jack used to force the halves of the concrete disk apart was placed off center 1/2 in. to assure that fracture of the wire occurred on the side which was instrumented.

C2. Shear Stress Between the Wire and Concrete

An analysis of the relation between shear force along the wire and variation of stress in the wire may be made if certain simplifying assumptions are made. Assume that there is some prestress in the wire which is applied without obtaining a shear stress between the wire and concrete so that the prestress force is uniform. The equilibrium of a section of wire between a crack and the point one-half the distance to the next crack, as shown in Fig. C3 is then investigated. Distance along the wire, x, is measured from the crack. Let F_x be the force at x in the wire, F_o the initial force in the wire, μ the coefficient of friction between the wire and concrete, and R_o the radius of the concrete disk about which the wire is wrapped. From Fig. C3 it is apparent that the rate of change in force at some distance x along the wire is

$$\frac{dF_{x}}{F_{x}} = \frac{\mu}{R_{o}} dx$$

Integration of this expression yields

$$\log F_{x} + C = \frac{\mu}{R_{o}} x$$

At x = o, F_x is equal to the force in the wire at the crack, F_o , which gives C = -log F_o . The above equation may then be written

$$\log \frac{F_x}{F_o} = \frac{\mu}{R_o} \times \text{ or } \mu = \frac{R_o}{x} \log \frac{F_x}{F_o}$$
(C2)

The wire on the test vessel approaches the conditions assumed in this analysis more nearly than does that in the wire friction tests described in the last section. In the wire friction tests the opening of the cracks was much larger so that the movement between the wire and concrete was greater. One would expect this to affect the friction coefficient between the two surfaces since the movement would alter the surface characteristics of the concrete. The wire in these tests was prestressed by pulling the ends of the wire around the concrete disk as explained earlier. This prestress

 $\frac{dF_{x}}{dx} = \mu \frac{F_{x}}{R_{o}}$

(C1)
caused a friction force between the wire and concrete in the direction opposite to that which would occur when the two halves of the disk are pushed apart on the section of wire which was gaged. As the halves of the disk are pushed apart, this initial shear stress must be relieved before any strain can be applied to the wire. Since the strain gages are applied with this reversed shear stress in the wire, the initial wire strain will appear to be a compression, though it is actually a slight relief of some of the initial tension in the wire.

The difference in force in the wire at a crack and away from the crack must result from friction between the wire and concrete. The maximum value of this force depends upon the coefficient of friction between the two surfaces and the distance between the cracks since the friction force will build up only over one-half the distance to the next crack. If the shear force is sufficient to cause the strainat the crack to be in the plastic range while that away from the crack is still below this range, then additional strain will be concentrated at the crack.

C3 Results of the Tests

Though there are certain basic differences between the conditions at the crack in the wire test and in the vessel tests, the pertinent basic information for understanding the wire behavior at a crack can be obtained from the wire tests. It is seen from Fig. C4, C5, and C6 that there is a definite strain concentration in the vicinity of a crack. In these graphs the variation of strain with distance from the crack is shown for several load increments for the three tests. The magnitude of strain

C4

concentration at the crack recorded in these tests depends to a large measure on whether a strain gage was located very near the failure region in the wire. The magnitude is sufficient, however, to cause failure of the wire to occur at the crack, and in Fig. C6 for example, when the load was maximum the highest strain read near the crack was 0.022 while that read at 7 in. from the crack was 0.0066.

Any numerical value of strain concentration given must be based on an arbitrary definition of what is meant by strain concentration; that is, on what level of strain the concentration is based since the strain is varying continuously along the wire. Also, the concentration of strain will depend on the spacing of cracks, the force in the wire, and on the coefficient of friction between the wire and concrete. In the test vessels the cracks were closely spaced so the results obtained from these friction tests probably represent an upper limit on the concentration factors, but the coefficient of friction should be representative of that in the test vessel.

In Fig. C4, C5, and C6 the curves are labeled with the forces at the crack found from the difference in the load cell forces. If these forces are assumed to be correct and a straight line is drawn to average the points from the crack out to 31 in. to the right for the curve labeled 4400 lb in Fig. C4, the difference in force can be found from this strain difference. This force difference is found to be 2100 lb and the force at 31 in. from the crack is then 2300 lb. Substitution of these forces into Eq. C2 gives

 $\mu = \frac{20 \text{ in.}}{31 \text{ in.}} \log \frac{2300 \text{ lb}}{4400 \text{ lb}} = 0.42$

С5

This value appears high. In Ref. Cl a value of approximately 0.33 is reported. Figure A7 shows the stress-strain curve for the 0.192 in. prestress wire. A stress of 230 ksi is well within the yield range while 220 ksi is well below the flat portion of the curve. This difference of 10 ksi represents a force difference of 290 lb. If a force of 4400 lb is assumed at the crack (certainly a lower limit) and a value of $\mu = 0.33$, then the distance required to obtain this force difference may be found from Eq. C2

$$0.33 = \frac{20 \text{ in.}}{x} \log \frac{4110}{4400}$$

x = 4.1 in.

It is apparent that sufficient force difference could be developed in the wire to cause an appreciable strain concentration.

FIG. CI TEST ARRANGEMENT FOR FRICTION TESTS OF PRESTRESS WIRE

C 7

FIG. C3 FORCES ACTING ON A SECTION OF PRESTRESS WIRE AT A CRACK

 $\vec{q}_{\lambda} = \vec{q}$

FIG. C4 STRAINS MEASURED ABOVE PRESTRESS STRAINS VS DISTANCE FROM THE CRACK AT SEVERAL LOADS FOR TEST NO. 1

Distance from crack, in. FIG. C5 STRAINS MEASURED ABOVE PRESTRESS STRAINS vs DISTANCE FROM THE CRACK AT SEVERAL LOADS FOR TEST No. 2

с I0

FIG. C6 STRAINS MEASURED ABOVE PRESTRESS STRAINS VS DISTANCE FROM THE CRACK AT SEVERAL LOADS FOR TEST No. 3

СП

.

APPENDIX D

STIFFNESS MATRIX FOR LUMPED-PARAMETER ELEMENT

The stiffness matrix for a typical node m is

$$\begin{bmatrix} L_{m} \end{bmatrix} = 2\pi r_{m} (L_{r}L_{z}/2 [k_{m}])$$

The element of the symmetric matrix ${\bf k}_{\rm m}$ are given by

$$k_{11} = (1/L_z^2)C_{44}$$

$$k_{21} = 0$$

$$k_{22} = (1/L_z^2)C_{22}$$

$$k_{31} = 0$$

$$k_{32} = (1/L_r L_z) c_{12} - (1/2r_m L_z) c_{23}$$

$$k_{33} = (1/L_r^2) c_{11} - 2(1/2r_m L_r) c_{13} + (1/4r_m^2) c_{33}$$

$$k_{41} = (1/L_r L_z) c_{44}$$

$$k_{42} = k_{43} = 0$$

$$k_{44} = (1/L_r^2) c_{44}$$

$$k_{51} = -k_{11}$$

$$k_{52} = k_{53} = 0$$

$$k_{54} = -(1/L_{r}L_{z})C_{44}$$

$$k_{55} = k_{11}$$

$$k_{61} = 0$$

$$k_{62} = -k_{22}$$

$$k_{63} = -k_{32}$$

$$k_{64} = k_{65} = 0$$

$$k_{66} = k_{22}$$

$$k_{71} = 0$$

$$k_{72} = -(1/L_{r}L_{z})C_{12} - (1/2r_{m}L_{z})C_{23}$$

$$k_{73} = -(1/L_{r}^{2})C_{11} + (1/4r_{m}^{2})C_{33}$$

$$k_{74} = k_{75} = 0$$

$$k_{76} = -k_{72}$$

$$k_{77} = (1/L_{r}^{2})C_{11} + 2(1/2r_{m}L_{r})C_{13} + (1/4r_{m}^{2})C_{33}$$

$$k_{81} = -(1/L_{r}L_{z})C_{44}$$

$$k_{82} = k_{83} = 0$$

$$k_{84} = -(1/L_{r}^{2})C_{44}$$

$$k_{85} = -k_{81}$$

$$k_{86} = k_{87} = 0$$

$$k_{88} = -k_{84}$$

APPENDIX E

COMPUTER PROGRAM LISTING

The computer program used in this study consists of a MAIN routine and a number of SUBROUTINES and FUNCTIONS. The MAIN routine is the control routine of the program in which various SUBROUTINES for reading of input parameters, computation of topological informations, assigning of joint displacement unknown numbers, generation of the stiffness matrix for the complete structure (equilibrium equations), calculation of joint loads for a specified pressure level, solution of equilibrium equations, computation of strains and stresses, etc. are called in. Calculation of various pressure levels corresponding to the cracking stress or the cracking strain at a flexible node is also performed in the MAIN routine.

The computation of the stiffness matrix for the complete structure which is an intermediate major step in the program is performed by the use of several SUBROUTINES. These SUBROUTINES generate the material property matrix (in elastic or in cracking state), the boundary condition matrix (if the node is on the boundary), and the element stiffness matrix for each flexible node. The individual stiffness matrices are then assembled in appropriate manner to obtain the stiffness matrix (equilibrium equations) of the complete structure. The terms in each row of the stiffness matrix between the first and the last non-zero columns are then stored on the DRUM (an auxiliary storage device).

When a crack is initiated at a flexible node or when it is propagated to another node, the equilibrium equations which are affected by the presence of the crack are regenerated and restored on the DRUM for subsequent use. The program maintains a table of information regarding the state of cracking at the flexible nodes (cracking history). This table is updated at the end of each pressure level and it is printed in order to provide the cracking sequence throughout the study. In addition to this table, the displacements, the strains, and the stresses are also updated at the end of each pressure level.

The program is coded in FORTRAN IV language and it is used on the IBM System 360/75 of the University of Illinois. The number of equilibrium equations which can be solved naturally depends on the storage capacity of the computer. However, due to repeated modification and solution of the equilibrium equations, solution of a large number of equations is not economical.

Ε2

4 (a)	
** * * * * * * * * * * * * * * * * * * *	
MAIN	
<pre>(JMMON ALR:ALZ:IIC:IEC:JIP.JEP:EC:H.DELP:LC:LR:LG:LPULEYC:PR: PHP:MW:NW:AK:ITOTI:ITOT:NQ:KU:KLOW:KHIGH:KHN:KDR:T:J:IA; JA:NL:CON:ERR:CF:PRF:IPF2:PF3:PF4:LOCAT:LADOLLL:SIGN C:L:CE:CI:C2:C3:C4:IER:LCE:SICLU:FJICN; C:L:CE:CI:C2:C3:C4:IER:LCE:SICLU:FJICN; C:L:CD:C2:C3:C4:IER:LCE:PF2:IER:LI:JDEMM C:JMMON A(150):8(53000):V(53:8):V(53:8):NR(1800):NC(1800):C(44); S:(1800):MS(1800):R(53):SUMR(53):OIFPR(53):AR(20):ALP(20); C:L:C2:C2:C2:C3:C4:IER:LCE:PFC:D1:SEPC(10):SEPC(10); C:L:CD:PFC:D1:VC(4):VC(4):SEPC(10):EEPC(10):SEPC(10); C:L:C2:C1:C2:C2:C2:C2:C2:C2:C2:C2:C2:C2:C2:C2:C2:</pre>	
Direction (C(C))	
1 (B(4301)+ERPR(1)) * (B(6001)+EZPR(1)) * 2 (B(12901)+ETPR(1)) * (B(17201)+EZPR(1)) * 3 (B(21501)+SIGR(1))+DER(1))*(B(82801)+SIGH2(1)+DERZ(1))* 4 (B(30101)+SIGR(1))+(B(62801)+SIGH2(1)+DERZ(1))* 5 (B(30701)+SIG(1))+(B(43001)+EPS(1))+(B(47301)+DET(1)) 5 (B(30701)+SIG(1))+(B(43001)+EPS(1))+(B(47301)+DET(1)) 5 (B(30701)+SIG(1))+(B(43001)+EPS(1))+(B(47301)+DET(1))	
DEFINE FILE 2(1400,10,U,]REC) CALL ERRSET (200,10,2,DUMP,210) 50 READ (5,100) IIC,1EC,JIP,JEP,N,ICABLE,LRC,LR,LCYC,LG,LPO,LPHCSS, 1 AH9,FH9,ALR,AL2,0,EST,EC,PR,ECR[T] 100 FORMAT (12(4,12X)F0,5)F12,2/JF10,5,2E12,4,2F12,6)	
H = (JEP-I)*ALZ/2. TPLATE = (JEP-J)P)*ALZ/2. TCYLDR = (IEC-JIC)*ALR/2. ICBLR = [CABLE-IIC+2 DOE = TCYLDR-(ICBLR-2)*ALR/2. PAFI = EC/(I)*PR)*(I2.*PR)) PRF2 = (I_*PR)*PRF1 PRF3 = PR*PRF1	
PARA = EC/26*(1***R)) f(CML = f1C-1 R(1) = 0. M = 1EC-1 D0 1 1=1.M R(1+1) = R(1)+ACR/2. SUMR(1+1) = 1.*ALR+0.5/R(1+1) SUMR(1+1) = 1.*ALR+0.5/R(1+1)	
<pre>[UIFFR(1) = (*/ALR=0.5>/K(1+1) DIAM = 2.*R(1EC) C[= 1.*ALR/(8.*R(1[C)) PHP=FHP/(0*(1[CC)) MW = JEP-J[P+1 NW = JEP-J[P+1 ITOTI = 2*(((IIC-1)/2)*MW+(2*(IIC/2)-1[C+1)*((MW-1+LRC)/2)) ITOTI = 2*(((IIC-1)/2)*MW+(2*(IIC/2)-1[C+1)*((MW-1+LRC)/2)) I (MW/2)*MW+(MW=2*(MW/2))*((MW+2*(IRC+1)/2)-RC)/2))]</pre>	
READ (5:101) (ALP(1):FLP(1):1=1:20) 101 FORMAT (5F8.51:F8:0)) 1F (JEP-2*(JEP/2)) 24:31:24	

(b)

24 IF (J[P+LRC-2*((J[P+LRC)/2)) 32+33+32 31 LADD = 0 GO TO 37 32 LADD = -1+2*(LRC/2) CO TO 27 GO TO 37 33 LADD = 1=2*(LRC/2) 37 LCLI = LRC+11C+JEP-JIP IF (LCL1+2*(LCL1/2)) 38+39+38 LCL = 1 GO TO 40 LCL = 0 L = 0 39 40 K = 1 1 = 2+LCL J = JEP+1 DO 16 II = 1 • ITOT NR((1) = 0 16 $\begin{aligned} &\mathsf{NR}(1) = 0 \\ &1 = [+] \\ &J = J=1 \\ &|F([=1] \ 20 + 20 + 21] \\ &IF([=1EC] \ 14 + 14 + 15] \\ &-(-1) \end{aligned}$ 13 $\begin{array}{l} IF (I=IEC) \ I4, 14, 15\\ L = L + 1\\ CALL \ NMBR(I, J, L)\\ IF (J-JP) \ I7, 18, 13\\ L = L+1\\ CALL \ NMBR(I, J, L)\\ K = K+1\\ I = 28K4LCL\\ J = JEP+1\\ CR = JEP+1\\ CR = JR + 1\\ \end{array}$ 20 19 GO TO 13 IF (1=11C) 19.19.13 I = IEC J = JEP-(2*K-1+LCL-1EC) 15 $\begin{array}{l} J = JEP-(2*K-1+LCL-1EC) \\ L = L+1 \\ CALL +MBR(1+J+L) \\ IF (1EC-2*(1EC/2)) + 13+11+13 \\ IF (1-1EC) + 13-30+30 \\ IF (J-1) + 25+25+13 \\ IF (J-1) + 22+22+23 \\ IF (J-1+1C) + 13+19+13 \\ IF (J-2*(1EC/2)) + 19+25+25 \\ CANTINEF \end{array}$ 17 23 22 CONTINUE DO 28 Lai: TOT M = NR(L) M = NR(L)
28 NC(M) = L
SUMALP = 0,
NLP = IEC-[IC+2
D0 4 [=1:NLP
SUMALP = SUMALP + ALP(I)
4 SUMAP = SUMPZP+FLP(I)
write (6:02) TPLATE:TCYLDR:H:DIAM:IIC:IEC:JIP:JEP:ALR:ALZ
IC2 FORMAT (IH::STRCTURE DIMENSIONS://SX:IPLATE THICKNESS::I4X:'=';
1 F8.3,: IN:'/6X:'WALL THICKNESS::ISX:'=':F8.3,: IN:'/6X:'SEL':IIX
2-HEIGHT OF VESSEL':8X:'=':F8.3,: IN:'/6X:'ODEL GEOMETR''/6X:'I-LINE CORRESPONDING TO
4 INTERIOR OF CYLINDER *':IS/6X:'I-LINE CORRESPONDING TO EXTERIOR OF 6 WRITE (6:104) 104 FORMAT (6:157RESS NODE AT RE-ENTRANT CORNEF!///) 7 WRITE (6:105) EC.PR:ECRIT 105 FORMAT (6:105) EC.PR:ECRIT 115 FORMAT (6:105) EC.PR:ECRIT 118 Statistic Constants OF MATERIAL!//6X:1MOULLUS OF ELASIICITY 118 Statistic Constants OF MATERIAL!//6X:1MOULLUS OF ELASIICITY 118 Statistic Constants OF MATERIAL!//6X:1MOULLUS OF ELASIICITY 118 STRAIN:14X:14:F9;5//) WRITE (6:113) AMP:ESTIC:FMP:PHP:SUMALP:EST:N:SUMPZM:DOL 113 FORMAT (1: HOOP PRESTRESSING://6X:1AREA OF CAULL:16X:14:EI3:50; 2 2 2 3LUS OF ELASTICITY:8X:41:EI3:51; PSI:1/6X:SPAC(NG'22X:41:EI3:50; 4 No:166X:19RESTRESSING LOAD:12X:14:EI3:50; EN:160:1001AL PRESTRESSING 6//6X:14REA OF CAUE:16X:14:EI3:51; SO: No:176X:1400LU3 OF (EA: 7TICITY:8X:41:EI3:51; PSI:16/X/1; LONGITUDIAL PRESTRESSING LOAD PERCENCE OF CAUE:11:X:14:11:15:14; 61PRESTRESSING LOAD PER CABLE =11:EI3:51; CH:176X:100LU3 OF (EA: 61PRESTRESSING LOAD PER CABLE =1:EI3:51; CH:176X:101:14X:14:14:15:14:15:15; 60 TO (8:0):LO 8 WRITE (6:106) 106 FORMAT (6:106) 106 FORMAT (6:100INAL PRESTRESSING IS UNGROUTED://) 50 TO 10

- 106 FORMAT (6X, LONGITUDINAL PRESTNESSING IS UNGHOUTED'/ GO TO 10 9 WRITE (6:107) 107 FORMAT (6X, LONGITUDINAL PRESTNESSING IS GROUTED////) 10 IICEP = IICEN: 11CLP = IICEN:

108

IICLP = IICPI+16
WRITE (6+108) (1+[*IICPI+1ICLP)+(ALP(I)+[=3+19)+(FLP(I)+[=3+19)+
ICRC+R+CV2+C+GALPACSS+ITAT
FORMAT (4X+EQUIVALENT PRESTRCSSING LGADS AND AMLAS AS THEY INTERV
IENE IN THE MODEL+6X+1AT I =++1717/6X+1AREAS ++1747+0764+1CLAGA
2 ++1747+0777+1 SWITCHES AT START+76X+1CRC =++13+5X+1CNC +++1577
3LCVC =++13+5X+1CG +++1577
3LCVC =++13+5X+1CG +++1577
4 OF EQUATIONS =++1577
ITATH = ITAT72
LRC + LRC+(LRC+1172-2*(LRC/2)
JTATI = (([IC-1)72)*MW+(2*(IIC72)+J1P+1)*((MW-1+LHC)77)+
JTATT = JTAT1+ ((JTP-1)72)*MW+(2*(JTP72)+J1P+1)*((MW-1+LHC)77)+
1 (MW72)*MW+(MW72)*((NW+2*((LRC+1)72)+CC172;
JDAUM = (JTAT+9)710

- JDRUM = (JTOT+9)/10 1TOT1 = 2*JTOT1

17 (LR) 80.80.81 81 REWIND 3 READ (3) NL.LRC.LPRCSS.LCR.DELP.P.ICR.JCR.SIGICR.AN.PHP.AP.P.C. READ (3) NL.LRC:LPRCSS:LCR:DELP:P:[CR:JCR:S][CR:AK:PHH:A// LRC = LRC+(LRC+1)/2-2*(LRC/2) ITOT] = 2*((()[C-1)/2)*MW+(2*()[C/2)-1][C+1)*((MW-)+LHC)/2)) REWIND 4 DO 93 L=1:[TOTH NG = 2*L CALL COORD WRITE (4) U(1:J):W(1:J) LRC = LRC+(LRC+1)/2-2*(LRC/2)

93

(d)

(d) ITOT; = 2*JTOT: DO 75 K=:.JDRUM REAU (3) ERPO;EZPO;ETPO;ETPO;ETPO;ETPO;S2PO;E2PO;TANIPO;TAN2PO; SPPO;S2PO;S2PO;ETPO;ERZPO;ETPO;S2PO;E2PO;TANIPO;TAN2PO; DO 76 L=:1:10 NG = 2*((K=1)*10+L) CALL COORD DER(1;J) = 52PO(L) ERPO(L;J) = 52PO(L) ERPO(L;J) = E2PO(L) EZPR(1;J) = E2PO(L) EZPR(1;J) = E2PO(L) EZPR(1;J) = EZPO(L) ETPO(L) = ETPR(1;J)+DER(1;J) DER(1;J) = TANIPO(L) ETPR(1;J) = TANIPO(L) ETPR(1;J) = TANIPO(L) ERZPR(1;J) = EZPO(L) ERZPR(1;J) = EZPO(L) ERZPR(1;J) = SIPO(L) ERZPR(1;J) = SIPO(L) TG CONTINUE WRITE (2:100+K) ERPO WRITE (2:200+K) SIPO WRITE (2:400+K) SIPO 75 CONTINUE GO TO 41 80 NL = 0 DO 83 I#1+NLP I1 = I+IIC=2 AR(I) = 0 PZP(I)= (N)*FLP(1)/(3.14159*ALR*R(11)) 83 CONTINUE AK = C. DELP = C. P = 0. P = 0. LCR = 0. ICR = IIC JCR = JIP DO 2 J=1.JEC DO 2 J=1.JEP LC(1.J) = 0 IF (J-J)P 71.2.2 72 LC(1.J) = 10000 2 CONTINUE 26 CONTINUE DO 31 J=1.IEC

DO 313 1=1.1EC DO 313 J=1.JEP SIGR(1.J) = 0. SIGZ(1.J) = 0. SIG7([+J) = 0.

