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ABSTRACT 

Load partition and stress distribution in riveted and bolted 

structural joints are two associated behavioral phenomena which have 

received continued attention from structural researchers and designers 

in an attempt to understand better the behavior of multiply fastened joints 

and to design them adequately. This study presents a basic analysis of 

various physical parameters and their effects on load partition and stress 

distribution in gusseted connections. The gusseted connection under 

investigation is a particular type of riveted or bolted connection which 

has additional variables associated with the shape and size of the gusset 

plate." Analytical and expetimental studies were conducted concurrent1y 

to justify the conclusions as well as study the assumptions made in 

arriving at the analytical models. 

Analytically, two elastic joint problems were studied: (I) the 

attachment of a tension member by a single row of fasteners to a semi-

infinite plate, (2) the similar attachment to a symmetrical tapered gusset 

plate. The parameters studied include the number of fasteners g the 

fastener pitch, the edge distance of fasteners, the fastener and tension 

member flexibilities, and thickness and geometry of the plate. The 

member to plate connections were evaluated in terms of the load partition 

among the fasteners as well as the stress distribution at various locations 



in the p1ate. It was found that, individually, many of the joint 

parameters did not appreciably affect the load partition in the 

connection; however, cumulatively they could have detrimental effects. 

One parameter, the edge distance of the first fastener. did not affect 

the load partition but caused severe stress conditions at the edge of 

the plate on the 1 ine of loading. 

The finite geometry plate, studied experimentally, was 

fabricated and tested with variable geometry or taper of the gusset plate; 

the plate was loaded by lap plates connected by tight fitting pins. The 

elastic stress distribution was studied using brittle lacquer techniques 

and electrical resistance strain gages at specific locations on the gusset. 

Individual f~stener loading was measured using a special technique involving 

the placement of strain gages on the gusset near the loaded pins. The 

load partition of the pinned joint was examined for five geometries and 

variable numbers of fasteners. Geometry did not appreCiably affect the 

load partition unti I extreme geometries, which resulted in a change of 

the gusset net cross-sectional area, were reachede 
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I. INTRODUCTiON 

The analysis of gusset plates as an integral part of gusseted 

connections has long been recogni as one of the weak links in the 

design of structural frameworksQ earchers have looked at various 

aspects of this problem during the past century and have conducted studies 

and analyses of a number of the problems associated with gusseted 

connections. A chronological review some of the principal experimental 

and analytical contributions to the s of the problem fol1owse Many 

of the works to be cited deal with s ects more general than the behavior 

of gusset plate connectionse Until recently the literature has dealt with 

stress distribution in plates by individual rivets and bolts, the 

development of techniques to analyze the 1 partition of riveted and 

bolted joints, and the techniques and results of the experimental testing 

of numerous individual gusseted connectionse This 1 iterature is cited, 

however, because it contains the is r the deve10pment our present 

knowledge on rive and bol connectionse A gusseted connection is 

one particular variation r the general classification of rive 

bo 1 ted j 0 in t s .. 

The problems associated with the non-uniform distribution 

load in gusseted as well as r types of riveted connections were 

recogni many years ago~ but al J the or work on gusset plate 

analysis has been done since the start the twentieth century. 

In 1913 the problem of stress distribution near a rivet hole 

was studied analytically in Japan by Yokota(l) 9 while in England the 



problem was studied experimentally with much success by Coker and 

S cob 1 e (2) • 

Batho(3), in 1916, made one of the first and what remains a 

2 

classical analytical approach to the partition of load in riveted joints. 

Work of a similar nature was being carried out in Germany during the same 

period by numerous investigators and the results of much of their work is 

cited in a design text authored by Bleich(4) in 1924. 

The first major experimental work on gusset plates was that of 

Wyss (5) in 1923. This work remains as the most comprehensive work to date 

with respect to the behavior of gusseted bridge connections. He used 

relatively large specimens and performed a detai led analysis of the test 

data for many 10ads and gusset plate configurations. His tests included 

secondary effects since the plates were part of an actual truss. His 

results are somewhat 1 imited for current evaluation since the detai 1 ing 

practices used in Germany at that time were much different than those 

used today. 

Again from Germany in 1929 D Hertwig and Peterman(6) presented 

their work on the experimental determination of the load partitioning 

in riveted joints. Particularly significant was their technique of load 

measurement; the load was correlated with the rotation of the rivet heads& 

Hrenikoff(7), in 1934, reasserted and refined to some extent 

the work of Batho(3) and other early research on the subject. His work 

was criticized for not being original, but it does provide a good summary 

of the "state of the art" up to that time" 

In 1937, one of the few recorded gusset plate failures occurred 

d . b d d' 1 . . (8) F' f' 1 h an was attrl ute to poor eta! 'ng practices.. atigue al lures ave 
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been found in gusset plates and in the components of gusseted connections; 

however, documentation of these failures is quite 1 imited. 

Rust(9)t In 1939, completed some photoelastic work on the transfer 

of stress in gusset plates and pub1 ished a report regarding gusset 

specifications and design. No quantitative answers were obtained, but 

general qual itative answers provided some feel for the behavior of a 

gusseted connection. In this photoelastic study the load transmission 

was not by rivets, pins, or bo]ts so these variables remained in question. 

Many of the specific studies cited thus far appear in a 1 iterature 

review on riveted joints pub} ished by DeJonge(IO) in 1945. Abstracts of 

all important work done on riveted joints until 1940 are contained in 

this review; the author has found this review invaluab1e in his 1 iterature 

research. 

In 1941 Hrennikoff(11) presented one of the first simp1 ified 

elasticity solutions having direct application to the gusset plate 

problem. The method, very similar to a finite difference approach 

neglected the manner in which the load was appl ied and was concerned 

only with the stresses far from the point of load appl icationo 

late in the 1940°5 9 the aviation industry pubJ ished numerous 

articles concerned with partition of load in riveted and bolted joints •. 

Of particular interest is the work Vogt(12) a the work Tate and 

Rosenfe1d(13) because they have correla experimental and analytical 

studies and have assembled the work of earl ier researchers to make 

rational approximations for fastener deformations and local plate 

deformations. 
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Also in the late 1940lS Grinter(14) suggested a method by which 

des igners could approximate the stresses in gusset plates using their 

knowledge of structural frameworks. The partition of load was neglected 

in this study as in Hrennikoff's(l 1) and general 1y the method was quite 

cumbersome. 

In the 1950's a considerable amount of experimental work was 

done on riveted and bolted joints. At the Universities of Tcnnessee(15) 

and Kentucky(J6, 17) severa] aluminum models of gusset plates were fabri-

cated and tested; they were modeled after gusset plates found in the 

lower chords of Pratt and Warren type trusses. Attempts were made to 

devise empirical methods for the design of these types of gusset plates. 

At the University of Michigan,Sheridan(18) attempted for the 

first time, as far as this author has been able to determine, to vary the 

geometry of a gusset plate and to study the effect on the stress or 

strain distribution in the plate. In this investigation no emphasis is 

placed on the load partition among the fasteners; the val idity of various 

s imp1e analyses to determine the stress distribution in simple connections 

was studied. 

A P d U • • (19) d 1 . . d t ur ue nlverslty a gussete structura JOint was teste 

to compare the structural behavior of rivets and high strength bolts. A 

sharp increase in the use of bolts (high strength) as opposed to the use 

of rivets initiated many studies of this type. At Purdue, Carter(20) 

studied, photoelastical1y, the effect of the local stress concentrations 

in plates loaded by structural fasteners and related them to the fatigue 

behavior of single fastener joints. This work provides an insight into 

the local behavior of riveted and bolted joints in the elastic range. At 
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the University of 111 inois Chesson Munse(21, 22) tested a number of 

large truss-type connections and found ultimate strengths lower than 

expected in a number of casese Various types of failures were exhibited 

in these tests, thus further accentuating the complexity of gusseted 

connection behavior. 

Francis(22) 9 for the Aluminium Development Association, made one 

of the first significant attempts to analyze the load partition of riveted 

joints above the elastic 1 imits of the fastener and the plate materials; 

his development of a graphical technique for determining load partition 

is qu i te un i que. In 1960 Rumpf (24) extended the work of Franc is to the 

analysis of the ultimate strength of bolted steel connections. Fisher(25, 26) 

adapted Rumpf1s graphical analysis for computer computation and with 

extensive experimental testing refined an analysis for long bolted plate 

spl ices using certain materials and fasteners. 

The most recent analysis of a gusseted connection was done by 

Lehman(27) in 19600 He performed an analysis of a lIylD type connection 

composed of three tension members joi by a rectangular plate. He used 

a finite-difference technique and assumed the loading to be parabol ic 

1 ine loads. This is apparently the first attempt in gusset plate analysis 

to apply the load in a real istic mannere The difficulties encountered in 

this analysis stemmed from the large number of finite difference equations 

necessary for an adequate solutione 

The adaptation of a classical closed rm e 1 as tic i solution 

to the problem of plate connections using rivets and bolts was investi-

ga ted by Bud i ans ky and Wu (28) was 1 ate r used by B 1 com (29). Th is 

method of assuming a loaded fastener to act as a loaded rigid inclusion 
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in the plate, allows considerable flexibil ity in its use and provides 

a more real istic approach to the problem of plate connections. 

The preceding review of analytical and experimental research 

related to gusseted connections should provide a brief sketch of the 

development of knowledge in the area of riveted and bolted connections 

and a guide to the development of the present study. A look at the 

present design criteria follows to illustrate a designerDs freedom in 

proportioning a gusseted connection. 

1.2 Present Design Criteria 

A structural designer may specify the size, shape, and thickness 

of a gusset plate when designing a gusset connection. According to most 

structural design codes, gusset plate thickness is termined by fastener 

bearing stress requirements; the size and shape are usually chosen so that 

minimum edge distance requirements for the fasteners in the connected 

members are satisfied. The size and shape criterion may~ of course, be 

arbitrarily overridden for economic or aesthetic reasons An inspection 

of truss bridges will illustrate a wi range of gusset plate sizes and 

shapes; gusset plates vary from simple polygonal to very irregular shapeso 

The AISC Specifications (30) the design of structural steel 

for buildings is an example of a well known and widely used building 

code which makes no mention of minimum requirements on gusset plate 

thickness. The only requirements on size are termined by the required 

minimum edge distances. Several bridge specifications specify a minimum 

thickness and a1so that the plate be able to resist shear, direct stress, 

and flexure acting on a weak or critical section. t only is it difficu1t 

to determine the crltica1 section, but the ordinary beam formulas often 
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used to analyze such a section to check the stress requirements have been 

. (15) 
shown to be of questionable value • 

Present design criteria seem to have been developed without 

adequate consideration of the behavior of gusseted connections and the 

numerous parameters which affect this behavior. 



