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ABSTRACT

Load partition and stress distribution in riveted and bolted
structural joints are two associated behavioral phenomena which have
received continued attention from structural researchers and designers
in an attempt to understand better the behavior of multiply fastened joints
and to design them adequately. This study presents a basic analysis of
various physical parameters and their effects on load partition and stress
distribution in gusseted connections. The gusseted connection under
vinvestigation is a particular type of riveted or bolted connection which
has additional variables associated with the shape and size of the gusset
plate. Analytical and experimental studies were conducted concurrently
to justify theAconclusions as well as study the assumptions made in
arriving at the analytical models.

Analytically, two elastic joint problems were studied: (1) the
attachment of a tension member by a single row of fasteners to a semi-
infinite plate, (2) the similar attachment to a symmetrical tapered gusset
plate. The parameters studied include the number of fasteners, the
fastener pitch, the edge distance of fasteners, the fastener and tension
member flexibilities, and thickness and geometry of the plate. The
member to plate connections were evaluated in terms of the load partition

among the fasteners as well as the stress distribution at various locations



in the plate. 'it was found that, individually, many of the joint
parameters did not appreciably affect the load partition in the
connection; however, cumulatively they could have detrimental effects.
One parameter, the edge distance of the first fastener, did not affect
the load partition but caused severe stress conditions at the edge of
the plate on the line of loading.

The finite geometry plate, studied experimentally, was
fabricated and tested with variable geometry or taper of the gusset plate;
the plate was loaded by lap plates connected by tight fitting pins. The
elastic stress distribution was studied using brittie lacquer techniques
and electrical resistance strain gages at specific locations on the gusset.
Individual fastener loading was measured using a special technique involving
the placement of strain gages on the gusset near the loaded pins. The
load partition of the pinned joint was examined for five geometries and
variable numbers of fasteners. Geometry did not appreciably affect the
load partition until extreme geometries, which resultedyin a change of

the gusset net cross-sectional area, were reached.
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I. INTRODUCTION

l.] Historical Review

The analysis of qusset plates as an integral part of gusseted
connections has long been recognized as one of the weak links in the
design of structural frameworks. Researchers have looked at various
aspects of this problem during the past century and have conducted studies
and analyses of a number of the problems associated with gusseted
connections. A chronological review of some of the principal experimental
and analytical contributions to the study of the problem follows. Many
of the works to be cited deal with subjects more general than the behavior
of gusset plate connections. Until recently the literature has dealt with
stress distribution in plates loaded by individual Eivets and bolts, the
development of techniques to analyze the load partition of riveted and
bolted joints, and the techniques and results of the experimental testing
of numerous individual gusseted connections. This literature is cited,
however, because it contains the basis for the development of our present
knowledge on riveted and bolted connections. A gusseted connection is
one particular variation under the general classification of riveted and
bolted joints.

The problems associated with the non-uniform distribution of
load in gusseted as well as other types of fiveted connections were
recognized many years ago, but all of the major work on gusset plate
analysis has been done since the start of the twentieth century.

In 1913 the problem of stress distribution near a rivet hole

(1)

was studied analytically in Japan by Yokota , while in England the



problem was studied experimentally with much success by Coker and

(2)

Scoble
Batho(3), in 1916, made one of the first and what remains a
classical analytical approach to the partition of load in riveted joints.
Work of a similar nature was being carried out in Germany during the same
period by numerous investigators and the results of much of their work is

(4)

cited in a design text authored by Bleich in 1924,

The first major experimental work on gusset plates was that of
Wyss(s) in 1923. This work remains as the most comprehensive work to date
with respect to the behavior of gusseted bridge connections. He used
relatively large specimens and performed a detailed analysis of the test
data for many loads and gusset plate configurations. His tests included
secondary effects since the plates were part of an actual truss. His
results are somewhat limited for current evaluation since the detailing
practices used in Germany at that time were much different than those
used today.

(6)

Again from Germany in 1929, Hertwig and Peterman presented

their work on the experimental determination of the load partitioning
in riveted joints. Particularly significant was their technique of load

measurement; the load was correlated with the rotation of the rivet heads.

(7)

Hrenikoff , in 1934, reasserted and refined to some extent

(3)

the work of Batho and other early research on the subject. His work

was criticized for not being original, but it does provide a good summary
of the ''state of the art''up to that time,
In 1937, one of the few recorded gusset plate failures occurred

(8)

and was attributed to poor detailing practices. Fatigue failures have



been found in gusset plates and in the components of gusseted connections;
however, documentation of these failures is quite limited.

(9)

Rust '™7, 1n 1939, completed some photoelastic work on the transfer

of stress in gusset plates and published a report regarding gusset

specifications and design. No quantitative answers were obtained, but

general qualitative answers provided some feel for the behavior of a

gusseted connection. In this photoelastic study the load transmission

was not by rivets,‘pins, or bolts so these variables remained in question.
Many of the specific studies cited thus far appear in a literature

(10)

review on riveted joints published by Dedonge in 1945. Abstracts of
all important work done on riveted joints until 1940 are contained in
this review; the author has found this review invaluable in his literature
research.

in 1941 Hrennikoff(‘])

presented one of the first simplified
elasticity solutions having direct application to the gusset plate
problem. The method, very similar to a finite difference approach
neg]ected the manner in which the load was applied and was concerned
only with the stresses far from the point of load application.

Late in the 1940's, the aviation industry published numerous
articles concerned with partition of load in riveted and bolted joints..

(12)

Of particular interest is the work of Vogt and the work of Tate and

(13)

Rosenfeld because they have correlated experimental and analytical
studies and have assembled the work of earlier researchers to make
rational approximations for fastener deformations and local plate

deformat ions.



(14)

Also in the late 1940's Grinter suggested a method by which
designers could approximate the stresses in gusset plates using their
knowledge of structural frameworks. The partition of load was neglected

(1)

in this study as in Hrennikoff's and generally the method was quite
cumbersome.
In the 1950's a considerable amount of experimental work was

(15)

done on riveted and bolted joints. At the Universities of Tennessee

(16, 17) several aluminum models of gusset plates were fabri-

and Kentucky
cated and tested; they were modeled after gusset plates found in the
lower chords of Pratt and Warren type trusses. Attempts were made to
devise empirical methods for the design of these types of gusset plates.

(18)

At the University of Michigan, Sheridan attempted for the
first time, as far as this author has been able to determine, to vary the
geometry of a gusset plate and to study the effect on the stress or
strain distribution in the plate. In this investigation no emphasis is
placed on the load partition among the fasteners; the validity of various
simple analyses to determine the stress distribution in simple connections
was studied.

(19)

At Purdue University a gusseted structural joint was tested
to compare the structural behavior of rivets and high strength bolts. A
sharp increase in the use of bolts (high strength) as opposed to the use
of rivets initiated many studies of this type. At Purdue, Carter(zo)
studied, photoelastically, the effect of the local stress concentrations
in plates loaded by structural fasteners and related them to the fatigue

behavior of single fastener joints. This work provides an insight into

the focal behavior of riveted and bolted joints in the elastic range. At



(21, 22)

the University‘of I1linois Chesson and Munse tested @ number of
large truss-type connections and found ultimate strengths lower than
expected in a number éf cases. Various types of failures were exhibited
in these tests, thus further accentuating the complexity of gusseted
connection behavior.

(22)

Francis , for the Aluminium Development Association, made one
of the first significant attempts to analyze the load partition of riveted
joints above the elastic limits of the fastener and the plate materials;
his development of a graphical technique for determining load partition

(24)

is quite unique. In 1360 Rumpf extended the work of Francis to the

analysis of the ultimate strength of bolted steel connections. Fisher(zs” 26)
adapted Rumpf's graphical analysis for computer computation and with
extensive experimental testing refined an analysis for long bolted plate
splices using certain materials and’fasteners.

The most recent analysis of a gusseted connection was done by
Lehman(27) in 1960. He performed an analysis of a "Y' type connection
composed of three tension members joined by @ rectangular plate. He used
a finite-difference technique and assumed the loading to be parabolic
line loads. This is apparently the first attempt in gusset plate analysis
to apply the load in a realistic manner. The difficulties encountered in
this analysis stemmed from the large number of finite difference equations
necessary for an adequate solution.

The adaptation of a classical closed form elasticity solution

to the problem of plate connections using rivets and bolts was investi-

(28) (29)  1his

gated by Budiansky and Wu and was later used by Bloom .

method of assuming a loaded fastener to act as a loaded rigid inclusion



in the plate, allows considerable flexibility in its use and provides
a more realistic approach to the problem of plate connections.

The preceding review of analytical and experimental research
related to gusseted connections should provide a brief sketch of the
development of knowledge in the area of riveted and bolted connections
and a guide to the development of the present study. A look at the
present design criteria follows to illustrate a designer's freedom in

proportioning a gusseted connection.

1.2 Present Design Criteria

A structural designer may specify the size, shape, and thickness
of a gusset plate when designing a gusset connection. According to most
structural design codes, gusset plate thickness is determined by fastener
bearing stress requirements; the size and shape are usually chosen so that
minimum edge distance requirements for the fasteners in the connected
members are satisfied. The size and shape criterion may, of course, be
arbitrarily overridden for economic or aesthetic reasons. An inspection
of truss bridges will illustrate a wide range of gusset plate sizes and
shapes; gusset plates vary from simple polygonal to very irreqular shapes.

The AISC Specifications 30

for the design of structural steel
for buildings is an example of a well known and widely used building
code which makes no mention of minimum requirements on gusset plate
thickness. The only requirements on size are determined by the required
minimum edge distances. Several bridge specifications specify a minimum
thickness and also that the plate be able to resist shear, direct stress,

and flexure acting on a weak or critical section. Not only is it difficult

to determine the critical section, but the ordinary beam formulas often



used to analyze such a section to check the stress requirements have been
. (15)

shown to be of questionable value .

Present design criteria seem to have been developed without

adequate consideration of the behavior of gusseted connections and the

numerous parameters which affect this behavior.



I1. OBJECT AND SCOPE OF THIS INVESTIGATION

The behavior of gusseted connections is so complex that few
generalizations can be made about the effect of the numerous parameters
which are involved. This section indicates the manner in which the
gusset plate study is conducted and the extent to which it is investigated.