IGR2([+J) = 0. EPPR([+J) = 0. ZPR([+J) = 0. FFPR(I+J) = 0Fine(1-J) = 0+
Fine(1-J) = 0+
Fine(1-J) = 0+
Fine(1-J) = 0+
Fine(1-L) = 2+((LIC-1)/2) * Mw+(2+(IIC/2)-IIC+1)+((Mw-1+LRC)/2))
Fine(D) 4
Fine(D) 4
Fine(1-L) = 0+
Fine(1 CLUIND 4 FO 77 LSI,ITOTH NG - 2*L CAL COORD F([+J] = 7. W([+J] = 7. W([+J] = 0. W([+J] = 0. W([+J] = 0. ACTIC (1) = (CONTINUE Find(L1) = Fire(113)
(A)PO(L1) = SIGR2(1+J)
(TAPPO(L1) = ERZPR(1+J)
IF ((L1-10)*(L-JTOT)) 5+94+5
L13 = (L+9)/10 L13 = (L+9)/10 WRITE (2*100+L10) SPPO WRITE (2*100+L10) SPPO WRITE (2*100+L10) S2PO WRITE (2*100+L10) STPO WRITE (2*100+L10) STPO WRITE (2*600+L10) SF2PO WRITE (2*700+L10) SF2PO CONTINUE CONTINUE 5 CONTINUE LR = LR+1 NL = NL+1 IF (NL-2) 42,43,44 CONTINUE LRC = LRC+(LRC+1)/2-2*(LRC/2) ITOTI = 2*(((![C-1)/2)*MW+(2*([[C/2)+[IC+1]*((MW-]+LRC]/2])) 41 ITOT1 = 2*((([C-1)/2)*** A4 REWIND 1 C0 99 L=(:ITOT NG = NR(L) CALL COORD. CALL GOORD. CALL FOUATN IF (NO-2*(NO/2)) 46:47:46 46 IF (I-1) 48:48:49 46 A(KOR) = 1: C0 TO 45

(c)

WRITE (2+L10) SRPO WRITE (2:100+L10) ERPO WRITE (2:200+L10) SZPO WRITE (2:300+L10) SZPO WRITE (2:300+L10) EZPO WRITE (2:400+L10) ETPO WRITE (2:500+L10) ETPO WRITE (2:600+L10) SRZPO WRITE (2:600+L10) SIPO WRITE (2:900+L10) SIPO WRITE (2:900+L10) EIPO WRITE (2:1000+L10) E2PO WRITE (2:1100+L10) E2PO WRITE (2:1200+L10) TAN1PO WRITE (2:1200+L10) TAN2PO CUNIINUE LRC = LRC+(LRC+1)/2-2*(LRC/2) ITOTI = 2*(((IIC-1)/2)*MW+(2*(IIC/2)-IIC+1)*((MW-1+LHC)/2)) REWIND 4 ____ 58 CONTINUE DO 91 L=1.1TOTH DO 91 L=1,1T0TA NO = 2+L CALL COORD READ (4) SIG(!,J)+EPS(!,J) U(!,J) = U(!,J)+EPS(!,J) W(!,J) = U(!,J)+EPS(!,J) REWIND 4 DO 92 L=1,1T0TH NO = 2+L CALL COORD WHITE (A) U(!,J)+W(!,L) 91 CALL COORD 92 WRITE (A) U(1,J),W(1,J) LRC = LRC+(LRC+1)/2-2*(LRC/2) ITOTI = 2*JTOTI IF (LR-3) 87.87.90 90 IF (LPRCSS-2) 88.87.88 87 CALL OUTPUT IF (UP-3) 20.88.30. IF (LR-3) 88+88+301 301 IF (LPRCSS-1) 88+304+88 304 P=P+0ELP 301 if (LPACSS-1) 58:30*188
304 P=P+DELP
G0 T0 42
B8 if (LR-LCYC) 41:59:59
43 if (LR-LCYC) 41:59:59
43 if (LR-LCYC) 41:59:4LR*R(11))
61 P2P(1) = 0
AK = AHP*EST/(D*R(1EC))
PHP = 0
AK = AHP*EST/(D*R(1EC))
PHP = 0
OC 42
35 DELP = P
PHP = FHP/(D*R(1EC))
00 303 i=1:NLP
11 = i+1iC-2
303 P2P(1) = N*FLP(1)/(3:14159*ALR*R(11))
G0 T0 42 GO TO 42 44 IF (LPRCSS-2) 62+63+64 62 CALL EXTRPL (d)

(b)

(U) DELP = 100**(EXCF=1*) LPRCS = 2 PT = P+DELP WRITE (6+114) PT 114 FORMAT (///)THE INTERNAL PRESSURE INCREASES T0**F8*1** P51* REF0 1RE NEXT CRACK DEVELOPS://) 65 P = P+DELP 69 LRC = LRC*(LRC+1)/2-2*(LRC/2) ITOT1 = 2*(((IC-1)/2)*MW+(2*(IIC/2)-IIC+1)*((Mw-1+LRC)/2)) G0 T0 84 63 ICRT = 1ABS(ICR) JCRT = 1ABS(JCR) IF (LC(ICRT+JCRT)=1) 2U[*202*202 201 IF (LCR) 204*204*205 204 LC(ICRT+JCRT)= 2 G0 T0 200 205 LC(ICRT+JCRT) = 3 G0 T0 200 205 LC(ICR,JCRT) = 1 200 WRITE (6+109) (1**1*IEC*2) 47 IF (J-1) 48.48.52 49 CALL SIGRA CALL SIGRB CALL SIGRZC CALL SIGRZC CALL SIGT(J GO TO 45 52 CALL SIGZC CALL SIGZC CALL SIGZC CALL SIGRZA CALL SIGRZA 45 WRITE (1) 1,J.KLOW,KHIGH,A,CON 99 CONTINUE 90 CONTINUE CALL SOLVER DO 53 L=1+ITOT NG = NR(L) 60 85 CALL COORD IF (NO-2*(NO/2)) 54:55:54 54 U(1.J) = S(L) GO TO 53 55 W(1.J) = S(L) 200 WRITE (6,109) (1:1=1:1EC:2) 109 FORMAT (1H1:50X:CRACKING TABLE:///15X:28(14)//) 109 FORMAT (|H1,50X,+CRACKING TABLE+///15)
D0 66 J=1+JEP
J1 = JEP=J+1
IF (J+LCL=2*((J+LCL)/2)) 67+68+67
68 WRITE (6+111) J1+(LC((+J))+(=1+EC+2)
II FORMAT (10X+13+2X+28(14))
G0 T0 66
67 WRITE (6+112) J1+(LC(1+J1)+(=2*EC+2)
I12 FORMAT (10X+13+4X+27(14))
66 CONTINUE
LPRCSS = 3
NL = 1 53 CONTINUE CONTINUE LRC + LRC+(LRC+1)/2-2*(LRC/2) 17011 = 2*JT011 D0 51 K=1+JDRUM READ (2*K) SRP0 READ (2*100+K) SZP0 READ (2*1200+K) SZP0 READ (2*1300+K) SZP0 READ (2*1300+K) STP0 READ (2*1500+K) STP0 READ (2*1500+K) ETP0 READ (2*1500+K) ETP0 READ (2:500+K) ETPO READ (2:600+K) SRZPO READ (2:700+K) ERZPO D0 51 L=1:10 N0 = 2*((K-1)*10+L) CALL COORD SIGR(I,J) = SRPO(L) SIGZ(I,J) = SZPO(L) EZPR(I,J) = SZPO(L) SIGZ(I,J) = STPO(L) SI NL = 1 GO TO 26 64 CALL CHECK IF (LCR) 87+87+63 59 REWIND 3 WRITE (3) NLILRCILPRCSSILCRIDELPIPICRIJCRISIGICRIAKIPHPIAHIPZPIDI 1 W DO 73 L=1,JTOT NQ = 2*L CALL COORD L1 = L-((L-1)/10)*10 L1 = L-{(L-1)/10}*10 ERPO(L1) = EZPR(I,J) EZPO(L1) = EZPR(I,J) ETPO(L1) = EZPR(I,J) ERZPO(L1) = ETPR(I,J) SIPO(L1) = DEPS1(I,J) SZPO(L1) = DER(I,J) EZPO(L1) = DER(I,J) TANIPO(L1) = DER(I,J) TANIPO(IF (NO-2*JTOT) CONTINUE CONTINUE DO 58 L=1.JTOT NO = 2*L CALL COORD IA = I JA = J CALL STRSTR (L = L CALL STRSTR 51 95 73 . 74 . 73 L1 = L-((L-1)/10)*10 CALL SIGEPS 1F ((L1-10)*(L-38 L10 = (L+9)/10 -JTOT)) 58+98+58

E 5

RFAD (2+600+L10) SRZPO WRITE (3) ERPO,EZPO,ETPO,ERZPO,E1PO,SIPO,S2PO,E2PO,TAN1PO,TAN2PO, SRP0.SZP0.STP0.SRZP0 CONTINUE - 22 - 17 - 50 29 - 10 - 50 2 ND 2 ND SUBROUTINE NMBR(IN+JN+L)

 SUBROUTINE NMBR(IN.JN.L)

 CUMMUN ALH-AL2-IIC.IEC.JIP-JER-C.H.DELP-LRC.LR.LG.LD.Q.LCYC.PR.

 I
 PHP.MWINWAK.IIOTI.ITOTING.KD.KLDWIKLDWIKHGHKHRXDWIL.414.

 J
 PHP.MWINWAK.IIOTI.ITOTING.KD.KLDWIKLDWIKHGHKHRXDWIL.414.

 J
 JAINL-CONERR.CF.PFI.PRF2.PRF3.PRF4.LDCAT.LADD.LCL.SIGN

 2
 JAINL-CONERR.CF.PFI.PRF2.PRF3.PRF4.LDCAT.LADD.LCL.SIGN

 4
 EXCF.SIGICR.TPLATE.TCYLDR.LICM.LICH.LU.JORUM

 CJMMON A(150).B(5300).VU(53.91).W(53.91).NR(1800).NC(1800).C(44).

 1
 S(1800).MS(1800).FR(53).SUMR(53.91).OFFR(53).AR(20).LAP(20).

 2
 FLP(20).MS(1800).FC(10).SZPO(10).SZPO(10).SZPO(10).SZPO(10).ALP(20).

 2
 FLP(20).FZP(20).UC(4).WC(4).SRPO(10).FZPO(10).SZPO(10).SZPO(10).SZPO(10).

 3
 L2PO(10).SZPO(10).EZPO(10).FZPO(10).FZPO(10).SZPO(10).SIP(10).

 4
 EIPO(10).SZPO(10).FZPO(10).FXPIP(5).SIP(10).

 5
 ERPE(A:3.81).SIG(53.61).FZPG(53.61).SIP(53.61).

 6
 ERPE(A:3.61).FZPG(53.61).FZPG(53.61).SIGP(53.61).

 1
 U1).OLR(53.61).FZPG(53.61).FZPG(53.61).SIP(53.61).

 2
 ERPE(A:3.61).FZPG(53.61).FZPG(53.61).

 3
 CPS1(53.61).FZPG(53.61).FZPG(53.61).

 4
 U1).OLR(53.61).FZPG(53.61).FZPG(53.61).

 5
 G8(12901).SIGR(1).SIGF(1).SIGF(2).

 6
 1F (IN-11C) 1.2.2 (UN-SIF), 2. GO TO 5 NR(L) = [TOTI+((IN-11C-LRC+2)/2)*(JEP+LADD) +((IN-11C+LRC-1)/2)*(JEP-LADD)+((JN-1)/2)*2+1 5 NR(L) = NR(L-1)+1RETURN E'ND SUBROUTINE EQUATN

1 IA = [+1 JA = J IF ((1-1)*(1-1EC+1)*(1-1EC)*(J-1)*(J-2)*(J-J1P-1)*(J-J1P)*(J-JEP)) 221.202.221 6 Z2112UEYLE. 221 CALL STRSTR TYPICAL NODE 201 A(KHR-5) = (C(11)/ALR+C(13)/(2.*R([A)))*C1 A(KHR-5) = -C(14)*C1/ALR A(KHR-3) = -C(14)*C1/ALZ A(KDR+2) = -C(12)*C1/ALZ A(KDR+2) = C(12)*C1/ALZ A(KDR+1) = -C(12)*C1/ALZ A(KDR+1) = -C(14)*C1/ALR GO TO 250 202 IF (1-IEC+1) 203.204.205 AT EXTERIOR FACE OF CYLINDER 205 A(KDR) = -AK/R(1)*C1 CON = CON-PHP*C1 GO TO 250 HALF-SPACE FROM EXT. FACE OF CYLINDER 204 CON = CON-PHP*C1 CALL STRETR с с с 204 CON = CON=PHP*C1 IF ((J=2)*(J=J=P)) 206*207*207 206 A(KDR=2) = -AK/(2*R([A])*C1 217 A(KHR=3) = -AK/(2*R([A])*C1 217 A(KHR-3) = -AK/(2.*R([A])*Cl GO TO 250 207 IF (J-2) 208.223.209 208 A(KDR-2) = -AK/R([A])*Cl GO TO 250 209 A(KDR) = -AK/(2.*R([A])*Cl GO TO 217 223 A(KDR-2) = -AK/(2.*R([A])*Cl A(KHR-1) = A(KDR-2) GO TO 250 203 IF (J-1) 210.211.210 EQUATION AT CENTERLINE 211 A(KDR) = 1. CON = 0. c CON = 0. 210 CALL STRSTR

IF (J-JIP) 222,213,214

(b)

(8(4301),ERPR(1)) , (8(8601),EZPR(1)) , (8(12901),ETPR(1)) , (8(17201),ERZPR(1)) , (8(21501),SIGR(1),DER(1))+(8(25801),SIGR2(1),DERZ(1)), (8(38701),SIG(1),DEZ(1))+(8(3401),SIGT(1),DEPS(1))), (8(38701),SIG(1))+(8(43001),EPS(1))+(8(47301),DEPS(1))) KHR = KHIGH-KLOW+1 KOR = KD-KLOW+1 D0 10 K=1.KHR 10 A(K) = 0. CON = 0. C1 = SUMR(1) C2 = -DIFFR(1) C3 = 1./ALZ C4 = -C3 IF ((1-1)*(1-1EC)) 11.12.12 11 IF (1-1C) 13.14.15 13 IF ((J-JP)*(J-JEP)) 200.17.17 14 IF (J-JP) 18.19.23 23 IF (J-JP) 18.49.23 23 IF (J-JP-1) 24.24.13 24 C4 = -0.5*(1.-ALR/(8.*R(1)))/ALZ C0 T0 13 10 K=1.KHR GO TO 13 C1 = 2,*C1 C2 = -2,*ALR C3 = C3*C1 AT 18 C3 = -C3 $IF (J-1) = 200 \cdot 17 \cdot 200$ $C3 = 2 \cdot *C3$ 17 C4 = -C3 GO TO 200 AT RE-ENTRANT CORNER 19 C2 = 0.5*C2 C4 = 0.5*C4*C1 G0 T0 200 $\begin{array}{l} G_{0} \ \ f_{0} \ \ 200 \\ 15 \ \ f_{0} \ \ (1-(1C-1)) \ \ 25 \cdot 26 \cdot 25 \\ 26 \ \ f_{0} \ \ (J-J(P)) \ \ 25 \cdot 27 \cdot 25 \\ 27 \ \ C2 \ \ = \ 0.5 \times C2 \\ 25 \ \ \ (J-J(P-1)) \times (J-J(P)) \ \ 200 \cdot 17 \cdot 200 \end{array}$ 17 (1-1) 21.22.21 17 EXTERIOR FACE OF CYLINDER C1 = 2.4LR C2 = 2.*C2 12 21 C3 = C3+CE C4 = -C3 IF ((J-1)*(J-JEP)) 200+17+17 22 C1 = 8./ALR IF ((J-J[P]*(J-JEP)) 200:17:17 200 RETURN END ************** SUBROUTINE SIGRA ALR: ALZ: 11C: 1EC: JEP: JEP: EC: H: DELP: LRC: LR: LG: LPO: LCYC: PR: PHD: MW: NW: AK: 1 TOT: 1 TOT: NO: KD: KLOW: KH 1GH: KHR: KDR: 1 - J: 1A: COMMON JA, NL, CON, ERR, CF, PRF1, PRF2, PRF3, PRF4, LOCAT, LADU, LCL, SIGN , CI, CE, CI, C2, C3, C4, ICR, JCR, LPRCS5, LCR, P, J [0], JTOT, ECRIT,

(d)

222.IF (J=2) 212.216.216 212 A(KDR) # -(C(1))/ALR-C(13)/(2.#R(1A)))*C1 A(KNR-1) = (C(1))/ALR+C(13)/(2.#R(1A)))*C1 A(KDR-1) = 2.*C(12)*C1/ALZ GO TO 250 213 IF (1=11C+1) 215.216.201 HALF-SPACE FROM LOWER FACE OF PLATE 216 A(KNR-3) = (C(11)/ALR+C(13)/(2.*R(1A)))*C1 A(KHR-3) = C(14)*C1/ALR A(KHR-1) = -C(14)*C1/ALZ A(KNR) = -C(12)*C1/ALZ GO TO 220 с GO TO 220 214 IF (J-JJP-1) 218+218+215 218 IF (I-11C) 216+201+201 215 LOCAT = 1 LOCAT = 1 CF = C(11)*C1 SIGN = 1a CALL RSTRN CF = C(12)*C1 CALL ZSTRN SIGN = +1a CF = C(13)*C1 219 CALL RSTRN CF = C(14)+C1 CALL RZSTRN 250 RETURN END SUBROUTINE 5 [GRB COMMON ALR, ALZ, 1[C,1[C,1]C,J]P,JEP,EC,H,DELP,LRC,LR,LG,LPU,LCYC,PH, PHP,MW,NY,AK,JTOT], 1TOT,NG,KD,KLOW,KHIGH,KHH,KUR,IJJ,IA JA,NL,CON,ERR,CF,PRFI,PRF2,PHF3,PRF4,LOCAT,LADU,LCL'SIGN 3 (C1+CE,C1+C2+C3+C4+JCR+JCR+LPRCS+LCR+P+JTOT,JTOT)+ECRIT. (H(30101).516Z(1).0FZ(1)).(H(34401).516T(1).0EP51(1)). (B(38701)+5(G(1))+(B(43001)+EP5(1))+(B(47301)+DET(1)) 250 IA = I=1 JA = J CALL STRSTR CALL STRATR IF ((I-2)*(I-[IC)*(I-[IC-])*(J-])*(J-JP)*(J-JEP+))*(J-JEP)) 1 251.252.251 251 A(3) = C(12)*C2/ALZ A(4) = C(12)*C2/ALZ

E6

(a) A(5) = -(C(11)/ALR-C(13)/(2.*R(1A)))*C2 A(5) = -(C(1))/ALR-C(13)/(2,*R(1A)))*C2
A(5) = -C(14)*C2/ALR
25J A(50R) = A(50R)+(C(11)/ALR+C(13)/(2,*R(1A)))*C2
A(50R+1) = A(50R+1)+C(14)*C2/ALR
A(50R+2) = -C(14)*C2/ALZ
A(50R+2) = -C(14)*C2/ALZ
C(5) 0.300
(57) If (J-JIP) 254.255.261
254 (14) = C0N-C2*DELP
C(5) 10.300
254 A(20) = 22*C(12)*C2/ALZ c:: TO 300 25B A(4) = 2.*C(12)*C2/ALZ A(KDR) = A(KDR)+(C(11)/ALR+C(13)/(2.*R(1A)))*C2 C(0 TO 300 2::5' F (1-(1C) 260,259,262 2::5' F (1-(1C) 260,259,262 2::5' F (1-(1C-1) 263,251,251 2::5' F (1-(1C-1) 263,251,251 2::5' F (1-(1C) 2::5' F (1-(1C)) 2:5' F (259 CON = CON-C2+DELP CON = CON-C2*DELP CO TO 266 IF (1-2) 300:300:266 IF (1-2) 300:300:256 IF (J-2P+1) 251:265:266 A(1) = C(14)*C2/ALZ A(2) = C(12)*C2/ALZ A(3) = -C(11)/ALR-C(13)/(2*R(1A)))*C2 A(4) = -C(14)*C2/ALR 260 261 256 265 GO TO 253 GO TO 253 266 LOCAT = 2 CF = C(11)*C2 SIGN = 1 + CALL RSTRN CF = C(12)*C2 CALL ZSTRN CF = C(13)*C2 SIGN = -1 + CALL RSTRN CF = C(14)*C2 CALL P2STRN CALL RZSTRN END ***************** SUBROUT INE SIGRZC

 SUBJOOTINE STORE

 COMMON
 ALR.ALZ.IIC.IEC.JP.JP.EP.EC.H.DELP.LRC.LR.G.LP0.CYC.PR.