I I. OBJECT AND SCOPE OF THIS INVESTIGATION 

The behavior of gusseted connections is so complex that few 

generalizations can be made about the effect of the numerous parameters 

which are involved. This section indicates the manner in which the 

8 

gusset plate study is conducted and the extent to which it is investigated~ 

The study includes analytical and experimental investigations of 

a very basic type of gusseted connection. Many of the experimental investi­

gations, previous1y mentioned in Section 1.1» indicate a need for a more 

detailed study of the parameters which affect the behavior of simple 

riveted or bolted joints of the variety used for truss-type bridge hanger 

connections. It is bel ieved that this type of connection is sufficiently 

basic to indicate how the behavior of more compl icated connections might 

be affected by the same parameterse 

The intention of the analytical study is to develop a mathematical 

model which relates fastener loads to deformations throughout the gusset 

plate, to combine this relationship with rational assumptions for the 

load deformation behavior of the connec member, and finally to use this 

combination as an analytical model in which individual parameters can be 

studied. This has been done for two types gusset plates, (1) a semi= 

infinite plate, and (2) a symmetrical finite plate. The load partition 

among the fasteners of the connection is st ied as joint parameters, e.ge 

pitch, gusset thickness, fastener fJexibili p etco 9 are variede The stress 

distribution in the gusset plate which results from the calculated load parti­

tion is then investigatede The method used to obtain the approximate eJastic­

ity so1ution of the finite plate is growing in popularity and has been used 
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to obtain good approximate solutions to a number of special boundary value 

problems. Its appl ication to a problem of this type may be of separate 

interest; details of the elasticity solutions are included as appendices. 

All computations for the analytical study were programmed for computer 

solution; a complete program including a brief description of its relation 

to the analytical development is also included as an appendix. 

The experimental study consists of a series of ideal ized mode) 

tests of a symmetric gusset plate connection in which the geometry of the 

gusset and the total number of fasteners in the joint are varied. The 

major purpose of the study was to justify the assumptions of the analytical 

model. The resulting load partition and strains at certain specified 

points in the plate are presented. Finally, the results of the analytical 

and experimental models are compared, evaluated, and summarized. Conclusions 

are presented and recommendations are made for future study. 



I I I. ANALYTICAL INVESTIGATIONS 

Jet Introduction 

An analytical investigation of the elastic behavior of a 

gusset plate connection requires the development of a simple analytical 

model with which desired parameters can be varied and their effects on 
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the behavior studied. The development of such a model requires a 

judicious selection of analytical methods and assumptions which will ~ 

within reasonable limits, portray the behavior of the gusseted connection. 

The two major objectives of this study are to determine the 

gusset plate contribution to non-uniform load partitioning among 

the fasteners of the gusse connection and the stress distribution 

resulting from the fastener loading. 

As mentioned previously, Section 1.1 9 several analytical methods 

have been appli to the gusset problem to determine the stress distri-

bution for a particular ass 

have been devised to termine, 

load conditione Also, several techniques 

on compatibil ity, the load partition 

in simple lap joints. These compatibii ity relationships were on 

basic assumptions regarding the 1 -displacement characteristics of the 

individual components of the joint. re was no direct association 

with the loads and the stress-strain properties of the platese 

It is believed that a combination of the two analytical 

approaches with some refinement in the treatment the gusset plate 

is required to provide a link between ividual tener 1 and 

the stress-strain distribution in the plate0 Such a combination should 

provide the mathematical model necessary for the s gusse 



connection behavior. The load-deformation or stress-strain relation­

ships for the gusset plates are derived from the pJane theory of 

elasticity for small deformation in a homogeneous, isotropic, elastic 

material. 

The mathematical model for the semi-infinite plate connection 

is presented and discussed in Section 3.2@ A similar approach is 

developed in Section 3.3 for a symmetric finite plate joint. Following 

these formal derivations of the two problems being studied, the results 

of a number of parameter variations are presented and briefly discussed 

in Section 3.4. 

3.2 

1 1 

The choice of an analytical model for the study of p1ate 

connections using a finite number of point fasteners (i.e. rivets, 

bolts, pins) leads one immediately to the question of the size and shape 

of the plates being connected. Since primary emphasis in this study is 

being placed on the plate contribution to the behavior of a joint p an 

adequate solution of the plate lem is requiredo A semi-i inite 

plate provides, perhaps, the most basic as well as practical geometry 

to begin the study of the probJem of gusset connections. In such a 

plate, the choice of mathematical model to represent the app1 ication of 

load by a fastener is difficult. This difficulty exists si'nce there are 

three structural fasteners 9 each of which differs from the others in the 

mechanics of load transfer. 

A structural rivet usually fills the hole in the connected 

parts after being driven and load in a riveted connection is 
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transmitted by means of friction developed between the connected parts 

and by bearing of the rivet on the connected plates. However, the 

magnitude of the frictional resistance is uncertain and as a result 

the proportion of the load transmitted by these mechanisms is uncertain 

and will in fact vary with the magnitude of the loading. 

The high strength structural bolt, on the other hand, is 

usually installed with an oversized hole in the connected parts and 

tightened to maintain a clamping force sufficient for a transfer of 

load predominantly by the friction developed between the connected 

parts. The third fastener, tne interference body bolt combines in some 

fashion the described rivet and bolt mechanisms since its knurled shank 

is driven into the hole in the parts being connected, thus putting the 

fastener into bearing at a finite number of points. Subsequently the 

bolt is tightened to a high clamping force which develops frictional 

resistance between the connected parts. When using a bearing type 

fastener (rivet). at least a part of the load is applied to one side 

of the hole in the connected parts while in a friction type fastener 

(high strength bolt) the force is distributed over an area on the 

surface of the plate near the edge the holee 

Plane-elasticity solutions of a highly complicated nature(l) 

have been developed for representation of the bearing type load transfer 

and extremely simple solutions are available for a force at a point in an 

elastic sheete The author felt that the approximation of bearing 

of load transfer would not be practical in light of its complexity and 

other assumptions which will have to be madec Although quite s le in 

form, point force solutions also present complications~ in that displacements 
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are poorly defined in the neighborhood of the load. A method used by 

. (28) Budlansky and Wu , that of considering the fastener to be a loaded 

rigid inclusion, yields a relatively simple method for representing the 

load transfer mechanism. 

The infinite plate with a loaded rigid inclusion has a closed-

form solution in plane elasticity which satisfies exactly the boundary 

condition imposed by the inclusion. A good approximate solution to 

a semi-infinite plate loaded by a rigid inclusion was used by Bloom(29) 

in his study of infinitely long stringers connected to a plate p and is 

presented in detail in Appendix B. This solution yields stresses and 

displacements throughout the semi-infinite plate for a unit load acting 

on a rigid inclusion; this is the basic solution used in the study of the 

semi-infinite joint in Fig. 3.1 (a)a It should be emphasized that displace­

(14 27) ments are available from this solution. Other analyses ' of the stress 

condition in plates which use the finite difference approximation, avoid 

the question of displacements. The importance of displacements will be 

pointed out in the fol lowing derivation of joint compatibility. 

The development of the remaining relationships from the 

analytic model involves making some simplifying assumptions about the 

deformations of the connecting member and fastenerSe In the elastic 

range fastener and local deformations are approximately 1 inearp as 

(4 12 13) pointed out by a number of researchers ' ~ ; the fasteners are 

considered, therefore, to behave as simple springs. Again following 

the assumptions of previous research on simple riveted lap joints by 

Batho(3) t the member connected to the plate was considered to deform 

as though it was in uniform tension (deformation = ~;) where PIA is the 
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uniform stress, L is the length over which deformation is considered, 

and E is the modulus of elasticitYQ This assumption does not account 

for local bearing deformations in the lap plates. These deformations 

are quite local and were assumed to be part of the total fastener 

flexibi 1 ity; this matter is discussed in ix D where an approximate 

value for total fastener flexibility, C
t

, is developed. 

As far as the mathematical is concerned 9 the manner in 

which the connecting member is attached to the plate, i.e. 9 single or 

double shear~ is arbitrary if the connection is ass not to bend 

to the dissymmetry of single shear 1 ing. The fastener in doubJe shear 

is allowed less freedom movement, resulting in a more critical 

partitioning. The effect of fastener flexibility as presented in 

Section 3.4 wi! 1 make this fact more apparent. Throughout this study, 

as pointed out in Appendix D, the connecting members load the gusset in 

double shear. For this reason the "connecting members 'l are also refer 

For an elastic joint which deforms in the manner suggested one 

may write the compatibil ity equations displacements of the fasteners 

and the connected partso From the elasticity solution of the 1 

semi-infinite plate ix we obtain displacement along the 

x axis 9 u .. , for n fastener positions and 
IJ 

positions; u .. is the displacement at the 
IJ 

reach n 

tener 

load at the tene r ( teners are numbered in 

tener J 

to a unit 

r beginning at 

the one closest to the edge the plate). This is an approx tion to 

a problem of n rigid inclusions; here@ only the J inclusion has 

been approximated as rigid. The remaining inclusions are replaced 
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plate materialo The displacement at fastener locations other than the 

loaded inclusion is calculated at the point corresponding to the center 

of the fastener. The deformation of the ith interval of the plate due 

to a load at the jih fastener is then given by 

(3. 1) 

where, 1 < < n - 1, and 1 S j < n 

As assumed, the deformation of the connecting member in the ilh interval 
Q.p 

will be AlE' where Qj is the total transmitted by the lap plates in 
s 

the i i nterva 1 ~ pis pitch of the fas teners and A is the effec t i ve 
s 

cross-sectional area of the lap plates The total local and fastener 

deformation is then approximated by 

where fj is the i!h fastener load" Using Fig- 3,,2 as an illustration 

'lv'e may 

p + 6~ + O. 
I I 

(3" 2) 

where 6~ is the deformation of the i 
I 

interval of the gusset plate and 

6 l is the deformation of the i 
i 

interval of the lap plates. In terms 

of physical properties and loads 6
G 

and 6~ become 
i I 



n 

l:,~ == I €ik
f k I 

k=l 

(3.3) 

l:,l == I fk I 

k=i+l 

Substituting into Eq. 3.2 and simpl ifying we obtain the genera] 

compatibil ity equation for the ith interval in terms of the load. 

n 

I + Ct(f j - f i+ l ) = 0 

k==i+l 

Since there are n-1 intervals, only n-l i 

(3.4) 

t equations exist, 

which is one less equation than the number of unknown fastener loads. 