The study includes analytical and expefimenta] investigations of
a very basic type of gusseted connection. .Many of the experimental investi-
gations, previously mentioneé in Section 1.1, indicate a need for a more
detailed study of the parameters which affect the behavior of simple
riveted or bolted joints of the variety used for truss-type bridge hanger
connections. It is believed that this type of connection is sufficiently
basic to indicate how the behavior of more complicated connections might
be affected by the same parameters.

The intention of the analytical study is to develop a mathematical
model which relates fastener loads to deformations throughout the gusset
plate, to combine this relationship with rational assumptions for the
load deformation behavior of the connected member, and f}naﬁiy to use this
combination as an analytical model in which individual parameters can be
studied. This has been done for two types of gusset plates, (1) a semi-
infinite plate, and (2) a symmetrical finite plate. The load partition
among the fasteners of the connection is studied as joint parameters, e.g.
pitch, gusset thickness, fastener flexibility, etc., are varied. The stress
distribution in the gusset plate which results from the calculated load parti-
tion is then investigated. The method used to obtain the approximate elastic-

ity solution of the finite plate is growing in popularity and has been used



to obtain good approximate solutions to a number of special boundary value
problems. lts application to a problem of this type may be of separate
interest; details of the elasticity solutions are included as appendices.
All computations for the analytical study were programmed for computer
solution; a complete program including a brief description of its relation
to the analytical development is also included as an appendix.

The experimental study consists of a series of idealized model
tests of a symmetric gusset plate connection in which the geometry of the
gusset and the total number of fasteners in the joint are varied. The
major purpose of the study was to justify the assumptions of the analytical
model. The resulting load partition and strains at certain specified
points in the plate are presented. Finally, the results of the analytical
and experimenfal models are compared, evaluated, and summarized. Conclusions

are presented and recommendations are made for future study.



i1, ANALYTICAL INVESTIGATIONS

3.1 lIntroduction

An analytical investigation of the elastic behavior of a
gusset plate connection requires the development of a simple analytical
model with which desired parameters can be varied and their effects on
the behavior studied. The development of such a model requires a
judicious selection of analytical methods’and assumptions which will,
within reasonable limits, portray the behavior of the gusseted connection.

The two major objectives of this study are to determine the
gusset plate contribution to the non-uniform load partitioning among
the fasteners of the gusseted connection and the stress distribution
reshlting from the fastener loading.

As mentioned previously, Section 1.1, several analytical methods
have been applied to the gusset problem to determine the stress distri-
bution for a particular assumed load condition. Also, several techniques
have been devised to determine, based on compatibility, the load partition
in simple lap joints. These compatibility relationships were founded on
basic assumptions regarding the load-displacement characteristics of the
individual components of the joint. There was no direct association
with the loads and the stress-strain properties of the plates.

It is believed that a combination of the two analytical
approaches with some refinement in the treatment of the gusset plate
is required to provide a link between individual fastener loads and
the stress-straln distribution in the plate. Such a combination should

provide the mathematical model necessary for the study of the gusseted



connect ion behavior. The load-deformation or stress-strain relation-
ships for the gusset plates are derived from the plane theory of
elasticity for small deformation in a homogeneous, isotropic, elastic‘
material.

The mathematical model for the semi-infinite plate connection
is presented and discussed in Section 3.2. A similar approach is
developed in Section 3.3 for a symmetric finite plate joint. Following
these formal derivations of the two problems being studied, the results
of a number of parameter variations are presented and briefly discussed

in Section 3.4,

3.2 Semi-infinite Plate Solution; General Considerations

The choice of an analytical model for the study of plate
connections using a finite number of point fasteners (i.e. rivets,
bolts, pins) leads one immediately to the question of the size and shape
of the plates being connected. Since primary emphasis in this study is
being placed on the plate contribution to the behavior of a joint, an
adequate solution of the plate problem is required. A semi-infinite
plate provides, perhaps, the most basic as well as practical geometry
to begin the study of the problem of gusset connections. In such a
plate, the choice of mathematical model to represent the application of
load by a fastener is difficult. This difficulty exists since there are
three structural fasteners, each of which differs from the others in the
mechanics of load transfer.

A structural rivet usually fills the hole in the connected

parts after being driven and the load in a riveted connection is



transmitted by means of friction developed between the connected parts
and by bearing of the rivet on the connected plates. However, the
magnitude of the frictional resistance is uncertain and as a result

the proportion of the load transmitted by these mechanisms is uncertain
and will in fact vary with the magnitude of the loading.

The high strength structural bolt, on the other hand, is
usually installed with an oversized hole in the connected parts and
tightened to maintain a clamping force sufficient for a transfer of
load predominantly by the friction developed between the connected
parts. The third fastener, tne incerference body bolt combines in some
fashion the described rivet and bolt mechanisms since its knurled shank
is driven into the hole in the parts being connected, thus putting the
fastener into bearing at a finite number of points. Subsequently the
bolt is tightened to a high clamping force which develops frictional
resistance between the connected parts. When using a bearing type
’fastener (rivet), at least a part of the load is applied to one side
of the hole in the connected parts, while in a friction type fastener
(high strength bolt) the force is distributed over an area on the
surface of the plate near the edge of the hole.

Plane-elasticity solutions of a highly complicated nature(])
have been developed for representation of the bearing type of load transfer
and extremely simple solutions are available for a force at a point in an
elastic sheet. The author felt that the approximation of bearing type

of load transfer would not be practical in light of its complexity and
other assumptions which will have to be made. Although quite simple in

form, point force solutions also present complications, in that displacements



are poorly defined in the neighborhood of the load. A method used by

(28)

Budiansky and Wu , that of considering the fastener to be a loaded
rigid inclusion, yields a relatively simple method for representing the
load transfer mechanism.

The infinite plate with a loaded rigid inclusion has a closed-
form solution in plane elasticity which satisfies exactly the boundary
condition imposed by the inclusion. A good approximate solution to
a semi-infinite plate loaded by a rigid inclusion was used by Bloom(zg)
in his study of infinitely long stringers connected to a plate, and is
presented in detail in Appendix B. This solution yields stresses and
displacements throughout the semi-infinite plate for a unit load acting
on a rigid inclusion; this is the basic solution used in the study of the
semi-infinite joint in Fig. 3.1(a). It should be emphasized that displace-

(14, 27) of the stress

ments are available from this solution. Other analyses
condition in plates which use the finite difference approximation, avoid
the question of displacements. The importance of displacements will be
pointed out in the following derivation of joint compatibility.

The development of the remaining relationships from the
analytic model involves making some simplifying assumptions about the
deformations of the connecting member and fasteners. In the elastic
range fastener and local deformations are approximately linear, as
pointed out by a number of researchers(4’ 12, ]3); the fasteners are
considered, therefore, to behave as simple springs. Again following
the assumptions of previous research on simple riveted lap joints by

(3)

Batho , the member connected to the plate was considered to deform

as though it was in uniform tension (deformation = %%) where P/A is the



uniform stress, L is the length over which deformation is considered,
and E is the modulus of elasticity. This assumption does not account
for local bearing deformations in the lap plates. These deformations
are quite local and were assumed to be part of the total fastener
flexibility; this matter is discussed in Appendix D where an approximate

value for total fastener flexibility, C is developed.

.

As far as the mathematical model is concerned, the manner in
which the connecting member is attached to the plate, i.e.,single or
double shear, is arbitrary if the connection is assumed not to bend due
to the diséymmetry of single shear loading. The fastener in double shear
is allowed less freedom of movement, resulting in a more critical load
partitioning. The effect of fastener flexibility as presented in
Section 3.4 will make this fact more apparent. Throughout this study,
as pointed out in Appendix D, the connecting members load the gusset in
double shear. For this reason the '‘connecting members' are also referred
to as "'lap plates''.

For an elastic joint which deforms in the manner suggested one
may write the compatibility equations for displacements of the fasteners
and the connected parts. From the elasticity solution of the loaded
semi-infinite plate (Appendix B) we obtain the displacement along the
x axis, uij’ for n fastener positions and for each of n fastener load
positions; uij is the displacement at the ith fastener due to a unit
load at the jth fastener (fasteners are numbered in order beginning at
the one closest to the edge of the plate). This is an approximation to
a problem of n rigid inclusions; here, only the loaded inclusion has

been approximated as rigid. The remaining inclusions are replaced by
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plate material. The displacement at fastener locations other than the
loaded inclusion is calculated at the point corresponding to the center
of the fastener. The deformation of the ith interval of the plate due
to a load at the jth fastener is then given by

(3.1)

RS S

where, 1 < i<n-1,and 1 <j<n

As assumed, the deformation of the connecting member in the ith interval

Q.p
AL’
s

the ith interval, p is pitch of the fasteners and AS is the effective

will be where Qi is the total load transmitted by the lap plates in
cross-sectional area of the lap plates. The total local and fastener

deformation is then approximated by

where fi is the ith fastener load. Using Fig. 3.2 as an illustration
atibility relationship for the ith interval

G . _ L
pra te, =ptAite (3.2)
where A? is the deformation of the ith interval of the gusset plate and

A% is the deformation of the ith interval of the lap plates. In terms

of physical properties and loads A? and A% become
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Substituting into Eq. 3.2 and simplifying we obtain the general

compatibility equation for the ith interval in terms of the load.

n

- 2 - =
Zeikfk AE ka+ Clfy = fiy) =0 (3.4)
k=1 ‘ k=i+1

Since there are n-! intervals, only n-l independent equations exist,

which is one less equation than the number of unknown fastener loads.

The solution is achieved by specifying the total load on the joint or

assuming a value for one of the fastener loads. The latter method is the

one used by the author in the computer solution of the problem.

The development of the general compatibility equation (Eq. 3.4)

has introduced numerous variables related to the elastic properties of

the various components of the connection. Beginning with the determination

of the plate influence coefficients Eij we may vary:
1. modulus of elasticity
2. Poisson's ratio
3. diameter of inclusion
4, edge distance of the first inclusion
5. pitch of the inclusions

6. thickness of the plate



Independent of these choices other variables are
l. cross-sectional area of connecting member

2. modulus of elasticity of the connecting
member

3. total fastener flexibility
Discretion must be used in the choice of variables, so that the
conditions resulting from various assumptions made during the derivation
are not violated. Variations of a number of the joint parameters are
presented and discussed in Section 3.4.
Now, having developed the major hypothesis for the semi-
infinite plate connection one proceeds in a similar manner to the more

tedious analytical problem of the finite plate.