 I
 PHP.Mw.Nw.AK.ITOTI.IICI.NO.KO.KLOW.KHIGH.KHIKKORI.J.IA.

 2
 JA.NL.CON.ERR.CF.PRF1.PRF2.PRF3.PRF4.LOCAT.LADD.LCL.SIGN

 3
 .CI.CE.CI.CZ.C3.C4.ICH.JCR.LPRCS.LCR.F.JTOT.JTOT.IECRIT.

 4
 CXCF.SIGER.FLATE.ICYLOR.IICM..ICP1.LICL.JORUM

 COMMON
 A(150).3(5300).VI53.BL).w(53.BL).NR(1800).NC(1800).C(44).

 1
 S(1800).NS(1800).R(53).SUMR(53).DIFFR(53).AR(20).ALP(20).

 2
 FLP(20).P2P(20).VC(4).W(14).SRP0(10).ERP0(10).SZP0(10).

 3
 EZPO(10).SZP0(10).EP0(10).FXP(50).SIP0(10).

 4
 EXPO(10).SZP0(10).EP0(10).SZP0(10).

 5
 ELP(20).P2P(20).VC(4).W(14).SRP0(10).ERP0(10).SZP0(10).

 5
 ELPO(10).SZP0(10).EP0(10).FXP(50).SIP0(10).

 6
 ELPO(10).SZP0(10).EP0(10).FXP(50).SIP0(10).

 6
 ELPO(10).SZP0(10).EP0(10).FXP(50).SIP0(10).

 7
 MIN.SIGR(53.BI).SIGZ(53.BI).SIGT(53.BI).SIG

(b)

2 URPR(53+61)+EZPR(53+61)+ETPR(53+61)+ERZPR(53+61)+ 3 EPS(153+61)+EZPR(53+61)+EPS(53+61)+EPS(53+61)+EPS(153+61)+ 6U(VALENCE(U(1)+C(1))+(8(1)+EPS(1))+(8(2401)+ERZPR(1))+(8(12001)+ERZPR(1))+(8(12001)+(8(12001)+ERZPR(1))+(8(12001 G(30701)*5(G(1))*(E(4)3001)*EPS(1))*(B(4) 5 (B(30701)*5(G(1))*(B(4)3001)*EPS(1))*(B(4) JA = J+1 1 F ((1-1)C)*(J-JEP+1)*(J-JEP+1)*(J-JEP)) 301*302*301 302 IF (J-JEP+1) 303*350*350 303 IF (I-1EC) 304*350*350 304 IF (J-JP+1) 350*301 301 CALL STRSTR A(1) = C(42)*C3/ALZ A(2) = C(42)*C3/ALZ A(3) = A(4)-C(44)*C3/ALR A(4) = A(4)-C(44)*C3/ALR A(KDR-1) = A(KDR-1)*C(44)*C3/ALR A(KDR) = A(KDR-1)*C(44)*C3/ALR A(KDR) = A(KDR+1)*C(44)*C3/ALR A(KDR) = A(KDR+1)*C(44)*C3/ALR A(KDR) = A(KDR+1)*C(42)*C3/ALZ A(KDR) = A(KDR+1)*C(42)*C3/ALZ 350 RETURN 350 RETURN SUBROUTINE SIGR ZD
 SUBROUTINE SIGRZD

 COMMON
 ALR:ALZ:IIC:IEC:JP:/EP:EC:H-UELP:LRC.LR:LG:LPO.LCYC.PR:

 i
 PH:/MW:NW:AK:ITOTI.ITOTNO:KO:KLOW:KHIGH:KHR:KDR:I.J.F.IA:

 2
 JA:NL:CON:ERM:GF:PRF1:PRP2:PRF3:PRF4:LOCAT.LADU.LCYC.SIGN

 3
 .CI:CC:CC:CC:CC:CA:ICR:JCR:PRCSS:LCN:P.JTOT.JTOT.ICCRIT.

 4
 EXCF:SIGICR:TPLATE:TCYCLOR:IICM:IICPI.LD.JDRUM

 COMMON
 A(150):8(500):V(53:81):W(53:61):NR(1800):NC(1800):C(44):

 1
 S(1800):MS(1800):R(53):SUR(53):01PFR(53):AR(20):AR(20):APC(10):

 2
 FLD(10):SPP(10):EPP(10):FRP(10):FRPO(10):FPP(10):AR(20):AC(40):

 3
 EZPO(10):SPP(20):VC(4):WC(4):SRPO(10):EPP(10):FZPO(10):FZPO(10):

 3
 EZPO(10):SPP(20):VC(4):WC(4):SRPO(10):EPP(10):FZPO(10):FZPO(10):FDP(10):

 4
 EIPO(10):SPP(10):FZPO(10): 5 |A = | |JA = J−1 |F ((I−IIC)*(I−IEC)*(J−1)*(J−2)*(J−JIP)*(J−JIP-1)) 351+352+351 |F ((I−IIC)*(J−10)*(J−1)*(J−2)*(J−JIP)*(J−JIP-1)) 351+352+351 350 353 IF (J=J[P=1) 400+356+351 C4 = ∞C[/(2.*ALZ) G0 T0 351 354 356 355 IF (J-2) 400.400.351

(c)

351 CALL STRSTR AKKDR] = A(KDR)+C(44)*C4/ALZ A(KDR+1) = A(KDR+1)+C(42)*C4/ALZ A(KDR+2) = A(KDR+2)-(C(41)*ALR-C(43)/(2**R([A)))*C4 A(KDR+2) = A(KDR+3)-C(44)*C4/ALR AIKHR-3) = A(KHR-3)+(C(4))/ALR+((43)/(2.*W([A)))*C4 A(KHR-2) = A(KHR-2)+C(44)*C4/ALR A(KHR-1) = -C(44)*C4/ALZ A(KHR). = -C(42)*C4/ALZ 400 RETURN END END SUBROUTINE SIGTIJ SUBROUTINE SIGTIJ SUBROUTINE SIGTIJ COMMON ALRALZ:[[C:[C:J]P.JEP.EC:H:UELP:LRC:LR:LG:LPU.LC'C.PK; 1 PHP.MW:NW:AK:[10T1:[T0T:NG:KD:RL:O:KHR:KDD:LCL']EN 3 C:[C:C:C:[TC2:C]:CR:PRF]:PRF]:PRF2:PRF3:PHF4:LUCC1[LADD:LCL_]EN 3 C:[C:C:[TC2:C]:C2:C3:C4:[CR:JCC:LPRC5:LCR:P.JICI:JCI:LECH]; 4 EXCF:SIGICR:TPLATE:[CYLDR:L]CM:[10]:L]:DJKUM COMMON A(150):8(5300):U(53:8]):W(53:8]):NR(1800):NC(1800):C(44); 1 S(1800):MS(1800):R(53):SJMR:153):U[FR:D3):AN(20):ALP(20); 2 FLP(20):PZP(20):U(C4);WC(4):SAPO(10):EAPO(10):J.PC(10); 3 EZPO(10):SZPO(10):EZPO(10):TAN[PO(10):LAPPC(10):JCJR(20); 4 EIPO(10):SZPO(10):EZPO(10):TAN[PO(10):DEPS(153:A1):JCIR2(25); 1 81:DER(53:A1):DZ(253:A1):DIG(253:A1):DEPS(153:A1); 2 EPPR(53:A1):EZPR(53:A1):EDFR(53:A1):DEPS(153:A1); 2 EPPR(53:A1):EZPR(53:A1):EDFR(53:A1):DEPS(153:A1); 4 EIS(153:A1):EZPR(11): (B(17:C1):ERPR(11); 1 (3(4:300):ERPR(1)): (B(17:C1):ERPR(1)); 4 (3(21501):S[GR(1):DPR(1)):(B(25801):JCIR2(2)); 5 (3(21501):S[GR(1):DPR(1)):(B(25801):JCR2(1)); 5 (3(21501):S[GR(1):DPR(1)):(B(25801):JCR2(2)); 5 (3(21501):S[GR(1):DPR(1)):(B(25801):JCR2(1)); 5 (3(21501):S[GR(1):DPR(1)]:(B(25801):JCR2(1)); 5 (8(12)901)+S(G(1))+CEX(1)+(8(25801)+3(GZ(1)+DEXZ(1))+ (8(3010)+S(GZ(1)+OEZ(1)+(8(3440)+3(G((1)+DEXZ(1))+ (8(38701)+S(G(1))+(8(43001)+EPs(1))+(8(47301)+DE(1))+ 400 C5 = -0.5/R(I) 400 C5 = -0.5/R([) SIGN = 1. C6 = -1./(4.4*R([)**2)) C15 = C6 C25 = C6 C35 = C6 IF ([-11C-1) + 11.+412.+413) 411 IF (J-2) + 14.+415.416 414 IF (J-2) + 17.442.+442 417 C15 = 2.*C6 C35 = C15 LOCAT = 1LOCAT = 1 IA = I+1 JA = J CALL STRSTR CALL STRSTR A(KOR) = A(KOR)+C(33)*C15 CF = C(31)*C5 CALL RSTRN CF = C(32)*C5 CALL ZSTRN LOCAT # 3

(d)

JA = J+1 CALL STRSTR A(KDR) = A(KDR)+C(33)*C35 CF = C(31)*C5 CALL RSTRN CF = C(32)*C5 CALL 2STRN RETURN C15 = 2.*C6 442 C15 = 2. +C6 IA = I+1 JA = J CALL STRSTR A(KDR) = A(KDR)+G(33)+C15 418 LOCAT = 3 IA = 1 JA = J+1 CALL STRSTR CF = C(31)*C5 CALL RSTRN LOCAT = 4 JA.z J=1 CALL STRSTR CF = C(31)*C5 CALL RSTRN CALL RSIRN GO TO 427 IF (1-11C) 443:419:419 C5 = 0.75*C5 C25 = 0.5*C6 C45 = C25 GO TO 421 F (// 110-11*/ 1- 150+1 419 GU TO 421 [F (1-J]P-1]*(J-JEP+1)} 420:425:444 IF (1-2) 425:425:421 IF (1-2]P+1)*(J-JEP+1)] 421:422:422 IA = 1 JA = J+1 JA = J+1 416 420 421 CALL STRSTR A(KDR) = A(KDR)+C(33)+C35 A(2) = A(2)+C(32)+C5/ALZ A(KDR+1) = A(KDR+1)-C(32)+C5/ALZ JA = J-1 CALL STRSTR CALL STR31R A(KDR) = A(KDR)+C(33)+C45 A(KMR) = A(KHR)~C(32)+C5/ALZ A(KDR+1) = A(KDR+1)+C(32)+C5/ALZ TA = 1+1 CALL STRSTR A(KHR-5) = A(KHR-5)+C(31)*C5/ALR A(KOR) = A(KDR)+C(33)*C15-C(31)*C5/ALR RETURN 413 IF ([J-1EC+1] 423+422+424 423 IF ([J-2)*(J-JEP+1]) 421+425+426 422 IF ([J-2)*(J-JEP+1]) 425+425+426

425 IA = 1+1 $J\Delta = J$ LOCAT = 1 CALL STRSTR A(SDR) = A(KDR)+C(33)*C15 CF = C(31)*C5 CF = C(31)*C5
CALL 05TRN
(A = 1-1
LOCAT = 2
CALL STRSTR
A(x)01) = A(KDR)+C(33)*C25
A(x)01) = A(KDR)+C(33)*C25
A(x)01) = A(CDR)
A = 1
JA = 1
LOCAT = 4
CALL STRPN
CALL 05TRPN
CALL 05T

LOCAT = 4 CALL STRSTR A(KOR) = A(KOR)+C(33)*C45 CF = C(32)*C5 CALL 2:5TRN JA = J+1 LOCAT = 3 CALL STRSTR A(KUR) = A(KUR)+C(33)*C35

A(KDR) = A(KDR)+C(33)*C35 CF = C(32)*C5 CALL 25TRN RETURN

RETURN IF (J-1) 443.443.444 C35 = 2.*C6 IA = I JA = J+1 426 443

JA = J+1 CALL STRSTR A(KDR) = A(KDR)+C(33)*C35 GO TO 445 C45 = 2.*C6 IA = I JA = J-1 CALL STRSTR 444

CALL STRSIR A(KDR) = A(KDR)+C(33)*C45 A(KDR) = A(KDR)+C(33)*C45 (A = 1+1 JA = J CALL STRSTR A(KDR) = A(KDR)+C(33)*C15 CF = C(31)*C5 CALL PSIRN CF = C(32)*C5 CALL ZSTRN 428 LOCAT = 2 1A = 1-1

LOCAI = 2 [4 = 1 - 1 JA = J CALL STRSTR A(KDR) = A(KDR)+C(33)*C25 CF = C(31)*C5 CALL RSTRN CF = C(32)*C5 CALL ZSTRN

RETURN

(b)

424 C25 = 2.*C6 IF (J-JEP), 429.430.430 429 IF (J-2) 431.446.446 446 IA = I-1 JA = J CALL STRSTR A(KDR) = A(KDR)+C(33)*C25 GO TO 418 431 LOCAT = 3 431 LOCAT = 3 IA = I JA = J+1 CALL STRSTR C35 = C25 A(KDR) = A(KDR)+C(33)*C35 CF = C(31)*C5 CALL RSTRN CF = C(32)*C5 CALL RSTRN G0 TO 428 430 LOCAT = 4 IA = I IA = IJA = J-1JA = J-1 CALL STR5TR C45 = C25 A(KDR) = A(KDR)+C(33)*C45 CF = C(31)*C5 CALL R5TRN CF = C(32)*C5 CALL Z5TRN CF = C020 C5 GO TO 428 END ** *****************

 SUBQUTINE SIGZC

 COMMON
 ALR:ALZ.IIC.IEC.JIP.JEP:EC.H.DELP:LBC.LB:LG:LPO.LCYC.PR:

 1
 PHP.MW:NW:AK:ITOTI.ITOT.NG:KD:KLOW:KHIGH:KHR:KDR:I.J.IA:

 2
 JA:NL:CON:ERR:CF:PRFI:PRP2:PRF3:PRF4:LOCAT:LADD.LCL:SIGN

 3
 *CI:CE:CI:CZ:C3:C4:[CR:JCR:PRCSS:LCR:P.JTOT.JTOTI.ECRIT:

 4
 EXCF:SIGICA:TPLATE.TCYLDR:IICH:IICFI.LI:JFRA

 5
 *CI:CE:CI:CZ:C3:C4:[CR:JCR:PRCSS:LCR:P.JTOT.JTOT.IECRIT:

 4
 EXCF:SIGICA:TPLATE.TCYLDR:IICH:IICFI.LI:JFRA

 1
 *CI:SO:SIGA:TPLATE.TCYLDR:VERSS:LCR:P.JTOT.JTOT.IECRIT:

 4
 EXCF:SIGICA:TPLATE.TCYLDR:VERSS:LCR:P.JTOT.JTOT.IECRIT:

 4
 EXCF:SIGICA:TPLATE.TCYLDR:VERSS:LCR:P.JTOT.JTOT.IECRIT:

 5
 (1800) *MS(1800) *U(53:61) *U(53:61) *NP(10) *TANPO(10) *TANPO(10 5 2 I A = I JA = J+1 IF (1-11C) 511,512,513

(U) 511 IF ((I-1)*(J-JEP+1)*(J-JEP)) 514,515,514 514 CALL STRSTR A(1) = C(24)*C3/ALZ A(2) = A(2)+C(22)*C3/ALZ A(3) = -C(21)/ALR-C(23)/(2*R(1A)))*C3 A(4) = -C(24)*C3/ALR A(KDR-3) = (C(21)/ALR+C(23)/(2*R(1A)))*C3 A(KDR-1) = -C(24)*C3/ALZ A(KDR) = 1 = (-C(24)*C3/ALZ A(KDR) = A(KDR)-C(22)*C3/ALZ A(KDR) = -C(22)*C3/ALZ A(L] = C(22)*C3/ALZ A(L] = 511 IF ((I-1)*(J-JEP+1)*(J-JEP)) 514,515,514

E 7

520 IF (J-JEP+1) 521,522,523 520 IF (J-JEP+1) 521,522 521 CALL STR5TR A(2) = C(22)*CJ/ALZ A(KOR) = =A(2) LOCAT = 3 SIGN = 1, CF = C(21)*C3 CALL RSTRN SIGN = -1. CF = C(23)*C3 CALL BSTON

CALL RSTRN CF = C(24)*C3 CALL RZSTRN

CALL #251KN GO TO 550 522 [1 = I-1[C+2 CON = CON-PZP([1])*C3 GO TO (524,525)*L6 524 A(KOR) = -AR([1])*C3/(H-ALZ/2)

524 A(KDR) = -AR(II)*C3/(H-ALZ/2 G0 T0 550 525 CF = AR(II)*C3 CALL STRSTR CALL ZSTRN G0 T0 550 523 II = I=IIC+2 CON = CON-PZP(II)*C3 G0 T0 (526;550)+LG 526 A(KDR) = A(KDR)-AR(II)*C3/H

550 RETURN END

CF # C(24)+C4 CALL RZSTRN

(d)