The solution is achieved by specifying the total load on the joint or 
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assuming a value for one of the tener loads. The 1atter method is the 

one used by the author in the r solution of the problem. 

The development the general compatibil i equation (Eq .. 3. 

has introduced numerous variables rela to the ,elastic, properties of 

the various components of the connection. Beginning with the determination 

of the plate influence coeffic ts E .. we may vary: 
IJ 

1. Jus of elasticity 

29 Poisson'S ratio 

3. diameter of inclusion 

4. edge distance of the first inclusion 

5. pitch of the inclusions 

6. thickness plate 



Independent of these choices other variables are 

1. cross-sectional area of connecting member 

2. modulus of elasticity of the connecting 
member 

3. total fastener flexibility 

J 7 

Discretion must be used in the choice of variab1es, so that the 

conditions resulting from various assumptions made during the derivation 

are not violated. Variations of a number of the joint parameters are 

presented and discussed in Section 3.4. 

Now, having developed the major hypothesis for the semi-

infinite plate connection one proceeds in a similar manner to the more 

tedious analytical problem of the finite plate. 

3.3 Finite Plate Solution 

The natural continuation of the study of plate behavior in a 

gusseted connection is to approach a more comp) icated plate geometry 

than that of the semi-infinite p1ate. A symmetrical p1ate connection 

(Fig. 301) was chosen for investigation, based on the ease of obtaining 

an elasticity solution for such a plate and on the results of Sheridan 8 s(18) 

work with eccentric connections; he found lithe greatest divergence from 

plane on specimens with no eccentricity of loading"" A common use of 

this shape of plate is the lower chord hanger connection in many trussed 

bridges. The elasticity solution of the gusset plate used to obtain the 

influence coefficients is the only respect in which the semi-infinite 

and finite plates vary from one another in formulation; consequently only 

the additional geometric variables will now be discussed" 
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The elasticity solution approximating the rical piate 

problem is presented in detail as ix C. As with the semi-infinite 

plate, the solution for a I rigid inclusion in an infinite plate 

is used as a base and functions are which cause the inite 

plate stresses to vanish on the finite plate r ies.. The 

solutions, performing this t are truncated power series the 

complex displacement tials ¢ and ~ discussed in considerable detail 

in Appendix C. 

To def i ne teJy the f nite plate problem several additional 

properties, pertaining to the plate and solution desired, must be 

added to the six variables menti the semi-infinite solution in 

Section 3 .. 2~ 

size and shape of plate will be described by the 

boundary point coordinates which are specified for the! int matchi 

scheme discussed in Appendix C. ing on the desi accuracy the 

solution 0,'1 the 1 ing,a number points on the boundary of the plate 

are chosen .. Also rela to the accuracy the solution~ are the number 

of terms to be evalua in each truncated power series ¢ and % Actual 

choices of these itional parameters ~il1 be discussed in the 110wing 

major section on results 

iously then the complete solution the finite plate 

joi nt n fasteners t n sets series coefficients are required; one set 

for each fastener 1 position" , using the infinite plate solution 

resi 1 P lem~ the displacement u .. 
IJ 

the series solution 

and ir ustments 9 the stress release~ be computede 

From here, as in the semi-infinite plate joint we to calcu1ate 



the fastener load partition for variable fastener and lap plate 

flexibilities. 

The stresses at any point in the finite plate may be computed 

for a particular load partition and total load by superimposing the 

stresses at that point caused by each fastener load; each stress 

computation for a fastener 10ad involves the superposition of the in­

finite p1ate and boundary adjustment stresses. The stresses at the 

point for each fastener load may then be superimposed. The results 

of the analytic investigations, including the load partition and stress 

distribution for the finite plate joint, just discussed, are presented 

in the fo11owing section 

3.4 Analytical Results 

3 G 4. 1 Gene ra 1 
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The elastic solutions of the two gusset-type joints shown in 

Fig. 3.1, commensurate with the assumptions and approximations presented 

in Sections 3.2 and 303, will be illustrated in Section 3.4 by varying a 

number of the joint parameters and studying the resulting effects on the 

fastener load partition and on the stress distribution in the plate. All 

calculations for the two problems were programmed and performed using 

the University of Illinois IBM 7094 digital computer. The computer 

programming is not presented in this report but is available in the 

original thesis at the University of Illinois Library. 

Primary emphasis in this study has been on structural connections, 

i.eo those used in bridges, bui1dings, etc. Approximate values of the 
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modulus of elasticity and PoissonBs ratio for steel (E = 30,000 ksi and 

v ~ 1/3) were used throughoute Hybrid connections are conceivable in, 

for example, aircraft structures where aluminum plates may be joined by 

steel rivets or bolts. However, this particular aspect of the problem 

is left for future study. 

The closed form of the semi-infinite plate solution suggests 

that it be used as the primary model for the initial variation of 

parameters 0 The finite p1ate solution can then be used to illustrate 

the geometric parameter effecto 

The following subsections are presented along this 1 ine of 

thoughto First, the plate and connecting member parameters are varied 

using the semi-infinite joint and then a finite plate is solved to show 

the finite plate geometry effects. 

Parameters to be varied are: 

1. total number of fasteners 

2. edge distance of first fastener 

3. fastener pitch 

4. thickness gusset 

5. area of lap plates 

6. fastener fJexibil ity 

7. geometry plate 

It should be menti here that a gusseted connection may 

have any number of comp1exities int by the number 

members connec as well as the manner in which these members are 

loaded. The complications introduced by these variables are avoided 
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in this study since it was felt that these added variables would confuse 

the already complicated analytical problems 

30402 load Partition, Semi-Infinite Plate 

The variables for the semi-infinite plate joint. with the 

exception of the material constants E and v are as follows: 

As discussed in the scope of the investigation an experimental 

study was conducted concurrently with the analytical study. A set of 

dimensions of similar magnitudes to the experimental dimensions will be 

taken as a base from which individual parameter variations may be studied. 

Some of the values for dimensions of length may be immediately expressed 

as multiples of other dimensions since only their re1ative magnitudes 

have an effect on the solution. 

Further non-dimensional reduction was not attempted because of 

the number of approximations involved in determining the quantity Ct. 

Generally, each parameter was varied over a wide range of values 

approaching, in some cases III unreaHst Ic behavior. The reasonab1e range 

over which parameters might vary in structural steel connections. using a 

variety of fastening devices, will be discussed as each parameter .is 

cited .. 

The load partition has been presented in a number of ways in 

past research, the most usual being in terms the percentage of the total 

load. Present design procedures are based on the assumption of equal 

load distributed to each fastener. Therefore, the author felt that a 

normal ized load partition would be a more meaningful way of illustrating 



the behavior of the joint with respect to the assumed ideal istic 

behavior; the fastener load partition is based on an average load 

of unity per fastener. Then, a fastener load of 1.50 indicates that 

the fastener load is 50% above the average load per fastener on that 

particular joint. 

The following dimensions were used as base values of 

comparison. 

d .375 inches 

h 3d = 1.125 inches 
e 

p = 3d = 1.125 inches 

t = .25 inches 

A = 2.0 inches s 

C 
t = .25 x 10-3 

inches/kip 

n e 7 

These dimensions are similar to those of the experimental 

model but have been, for convenience, arbitrarily rounded to whole 

or rational numbers. The value Ct which is based on d t t, and an 

assumed thickness for the lap plates is discussed in Appendix D. 
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A generally accep fact is that load partition becomes more 

severe with an increase in the number of teners in a joint. Figure 3.3 

illustrates the effect on the load partition of varying the number of 

fasteners from 3 through 10. In each case, of course, the total load 

increases as well as the number tenerse Figure 3.4 illustrates 

net effects more vividly. Here the loads in the first and last 

fasteners and the minimum load at any interior fastener are plotted with 



respect to the total number of fasteners in the joint. It is apparent 

that the load in the first fastener is most effected by the change in 

the total number of fasteners. The variation in the total number of 

fasteners can be considered as a variation in joint length since the 

pitch has been held constant. 

A designer may vary pitch over a considerable range, however 

normally he seeks to keep it at a minimum (usually 3d). In Fig. 3.5, 

returning to the seven fastener joint, the pitch is varied from the 

minimum value of 3d to twice this value or 6d and the resulting load 

partition is plotted. Figure 3.6 illustrates that again the first 

fastener is most effected by change. r a real istic range of 

values of pitch, perhaps 3d to 4d, the effect in itself is hardly 

significant. 

23 

Another parameter, which, within certain restrictions, is the 

choice of the designer, is the edge distance of the first fastener. 

Figure 3.7 shows the ioad partition for a seven fastener joint at 

three different edge distances. The edge distance of infinity is not 

a real istic edge distance but does show the 1 imiting feet of the stress 

free edge on the joint load partition. The joint having an infinite 

edge distance would be equivalent to an inite plate joint$ The first~ 

last, and minimum loads for inte iate 

Fig. 3.8. There is 1 ittle change in 1 

becomes infinite. The first tener 1 

ge distances are shown in 

except as the edge distance 

to decrease with 

creasing edge distance as would be expectede Values 

than 3d were not considered in light of the assumptions 

distance smal1er 

in the 



elasticity so1ution of the semi-infinite plate (Appendix B). One 

would expect the load in the first fastener to drop rather quickly as 

the edge distance approaches zeroe 

The remaining plate variable, that of thickness, is difficult 

to vary independently since it is associated with value of Ct. Keeping 

this in mind one may investigate the independent variation of t in 
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Fig. 3.9. The first fastener load increases with the thickness at about 

the same rate as the last fastener load decreases, the minimum remaining 

fairly constant. As wi 1 1 be pointed out later in the section, this is 

similar to the effect of the variation of Jap plate area. The two 

variables remaining are the total area of the lap plates and total 

fastener flexibil ity. 

The Jap plate area is representative of the stiffness of the 

members which might be joined by a gusset plate. Figure 3.10 i Jlustrates 

the variation in fastener load for all possible values of A. The 
s 

J imiting values exhibit the expected behavior, i.e. as the area of lap 

plates in the fastener intervals approaches zero, all of the 10ad goes 

to the first fastener and, as the area becomes infinite~ a load partition 

for a joint with a rigid connecting member, al lowing only local 

deformations, exists. For this particular joint parameter only a small 

range of areas is rea] istic, perhaps from A = 1.0 to A = 4.0. The 
s s 

last parameter to be varied for the semi-infinite plate is the fastener 

flexibil ity, Cte This parameter is undoubtedly the most indeterminant 

of all of the joint parameters. It accounts for all of the deformations 

local to the fastener, except the ones accounted for in the elasticity 



solution of the gusset plate. The assumption of 6. = C f. indicates 
I t I 

basica11y that the deformation is 1 inear and unaffected by other 

fastener loadso A value zero for Ct would be a reasonable 

approximation for a bolted joint before slip occurs, although even 

in this case some local deformation would occur. A value of infinity 

for C
t 

would lead one to the ideal istic behavior with uniform loading 

of all fasteners. This case, of course, is not physically possible. 