3.3 Finite Plate Solution

The natural continuation of the study of plate behavior in a
gusseted connection is to approach & more complicated plate geometry
than that of the semi-infinite plate. A symmetrical plate connection
(Fig. 3.1) was chosen for investigation, based on the ease of obtaining
an elasticity solution for such a plate and on the results of Sheridan's(‘8)
work with eccentric connections; he found ‘'the greatest divergence from
plane on specimens with no eccentricity of loading''. A common use of
this shape of plate is the lower chord hanger connection in many trussed
bridges. The elasticity solution of the gusset plate used to obtain the
influence coefficients is the only respect in which the semi-infinite

and finite plates vary from one another in formulation; consequently only

the additional geometric variables will now be discussed.



18

The elasticity solution approximating the symmetrical plate
problem is presented in detail as Appendix C. As with the semi-infinite
plate, the solution for a loaded rigid inclusion in an infinite plate
is used as a base and functions are added which cause the infinite
plate stresses to vanish on the chosen finite plate boundaries. The
solutions, performing this function, are truncated power series of the
complex displacement potentials ¢ and ¥ discussed in considerable detall
in Appendix C.

To define adequately the finite plate prébiem several additional
properties, pertaining to the plate shape and solution desired, must be
added to the six variables mentioned for the semi-infinite solution in
Section 3.2.

The size and shape of the plate will be described by the
boundary point coordinates which are specified for the ''point matching"
scheme discussed in Appendix C. Depending on the desired accuracy of the
solution and on the loading, 8 number of points on the boundary of the plate
are chosen. Also related to the accuracy of the solution, are the number
of terms to be evaluated in each of truncated power series ¢ and ¥. Actual
choices of these additional parameters will be discussed in the following
major section on results (Section 3.4).

Obviously then for the complete solution of the finite plate
joint of n fasteners, n sets of series coefficients are required; one set
for each fastener load position. Then, using the infinite plate solution
and the series solution for the residual problem, the displacement uij
and their adjustments, caused by the stress release, may be computed.

From here, as in the semi-infinite plate joint we proceed to calculate



the fastener load partition for variable fastener and lap plate
flexibilities.

The stresses at any point in the finite plate may be computed
for a particular load partition and total load by superimposing the
stresses at that point caused by each fastener load; each stress
computation for a fastener load involves the superposition of the in-
finite plate and boundary adjustment stresses. The stresses at the
point for each fastener load may then be superimposed. The results
of the analytic investigations, including the load partition and stress
distribution for the finite plate joint, just discussed, are presented

in the following section

3.4 Analytical Results

3.4.1 General

The elastic solutions of the two gusset-type joints shown in
Fig. 3.1, commensurate with the assumptions and approximations presented
in Sections 3.2 and 3.3, will be illustrated in Section 3.4 by varying a
number of the joint parameters and studying the resulting effects on the
fastener load partition and on the stress distribution in the plate. All
calculations for the two problems were programmed and performed using
the University of Illinois IBM 7094 digital computer. The computer
programming is not presented in this report but is available in the
original thesis at the University of {1linois Library.

Primary emphasis in this study has been on structural connections,

i.e. those used in bridges, buildings, etc. Approximate values of the
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modulus of elasticity and Poisson's ratio for steel (E = 30,000 ksi and
v = 1/3) were used throughout. Hybrid connections are conceivable in,

for example, aircraft structures where aluminum plates may be joined by
steel rivets or bolts. However, this particular aspect of the probiem

is left for future study.

The closed form of the semi-infinite plate solution suggests
that it be used as the primary model for the initial variation of
parameters. The finite plate solution can then be used to illustrate
the geometric parameter effect.

The following subsections are presented along this line of
thought. First, the plate and connecting member parameters are varied
using the semi-infinite joint and then a finite plate is solved to show
the finite plate geometry effects.

Parameters to be varied are:

l. total number of fasteners

2., edge distance of first fastener
3. fastener pitch

4. thickness of gusset

5. area of lap plates

6. fastener flexibility

7. geometry of plate

It should be mentioned here that a gusseted connection may
have any number of complexities introduced by the type and number of
members connected as well as the manner in which these members are

loaded. The complications introduced by these variables are avoided
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in this study since it was felt that these added variables would confuse

the already complicated analytical problem.

3.4.2 Load Partition, Semi-infinite Plate

The variables for the semi-infinite plate joint, with the
exception of the material constants E and v are as follows:

d’ heﬁ Pi t’ n’ ASD Ct

As discussed in the scope of the investigation an experimental
study was conducted concurrently with the analytical study. Akset of
dimensions‘of similar magnitudes to the experimental dimensions will be
taken as a base from which individual parameter variations may be studied.
Some of the values for dimensions of length may be immediately expressed
as multiples of other dimensions since only their relative magnitudes
have an effect on the solution.

Further non-dimensional reduction was‘not attempted because of
the number‘of approximations involved in determining the quantity Ct'
Generally, each parameter was varied over a wide range of values
approaching, in some cases, unrealistic behavior. The reasonable range
over which parameters might vary in structural steel connections, using a
variety of fasteming devices, will be discussed as each parameter is
cited.

The load partition has been presented in a number of ways in
past research, the most usual being in terms the percentage of the total
load. Present design procedures are based on the assumption of equal
load distributed to each fastener. Therefore, the author felt that a

normal ized load partition would be a more meaningful way of illustrating
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the behavior of the joint with respect: to the assumed idealistic
behavior; the fastener load partition is based on an average load
of unity per fastener. Then, a fastener load of 1.50 indicates that
the fastener load is 50% above the average load per fastener on that
particular joint.

The following dimensions were used as base values of
comparison.

d = .375 inches

h = 3d = 1.125 inches

p = 3d = 1.125 inches

t = .25 inches

AS = 2.0 inches

C, = .25 10" inches/kip
n =7

These dimensions are similar to those of the experimental
model but have been, for convenience, arbitrarily rounded to whole
or rational numbers. The value for Ct which is based on d, t, and an
assumed thickness for the lap plates is discussed in Appendix D.

A generally accepted fact is that load partition becomes more
severe with an increase in the number of fasteners in a joint. Figure 3.3
illustrates the effect on the load partition of varying the number of
fasteners from 3 through 10. In each case, of course, the total load
increases as well as the number of fasteners. Figure 3.4 I[llustrates the
net effects more vividly. Here the loads in the first and last

fasteners and the minimum load at any interior fastener are plotted with
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respect to the total number of fasteners in the joint. It is apparent
that the load in the first fastener is most effected by the change in
the total number of fasteners. The variation in the total number of
fasteners can be considered as a variation in joint length since the
pitch has been held constant.

A designer may vary pitch over a considerable range, however
normally he seeks to keep it at @ minimum (usually 3d). In Fig. 3.5,
returning to the seven fastener joint, the pitch is varied from the
minimum value of 3d to twice this value or 6d and the resulting load
partition-is plotted. Figure 3.6 illustrates that again the first
fastener is most effected by the change. For a realistic range of
values of pitch, perhaps 3d to 4d, the effect in itself is hardly
significant.

Another parameter, which, within certain restrictions, is the
choice of the designer, is the edge distance of the first fastener.
Figure 3.7 shows the load partition for a seven fastener joint at
three different edge distances. The edge distance of infinity is not
a realistic edge distance but does show the limiting affect of the stress
free edge on the joint load partition. The joint having an infinite
edge distance would be equivalent to an infinite plate joint. The first,
last, and minimum loads for intermediate edge distances are shown in
Fig. 3.8. There is little change in load except as the edge distance
becomes infinite. The first fastener load tends to decrease with de-
creasing edge distance as would be expected. Values of edge distance smaller

than 3d were not considered In light of the assumptions made in the
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elasticity solution of the semi-infinite plate (Appendix B). One
would expect the load in the first fastener to drop rather quickly as
the edge distance approaches zero.

The remaining plate variable, that of thickness, is difficult
to vary independently since it is associated with value of Ct' Keeping
this in mind one may investigate the independent variation of t in
Fig. 3.9. The first fastener load increases with the thickness at about
the same rate as the last fastener load decreases, the minimum remaining
fairly constant. As will be pointed out later in the section, this is
similar to the effect of the variation of lap plate area. The two
variables remaining are the total area of the lap plates and total
fastener flexibility.

The lap plate area is representative of the stiffness of the
members which might be joined by a gusset plate. Figure 3.10 illustrates
the variation in fastener load for all possible values of As’ The‘
limiting values exhibit the expected behavior, i.e. as the area of lap
plates in the fastener intervals approachés zero, all of the load goes
to the first fastener and, as the area becomes infinite, @ load partition
for a joint with @ rigid connecting member, allowing only local
deformations, exists. For this particular joint parameter only a small
range of areas is realistic, perhaps from As = 1.0 to As = 4,0. The
last parameter to be varied for the semi-infinite plate is the fastener
flexibility, Ct' This parameter is undoubtedly the most indeterminant
of all of the joint parameters. It accounts for all of the deformations

local to the fastener, except the ones accounted for in the elasticity
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solution of the gusset plate. The assumption of 5, = thi indicates
basically that the deformation is linear and unaffected by other
fastener loads. A value of zero for Ct would be a reasonable
approximation for a bolted joint before slip occurs, although even

in this case some local deformation would occur. A value of infinity
for Ct would lead one to the idealistic behavior with uniform loading
of all fasteners. This case, of course, is not physically possible.
Therefore, a realistic value of Ct, lies somewhere between in 0 and «,
depending upon the thickness of the plates and the fastener used. In
Appendix D a reasonable value has been obtained for Ct relating it to
the other base parameters of the plate. The effect of variations in
Ct above and below this value (Ct = .25 x lOmS in/kip) on the load
partition is illustrated in Fig. 3.11. Here it is interesting to note
the manner in which the variable Ct affects the partitioning of load.
The minimum loads are affected quite drastically, as are the end lIoads.
This is shown again in Fig. 3.12. It is estimated that for this joint,

depending on the fastener used, Ct could vary realistically between O

and .4 x 10-3 in/kip.