****	难法察察者学者学校教育学校教 减效学校 新闻学校学校学校学校学校学校学校学校学校学校学校学校学校学校学校学校学校学校学校
	SUBROUTINE SIGZD
****	输动推动 那那样那样就像那种冻碎脚 冰冰冲 停停 建子子停停 动水 化橡胶 化化橡胶 化化化化化化 化水水水水水水水 化化化 化化化化 化水水水 化油
	COMMON ALR, ALZ, IIC, IEC, JIP, JEP, EC, H, DELP, LRC, LR, LG, LPU, LCYC, PR,
	1 PHP, MW, NW, AK, [TOT1, [TOT, NO, KD, KLUW, KHIGH, KHR, KDR, 1, J, 1A,
	2 JA, NL, CON, ERR, CF, PRF1, PRF2, PRF3, PRF4, LUCAT, LADD, LCL, SIGN
	3 +CI+CE+CI+C2+C3+C4+ICR+UCR+LPRC55+LCR+P+JT0T+JT0FI+ECRIF+
	4 EXCFISIGICRITPLATEITCYLDRIIICMIIICPIILIIJURUM
	COMMON A(150)+B(53000)+U(53+B1)+W(53+B1)+NR(1800)+NC(1800)+C(44)+
	1 \$(1800) +MS(1800) +R(53) +SUMR(53) +DIFFR(53) +AR(20) +ALP(20) +
	2 FLP(20)+PZP(20)+UC(4)+WC(4)+SRP0(10)+ERP0(10)+-2PU(10)+
	3 EZPO(10) *STPO(10) *ETPO(10) *SR2PO(10) *ER2PO(10) *51PO(10) *
	4 E1PO(10)+S2PO(10)+E2PO(10)+TAN1PO(10)+TAN2PO(10)
	DIMENSION LC(53+81)+SIGR(53+81)+SIGZ(53+81)+SIGT(53+81)+SIGR2(53+
	1 81), DER(53,81), DEZ(53,81), DERZ(53,81), DEPS1(53,81),
	2 ERPR(53,81),EZPR(53,81),EIPR(53,81),ERZPR(53,81),
	3 EPS1(53+81)+51G(53+81)+EP5(53+81)+DET(53+81)
	EQU[VALENCE (U(1),LC(1)) + (B(1),EP51(1)) +
	1 (5(4301), ERPR(1)) , (8(8601), EZPR(1)) ,
	2 (B(12901),ETPR(1)) • (B(17201),ERZPR(1)) ,
	= (B(21501)) + SIGR(1) + DER(1)) + (B(25801)) + SIGR2(1)) + 0ER2(1)) +
۰.	4 $(B(30101), SIGZ(1), DEZ(1)), (B(34401), SIGT(1), DEPS1(1)),$
	5 (8(38701), SIG(1)), (8(43001), EPS(1)), (8(47301), DET(1))
550	I = I
	1−L = AL
	CALL STR5TR
	IF (I=11C) 551,552,553
551	IF ((-1)*(J-J[P)*(J-J[P-1)) 554,555,554
554	A(KDR-1) = A(KDR-1)+C(24)+C4/ALZ
	A(KDR) = A(KDR) + C(22) + C(4/ALZ)
	A(KDR+1) = -(C(21)/ALR-C(23)/(2.*R(1)))*C4
	A(KDR+2) = -C(24)*C4/ALR
	A(KHR-3) = (C(21)/ALR+C(23)/(2*R(1)))*C4
	A(KHR-2) = C(24)*C4/ALR
	A(KHR=1) = -C(24)*C4/4LZ
	A(KHR) = A(KHR) - C(22) + C + (AL) 7
	GQ TQ 600
555	IF (J=JIP=1) 556.556.557
556	
	60 10 600
557	A(KDR) = A(KDR) + C(22) + Ca/at 7
	A(KHR=3) = 2**(C(21)+C(23))*C4/ALR
	GQ TQ 600
552	(F (J-J[P-1) 558,559,554
558	IF (J=JIP) 560,561,561
560	
	CALL DSTON
	SIGN = #1.
	CF = (/23)+CA
	CALL DSTDN

E 8

(C) GO TO 600 61 CON CONV(1,-ALR7(B,+H(C1)))+DELP/(2,+AL2) FO TO 560 50 TO CONV(1,-ALR7(B,+H(C1)))+DELP/(2,+AL2) GO TO CONV(1,-ALR7(C2))+C(2))+C(1,-AL2) C(1,-AL2)+C(1,-AL

>OC 1A = 1+1 JA = J IF ([1-1EC+1)*(]-1EC)*(J-JEP)) 611+650+611 >11 IF ([J-2)*(J-JIP)*(J-JIP-1)) 612+614+612 517 CALL STRATA A(KHR-5) = (C(41)/ALH+C(43)/(2+R(IA)))*C1 J(KHR-4) = C(44)*C1/ALR A(KHR-3) = A(KHR-3)-C(44)*C1/ALZ A(KHR-2) = A(KHR-3)+C(42)*C1/ALZ A(KHR-2) = A(KDR-3)+C(42)*C1/ALZ A(KDR-3) = A(KDR-3)+C(42)*C1/ALZ A(KHR-4) = C(42)*C1/ALZ A(KHR-4) = A(KDR-3)+C(42)*C1/ALZ A(KHR-4) = A(KDR-3)+C(42)*C1/ALZ A(KHR-4) = A(KDR-3)+C(42)*C1/ALZ A(KHR-4) = A(KDR-4)+C(42)*C1/ALZ A(KHR-4) = A(KDR-

(b)

A(KHR-3) = (C(4))/ALR+C(43)/(2.*R([A]))*C[A(KHR-2) = C(44)*C[/ALR A(KHR-1) = A(KHR-1)-C(44)*C[/ALZ A(KHR) = A(KHR) - C(42)*C[/ALZ GC TO 613 616 [F (1-1(C1) 615.612.612 650 RETURN END END END END END COMMON ALR.ALZ.1[C:[EC.J]P.JEP.EC.H.DELPLAC.LR.C.LPO.LCYC.PR. 1 PPP.WW.NW.KX.[TOTI.]TOT.NO.KO.KLOW.KH[GH.KHH.KDR.]JJ.TA. 2 JA.NL.CON.ERR.(F.PRF]1PR?PFA1_DCAT.LADD.LCL.SIGN 3 .C[.CE.C1.C2.C3.C4.1CR.JCR.LPRCSS.LCR.P.JTOT.JTOTI.ECRIT. 4 EXCF.S1GCA.TELTE.TCYLDR.IICM.1[CP1.L].DARM COMMON ALTSO.18[GA.CD.RET.CTVR.IICM.1[CP1.L].DARM COMMON ALTSO.18[GA.CD.RET.CTVR.IICM.1[CP1.L].DARM COMMON ALTSO.18[GA.CD.RET.CTVR.IICM.1[CP1.L].DARM COMMON ALTSO.18[GA.CD.RET.CTVR.IICM.1[CP1.L].DARM COMMON ALTSO.18[GA.CD.RET.CTVR.DARM[3].010].4LP120]. 2 FLP(20).PZP(20).UC(4).WC(4).SEPO(10).ERPO(10).SZPO(10). 2 FLP(20).PZP(20).UC(4).WC(4).SEPO(10).ERPO(10).SZPO(10). 3 EZPO(10).STPO(10).ETPO(10).FANIPO(10).FRPO(10).ALP120]. 4 EIPO(10).SZPO(10).ETPO(10).FANIPO(10).FRPO(10).ALP120]. 5 CR153.61].51G2(53.61].0EZ(53.61].0EZ(53.61].0EZ(53.61]. 2 CR2FI53.61].51G3.61].0EZ(53.61].0EZ(53.61].0EZ(53.61]. 5 CR153.61].51G2(53.61].CPS(53.61].0EZ[53.61].0EZ(53.61]. 5 CR153.61].51G2(1).0EZ(1).163.61].CPS(53.61].0EZ(53.61].0EZ(53.61]. 5 CR153.61].51G2(1).0EZ(1).163.61].CPS(53.61].0EZ(53.62].0EZ(53.62].0EZ(53.62].0EZ(53.62].0EZ(53.62].0EZ(53.65].0EZ(53.

	(C)
***	***************************************

1999	COMMON ALR, ALZ, IIC, IEC, JIP, JEP, EC, H, DELP, LRC, LR, LG, LPO, LCYC, PR, PHP, MW, NW, AK, I TOTI, I TOT, NO, KD, KLOW, KH IGH, NH, KUH, I, J, IA,
2	JA,NL,CON,ERR,CF,PRF1,PRF2,PRF3,PRF4,L0CAT,CADU,ECC,516M .C1,CE,C1,C2,C3,C4,1CR,JCR,LPRCS5,LCR,P,JD11,JU11,LCR11,
4	EXCF,SIGICR,IPLATE,TCYLDR,IICMI,IICPI,LI,JDRUM COMMON A(150),3(53000),U(53,31),W(53,31),NB(1800),NC(1800),C(44)
1	S(1800) +MS(1800) +R(53) +SUMR(53) +DIFFR(53) +AR(20) +ALP(20) +
2	FLP(20), PZP(20), UC(4), WC(4), SRPO(10), ERPO(10), SZPO(10),
-	EZPO(10),STPO(10),ETPO(10),SRZPO(10),ERZPO(16),STPO(10), ELPO(10),S2PO(10),E2PO(10),TANIPO(10),TAN2PO(10)
	DIMENSION LC(53-81)+SIGE(53-81)+SIGZ(53-81)+SIGT(53-81)+SIGE2(53
1	81), DER(53, d1), DE2(53, 81), DER2(53, 81), DEP51(53, 81),
-	ERPR(53,81);EZPR(53,81);EPR(53,81);ER2PR(53,81); EPS1(53,81);STG(53,81);EPS(53,81);DET(53,81);
-	EQUIVALENCE (U(1)+LC(1)) + (B(1)+EPSI(1)) +
1	(B(4301), LRPR(1)) , (B(8601), EZPR(1)) ,
2	(3(21501)+51GR(1)+0FR(1))+(B(25B01)+51GR2(1)+0FR2(1))
2	(B(30101)+=1GZ(1)+DEZ(1))+(B(34401)+=1GT(1)+ULP=)(1))
5	(8(38701)+5(G(1))+(8(43001)+EP5(1))+(8(47301)+0Ef(1))
	UC(K) = 0.
1	WC(K) = 0.
	$IF_{(SIGN)} = 11 \cdot 12 \cdot 12$
11	GO TO 13
12	CFI = CF/ALR
13	IF ((IA-1)*(IA-IIC)*(IA-IEC)) 14.15.14
14	UC(2) = -SIGN*CF1
21	CALL ASSIGN
10	RETURN
16	UC(1) = 2.*CF/ALR
	GO TO 21
17	1F (JA=JIP) 19,14,14 1F (C(AA)) 20,22,20
20	$A_1 = -C(\cdot 4) + C(\cdot 42) / C(\cdot 44)$
	A4 = -C(14)*(C(41)/ALR-C(43)/(2.*R(1A)))/C(44)
	A5 = -((14)) ((41)) ACR+((43)) (2. +R((A))) ((44)) $G0 T0 23$
22	A1 = 0.
	A4 = 0.
23	AD = 0. A4 = A4+(C(11)/ALR=C(13)/(2.*R(1A)))
	1F (A4) 24.10.24
24	A5 = A5+C(11)/ALR+C(13)/(2**R(1A))
	UC(1) = (A4-A5*SIGN)*CF1/A4
	$WC(3) = -A_1 + S_1 G_N + CF_1 / (A_4 + A_LZ)$
25	CON = CON+CF1+DELP+S1GN/A4
26	WC(3) = 2.*WC(3)
	UC(3) = 2.*UC(3)
	(d)
	GO TO 21

1.1

	GO TO 21
27	'WC(4) = ~WC(3)
	UC(4) = UC(3)
	GO TO 21
18	IF (JA-JEP) 28,29,29
28	IF (C(44)) 30.31.30
30	$A_1 = -C(14) + C(42) / C(44)$
	A4 = -C(14) + (C(41)/ALR - C(43)/(2.*R(1A)))/C(44)
	A5 = -C(14)*(C(41)/ALB+C(43)/(2**B(1A)))/C(44)
	GO TO 32
11	
35	AS = AS + C(1) / ALR + C(1) / (2 + R(1A))
÷.,	IF (A5) 33,10,33
33	A4 = A4 + (C(11) / ALR - C(13) / (2 * R(1A)))
	A1 = A1 + C(12)
	UC(2) = (A4-A5*S!GN)*CF1/A5
	WC(3) = -AI*CF1/(A5*ALZ)
	CON = CON-CF1*PHP/A5
	UC(3) = -CF1+AK/(2++R(1A)+A5)
	GO TO 25
29	IF (C{44}) 34,35,34
34	Al0 = {C(14)*C(22)=C(12)*C(24))/(C(24)*C(42)-C(22)*C(44))
	A6 = =(C(42)+(C(21)/ALR+C(23)/(2.*R(1A)))-C(22)*(C(41)/ALR+
	$1 = C(43)/(2_{*}+R(\{A\}))) + A_{10}$
	A7 = -(C(42)*(C(2))/ALR-C(23)/(2*R(1A)))-C(22)*(C(4))/ALR-C(23)/(2*R(1A)))-C(22)*(C(4))/ALR-C(23)/(2*R(1A)))-C(22)*(C(4))/ALR-C(23)/(2*R(1A)))-C(22)*(C(4))/(2*R(1A)))
	1 - C(43)/(2, +G(14))) + 410
76	
-	
90	AO = AO + C(2) + C(1) + A + C(1) + A + C(1) + C(2) + C(1) + C(2) + C(2
	IF (A6) 37+10(37
37	II = IA - IIC + 2
	A7 = A7 + C(22) + C(11) / A = C(13) / (2. + R(1A)) + C(12) + (C(21) / A = R)
	1 C(23)/(2.*R(1A)))
	$UC(4) = -C(22) * AK * CF \frac{1}{(A6 * 2 \cdot * R([A))}$
	UC(2) = UC(4) + (A7 - A6 + SIGN) + CF1/A6
	CON = CON-CF1*(C(22)*PHP-(C(12)+A10)*PZP(I1))/A6
	GO TO 21
	END
**	\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$
	SUBDOUTINE ZSTON
**	*******
	COMMON AL P. AL 7.110.1EC. LEP. JEP. EC. H.DEL P.L. P.L. R.L. P.L. G.L. P.L. CYC. PR.
	CUMMUN A(150)+8(53000)+0(53+81)+W(53+81)+NR(1800)+NC(1800)+C(44)+
	1 S(1800) +MS(1800) +R(53) +SUMR(53) +DIFFR(53) +AR(20) +ALP(20) +
i	<pre>2 FLP(20) *PZP(20) *UC(4) *WC(4) *SRP0(10) *ERP0(10) *5ZP0(10) *</pre>
÷	<pre>3 EZPO(10)+STPO(10)+ETPO(10)+SRZPO(10)+ERZPO(10)+S1PO(10)+</pre>
	EIPO(10)+S2PO(10)+E2PO(10)+TANIPO(10)+TAN2PO(10)

E 9

C(43)/(2,*R([A))))*A10

(b)

	AB = -C(24)*(C(41)/ALB+C(43)/(2*B(1A)))/C(44)	
	A9 = -C(24) + (C(41) / ALR - C(43) / (2, R(IA))) / C(44)	
	A10 = C(42) * A10	
	GO TO 36	
35	$A_1 = C(22)$	
	A6 = Q.	
	A7 = 0.	
	AB = 0	
	A9 = 0.	
	A10 = 0.	
36	A9 = A9 + C(21) / A L R - C(23) / (2. R(1A))	
	11 = 1A-11C+2	
	CON # CON-CE*PZP(11)/A1	
	$UC(2) = \Delta \Theta \Phi C F / \Delta 1$	
	AG = AG+C(22)*(C(1))/ALR+C(13)/(2*R(1A)))=C(12)*(C(21)/ALR+C(13))	
	(23)/(2, 40)(14))	
	IE (46) 37-10-37	
37	$A_7 = A_7 + C(22) + (C(11)/A + R + C(13)/(2 + R(1A))) + C(12) + (C(21)/A + R + C(21))$	
	((23)/(2***((A)))	
	AB = AB+C(21)/ALB+C(23)/(2*BC(1A))	
	UC(4) = AB + C(22) + AK + CF / (A1 + A6 + 2. + R(1A))	
	CON = CON + AB + CE + (C(22) + B + B + (C(12) + A10) + B7B((11)) / (A1 + A6)	
	C10	
	COMMON ALRIALZITICITECTOPICETICAL PICERICAL COMMON	
1		
i i	2 JAINELCONFERRICF FRETIPRE 2 PREJ PRE 4 LUCAI LADULCE SIGN	
-	3 .CI.CE.CI.CZ.C3.C4.ICH.JCR.LPRCSSLCR.P.J.IUI.JUI.ECNII.	
4	4 EXCF SIGICR TPLATE TOYLOR I ICMI I ICPI ILI JOHUM	
	COMMON_A(150)+B(53000)+U(53+B1)+W(53+B1)+NR(1800)+NC(1800)+C(44)+	
1	1 S(1800),MS(1800),R(53),SUMR(53),D[FFR(53),AR(20),ALP(20),	
2	2 FLP(20) + PZP(20) + UC(4) + WC(4) + SRP0(10) + ERPO(10) + SZP0(10) +	
	3 EZPO(10) STPO(10) ETPO(10) SRZPO(10) ERZPO(10) SIPO(10)	
4	4 EIPO(10)+S2PO(10)+E2PO(10)+TAN1PO(10)+TAN2PO(10)	
	DIMENSION LC(53+81)+51GR(53+81)+51GZ(53+81)+51GT(53+81)+51GRZ(53+	
1	1 81)+DER(53+81)+DEZ(53+81)+DERZ(53+81)+DEPS1(53+81)+	
2	<pre>2 ERPR(53,81)+EZPR(53+81)+ETPR(53+81)+ERZPR(53+81)+</pre>	
5	3 EPS1(53+81)+SIG(53+81)+EPS(53+81)+DET(53+81)	
	EQUIVALENCE (U(1)+LC(1)) + (B(1)+EPS1(1)) +	
1	1 (3(4301), ERPR(1)) + (8(8601), EZPR(1)) +	
Z	2 (B(12901)+ETPR(1)) + (B(17201)+ERZPR(1)) +	
	3 (B(21501),51GR(1),DER(1)),(B(25801),SIGRZ(1),DERZ(1)),	
2	(3(30)01),51GZ(1),0EZ(1)),(8(3440)),51GT(1),0EPS1(1)),	
	5 (5(38701),516(1)),(8(43001),FP5(1)),(8(47301),DFT(1))	
,		
1	RCTRJ = 00 15 //112-112/14-112-112-11-12-11	
	IF (1 [A=1]*()A=1]*(]A=1]C(*(]A=[CC)*()A=0[F]*()A=0EP)) 11*(G*(]	
11	UCIJ = CFVALZ	
	U(14) = -U(13)	
	WC(1) = CF/ALR	
•	60 10 14	

(c)

- 12 [F (([A-1)*(JA-1)) 13+10+13 13 [F ([A-[1C] 15+16+17 15 [F (C(42)] 35+36+35 35 A2 = C(22)/C(42) A1 = C(22)-A2+C(44)

- A1 = C(2a)-A2*C(44) G0 T0 37 36 A1 = C(24) A2 = 0. 37 IF (41) 1810+18 IB UC(1) = ~CF*((C(21)-A2*C(41))/ALR+(C(23)-A2*C(43))/(2.*H(1A1))/A1 UC(2) = CF*((C(21)-A2*C(41))/ALR+(C(23)-A2*C(43))/(2.*H(1A1))/A1 IF (JA-JIP) 19.19.14 19 CON = CON+CF*0ELP/A1 G0 T0 14 16 IF (JA-JIP) 20.11.21 20 A4 = C(44)*(C(11)/ALR-C(13)/(2.*R(1A1)))-C(14)*(C(41)/ALR-1 = C(43)/(2.*R(1A1)))

- [C(43)/(2.*R(1A)))
 [F (A4) 22,10.22
 22 UC(1) = CF*((C(1)/ALR+C(13)/(2.*R(1A)))*(C(41)/ALR+C(43)/(2.*
 1 R(1A)))+(C(41)/ALR+C(43)/(2.*R(1A)))*(C(11)/ALR+C(13)/(2.*R(1A)))
 - 2 1
- CON = CON+CF*(C(41)/ALR-C(43)/(2 GO TO 14 21 IF (JA-JEP) 11+23+11 17 IF ((JA-JEP) 11+23+11 17 IF ((JA-JEP)+(1A-IEC)) 23+24+23 23 IF (C(42)) 34:39+38 38 A2 = C(22)/C(42) A1 = C(24)-A2*C(44) GO TO 40 39 A1 = C(24)-A2*C(44) A2 = 0. 40 IF (A1) 25+10+25 25 I1 = 1A-11C+2

- 25 11 = 1A-11C+2 CON = CON+CF*PZP([1)/A1

- CON = CON*CF*P2P(1)/A1 G0 T0 (26:27)*LG 26 WC(4) = CF*AR(1)/(A1*(H=ALZ/2*)) G0 T0 1R 27 A1 = A1=AR(1)*A2*C(44)/C(22) G0 T0 1B 24 IF (1A=IEC) 11*28*11 28 IF (1A=JEC) 29:10*10 29 A5 = C(4A)*(C(11)/ALR+C(13)/(2*R(1A)))-C(14)*(C(41)/ALR+ 1 C(43)/(2*R(1A)) IF (45) 31*(10*31
- 1 C(43)/(2,*R([A))) IF (A5) 31+10+31 31 UG(2) = CF#(C(41)/ALR-C(43)/(2,*R([A]))*(C([1]/ALH+C(13)/(2,* UC(3) = CF*(C(11)/ALR+C(13)/(2.*R(1A)))*(C(11)/ALR+C(13)/(2.*R(1A)) 1 1)/A5 WC(3) = CF*(C(12)*(C(41)/ALR+C(43)/(2.*R(1A)))+C(42)*(C(11)/ALR))
- +C(13)/(2,*R([A])))/(ALZ*A5) 1
- UC(4) = -WC(3) UC(4) = CF#(C(4))/ALR+C(43)/(2.*R([A)))*AK/(A5+2.*R([A)) UC(4) = UC(3) CON = CON + CF*(C(4))/ALR+C(43)/(2.*R([A)))*PHP/A5
- 14 CALL ASSIGN