Therefore, a real istic value Ct , 1 ies somewhere between in 0 and 00, 

depending upon the thickness of the plates and the fastener used. In 
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Appendix 0 a reasonable value has been obtained for Ct relating it to 

the other base parameters of the plate. The effect of variations in 

C
t 

above and below this value (C t = .25 x 10-
3 i kip) on the load 

partition is illustrated in Fig. 3el1. Here it is interesting to note 

the manner in which the variable C
t 

affects the partitioning of load. 

The minimum 10ads are affected quite drastically, as are the end loads. 

This is shown again in Fig. 3.12. it is estimated that for this joint& 

depending on the tener , Ct could vary real istical1y between 0 

and .4 x 10-3 in/kip. 

The stress distribution in the gusset plate was one the 

prime considerations of this investigation. Early in lopment 

of the analytica1 work the stress distribution throughout a rectangular 

section of the semi-infinite plate was studied using a set of parameters, 

which were similar to those of the experimental model D the purpose being 

to check equil ibrium of the system as we) 1 as to investigate the load 
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transfer. The total load based on 3 kips per fastener is equal to the 

loading on the experimenta1 modelG Some of the resu1ts of this 

investigation are shown in Fig. 3013& The tractive stresses are plotted 

along the boundaries of the rectangular section chosen for investigation~ 

On the boundary of this section which is perpendicular to the line of 

load the stress, ~ , acts to resist the external loading, while on the 
x 

boundary of the section which is parallel to the 1 ine of loading the 

shear stress, T ,acts to resist the external 10adinge At this xy 

particular section the total load appl ied to the semi-infinite plate 

is resisted by the direct tension on one boundary and by shear on the 

other two; for this section approximately half of the load is transferred 

by shear and half by direct stress. Figure 3.13 has been presented 

here to illustrate the load transfer in the semi-infinite plate and will 

be used later in comparison with the 10ad transfer in the finite plate. 

While studying the stress in the plate of Fig. 3013 a very 

high transverse stress (~ ) was discovered along the stress-free edge 
y 

at the 1 ine of loading. This high tensile stress tends to split the 

plate apart along the load 1 ine. high transverse stress diminished 

rapidly away from the stress-free edge. 

To study the splitting stress more closely the effect of an 

individual fastener at a variable edge distance was investigated 

(Fig. 3.14). Using this figure one may~ r a given load 9 edge distance, 

fastener diameter 9 and plate ickness g calculate the transverse edge 

stress; the quantity P/dt is commonly used to denote the average bearing 

stress of a rivet or bolt and is in the dimensionless ratio, 
t 
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in Fig. 3.14 for convenience in relating the five quantities mentioned. 

Stresses for h < 3d were not plotted since, as explained in Appendix B, 
e 

the approximation of the elasticity solution of the semi-infinite plate 

is not val id for small edge distances. 

Figure 3.14 illustrates that the spJ itting stress diminishes 

quite rapidly as edge distance increases. However, the stress does not 

approach zero so rapidly as to allow one to neglect the effect of 

fasteners far from the edge. 

The edge stress for a variabJe number of fasteners and for an 

edge distance of the first fastener Is illustrated in Fig. 3.15. In 

addition to the variables used in Section 3.4.2 a total average load of 

three kips per fastener is maintained for aJ) cases. This illustration 

is not completely real istic since t, As' and C
t 

would normally vary with 

the design load, but it does show that the edge distance of the first 

fastener and the totai number of fasteners in the joint affect this edge 

stress considerably. 

For the semi-infinite plate, the most critical stress seems to 

be the splitting stress just discussed. This stress wil J be discussed 

again in the next section in connection with the finite plate and later 

in the experimental study. 

3.4.4 Load Partition and Stress Distribution, Finite Plate 

The complete solution for the load partition and the stress 

distribution of a particular finite plate joint is presented here to 

illustrate the solution technique and the effect of the geometric variables. 

Extensive variation of parameters has not been attempted for the finite 
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plate s"ince it is bel ieved that the results of the parameter variation 

on the semi-infinite plate a~equately describe the effects of a similar 

variation on the finite plate. More detailed variation of geometric 

parameters has been left for future studyo 

The solution of the finite plate problem differs from the 

solution of the semi-infinite plate lem only in the manner in which 

the elasticity solution for the plate is obtained. The finite plate 

solution requires several more input parameters to describe the shape 

and size of the plate and to icate extent of the precision to be 

carried out in computations. The details the theory on the solution of 

the finite plate problem are presented in Appendix C and discussed further 

in Section 3.3. The problem is discussed here in terms of the actual 

manipulations performed and resu1ts obtained. 

In addition to the plate variables 1 isted in Section 3.2 for 

the semi-infinite plate the coordinates of a number of points on the 

boundary of the plate are specified. Generally, the more points defining 

the boundary the better the solution to the problem. It was found during 

development of the computer solution that the distribution of the points 

on the boundary also affected the precision of the solution. 

The coordinates of the boundary points are most conveniently 

expressed in realistic dimensions However 9 the power series 

expansions used in tne solution necessitate a scal ing of these dimensions 

to avoid the generation of very large or very small numbers Which are 

not within the range of operation of the iBM 7094 digital computer. 

In connection with the truncated power series generated for 

the solution, the number of terms to be expanded in the series must be 



defined. Generally, as with the boundary points, the larger number of 

terms used in the series the better the solution. 

In summary, the additional variables required for the finite 

plate solution are the following; 

1. Boundary points, z. (a finite number of points 
at a selected dist~ibution) 

2. A scale factor for the plate dimensions 

3. The number of terms in the ¢1 and ~J series 

Figure 3.16 illustrates the selection of a set of points, 

Z., for a particular shape of finite plateo The plate chosen has a 
I 

taper of 1:2. It is 10 inches wide 12 inches long measured from 
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the origin to the boundary perpendicular to the 1 ine of load. There are 

33 boundary points shown intuitively distributed to improve the 

approximation to the solution in the region where the loads are close 

to the edge of the plate and where the boundary changes direction 

sharply. One inclusion is shown sol id in Fig. 3016 to emphasize that 

the problem is solved independently each load location. 33 points 

on the boundary generate 64 separate conditions to be met by the series 

iapproach explained in Appendix C allows one 

to choose fewer terms in the series than are required to satisfy exactly 

the boundary conditions specified at each point. For the problem of 

Fig. 3516 9 sixteen terms in each series proved to be quite sufficient 

to generate an adequate soiution. An optimization of the number and 

distribution of the points as well as the number of terms in the series 

may be possible; however, the author has found that an adequate choice 

of variables can be made quite easily after a trial solution. For the 



30 

plate ~pecifications in Fig. 3.16 a solution was obtained and the 

load partition with the resulting stress trajectories are presented 

in Fig. 3.17. The state of stress was evaluated at a number of points 

on the gross and net sections shown in Fig. 3.17. These resu1ts are 

plotted and presented as Fig. 3.18 and Fig. 3.19 for gross and net 

sections respectively. 

An integration of the rr stress over the gross section 
x 

satisfies equil ibrium of the system. The only apparent discrepancy 

1 ies in rr and T not vanishing on the boundary. Little error is 
y xy 

indicated however. 

The net section stresses show some discrepancy on the 

boundary. This is largely due to the fact that the net section happens 

to pass through a corner of the plate where the solution is not wel1 

defined. 

An immediate check on the elasticity solution of the entire 

stress distribution is to evaluate the combined stress along the boundary 

due to all fastener loads to see how well the stress free boundary 

conditions are met. The stress condition for each point as numbered on 

Fig. 3.16 is tabulated in the table on the next page. The solution 

could have been presented in a more non-dimensional form, but it was felt 

that in connection with the entire study the dimensional form is more 

easily understood. Also presented is a 1 ist of the variables associated 

with this solution. If the stress free condition was satisfied perfectly 

rr
2 

column would be zero and the principal orientations would be the same 

as the orientation of the boundary at every point (either 0° or 26.5°). 
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FIN I TE P LA TE STRESSES, AT BOUNDARY 

t .25 in. A 1.5 sq. in. 
s 

d .375 in. C
t 

.000250 inches/kip 

h ::: 1.25 in. n 7 e 
p 1.125 in. f.{ave.) 3 ki ps 

I 

Point 
Coordinates (J' (J' T 0", (J2 Principal 

x y xy Orientation 
Number x y 

inches psi psi psi psi psi degrees 

12.0 0.00 9 5 J 10 0 5110 9 .0 
2 12.0 0.10 I) 5023 -30 5023 9 -.3 
3 12.0 0.20 7 4767 -54 4768 7 -.7 
4 12.0 0.30 3 4360 -66 4361 2 -.9 
5 12.0 0.50 -23 3189 -42 3190 -23 -.7 

6 12.0 0.70 -39 1755 48 1757 -41 1.5 
7 12.0 0.80 -12 1019 115 1032 -25 6.3 
8 12.0 0.90 69 307 195 417 -41 29.3 
9 11.9 1. 05 473 -52 -202 542 = 121 18.8 

10 I I .8 1.10 792 190 -529 1100 -118 30.2 

11 11.7 I 0 15 1161 365 -755 1616 -91 31. I 
12 ]1.6 J. 20 1554 482 -921 2083 -47 29.9 
13 J1.4 1.30 2321 609 -1170 2915 16 26.9 
14 1 I .2 1.40 2965 690 -1396 3628 27 25.4 
15 11 .. 0 J. 50 3452 784 -1630 4225 12 25.4 

16 10.8 ). 60 3812 898 -1862 4720 -9 26.0 
17 10.6 1. 70 4098 10J6 -2065 5 J34 -20 26.6 
18 10.3 1.85 4470 J 171 -22g2 5645 -4 27. I 
19 10.0 2.00 AQ'l':l 

-rvtJ\J 
1')"70 
1L.1:::1 

"lIlAA 
-L~::1 6082 30 27.0 

20 9 .. 5 2.25 54)0 1356 -2677 6742 25 26.4 

21 8.5 2.75 6057 1466 -3057 7584 -61 26.5 
22 7.5 3.25 6100 1559 -3005 7596 63 26.5 
23 6.5 3.75 5443 1381 -2704 6794 30 26.5 
24 5.5 4025 3933 986 -2088 5015 -97 27.4 
25 5.0 4.50 3123 741 -1617 3941 -76 26.8 

26 4.5 4.75 2483 503 -J058 2942 45 23.4 
27 4.0 5.00 2132 302 -441 2233 202 12.9 
28 3.5 5.00 2817 55 -199 2832 41 4. 1 
29 3.0 5.00 3528 -57 -59 3529 -58 .9 
30 2.0 5.00 4839 -60 51 4839 -61 -.6 
31 1 .0 5.00 5765 20 49 5766 20 -.5 
32 0.5 5.00 6015 49 27 6015 49 -.3 
33 0.0 5.00 6100 59 -0 6100 59 .0 



The residual normal stress rr
2 

osci1 lates about zero along the boundary 

showing maximum deviation at or near the corners. Tnis is to be 

expected because the truncated power series approximation cannot 

represent the sharp discontinuity at the corners. These deviations 

are very small compared to the magnitudes of stress throughout the 

plate; the average gross section stress is 8400 psi. The maximum 

deviation of 202 psi is only about 4% of this value. All of the other 

a
2 

deviations are considerably less. Some deviation is introduced 

through the discrete character of the method which is being used; no 

attempt has been made to satisfy the boundary conditions on more than 

a finite number of points. Part of the deviation undoubtedly is caused 

by the round off error accumulated in the computer calculations. 