3.4.3 Stress Distribution, Semi-infinite Plate

The stress distribution in the gusset plate was one of the
prime considerations of this investigation. Early in the deve lopment
of the analytical work the stress distribution throughout a rectangular
section of the semi-infinite plate was studied using a set of parameters,
which were similar to those of the experimental model, the purpose being

to check equilibrium of the system as well as to investigate the load
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transfer. The total load based on 3 kips per fastener is equal to the
loading on the experimental model. Some of the results of this
investigation are shown in Fig. 3.13. The tractive stresses are plotted
along the boundaries of the rectangular section chosen for investigation.
On the boundary of this section which is perpendicular to the line of
load the stress, . acts to resist the external loading, while on the
boundary of the section which is parallel to the line of loading the
shear stress, Txy” acts to resist the external loading. At this
particular section the total load applied to the semi-infinite platg
is resisted by the direct tension on one boundary and by shear on the
other two; for this section approximately half of the load is transferred
by shear and half by direct stress. Figure 3.13 has been presented
here to illustrate the load transfer in the semi-infinite plate and will
be used later in comparison with the load transfer in the finite plate.
While studying the stress in the plate of Fig. 3.13 a very
high transverse stress (Uy) was discovered along the stress-free edge
at the line of loading. This high tensile stress tends to split the
plate apart along the load line. The high transverse stress diminished
rapidly away from the stress-free edge.
To study the splitting stress more closely the effect of an
individual fastener at & variable edge distance was investigated
(Fig. 3.14). Using this figure one may, for a given load, edge distance,
fastener diameter, and plate thickness, calculate the transverse edge
stress; the quantity P/dt is commonly used to denote the average bearing

stress of a rivet or bolt and is used in the dimensionless ratio, 5%2?”
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in Fig. 3.14 for convenience in relating the five quantities mentioned.
Stresses for he < 3d were not plotted since, as explained in Appendix B,
the approximation of the elasticity solution of the semi-infinite plate
is not valid for small edge distances.

Figure 3.14 illustrates that the splitting stress diminishes
quite rapidly as edge distance increases. However, the stress does not
approach zero so rapidly as to allow one to neglect the effect of
fasteners far from the edge.

The édge stress for a variable number of fasteners and for an
edge distance of the first fastener is illustrated in Fig. 3.15. In
addition to the variables used in Section 3.4.2 a total average load of
three kips per fastener is maintained for all cases. This illustration
is not completely realistic since t, As’ and Ct would normally vary with
the design load, but it does show that the edge distance of the first
fastener and the total number of fasteners in the joint affect this edge
stress considerably.

For the semi-infinite plate, the most critical stress seems to
be the splitting stress just discussed. This stress will be discussed
again in the next section in connection with the finite plate and later

in the experimental study.

3.4.4 Load Partition and Stress Distribution, Finite Plate

The complete solution for the load partition and the stress
distribution of a particular finite plate joint is presented here to
illustrate the solution technique and the effect of the geometric variables.

Extensive variation of parameters has not been attempted for the finite
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plate since it is believed that the results of the parameter variation
on the semi-infinite plate adequately describe the effects of a similar
variation on the finite plate. More detailed variation of geometric
parameters has been left for future study.

The solution of the finite plate problem differs from the
solution of the semi-infinite plate problem only in the manner in which
the elasticity solution for the plate is obtained. The finite plate
solution requires several more input parameters to describe the shape
and size of the plate and to indicate the extent of the precision to be
carried out in computations. The details of the theory on the solution of
the finite plate problem are presented in Appendix C and discussed further
in Section 3.3. The problem is discussed here in terms of the actual
manipulations performed and results obtained.

In addition to the plate variables listed in Section 3.2 for
the semi-infinite plate the coordinates of @ number of points on the
boundary of the plate are specified. Generally, the more points defining
the boundary the better the solution to the problem. It was found during
development of the computer solution that the distribution of the points
on the boundary also affected the precision of the solution.

The coordinates of the boundary points are most conveniently
expressed in realistic dimensions of length. However, the power series
expansions used in tne solution necessitate a scaling of these dimensions
to avoid the generation of very large or very small numbers which are
not within the range of operation of the I1BM 7094 digital computer.

In connection with the truncated power series generated for

the solution, the number of terms to be expanded in the series must be
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defined. Geﬁera]ly, as wfth the boundary points, the larger number of
terms used in the series the better the solution.

In summary, the additional variables required for the finite
plate solution are the following:

. Boundary points, z (a finite number of points
at a selected distribution)

2. A scale factor for the plate dimensions
3. The number of terms in the ¢] and Wl series
Figure 3.16 illustrates the selection of a set of points,

z:, for a particular shape of finite plate. The plate chosen has a
taper of 1:2, it is 10 inches wide and 12 inches long measured from
the origin to the boundary perpendicular to the line of load. There are
33 boundary points shown intuitively distributed to improve the
approximation to the solution in the region where the loads are close
to the edge of the plate and where the boundary changes direction
sharply. One inclusion is shown solid in Fig. 3.16 to emphasize that
the problem is solved independently for each load location. The 33 points
on the boundary generate 64 separate conditions to be met by the series
solution. The'least squares''approach explained in Appendix C allows one
to choose fewer terms in the series than are required to satisfy exactly
the boundary conditions specified at each point. For the problem of
Fig. 3.16, sixteen terms in each series proved to be quite sufficient
to generate an adequate solution. An optimization of the number and
distribution of the points as well as the number of terms in the series
may be possible; however, the author has found that an adequate choice

of variables can be made quite easily after a trial solution. For the
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plate specifications in Fig. 3.16 a salution was obtained and the

load partition with the resulting stress trajectories are presented

in Fig. 3.17. The state of stress was evaluated at a number of points
on the gross and net sections shown in Fig. 3.17. These results are
plotted and presented as Fig. 3.18 and Fig. 3.19 for gross and net
sections respectively.

An integration of the o stress over the gross section
satisfies equilibrium of the system. The only apparent discrepancy
lies in GY and Txy not vanishing on the boundary. Little error is
indicated however.

The net section stresses show some discrepancy on the
boundary. This is largely due to the fact that the net section happens
to pass through a corner of the plate where the solution is not well
def ined.

An immediate check on the elasticity solution of the entire
stress distribution is to evaluate the combined stress along the boundary
due to all fastener loads to see how well the stress free boundary
conditions are met. The stress condition for each point as numbered on
Fig. 3.16 is tabulated in the table on the next page. The solution
could have been presented in a more non-dimensional form, but it was felt
that in connection with the entire study the dimensional form is more
easily understood. Also presented is a list of the variables associated
with this solution. |If the stress free condition was satisfied perfectiy

g, column would be zero and the principal orientations would be the same

2

as the orientation of the boundary at every point (either 0° or 26.5°).
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FINITE PLATE STRESSES AT BOUNDARY

t = .25 in. As = 1.5 sq. in.

d = .375 in. Ct = ,000250 inches/kip

h = 1.25 in. n =17

e

p = 1.125 in, fi(ave.) = 3 kips
. Coordinates ) o) T o log Principal

Point y x 14 Y ! 2 Orientation
Number . . . . . .
inches ps i psi psi psi ps i degrees
R e,

] 12.0 0.00 9 5110 ' 0 5110 9 .0
2 12,0 0.10 9 5023 ~30 5023 9 -.3
3 12.0 0.20 7 4767 -54 4768 7 ~.7
4 i2.0 0.30 3 4360 -66 4361 2 -.9
5 12,0  0.50 -23 3189 -42 3190 -23 -.7
6 12,0 0.70 -39 1755 48 1757 -4 1.5
7 12.0 0.80 -1z 1019 115 1032 -25 6.3
8 12.0 0.90 69 307 195 417 -4 29.3
9 11.9 1.05 473 -52 -202 542 =121 18.8
10 11.3 1.10 792 190 -529 1100 -118 30.2
11 11.7 1.15 1161 365 -755 1616 -9] 31.1
12 11.6 1.20 1554 432 -921 2083 -47 29.9
13 11.4 1.30 2321 609 -1170 2915 16 26.9
14 1.2 1.40 2965 690 -1396 3628 27 25.4
15 11.0 1.50 3452 784 -1630 4225 12 25.4
16 10.8 1.60 3812 898 -1862 4720 -9 26.0
17 10.6 1.70 4098 1016 -2065 5134 -20 26.6
18 10.3 1.85 4470 1171 -2292 5645 -4 27.1
19 10.0 2.00 4833 1279 -2449 6082 30 27.0
20 9.5 2.25 5410 1356 -2677 6742 25 26.4
21 8.5 2.75 6057 1466 -3057 7584 -6l 26.5
22 7.5 3.25 6100 1559 -3005 7596 63 26.5
23 6.5 3.75 5443 1381 -2704 6794 30 26.5
24 5.5 4,25 3933 986 -2088 5015 -97 27.4
25 5.0 4.50 3123 741 -1617 3941 -76 26.8
26 4.5 4.75 2483 503 -1058 2942 45 23.4
27 4.0 5.00 2132 302 -441 2233 202 12.9
28 3.5 5.00 2817 55 -199 2832 41 4.1
29 3.0 5.00 3528 -57 -59 3529 -58 .9
30 2.0 5.00 4839 -60 51 4839 -6l -.6
31 1.0  5.00 5765 20 49 5766 20 -.5
32 0.5 5.00 6015 49 27 6015 49 -3
33 0.0 5.00 6100 59 -0 6100 59 .0
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The residual nofmal stress 9, oscillates about zero along the boundary
showing maximum deviation at or near the corners. This is to be
expected because the truncated power series approximation cannot
represent the sharp discontinuity at the corners. These deviations
are very small compared to the magnitudes of stress throughout the
plate; the average gross section stress is 8400 psi. The maximum
deviation of 202 psi is only about 4% of this value. All of the other

g, deviations are considerably less. Some deviation is introduced

2
through the discrete character of the method which is being used; no
attempt has been made to satisfy the boundary conditions on more than

a finite number of points. Part of the deviation undoubtedly is caused
by the round off error accumulated in the computer calculations.