(d)

	10	RETURN												
	•	END												
44	****	****	***	***	****	****	***	****	***	*****	*****	****	***	* * *
		SUBROUT	INE A	55 I GN			-							
44	****	***	***	***	****	****	***	****	****	****	****	*****	*****	***
		COMMON	ALR.	ALZIII	CILEC	:.JIP	, JEP	1. EC +1	1. DEL	.P.LRC	LRIL	G.LPO,	LCYCIP	R.
	· 1	1	PHP .	WW . NW .	AK 1 1	OT1 .	1 TOT	.NQ .!	O . KL	OW .KH	I GH + K	HR . KDR	. [.] . [Α,
	â	2	JA , N	L.CON.	ERR . C	FIPR	FIIF	RF2 .F	PRF3.	PRF4.	LOCAT	.LADD.	LCLISI	GN
		3	+ [] +]	CE+CI.	c2+c3	3. C4.	ICR.	JCR .L	PRCS	6.LCG	I.P.JT	07.JT0	T1+ECR	iτ.
		•	FXCF	SIGIO	R. TPL	ATE	TCYL	DR I	CM1.	11CP1	.LI.J	DRUM		
		COMMON	A (15	N B(4	3000		3.41	1	53.01	1.ND	18001	NCILE		
			\$ (10		(1800		831.	SUMP	531.	DIFED	1531.	401301		
			51.54		m / 30 /				5000		CDD0/	101 137	70/1-12	014
	-		8300		700/1	ALLE.	700/	101.0	0700	(101)	20200	(10) (32)		
			E2PU		10011	0110	1001	10112		011011	TAND	10113	TPOLIO	
	. 4	b Mencer	EIPO	101.3	2000	U) IE	2001	10111	ANTP	01101	ANZ			
		DIMENSIO		. (33+8	11:51	GRIS	3.01	1,510	,2 (3 3	.81).	SIGIC		SIGHZ	(53.
	. 1		В	1 DER	(53.6	11+0	EZIS	3.81)	+DER	Z(53)	81)+0	EPS1(5)	3.81).	
	2		E	RPR (53	+81)+	EZPR	(53+	31)•E	TPR	53,81	1 CRZ	PR(53.6	31)•	
	3	3	F	\$\$1(53	•81)•	513(53.8	1) • E F	5(53	.31).	DLT(3	3,81)		
		EQUIVALE	INCE	(U(1))	LC(1)) +	(3(1)•EPS	51(1)) •				
	1			8(43	01)•8	RPR (1))	• (8(860	1),EZ	PR(1)) •		
	•2		(8(129	01)•E	TPR (1)).	, (8(1720	1),ER	ZPR(1)) •		
	3		(8(215	01),5	IGRI	1) • D	ER(1))•(B	(2580	11:51	GRZ(1)	DERZII	1)).
	4	· · · · ·		8(301	01),5	(GZ(11.+D	EZ(1)) (B	(3440	1)+510	ST(1)+C)EP51(1	
	5	i •		8(387	01).5	1G(1)),()	8(430	01),	EPS(1)).(8	(47301)	+DET()	())
	-	LQ = 2*(NQ/21	-NQ+1										
		KDR1 = K	OR-LO	2										
		GO TO (1	12.3	4) +LO	CAT									
с	R	IGHT												
	1	IF ((J-1)*(J-	-2)*(J	-JIP)	*(J+.	JIP-	1)*(3	-JEP	11 11	.12.1			
	11	A (KOR) -2		KDRI	-2)+0	C(3)								
٠	•••	A (KDR1-1	1 = 4	(KDR1	-1)+#	C(3)								
	13	AIKHP-51	# A (KHR-5	1+UC (11								
		AIKHDAAI		KHD-A	1+WCI									
		A (KHD= 1)		Kug-1	ALLIC (A 1								
		ALKHD		FUD-0	LAWC I									
		A (MODIL)		00111	10171	~ /								
	1			(KDD1										
		AT AURITI		I KURI	+11+4	(12)								
		REIURN												
	12	17 (3=3)	P-11	10110	•13									
	15		0+11	1011/										
	10	10 (J=J)	P) 19	11411	7									
	18	12.10421	19+1	7911										
	17	A(KHR-J)	= A (C-RHA	1+000	1)								
		A(KHR-2)	a A (KHR-2)÷₩Ċ(1)								
		A(KHR-1)	. = A(KHR-1)+UC (4)			1.1					
		A (KHR) =	A (KH	R)+WC	(4)									
		GO TO 20												
	19	A(KHR-1)	= A (KHR-1) +UC (1)								
		A(KHR) =	A (KH	R)+₩C	(1).			· .						
	20	A(KDR1=2) π A	(KDR1-	-2)+U	C(3)								
		A(KDR1-1) = A	(KDR1-	-1)+#	2(3)								
·		GO TO 14												
с	L	EFT												
-	2	IF (JaJE	P+1)	31.32	33			· ·						-

- 31 A(3) = A(3)+UC(3) A(4) = A(4)+WC(3)

(a) A(5) = A(5)+UC(2) A(f) = A(f)+UC(2) A(f) = A(f)+WC(2) A(K)R[) = A(KDR1)+UC(1) A(KDR1+1) = A(KDR1+1)+WC(1) A(KDR1+2) = A(KDR1+2)+UC(4) A(KDR1+3) = A(KDR1+3)+WC(4) A (K)B()+3) = A(K)B() RETURN T3.4() = A(1)+UC(2) A(7) = A(2)+WC(2) BC T0 34 37 A(1) = A(1)+UC(3) A(7) = A(2)+WC(3) A(3) = A(3)+UC(2) CO T0 34 BDVC ABOVE AROVF [F (J=JEP+1) 4[+42+44 A(1) = A(1)+UC(3) A(2) = A(2)+WC(3) A(3) = A(3)+UC(2) A(4) = A(4)+WC(2) A(4) = A(4)+WC(2) A(4) = A(4)+WC(2) A(4) = A(4)+WC(2) A(4) = A(4)+UC(4) A(4) = A(4)+UC(4) UC(4) A(4)+UC(4)+UC(4) A(4)+UC(4)+UC(4) A(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+UC(4)+U 44 RETURN 42 A(1) = A(1)+UC(2) A(2) = A(2)+WC(2)GO TO 43 $\begin{array}{l} \mathsf{RFLOW} \\ \mathsf{IF} & (J-2)*(J-J|\mathsf{P}-j) > 51, \texttt{52}, \texttt{51} \\ \mathsf{A}(\mathsf{KHR}-3) &= \mathsf{A}(\mathsf{KHR}-3) + \mathsf{UC}(1) \\ \mathsf{A}(\mathsf{KHR}-2) &= \mathsf{A}(\mathsf{KHR}-3) + \mathsf{UC}(1) \\ \mathsf{A}(\mathsf{KHR}-1) &= \mathsf{A}(\mathsf{KHR}-1) + \mathsf{UC}(4) \\ \mathsf{A}(\mathsf{KHR}) &= \mathsf{A}(\mathsf{KHR}) + \mathsf{UC}(4) \\ \mathsf{A}(\mathsf{K})\mathsf{R}| &= \mathsf{A}(\mathsf{KRR}) + \mathsf{UC}(4) \\ \mathsf{A}(\mathsf{K})\mathsf{R}| + 1) &= \mathsf{A}(\mathsf{KRR}) + \mathsf{UC}(4) \\ \mathsf{A}(\mathsf{K})\mathsf{R}| + 2) \\ \mathsf{A}(\mathsf{K})\mathsf{R}| + 2) &= \mathsf{A}(\mathsf{KRR}) + \mathsf{UC}(4) \\ \mathsf{A}(\mathsf{K})\mathsf{R}| + 2) \\ \mathsf{A}(\mathsf{K}) \\ \mathsf{A}(\mathsf{K$ RELOW A(K)DR(+3) = A(K)DR(+3)+WC(HFTURN IF (J=J;P=1) 54+55+51 IF (J=1C) 54+51+51 A(KHR-1) = A(KHR+1)+UC(1) A(KHR) = A(KHR+1)+UC(1) G0 T0 53 EVEN 55 END 化化 计记录 化分析公司公司 化化化合金 电波频电电路 化化合金 建化合金 建化合金 化化合金 化化合金合金 化化合金合金 化化合金 5UBROUTINE COORD

 COMMON
 ALR:AL2:IIC:IEC:JIP:JEP:EC:HDELPLKC:RL:LG:LPU;LCC:C,PR;

 I
 PHP:MW:NW:AK:ITOTI:ITOTING:KD:KLOW:KHIGH:KHR:KDR;I:J:IA;

 2
 JA:NL:CON:ERR:CF:PRFI:PRF2:PRF3:PRF3:PRF4:LOCAT:LADO:LCL:SIGN

 3
 .CI:CE:CI:C2:C3:C4:ICR:JCR:LPCRSS:LCR:P:JTOT.JTOTI.ECRIT;

 4
 EXCF:SIGICR:TPLATE:TCYLDR:II(MI;IICPI:LI:JDRUM

 COMMON
 A(ISO):B(S3:00):V(S3:81):W(S3:81):NR(IB00):NC(IB00):C(44);

 1
 S(IBO0):R(S1:B00):R(S3):SUMR(S3):0IFFR(S3):AR(20):AR(20);AP(20);

 2
 FLP(20):FZP(20):UC(4):WC(4):SRP0(10):ERP0(10):SZP0(10);
 2

(h)

<pre>3 EZPO(10)*STPO(10)*ETPO(10)*SRZPO(10)*ENZPO(10)*SIPO(10)* 4 EIPO(10)*SZPO(10)*EZPO(10)*TANEPO(10)*TANEPO(10) DIMENSION LC(53*B1)*SIGR(53*B1)*SIGZ(53*B1)*SIGT(53*B1)*SIGR(53*B1)* 1 B(1)*OER(53*B1)*OEZ(53*B1)*OEZ(53*B1)*OEPS(153*B1)* 2 ENPR(53*B1)*EZPR(53*S1)*ETPR(53*B1)*OEPS(153*B1) 3 EPS(153*B1)*SIGR(53*B1)*EPS(53*B1)*OETPR(53*B1) EOUTVALENCE (U(1)*LC(1)) * (B(1)*EPS(1)*B1)* 1 (3(4301)*EPRP(1)) * (B(1)*C21)*ERZPR(1)) * 2 (B(12901)*CTPR(1)) * (B(1)*C21)*ERZPR(1)) * 3 (B(21501)*SIGR(1)*DER(1))*(B(25801)*SIGR2(1))* 4 (B(301)*SIGR(1)*OER(1))*(B(3401)*SIG7(1)*OEPZ(1))* 5 (B(38701)*SIG(1)*OER(1))*(B(43001)*EPS(1))*(B(47301)*OET(1))* 1F (NO-1TOT1) 1*1*2 1F (NO-1TOT1) 1*1*2 1F (NO+2*(NW/22)) 3*3*3</pre>	
3 IF GIGTLRC-LACTICCERCIPETY STORE	
5 IF (NQ-MW-(2*MW)*((1-1)/2)) /(0)/	
8 I = I+1	
7 J=2*((NQ+1)/2)-((1-1)/2)#(2*((MW+1)/2)-1)-(1/2)*(2*(MW/2)+1)+JIP-1	
RETURN	
6 IF $(NO+MW-1-(7*MW)*((1-1)/2))$ 9,10,9	
ロード・ショート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
9 JE2*((NG=1)/2)=(1/2)*(2*((ME*1)/2)=1)*((1=1)/2)*(2*(ME/2)*1)*0)*	
RETURN	
2 I = (NQ - (TOT I - I) / JEP + IIC)	
$I\Gamma$ (JEP-2*(JEP/2)) 11,12,11	
2 IF (JIP+LRC-2*((JIP+LRC)/2)) 13+14+13	
1 [F (J]P+LRC-2*((J]P+LRC)/2)) 17:16:17	
5 IF (NG-1TOT1-1-JEP-(2*JEP)*((I-11C)/2)) 14+18+14	
0 1 - 1 - 1 - 1 4 1 - 24 (101) - 1 TOTI-1 / 20141-((1-110)/2010(20(JEP/2041)-((1-1104)/200)	
(2EP+1)/2)-1)	
RETURN	
7 IF (NG=1TOT1-JEP-(2*JEP)*((1-(IC)/2)) 13(15(13	
5 I = 1+1	
3 J = 2*((NQ - [TOT]+1)/2)-((1-1(C+1)/2)*(2*(JEP/2)+1)-((1-1(C)/2)*(
12*((JFP+1)/2)~))	
PETUDN	
END SALA	
ELECTRIC SAND	
COMMON AND AND THE LECT OF BRIEF, HADELAN DEL BALLET BOLL CHER AND	
COMMON ALRIAL TITCHE TOTHET TOTHE TOTHER TO A AND A AN	
2 JA, NL, CONTERR, CF (PRF 1) PRF 2; PRF 3; PRF 4; LOCAT (LADD) CCL (SIGN	
3 ,C1,CE,C1,C2,C3,C4,ICR,JCR,LPRCSS,LCR,P,JTOT,JTOT1,ECRIT,	
A EXCF + SIGICR + TPLATE + TCYLDR + 11CM1 + 11CP1 + L1 + JDRUM	
COMMON A(150),3(53000),U(53,81),W(53,81),NR(1800),NC(1800),C(44),	
S(1800) +MS(1800) +R(53) +SUMR(53) +DIFFR(53) +AR(20) +ALP(20) +	
FLP(20), PZP(20), UC(4), WC(4), SRPG(10), ERPO(10), SZPO(10).	
<pre>FZP0(10),STP0(10),ETP0(10),SRZP0(10),ERZP0(10),S1P0(10),</pre>	
5 PO(10) - 52PO(10) - F2PO(10) - TAN1PO(10) - TAN2PO(10)	
2 ERPR(53+81)+EZPR(53+81)+EIPR(53+81)+ERZPR(53+81)+	
3 EPS1(53+51)+51G(53+81)+EPS(53+81)+0E1(53+81)	

(c) EQUIVALENCE (U(1):LC(1)) · (B(1):EPS1(1)) · (B(430):EPPR(1)) · (G(B60):EZPR(1)) · (B(12201):ETPR(1)) · (B(17201):ERZPR(1)) (B(21501),SIG7(1),DER(1)),(B(25601),SIGZ(1),DER2(1)), (B(30101),SIGZ(1),DEZ(1)),(B(34401),SIGI(1),DEP5(1)), (B(38701),SIG(1)),(B(43001),EPS(1)),(B(47301),UET(1)))

г

5

E 10

- 3 (B(21501)+5(GZ(1))CEX 4 (B(30101)+5(GZ(1))+CEZ(5 (B(30101)+5(GZ(1))+CEZ(5 (B(30701)+5(G(1))+CEZ(5 (B(30701)+5(G(1))+CEZ(5 (B(30701)+5(G(1))+CEZ(5 (B(30701)+CEZ(1))+CEZ(1)

32

- NGI = NG-24(MW/2)+24((MW+1)/2)+24((JIP-1)/2)+1 NGI = NG+24(MW/2)+24((MW+1)/2)+24((JIP-1)/2)+1
- GO TO 19 GO TO 19 GO TO 19 JO TO 19 JT NOI = NO+2*((MW-1)/2)+2*(JIP/2)+1 JT NOI = NO+2*((MW-1)/2)+2*(JIP/2)+1

GO TO 19 IF (J-JEP) 38+39+38 IF (I-IIC) 40+41+40

- 39
- **a** 1 NQ1 = NQ-2*(MW/2)-2*((JEP+1)/2) GO TO 23

(d) 40 No1 = No-2*(JEP/2)-2*((JEP+1)/2) GO TO 23 38 IF (I-IEC+1) 43:42:42 42 KHIGH = KD+1 GO TO 20 43 No1 = No+2*(JEP/2)+2*((JEP+1)/2)+1 GO TO 19 20 KD = VOT 300 KD = KDT NQ = NOT RETURN
 SUBROUTINE STRSTR

 COMMON
 ALR:ALZ:IIC:IEC:JIP:JEP:EC:H:UELP:LRC:LR:LG:LPU:LCYC:PR:

 I
 PHP:MW:NW:AK:ITOTI:ITOT:NG:KD:KLOW:KHIGH:KHR:KDK.I.J.(A:

 2
 JA:NL:CON:ERR:CF:PRF:IPRF:PR:PR:ALDC:LL:SIGN

 3
 .CI:CE:CI:C2:C3:C4:[CR:JCR:LPC:SS:LCR:P:JTOT.J:OTI:ECKIT:

 4
 EXCF:SICICR:TPLATE:TCYLDR:IICM::IICPI:LI:JDRUM

 COMMON
 A(150):8(53000):U(53:81):W(53:51):NR(1800):NC(1800):AC(44):

 1
 S(1800):MS(1800):R(53):SUMR(53:3):DIFFR(53):AR(20):ALP(20):

 2
 FLP(20):PZP(20):U(24):WC(4):SRP0(10):GD:ERP0(10):SZP0(10):

 3
 EZPO(10):SZP0(10):EZPO(10):GTZP0(10):GTZP0(10):SIP0(10):

 4
 EXPO(10):SZP0(10):FZP0(10):TANIPO(10):TANEPO(10):

 5
 ERPR(53:81):SIG(53:81):SIG(53:81):SIG(53:81):SIP0(10):

 6
 EXPR(53:81):SIP(153:81):SIG(53:81):SIP0(10):

 7
 ERPR(53:81):SIG(53:81):SIG(53:81):SIP0(10):

 8
 EPPS(10):SIP0(10):TANIPO(10):TANIPO(10):TANIPO(10):

 9
 ERPR(53:81):SIP(153:81):SIP(153:81):

 8
 EPPR(153:81):SIP(153:81):SIP(153:81):

 9
 ERPR(53:81):SIG(73:81):CTPR(53:81):DETF(53:81):

 1
 ERPR(53:81):SIG(1):FTPR(53:81):DETF(53:81):

 2
 ERPR(10):C3:81):FTPR(53:81):DETF(53:8 2 C(31) = PRF3 C(32) = PRF3 C(33) = PRF3 C(33) = PRF2 C(34) = 0+ C(34) = 0; IF (LC(1A+JA)=1) 11+12+13 IF (LC(1A+JA)=3) 14+12+16 C(31) = 0; C(32) = 0; C(33) = 0; 13 14 C(33) = 0. C(34) = 0. GO TO 11 HERE. VARIOUS TYPES OF CLOSED CRACKS CAN BE TAKEN INTO ACCOUNT 11 C(11) = PAP2 C(12) = PAP3 C(44) = PAP4 C(13) = C(11) C(13) = C(31)C(14) = 0.C(21) = C(12)C(22) = C(11)