A major advantage of this method is that the field equations 

(equil ibrium and compatibility) are satisfied exactly on the interior 

of the plate. Since the external equilibrium has been verified and the 

boundary condition has been approximated to the degree observed above, 

it is felt that this method.adequately solves the plane elasticity 

problem for the finite plate. 

32 
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IV. EXPERIMENTAL INVESTIGATION 

4.1 ! ntroduct ion 

The experimental investigation presented in this section was 

conducted to study under controlled conditions the behavior of a very 

basic type of gusset plate connection. The experimental phase was 

developed and performed simultaneously wi~ the analytical study previously 

presented. The dimensions and physica1 properties of the specimen and 

material were similar to those assumed in the analysis. A new technique 

was developed to indicate the partition of load among the fasteners of 

the connection. The gusset was instrumented to measure the strain 

distribution at certain selected pointss 

All testing was performed within the elastic range of the 

connection materials. Several parameters were varied using only one 

specimen; these included gusset pJate geometry and total number of 

fas teners. 

In the fol lowing sections the design fabrication and instrumenta-

tion of the specimen are described. The test procedure and a summary 

482 Design of Specimen 

The word lides igniS may be somewhat ambiguous in 1 ight of the 

comments of Section 1.2 concerning the present status of gusseted connection 

design~ however 9 a simple symmetrical gusse hanger-type connection was 

proportioned using common design requirements for the tension: shear: 

bea r i n g rat i 0 0 



A seven fastener joint was chosen, based largely on having a 

sufficient number of fasteners in a 1 inc to cause a relatively severe 
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load partitioning and to provide a sufficient variation in the number of 

fasteners by removal of fasteners, i.e. the total number of fasteners could 

be made equal to 2, 3, 4, 5, 6, or 7. 

The double symmetry which occurs when a symmetric gusset plate is 

loaded in double shear was found to be advantageous from the standpoint 

of the ease of making test measurements. 

Since all testing was to be done in the elastic range of the 

gusset plate material, an ASTM A514 steel having a 90 ksi minimum yield 

stress, was chosen for the plate material. The fastening device was chosen 

to be a tight fitting pin for reason of easy assembly and removal as well 

as its basic nature of transferring Joad entirely through the fastener, 

i.e. providing no friction between the connected parts. The material used 

for the pins was "drill rod. 1I In pilot tests it was found that the yield 

strength of the IIdr! J J rod'i was such that the pin would remain undeformed 

after loadings equal to those of its intended appl ication. 

The gusset specimen detail is shown in Fig. 4.1. General1y, the 

overall size of the specimen was determined from instrumentation criterion 

and the ease in handl ing of the test apparatus. The net section area of 

the lap plates in approximately 1.3 sq. inches which yields a T:S:B ratio 

of 1.0:0 .. 84: 1.5. The critical bearing is, of course, in the gusset plate 

and was made lower than allowable to avoid permanent bearing deformations. 

Also shown in Fig. 4e1 are five arbitrarily selected plate 

geometries beginning with a rectangle numbered 1'1". The geometries wi 11 

be referred to by number as they are shown in Fig. 4.1. 



4.3 Fabrication 

The gusset plate specimen and lap plates were painstakingly 

fabricated to assure good a1 ignment and ease of assembly as well as to 

remove any undes i red variables such as eccentricityo fhe gusset plate was 

cut from a sl ightly oversize piece of 1/4 inch steel plate and finished 

on both surfaces with a hand sander to remove mil I scale and to reduce 

the thickness to within 0.25011 + 0.00211. Warpage in the plate was 

checked and the plate straightened insofar as possible. 
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The lap plates were cut and machined from the same type steel 

as the gusset plate. Both of the lap plates and the gusset plate were 

then carefully a1 Igned and clamped as a unit to the bed of a horizontal 

mill ing machine. The pin holes were then dril Jed and reamed to assure 

matching as well as accurate spacing and a1 ignment. The pins were cut to 

size and marked to assure being placed in the same hole and in the same 

orientation upon each subsequent reassembly. The pins were then polished 

so that they could be inserted and removed with ease. 

The fabrication and assembly of the test specimen was carefully 

controlled since the deformations at full load are very small and slight 

inaccuracies in fabrication would produce a behavior far from the idealized 

behavior sought in this study. 

4.4 Instrumentation 

The instrumentation as discussed in this section inc1udes a 

description of the loading fixtures and the load measuring devices. 

Special emphasis is placed on the method devised to measure the individual 

loads transmitted by the fasteners of the pinned joint. The placement of 
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strain gages at selected locations on the gusset plate and the appl ication 

of a bri ttle lacCJuer coating to the connection ~"j 11 also be described. 

The gusset plate specimen was attached to loading fixtures and 

mounted in a large universal testing machine as shown schematically in 

Fig. 4.2. The loading fixtures were designed to resist more than ade­

quately the maximum load appl ied to the specimen and were attached to the 

specimen with high strength bolts for easy removal and reuse. A pinned 

joint at one end of the loading apparatus and a ball seat at the other end 

were provided to avoid any secondary effects from eccentric loading. The 

entire load rig was placed in a large universal testing machine which 

acted as a loadtng frame. To provide more accurate control and greater 

convenience, the load appl ication and measurement were accompl ished using a 

20 ton hydrau1 ic jack operated by a hand pump. A cal ibrated weighbar which 

util ized output from eiectric resistance strain gages was used for a load 

indication; the loading capabil ities of the universal testing machine were 

not used. 

A number of researchers have devised methods for the measurement 

of the load transmitted by the fasteners in riveted and bolted joints. 

These methods range from the measurement of the rotation of the ends of 

the fasteners during loading to the placement of numerous resistance strain 

gages on the lap plates to measurement of the load transmitted by the lap 

plates so that load in the individual fasteners can be calculated. This 

latter method requires a large number of strain gages to obtain good 

calculated loads and may be desirable when the fastener pitch is large 

enough to provide convenient instrumentation of the lap plates as we11 as 

a more uniform lap plate loading. 
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From observation of the photoelastic studies of Carter(20) and 

. k (2) 
Lo er » it was felt that placement of miniature strain gages on the 

surface of the loaded plate at or near the compression side of the fastener 

would a1low, after cal ibration, a sensitive means of measuring the individual 

fastener loads. Placement of the gages on the compression side of the 

holes near the edge of the hole reduced the effect other fasteners might 

have on the load indication. A schematic presentation of this action is 

presented in Fig. 4.3. To check the effect a three pin double shear lap 

joint was tested using 5/16 inch pins and 1/4 inch square foil-type resistance 

strain gages mounted on only one surface of the center plate. Results were 

erratic and showed a non-linear behavior. The holes in the pilot specimen 

were reamed to 3/8 inch diameter and 1/8 inch square gages were mounted on 

both surfaces of the plate; the gages were wired to cancel any bending effect 

caused by unequal loading in the lap plates. A consistent, sensitive and 

predominantly 1 inear response was obtained from this arrangement. 

Based on the pilot studies, the fastener load sensing instrumenta-

tion was used as shown in Fig. 4.3. One-eighth inch square gages were 

placed about 3/32 of an inch from the edge of the 3/8 inch hole on the load 

1 ine. The response from the gages was approximately 1200 micro inches for 

the 5 kip maximum load applied to each fastener during cal ibration. The 

maximum effect from a load in an adjacent fastener was between 50 and 100 

micro inches for the 5 kip load, a relatively small effect. 

For convenience and efficiency in the recording of data the total 

load and individual fastener loads were used as input to the two axis of an 

x-y recorder. A multiple contact switch was used for selection of the 

fastener load to be measured~ and each fastener load sensing device was 
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provided with a means for individual zero adjustment. With this arrangement, 

the x-v recorder, after adjustment and cal ibration, was used to plot total 

load versus fastener load response for each tastener; this was done for 

each fastener when it was loaded individua1 Iy and when loaded as part of 

a composite joint us ing 2 through 7 fasteners. Additional discussion on 

load measurement will be presented in the next section on test procedure. 

For an experimental determination of the stress or strain distri­

bution in the gusset plate, foil-type resistance strain gages were used at 

the net and gross sections as shown in Fig. 4.4. Gages were mounted on 

only one half of one side because of the double symmetry of the connection; 

three gages on the net section were rosette~. T~~o additional gages were 

placed symmetrically opposite to the gages shown with an asterisk in Fig. 4.4 

to check for eccentricity of loading. After testing had begun, an additional 

gage was placed on the edge of the plate on the load line to check the high 

spl itting stresses indicated in the analytical solutions and mentioned 

earlier in Section 3.403. 

One surface of the plate was left relatively free of external 

gages and was to provide a surface for appl ication of brittle 

lacquer for the study of strain trajectories. 

In summary, the gusset plate was instrumented for measurement of 

total load and individua1 fastener load; the plate was also instrumented 

with strain gages at a number of points and sprayed with brittle lacquer 

to indicate the distribution and flow of strain throughout the plate. 