A major advantage of this method is that the field equations
(equilibrium and compatibility) are satisfied exactly on the interior
of the plate. Since the external equilibrium has been verified and the
boundary condition has been approximated to the degree observed above,

it is felt that this method adequately solves the plane elasticity

problem for the finite plate.
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IV, EXPERIMENTAL INVESTIGATION

4.1 Introduction

The experimental investigation presented in this section was
conducted to study under controlled conditions the behavior of a very
basic type of gusset plate connection. The experimental phase was
developed and performed simultaneously with the analytical study previously
presented. The dimensions and physical properties of the specimen and
material were similar to those assumed in the analysis. A new technique
was developed to indicate the partition of load among the fasteners of
the connection. The gusset was instrumented to measure the strain
distribution at certain selected points.

All testing was performed within the elastic range of the
connection materials. Several parameters were variediusing only one
specimen; these included gusset plate geometry and total number of
fasteners.

In the following sections the design fabrication and instrumenta-
tion of the specimen are described. The test procedure and a summary and

[
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4,2 Design of Specimen

The word ''design'' may be somewhat ambiguous in light of the
comments of Section 1.2 concerning the present status of gusseted connection
design, however, a simple symmetrical gusseted hanger-type connection was
proportioned using common design requirements for the tension: shear:

bearing ratio.
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A seven fastener joint was chosen, based largely on having a
sufficient number of fasteners in a line to cause a relatively severe
load partitioning and to provide a sufficient variation in the number of
fasteners by removal of fasteners, i.e. the total number of fasteners could
be made equal to 2, 3, 4, 5, 6, or 7.

The double symmetry which occurs when a symmetric gusset plate is
loaded in double shear was found to be advantageous from the standpoint
of the ease of making test measurements.

Since all testing was to be done in the elastic range of the
gusset plate material, an ASTH AS514 steel having @ 90 ksi minimum yield
stress, was chosen for the plate material. The fastening device was chosen
to be a tight fitting pin for reason of easy assembly and removal as well
as its basic nature of transferring load entirely through the fastener,
i.e. providing no friction between the connected parts. The material used
for the pins was "'drill rod." In pilot tests it was found that the yield
strength of the '"drill rod'' was such that the pin would remain undeformed
after loadings equal to those of its intended application.

The gusset specimen detail is shown in Fig. 4.1. Generally, the
overall size of the specimen was determined from instrumentation criterion
and the ease in handling of the test apparatus. The net section area of
the lap plates in approximately 1.3 sq. inches which yields a T:S:B ratio
of 1.0:0.84:1.5. The critical bearing is, of course, in the gusset plate
and was made lower than allowable to avoid permanent bearing deformations.

Also shown in Fig. 4.1 are five arbitrarily selected plate
geometries beginning with a rectangle numbered ''1''. The geometries will

be referred to by number as they are shown in Fig. 4.1.
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4.3 Fabrication

The gusset plate specimen and lap plates were painstakingly
fabricated to assure good alignment and ease of assembly as well as to
remove any undesired variables such as eccentricity. The gusset plate was
cut from a slightly oversize piece of 1/4 inch steel plate and finished
on both surfaces with a hand sander to remove mill scale and to reduce
the thickness to within 0.250" + 0.002'". Warpage in the plate was
checked and the plate straightened insofar as possible.

The lap plates were cut and machined from the same type steel
as the gusset plate. Both of the lap plates and the gusset plate were
then carefully aligned and clamped as a unit to the bed of a horizontal
milling machine. The pin holes were then drilled and reamed to assure
matching as well as accurate spacing and alignment. The pins were cut to
size and marked to assure being placed in the same hole and in the same
orientation upon each subsequent reassembly. The pins were then polished
so that they could be inserted and removed with ease.

The fabrication and assembly of the test specimen was carefully
controlled since the deformations at full load are very small and slight
inaccuracies in fabrication would produce a pehavior far from the idealized

behavior sought in this study.

4.4 Instrumentation

The instrumentation as discussed in this section includes a
description of the loading fixtures and the load measuring devices.
Special emphasis is placed on the method devised to measure the individual
loads transmitted by the fasteners of the pinned joint. The placement of

ce Room
vepartment’
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strain gages at selected locations on the gusset plate and the application
of a brittle lacquer coating to the connection will also be described.

The gusset plate specimen was attached to loading fixtures and
mounted in a large universal testing machine as shown schematically in
Fig. 4.2, The loading fixtures were designed to resist more than ade-
quately the maximum load applied to the specimen and were attached to the
specimen with high strength bolts for easy removal and reuse. A pinned
joint at one end of the loading apparatus and a ball seat at the other end
were provided to avoid any secondary effects from eccentric loading. The
entire load rig was placed in a large universal testing machine which
acted as a loading frame. To provide more accurate control and greater
convenience, the load application and measurement were accomplished using a
20 ton hydraulic jack operated by a hand pump. A calibrated weighbar which
utilized output from electric resistance strain gages was used for a load
indication; the loading capabilities of the universal testing machine were
not used.

A number of researchers have devised methods for the measurement
of the load transmitted by the fasteners in riveted and bolted joints.
These methods range from the measurement of the rotation of the ends of
the fasteners during loading to the placement of numerous resistance strain
gages on the lap plates to measurement of the load transmitted by the lap
plates so that load in the individual fasteners can be calculated. This
latter method requires a large number of strain gages to obtain good
calculated loads and may be desirable when the fastener pitch is large
enough to provide convenient instrumentation of the lap plates as well as

a more uniform lap plate loading.
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(20)

From observation of the photoelastic studies of Carter and

Coker(z), it was felt that placement of miniature strain gages on the
surface of the loaded plate at or near the compression side of the fastener
would allow, after calibration, a sensitive means of measuring the individual
fastener loads. Placement of the gages on the compression side of the
holes near the edge of the hole reduced the effect other fasteners might
nave on the load indication. A schematic presentation of this action is
presented in Fig. 4.3. To check the effect a three pin double shear lap
joint was tested using 5/16 inch pins and 1/4 inch square foil-type resistance
strain gages mounted on only one surface of the center plate. Results were
erratic and showed a non-linear behavior. The holes in the pilot specimen
were reamed to 3/8 inch diameter and 1/8 inch square gages were mounted on
both surfaces of the plate; the gages were wired to cancel any bending effect
caused by unequal loading in the lap plates. A consistent, sensitive and
predominantly linear response was obtained from this arrangement.

Based on the pilot studies, the fastener load sensing instrumenta-
tion was used as shown in Fig. 4.3. One-eighth inch square gages were
placed about 3/32 of an inch from the edge of the 3/8 inch hole on the load
line. The response from the gages was épproximateiy 1200 micro inches for
the 5 kip maximum load applied to each fastener during calibration. The
max imum effect from a load in an adjacent fastener was between 50 and 100
micro inches for the 5 kip load, a relatively small effect.

For convenience and efficiency in the recording of data the total
load and individual fastener locads were used as input to the two axis of an
x-y recorder. A multiple contact switch was used for selection of the

fastener load to be measured, and each fastener load sensing device was
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provided with a means for individual zer§ adjustment. With this arrangement,
the X-Y recorder, after adjustment and calibration, was used to plot total
load versus fastener load response for each tastener; this was done for
each fastener when it was loaded individually and when loaded as part of
a composite joint using 2 through 7 fasteners. Additional discussion on
load measurement will be presented in the next section on test procedure.
For an experimental determination of the stress or strain distri-
bution in the gusset plate, foil-type resistance strain gages were used at
the net and gross sections as shown in Fig. 4.4. Gages were mounted on
only one half of one side because of the double symmetry of the connection;
three gages on the net section were rosettes. Two additional gages were
placed symmetrically opposite to the gages shown with an asterisk in Fig. 4.4
to check for eccentricity of loading. After testing had begun, an additional
gage was placed on the edge of the plate on the load line to check the high
splitting stresses indicated in the analytical solutions and mentioned
earlier in Section 3.4.3.
One surface of the plate was left relatively free of external
gages and was polished to provide a surface for application of brittle
lacquer for the study of strain trajectories.
In summary, the gusset plate was instrumented for measurement of
total load and individual fastener load; the plate was also instrumented
with strain gages at a number of points and sprayed with brittle lacquer

to indicate the distribution and flow of strain throughout the plate.

4.5 Test Procedure

The gusset plate specimen (Fig. 4.1) was tested for the five

geometries indicated; the procedure used for a typical test is described here.
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Initially the gusset plate specimen and load fixtures were fitted
up and while hanging, supported only at the top, the high strength bolts
in the top and bottom lecad fixture connections were snug tightened to
ensure proper alignment of all components. These bolts were then tightened
to a high tension. The lower load fixture remained assembled during all
tests and specimen alterations.

The photograph in Fig. 4.5 shows the specimen in place and viewed
from the side used for the brittle lacquer study. With the specimen in
place it was wired, as shown in Fig. 4.2, to the X-Y recorder; the recorder
could then be balanced and calibrated. All pins except one were removed
and a load calibration was made using the X-Y recorder to record total
load on one axis and load response from the fastener on the other. A
portion of this record for the number 4 fastener is shown in Fig. 4.6. The
influence of the number 4 fastener load on three other load indicating gages
is shown by the two curves having negative slope. The opposite slope is, of
course, due to a tensile strain which is opposite in sign to the compressive
strain recorded for the fastener load. Each of the remaining six gages
were calibrated in the same manner, recording the effects of each pin on
the gages at the unloaded holes.

After calibration a number of fastener combinations were tested.
An example of the load data for a five fastener joint is shown in Fig. 4.7
The non-linearity of response for total load less than 2 kips is caused by
a lack of uniformity in pickup of load in the 5 fasteners; despite the care
in fabrication and assembly this behavior was unavoidable. The various
féstener combinations were loaded to a average load of 3 kips per fastener
above an initial load of 3 kips making sure that the most critically loaded

fasteners were not overloaded.
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For a number of fastener combinations the individual strain
readings were taken from the surface gages at the net and gross sections
of the gusset plate for the same total load ranges which were used for the
load partition measurements.
With seven fasteners in place the specimen was sprayed with brittle
lacquer to indicate the strain trajectories for that particular gusset
plate geometry. The strains in the gusset were slightly below the threshold
strain required to crack the brittle lacquer at room temperature; therefore,
the specimen was cooled slightly with compressed carbon dioxide to induce
cracking. Crack patterns which were then quite visible were outlined.
Tnese lines ére visible in the photograph shown in Fig. 4.8{(a); the
horizontal member shown in Fig. 4.8a was used only to make sure that the
lap plates did not separate from the main plate during load application.
After the brittle lacquer crack patterné were recorded, the
specimen was removed from the testing machine, the upper load fixture and
lap plates were removed, and the gusset plate geometry was altered for
the next test. Shown in Fig. 4.8(b) is one of the geometric alterations
of the gusset plate connection viewed from the gaged side of the specimen.
In the following section the data from the tests on various geometries

and fastener combinations are presented.