ċ

C(23) = C(32) $C(24) = 0_{0}$ $C(41) = 0_{0}$

Ε	1	1

		C(42) = (D.							
		(45) = ().							
		ACT UDN								
	1.1	10 (1-110	1 21.21.	22						
	41	10 - U - U - U - U - U - U - U - U - U -	-11 23.2	3,22						
		11 (1615)		J2)))-1.	2) 22.0	22,24				
				11.11.14						
		1/11 = pp	CERTAINI#		**2					
		1708 - 01	177 0031 4	([4+54]]	**2					
		16.05 = -	0.5*00F2	+SIN/2.+	w// t A - 14					
		1000 - 51		- 3114(2.0-	WI [MIJ]					
		100 E E C C	5 (W(IA -)	A))++2						
		587CF = -	0.5*SIN(2. + WIIA.	(4.).)					
		C(11) + F	PCF*SRCF		5477					
		C(12) = F	7CF*SRCF							
		C(14) = E	R7CF*SRC	F						
		C(21) = F	RCF#S7CF							
		C(22) = E	PCF + SZCF							
		$C(a^{3}4) = F$	PZCF*SZC	F						
		(41) ≈ F	RCF*SRZC	F						
		C(47) = č	ZCE*SRZC	F						
		C(44) = =	RZCE*SRZ	CF						
		IF (LC(IA	· J4)-2)	17.14.18						
	17		TOPASACE							
		C(26) = C	TCF#3/CF	-						
			CF*SRZC	r						
	1 53	C(13) = 0								
		C(23) = 0								
		C(13) = 0	•							
		C(34) = 0								
	10	C(31) = C	(13)							
		C(32) = C	(23)							
		C(43) = C	(34)							
		RETURN								
		END								
* *	#**	******	******	******	*****	******	******	****	******	****
		SUBROUTIN	E EXTRPL				•			
**	***	******	******	******	*****	******	******	******	*****	****
		COMMON A	LRIALZII	IC. IEC.J	IP.JEP.	EC . H . DE	LP.LRC.	LR.LG.LF	POILCYC	.PR.
	1		HP.MW.NW	AK, HOT	I . I TOT.	NQ.KD.K	LOW KHI	GH • KHR •	OR.1	• I A •
	-	- J	A INCICON	ERRICH I	PRFIPR	F2 PRF3	B.PRF4.L	OCAT LAL	DU.LCL.	SIGN
			YCE SIGN	10240340 10.TOLATI			SSILCR.	PIJTOTI.	JIOT1 . E	CRIT.
		саймал а	(150)	530001-0	167.91.					
	,	CONTROL A	(1800).0	5(1802)	2121211	1413316		800) INC	18001	C(44):
	-		18(20) 18	78(20).0	-(A).WC	101.500		3311AR(2	C 1 1 ALP	
		3 7	2P0(10).	STPOLION	FTPOUL	01.5070		RECLO	1329011	0,,
	2	ε ε	1P0(10)	52PO(10)	E2PO(1	O1 . TANI	POLIDI	TANZPOLI	01	101.
		DIMENSION	LC(53.8	311.51GR	(53,81)	.51GZ(5	3.811.5	IGT (53.8	111.510	8/(53)
	1		81), DEP	2(53,81)	DEZ (53	.811.DE	RZ(53,8	11,DEPS	(53.81	1.
	Ë	2	ERPR(5)	3.91).EZP	98(53,8	1) .ETPR	(53,81)	+ERZPR(S	3.81).	
	2	3 .	EPSI(5)	3,81),510	G(53,81).EPS(5	3.811.0	ET (53,81	1	
		EQUIVALEN	CE (U(1))	+LC(1))	(3(1)	EPS1())) •			
	1		(8(4)	301), ERPP	(1))	(8) 86	01) • E Z P	R(1)) •		
	2	2	(8(12)	701),ETPP	?(1))	(8(172	01) • ERZ	PR(1)) :		

(Ь)

		(C)
	38	IF (ROOT-EXCF) 30,32,40
	30	EXCF = ROOT
	34	
		JCR = -J
	32	GO TO 40 IF (1=[AB5(1CD)) 33+34+33
	33	WRITE (6.103) 1.J.ICR.JCR
	103	FORMAT (OWE ARE IN THE PRESENCE OF THE RAKE CASE WHERE TWO NULLS
		APPART FROM EACH OTHER CRACK SIMULTANEOUSLY [=1,13,1 J =1,13,1 AN
		20 [=1,13,1] J = 1,13/22)
	28	UE ((C(1, 1) - 3) + 1) + 40 + 39
	39	CONTINUE
2		HERE - CLOSED CRACKS CAN BE CONSIDERED
	40	CONTINUE
		RETURN
5-0	***	**************************************
		SUBROUTINE CHECK
. 4	***	*****
		COMMON ALR, ALZ, IIC, IEC, JIP, JEP, EC, H, DELP, LRC, LR, LG, LPU, LCYC, PN,
		1 PHP: MWINWIAK, ITOTI ITOTING KOTKEGUTKEI GHIKAI G
		. CI.CF.CI.CZ.CJ.C4.ICR.JCR.LPRC55.LCR.P.JUTI.JUTI.LCRIT.
		A EXCF. SIGICR. TPLATE, FCYLDR. IICMI, IICPI, LI, JURUM
		COMMON A(150) + B(53000) + U(53,81) + #(53,81) + NR(1800) + NC(1800) + C(44) +
		1 5(1800),M5(1800);R(53);SUMR(53);DIFFR(53);AR(20);ALP(20);
		57PO(10)+5TPO(10)+5TPO(10)+5RZPO(10)+5RZPU(10)+51PO(10)+
		4 E1PO(10),52PO(10),E2PO(10),TAN1PO(10),TAN2PU(10)
		DIMENSION LC(53(81)(SIGR(53(81)))SIG/(53(81))SIGT(53(51))SIGT(53(51))SIGP2(53)
		1 81) + DER(53,81) + DEZ(53,81) + DER2(53,81) + OEP51(53,81) +
		2 ERPR(53,61)(EZPR(53,61)(ETPR(55(61)(ER25(55(51)))
		EQUIVALENCE (U(1)+LC(1)) + (B(1)+EPSI(1)) +
		(B(4301),ERPR(1)) + (B(96C1),E2PR(1)) +
		2 (B(12901) (ETPR(1)) , (B(17201) (ER2PR(1)) ,
		3 (B(21501).51GR(1).0ER(1)).(A(25801).51GR2(1).0ER2(1))
		4 (9(30101)+5162(1)+062(1))+(3(34401)+516(1)+62451(1)) 5 (8(38701)-SIG(1))+(8(43001)-SPS(1))+(2(47301)-987(1))
		LCR = 0
•		ETEMP = 0.
		DO 10 L=1.JTOT
		NQ = 2*L
		CALL COORD
		IF (LC(1,J)-1) = 31,32,33
	31	IF (EPS1(1.J)-ECRIT) 34.37.37
	34	IF (ET-ECRIT) 10,38,38
	38	
		ETEMPI = ET
		GO TO 39
	36	IF (ET-EPS1(1,J)) 35.40.40
	40	(F ([-]) 35,35,36 IF (FT-FCPIT) 35,36,36
	35	ICRT = 1
		(4)
		(d)
		$\int_{CRT} = J$ $ETEMP1 = EPS1(1,J)$
	39	(d) $U_{CRT = J}$ $ETEMP1 = EPS1(1,J)$ $U_{CR = LCR+1}$
	39	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT
	39 11 103	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES
	39 11 103	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (:OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 =:.13.' J =:.13.' AN
	39 11 103	(d) ETEMP1 = DS1([+J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10+11+12 WRITE (6+103) 1+J+1CRT+JCRT FORMAT (+OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =++13++ J =++13++ AN 20 1 =++13++ J =++13+//)
	39 11 103	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES IAPPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.13.' J ='.13.' AN DI ='.13.' J ='.13.'/) GO TO 10 IF (ETECRIT) 10.42.42
	39 11 103 32 42	(d) $J_{CRT = J}$ $ETEMP1 = EPS1(1.J)$ $LCR = LCR+1$ IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (I OWE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.13.' J ='.13.' AN 10 I ='.13.' J ='.13//) GO TO 10 IF (ET=CRIT) 10.42.42 IF (1-1) 43.43.38
	39 11 103 32 42 43	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (I OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.13.' J ='.13.' AN D I ='.13.' J ='.13///) G TO 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3
	39 11 103 32 42 43	(d) UCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:+,13.+ J =:+,13.+ AN 10 I =:+,13.+ J =:+,13///) GO TO 10 IF (ET-ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IE (LC(1.J) = 3 GO TO 10
	39 11 103 32 42 43 33	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:.13.' J =:.13.' AN 10 I =:.13.' J =:.13.' J =:.13.' AN GO TO 10 IF (ET=ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (EFEIL) 10.15.35
	39 11 103 32 42 43 33 44 12	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D 1 ='.13.' J ='.13.'/) G TO 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LC(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1
	39 11 103 32 42 43 33 44 12	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (:0WE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:,13.' J =:,13.' AN 20 I =:,13.' J =:,13///) GO TO 10 IF (ET-ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LC(1.J)-2) 44.44.10 IF (LC) I.J.ECRIT) 10.35.35 ETEMP = ETEMPI ICR = ICRT
	39 11 103 32 42 43 33 44 12	(d) JCRT = J ETEMP1 = EPS1(1,J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:+,13.+ J
	39 11 103 32 43 33 44 12	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:,13.' J =:,13.' AN 10 I =:,13.' J =:,13//) GO TO 10 IF (ET=ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR = JCRT CONTINUE IF (LC) 15.15.16
	39 11 103 32 42 43 33 44 12	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (I OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.13.' J ='.13.' AN D1 ='.13.' J ='.13//J O TO 10 IF (ET=ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)=2) 44.44.10 IF (LC1).J=CRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR = JCRT CONTINUE IF (LCR) 15.15.16 CONTINUE
	39 11 103 32 42 43 33 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (:0WE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:,13.' J =:,13.' AN 20 I =:,13.' J =:,13///) GO TO 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LC(1.J)-2) 44.44.10 IF (LC(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR = JCRT CONTINUE IF (LCR) 15.15.16 CONTINUE
	39 11 103 42 43 33 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHEHE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =::13:1 J =::13.1 AN 10 I =::13: J =::13//J 20 I =::13: J =::13//J 20 I =: 13.2 J =::13//J 20 T 0 10 IF (ET=ECRIT) 10:42:42 IF (I-1) 43:43.36 LC(1:J) = 3 GO T 0 10 IF (LC(1:J)-2) 44:44:10 IF (EPS1(1:J)-ECRIT) 10:35:35 ETEMP = ETEMP1 ICR = JCRT CONTINUE IF (LCR J 15:15:16 CONTINUE WRITE (6:113) FORMAT (:=THE CRACK DOES NOT PROPAGATE'///)
	39 11 103 32 42 43 33 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.1CRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN 2D I ='.13.' J ='.13//J 2D I ='.13.' J ='.13//J CO TO 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GF 10 10 IF (LC(1.J)-2) 44.44.10 IF (LC1.J)-22 44.44.10 IF (LC1.J)-22 44.44.10 IF (LC1.J)-22 44.44.10 IF (LCR. 15.15.16 CONTINUE IF (LCR. 15.15.16 CONTINUE WRITE (6.113) FORMAT ('-THE CRACK DOES NOT PROPAGATE'///) DELP = 100.
	39 11 103 32 42 43 33 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (I OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.13.' J ='.13.' AN D1 ='.13.' J ='.13/// C0 TO 10 IF (ET=ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 G0 TO 10 IF (LC(1.J)=2 44.44.10 IF (LC1).J=2 44.44.10 IF
	39 11 103 32 42 43 33 34 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR-1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (I OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =::13.' J =::13.' AN 10 I =::13.' J =::13.'/) GO TO 10 IF (ET-ECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC[1.J)-2) 44.44.10 IF (EPSI(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR = JCRT CONTINUE WRITE (6.113) FORMAT (I-THE CRACK DOES NOT PROPAGATE'///) DELP = 100. LPRCSS = I PHF = 0. NLP = IEC-IIC+2
	39 11 103 32 42 43 33 44 12 10 15	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE'TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =::13:1 J =::13:1 AN 10 I =::13:1 J =::13///) GO TO 10 IF (ET=ECRIT) 10:42:42 IF (I=1) 43:43:38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)=2 44:44:10 IF (EPS1(1.J)=CRIT) 10:35:35 ETEMP = ETEMP1 ICR = JCRT CONTINUE WRITE (6:113) FORMAT (:-THE CRACK DOES NOT PROPAGATE:///) DELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 I=1:NLP
	39 11 103 32 42 43 33 44 12 10 15 113	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES IAPPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D 1 ='.13.' J ='.13./') G TO 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)=2) 44.44.10 IF (
	39 11 103 32 42 43 33 44 12 10 15 113 90	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NOUES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D1 ='.13.' J ='.13///) G0 T0 10 IF (ET=ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 G0 T0 10 IF (LC(1.J) = 3 G0 T0 10 IF (LC(1.J) = 2 44.44.10 IF (LC1) 15.1 3 G0 T0 10 IF (LC1) 15.1 5.16 CONTINUE ICR = ICRT JCR = JCRT CONTINUE WRITE (6.113) FORMAT ('-THE CRACK DOES NOT PROPAGATE'///) DELP = 100, LPRCSS = 1 PHP = 0, NLP = IEC-11C42 D0 90 [=1:NLP PZP(1) = 0, RETURN WRITE (6.114) LCR
	39 11 103 32 42 43 33 44 12 10 15 113 90 16 114	(d) JCRT : J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 =:+.[J.'] J =:+.[J.'] AN GO TO 10 IF (ET=CRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (ET=CRIT) 10.42.42 IF (ET=CRIT) 10.35.35 ETEMP = ETEMP1 ICR = JCRT CONTINUE ICR = JCRT CONTINUE IF (LC[1] 15.15.16 CONTINUE WRITE (6.113) FORMAT (:-THE CRACK DOES NOT PROPAGATE :///) DELP = 100. LPRC5S = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 I=1.NLP PZP(1) = 0. RETURN WRITE (6.114) LCR FORMAT (:-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH',
	39 11 103 32 42 43 34 4 12 10 15 113 90 16 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =::13:1 J =::13:1 AN 20 I =:13:1 J =::13///) GO TO 10 IF (ET=CERIT) 10:42:42 IF (I=1) 43:43:38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)=2) 44:44:10 IF (EPS1(1.J)=CCRIT) 10:35:35 ETEMP = ETEMP1 ICR = JCRT CONTINUE WRITE (6:113) FORMAT (:-THE CRACK DOES NOT PROPAGATE:///) DELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 I=1:NLP PZP(I) = 0. RETURN WRITE (6:114) LCR FORMAT (:-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH': I3:: STRESS NODES:///)
	39 11 103 32 42 43 44 12 10 15 113 90 16 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D 1 ='.13.' J ='.13/'J O TO 10 IF (ET=CERIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LC
**	39 11 103 32 43 33 44 12 10 15 113 90 16 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCRA1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1.J.ICRT.JCRT FORMAT ('OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =::13:' AN 10 T 0: 13: J = ':13//J CO TO 10 IF (ETECRIT) 10:42:42 IF (I-1) 43:43:38 LC(1:J) = 3 GO TO 10 IF (ETECRIT) 10:42:42 IF (I-1) 43:43:38 LC(1:J) = 3 GO TO 10 IF (ETECRIT) 10:42:42 IF (ICT) J = 2 44:44:10 IF (LCT) J = 2 4:45:45 IF (LCT) J = 2 4:45 IF (LCT) J = 2 4:45:45 IF (LCT) J = 2 4:45:45 IF (LCT) J = 2 4:
**	39 11 103 32 423 43 33 44 12 10 15 113 90 16 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHEHE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY [=:+,[].'] J =:+,[].'] AN GO TO 10 IF (IT) J =:,[].'] J =:+,[].'] J =:+,[].'] J =:+,[].'] AN GO TO 10 IF (ET=ECRIT) 10:42:42 IF (IT) 43:43.36 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44:44.10 IF (EPS1(1.J)-ECRIT) 10:35:35 ETEMP = ETEMP1 ICR = JCRT GONTINUE ICR = JCRT CONTINUE IF (LC[1] 15:15:16 CONTINUE WRITE (6:113) FORMAT (:-THE CRACK DOES NOT PROPAGATE '///) DELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 [=::NLP PZP(1) = 0. RETURN WRITE (6:114) LCR FORMAT (:-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH'; I3:: STRESS NODES:///) RETURN END
	39 111 103 32 42 43 33 44 12 10 15 113 90 16 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:,13.; J =:,13.; AN 2D I =:,13.; J =:,13///) GO TO 10 IF (ET=CERIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (EPS1(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = JCRT CONTINUE ICR = JCRT CONTINUE WRITE (6.113) FORMAT (I-THE CRACK DOES NOT PROPAGATE '///) OELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 IEI.NLP PZP(1) = 0. RETURN WRITE (6.114) LCR FORMAT ('-THE CRACK SEENS TO PROPAGATE INSTANTANEOUSLY THROUGH'. I3.: STRESS NODES'///) RETURN END
	39 11 103 32 42 43 44 12 10 15 113 90 16 114 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT PORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D1 ='.13.' J ='.13//J O TO 10 IF (ETECRIT) 10.42.42 IF (I-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LC) 1.J22 44.44.10 IF (LC) 1.J22 44.44.10 IF (LC) 1.J22 44.44.10 IF (LC) 1.J22 44.44.10 IF (LC) 1.J27 44.4
	39 11 103 32 42 42 43 33 44 12 10 15 113 90 16 114 114	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR11 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 =::13.' J =::13.' AN IO 10 =:13.' J =::13.'/ GO TO 10 IF (ET-ECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (EPS1(1.J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR = JCRT CONTINUE WRITE (6.113) FORMAT (:-THE CRACK DOES NOT PROPAGATE :///) OELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-I[C+2 DO 90 I=1.NLP PZP(1) = 0. RETURN WRITE (6.114) LCR FORMAT (:-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH': 13.' STRESS NODES:///) RETURN SUBROUTINE SOLVER SUBROUTINE SOLVER SUBROUTINE SOLVER COMMON ALR.ALZ:IIC.IEC.JP.JEP.EC.H.DELP.LRC.LR.LG.LPO.LCYC.PR: PHP.MW.NW.AK.ITOTI.ITOT.NO.KD.KLOW.KHIGH.KAR.KDR.I.J.IA. JA.NCOMERR.CF.PRF1.PRF3.PRF3.DREALADU.CL.SIGN
	39 11 32 42 42 42 42 42 42 42 42 42 42 42 42 42	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHEHE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY [=+,[].'] J =+,[].'] J =+,[].'] AN 20 I =+,[].'] I =+,[].'] AN 20 I =+,[].'] I =+,[].'] AN 20 I =+,[].'] A
	39 11 103 32 42 42 42 42 42 42 42 42 42 42 42 42 42	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR + LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.1CRT.JCRT FORMAT (IOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES (APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 =:.13.1 J =:.13.1 AN DD 1 =:.13.1 J =:.13777) GO TO 10 IF (ETECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)=2) 44.44.10 IF (
* *	39 11 103 32 42 33 44 12 10 15 10 15 113 90 16 114 114 114 114	(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR+1 IF (ETEMP1=ETEMP) 10:11:12 WRITE (6:103) 1:J.ICRT:JCRT FORMAT ('OWE ARE IN THE PRESENCE OF THE RARE CASE WHERE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:+(J.' J =:+(J.'
	39 11 10 32 42 43 34 43 12 10 15 113 90 16 114 14 14 14 14 14 14 14 14 1	(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (rOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='+13+' J ='+13+' AN IO 1 ='+13+' J ='+13//' GO TO 10 IF (ETECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1+J) = 3 GO TO 10 IF (ETECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1+J) = 3 GO TO 10 IF (LC(1+J)=2) 44.44.10 IF (ETECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT CONTINUE WRITE (6.113) FORMAT (1-THE CRACK DOES NOT PROPAGATE'///) DELP = 100. LPRC5S = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 [=:+NLP PTURN WRITE (6.114) LCR FORMAT (1-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH', 13.* STRESS NODES///) RETURN SUBROUTINE SOLVER SUBROUTINE SO
	39 11 103 322 43 332 443 12 10 15 113 90 16 114 114 12 14 14 14 14 14 14 14 14 14 14	(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10:11:12 WRITE (6:103) 1:1:1CRT.JCRT PORMAT (OWE ARE IN THE PRESENCE OF THE RARE CASE WHENE'TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 =':13:' J =':13:' AN 10 To 10 1 = ':13''' GO TO 10 1 IF (ETECRIT) 10:42:42 IF (1-1) 43:43:38 GO TO 10 IF (ETECRIT) 10:42:42 IF (1-1) 43:43:38 GO TO 10 IF (EDECRIT) 10:42:42 IF (1-1) 43:43:38 CONTINUE IF (CRT ETEMP1 ICR = ICRT JCR = JCRT CONTINUE WRITE (6:113) FORMAT (1-THE CRACK DOES NOT PROPAGATE'///) DELP = 100. LPRCSS = 1 PHP = 0. NLP = IEC-IIC+2 DO 90 [1:NLP PZP(1) = 0. RETURN WRITE (6:114) LCR FORMAT (1-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH'; 13:' STRESS NODES'///) RETURN SUBPOUTINE SOLVER COMMON ALR:ALZ:IIC:IEC.JIP:JEP:EC+H:DELP:LCR:LR:LG:LP0.LCYCC.FR. PHP.MW.NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LOCAT.LADD.LCMP(20). COMMON ALR:ALZ:IIC:ICR:JC:JS:JS:JOIFFR(53):AR(20).LCYCC.FR. PHP.MW:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LOCAT.LADD.LCYCC.FR. PHP.MW:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LOCAT.LADD.LCYCC.FR. PHP.MW:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LDCAT.LADD.LCYCC.FR. PHP.MU:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LDCAT.LADD.LCYCC.FR. PHP.MU:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LDCAT.LADD.LCYCC.FR. PHP.MU:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHR:KD0:I.J:IA JA:NL:CON:ERR:CF:PRF1:PRF2:PRF3:PRF4:LDCAT.LADD.LCYCC.FR. PHP.MU:NW:AK:ITOTI:ITOT:NO:KO:KLOW:KHIGH:KHP:CH0:IDO:LC/C44). S(1800):NS(1800):R(53:61):WR(53:61):NUR(53:61):NUR(20):AC(20).C(44). S(1800):NS(1800):R(53:61):WR(53:61):PRF(53):AR(20):AC(20).C(44). S(1800):NS(1800):R(53:61):WR(53:61):PRF(53):AR(20):AC(20):C(44). S(1800):PRF2:PD(10):FFP(10):FFP(10):FFP(10):FFP(10):FFP(10):FFP(10):FFP(10):FFP(
	39 11 10 322 43 33 44 12 10 15 113 90 16 114 114 10 15 113 90 16 114 114 12 14 10 15 11 10 10 10 10 10 10 10 10 10	<pre>(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (FOWE ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='+13+' J ='+13+' AN 10 To 10 IF (1-1) 43.43.38 LC(1-1) = 3 GO TO 10 IF (CT=CCRIT) 10.42.42 IF (1-1) 43.43.38 LC(1-1) = 3 GO TO 10 IF (CT=CCRIT) 10.42.42 IF (1-1) 43.43.38 LC(1-1) = 3 GO TO 10 IF (CT=CCRIT) 10.42.42 IF (1-1) 43.43.38 LC(1-1) = 2 GO TO 10 IF (CT=CCRIT) 10.42.42 IF (1-1) 43.43.38 LC(1-1) = 3 GO TO 10 IF (CT=CCRIT) 10.42.42 IF (CT=CTT) 10.42.42 IF (1-1) 43.43.38 LC(1-1) = 3 GO TO 10 IF (CT=CTT) 10.42.42 IF (CT=CTT) 10.42.42.42 IF (CT=CTT) 10.42.42.42 IF (CT=CTT) 10.42.42</pre>
	39 11 103 32 423 33 44 12 10 15 10 15 113 900 16 114 114 114 114 114 114 114	(d) JCRT = J FTEMP1 = EPS1(1,J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.10.3) 1.J.ICRT.JCRT FORMAT (:OWE ARE IN THE PRESENCE OF THE RARE CASE WHEHE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.13.' J ='.13.' AN D1 ='.13.' J ='.13./'.1 GO TO 10 IF (ETE-CCRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LCT J.) = 2 44.44.10 IF (ETEMP1 = ZTEMP1 ICR = ICRT JCR = JCRT CONTINUE WRITE (6.113) FORMAT ('.T-THE CRACK DOES NOT PROPAGATE'///) DELP = 100. LPRCSS = 1 PMP = 0. NLP = IEC-LIC+2 DO 90 [1.1.MLP PZP(1) = 0. RETURN WRITE (6.114) LCR FORMAT ('.T-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH', I3.' STRESS NODES:///) RETURN WRITE (6.114) LCR FORMAT ('.T-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH', I3.' STRESS NODES:///) RETURN END SUBROUTINE SOLVER COMMON ALR.ALZ.IICLIEC.JIP.JEP.EC.H.DELP.LRC.LR.LG.PD.LCC.C.PR. PHP.M.N.W.AK.; TOTI.JITOT.NO.KO.KLOW.KHIGH.KRR.KDR.I.J.I.A. S(1800).WS(1800).RC(3).SUBR(15.).BI.AR(HOLL.L.SIGN) COMMON ALS.ALZ.ZICC.TCVLDA.IICM.ICL.J.JDRUM COMMON ALS.ALZ.ZICC.TCVLDA.IICM.IICD/I.J.JORUM COMMON ALS.ALZ.ZICC.TCVLDA.IICM.IICD/I.J.JORUM COMMON ALS.ALZ.ZICC.TCVLDA.IICM.IICD/I.J.JORUM COMMON ALS.ALZ.ZICC.TCVLDA.IICM.IICD/I.J.JORUM COMMON ALS.ALZ.ZICC.TCVLDA.IICM.IICD/I.J.JORUM COMMON ALS.ALZ.ZICC.ZICC.G.C.S.G.ICR.J.GR.LDRCS.S.LCR.P.J.TOT.JITT.JCCL1. EXCPSISION.BEDOTION.EXEPCIDIO.SZEPCIDIO
	39 11 10 32 42 43 42 43 44 12 10 15 113 900 16 114 113 900 16 114 114 114 114 114 114 114	(d) JCRT = J ETEMP1 = EPS1(1,J) LCR = LCR+1 IF (ETEMP1-ETEMP1 10.11.12 WRITE (6.10.3) 1.J.LCRTJCRT FORMAT (:OWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I ='.(J.' J ='.1J.' AN 10 I ='.(J.' J ='.1J.'/) GO TO 10 IF (ETECRIT) 10.42.42 IF (1-1, 43.43.38 LC(1,J) = 3 GO TO 10 IF (LC(1,J)-2) 44.44.10 IF (LCFESI(1,J)-ECRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT ICR = ICRT ICR = ICRT CONTINUE WRITE (6.113) FORMAT ('-THE CRACK DOES NOT PROPAGATE'///) DELP = 100. LPRCSS = I PHP = 0. NLP = IEC-IIC+2 DD 90 (s1.NLP PZP(1) = 0. RETURN WRITE (6.114) LCR FORMAT ('-THE CRACK SEEMS TO PROPAGATE INSTANTANEOUSLY THROUGH', IJ.' STRESS NODES:///) RETURN END SUBROUTINE SOLVER SUBROUTINE SOLVER COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.LRC.LR.LG.LPD.LCVC.GRF DMMAX.IITOT.NO.KC.OW.K.MENKAR.I.J.I.A. JA.N.LCON.EER.(CF.JPF.I.PRF3.PRF3.LDCALADU.LCV.SIGN (150).BISJB00, NUS3.BI).WEJSJB1.NIG0.J.AC(1800).C(44). SIBBOUTINE SOLVER COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.LRC.LR.LG.LPD.LCVC.GRF DMMAX.NL.TOTI.ITOT.NO.KC.OW.KRM.H.K.H.R.I.J.I.A. JA.N.LCON.EER.(CF.JPF.I.PRF3.PRF3.LDCALADU.LCV.SIGN (150).BISJB00, NUS3.BI).WEJSJB1.NIKIBO0.NC(1800).C(44). SIBBOUTINE SOLVER SUBROUTINE SOLVER COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LG.LPD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LG.LPD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LG.LPD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LG.LPD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LG.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LD.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LAR.LG.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LD.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LAR.LG.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LAR.LG.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRC.LR.LD.PD.LCVC.GRF COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.IRCS.LIB.J.NICH.IICPI.I.J.JDM
	39 11 103 322 43 33 44 43 33 44 43 12 10 15 113 900 16 114 113 900 16 114 113 900 16 114 103 12 12 10 10 10 10 10 10 10 10 10 10	(d) JCRT : J ETEMP1 : EPS1(1:J) LCR : LCR+1 IF (ETEMP1-ETEMP1 10.11.12 WRITE (6.103) 1.J.LCRTJCRT PORMAT (:OWE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART PROM EACH OTHER CRACK SIMULTANEOUSLY [:'.[J.' J :'.[J.' AND 20] :'.[J.' J :'.[J.'/] GO TO 10 IF (ETECRIT) 10.42.42 IF ([-EFECRIT) 10.42.42 IF ([-EFECRIT) 10.42.42 IF ([-[CT] 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (LCR) 15.15.16 CONTINUE ICR = ICRT ICR ICR = ICRT ICR
	39 11 10 32 42 33 42 43 12 10 15 10 15 10 15 10 15 10 16 114 12 10 16 114 12 14 10 10 10 10 10 10 10 10 10 10	(d) JCRT = J ETEMP1 = EPS1(1.J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.111.12 WRITE (6.103) 1.J.LCRTJCRT FORMAT (:0WE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY 1 ='.1J.' J ='.1J.' AN DO 1 ='.1J.' J ='.1J.'/) GO TO 10 IF (ETECRIT) 10.42.42 IF (1-1) 43.43.38 LC(1.J) = 3 GO TO 10 IF (LC(1.J)-2) 44.44.10 IF (L
	39 11 10 322 43 43 43 43 42 43 43 43 42 43 42 43 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 43 42 43 43 44 43 44 43 44 43 44 43 44 44	(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.1CRT+JCRT FORMAT (:QME ARE IN THE PRESENCE OF THE RARE CASE WHENE' TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =:(13.' J =',13.' AN DO I =:(13.' J =',13.' J =',13.'') OT 0 10 IF (ETECRIT) 10.42.42 IF (I-1) 43.43.36 LC(1,J) = 3 GO TO 10 IF (CECI(I,J) = 2 44.44.10 IF (ETECRIT) 10.42.42 IF (ICI) 43.43.36 LC(1,J) = 3 GO TO 10 IF (CECI(I,J) = 2 44.44.10 IF (CECI(I,J) = 2 44.11.10TIN,00,0K,CUN KLON KLON KUN (KUN (I,J) III) IF (CECI(I,J) = 2 44.11.10TIN,00,0K,CUN (I,J) III = 2 4.44.10 IF (CECI(I,J) =
	39 11 10 32 43 43 43 43 43 43 43 43 43 43	(d) JCRT = J ETEMP1 = EPS1(1+J) LCR = LCR+1 IF (ETEMP1-ETEMP) 10.11.12 WRITE (6.103) 1.J.ICRT.JCRT FORMAT (10WE ARE IN THE PRESENCE OF THE RARE CASE WHENE TWO NODES APPART FROM EACH OTHER CRACK SIMULTANEOUSLY I =+13.+ J =+13.+ J =+ 10 = +.13.+ J =+13777) 00 To 10 IF (CT-ECRIT) 10.42.42 IF (I-I) 3.43.33 LC(1,J) = 3 00 To 10 IF (LC1,J)=2 44.44.10 IF (EFS)(I,J)=CRIT) 10.35.35 ETEMP = ETEMP1 ICR = ICRT JCR