4.5 Test Procedure 

The gusset plate specimen ige 4.1) was tested for the five 

geometries indicated; the procedure used for a typical test is described here. 
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Initially the gusset plate specimen and load fixtures were fitted 

up and while hanging, supported only at the top, the high strength bolts 

in the top and bottom load fixture connections were snug tightened to 

ensure proper alignment of all components. These bolts were then tightened 

to a high tension. The lower load fixture remained assembled during all 

tests and specimen alterations. 

The photograph in Fig. 4.5 shows the specimen in place and viewed 

from the side used for the brittle lacquer study. With the specimen in 

place it was wired, as shown in Fig. 4.2, to the X-V recorder; the recorder 

could then be baJanced and calibrated. AI] pins except one were removed 

and a load calibration was made using the X-V recorder to record total 

load on one axis and load response from the fastener on the other. A 

portion of this record for the number 4 fastener is shown in Fig. 4.6. The 

influence of the number 4 fastener load on three other load indicating gages 

is shown by the two curves having negative slope. The opposite s10pe is, of 

course, due to a tensile strain which is opposite in sign to the compressive 

strain recorded for the fastener load. Each of the remaining six gages 

were ca1 ibrated in the same manner, recording the effects of each pin on 

the gages at the unloaded holes. 

After calibration a number of fastener combinations were tested@ 

An example of the load data for a five fastener joint is shown in Fig. 4.7 

The non-1 inearity of response for total load less than 2 kips is caused by 

a lack of uniformity in pickup of load in the 5 fasteners; despite the care 

in fabrication and assembly this behavior was unavoidable. The various 

fastener combinations ~~re loaded to a average load of 3 kips per fastener 

above an initial load of 3 kips making sure that the most critically loaded 

fasteners were not overloaded. 



40 

For a number of fastener combinations the individual strain 

readings were taken from the surface gages at the net and gross sections 

of the gusset plate for the same total load ranges which were used for the 

load partition measurements. 

With seven fasteners in place the specimen was sprayed with brittle 

lacquer to indicate the strain trajectories for that particular gusset 

plate geometry. The strains in the gusset were slightly below the threshold 

strain required to crack the brittle lacquer at room temperature; therefore, 

the specimen was cooled sl ightly with compressed carbon dioxide to induce 

cracking. Crack patterns which were then quite visible were out) ined. 

Tnese lines are visible in the photograph shown in Fig. 4.8(a); the 

horizontal member shown in Fig. 4.8a was used only to make sure that the 

lap plates did not separate from the main plate during load appl ication. 

After the brittle lacquer crack patterns were recorded. the 

specimen was removed from the testing machine, the upper load fixture and 

lap plates were removed, and the gusset pJate geometry was altered for 

the next test. Shown in Fig. 4.8(b) is one of the geometric alterations 

of the gusset plate connection viewed from the gaged side of the specimen. 

In the following section the data from the tests on various geometries 

and fastener combinations are presented. 

4.6 Results 

4.6.1 Load Partition 

The parameters varied in the experimental study of load partition 

are the plate geometry and the total number of fasteners. 
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The experimental load partition was obtained from the reduction 

of data of the type shown in the cal ibration curves of Fig. 4.6 and the 

composite load data of Fig- 4.7. Compensation was made for the effect of 

each fastener load on the load sensing gages of the other fasteners. As a 

check on the accuracy of the measurements and the method, the total load 

obtained from summing the individual fastener loads was compared with the 

measured total load. Errors \-Jere less than 5%; the sum of the individual 

fastener loads was consistently less than the measured total load. The 

variation in geometry is described in terms of the angle between the tapered 

edge of the gusset plate and a perpendicular to the load 1 ine as shown in 

Fig. 4.9; the fastener loads are presented as in the analytic study in 

terms of an average load of unity per fastener. 

In Fig. 4.9 the first, last, and minimum fastener loadings are 

shown in terms of the geometry of the plate. Although the five tests did 

sho\tJ some scatter, the expected trend occur as indicated in the analytical 

work, i.e., the reduction of load in the first fastener with the simultaneous 

increase of load in the last fastener. No noticeable change occurs unti 1 

after the gusset has been altered to such a severe angJe that the net 

cross-sectional area of the gusset is 

For the second geometry the variation In load partition is shown 

in Fig. 4.10 for a variation in the total number of fasteners. As in the 

analytical study the first fastener load becomes more severe with increased 

total number of fasteners, while the last tener loading and the minimum 

fastener loading change much less severely. This variation of tener load 

is indicated in another manner in Fig. 4.11 for the third geometry. The 

first, last, and minimum fastener ings are plotted in terms of the total 



42 

number of fasteners and indicate the type of behavior indicated in Fig. 4el0. 

The load partition results for the first three geometries are basically the 

same except for some scatter, which is quite sma11 considering that the 

joint was reassembled for each test and that much of the data reduction 

was made by visual graphical interpretation. It should be mentioned that 

the experimental load partitioning presented here is the partition which 

would have occurred if all of the fasteners began to take load at the same 

time. As indicated earl ier in Fig. 4~7 the fasteners did not all pick up 

load Simultaneously. The smooth load partitions presen nere are nothing 

more than the load taken by tne fasteners after initial preload (total load = 

3 kips). This is justified by the 1 inear elastic behavior of the pins 

during cal ibration. 

One factor which was not accounted for in the measurement of the 

individual fastener loads is the effect of change in shape of the hole on 

the response of the individual load indicating gages. Cal ibration was made 

on a 1 ightly loaded plate; however, the indiVidual loads in a load partitjon~ 

ing were measured when the plate was loaded by as many as six other tastenerse 

It is believed that the effect of this factor was small, on the good 

agreement between the total measured 1 and the sum of individual loadSe 

406.2 Strain Distribution 

The measurement of strains in the gusset plate using electrical 

resistance strain gages is a relatively straightforward operatione- Gross 

and net section axial strains are presented for the five geometries 

gusset plate. Transverse edge or splitting strains are also presen in 

terms of variable geometry. Finally, sketches of the brittle lacquer 



patterns are shown to illustrate, for the fi rst tnree geometries the 

variation of stress or strain distribution with geometry. 

Axial strain distribution at the gross section of the gusset 

plate, \\fhich is shown for each geometry in Fig. 4.12 9 is non-uniform, 
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as would be expected, but does not vary appreciably with changes in 

geometry. The strain distributions for the first three geometries are so 

close that the plotted points are shown joined by one curve. A similar 

presentation of the net section strains is shown in Fig. 4.13. Againg the 

most significant change in strain occurs when the cross-sectional area is 

reduced by the geometry alterations. The net section strains could not be 

measured very close to tne center of the gusset because of tne position 

of the lap plates. As witn tne load partition, the strains shown are 

based on the increase above an initial strain caused by a pre-load on the 

joint of 3 kipse 

The experimental transverse edge strain is shown in Fig. 4.14 

in terms of geometry of the gusset plate. The measured strain is shown 

for 3 load levels which average 1,2, and 3 kips per fastener. Since 

results were not available for the first geometrY9 an analytical result 

from the semi-infinite plate study is shown for e = Oo@ There appears 

to be good agreement. The improvement~ ieee the reduction in the value of 

the transverse edge strain, is quite favorable for increased 

gusset: however~ for usual shapes of gusset plates the magni 

iss till qu i te sign if i cant. 

r the 

strain 

A qualitative picture of the variation of stress trajectories for 

a variation in plate geometry is shown in Fig. 4.15. What can be noted quite 

readily is that much of the corner material in the first geometry is very 
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1 ightly stressed and as a result is not used effectively. Thus, the 

earl ier results which indicated I ittle change in load partition for the 

first three geometries are very feasible since much of the material which 

was removed did not add significantly to the structural integrity of the 

joint. 

Results from the experimental study will now be discussed in 

the following section in terms of the analytical results previously 

presented and their significance in explaining the behavior of a gusseted 

connection. 
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V. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

5.1 Load Partitioning 

The load partitioning phenomena in a gusseted connection are 

dependent on a large number of variables, as is i J lustrated by the parameter 

variation of Section 3.4. I. Partitioning is difficult to reproduce 

analytically; consequently an evaluation of the various assumptions made 

in the development of the analytical relationships is very important in 

the final evaluation of the results. 

Referring to Fig. 3.4 and Fig. 4.10 one sees that the prevalent 

trends 

of fasteners for the analytical semi-infinite plate joint and the experimental 

finite plate joint are generally the same. This comparison and agreement 

helps to substantiate and justify the soundness of the choice of the semi-

infinite plate model for the extensive study of the variation of parameters 

in Section 3.4.J. 

A direct comparison of the load partitioning obtained from the 

two analytical models and the experimental model is indicated in Fig. 5.1. 

The analytical solution for the semi-infinite plate is almost identical to 

the load partition of the second gusset geometry; the results from this 

geometry are representative of the results from the first four experimental 

geometries. The semi-infinite plate load partitioning is the same as that 

shown in Fig. 3.13 and the variables 1 isted in that figure are similar 

to those for the experimental case. variables for the analytical 

finite plate were not exactly the same as those for the experimental case; 

the areas of the lap plates were smaller than those of the experimental plates. 



46 

Ihe reason for this inconsistency is thclt only one complete finite gusset 

problem was computed; the change in dimensioning was necessary for 

technical reasons associated with the distance between last fastener and 

the origin Fig. 3.16; these reasons are discussed in Appendix C. 

Recomputation was not considered desirable because of the sma1 I difference 

in dimensions. When compared with the semi-infinite results, the analytical 

finite p1ate load partition results show the type of variation which would 

be expected. The analytic finite plate should, however, compare more 

favorably in magnitude with the experimental load partition shown in 

Fig. 5.1. 

The failure of the analytical result to check more closely is 

probably due to some of the analytical assumptions, i.e., a va1ue of Ct 

could, of course, be chosen to yield better agreement. Experimental Jy an 

effect was indicated in the 1atter geometries which was not taken into 

consideration analytically. Namely, the load started to drop in the last 

fastener~ indicating, perhaps, that for more flexible gusset plates the 

elongation of the ho1es in regions of high strain may be contributing 

significantly to the load partitioning. This factor was not considered in 

the analytical assumptions, but at this point it is difficult to determine 

how significant this effect is with respect to the numerous assumptions 

made. 