4.6 Results

4,6.1 Load Partition

The parameters varied in the experimental study of load partition

are the plate geometry and the total number of fasteners.
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The experimental load partition was obtained from the reduction
of data of the type shown in the calibration curves of Fig. 4.6 and the
compos ite load data of Fig. 4.7. Compensation was made for the effect of
each fastener load on the load sensing gages of the other fasteners. As a
check on the accuracy of the measurements and the method, the total load
obtained from summing the individual fastener loads was compared with the
measured total load. Errors were less than 5%; the sum of the individual
fastener loads was consistently less than the measured total load. The
variation in geometry is described in terms of the angle between the tapered
edge of the gusset plate and a perpendicular to the load line as shown in
Fig. 4.9; the fastener loads are presented as in the analytic study in
terms of an average load of unity per fastener.

in Fig. 4.9 the first, last, and minimum fastener loadings are
shown in terms of the geometry of the plate. Although the five tests did
show some scatter, the expected trend occurred as indicated in the analytical
work, i.e., the reduction of load in the first fastener with the simultaneous
increase of load in the last fastener. No noticeable change occurs until
after the gusset has been altered to such a severe angle that the net
cross-sectional area of the gqusset s reduced.

For the second geometry the variation in load partition is shown
in Fig. 4.10 for a variation in the total number of fasteners. As in the
analytical study the first fastener load becomes more severe with increased
total number of fasteners, while the last fastener loading and the minimum
fastener loading change much less severely. This variation of fastener load
is indicated in another manner in Fig. 4.11 for the third geometry. The

first, last, and minimum fastener loadings are plotted in terms of the total
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number of fasteners and indicate the type of behavior indicated in Fig. 4.10.
The load partition results for the first three geometries are basically the
same except for some scatter, which is quite small considering that the
joint was reassembled for each test and that much of the data reduction
was made by visual graphical interpretation. It should be mentioned that
the experimental load partitioning presented here is the partition which
would have occurred if all of the fasteners began to take load at the same
time. As indicated earlier in Fig. 4.7 the fasteners did not all pick up
load simultaneously. Tne smooth load partitions presented nhere are nothing
more than the load taken by the fasteners after initial preload (total load =
3 kips). This is justified by the linear elastic behavior of the pins
during calibration.

One factor which was not accounted for in the measurement of the
individual fastener loads is the effect of change in shape of the hole on
the response of the individual load indicating gages. Calibration was made
on a lightly loaded plate; however, the individual loads in a load partition-
ing were measured when the plate was loaded by as many as six other fasteners.
It is believed that the effect of this factor was small, based on the good

agreement between the total measured load and the sum of individual loads.

4.6.,2 Strain Distribution

The measurement of strains in the gusset plate using electrical
resistance strain gages is a relatively straightforward operation.. Gross
and net section axial strains are presented for the five geometries of
gusset plate. Transverse edge or splitting strains are also presented in

terms of variable geometry. Finally, sketches of the brittle lacquer



43

patterns are Qhown to illustrate, for the first thnree geometries the
variation of stress or strain distribution with geometry.

Axial strain distribution at the gross section of the gusset
plate, which is shown for each geometry in Fig. 4.12, is non-uniform,
as would be expected, but does not vary appreciably with changes in
geometry. The strain distributions for the first three geometries are so
close that the plotted points are shown joined by one curve. A similar
presentation of the net section strains is shown in Fig. 4.13. Again, the
most significant change in strain occurs when the cross-sectional area is
reduced by the geometry alterations. The net section strains could not be
measured very close to tne center of the gusset because of the position
of the lap plates. As witn the load partition, the strains shown are
based on the increase above an initial strain caused by a pre-load on the
joint of 3 kips.

The experimental transverse edge strain Is shown in Fig. 4.14
in terms of geometry of the gusset plate. The measured strain is shown
for 3 load levels which average 1, 2, and 3 kips per fastener. Since
results were not available for the first geometry, an analytical result
from the semi-infinite plate study is shown for 6 = G°. There appears
to be good agreement. The improvement, i.e. the reduction in the vaiue of
the transverse edge strain, is quite favorable for increased taper of the
gusset: however, for usual shapes of gusset plates the magnitude of strain
is still quite significant.

A qualitative picture of the variation of stress trajectories for
a variation in plate geometry is shown in Fig. 4.15. What can be noted quite

readily is that much of the corner material in the first geometry is very
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lightly stressed and as a result is not used effectively. Thus, the
earlier results which indicated little change in load partition for the
first three geometries are very feasible since much of the material which
was removed did not add significantly to the structural integrity of the
joint.

Results from the experimental study will now be discussed in
the following section in terms of the analytical results previously
presented and their significance in explaining the behavior of a gusseted

connection.
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V. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

5.1 Load Partitioning

The load partitioning phenomena in a gusseted connection are
dependent on a large number of variables, as is illustrated by the parameter
variation of Section 3.4.1. Partitioning is difficult to reproduce
analytically; consequently an evaluation of the various assumptions made
in the development of the apalytical relationships is very important in
the final evaluation of the results.

Referring to Fig. 3.4 and Fig. 4.10 one sees that the prevalent
trends for

.
he variati

arn in fa
£n ion Ta

of fasteners for the analytical semi-infinite plate joint and the experimental
finite plate joint are generally the same. This comparison and agreement
helps to substantiate and justify the soundness of the choice of the semi-
infinite plate model for the extensive study of the variation of parameters
in Section 3.4.1.

A direct comparison of the load partitioning obtained from the
two analytical models and the experimental model is indicated in Fig. 5.1.
The analytical solution for the semi-infinite plate is almost identical to
the load partition of the second gusset geometry; the results from this
geometry are representative of the results from the first four experimental
geometries. The semi-infinite plate load partitioning is the same as that
shown in Fig. 3.13 and the variables listed in that figure are similar
to those for the experimental case. The variables for the analytical
finite plate were not exactly the same as those for the experimental case,

the areas of the lap plates were smaller than those of the experimental plates.
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ihe reason for this inconsistency is that only one complete finite gusset
problem was computed;, the change in dimensioning was necessary for

technical reasons associated with the distance between last fastener and

the origin Fig. 3.16; these reasons are discussed in Appendix C.
Recomputation was not considered desirable because of the small difference
in dimensions. When compared with the semi-infinite results, the analytical
tinite plate load partition results show the type of variation which would
be expected. The analytic finite plate should, however, compare more
favorably in magnitude with the experimental load partition shown in

Fig. 5.1,

The failure of the analytical result to check more closely is
probably due to some of the analytical assumptions, i.e., a value of Ct
could, of course, be chosen to yield better agreement. Experimentally an
effect was indicated in the latter geometries which was not taken into
consideration analytically. Namely, the load started to drop in the last
fastener, indicating, perhaps, that for more flexible gusset plates the
elongation of the holes in regions of high strain may be contributing
significantly to the load partitioning. This factor was not considered in
the analytical assumptions, but at this point it is difficult to determine
how significant this effect is with respect to the numerous assumptions

made .

5.2 Strain Distribution

To make a comparison between the stress or strain distribution
obtained from the analytical and experimental studies, the analytical

stresses were converted to strains assuming £ = 30,000 ksi and v = 1/3.
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Noting again that there were slight variations in the dimensions of the
analytical and experimental models, the author chose for comparison the
strains at the gross and net sections of plate geometry No. 4; as shown
earlier, the axial strains did not vary to any great extent for the first

4 geometries. The comparisons are shown in Fig. 5.2 and Fig. 5.3. As

would pe expected the analytical strains are higher at the center line,

due to the smaller fastener pitch; the closer spacing of the fasteners

gives the effect of a more concentrated loading. The analytical load
partition was somewhat different, as noted in the previous section. The
experimentally determined load partition was, therefore, used in conjunction
with the plate elasticity solution to compute the strain distribution for the
same gross and net sections. These results indicate better agreement as

is shown in Fig. 5.2 and Fig. 5.3.

A qualitative comparison can be made through visual inspection of
the experimental stress trajectories of Fig. 4.15 and the analytical
trajectories of Fig. 3.17. Very similar behaviors are indicated.

In Fig. 4.14 the analytical strain plotted for 8 = 0° shows a
continuation of the experimentally estabiished trend. This strain was
obtained directly from the semi-infinite plate solution.

The analytical and experimental strain distribution results
show good agreement when one considers that the assumed modulus of
elasticity could be in error from 5 to 10 percent and that certain of the

plate dimensions were not identical.
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VI. SUMMARY AND CONCLUSIONS

6.1 Conclusions

In the first two sections the more important previous gusset
plate research in the field of riveted and bolted connections is reviewed
briefly, and the course ofthe present study is outlined. In the present
study an investigation of basic type of gusseted connection was undertaken
in considerable detail, both analytically and experimentally to ascertain
the effect of a number of variables on load partition among the fasteners
and stress distribution in the gusset plate.

Several conclusions can be drawn from the analytical variation of
parameters in the particular case studied. The variables of fastener pitch
and edge distance of the first fastener show only slight effects on the load
partitioning for a reasonable range of values. The variables of gusset
thickness and of lap plate area indicated similar effects on the load
partitioning, but no generalizations can be made with respect to quanti-
tative effects.

The increase in the number of fasteners of a joint, with all
other variables remaining constant, causes a variation in load partitioning
and a rapid increase of load in the first fastener.