1 1

ERR # 0.

(a) (B(38701), SIG(1)), (B(43001), EPS(1)), (B(47301), DET(1)) REWIND CALI_ TR LE (ERR) 1, 2, 3 WRITE (6.4) ERR FORMAT (16H TOO MANY TERMS .F10.0) 50 TO 6 CALL BACK WRITE (6.7) MS(ITOT) FORMAT (' SIZE OF VECTOR B IS'.16) RE TURN WRITE (5.5) FRR FORMAT (20H ZERU DIAGONAL TERM (F10.0) CONTINUE OF TURN SUBROUTINE BACK

 SUMMOUTINE BACK

 COMMON
 ALH-ALZ-IIC, IEC = JIP, JEP, EC.H.DELP-LRC, LR.LG, LPO, LCYC, PR.

 I
 PHP, MW, NW AK, ITOTI ITOT, NO, KD, KLOW KHIGH, KHR, KOR I, J, IA,

 A
 JA, NL, CONERR, CF. PRFIPERZ, PRF3, PRF4, LDCAT, LADD, LCL.SIGN

 3
 +CI.CE.CI.CZ.C3 = C4.ICR.JCR.LPRCSS, LCR.P. JTOT.JTOTI, ECRIT.

 4
 EXCF.SICICR.TPL ATE.ITCYLOR. IICM.IICP.LI.JORUM

 LCMMJN
 A(150) + B(5300) = U(53:81) + W(53:81) + NR(1800) + NC(1800) + C(44),

 1
 S(1800) + NS(1800) + U(53:81) + W(CA) + SHP0(10) + STP0(10) + SZP0(10), LP(20),

 2
 FLP(20) + PZP(22) + UC(4) + WC(A) + SHP0(10) + SRP0(10) + SZP0(10), L2(10),

 3
 E.ZPU(10) + SZP0(10) + EZP0(10) + SRZP0(10) + SZP0(10),

 4
 EVP(10) + SZP0(10) - EZP0(10) + SRZP0(10) + SZP0(10),

 5
 EVP(10) + SZP0(10) - EZP0(10) + TANPO(10) + TANZP0(10)

 5
 EVP(10) + SZP0(10) + EZPR(53:81) + SIGZ(53:81) + SIGZ(1) N2 = 1TOT-1 SN +1 = 1 + 00 JE = 1 + 00 JE = 10 JL = 10 (JE) JU = MS(JE+1)=1 J? = JE D0 1 J = JL+ JU J2 = J2+1 S(JE) = 5(JE)+R(J)*S(J2) RETURN END

3

SUBROUTINE TR: COMMON

ALR; ALZ; IIIC; IEC; JIP; JEP; EC; H; DELP; LRC; LR; LG; LPU; LCYC; PR; PHP; MW; NW; AK; ITOTI; ITOT; NO; KD; KLOW; KNIG; KHR; KDR; I; J; IA; JA; NL; CON; EKR; CF; PRF1; PRF2; PRF3; PHF4; LCCAT; LADD; LCL; SIGN ; CI; CE; C1; C2; C3; C4; ICR; JCR; LPRCS5; LCR; P; JTOT; JTOT1; ECRIT; 2 3

(b)

з 0 MS(1) = 1 LIMIT = 53000 DO 1 IS=1.1TOT KD = IS READ(1) I.J.KLOW.KHIGH.A.CON NQ = NR(IS) KL = KLOW KH = KHIGH+1-KLOW KU = 15-1IF (KU) 4,4,3K1 = 0IF (KU-KL) 4,2,21 - (KU=KL) 4,2 /2 D0 5 K = KL, KU K1 = K1+1 LL = M5(K) LU = M5(K+1)-1 L1 = K1 D0 6 L = LL, LU L1 = L1+1 2 $L_1 = L_1 + 1$ $A(L_1) = A(L_1) + B(L) * A(K_1)$ $IF (L_1 - KH) 6 + 6 + 14$ $IF (A(L_1)) 15 + 6 + 15$ 15 KH = L1 6 CONTINUE 5 CON = CON CON = CON+A(K1) *S(K)K1 = IS+1-KLOWKL = K1+1L = MS(IS)-1 $D0 \ 7 \ K = \ KL, \ KH$ $IF \ (A(K1)) \ 10, 11, 10$ 11 ERR = 15 RETURN 10 CONTINUE L = L+1 C = C+17 B(L) = -A(K)/A(K1) MS(IS+1) = L+1 S(IS) = -CON/A(K1) IF (L-LIMIT) 1.13.13 13 ERR = -15 RETURN 1 CONTINUE

(c)

501 RETURN SUBROUTINE SIGEPS COMMON ALR.ALZ.HIC.HEC.JP.JEP.EC.H.DELP.LPC.LR.CG.P0.LCYC.PR. 1 PHP.MW.NWIAK.HIDTI.HIDT.NO.KD.KLOWIKHIGH.F.HR.KDWI.H.J.IA. 2 JA.NL.CONSERK.CF.PRF1.PRF2.PRF3.PRF4.LUCA.H.ALD.LCL.JGH 4 CI.CC.CI.CZ.C3.CA.HCK.JCR.LPRCS.LCK.P.HT.JUTI.ECHI. 4 EXCF.SIGICK.TPLATE.TCYLDP.HICM.HICPILLIJJANA 6 (15C) 8(530C).VCS3.91.VC53.91.NR(1800).NC(1800).C(44). 1 S(1800).MS(1800).R(53).500K(53).01FFR(53).AR(200).ALP(20). 2 FLP(20).PZP(20).VC(4).WC(4).WC(3).81).NR(1800).NC(100).C(44). 3 EZPO(10).STPO(10).ETPO(10).SRAPO(1C).TAAPPO(10).ALP(20). 4 EIPO(10).STPO(10).ETPO(10).SRAPO(1C).TAAPPO(10). 5 EZPO(10).STPO(10).ETPO(10).SRAPO(1C).TAAPPO(10). 5 EZPO(10).STPO(10).ETPO(10).SRAPO(10).SRAPO(10). 5 EZPO(10).STPO(10).ETPO(10).SRAPO(10).SRAPO(10). 5 EZPO(10).STPO(10).ETPO(10).SRAPO(10).SRAPO(10).SRAPO(10). 5 EZPO(10).STPO(10).ETPO(10).SRAPO(10).SRAPO(10).SRAPO(10). 5 EZPO(10).STPO(10).SRAPO(10).SRAPO(10).SRAPO(10).SIGA COMMON ALRIALZIIICIIECIJIPIJEPIECIHIDELPILHCILKILGILPUILCYCIPHI з 5 DEFINE FILE 2(1400+10+U+REC) IF ((1-1)*(1-11C)*(1-1EC)*(J-1)*(J-J(0)*(J-J(0))) 11+12+11 $\begin{array}{l} \label{eq: constraints} & \mbox{$(1-1, -1)$, $(1-$ 11 ER = (U(1+1)+0(1+0-1))/ALR ET = (U(1+1,J)+U(1-1,J))/ALR ET = (U(1+1,J)+U(1-1,J))/(2+R(1)) 13 16 ET= (U([+|,J)+U([-1,J))/(2.*R([])) EZ = 0. IF (C(42)) [R+19+1R 18 A2 = C(22)/C(42) A1 = C(24)-A2*C(44) G0 T0 20 19 A1 = C(24) A2 = 0. 20 IF (A1) 21.22*21 21 ERZ = -((C(21)-A2*C(41))*ER+(C(23)-42*C(43))*LT)/A1 IF (J-JIP) 23.24*23 23 IF (1-1IC) 25.26*26 26 ERZ = ERZ+P2P(11)/A1 ERZ = ERZ+PZP(|1)/A) GO TO 25 ERZ = ERZ+DELP/A1 GO TO 25 24 17 ER = 2.*U(2;J)/ALR ET = ER EZ = 0. ERZ = 0.

IF ((J-JIP)*(J-JEP)) 10.25.25

(d)

10 EZ = (W(1+J+[)=W([+J-1))/ALZ GO TO 300 22 ERZ = 0. 25 IF (C(44)) 27.28.27 25 IF (C(44)) 27.28.27 27 A2 = .C(24)/C(44) A1 = C(22)-A2*C(42) G0 T0 29 28 A1 = C(22) A2 = 0. 29 IF (J-JIP) 30.31*30 30 IF (1-11C) 32:33*33 33 G0 T0 (34:35).LG 34 E2 = -(P2P(II)+AR(II)**({;J-1}/(H-ALZ/2*))/A1 G0 T0 32 35 A1 = A1-AR(II) 35 A1 = A1-AR(11)EZ = 0. GO TO 32 EZ = EZ+DELP/A1 EZ = EZ-((C(21)-A2*C(41))*ER+(C(23)-A2*C(43))*ET)/A1 31 32 GO TO 300 IF (J=J[P] 36+11+37 IF (J=JEP) 11+49+49 14 37 IF (J-JEP) 11.49.49 36 IF (J-1) 38.38.39 37 EZ = 2.4*W(1.2)/ALZ GO TO 40 39 EZ = (W(1.4)+1)-W(1.J-1))/ALZ 40 IF (C(44)) 41.42.41 41 A1 = -C(14)+C(42)/C(44) A4 = -C(14)+C(41)/ALR+C(43)/(2.*R(1)))/C(44) A5 = -C(14)+(C(41)/ALR+C(43)/(2.*R(1)))/C(44) GO TO 43 42 A1 = 0. A4 = 0. A5 = 0. 37 A5 = 0. A4 = A4+C(11)/ALR-C(13)/(2.*R(1)) IF (A4) 44.45.44 43 45 ER = 0. EZ = 0. ERZ = 0. GO TO 300 GO TO 300 44 A5 = A5+C(1)/ALR+C(13)/(2.*R(1)) A1 = A1+C(12) UFICT = (A5+U(1+1,J)+A1+EZ+DELP)/A4 ER = (U(1+1,J)-UFICT)/ALR ET = (U(1+1,J)+UFICT)/(2.*R(1)))*(C(41)/ALR-C(43)/(2.*R(1)))-I (C(41)/ALR+C(43)/(2.*R(1)))*(C(1)/ALR-C(13)/(2.*R(1)))*U(1+1 2J)+(C(12)*(C(41)/ALR-C(43)/(2.*R(1)))-C(42)*(C(1))/ALR-C(13)/(2.*R(1)))*U(1+1) 2J)+(C(12)*(C(41)/ALR-C(43)/(2.*R(1)))-C(42)*(C(1))/ALR-C(13)/(2.*R(1)))*U(1+1) 2J)+(C(12)+(C(4))/ALR-C(43)/(2.*R(1)))-C(42)*(C 3(1)))+82+(C(4))/ALR-C(43)/(2.*R(1)))+0ELP)/A4 G0 T0 300 [5 IF (I-IEC) 46,47,46 46 IF.(J-JIP) 48,11,49 48 EZ = 2.*W(1,2)/ALZ ER = (U(1+1,J)-U(1-1,J))/ALR ET = (U(1+1,J)+U(1=1,J))/(2.*R(1)) EPZ = 0. ERZ # 0. GO TO 300

(a)