5.2 Strain Distributio~ 

To make a comparison between the stress or strain distribution 

obtained from the analytical and experimental studies, the analytical 

stresses were converted to strains assuming E = 30,000 ksi and V = 1/3. 
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Noting again that there were s1 ight variations in the dimensions of the 

analytical and experimental models, the author chose for comparison the 

strains at the gross and net sections of plate geometry No.4; as shown 

earl ier, the axial strains did not vary to any great extent for the first 

4 geometries. The comparisons are shown in Fig. 5.2 and Fig. 5.3. As 

t~ould be expected the analytical strains are higher at the center 1 ine, 

due to the smaller fastener pitch; the closer spacing of the fasteners 

gives the effect of a more concentrated loading. The analytical load 

partition was somewhat different t as noted in the previous section. The 

experimentally determined load partition was, therefore, used in conjunction 

\~ith the plate elasticity solution to compute the strain distribution for the 

same gross and net sections. These results indicate better agreement as 

is shown in Fig. 5.2 and Fig. 5.3. 

A qual itative comparison can be made through visual inspection of 

the experimental stress trajectories of Fig. 4.15 and the analytical 

trajectories of Fig. 3.17. Very similar behaviors are indicated. 

In Fig. 4.14 the analytical strain plotted for e = 0° shows a 

continuation of the experimentally establ ished trend. This strain was 

obtained directly from the semi-infinite plate solution. 

The analytica1 and experimental strain distribution results 

show good agreement when one considers that the assumed modulus of 

elasticity could be in error from 5 to 10 percent and that certain of the 

plate dimensions were not identical. 
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V I. SUMMARY AND CONCLUS IONS 

6. 1 Cone J us ions 

In the f; rst two sections the more important previous gusset 

plate research in the field of riveted and bolted connections is reviewed 

briefly, and the course of the present study is outl ined. In the present 

study an investigation of basic type of gusseted connection was undertaken 

in considerable detail, both analytically and experimentally to ascertain 

the effect of a number of variables on load partition among the fasteners 

and stress distribution in the gusset p1ate. 

Several conclusions can be drawn from the analytical variation of 

parameters in the particular case studied. The variables of fastener pitch 

and edge distance of the first fastener show only s1 ight effects on the load 

partitioning for a reasonab1e range of values. The variables of gusset 

thickness and of lap plate area indicated similar effects on the load 

partitioning, but no generai izations can be made with respect to quanti­

tative effects. 

The increase in the number of fasteners of a joint, with a1 I 

other variables remaining constant, causes a variation in load partitioning 

and a rapid increase of load in the first fastener. 

The total fastener flexibility, as described in Appendix D, is 

an important factor since it changes with the size and type of fastener usede 

Very severe changes in the load partitioning are produced in the end 

fasteners of a joint by a decrease in the fastener flexibil ity. The 

fastener fJexibil ity has been found to be an important factor and should 

be studied experimentally in more detail in the future. 
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Severa1 conclusions may be drawn from the analytical study of 

stress distribution in the semi-infinite and in the symmetrical finite 

plate. It has been shown that a large transverse stress develops on the 

edge of a gusset plate at the load 1 ine. This stress tends to spJ it the 

plate along the 1 ine of fasteners and increases with the proximity of the 

fasteners to the edge of the plate. Analytical relations have been 

developed to al low easy calculation of this stress for assumed load 

partitioning in the semi-infinite plate. 

The experimental gusseted connections exhibit a behavior similar 

to the analytical models with few exceptions (See Section 5). From the 

study of the variation in plate geometry one may conclude that the load 

partition is only affected by extreme variations in gusset plate geometry. 

The measurement of the transverse edge strain confirmed the discovering 

of the spl itting condition in the analytical results. The data also showed 

that the strain is somewhat reI ieved by increasing the taper of the gusset. 

The elastic analysis of the gusset plate cannot be used to establish 

the ultimate strength or mode of failure for static loads. However, the 

stress distributions show that gusset plates can be expected to yield or 

perhaps rupture at either of two places, along the load 1 ine or at the last 

fastener. Failures of both types occurred in the static tests of truss­

(21 ) 
type connections reported by Chesson and Munse G Thus, the present 

study helps greatly in explaining the unusual failures observed In these 

previous studies. 
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b.2 Areas for Future Study 

Tne foregoing Investigation has only provided a part of the 

ans\""er to a very complex problem. Numerous variables involved ~ .. Jith fabri­

cation, instal Jation v eccentric loading, etc. have been avoided and need to 

be considered in the future. The study has been limited to elastic behavior 

in the connection material. Fatigue fai1ures have been a problem in riveted 

and bolted connections; some study is therefore necessary to correlate the 

fastener loading with the fatigue failures that have been reported. 

The analytical model for the finite plate joint which was 

developed in this study has much potential but has not been used to full 

advantage. Further refinement as suggested in Section 50 J is recommended 

for the future use of the ana1ytical model. 

A study of the ultimate strength characteristics should be the 

next major step to be taken towards a better understanding of the problem 

associated with the design of gusseted connections. Sound and effective 

design recommendations of gusset plates wou1d then be possible. 
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NOMENCLATURE 

area of lap plates p connecting member 

coefficient of the power series solution for ¢ of the 
res dual finite plate problem 

area tener in le r 

coefficient of the power series solution for, the 
res J finite plate p lem 

nom i na d i arne te r rigid inclusion or tener 

ulus elasticity 

total force transmit fastener 

r ius of eiasticity 

distance first fastener 

distance from origin to tener 

ix ing the inary part a compJex function 

moment of inertia of a tener 

total flexibility accounting for fastener formation 
lap p1ate formation 

r of tenens 

or spacing in direction of loading 

transm it the lap plates in the i nterva 1 
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prefix deneting the real part ef a complex functien 

thickness of gusset plate 

th i lap plate 

displacement in the x direction 

displacement in the y direction 

u displacement at tener due to a J of unity at 
j tener 

rec Inates 

complex variable equal to x + iy where i = 

constant tor equal ta (1 n:E t 

total the t e ne r i nc 1 i n g 1 oc all ill p P 1 ate 
tions 

tion 

ion 
tener 

the 

the 

interval the gusset plate 

interval cf the lap plates 

interval to a 1 of uni an 

3-v elastic constant equal to]+V plane stress solutions in two 

dimensional eJastici 

i sson U s rat 

nermal component stress parallel to x axis 

normal component stress parallel to y axis 

shearing stress in rec 1ar inates 

1 i i Ii displacement i a 1 

khelishvili displacement i a 1 
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APPENDIX B 

lOADED RIGID CIRCULAR INCLUSION IN A SEMI-INFINITE SHEET 

The genera 1 i plane stress solution the s problem 

is der i here as the first approx ticn to a mi ry value 

problem in plane elastici using classical solution a 1 

rigid circular inc Ius in an i t n i te 5 t lOr p1ate is slOlutilOn 

was IObtai earl ier J. S@ Bloom was incl in an 

to his work with rela 

complex khel ishvilf ) displacement ials ¢ and 

t(z) (z == x + iy) are rei to the stresses and displacements in a plane 

stress slOlution in the 110wing manner@ 

where K := 

+. cr := 4 Re I] 
Y 

2G + 

G is 1 us e 1 as tic i 
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For a unit load acting at the origin in the negative x direction 

on a rigid inclusion of diameter d whose center is at the origin 

(Fig .. B"l }, the d i sp 1 acement poten t tal s are (28) 

¢ s: r 109 Cd 
0 

B -I' [K log 
/ 

] +( 

where r :;;:: and t is thi the plate. Additive constants 

have been omit this s ut since do not affect the 

resulting stresses. This solution can be modifi to provide the more 

general displacement potentials 

h from the origin on x axis 

¢ s: r log (z ... 
o 

a 1 rigid inclusion a distance 

ring the semi~i inite elastic sheet to be the positive 

side y axis, the stress free will be the y axis (x = 

ition in terms of ¢ .. is 
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(8.4) 

This condition represents an ticn of the stresses along the 

(32) 
ry • 

As a first approx t ion to 

such that ¢ :: + t satis the stress free ry 

itiono A judicious selection singularities 

exterior to the region in concern~ was madeo 

<PI 
:: log + + '~1 + 

q 5) 

'1 :.: Jog + + Bl + B2 + B3 
(z (z 

re are t in genera J 9 comp constantsG substituting 

<P and t into the expression stress free ry at z := iy", 

Eqo !Il the fol1owi values were obtained for and 

A := K B liiI! ... 1 
0 0 

A :.: 
1 B1 lilB h ." K) 

= = _2[h2 . 

x 2<~f 
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This yields the final form of the first approximation to the 

solution the semi-infinite plate loaded at a rigid inclusion and 

having a stress free 

qJ =: r [lOg eo h) + K log + +~J + 2 

J" 

'1 == r l-K log 

- log 

The displacement tia1s ¢ V satisfy exactly the condi-

tion a stress free ion of a rigid 

inclusion at z = h been viola not satisfy this 

se1ecting suitable tions 4>2 and V2 one could correct 

this deficiency while violating the stress free boundary conditione 

Th iss known as tz Alternating Method J. 5e Bloom went a 

r termining 4>2 and made an error analysis on the 

difference in displacement that for :: 3 distance 

equals three inclus diameters), the error was less than 5%$ 

* Private communication with the author. 
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The author feels that p in J ight of other assumptions~ this 

first approximation is quite for the StudY9 
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APPENDIX C 

LOADED RIG D CI INCLUSION IN A FINITE SHEET 

A rigorous presentation the eJastici solution of the 

finite pia is P a more 

coop ete unders i n9 of portion gusset plate problem@ 

obta n an approximate solution to this rni ry value p lem the 

author has int matching technique ~ a me 

increasing popul ri solution a certain class ry value 

problems. General1y~ the point matching procedure involves the ust-

ment of a trunca series solution a differential equation at a 

selec finite set ry points region. The solution to 

the 1ern will parallel semi-infinite plate 

solution ix B; a brief discussion of as ions involved in 

per rming certain operations will 110w the derivation the 

solution. 