The total fastener flexibility, as described in Appendix D, is
an important factor since it changes with the size and type of fastener used.
Very severe changes in the load partitioning are produced in the end
fasteners of a joint by a decrease in the fastener flexibility. The
fastener flexibility has been found to be an important factor and should

be studied experimentally in more detail in the future.
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Several conclusions may be drawn from the analytical study of
stress distribution in the semi-infinite and in the symmetrical finite
plate. It has been shown that a large transverse stress develops on the
edge of a gusset plate at the load line. This stress tends to split the
plate along the line of fasteners and increases with the proximity of the
fasteners to the edge of the plate. 'Analytical relations have been
developed to allow easy calculation of this stress for assumed load
partitioning in the semi-infinite plate.

The experimental gusseted connections exhibit a behavior similar
to the analytical models with few exceptions (Sce Section 5). From the
study of the variation in plate geometry one may conclude that the load
partition is ohw affected by extreme variations in gusset plate geometry.

The measurement of the transverse edge strain confirmed the discovering
of the splitting condition in the analytical results. The data also showed
that the strain is somewhat relieved by increasing the taper of the gusset.

The elastic analysis of the gusset plate cannot be used to establisH
the ultimate strength or mode of failure for static loads. However, the
stress distributions show that gusset plates can be expected to yield or
perhaps rupture at either of two places, along the load line or at the last
fastener. Failures of both types occurred in the static tests of truss-

(21)

type connections reported by Chesson and Munse . Thus, the present

study helps greatly in explaining the unusual failures observed in these

previous studies.
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0.2 Areas for Future Study

Tne foregoing investigation has oniy provided a part of the
answer to a very complex problem. Numerous variables involved with fabri-
cation, installation, eccentric loading, etc. have been avoided and need to
be considered in the future. The study has been limited to elastic behavior
in the connection material. Fatigue failures have been a problem in riveted
and bolted connections; some study is therefore necessary to correlate the
fastener loading with the fatigue failures that have been reported.

The analytical model for the finite plate joint which was
developed in this study has much potential but has not been used to full
advantage. Further refinement as suggested in Section 5.1 is recommended
for the future use of the analytical model.

A study of the ultimate strength characteristics should be the
next major step to be taken towards a better understanding of the problem
associated with the design of gusseted connections. Sound and effective

design recommendations of gusset plates would then be possible.
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{a) Brittle Lacquer Side, Geometry No.l (b) Gaged Side, Geometry No. 2

FIG.4.8 GUSSET PLATE SPECIMEN AT DIFFERENT TEST STAGES
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APPENDIX A

NOMENCLATURE

General Nomenclature

area of lap plates, conrecting member

nth coefficient of the power series solution for ¢ of the
residual finite plate problem

shear area of fastener in double shear

nth coefficient of the power series solution for ¥ of the
residual finite plate problem

nominal dismeter of rigid inclusion or fastener

modulus of elasticity

total force transmitted by the ith fastener

shear modulus of elasticity

edge distance of the first fastener

distance from origin to ith fastener

prefix denoting the imaginary part of a complex function
bending moment of Inertia of a fastener

total flexibility accounting for fastener deformation and local
lap plate deformation

number of fasteners
fastener pitch or spacing in direction of loading

force transmitted by the lap plates in the ith interval



Re

T
xy
¢ (z2)

v(z)
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prefix denoting the real part of a complex function
thickness of gusset plate

thickness of lap plate

displacement in the x direction

displacement in the y direction

u displacement at the ith fastener due to a load of unity at
the jth fastener

rectangular coordinates
complex variable equal to x + iy where | =4/ <]
constant factor equal to (1 + V}Z/BﬂEc

total deformation of the Ith fastener including local lap plate
deformations

deformation of the ith interval of the gusset plate
deformation of the ith interval of the lap plates

deformation of the ith nntervai due to a load of unity on the
jth fastener

elastic constant equal to for plane stress sclutions in two

]+
dimensional elasticity

Poisson's ratio

normal component of stress parallel to x axis
normal component of stress parallel to y axis
shearing stress component In rectangular coordinates

Muskhelishvili displacement potential

Muskhelishvili displecement potential
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APPENDIX B

LOADED RIGID CIRCULAR INCLUSION IN A SEMI-INFINITE SHEET

The generalized plane stress solution of the stated problem
is derived here as the first approximation to 2 mixed boundary value
problem in plane elasticity using the classical solution of a loaded
rigid circular inclusion in an infinite sheet or plate. This solution

(29)

was obtained earlier by J. 5. Bloom aﬁd was included in an appendix

to his work with related problems.

The complex Muskhelishvil displacement potentials ¢(z) and

¥(z) (z = x + Iy) are related to the stresses and displacements in a plane
stress solution in the following manner.
o *+o =4 Re [¢1]
X Y

- i mmu.g.n
o, - o + 2 Ty 2{z ¢ V']

26{u + iv) = ko - 20! - ¥

where k = 2= and G Is the shear modulus of elasticity.

b+ v
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For a unit load acting at the origin in the negative x direction

on a rigid inclusion of diameter d whose center is at the origin

28
(Fig. B.1(a)), the displacement potentials are( )

¢, =T log (z)

¥, = -r [K log (z) + (:g; jf]

~ and t is thickness of the plate. Additive constants

have been omitted from this solution since they do not affect the
resulting stresses. This solution can be modified to provide the more
general displacement potentials for a loaded rigid inclusion a distance

h from the origin on the x axis (Fig. B.1(b)).

¢, =T log (z - h)

(B.3)

(@2)® . __h J

LA [K fog (z - h) + 2 - h) 2 (z - h)

Considering the semi-infinite elastic sheet to be the positive
side of the y axis, the stress free edge will be the y axis (x = o)

(Fig. B.l{c)). The stress free boundary condition in terms of ¢ and ¥ is
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b+ 2z o +¥ =0 (8.4)

This condition represents an integration of the stresses along the
boundary(az),

As & Tirst approximation to the solution @i and Wg were chosen
such that ¢ = @0 + @i and ¥ = wc + yg satisfy the stress free boundary

condition. A judicious selection of functlions @l and *E with singularities

exterior to the region in concern, was made.

1 1
+ A
z + h y 2 (Z‘%'h)

¢, = A log {(z +h) + Al 7

(B.5)
] | |

+ B + B, s
+ h) 2 (z + h}2 3 (z + h)z

¥y = Bo log {z + h) + Bi T

where An and Bn are, in general, complex constants. Upon substituting
¢ and ¥ into the expression for the stress free boundary at z = iy,

(B.4), the following values were obtained for An and Bn'

A = g B = =}

= «2h B, = h(2 - x)

@ nedr- ]
' - ()



This yields the final form of the first approximation to the

solution of the semi-infinite plate loaded at @ rigid inclusion and

having @ stress free edge.

¢ =T |log (z = h) +«x log (z + h) = T

o=

| d)

ol

¥ =T |-k log (z = h) =

bz

- log {(z + h) +

222 . h)z} (8¢
h
" (z - h)
hizmpc) (h +<d>2\ 2h(> }
Z+h) " Gan? @ +n?
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The displacement potentials ¢ and ¥ satisfy exactly the condi-

tion for a stress free edge at x = 0, however, the assumption of a rigid

inclusion at z = h has been violated. ¢§ and *% do not satisfy this

condition. By selecting suftable functions ¢

2

and wz one could correct

this deficiency while violating the stress free boundary condition.

This is known as the Schwartz Alternating Method

step further, determining QZ and wz, and made an error analysis on the

difference in displacement and found that for h/d =

equals three inclusion diameters),

the error was

Private communication with the author.

. Jo. S. Bloom went a

3 (edge

distance

less than 5%.



The author feels that, in light of other assumptions, this

first approximation is quite adequate for the present study.
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APPENDIX C

LOADED RIGID CIRCULAR INCLUSION [N A FINITE SHEET

A rigorous presentation of the elasticity solution of the
finite plate problem is presented here, as an appendix, for a more
complete understanding of this portion of the gusset plate problem. To
obtain an approximate solution to this mixed boundary value problem the

(33)

author has used the point matching technique of Conway , @ method of
increasing popularity for solution of a certain class of boundary value
problems. Generally, the point matching procedure involves the adjust-
ment of a truncated series solution of a differential equation at a
selected finite set of boundary points of the region. The solution to
the problem will parallel the development of the semi-infinite plate
solution of Appendix B; a brief discussion of assumptions involved in
performing certain operations will follow the derivation of the
solution,

It is desired that displacement potentiails ¢, and w! be

]
found to modify the infinite plate displacement potentials ®D and @O

and provide an approximate sclution for the displacement potentials of
the finite plate, ¢ and ¥, where ¢ ='¢0 + ®B and ¥ = wo + Vﬂw In the
following work the cartesian form of the variable z is used (z = x + iy),

the intention being to take advantage of the complex arithmetic operations

which are easily programmed and performed on modern digital computers.
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The choice of a plate shape and loading configuration has
been previously discussed in Section 3.3. The shape to be studied
will be of the type found in simple bridge hanger connections, i.e.
usually tapered with straight edges and symmetrical about the line of
action of the load. The general approach will be to load a rigid
inclusion in an infinite plate and satisfy stress boundary conditions
on the desired finite plate boundary while maintaining the equilibrium
of the p?a&ea To maintain equilibrium cf.the plate it was found
convenient to begin with an equilibrated system as shown in Fig. c.1(a)).
With opposing loads at x = + h, any region can be cut from the infinite
plate containing both loads, and the resulting tractions at the edge of
this region, which maintain the shape of the region, will be in equili-
brium independent of the magnitude of interior loads. Another advantage
of this system is that the entire boundary for the base problem will
have stress free boundary conditions. The equilibrium condition allows
the superposition of an identical continuous region loaded by tractions
equal and opposite to the tractions of the infinite plate solution. The
superposition of the two solutions resuits in a plate loaded with equal
and opposite loads having a stress free edge at the boundary of the
chosen finite plate region. The solution of the problem can be further
simplified by choosing the finite plate region symmetrical in two
directions as shown in Fig. C.1(b) this replaces the inclusion with plate

material.



The infinite plate displacement potentials ¢O and Wo for the
opposed loads are obtained by superimposing solutions of the type given

in Eq. B.3.