49 11 = 1-110+2 49 |1| = 1 - 1 |1| + cGO TO 16 47 |F| (J-JEP) = 50, 51, 5150 |F| (J-1) = 52, 52, 5352 FZ = 2, *W(1, 2) / ALZGO TO 54 $\begin{array}{l} (50 \ 10 \ 54 \\ 53 \ EZ = (W([,J+1]) + W([,J-1])) / ALZ \\ 54 \ IF \ (C(44)) \ 55, 56, 55 \\ (55 \ A1 = -C(14) + C(42) / C(44) \\ A4 = -C(14) + (C(41) / ALR + C(43) / (2, +R(1))) / C(44) \\ A5 = -C(14) + (C(41) / ALR + C(43) / (2, +R(1))) / C(44) \\ G0 \ T0 \ 57 \end{array}$ 16 A1 = 0 • A4 = 0 • $\begin{array}{l} A4 = 0, \\ A5 = 0, \\ 57 \ A5 = A5+C(11)/ALR+C(13)/(2, 0R(1)) \\ IF \ (A5) \ 58.59.58 \\ 59 \ ER = 0, \\ ET = 0, \\ ERZ = 0, \\ C0 \ T0 \ 300 \\ 58 \ A4 = A4+C(12) \\ IF \ (J-1) \ 60.60.61 \\ 60 \ PHPF = PHP+AK+U(1,J+1)/R(1) \\ ERZ = 0, \\ C0 \ T0 \ 58 \ PHPF = PHP+AK+U(1,J+1)+U(1,J-1)), \end{array}$ 6 FBPF = PHP+AK*(U([*J+1)+U([*J-1))/(2**R([))
ERZ = (((C(41)/ALR+C(43)/(2**R(1)))*(C(41)/ALR+C(13)/(2**R(1)))+
1 (C(11)/ALR+C(13)/(2**R(1)))*(C(41)/ALR+C(43)/(2**R(1)))* 1 (C(11)/ALR-C(13)/(2.*R(1)))*(C(41)/ALR+C(43)/(2.*R(1)))*
2 U(1-1.J)+(C(12)*(C(41)/ALR+C(43)/(2.*R(1)))-C(42)*(C(11)/ALR+
3 C(13)/(2.*R(1)))*E2+(C(41)/ALR+C(43)/(2.*R(1)))*PHPF)/A5
62 UFICT = (A4+U(1-1.J)-A1*E2-PHPF)/A5
ET = (UFICT-U(1-1.J))/LR
ET = (UFICT-U(1-1.J)/LR
ET = (UFICT-U(1-1.J))/LR
ET = (UFICT-U(1-1.J)) ERZ = -PZP(11)/A11 66 67 A4 = C(42)*(C(21)/ALR+C(23)/(2.*R(1)))-C(22)*(C(41)/ALR+C(43)/ $(2.*R(1)) \\ A5 = C(42)*(C(21)/ALR-C(23)/(2.*R(1)))-C(22)*(C(41)/ALR-C(43)/ \\ (2.*R(1))) \\ A5 = C(42)*(C(21)/ALR-C(23)/(2.*R(1))) \\ (2.*R(1)) \\ (2.*$ A5 = C(42)*(C(2))/ALR+C(23)/(2**R(1)))-C(22)*(C(4))/ALR+C(2))/(2**R(1))) = C(22)*(C(4))/ALR+C(4)) = C(22)+C(24)*C(42)/C(44) = C(22)*C(42)-C(22)*C(44)) = C(2(4))/(2(4))/(2(4))/(2(4))/(2(4)) = A5*A10 =1 68

E13

(b)

A|0 = C(42)*Al0 GO TO 70 Al = C(22) Al2 ≖ C(24)*C(42) 69 A6 = 0; A7 = 0; A8 = 0; A 0 = 0, A 7 = 0, A 8 = 0, A 9 = 0, A 10 = 0, 70 A 9 = 49+C(21)/ALR-C(23)/(2,*R(1)) EZ = -(PZP(1))-A9+U(1-1,J)/A1 A 6 = A8+C(22)+(C(1))/ALR+C(13)/(2,*R(1)))-C(12)*(C(21)/ALR+ 1 C(23)/(2,*R(1))) IF (A6) 71,7Z+71 Z ER = 0, ET = 0, C 00 T0 73 71 A 7 = A7+C(22)*(C(11)/ALR+C(13)/(2,*R(1)))-C(12)*(C(21)/ALR+ 1 C(23)/(2,*R(1))) A 8 = A8+C(21)/ALR+C(23)/(2,*R(1)) UFICT = (A7+U(1-1,J)-C(12)*(C(1-1,J)+U(1,J-1))/(2,*B(1)))+ 1 pZP(11)*(C(12)+A10)/ALR ET = (UFICT-U(1-1,J))/(2,*R(1)) EZ = EZ-A8*(A7+U(1-1,J)-C(22)*(PHP+AK*(U(1-1,J)+U(1,J-1))/(2,*B(1)))+ 1)+PZP(11)*(C(12)+A10)/(A1*A6) ERZ = ERZ-A12*(A7*A4*U(1-1,J)-C(22)*(A1*A(F))/ALR ERZ = ERZ-A12*(A7*A4*U(1-1,J)-C(22)*A4*(PHP+AK*(U(1-1,J)+U(1,J-1)))/(2,*B(1)))+ 1)+PZP(11)*(C(12)*EZ+C(13)*ET+C(14)*ERZ DSIGR = C(11)*ER+C(12)*EZ+C(13)*ET+C(14)*ERZ DSIGR = C(11)*ER+C(12)*EZ+C(13)*ET+C(14)*ERZ DSIGR = C(11)*ER+C(12)*EZ+C(13)*ET+C(14)*ERZ DSIGR = C(11)*ER+C(12)*EZ+C(23)*ET+C(24)*ERZ SIGRT = SIGR(1,J)+DSIGR SIGRT = SIGR(1,J)+DSIGR SIGRT = SIGR(1,J)+DSIGR EPSR = ERPR(1,J)+ER EPSZ = EZPR(1,J)+EZ EPST = ETPR(1,J)+ER EPSZ = EZPR(1,J)+EZ EPST = ETPR(1,J)+ER EPSZ = EZPR(1,J)+EZ EPST = ERPR(1,J)+ER EPSZ = C(1)*EPSR+C(2)*EPSZ+C(13)*EPST+C(14)*EPSZ SIGRT = C(1)*EPSR+C(2)*EPSZ+C(3)*EPST+C(14)*EPSZ SIGRT = C(1)*EPSR+C(2)*EPSZ+C(3)*EPST+C(4)*EPSZ SIGRT = C(2)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(2)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(2)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(1)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(2)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(2)*EPSR+C(42)*EPSZ+C(3)*EPST+C(4)*EPSRZ SIGRT = C(3)*EPSR+C(42)*EPSZ+C(3)*E IF (LC(1,J)-2) 200,97,200 CONTINUE SIGI = SIGRT*COS(#(1+J))**2+SIGZT*SIN(#(1+J))**2+ SIGRZT*SIN(2+*#(1+J)) 200 1

	(c)
	SIG2 = SIGPT#SIN(W(I+J))##2+SIGZT#COS(W(I+J))##2-
	CICOTTECIN(2.4W(1.J))
,	TANL - TAN(W(1, 1))
	1F (TANI) 08.99.98
	TAN2 = -1.7TAN1
30	
99	TAN2 # 10000.
•••	GO TO 93
97	CONTINUE
	SIG1 = 0.5*(SIGRT+SIGZT+SQRT((SIGRT-SIGZT)**2+4.*SIGRZT**2)
	SIG2 = 0.5*(SIGRT+SIGZT+SQRT((SIGRT-SIGZT)*#2+4.#51GH/1##2)
	IF (SIGRT-SIGZT) 81+82+83
82	IF (SIGRZT) 85,86,87
85	TAN1 = -1.
	TAN2 = 1
	GO TO 84
86	TAN! = Os
	TAN2 = 10000.
	GO TO RA
87	TANI = le
	TAN2 = - Lo
	GU = 10 - B4
83	$\frac{1}{10} = 0.5241 \text{ And } 15023351 Grant Store S$
	TANL - TANIANGER
	1F (SIGPTT) 88,86,90
81	ARG = 2.*SIGRZT/(SIGRT-SIGZT)
01	IF (SIGRZT) 80,89,80
80	ANGLE = 0,5+ATAN(ABS(ARG))
	ANGLE = 1.5708-ANGLE
	<pre>[F (ABS(1.5708-ANGLE)1E-03) 89,92,92</pre>
92	TANI = TAN(ANGLE)
	1F (ARG) 90+89+88
89	TAN1 = 10000.
	TAN2 = 0.
	GO TO 84
88	TANI = -TANI
90	TAN2 = -1.7TAN1
84	$W(I_{i,j}) = ATAN(TANI)$
	IF (ICR) 201,201,202
201	IF (1+(CR) 93,204,93
204	F(C) = F(C)
405	
202	GO (O 9.5 IE (1-100) 03.04.93
202	IF (= (CR) 93,95,93
95	SIGICE a SIGI
93	
	DEZ(1,J) = EZ
	DET(1.J) = ET
	DERZ(I,J)* ERZ
	DEPSI((+J) = El
	SRPO(L1) = SIGRT
	ERPO(L1) = EPSR
	SZPO(L1) = SIGZT
	EZPO(L1) = EPSZ
	STPO(LI) = SIGTT

(d)
ETPO(L1) = EPST
SPZPO(L1) = SIGRZT
ERZPO(L1) = EPSH2
SIPO(LI) = SIGI
5280/111 ± 5162
F2PO(L) = EPS2
TANIPOLLI = TANI
TAN2PO(L1) = TAN2
RETURN
END

COMMON ALO, ALO, ALO, ALO, ALO, ALO, ALO, ALO,
COMMON ALTITUTIOTINITOTINITOTINITOTINITOTINI
JA .NL . CON ERR CF . PRF L . PRF 2 . PRF 3 . PRF 4 . LUCAT . LADD . LCL . SIGN
3 +CI+CE+C1+C2+C3+C4+ICR+JCR+LPRCSS+LCR+P+JT0T+JT0T1+ECRIT+
4 EXCF.SIGICR.TPLATE.TCYLDR.TICM1.TICP1.LI.JARUM
COMMON A(150)+B(53000)+U(53+B1)+W(53+B1)+NR(1800)+C(1800)+C(44)+
$1 \qquad
$2 \qquad FLP(20) + PZP(20) + 0C(4) + 3CPO(10) + EPZP(10) + 5LPO(10) +$
DIMENSION ((53,81))(SIGR(53,81))(SIGR(53,81))(SIGR(53,
A11 DER(53,81) DEZ(53,81) DER(53,81) DERS(53,81) DEPS1(53,81)
2 ERPR (53+81) (EZPR (53+81) (ETPR (53+81) (ERZPR (53+81)))
3 EPG1(53,81),51C(53,81),EPS(53,81),DET(53,81)
EQUIVALENCE (U(1),LC(1)) + (B(1),EPS1(1)) +
$1 \qquad (B(4301), ERPR(1)) + (B(B601), EZPR(1)) +$
$= 2 \qquad (B(12901) + ETPR(1)) + (B(17201) + ER2PR(1)) + (B(17201) + (B(17201) + ER2PR(1)) + (B(17201) + (B(17200) + ER2PR(1)) + (B(17200) +$
3 (B(21501) (SIGR(1)) (DE7(1)) (B(20501) (SIGT(1), DE7(1)))
= (B(36101))(5(6(1)), (B(36301), (B(37301)))(E(47301))(E(1)))
GO TO (1,2,3,4,5,6,7,8),KD
1 DO 11 1=1+1EC
DI IIIII
$SIG(1,J) \neq U(1,J)$
11 EPS(I,J) = W(I,J)
DO 12 K=1, JDRUM
READ (2+K) SRPO
READ (2+100+K) ERPO
DO 12 L=1.10
NQ = 24((K-1)+10+L)
CALL COORD
EPS(1.1) = EPBO(L)
IF (NO-24JTOT) 12+12+9
12 CONTINUE
3 DO 13 K=1.JDRUM

READ (2+200+K) SZPO READ (2/2004K) 5240 (READ (2/2004K) 5240 (D 13 L=1+10 NO = 224((K-1)*10+L) CALL COORD SIG(1+J) = 52P0(L) IF (NO-2*JTOT) 13+13+9 17 CNTTNUE 4 CD 14 K=1+JDRUM READ (2+400+K) 5TP0 NO = 2*((K-1)*10+L) CALL COORD 5 IG(1+J) = 5TP0(L) EPS(1+J) = 5TP0(L) EPS(1+J) = 5TP0(L) 14 CONTINUE 5 D0 15 K=1+JDRUM READ (2+500+K) 5R2P0 READ (2+500+K) 5R READ (21300+K) EZPO 13 DO 15 L=1+10 NQ = 2*((K-1)*10+L) CALL COORD SIG(1,J) = SRZPO(L) EPS(1,J) = ERZPO(L) IF (NQ-2*JTOT) 15+15+9 15 CONTINUE 6 DO 16 K=1.JDRUM READ (21800+K) SIPO READ (21900+K) SIPO RFAD (2'9004K) E1P0 DD 16 L=1:10 NQ = 2*((K-1)*10+L) CALL COORD SIG(1:J) = SIP0(L) EPS(1:J) = E1P0(L) IF (NQ-2*JT0T) 16:16:9 16 CONTINUE 7 DD 17 K=1:LDDUM (NG=2001) ION ION ION
(NG=2)(000+K) 52P0
READ(2:1000+K) 52P0
D0 17 L=1+10
NG = 2#((K=1)*10+L)
CALL COORD
SIG(1-) = 52P0(L)
EPS(1-) = 52P0(L)
IF (NG=2*JTOT) 17+17+9
CONTINUE
D0 18 K=1+JDRUM
READ(2:1200+K) TAN1P0
READ(2:1300+K) TAN2P0
D0 18 L=1+10

DO 18 L=1+10 NO = 2*((K-1)*10+L) CALL COORD CALL COORD SIG(I,J) = TAN1PO(L) EPS(I,J) = TAN2PO(L)

(b)

IF (NQ-2*JTOT) 18:18:9
IB CONTINUE
9 CALL TITLES
WRITE (6:100) (1:1=1:17)
IO0 FORMAT (9x:17(17)///)
D0 131 J=1.4W
J1 = JEP=J+1
IF (J+CCL=2*((J+CL)/2)) 132:133:132
133 WRITE (6:101) J1:(SIG(1:J1):1=1:17:2)
101 FORMAT (1H0:1X:12:JX:9E14:5)
WRITE (6:102) (EPS(1:J1):1=1:17:2)
102 FORMAT (1H0:1X:12:10X:9E14:5)
G0 T0 131
132 WRITE (6:103) J1:(SIG(1:J1):(=2:17:2)
103 FORMAT (1H0:1X:12:10X:8E14:5)
WRITE (6:104) (EPS(1:J1):1=2:17:2)
104 FORMAT (1H0:1X:12:10X:8E14:5)
WRITE (6:104) (EPS(1:J1):1=2:17:2)
104 FORMAT (1H0:1X:12:10X:8E14:5)
I31 CONTINUE CONTINUE IF (|IC-18) 129.129.128 IF (|IC-34) 127.127.126 131 128 128 IF (I[C=34) 127+127+126 127 II] = 17 III = IICMI GO TO 130 126 II = 17 III = 33 130 CALL TITLES WRITE (6+100) (1+1=11+111) IIDU = 11+1 130 CALL TITLES
WRITE (6+100) (1+1=11+11)
LiP1 = I1+1
D0 231 J=1+MW
J1 = JFP-J+1
F (J+LCL-2*((J+LCL)/2)) 232+233+232
233 WRITE (6+101) J1+(SIG(1+J1)+1=11+11+2)
WRITE (6+102) (EPS(1+J1)+1=11+11+2)
G0 T0 231
232 WRITE (6+103) J1+(SIG(1+J1)+1=11P1+111+2)
WRITE (6+104) (EPS(1+J1)+1=11P1+111+2)
URITE (6+104) (EPS(1+J1)+1=11P1+111+2)
URITE (6+104) (EPS(1+J1)+1=11P1+11+2)
URITE (6+100) (1+1=11C+1EC)
D0 331 J2+13P
J1 = JEP-J+1
IF (J4LRC+MW-2*((J+LRC+MW)/2)) J32+333+332,
J32 WRITE (6+101) J1+(SIG(1+J1)+1=11C+1EC+2)
WRITE (6+102) (EPS(1+J1)+1=11C+1EC+2)
G0 T0 331
J33 WRITE (6+104) (EPS(1+J1)+1=11CP1+1EC+2)
URITE (6+104) (EPS(1+J1)+1=11CP1+1EC+2)
URITE (6+104) (EPS(1+J1)+1=11CP1+1EC+2)
J31 CONTINUE
RETURN
END SUBROUTINE TITLES

(c) COMMON ALR.ALZ.IIC.IEC.JIP.JEP.EC.H.DELP.LRC.LR.LG.LPU.LCYC.PH. HAN MALAN NALAK I TOTI I TOTI NO KDIKLOWIKH IGHIKHRIKORI I U IA JANLI CONIERRICÉ I PRE I PRE 2. PHE 3. PRE 4. LOCATILADO LELISION I CIICEICII C2. C3. C4. ICR. JCR. LPRCSSILCR. P. JTOTI JECKITIK 3 .C1.CE.C1.C2.C3.C4.1CR.JCR.LPRCSS.LCN.P.JT0T.JT0T11ECRIT, 4 EXCF.S1G1CR.TPLATE.TCVLDR, ITCM1.T1CP1.L1.JDNUM 4 EXCF.S1G1CR.TPLATE.TCVLDR, ITCM1.T1CP1.L1.JDNUM 4 EXCF.S1G1CR.TPLATE.TCVLDR, ITCM1.T1CP1.L1.JDNUM 1 S(1800).MS(1800).R(53).SUMR(53).D1FFR(53).AR(20).AD(20). 2 FLP(20).F2P(20).UC(4).WC(4).SRP0(10).ER2P0(10).SJP0(10). 3 EZP0(10).STP0(10).ETP0(10).SRZP0(10).ENZP0(10).SIP0(10). 4 E1P0(10).S2P0(10).ETP0(10).SRZP0(10).TANZP0(10). 5 ID0(10).S2P0(10).ETP0(10).SRZP0(10).ENZP0(10).SIP0(10). 5 EZP0(10).STP0(10).ETP0(10).ENZP0(10).ENZP0(10).SIP0(10). 5 EZP0(10).S2P0(10).ETP0(10).SRZP0(10).ENZP0(10).SIP0(10). 5 EZP0(10).S2P0(10).ETP0(10).SRZP0(10).ENZP0(10).SIP0(10). 5 ID0(NS10).CC(53.81).SIGR(53.81).SICZ(53.81).SICT(53.81).SIP0(10).SIP1(10). 5 ID0(NS10).SICR(1).ECP1(1).SIP1(53.81).ENZP3(53.81).SIP1(53.81). 5 ID0(NS10).SIGR(1).ECP1(1).SIP1(53.81).SIZP1(53.81). 5 ID0(NS10).SIGR(1).ECP1(1).SIP1(53.81).SIGP1(53.81). 5 ID0(S10).SIGR(1).ECP1(1).SIGP1(1) S (6:13070):SIG(1):(SI(4)):(SI 21. (///) GO TO (1.2.3.4.5.6.7.8) KD 1 WRITE (6:101) LR 101 FORMAT (! LR =! : [4:45X+!TOTAL DISPLACEMENTS U/#!///) RETURN 2 WRITE (6:102) 102 FORMAT (44X: DIRECT STRESSES/STRAINS IN K-DIRECT(007777) RETURN 3 WRITE (6.103) 103 FORMAT (44X: DIRECT STRESSES/STRAINS IN 2-DIRECTION ////) RETURN 4 WRITE (6.104) 104 FORMAT (44%. DIRECT STRESSES/STRAINS IN T-DIRECTION ////) RETURN 5 WRITE (4:105) 105 FORMAT (46%: SHEAR STRESSES/STRAINS IN RZ-PLANF!///) RETURN 6 WRITE (6+106) 106 FORMAT (45X+IMAXIMUM PRINCIPAL STRESSES/STHAINS -RZ-PLAN - 1///) RETURN HELDEN 7 WEITE (6.107) 107 FORMAT (45X. MINIMUM PRINCIPAL STRESSES/STRAINS -HZ-PLANE-1///) RETURN NETURN B WRITE (6:108) 108 FORMAT (23X: DIRECTION OF PRINCIPAL STRESSES MAXIMUM/MINIMUM GI IVEN THROUGH TANGENT FNCT OF ANGLE W/R TU R-DIRECTION (7/7) DETUDN END