I t is that displacement potentials ¢1 

to the i inite plate displacement tials ¢ and * o '!I 0 

provi an approximate solution for the displacement potentials 

In the 

11 ow i og the cartesian the variable z is :::: X + iy) 9 

intention being to the complex arithmetic operations 

which are easily prog per on rn digital computers $ 



The choice of a plate shape and loading configuration has 

been previously discussed in Section 3.3. The shape to be studied 

will be of the in simple bridge hanger connections, i.ev 

usually tape with strai t edges and symmetrical about the 1 ine of 

action of the load The general will be to load a rigid 

inclus on in an infin te plate and satis stress boundary conditions 

100 

on the fin i te p 1 te ry while maintaining the equiiibrium 

the plate To maintain equilibrium of the plate it was found 

conven ent to in with equil ibra system as shown in Fig. C~l )) 

With opposing at x = + h~ any region can be cut from the infinite 

plate containing both loads p and the resulting tractions at the edge of 

this region, which maintain the of the region D will be in equili­

brium independent of the magnitude of interior loads. Another advantage 

of this system is that the entire ry the base problem will 

have stress free itions~ equilibrium condition allows 

the superposition of an identical continuous region loaded by tractions 

equa1 and opposite to the tractions of the infinite plate solution. The 

superposition of the two solutions results in a plate loaded with equal 

and opposite loads having a stress free edge at the boundary of the 

finite plate region. The solution of problem can be further 

simpl ified by ing the finite plate region symmetrical in two 

directions as shown in (;.,1 this replaces the inclusion with plate 

mater ia 1", 



) 0) 

The infinite plate displacement potentials ¢ and, for the 
o 0 

opposed loads are obtained by superimposing solutions the type given 

=: "'" r log 

+ -J 
. !) 

h } 

solution the res i 1 probJem described by the region of 

FigaCol (b) with tractions resulting from ¢o and Vo one can choose the 

. . (32) power seraes representations 

=I =I .2) 
n=O n=O 

where and are in general ~ complex constants. An examination 

the displacement potentials ¢1 and 

al lows one to simp} ify these ser 

into the first t ions 8.1 yiel 

for the case of Je symmetry 

expansions. The substitution of ¢1 



J02 

00 

cr + 0-
X Y 

\' -o-lJ ... L nanz (C.3) 

n=l 

Symmetry of the normal stresses cr and cr about the x axis requires that 
x y 

the inary parts of the icients a must vanish; 
n 

mus t, there-

fore, be real. A similar examination Eq@ C.3 for symmetry of 0-
x 

and about the y axis indicates that must vanish for even powers 

of n; only powers z be considered in the ~1 series0 

Substitution ~l and into the of Equations 841 yields 

00 

+ 2 Txy = fiI n 

axes since 

sYlffrietry 

n=2 

The shearing stresses T are necessarily zero on the x and y xy 

are axes symmetry@ From examination of the 

- cr in EgG Ce4 on the real axis (z = x), noting that 
x 

is real, one finds that inary parts of b must vanish; 
n 

mus t w there 9 be rea10 Studying this symmetry about the imaginary 

axis := iy) one fi that coe icients of even powers z must 

van i IV that only powers III be cons ide 



00 

<PI + L 2n-l = a z 
n 

n-l 

00 
(c ~ 5) 

'1 = 10 + L 0 

n=1 

where a and 
n 

are real constants~ the constants a 
o 

not 

wi 11 

t 

t the stres resulting from $1 

A unique 

i on the 

firs t th i 

i nat i on the 

110wing it 

tions $1 and '1 results 

at the origine(32) 

(0) := 0 (C" 6) 

itions require that a 
o 

b vani 
o 

it i on has been satisfi the fact that a 1 is rea 1 0 

ry condition (Eq 0 B .. 4), wh lch represents 

eva uat ion of of tractions aiong the boundary 

now in the point matching requ i rements 

a stress free edge on loaded finite plate .. The formulas 

r possess the same symmetry as the formulas 

the ¢t series previously discussed. is allows 

direct matching the ry it ions q. B. to provi 

103 

stress free on the boundary of the finite plateo Upon t i tut i on 



of ¢ = ¢ + ¢1 and. = t + t) into Eq. B.4 the boundary condition 
00, 

becomes 

(C.7) 

on ry", Subs t i tut ion 

yield an infinite number equations with an i inite number 

unknowns and Solution this system would yie1d an exact 

so]ution the problem" 

104 

Sin i te sys ten'ts are cumbersome and d i i eu J t to hand J e. 

The point matching scheme ica))y on the replacement of the 

exact infinite system wi an approximation on a finite system. 

Thus 9 oniy a finite terms of Eq0 C.S are assumed to 

tely represent solution to problem; resu1ting in a 

s 1 if i ca t ion (,,,7,. 

N N 

I 1+ zI -1) 
nm) n-l 

:Ii! "" ¢ "" Z¢D -0 0 

tion C.8 is satisfi at arbitrarily specified points on 

specification resulting in two real equations for the 

2N unknowns 
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Because of the double symmetry of the plate problem being 

studi j only one quadrant of the plate boundary need be consideredo 

If M ry points are to be considered in the solution, generally 2M 

independent equations will be genera and wil 1 require a total of 2M 

terms from the $1 se i es elf one chosen points 

to be on the reai or inary axis only one meani ui equat ion wi 11 

be genera since on the real axis the inary Eq., C 8 is 

satisfi tical1y and on the inary axis the rea1 part Eq. C 8 

is satisfi i den t cad 1 Yo 

A number authors have an extension of the point matching 

approach while allows a greater boundary conditions or points 

to be cons ide a given unknown ficients than is 

possible with the direct app previously described This approach 

was r i by Hul r t (34
) an e xp 1 ana t ion fo 1 lows 0 

r the set matrix equations A .. X. = where the 
iJ J 

r is less than the number of equations .. In general 

these Ions will not be satisfi exactly for any solution set 

the resi 1 error will have the R. :: A •. From the 
I IJ 

ition that the sum t s res the residuals is a minimum, 
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Sx. 
J 

T 
.. A .. X. - A .• Rq 
J I IJ J J I I 

(C" 9) 

\vhere T transposec This set of ions is equivalent to the 

original ry equations premultipJi the transpose of the 

iei matrix A. 
» 

Thi is the me 

•• A •. 
J ! iJ 

for 

R • 
I 

solution Equations C .. 8 a and 
n 

Having 

tl series. one now 

icients the chosen ¢ 1 

an approximate soiution for the plate problem 

Ffg~ C~ 1 )~ From this solution stresses and disp1acements can be 

caicula any point in accuracy of 5 calculations 

1 1 on such tors as: 

plate 

the J 

3 r points cons! on the 

r terms series <PI 

5 ~ P ree is ion ti()ns 

6 int stress 'Or displacement is 
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firs t five these factors all t the sa tis tion of 

the origina1 boundary conditions of the problem. 

The original the ry condition of a rigid 

inclusion has been viola in two ways. The assumption involved in the 

addi ion lOr superposition of functions rigid inclusions at 

inclusions remain rigid, x =: -h. c. n ~ namely» that 

is ly reasonable 

viola ion 

h much 

the assumption 

the finite plate 

r d (inclusion diameter) 

rigid inclusion is the 

rY9 withou taking 

the inclusion .. in as in ix B this error 

was ass to be sma 11 consi ring an distance r than 

3d. 

It is di icult to generalize about all 

ass ions on iem this lexi The discussion of the 

resu 1 ts applying this to a practical probJem is incl in 

main part text. 
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APPENDIX 0 

FASTENER FLEXIBiliTY AND LOCAL BEARING DEFORMATION 

in describing the deformational characteristics of the components 

of a gusse connection, the de tion of the fastener and the plate 

near the fastener are tant e fastener deformation and local 

bearing deformation are not prime consi rat in this s but an 

evaluation of their ef t is necessary r completeness Q S 1 i i ng 

assumptions allow one to make a le evaluation of the magnitude of 

these properties. The work presen here is a combination of approximations 

made VOgt(12) by Tate Rosenfeld(13) 0 Calculations are made for 

formations caused by the transfer of load by a rivet or pin which fills 

the hole in the connected parts and causes no friction between the 

connected parts. 

fastener which is in double shear is considered to deform 

as a fixed=end beam i9. D~I). Fastener deformations due to shear and 

ing are calcula Assuming a uniform loading i g. D. 1) 9 a tota 1 

load of unity transmi the fastener causes a fastener deformation 

at the center of the gusset due to bending of, 

o(bending) := 8 (0 ~ 1 ) 
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where ts is the thickness of a lap plate, and 1f is the bending moment 

of inertia of the fastener. The shear contribution to the deformation 

of the tener for the same load is, 

6(shear) ::: 2 -,;;;..,...--

where is the cross-sectional area a fastener. 

To approximate the tions in the fasteners and lap plates 

to local bearing several s 1 i ing assumptions are made. A11 

rmations use the original center-line axis the fastener as a 

reference. 

From an elasticity so1ution of a plate with a fastener in 

bear i n9 Vogt (12) that a reasonable local plate deflection for a 

unit load on the fastener to be, 

where t is the thi 

late bearing) :: 0,,9 
Et 

s the loaded plate. For the compression 

.3) 

between the surface of the fastener and fastener axis w the average bearing 

s t res! for a unit ona pJate of thickness t would be 
t 

at the surface 

and, at the ax i s of the fastener, approximately half th i s valueG The 

de tion over a length ~ is approximated a simple integration over 



III 

this length assuming the stress to change J inearly. The resulting bearing 

deformation in a fastener for a unit load on a plate of thickness t is 

approximated as, 

5(fastener bearing) .375 ""' 0.4 
= ~ = 'ft"" (D .4) 

The gusset plate local deformations have been accounted for 

in the e1asticity solution the plate and will not be included in the 

calculation the total tener flex i b i 1 i With this omission the 

total plate and fastener bearing deformation for a unit load transmitted 

by tne fastener becomes, 

o(fastener and plate bearing) :: 1. ('0.4 + 0.65) 
E t t s 

.5) 

where t is the thickness of the gusset and t is the thickness of a lap 
s 

In the relationship, 5. = Ctf., where 5. is the total local lap 
I I I 

plate and fastener deformation and f. is the rivet load» the total 
I 

flexibility C
t 

is equal to the sum of the relationships Eqo D.l, Eq. 0.2, 

a Eq" D" 5" 



112 

C
t 

= 5(bending) + 6(shear) + 5(fastener and plate bearing) 

(0.6) 

Us i ng a va 1 ue E = 30~OOO ksi the total flexibilit~ as calculated using 

Eq. D. is presented in terms of t and d/ tin Fig. D. 1 • 
s 

To find a real istic value for C
t 

related to the other base 

variables in the parameter study of Section 3.4 9 t/ was chosen 

as 0.75; this number is also comensurate with the experimental lap plate 

dimensions. value of t equals 1.5. The assumptions in 

arriving at Ct are val id for sma1 1 deformations only. This expJains the 

upward t r sma 11 dl t. I tis s ugges ted tha t a mo re rea 1 is tic 

continuation of the curve for t = 0.75 and values of d/t <2.0 would 
5 

be as is shown dotted in Fig. 0.1. For d/t = 1.5 and tit = 0.75 a 
s 

reasonable value for C
t 

appears to be approximately 0.25 x 10-3 inches/kip~ 

This value is used as one of the base values of comparison in Section 3.4. 

Obviously many assumptions have been made which to simplify 

a very complex leal phenomenon; however, it is believed that these 

approximations are quite adequate with respect to the 1 imited extent 

which it is used in this study. 
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