©
]

z = h
o = =T log [z + h]
- 2 -
= B d ] 1
chom 58] [

1 1
*h Lz = B * z + h] }

-
f

(c.1

R

For solution of the residual problem described by the region of
Fig-C.1(b) with tractions resulting from o, and ¥ one can choose the

(32)

power series representations

o0 o0

fbl(z) =Zanzn; v{z) =anzn (C.2)

n=0 n=0

where a and bn are in general, complex constants. An examination of
the displiacement potentials ¢3 and W' for the case of double symmetry
allows one to simplify these series expansions. The substitution of ¢l

into the first of Equations B.l yields
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o + Uy = Z[ZEZnanznn] -Ziznaazna]} (c.3)

Symmetry of the normal stresses o and Uy about the x aexis requires that
the imaginary parts of the coefficients a must vanish; a_ must, there-
fore, be real. A similar examination of Eq. C.3 for symmetry of o,

and Uy about the y axis indicates that a must vanish for even powers

of n; only odd powers of z need be considered in the ¢, series.

i

Substitution of ¢, and Wﬁ into the second of Equations B.] yields

!

(-]

co
o, -9, + ZETXY = 2-{;;{:n(nwl) anznmz + Egjnbnzn-i}- (c.4)
n=2 n=1

The shearing stresses Txy are necessarily zero on the x and y
axes since these are axes of symmetry. From examination of the
symmetry of o, = 0, in Eq. C.4 on the real axis (z = x), noting that
a is real, one finds that the imaginary parts of bn must vanish; bn
must, therefore, be real. Studying this symmetry about the imaginary
axis {z = iy) one finds that coefficients b of even powers of z must
vanish and consequently that only odd powers of n need be considered

in the W} series.



[}
@
EN

¢!(2)

(c.5)

]

[=:<]
2n~1
+
¥, (2) = b anz
n=1
where a, and bn are real constants, and the constants a0 and bo do not
affect the stresses resulting from ®H and'waq

A unique determination of the functions ¢, and *a results

(32)

]

from imposition of the following conditions at the origin.

‘”a(o) =0, I¢’B (0) = o, ¥ (0) = o (c.6)

The first and third conditions require that 3, and bo vanish. The
second condition has been satisfied by the fact that 3, is real.

The integral boundary condition (Eq. B.4), which represents
the evaiuation of the integral of the tractions along the boundary
will now be used in the development of the point matching requirements
for a stress free edge on the loaded finite plate. The formulas
(Eq. C.1) for @@ and $0 possess the same symmetry as do the formulas

(Eq. €.5) for the ¢, and ¥ series previously discussed. This allows

1
the direct matching of the boundary conditions (Eq. B.4) to provide a

stress free edge on the boundary of the finite plate. Upon substitution
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of ¢ = @o + wi and ¥ = *o + w] into Eq. B.4 the boundary condition
becomes

e ™ b
tz oty -0 -z20 - (c.7)

%

on the boundary. Substitution of the infinite series ¢, and wl would

|
yield an infinite number of equations with an infinite number of
unknowns a and bno Solution of this system would yield an exact
solution of the problem.

Such infinite systems are cumbersome and difficult to handle.
The point matching scheme depends basically on the replacement of the
exact infinite system with an approximation based on a finite system.
Thus, oniy a finite number, N, of terms of Eq. C.5 are assumed to

adequately represent the solution to the problem; resuiting in a

simplification of Eq. C.7.

N 2nel N _2(n=1) N _2n=1
Zaz +zZ(2n-%) az +sz (c.8)
n n n
Re=| ne=l n=l

B o - Y - v
¢0 Z@O WO

Equation C.8 is satisfled at arbitrarily specified points on
the boundary, each specification resulting in two real equations for the

2N unknowns a , b_.
n'



Because of the double symmeiry of the plate problem being
studied, only one quadrant of the plate boundary need be considered.

If M boundary points are to be considered in the solution, generally 2ZM
independent equations will be generated and will require a total of 2M
terms from the $3 and W! series. If one of the chosen points happens

to be on the real or imaginary axis only one meaningful equation will

be generated since on the real axis the imaginary part of Eq. C.8 s
satisfied identically and on the imaginary>axis the real part of Eq. C.8
is satisfied identically.

A number of authors have used an extension of the point matching
approach while allows a greater number of boundary conditions or points
to be considered for a given number of unknown coefficients than is
poss ible with the direct approach previously described. This approach

(34)

was described and used by Hulbert and an explanation follows.
Consider the set of matrix equations Aﬁj Xj = Bj where the
number of unknowns is less than the number of equations. In general
these equations will not be satisfied exactly for any solution set Xj;
the residual error will have the form Ri = Aij Xj - ng From the
condition that the sum of the squares of the residuals is a minimum,

we may write
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a(Rsz) T T
T zQxAjiAstj«AjiRi, {(C.9)

where T denotes transpose. This set of equations is equivalent to the
original boundary equations premultiplied by the transpose of the

coefficient matrix Aéj’
A, A, X, = A | R, (c.10)

This is the method used for the solution of Equations C.8 for a and bn°

Having determined the coefficients a and bn of the chosen .y
and WE series, one now has an approximate solution for the plate problem of
Fig. C.1{b). From this solution the stresses and displacements can be

calculated for any point in the plate. The accuracy of such calculations

will depend on such factors as:

1. Shepe of the plate

2. Position of the load

3. MWumber points considered on the boundary

4. HNumber of terms used In each of the series ®! énd V]
5. Precision of the computations

6. Polnt for which stress or displacement is desired
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The first five of these factors all affect the satisfaction of
the original boundary conditions of the problem.

The original assumption of the boundary condition of a rigid
inclusion has been violated in two ways. The assumption involved in the
addition or superposition of the functions for rigid inclusions at
x = +h and x = -h (Eq. C.1), namely, that the inclusions remain rigid,
is only reasonable for h much greater than d (inclusion diameter). The
second violation of the assumption of the rigid inclusion is the release
of stresses at the finite plate boundary, without taking into account
the shape change of the inclusion. Again as in Appendix B this error
was assumed to be small when considering an edge distance greater than
3d. |

It is difficult to generalize about the effects of all of the
assumptions on a problem of this complexity. The discussion of the
results of applying this method to @ practical problem is incliuded in

the main part of the text.
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(a)

(b)

FIG. C.i FINITE PLATE RESIDUAL PROBLEM
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APPENDIX D

FASTENER FLEXIBILITY AND LOCAL BEARING DEFORMATION

in describing the deformational characteristics of the components
of a gusseted connection, the deformation of the fastener and the plate
near the fastener are important. The fastener deformation and local
bearing deformation are not prime considerations in this study but an
evaluation of their effect is necessary for completeness. Simplifying
assumptions allow one toc make a reasonable evaluation of the magnitude of
these properties. The work presented here is a combination of approximations

(12) (13)

made by Vogt and by Tate and Rosenfeld . Calculations are made for
deformations caused by the transfer of load by a rivet or pin which fills
the hole in the connected parts and causes no friction between the
connected parts.

The fastener which Is in double shear is considered to deform
as a fixed-end beam (Fig. D.1). Fastener deformations due to shear and
bending are calculated. Assuming a uniform loading (Fig. D.1), a tota!

load of unity transmitted by the fastener causes a fastener deformation

at the center of the gusset due to bending of,

5(bending) = 8&33 + Bﬁtszt + 8tst2 + ¢ (D.1)
384 EI

f



where £, is the thickness of a lap plate, and if is the bending moment
of inertia of the fastener. The shear contribution to the deformation

of the fastener for the same load is,

2t Tt (.2)

& GAf

5 (shear) =

where Af is the cross-sectional area of a fastener.

To approximate the deformations in the fasteners and lap plates
due to local bearing several simplifying assumptions are made. All
deformations use the original center-line axis of the fastener as a
reference.

From an elasticity solution of a plate with a fastener in

(12)

bearing Yogt found that a reasonable local plate deflection for a

unit load on the fastener to be,
s5{plate bearing) = g%g (p.3)

where t is the thickness of the loaded plate. For the compression
between the surface of the fastener and fastener axis, the average bearing
stress for a unit load ona plate of thickness t would be %? at the surface
and, at the axis of the fastener, approximately half of this value. The

. d . . . . .
deformation over a length 5 Is approximated by a2 simple integration over
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this length assuming the stress to change linearly. The resulting bearing

deformation in a fastener for a unit load on a plate of thickness t is

approximated as,

8{fastener bearing) = 4§%§

E,

n?
o
H

(D.4)

a2l
oY

The gusset plate local deformetions have been accounted for
in the elasticity solution of the plate and will not be included in the
calculation of the total fastener flexibility. With this omission the
total plate and fastener bearing deformation for a unit load transmitted

by tne fastener becomes,

8(fastener and plate bearing) = % (?%ﬂ + 9§9g> (D.5)
s

where t is the thickness of the gusset and tS is the thickness of a lap

plate.
in the relationship, 6i = thi, where 5i is the total local Eap
pilate and fastener deformation and fi is the rivet load, the total

flexibility Ct is equal to the sum of the relationships Eq. D.1, Eq. 0.2,

and Eq. D.5,



C, = 8{bending) + d(shear) + ®5(fastener and plate bearing)
(p.86)
gt 2+ 16t Zt 8ttt + t0 2t +t :
_ 5 s s 4+ 8 + 1/0.4 + 0.65
B 384 Elf 6 GAf E t ts

Using a value of E = 30,000 ksi the total flexibility, as calculated using
Eq. D.6, is presented in terms of t/ts and d/t in Fig. D.1.
To find a realistic value for Ct related to the other base
variab!és used in the parameter study of Section 3.4, t/tS was chosen
as 0.75; this number is also comensurate with the experimental lap plate
dimensions. The value of d/t equals 1.5. The assumptions made in
arriving atqct are valid for small deformations only. This explains the
upward trend of Ct for small d/t. 1t is suggested that a more realistic
continuation of the curve for t/tS = 0.75 and values of d/t <2.0 would
be as is shown dotted in Fig. D.l. For d/t = 1.5 and t/tS = 0.75 a
reasonable value for Ct appears to be approximately 0.25 x 10"3 Enches/kipdA
This value is used as one of the base values of comparison in Section 3.4.
Obviously many assumptions have been made which tend to simplify
a very complex physical phenomenon; however, it is believed that these
approximations are quite adequate with respect to the limited extent

which it is used in this study.
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